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Abstract
Aim: Viviparity has evolved more times in squamates than in any other vertebrate 
group; therefore, squamates offer an excellent model system in which to study the 
patterns, drivers and implications of reproductive mode evolution. Based on current 
species distributions, we examined three selective forces hypothesized to drive the 
evolution of squamate viviparity (cold climate, variable climate and hypoxic condi-
tions) and tested whether viviparity is associated with larger body size.
Location: Global.
Time period: Present day.
Taxon: Squamata.
Methods: We compiled a dataset of 9061 squamate species, including their distribu-
tions, elevation, climate, body mass and reproductive modes. We applied species- level 
and assemblage- level approaches for predicting reproductive mode, both globally and 
within biogeographical realms. We tested the relationships of temperature, interan-
nual and intra- annual climatic variation, elevation (as a proxy for hypoxic conditions) 
and body mass with reproductive mode, using path analyses to account for correla-
tions among the environmental predictors.
Results: Viviparity was strongly associated with cold climates at both species and as-
semblage levels, despite the prevalence of viviparity in some warm climates. Viviparity 
was not clearly correlated with climatic variability or elevation. The probability of 
being viviparous exhibited a weak positive correlation with body size.
Conclusions: Although phylogenetic history is important, potentially explaining the 
occurrence of viviparous species in regions that are warm at present, current global 
squamate distribution is characterized by a higher relative abundance of viviparity 
in cold environments, supporting the prediction of the “cold- climate” hypothesis. 
The roles of climatic variation and hypoxia are less important and not straightfor-
ward. Elevation probably exerts various selective pressures and influences the preva-
lence of viviparity primarily through its effect on temperature rather than on oxygen 
concentration.

K E Y W O R D S
biogeography, body size, climatic variability, cold climate, elevation, global analysis, 
reproduction, squamates, structural equation modelling, viviparity
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1  |  INTRODUC TION

The diversity of reproductive strategies across the vertebrate tree of 
life is vast. Such versatility in life history has facilitated their success-
ful expansion across various types of environments world- wide (e.g., 
Conaway, 1971; Laugen et al., 2003; Prado et al., 2005; Schwimmer 
& Haim, 2009; Shine & Brown, 2008). For instance, the evolution 
of shelled (cleidoic) eggs promoted the expansion of tetrapods into 
terrestrial habitats (D'Alba et al., 2021), and the retention of eggs 
inside the body of the parent significantly improved embryo surviv-
ability (Sadleir, 1973; Shine, 2014). Live- bearing [viviparity, herein 
used to include ovoviviparity (i.e., retention of eggs in utero almost 
until hatching)] evolved across all major vertebrate clades, except 
archelosaurs (birds, crocodilians and turtles; Blackburn, 2015a; 
Shine, 2005; but see Kuchling & Hofmeyr, 2022). Viviparity is wide-
spread in squamates (observed in c. 20% of lizard and snake spe-
cies; Meiri et al., 2021; and see below). Pyron and Burbrink (2014) 
made the controversial suggestion that viviparity is ancestral in 
squamates, with multiple subsequent reversals to oviparity. This hy-
pothesis has been strongly disputed because reversal to oviparity 
requires re- evolution of lost reproductive traits, such as the egg-
shell, which are exceedingly difficult to regain once lost (e.g., Griffith 
et al., 2015; Lee & Shine, 1998; Pincheira- Donoso et al., 2013; Tinkle 
& Gibbons, 1977). It should be noted that such a reversal is neverthe-
less possible; it was shown in Eryx jayakari (Lynch & Wagner, 2010) 
and was recently suggested for the family Liolaemidae (Esquerré 
et al., 2019). Viviparity is thought to have emerged on >100 in-
dependent phylogenetic occasions from an oviparous ancestor, 
with a few inferred reversals to oviparity (Blackburn, 1999, 2015a, 
2015b; Esquerré et al., 2019; Griffith et al., 2015; Lee & Shine, 1998; 
Shine, 1985, 2015; Wright et al., 2015). The prevalence of both ovi-
parity and viviparity in many squamate clades and the multiple or-
igins of viviparity make squamates an excellent model in which to 
study the selective forces behind the evolution and biogeography of 
reproductive modes.

The association of viviparity with cold climates is widely ad-
dressed in the literature and is mostly examined in view of the “cold- 
climate” hypothesis (Shine, 2014). This “cold- climate” hypothesis 
claims that viviparity is selected for in cold regions because uterine 
retention of embryos shields them better from the deleterious effects 
of low temperatures in comparison to exposed eggs (Guillette, 1993; 
Packard, 1966; Packard et al., 1977; Shine, 1983, 2014; Tinkle & 
Gibbons, 1977). Lack of thermal insulation of the egg, exacerbated 
by the scarcity of protected nesting sites in cold regions, can result in 
prolonged development and increased risk of death from hypother-
mia (Neill, 1964). Lengthy development can increase susceptibility 
to predation and the risk of missing the warm, more plentiful season, 
with the resources it provides (Tinkle & Gibbons, 1977). Although 
viviparous species make up a small proportion of squamates in warm 
regions, they predominate at high latitudes and elevations (Feldman 
et al., 2015; Greene, 1970; Ma et al., 2018; Pincheira- Donoso 
et al., 2013; Tinkle & Gibbons, 1977; and see below). Among closely 
related species that differ in reproductive mode, shifts to viviparity 

are associated with cooler environments (Cruz et al., 2022; Feldman 
et al., 2015; Guillette et al., 1980; Shine, 1987; Shine & Bull, 1979).

