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Abstract

Winter windstorms are among the most severe natural hazards in Europe
and are frequently the cause of enormous economic losses. Therefore, it is
not surprising that studies on windstorms often revolve around their po-
tential insured losses, return values or overall severity. Each of these mea-
sures is an important indicator for decision makers to understand the po-
tential impacts of current and future windstorm events. Especially now, as
evidence of an advancing climate change becomes more apparent. A much
less researched but equally informative topic in this context are the charac-
teristics of windstorms. Duration, size, and intensity are only a few exam-
ples of windstorm characteristics that are not only statistical properties of
the event but also measures of severity themselves. In this dissertation, we
study multiple European winter windstorms characteristics with the goal of
identifying and understanding key parameters determining these character-
istics, quantify their impact and investigate potential trends. Using the new
ERA5 reanalysis product of the European Centre for Medium-Range Weather
Forecasts, windstorms are tracked and matched to a parent cyclone. A set of
windstorm characteristics is designed based on commonly evaluated char-
acteristics from the windstorm and natural hazard community. Based on
these characteristics, a set of windstorms is partitioned for the purpose of
constructing objective windstorm classes, not only for further evaluation,
but also in an effort to create universally applicable windstorm classes for a
wide range of end-users. In the process, we introduce our newly developed
quasi-supervised k-means (QSKM), a semi-supervised clustering technique
for grouping windstorm events with respect to a catalog of historically se-
vere windstorm events. QSKM constructs three different windstorm classes,
one of which closely resembling the windstorm catalog in its inherent charac-
teristics. In a comprehensive evaluation of the constructed classes, we show
that large events with high wind speeds and an exceptionally long lifetime
often origin in the West Atlantic near the US east coast, intensify over the
mid and eastern parts of the Atlantic and usually hit Central or North Eu-
rope. Their occurrence can be associated with a strong jet stream and a deep
parent cyclone. Affected areas experience strong wind gust between 15-20
hours, with peak wind speeds in the early 10 hours of occurrence. Compara-
ble weaker and smaller events are found in the Mediterranean region. Those
events often develop in the East Atlantic or Mediterranean Sea in which they
also dissolve due to their short lifetime. However, due to their slow moving
character, they often affect local areas up to 20 hours and more regardless
of their short lifetime. Similar small and short events, but with high wind
speeds are typical for northern Europe. These type of events usually origin
in the western parts of the North Atlantic and further intensify as they travel
across the open water. Although only exhibiting a third of the size the first
class of events, the core pressure of their parent cyclone can also drop below
970 hPa.
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Zusammenfassung

Stürme gehören zu den gefährlichsten Naturgefahren in Europa und sind
häufig die Ursache enormer wirtschaftlicher Verluste. Daher ist es nicht ver-
wunderlich, dass sich Studien über Stürme häufig um potenzielle versicher-
te Schäden, Wiederkehrwerte oder die Gesamtschwere der Ereignisse dre-
hen. Jede dieser Größen ist ein wichtiger Indikator für Entscheidungsträger,
um die potenziellen Auswirkungen aktueller und zukünftiger Stürme anzu-
schätzen. Vor allem jetzt, da die Anzeichen für einen fortschreitenden Klima-
wandel immer deutlicher werden. Ein weit weniger erforschtes, aber ebenso
aufschlussreiches Thema in diesem Zusammenhang sind die Eigenschaften
von Stürmen. Dauer, Größe und Intensität sind nur einige Beispiele für die
Merkmale von Stürmen, die nicht nur statistische Eigenschaften des Ereig-
nisses sind, sondern auch ein Maß für die Schwere des Ereignisses selbst.
In dieser Dissertation untersuchen wir mehrere europäische Sturmcharakte-
ristika mit dem Ziel, die Schlüsselparameter, die diese Charakteristika be-
stimmen, zu identifizieren und zu verstehen, ihre Auswirkungen zu quanti-
fizieren und mögliche Trends zu untersuchen. Unter Verwendung des neu-
en ERA5 Reanalyze-Produkts des Europäischen Zentrums für mittelfristige
Wettervorhersage werden die Stürme verfolgt und einem übergeordneten
Zyklon zugeordnet. Eine Reihe von Sturmmerkmalen wird auf der Grund-
lage von häufig untersuchten Eigenschaften aus der Sturm- und Naturge-
fahrengemeinschaft entwickelt. Basierend auf dieser Grundlage werden die
Stürme unterteilt, um objektive Sturmklassen zu erstellen, nicht nur für die
weitere Auswertungen, sondern auch in dem Bestreben, universell einsetz-
bare Sturmklassen für ein breites Spektrum von Endnutzern zu schaffen.
Dabei stellen wir unser neu entwickeltes quasi-supervised k-means (QSKM)
vor, ein halb-überwachtes Clustering-Verfahren zur Partitionierung von Stur-
mereignissen in Bezug auf einen Katalog historisch schwerer Sturmereignis-
se. QSKM konstruiert drei verschiedene Sturmklassen, von denen eine dem
Sturmkatalog in ihren Eigenschaften sehr ähnlich ist. In einer umfassenden
Auswertung der konstruierten Klassen zeigen wir, dass große Ereignisse mit
hohen Windgeschwindigkeiten und einer außergewöhnlich langen Lebens-
dauer häufig im Westatlantik nahe der US-Ostküste entstehen, sich über dem
mittleren und östlichen Teil des Atlantiks verstärken und in der Regel auf
Mittel- oder Nordeuropa treffen. Ihr Auftreten kann mit einem starken Jet-
stream und instensiven Tiefdruckgebiet in Verbindung gebracht werden. In
den betroffenen Gebieten treten starke Böen über einen Zeitraum von 15-20
Stunden auf, wobei die höchsten Windgeschwindigkeiten meist in den ersten
10 Stunden des auftreten. Vergleichbare schwächere und kleinere Ereignisse
finden sich im Mittelmeerraum. Diese Ereignisse entwickeln sich oft im Ost-
atlantik oder im Mittelmeer, wo sie sich aufgrund ihrer kurzen Lebensdauer
auch oftmals wieder auflösen. Aufgrund ihrer langsamen Zuggeschwindig-
keit sind betroffene Gebiete dennoch oft bis zu 20 Stunden und länger loka-
len Windböen ausgesetzt. Ähnlich kleine und kurze Ereignisse, aber mit de-
tulich höheren Windgeschwindigkeiten, sind typisch für Nordeuropa. Diese
Art von Ereignissen hat ihren Ursprung in der Regel in den westlichen Teilen
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des Nordatlantiks und verstärkt sich weiter, wenn sie über das offene Was-
ser ziehen. Obwohl sie nur ein Drittel der Größe der ersten Klasse aufweisen,
kann der Kerndruck des übergeordneten Zyklons auch unter 970 hPa fallen.
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Chapter 1

Introduction

On January 15th in 2007, the low pressure system that soon would give rise
to the windstorm Kyrill formed over Newfoundland, marking the starting
date of one of the most severe European windstorm in recent history. Kyrill
made first landfall in Ireland on the 17 January and continued its journey
across Europe, leaving a path of death and destruction, until it finally dis-
appeared on 19 January. Within those few days, Kyrill claimed at least 46
lives, uprooted up to 62 million trees, significantly disrupted the European
infrastructure, and caused approximately 7 billion Euro of insured losses in
Europe (Fink et al., 2009; Roberts et al., 2014).