Unpredictable climate is another potential driver of viviparity in 
squamates (Tinkle & Gibbons, 1977), and its link with reproductive 
mode is generally made through the “climatic predictability” and 
the “maternal manipulation” hypotheses (e.g., Cruz et al., 2022; 
Feldman et al., 2015; Shine, 2002, 2014). The “climatic predict-
ability” hypothesis emphasizes the occurrence of unpredictable 
environmental events (e.g., sporadic heatwaves, cold spells or 
shifting onset of seasons; Tinkle & Gibbons, 1977) as drivers of vi-
viparity. Viviparous species are not restricted to cold climates and 
are diverse in several warm regions, particularly in the Neotropics 
(Feldman et al., 2015; Tinkle & Gibbons, 1977). Unpredictable, 
irregular climatic events (e.g., heatwaves and cold spells, floods 
and droughts), could put oviparous taxa, with eggs that remain 
where they were laid, at a selective disadvantage (e.g., Moreno 
& Møller, 2011; Shine, 1985; Tinkle & Gibbons, 1977). Viviparous 
mothers, in contrast, can avoid some of these perils behaviourally, 
conferring a selective advantage on their offspring, as emphasized 
by both the “climatic predictability” hypothesis and the “maternal 
manipulation” hypothesis (the latter suggesting viviparity to be 
beneficial in various suboptimal conditions, such as being too cold, 
too warm or too variable; Cruz et al., 2022; Shine, 2014). Despite 
its theoretical plausibility, the “climatic predictability” hypothesis 
has rarely been evaluated directly, and when it was, it generally 
received no empirical support (Feldman et al., 2015; Shine, 2002, 
2014; Watson et al., 2014). To test the predictions of this hypoth-
esis properly, it is crucial to identify relevant measures of environ-
mental unpredictability. To date, the most commonly used proxy 
for unpredictability is intra- annual seasonality, often defined as 
the variation in temperature and precipitation within an annual 
cycle (e.g., Feldman et al., 2015; Horreo et al., 2021; Shine, 2014; 
Watson et al., 2014). However, highly seasonal climates can have 
highly predictable temperatures and precipitation for species 
with a relatively long life span (e.g., Khavrus & Shelevytsky, 2012; 
Markham, 1970). For example, warm, dry summers and cool, wet 
winters make Mediterranean climates both seasonal and predict-
able (Mooney, 1988). A more important aspect of climatic variabil-
ity, to which an evolutionary lineage might conceivably respond in 
an adaptive manner, is the variation among, as opposed to within, 
annual cycles (Meiri et al., 2008). Interannual variation is greatly 
affected by extreme climatic events, such as El Niño and La Niña 
(e.g., pronounced temperature anomalies, blizzards and droughts), 
leading to less predictable climatic patterns in the long run 
(McPhillips et al., 2018; Moreno & Møller, 2011). Interannual vari-
ation could impose strong selection pressures on organisms (e.g., 
Grant et al., 2017; Hoffmann & Sgró, 2011; Marrot et al., 2017; 
Moreno & Møller, 2011; Williams et al., 2016). Reptiles can main-
tain their homeostasis behaviourally, for instance by changing 
their body temperatures (by basking or hiding in more insulated 
places; Le Henanff et al., 2013; Neill, 1964; Pettersen et al., 2022) 
or by swimming or climbing to safety when a site is flooded owing 
to extreme precipitation. Such tactics, however, are unavailable 
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to eggs. Although oviparous females might adjust their nesting 
behaviour to protect their eggs from unfavourable environmen-
tal conditions (e.g., Aubret et al., 2003; Harlow & Grigg, 1984; 
Peñalver- Alcázar et al., 2015; Shine, 2005), overall, parental care 
is rare in squamates (Doody et al., 2009; Reynolds et al., 2002). 
Accordingly, embryo survival in unpredictable environmental con-
ditions could be expected to be higher in viviparous species.

Recently, another explanation, aside from cold climate, was sug-
gested for the relative prevalence of viviparous species at high el-
evations. With an increase in elevation, the atmospheric pressure 
and the partial pressure of oxygen decline (Körner, 2007). Hypoxia 
(i.e., low oxygen partial pressure) has a significant impact on animal 
respiration (Körner, 2007). It can have particularly negative effects, 
such as retarded growth and depressed metabolism, on embryonic 
development of oviparous species and on fitness- related hatchling 
phenotypes, such as reduced body mass and slower locomotion 
(Cordero et al., 2017; Kam, 1993; Souchet et al., 2020). According 
to the “hypoxia” hypothesis, viviparity can buffer the embryo from 
reduced oxygen availability at high elevations because the partial 
pressure of oxygen in the mother's bloodstream is higher than that 
in the environment of exposed eggs (Pincheira- Donoso et al., 2017; 
Watson & Cox, 2021). Indeed, retaining embryos in utero can pro-
vide multiple fitness benefits, optimizing offspring body size, limb 
length, locomotion speed, etc. (e.g., Ji et al., 2007; Li et al., 2009; 
Shine, 1995, 2004, 2005; Webb et al., 2006). These benefits of uter-
ine retention emphasize the advantage of viviparity over oviparity in 
extreme and, particularly, oxygen- poor environments.

However, viviparity physically burdens the gravid female, for in-
stance, impeding movement speed and agility (Qualls & Shine, 1995; 
Shine, 1980; Tinkle & Gibbons, 1977). It also restricts the ability of 
females to reproduce again for the duration of pregnancy, result-
ing in a significantly lower rate of reproduction (Meiri et al., 2012). 
Body size is found to be positively correlated with locomotion speed 
(Schmidt- Nielsen, 1984; Sinervo & Huey, 1990), thereby potentially 
mitigating the negative impact of carrying embryos on a female's 
speed and the consequent reduction in her ability to evade pred-
ators (Shine, 1980; Shine & Bull, 1979; Sinervo et al., 1991; Tinkle 
& Gibbons, 1977). In squamates, the relative brood mass (i.e., the 
mass of the embryos relative to the mass of the mother) declines 
with increasing adult size (Meiri et al., 2021). Thus, larger gravid fe-
males might be relatively less burdened and able to move faster than 
smaller gravid females, resulting in lower predation risk. Additionally, 
the higher diversity of potential food items available for larger indi-
viduals, together with lower energetic cost per unit body mass, en-
able the female to reduce foraging frequency and therefore to be 
less exposed to predators, which are also fewer for larger individuals 
(Rivas & Burghardt, 2001). This is especially important in viviparous 
reproduction, because predation of a gravid female would also elim-
inate her embryos, whereas predation of an oviparous female will 
usually not cause a loss of her clutch. Neill (1964) concluded that the 
transition to viviparity in snakes has been accomplished most often 
in large- bodied species. Therefore, one might expect to observe vi-
viparity in larger species more often than in smaller ones.

Here, we tested most of the common selective forces hypoth-
esized to drive the evolution of viviparity (e.g., Pincheira- Donoso 
et al., 2017; Shine, 2014; Watson & Cox, 2021), in addition to the re-
lationship of reproductive mode to body size. Specifically, we tested 
the predictions that viviparity will be associated with the following 
factors: (1) cold climates; (2) unpredictable climates; (3) high eleva-
tions (a proxy for hypoxic conditions); and (4) large adult body sizes. 
Given that environmental factors can be intercorrelated, we used 
path analysis to account for such correlations in the prediction of 
reproductive mode. We included interannual climatic variation as 
a predictor, which has not been assessed before. We fitted mod-
els to examine the contributions of elevation and climatic variables 
to the relative abundances of viviparous species within equal- area 
grid cells (assemblage- level analyses) and to reproductive modes of 
individual species within their ranges (species- level analyses), glob-
ally and in biogeographical realms. Our assemblage- level analyses 
focused on the proportion of viviparous species of all squamates 
in a grid cell. They tested whether environmental conditions acted 
as filters that favoured species with one reproductive mode over 
another. Our species- level analyses addressed individual species, 
incorporating species- specific traits, such as adult body mass (repre-
senting body size) and phylogenetic affiliation, alongside data on the 
environmental/climatic niche of the species. Our dataset of >9000 
species included c. 83% of extant non- marine squamate species, 
making this the largest- scale study of the selective forces for squa-
mate viviparity to date.

2  |  METHODS

2.1  |  Data collection

We compiled a dataset for 9061 of the 10,954 extant non- marine 
squamate species (following the taxonomy in the August 2020 
checklist of The Reptile Database; Uetz et al., 2021), including data 
on reproductive mode, body size, climate and elevation in their 
respective ranges. Species range maps are extent of occurrence 
(EOO) maps from an updated version of Roll et al.'s (2017) reptile- 
distribution data (internally known as GARD 1.7; http://www.gardi 
nitia tive.org/). We downloaded elevation data at a resolution of 3 
arc- sec from EarthEnv- DEM90 (Robinson et al., 2014), using the 
R programming environment v.4.1 (R Core Team, 2022). We used 
the raster layer of these elevation data to subset the EOO maps 
of 6272 species to create suitable elevation range maps, based 
on literature records (i.e., not derived from the EOO maps them-
selves) on the elevational range at which species have been ob-
served (minimum and maximum values). Of these 6272 species, we 
used elevational observations for 4573 species from the literature 
(Supporting Information Appendix S1), and we phylogenetically 
imputed elevation for 1699 species lacking such data, using the 
“picante” R package (Kembel et al., 2010), based on the dichoto-
mous version of the phylogenetic tree made by Tonini et al. (2016). 
For the 2789 species for which elevational observation data were 
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lacking and which were impossible to phylogenetically impute (i.e., 
not represented in the tree), we used the EOO ranges directly (we 
also performed sensitivity analyses excluding species lacking el-
evational data).

We also extracted data on five climatic variables (per species 
range and per grid- cell; see below): mean annual temperature (BIO1; 
henceforth “temperature”; in degrees Celsius), intra- annual tem-
perature variation (BIO4; “temperature seasonality”; standard de-
viation × 100), intra- annual variation in total precipitation (BIO15; 
“precipitation seasonality”; coefficient of variation × 100), interan-
nual variation in mean temperature (“interannual temperature vari-
ation”; coefficient of variation × 100) and interannual variation in 
total precipitation (“interannual precipitation variation”; coefficient 
of variation × 100). We extracted the first three climatic variables 
from an updated version (CHELSA v.2.1; for the years 1981– 2010) 
of the work by Karger et al. (2017), at a resolution of 30 arc- sec, 
and the other two (interannual variability) from an updated version 
of ERA5 [Copernicus Climate Change Service (C3S), 2017; for the 
years 1979– 2020], at a resolution of 15 arc- min, using Google Earth 
Engine (Gorelick et al., 2017).