While events of such an enormous magnitude like Kyrill are rare, wind-
storms are among the most common and severe natural hazard in Europe.
According to the German reinsurance company Munich RE, 42% of the natu-
ral hazards that cause damage in Europe between 1980-2012 are of meteoro-
logical nature (includes all types of storm and hail) and they alone are already
responsible for 62% of insured losses (Munich_RE, 2013). Among those, win-
ter windstorms associated with extra-tropical cyclones are by far the events
with the largest economic impact (Handmer et al., 2012). In Germany, four
of the ten most severe natural hazards (measured by insured losses) between
2002-2017 are windstorm events (GDV, 2018). In summary, windstorms are
one of, if not the most relevant natural hazard in Europe, when measured in
terms of insured losses.

Given the tremendous economic impact that such a windstorm event can
have and the frequency in which they occur, it is not surprising that studies
of windstorms often revolve around their occurrence (e.g. Nissen et al., 2010;
Donat et al., 2010), potential insured loss (e.g. Donat et al., 2011a; Pardowitz
et al., 2016a; Pardowitz et al., 2016b), return values (e.g. Della-Marta et al.,
2009; Donat et al., 2011b) or their overall severity (e.g. Klawa and Ulbrich,
2003; Leckebusch et al., 2008), since all those measures are direct or indirect
indicators for property damage or obstruction of daily life. Especially in the
context of a changing climate, each of these topics gains even more relevance,
as it is important for decision makers and risk assessment to understand and
being able to predict the potential impact of future windstorms.

However, an aspect of windstorms that is considerably less discussed are
their inherent characteristics such as duration, size or travel speed. This is
surprising, considering that these characteristics are each a measure of wind-
storm severity themselves. For example, larger and longer windstorm events
affect wider areas for comparable longer periods of time than smaller and
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shorter events. Analogously, events that travel faster leave people with less
time to response and/or prepare for the incoming hazard. The list of exam-
ples can be continued for numerous other windstorm characteristics. Yet,
the literature primarily focuses on the previously mentioned measures that
outline the economic impact of the event. In cases where characteristics of
windstorms are discussed, the focus is usually on intensity, which is often
measured in terms of wind speed (e.g. Nissen et al., 2010).

We believe that the characteristics of windstorms are an important aspect
that can not only be directly linked to the severity of the event, but also dis-
tinguishes them from each other. Not every windstorm is as devastating as
Kyrill, but each of them is extreme in its own way. Understanding the dif-
ferences in characteristics between a windstorm event that causes billions of
Euros worth of damage and a windstorm that causes only minor inconve-
niences in the daily life of European citizens, as well the source behind those
differences, could be a major contribution to our general understanding of
windstorm development and impact.

Therefore, in this dissertation we focus on the characteristics of European
windstorms, understanding the factors governing their variability, and their
changes in recent years. For this purpose, we aim to develop a classifica-
tion scheme of European windstorm types. The goal is to identify wind-
storm classes based on their characteristics, to understand their differences
and identify atmospheric large-scale conditions that drives their develop-
ment. Finally, we explore trends in each of the identified European wind-
storm classes and show the potential impact different types of windstorms
can have.

The structure of this thesis is a follows. In the remainder of this chapter,
we provide an overview of the current state of the art for European wind-
storms and discuss challenges of windstorm classification, as well as the nec-
essary tools for the task and the overall research questions we intend to an-
swer. In Chapter 2, we describe the data used in this dissertation, how wind-
storms and cyclones are tracked, and, more importantly, we motivate and
define the windstorm characteristics that are part of our classification. The
3rd chapter covers the centerpiece of this work, the introduction, application
and evaluation of quasi-supervised k-means, a novel semi-supervised clus-
tering technique specifically developed by us to identify windstorm classes
with respect to an existing windstorm catalog. Chapter 4 builds upon the re-
sults from Chapter 3 and shows how the identified windstorm classes differ
in impact, occurrence and driving mechanism. Chapter 4 ends on a trend
analysis of the different windstorm classes. In the last chapter, a synopsis of
the thesis is presented.