We defined both ovoviviparous and viviparous species as vivipa-
rous, because ovoviviparity and viviparity have practically the same 
function in relationship to our hypotheses (i.e., retaining embryos in 
utero until development is complete). We took data on reproductive 
mode for 7142 species from the studies by Feldman et al. (2015), 
Meiri (2018) and Meiri et al. (2021). We imputed parity mode for 
1919 additional species (392 snakes, of which 315 are scolecophid-
ians, all coded as oviparous; 1500 lizards; and 27 amphisbaenians), 
representing 21% of the 9061 species in our dataset. To do so, we 
used the “picante” R package (Kembel et al., 2010) and the dichot-
omous phylogenetic tree produced by Tonini et al. (2016), imputing 
reproductive mode only for species with ≥95% statistical support 
for the imputation outcome (n = 744). We complemented these by 
imputing the reproductive mode of 1175 species absent from the 
phylogenetic tree, only for species belonging to families that met the 
following three criteria: (1) a consistent reproductive mode (either 
oviparous or viviparous) across all family members with a known 
datum; (2) ≥30% (in families with ≥19 species) or 50% of the species 
in the family (for families with 7– 18 species) have published data on 
reproductive mode; and (3) the family consists of at least seven spe-
cies. We also treated the four members of the subfamily Boinae with 
unknown mode as viviparous, because all 29 species with data are 
viviparous. Furthermore, given that most blind snakes are believed 
to be oviparous (Lillywhite, 2014), we considered all members of the 
family Typhlopidae as oviparous despite having data for only 14.7% 
of 258 species (all oviparous, except the ovoviviparous Argyrophis 
muelleri; Das, 2011). All 391 squamate species meeting the criteria 
for both phylogenetic and manual imputation were imputed identi-
cally by the two methods, attesting to the robustness of the method 
(we also performed sensitivity analyses excluding imputation). We 
excluded species with mixed reproductive mode (n = 18) from the 
analyses but present some descriptive statistics that include them. 
Nevertheless, because the distributions of oviparous and viviparous 

populations of Zootoca vivipara are well known, we included it in the 
assemblage- level analyses (but not in the species- level analyses) as 
two “species” with different distributions and reproductive modes.

2.2  |  Species- level data

We calculated mean values for elevation and the five climatic vari-
ables across each species range, using the “exact_extract” function 
in the “exactextractr” R package (Baston, 2021). Additionally, we col-
lected data on the maximal body mass of species from the studies 
by Feldman et al. (2016) and Meiri et al. (2021). For each species, we 
recorded the biogeographical realms in which it occurs, according to 
Olson et al. (2001), by intersecting the EOO with the realms.

2.3  |  Assemblage- level data

We created gridded maps of the number of viviparous species di-
vided by total species richness (excluding species with mixed or un-
known reproductive mode) on an equal- area Behrmann projection, 
with a cell size of c. 96.5 km × 96.5 km (c. 1° × 1° at the equator). We 
calculated mean values for elevation and the five climatic variables 
for each cell as described for species above.

2.4  |  Statistical analyses

To analyse the relationship between reproductive mode and the pre-
dictor variables at both assemblage and species levels, we used path 
analysis, a special case of structural equation modelling, using the 
“lavaan” (Rosseel, 2012) and “phylopath” (van der Bijl, 2018) R pack-
ages. Structural equation models enable the covariation among vari-
ables to be accounted for by testing both direct and indirect effects 
of the various predictors on the response variable (Grace, 2006). 
We included indirect effects in our models based on a preliminary 
Pearson's correlation test among the predictors, including only cor-
relations >.3 as a rule of thumb (for model structures, see Supporting 
Information Figure S1). To reduce heteroscedasticity and normalize 
residual distributions, we log10- transformed all explanatory vari-
ables before analyses.

We conducted analyses both at a global scale and separately 
within six biogeographical realms (Australasia, the Palaearctic, the 
Nearctic, the Neotropics, the Afrotropics and Indomalaya; Olson 
et al., 2001) to test whether correlates of viviparity are universal 
across regions. We did not perform analyses for Oceania (but present 
descriptive statistics for it) because it consists of small islands, each 
constituting <50% of a 9309.6 km2 grid cell, in a relatively constant, 
warm climate (making Oceania irrelevant for testing the predictions 
of climatic hypotheses). To check that imputation of reproductive 
mode did not impact the results, we performed additional analyses 
excluding species with imputed reproductive mode. We standard-
ized parameter estimates and their errors for convenient comparison 
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across analyses. Further information on analytical methods is pro-
vided in the Supporting Information (R script in Appendix S1).