1.1 Extratropical cyclones and windstorms

Extratropical cyclones (sometimes called midlatitude cyclones) are low-pres-
sure systems formed in the middle or high latitudes and are one of the driv-
ing forces behind the day-to-day variability of weather in Europe and the
midlatitudes in general. Their lifetime spans multiple days and their size
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ranges from several hundred to several thousand kilometers. Particularly
strong extratropical cyclones can have a core pressure far below 970 hPa and
are often accompanied by extreme weather events such as strong wind gusts,
hail and severe amounts of precipitation.

In the midlatitudes, extratropical cyclones usually develop along the po-
lar front. Here, the warm air masses of the equator meet the cold air masses
of the poles, creating a small region of particularly strong baroclinicity. The
sharp meridional temperature gradient in this region creates a vertical shear
of strong zonal wind and flow that is unstable to small perturbations, which
in turn can grow into cyclones. Due to its key role, baroclinic instability has
been widely excepted as the primary mechanism by which extratropical cy-
clones develop.

Windstorms, on the other hand, are winds that are strong enough to po-
tentially cause damage (Pielke, 2007) and which may or may not be accom-
panied by precipitation. Dependent on what causes them, they may last for
only a few minutes (e.g. downbursts) or hours and even days (e.g. wind
gusts from extratropical cyclones). The key part of the definition of wind-
storm is the damage aspect associated with the occurrence of strong wind
gusts, as it implies that windstorms are defined through surface wind speeds
and their impact. Therefore, unlike extratropical cyclones, windstorms are
meteorological extreme events (or natural hazards) by definition.

From these two definitions it becomes clear that there is a connection be-
tween extratropical cyclones and windstorms. As a matter of fact, strong
winter cyclones are frequently the cause of intense and long-lasting wind-
storms. As already mentioned above, extratropical cyclones typically form
along the polar front, a region of strong baroclinicty created between the
warm subtropical and cold polar air masses. In winter, the meridional tem-
perature gradient increases as less sunlight reaches the Pole. This strengthens
the polar front, which in turn favors the development of cyclones (and wind-
storms) in the midlatitudes. Which is why, historically, most severe wind-
storm events occurred in winter (see Roberts et al., 2014).

Due to the close connection between windstorm and extratropical cy-
clones and the fact that both occur more frequently and stronger during win-
ter, we will focus on European winter windstorms that can be connected to
extratropical cyclone. Hence, we assume that each windstorm is part of a
unique parent cyclone. By doing so we establish a direct link between upper-
level atmospheric processes that favor the development and intensification
of extratropical cyclones and extreme surface wind speeds that potentially
cause damage or even threaten the wellbeing of people. An introduction
to how windstorms and extratropical cyclones are identified and tracked is
given in Sect. 2.2.1 and Sect. 2.2.2, respectively. The method that we use to
match both types of events is described in Sect. 2.2.3.
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1.2 Trends in cyclone and windstorm activity

In 2014, the fifth assessment report of the Intergovernmental Panel on Cli-
mate Change (IPCC) summarized the accumulated studies on trends in cy-
clone and windstorm activity (see IPCC, 2014). They state that studies using
reanalysis data indicate a northward and eastward shift in the Atlantic cy-
clone activity during the last 60 years, consequently leading to more frequent
and more intense wintertime cyclones in the high-latitude Atlantic and fewer
in the mid-latitude. However, they also point towards a variance in fidelity of
findings dependent on the used reanalysis product and the often contradict-
ing results from long-term studies using in situ measurement. Furthermore,
they mention the problem of incomparable results due to the sensitivities
of trend estimations to the used cyclone identification and tracking schemes
and/or different definitions for extreme cyclones. For the Northern Hemi-
sphere, the report concludes that confidence in large-scale changes in the in-
tensity of extreme extratropical cyclones, or storminess in general, within the
last century is low.