2.5  |  Species- level analyses

The response variable in our species- level analyses was the probabil-
ity of a species being viviparous (coded as “1”, vs. “0” for oviparous). 
Given that each species was assigned a binary reproductive mode, 
we fitted models assuming a binomial distribution. Our predictor 
variables included the five climatic variables, elevation and maxi-
mum body mass. We scored species for all realms in which a spe-
cies had ≥20% of its distribution. A few (254; i.e., 3%) of the species 
occurred in more than one realm and were analysed in both those 
realms. To account for phylogenetic dependence, we used the most 
complete time- calibrated phylogenetic tree available for squamates 
(Tonini et al., 2016), including 8444 of the species in our dataset. 
Using the “define_model_set” and “phylo_path” functions in the 
“phylopath” package, we built a structural equation model includ-
ing both direct and indirect effects of climate, elevation and body 
mass on the probability of being viviparous (Supporting Information 
Figure S1a). To test whether polytomies affected the results, we 
performed sensitivity analyses including only dichotomous relation-
ships in the phylogenetic tree (for 4349 species with reproductive 
mode data and 5180 species with imputed data). We also repeated 
these analyses excluding species lacking elevational data.

2.6  |  Assemblage- level analyses

We conducted assemblage- level analyses for 13,636 grid cells cov-
ering the distributions of our 9044 species (after exclusion of all 
species with mixed modes of reproduction, except for Z. vivipara, 
which we treated as oviparous for the grid cells in which egg- laying 
populations occur and as viviparous for the grid cells where females 
give birth to live young). Our response variable in these analyses was 
the proportion of viviparous species out of the total species rich-
ness with known reproductive mode in each cell. Explanatory vari-
ables were elevation and the five climatic variables. Given that the 
response variable was in the form of proportions, we applied “logit” 
transformation on the response variable. Given that “logit” transfor-
mation cannot handle zeros, we rescaled the response variable be-
fore applying it, by applying the transformation: y′ = [y(N − 1) + ½]/N, 
where y is the original response variable, and N is the total number of 
grid cells used for the analysis (Smithson & Verkuilen, 2006).

We calculated Moran's I to test for spatial autocorrelation, using 
the “Moran.I” function in the “ape” package (Dormann et al., 2007; 
Paradis et al., 2004). Moran's I was significantly higher than zero. 
We therefore corrected our models for spatial autocorrelation in 
the following manner. First, we built structural equation models 
using the “sem” function of the “lavaan” package (Rosseel, 2012), 
including both direct and indirect effects of climate and elevation 
on the proportion of viviparity (Supporting Information Figure S1b). 

Second, we recalculated the standard errors and p- values based on 
geographical distances, using the “lavSpatialCorrect” function, by 
Jarrett Byrnes (https://github.com/jebyr nes/spati al_corre ction_la-
vaan). To verify that residency of species on islands did not affect 
squamate life history, we conducted an additional analysis focusing 
on only the 12,321 non- insular grid cells (or 12,273 cells excluding 
species with imputed reproductive mode). We also repeated these 
analyses excluding the 4488 species lacking elevational data.

3  |  RESULTS

Our dataset comprised 9061 species, of which 7589 are oviparous, 
1454 are viviparous, and 18 have bimodal reproduction (Table 1; 
Supporting Information Appendix S1). The major clades Gekkota, 
Scolecophidia and Laterata are predominantly oviparous (>98% of 
species), whereas the clades Anguiformes and Scincomorpha have 
the highest proportion of viviparous species (>30%) followed by 
alethinophidian snakes (22.9%; Table 2).

3.1  |  Species- level analyses

Our global- scale model included significant effects (p < .05) for all 
the predictors of the probability of being viviparous, except varia-
tion in interannual precipitation (Figure 1a; Supporting Information 
Table S1). The model explained 78% of the variation in the prob-
ability of being viviparous. Temperature had a moderate negative 
correlation with viviparity (standardized estimate: −.46 ± .07), and el-
evation, temperature seasonality and interannual variation had weak 
negative effects (−.12 ± .03, −.08 ± .04 and −.09 ± .03, respectively). 
In contrast, precipitation seasonality, interannual precipitation vari-
ation and body mass had weak positive effects (.08 ± .03, .05 ± .03 
and .12 ± .04, respectively; Figure 1a; Supporting Information 
Table S1). All sensitivity analyses yielded qualitatively similar results 
(Supporting Information Table S2). The significance of the effects of 
predictors and their direction, however, varied among realms, with 
notably stronger effects of temperature in Australasia, the Nearctic 
and the Neotropics (Figure 2a; Supporting Information Table S1).

3.2  |  Assemblage- level analyses

Our assemblage- level dataset comprised 13,636 grid cells including 
1– 184 species (0– 120 oviparous and 0– 25 viviparous species per 
cell; Figure 4). Species richness decreased with temperature in both 
oviparous and viviparous species, but the slope for oviparous spe-
cies was much steeper (Figure 3). The proportion of viviparous spe-
cies generally increased with absolute latitude (Figure 4), especially 
in the Palaearctic, Nearctic and Australasia.

The global- scale model included significant effects (p < .001) for 
all the predictors of the proportion of viviparity except elevation. It 
explained 43% of the variation in the proportion of viviparity. Mean 
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annual temperature was by far the strongest predictor (−.49 ± .01; 
Figure 1b; Supporting Information Table S3) and was negatively cor-
related with the proportion of viviparity globally and across realms, 
except Indomalaya (Figure 2b; Supporting Information Table S3). The 
proportion of viviparity exhibited a weak positive correlation with 
interannual variation in temperature and a weak negative correlation 
with interannual variation in precipitation (.23 ± .01 and −.16 ± .01, 
respectively; Figure 1b; Supporting Information Table S3). The 
relationship with seasonality metrics was very weakly negative 
(Figure 1b; Supporting Information Table S3). The predictors and 
their effects varied across realms, with the effects of temperature 
being somewhat weaker in warmer realms (Figure 2b; Supporting 
Information Table S3). Elevation had no significant global effect on 
the proportion of viviparity, weak negative effects in the Palaearctic 
and Nearctic realms, and weak to moderate positive effects in 
warmer realms (Figure 2b; Supporting Information Table S3). All sen-
sitivity analyses yielded qualitatively similar results (see Supporting 
Information Table S4).

4  |  DISCUSSION

4.1  |  Cold climate

We found strong to moderate support for the prediction of the 
“cold- climate” hypothesis. Low environmental temperature emerged 
as a main driver of squamate viviparity. Temperature was the strong-
est predictor of viviparity at both the species and assemblage 
levels. Most of the (few) species that inhabit the coldest climates 
are viviparous (Figure 3): 71 of the 100 species inhabiting ranges 
with the coldest mean temperatures (≤4.8°C) are viviparous, three 
have mixed reproductive modes, and 26 are oviparous (Supporting 
Information Table S5). Furthermore, temperature is correlated with 
latitude (e.g., Supporting Information Figure S2), and it is noteworthy 
that of the 58 species with latitudinal centroids >45° (in either hemi-
sphere) in our dataset, 44 are viviparous (75.9%), one has a mixed 
reproductive mode [Z. vivipara (Lacertidae), with oviparous popula-
tions only at the southern edges of its range, around latitude 46° N 
(Horreo et al., 2018)], and only 13 are oviparous. Likewise, 66 of the 
100 species inhabiting ranges with the highest latitudinal centroids 
are viviparous, one has a mixed reproductive mode, and 33 are ovip-
arous (the null for this is 19% based on all our squamate species with 
reproductive status). These observations accord with our modelled 
predictions that viviparous species generally tend to dominate the 
squamate faunas of cold areas, whereas oviparous species dominate 
in warmer regions.

We show that viviparity is associated with cold climates at the 
global scale. Accordingly, realms that are mainly tropical and sub-
tropical (Olson et al., 2001) present, on average, weaker effects of 
temperature on reproductive mode. Although the “cold- climate” 
hypothesis proposes an increase in the adaptive value of vivipar-
ity in cold climates, the number of viviparous species is greatest 
in the generally warmer tropical regions (Table 1; Figure 4). The TA
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occurrence of viviparous species in such climates might be the result 
of dispersal after viviparity evolved in cold climates (e.g., Fenwick 
et al., 2012; Klein et al., 2021). Alternatively, some viviparous pop-
ulations might be relicts, remaining in a place they occupied during 
colder periods, such as during Pleistocene glaciations (Kupriyanova 
et al., 2017; Odierna et al., 2004; Renssen & Vandenberghe, 2003; 
Stute et al., 1995). Hence, viviparous lineages might have retained 
viviparity owing to the extreme difficulty of re- evolving oviparity, 
given the complexity of evolutionary steps required to re- evolve 
the shelled egg (Blackburn, 2015b; Griffith et al., 2015; King & 
Lee, 2015; Lambert & Wiens, 2013; Lee & Shine, 1998; Pincheira- 
Donoso et al., 2013; Shine, 2015; Wright et al., 2015). For example, 
species of the diverse genus Liolaemus (Liolaemidae) most probably 
evolved viviparity at high elevations in the Andes, later dispersing 
to the warmer adjacent lowlands and maintaining this reproductive 
mode (Esquerré et al., 2019; Pincheira- Donoso et al., 2013; Schulte 
et al., 2000). Likewise, pit vipers (Viperidae: Crotalinae) were shown 
to diversify, along with other viviparous viperid lineages, in the wake 
of the Eocene– Oligocene glaciation, while diversification of ovipa-
rous lineages was suppressed (Lynch, 2009). Subsequently, multiple 
viviparous lineages dispersed into and diversified in tropical regions 
[e.g., the Neotropical genus Bothrops, the Afrotropical genus Bitis 
and the Indomalayan genus Tropidolaemus (Alencar et al., 2016; 
Fenwick et al., 2012; Klein et al., 2021; Lynch, 2009)].

Tropical biomes are generally the warmest and most productive, 
with a long period of thermally suitable conditions for reproduction 
each year (Tejero- Cicuéndez et al., 2022). In such conditions, selec-
tive pressures on reproductive mode might be weaker than in colder 
or less productive environments (Lambert & Wiens, 2013). For in-
stance, oviparous species richness declines much more rapidly to-
wards lower temperatures than that of viviparous taxa, suggesting 
stronger selection against oviparity at cold temperatures (Figure 3). 
Productive environments, in turn, can contain enough vacant niches, 
food and shelter for the dispersing viviparous lineages to thrive 
(Tejero- Cicuéndez et al., 2022). Therefore, such environments are 

not expected to impose significant costs on the gravid female. Thus, 
even if at a disadvantage compared with oviparous species, owing to 
generally lower reproductive frequency (Meiri et al., 2012), vivipa-
rous species appear to be able to establish and maintain substantial 
populations in warm regions.