Nevertheless, we want to provide a brief overview of trends in cyclone
and windstorm activity from the literature to clarify the current state of the
art, especially with respect to Europe. In the framework of the Intercompar-
ison of Mid Latitude Storm Diagnostics (IMILAST) project, Neu et al. (2013)
investigated trends in cyclone numbers per winter season for the North-
ern Hemisphere and their potential dependence on the tracking algorithm.
They found an overall increase in the total number of cyclones for the period
1989-2009 for most methods, especially in Europe, but a general decrease
in the number of deep cyclones (minimum core pressure below 980 hPa).
Donat et al. (2011c) studied long-term trends in European storminess using
the 20th Century reanalysis (20CR) product (Compo et al., 2011) of the Na-
tional Oceanic and Atmospheric Administration and found significant up-
ward trends in the number of stormy days and local wind speeds for central,
northern and western Europe since 1871. In response to the work of Donat et
al. (2011c), Befort et al. (2016) compared long-term trends in the 20CR and the
ERA-20C reanalysis dataset (Poli et al., 2016), the twentieth century reanal-
ysis of the ECMWF. Their results show substantial difference between both
datasets for Northern Europe, where the number of cyclone tracks starts to
slowly increase in ERA-20C starting in 1950, while they are consistently de-
creasing in 20CR. For deep cyclones (here, minimum core pressure below
970 hPa) and windstorms, they found a significant increase in activity for the
period 1961-1990 in ERA-20CR. With a focus on the Mediterranean region,
Nissen et al. (2010) found a significant decrease in cyclone numbers over the
western Mediterranean basin and over the Black Sea, and an upward trend
in cyclone numbers over the Levant region.

In summary, the literature points towards an increase in cyclone and wind-
storm activity over Europe. However, there is a strong difference in the mag-
nitude, and sometimes even the sign, of these trends dependent on the data,
method, region or period of interest. These differences become even more
substantial for deep or extreme cyclones.
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1.3 Windstorm classification and machine learning

As already mentioned about, we aim for a classification scheme of European
winter windstorms based on their characteristics. Therefore, it is beneficial
for the readers to first familiarize themselves with the purpose and applica-
tions of classification. In this section, we provide a brief overview of the role
of classification in machine learning (Sect. 1.3.1) and show examples of extra-
tropical cyclone and windstorm classification from the literature (Sect. 1.3.2).
For a detailed discussion of classification and its purpose and goal in ma-
chine learning, data mining or knowledge discovery, we suggest Kloesgen
and Zytkow (2002). For a comprehensive overview and description of classi-
fication techniques, we suggest James et al. (2013)

1.3.1 The role of classification in machine learning

The goal of a classification is to derive knowledge or information from data
by ordering or dissecting it into small and comprehensive classes (i.e. units,
subgroups, subsets, partitions), often for the purpose of eventually predict-
ing classes based on new information. Given the goal, there are at least three
common interpretations for classification in the scope of data mining and
knowledge discovery: classification as . . .

1. . . . ordering system for objects

2. . . . discrimination or class assignment

3. . . . class construction or clustering

The first interpretation covers the systematic classification of objects by or-
dering them into groups with a common ground. This can include classifi-
cation based on very simple properties such as ordering people into groups
of different heights (i.e. small, medium, tall), but also more complex rela-
tionships such as the ordering of chemical elements in the periodic table. Of
the three interpretations, it is the one most commonly associated with cate-
gorization.

For us, the second and third interpretation are more relevant as they
cover the more statistical spectrum of classification. Discrimination and class
assignment refer to a practice of supervised learning. In these cases, it is
known that each object originates from one of N already existing classes
(with N ≥ 2) and can be describe by a set of features. However, it is un-
known to which class each object belongs and has to be reconstructed from
the features. The solution being a single class is what distinguishes discrimi-
nation or class assignment from ordering, where objects can belong to differ-
ent classes dependent on the ordering system. Class construction or cluster-
ing, on the other hand, refers to a practice of unsupervised learning, where
there are no classes to begin with and have to be constructed from the fea-
tures.
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1.3.2 Examples of extratropical cyclones and windstorms clas-
sification in climate science

Classifications have always been a popular tool in meteorology and climate
science because they allow atmospheric situations and the resulting weather
impacts to be summarized into comprehensive and predictable packages. A
good example for classification in meteorology are European weather regimes
(Rex, 1951), characteristic large-scale atmospheric circulation patterns, which
have long been proficient tools in weather prediction because of their reliable
connection to surface weather and weather extremes such as heat waves or
widespread heavy precipitation in Europe. Given the popularity and suc-
cess, it is not surprising that their have been classifications of extratropical
cyclone and windstorms in the past.