A noteworthy case that allows examination of the effects of cli-
matic pressures on reproductive mode in consistently cooling con-
ditions is the Australasian squamate fauna, which is dominated by 
endemic post- Eocene radiations (Oliver & Hugall, 2017; Skipwith 
et al., 2019). The major Australasian lineages were likely to be 
oviparous at the time when they evolved or colonized Australasia. 
Subsequently, viviparity evolved multiple times in three families: at 
least twice in the Elapidae; >12 times in the Scincidae, following three 
independent colonization events; and once in the Diplodactylidae, 
which are geckos of Gondwanan origin (Blackburn, 1982, 1999; 
Sanders et al., 2008; Skipwith et al., 2019). Since the beginning of 
these colonizations and during the Cenozoic in general, there were 
no dramatic decreases in temperature in Australia (Martin, 2006). 
New Zealand, in contrast, being generally warm at the time of the 
first skink (Scincidae) arrival (i.e., post- Eocene until early Miocene; 
Chapple & Hitchmough, 2016), underwent a profound cooling 
during the Pliocene and Pleistocene, especially in areas of moun-
tain uplifting c. 5– 2 Ma (Winkworth et al., 2005). Viviparous New 
Zealand lineages are thought to have evolved before this mountain 
uplifting (Skipwith et al., 2019) and never dispersed into mainland 
Australia (Chapple & Hitchmough, 2016). Consequently, under the 
“cold- climate” hypothesis, one would expect few occurrences of 
viviparous species in currently warm climates in Australasia. Our 
species- level model results for Australasia show the strongest as-
sociation between probability of being viviparous and low tem-
peratures (Figure 2a). Temperature showed a similar trend for the 
proportion of viviparous species in the assemblage- based model 
(Figure 2b). Overall, Australasia demonstrated similar patterns to 
the global analysis, supporting the prediction of the “cold- climate” 
hypothesis.

Clade
Number of 
species

Number 
oviparous

Number 
viviparous

Proportion 
viviparous (%)

Acrodonta 555 507 48 8.6

Alethinophidia 2780 2143 636 22.9

Anguiformes 176 106 70 39.8

Anomalepididae 19 19 0 0

Dibamia 10 10 0 0

Gekkota 1861 1843 18 1.0

Laterata 779 767 11 1.4

Pleurodonta 1115 911 203 18.2

Scincomorpha 1358 876 467 34.8

Scolecophidia 408 407 1 0.2

Note: The total number of species and of oviparous and viviparous species are presented for each 
clade. The proportion of viviparous species out of total species richness of each clade is presented 
as a percentage. These numbers include imputed values for 1919 species.

TA B L E  2  Descriptive statistics for 
squamate mode of reproduction across 
major clades
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4.2  |  Climatic variability

The role of climatic variability is less clear than the effect of cold tem-
peratures. At the assemblage level, the proportion of viviparity was 
positively correlated with interannual temperature variation, but nega-
tively correlated with interannual precipitation variation. Interannual 
variation probably represents climatic predictability because, un-
like seasonality, it does not vary periodically and is, therefore, diffi-
cult to adapt to directly (Grant et al., 2017; Moreno & Møller, 2011). 
Therefore, climatic suitability for incubation during the same calendric 
period would vary, leaving behavioural flexibility of the gravid mother 
as a better mechanism to ensure survival of embryos (e.g., Hoffmann 

& Sgró, 2011; Moreno & Møller, 2011). However, we obtained the op-
posite result at the species level (i.e., viviparity was associated with 
low interannual temperature variation). Despite the methodological 
distinction among the two types of analyses (proportion of viviparity 
within grid cells vs. binary reproductive mode within species ranges), 
the effects were weak in both analyses. This might suggest that the 
true effects for climatic variation are negligible.

Seasonal climates can be as predictable as non- seasonal ones (e.g., 
Khavrus & Shelevytsky, 2012; Markham, 1970). Therefore, an animal 
might be able evolutionarily to adjust its life- history traits, including 
reproductive mode, to the seasonal patterns of its habitat. Accordingly, 
the main selective force imposed by climatic seasonality might not be 

F I G U R E  1  Results of global- scale path analyses for correlations among (a) environmental variables, body mass and the probability of 
being viviparous (species- level analysis) and (b) environmental variables and the proportion of viviparous species (assemblage- level analysis). 
All relationships are significant (p < .05) except those marked with “ns”. The standardized correlation estimates appear along the lines 
between variable pairs. Line widths indicate the strength of the correlation, and line colours indicate the direction of the correlation (light 
blue = negative; pink = positive). For more details, see the Supporting Information (Table S1).
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the climate per se, but rather the limited duration of the season best 
fitted for reproduction (Shine, 2014), hence potentially favouring a re-
productive strategy that maximizes the number of offspring. However, 
the present evidence indicates no such trade- off, because oviparous 
and viviparous species have similar reproductive outputs in seasonal 
environments (Meiri et al., 2020). Thus, seasonality is not expected to 
have a relationship with reproductive mode, and we found that it does 
not have strong or consistent effects. Intra- annual temperature varia-
tion was negatively correlated with both the proportion of viviparity 
and the probability of being viviparous. This contradicts the predic-
tions of the “climatic predictability” and the “maternal manipulation” 
hypotheses, both of which predict that viviparous species will inhabit 

climatically more variable habitats (e.g., Feldman et al., 2015; Horreo 
et al., 2021; Watson et al., 2014). We argue, however, that seasonality 
cannot be equated to climatic predictability.

Importantly, temperature variation, either intra- annual (seasonal) 
or interannual, is negatively associated with mean annual temperature 
(Figure 1a,b), which weakens their effects on reproductive mode dis-
tribution. For example, of the 100 species with the highest interannual 
temperature variation in their ranges, only 23% are viviparous (48% 
of which occur in the coldest areas), 2% have bimodal reproduction, 
and 75% are oviparous (Supporting Information Table S5). This is close 
to the global distribution of reproductive modes (c. 19, <1 and c. 81%, 
respectively). Our findings suggest that climatic variation probably 

F I G U R E  2  Standardized estimates (on x- axis) of predictors of (a) the probability of being viviparous (species- level path analyses) and (b) 
the proportion of viviparous species (assemblage- level path analyses), both globally and across six biogeographical realms (on y- axis). The 
predictors are colour coded (see key above the plot). The “0” red dashed vertical line represents a border, indicating no correlation between 
the probability of being viviparous and a given predictor. ***p < .001; **p < .01; *p < .05; “.”p < .1.
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affects reproductive mode mainly through mean annual temperature, 
with relatively low marginal impact.

4.3  |  Elevation

Our results do not support a role for high elevation in selecting for 
viviparity except via its relationship with temperature. Elevation 
showed a weak negative correlation with the probability of being 
viviparous and was not correlated with the proportion of vivipar-
ity globally. Thus, we fail to support the prediction of the “hypoxia” 
hypothesis, according to which viviparity more strongly character-
izes high- elevation faunas than temperature alone would suggest. At 
the realm scale, elevation was positively correlated with the propor-
tion of viviparity in warmer realms (the Neotropics, the Afrotropics 
and Indomalaya), but negatively so in the colder realms (Supporting 
Information Table S1). Investigation of the relationship of elevation 
with temperature might reveal the reason for such results. Elevation 
exhibited a moderately negative correlation with temperature glob-
ally, but much more strongly so in the warmer realms (Supporting 
Information Table S1). This suggests that elevation does not have 
an independent role in driving the evolution of viviparity. Although 
live- bearing at high elevations (and in other hypoxic environments) 
is suggested to be beneficial, putatively because it increases em-
bryonic oxygen supply (Pincheira- Donoso et al., 2017; Watson & 
Cox, 2021), the embryonic development and hatchling phenotypes 
of some oviparous species are little affected by hypoxia (e.g., Du 
et al., 2010; Li et al., 2020). Furthermore, high elevation might select 
for viviparity in warm regions for other reasons, such as extreme 
temperature fluctuations and dry conditions, and might impose 
lower costs on the gravid female owing to lower competition and 
predation pressures (Fox et al., 1994; Hodges, 2004).

4.4  |  Body size

Our species- level analyses indicated that large- sized squamates 
are only slightly more likely to be viviparous. The small effect size 
emphasizes the difficulty of distinguishing between ecological and 
phylogeny- related factors (Westoby et al., 1995), because phyloge-
netic affinities can constrain both ecophysiological (e.g., viviparity) 
and morphological traits (e.g., body size) for a species. Hence, al-
though our results are in line with the prediction that viviparity will 
evolve in larger (rather than smaller)- bodied species, further tests of 
the relationship of viviparity to species traits are required.

5  |  CONCLUSIONS

Our study provides strong support for the prediction of the long- 
held “cold- climate” hypothesis, which asserts that viviparity is 
advantageous in cold climates. Accounting for the relationship be-
tween temperature and elevation, we show that elevation is not 
associated with viviparity globally, and we suggest that elevation 
could represent varied selective pressures in different environ-
ments. One way or another, we found no support for the predictions 
of the “hypoxia” hypothesis. Our results for climatic variability were 
incongruous within and between assemblage- level and species- level 
analyses and provide neither strong support nor a clear refutation 
of the predictions of the “climatic predictability” and the “maternal 
manipulation” hypotheses. The results of our species- level analyses 
show only a weak association between large body size and viviparity, 
which might not be sufficient to support the hypothesis that vivi-
parity evolves in species with larger body size. Phylogeny imposes 
constraints on traits such as reproductive mode and body size, re-
sulting in viviparous species occupying environments other than 

F I G U R E  3  Species richness 
distributions of oviparous (orange) and 
viviparous (blue) squamate species across 
temperature annual means. Hexagons 
represent the count of grid cells, with 
fitted linear regression. Hexagons 
representing a higher number of cells 
are darker. The slopes are calculated 
by ordinary least squares. The y- axis is 
log10- transformed. The regression slope 
of oviparous species is much steeper than 
that of viviparous species.
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only those in which viviparity arose. Consequently, current species 
distributions might not fully reflect the conditions in which evolu-
tion of viviparity took place. It also should be noted that the factors 
driving the evolution of viviparity might vary between clades and 
include species- specific traits (e.g., habitat use).

In conclusion, our findings highlight the complexity of processes 
potentially underlying the evolution of viviparity and provide com-
pelling opportunities for future research, but they also provide 
clear support for low temperatures as selecting for viviparity in 
squamates.
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