A comprehensive and good review of extratropical cyclone classification
and its use in climate studies has been published by Catto (2016). They have
distinguished the current state of the art in cyclone classification into eight
different categories, ranging from simple conceptual models to synoptic-dy-
namic classifications, classifications based on impacts or satellite images, and
more. In their work, Catto (2016) points towards the past and potential future
gain of insight into extratropical cyclone dynamics that has been and can be
achieved through classification, and the aid these techniques provide in the
forecasting of cyclone systems.

In the context of this dissertation, extratropical cyclone classification based
on impacts is closest to our intentions of classifying windstorms. Catto (2016)
identified three major impacts associated with extratropical cyclones that
could be used to classify the severity of an event: wind, precipitation and se-
rial clustering. With respect to wind, there have been numerous studies dis-
cussing windstorm-generating extratropical cyclones in terms of wind dam-
age (e.g. Donat et al., 2011a; Munich_RE, 2013; Handmer et al., 2012), their
structure (Hewson and Neu, 2015) or trends in occurrence (e.g. Paciorek et
al., 2002; Neu et al., 2013; Befort et al., 2016). Similar, large proportions of
precipitation in the midlatitudes, as well as the most extreme precipitation
events, can be associated with extratropical cyclones and their fronts (Pfahl
and Wernli, 2012; Catto et al., 2012; Zhang and Colle, 2017). Serial clustering,
on the other hand, describes the case in which extratropical cyclones occur
in close succession within the same region. In cases of serial clustering, the
socioeconomic damage can greatly enhance due to long and constant expo-
sure of extreme winds and precipitation (e.g. Mailier et al., 2006; Dacre and
Pinto, 2020). A prominent example are the extratropical cyclones Anathol,
Lothar and Martin (names given by the German weather service) from De-
cember 1999 which hit Europe in close succession and caused billions of in-
sured losses (Munich_RE, 2002).

A classification explicitly focusing on windstorms and their local impacts
was published by Dreveton et al. (1998). Their goal was a semi-automated
classification of windstorms over France primarily based on expert knowl-
edge. For this purpose, they first designed, in consultation with an expe-
rienced weather forecaster, a number of meteorological features from a list
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of storm events provided by insurers. The result was a classification table
with seven different possible outcomes based on characteristics such as ori-
gin, atmospheric flow and affected areas (see Appendix B.1). In the second
stage, the expert knowledge was automated with numerical criteria, calcu-
lated from meteorological surface observation data.

Using their semi-automated classification model, they identified four me-
teorological key parameters to evaluate storm risk:

1. Maximum value of the wind gust during the event,

2. Duration of strong winds,

3. Whether the direction of the wind is typical (damage is more significant
if not),

4. Precipitation amounts above 35 mm (higher damage potential).

Based on their results, Dreveton et al. (1998) argue for the necessity of wind-
storm classification because the different storm types showed obvious dif-
ferences even at the same station. However, they also conclude that their
methodology must be carefully applied and extensively tested to be consis-
tent with the expert knowledge.

1.3.3 Challenges in windstorm classification

The key problem in windstorm classification is the lack of clear and obvi-
ous inherent classes, and therefore classes usually must be constructed in
advance. This distinguishes windstorms from other extreme events that can
be easily classified, for example, based on their physical state of matter such
as precipitation (e.g., solid or liquid) or based on their type of occurrence like
floods (e.g., flash flood or river flooding). However, classes are often con-
structed to meet the needs of the user, which always makes them subjective
to some degree and usually limits their use to the extent that they can only be
used to answer the scientific question for which they were originally created.
A good example is the previously mentioned work of Dreveton et al. (1998),
which heavily builds on expert knowledge. In their work it is neither dis-
cussed or shown, nor can it be predicted, how their classification and results
would change if a different expert would have provided the foundation for
their methodology. Therefore, the challenge of windstorm classification is to
create objective and general applicable windstorm classes.

1.4 Research questions and contribution to science

The main goal of this dissertation is to classify European winter windstorms
based on characteristics such as duration, size and intensity. The classifica-
tion is designed to meet the following criteria:

• the classes are as objectively designed as possible, and thus applicable
even outside the scope of this thesis,
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• the classes are relevant for end users such as scientists, insurers, or de-
cision makers.

At first glance, the two criteria seem to contradict each other, as it is difficult
to maintain an unbiased methodology while producing results for a target
audience. It should be noted, however, that not all windstorms have the
socioeconomic impact of an event of the magnitude of Kyrill. A windstorm
classification based on characteristics should naturally distinguish between
these type of events. Therefore, our criteria are compatible in a sense that
at least one class should consist of "Kyrill-like" events that pose a thread to
nature, buildings and/or human lives.

For the purpose of class construction, we propose a novel clustering tech-
nique called quasi-supervised k-means. The method is specifically devel-
oped for creating classes with respect to an already classified subset of events,
and we use it to ensure that extreme windstorm events such as Kyrill are
well represented within our constructed classes. A comprehensive descrip-
tion and derivation of this new clustering algorithm is given in Chapter 3.
The identification and tracking of the necessary extratropical cyclones and
windstorms are described in Chapter 2. In the same chapter, we also moti-
vate and calculate our windstorm characteristics. These characteristics are
designed with the intent to represent the most basic attributes of a natural
hazard.

The second goal is an extensive evaluation of the resulting windstorm
classes. First, we aim to identify and understand key characteristics deter-
ment for these classes (Sect. 3.4). This will help us understand what char-
acteristics define each windstorm class and to identify potential threads that
can be expected from them. Second, we related the classes to characteristics
large-scale situation such as teleconnection modes, baroclinicity fields and
attributes of the parent cyclone (Sect. 4.2). The goal is to identify and quan-
tify atmospheric situations that or growth factors that favor the occurrence of
an event of a certain windstorm class, and to provide a model for predictions.
Third, we aim to quantify potential regional impacts (Sect. 4.1) in the event
of a windstorm of a certain class. Finally, we also aim for a trend analysis in
windstorm occurrence for each of the classes (Sect. 4.3).

From our goals, we derive four research question that we intend to an-
swer in the course of this dissertation:

1. Can windstorm characteristics be used to construct objective and gen-
erally applicable windstorm classes?

2. What are the potential impacts in the event of a windstorm of a certain
class?

3. Can we quantify the influence of large-scale atmospheric features, such
as teleconnections or the parent cyclone, on windstorms using modern
machine learning approaches?

4. Are there significant trends in windstorm characteristics within the ob-
served period?
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In summary, in this dissertation we aim to provide objective and universal
applicable classes for European winter windstorms, to identify key wind-
storm characteristics that govern their class, to provide an understanding of
their driving atmospheric mechanisms and their potential impacts, as well as
trend analysis.

1.5 Important notations and remarks

In science, there are often multiple terms for the same topics, subjects, or
methods, as terminology changes depending on the scientific field. For the
reader, this can easily lead to confusion and hamper the process of under-
standing or learning of the topic. A prominent example for this are empirical
orthogonal functions (EOFs) and principal component analysis (PCA), which
are essentially the same statistical method with the same output, but with
completely different names and terminology. Therefore, it is not only in the
interest of our readers but also our own, to give a brief overview of our used
terminology.

In general, we use the terminology currently popularized by the increased
use of machine learning in science. Meaning, we use terms such as target
(i.e. target variable) and features in favor of response variable and covari-
ates. Within this context, a single data point consist of a target value and
feature value(s). In addition, for simplicity, we use generalizations for cer-
tain terms. Hereafter, we refer to extratropical cyclones as cyclones unless
otherwise noted. Analogously, models will always refer to statistical mod-
els rather than climate models. A list of our used statistical terminology and
generalizations, as well as a few alternative notations, are given in Tab. 1.1.

TABLE 1.1: List of used terms and generalizations, plus alternative notations.

Used term Alternative term(s)

Target Regressand, response variable, dependent variable
Feature Explanatory variables, covariates, independent variables
Model Statistical model
Cyclone Extratropical cyclone
Windstorm Cyclone footprint, wind footprint
Jet stream Polar jet stream
Accuracy Fraction correct, percent correct score
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Chapter 2

European winter windstorms -
Identification, tracking and
characteristics

In this chapter, we give a general overview of the data and methods that are
used to identify, track and match extratropical cyclones and windstorms 1

(Sect. 2.1-2.2). By matching the tracked windstorms to parent cyclones, we
will later have additional information for the classification. A short sum-
mary of the identified and tracked windstorms will be given in Sect. 2.3.
Afterwards, we will introduce and motivate the windstorm characteristics
that we will focus on in the remainder of this study (Sect. 2.4). The chapter
will close on a first look at the tracked windstorms (Sect. 2.5), followed by a
summary of the chapters content and how the shown results further motivate
our research project (Sect. 2.6).

2.1 Data

We use two sets of reanalyses: ERA5 (Hersbach et al., 2020) and ERA-Interim
(ERAINT; Berrisford et al., 2011). The ERA5 reanalysis is our primary data
source, which we use to identify and track windstorms (Sect. 2.3), estimate
features from multiple meteorological variables at different atmospheric lev-
els (Sect. 4.2), or quantify trends (Sect. 4.3). ERAINT, on the other hand, is
exclusively used to identify and track cyclones (Sect. 2.3).

ERAINT is a widely popular climate reanalysis of the European Center for
Medium-Range Weather Forecasts (ECMWF) and is operational since 2006.
Its 6-hourly analysis are available for the period 1979 to August 2019, has
a spatial resolution of approximately 80 km (0.75◦) and resolves the atmo-
sphere on 60 pressure levels from the surface (i.e., the 1000 hPa level) up to
0.1 hPa.

ERA5 is the latest climate reanalysis of the ECMWF and successor of
ERAINT. It was put into operation in 2016 and has fully replaced ERAINT
since September 2019. This new reanalysis product provides hourly esti-
mates for more than 240 atmospheric, land and oceanic climate variables for
the period 1950 to present. The data is resolved horizontally on a 31 km

1A definition of cyclones and windstorms in the context of this thesis is given above in
Sect. 1.1.
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(0.25◦) grid across the globe and vertically on 137 pressure levels from the
surface up to a height of 0.01 hPa.

Although ERA5 outmatches ERAINT in every technical aspect, we use
ERAINT for the identification and tracking of extratropical cyclones. The
reason for this is of purely technical nature. Here, we use a numerical scheme
based on the works of Murray and Simmonds (1991) to identify and track
cyclones (see Sect. 2.2.2). This scheme includes a set of parameters that are
dependent on the spatial and temporal resolution of the input data. At the
time of the writing of this thesis, these were not adapted for the new higher
resolution of ERA5. As the adaptation of the parameters is not trivial and
outside of the scope of this thesis, we decided to use ERAINT for the cyclone
tracking instead of ERA5. This decision should only have a low impact on
the quality of the tracking as large cyclones are reasonably well resolved by
ERAINT (Hewson and Neu, 2015).

As we intent to match the cyclone tracks from ERAINT with the wind-
storm tracks from ERA5, two necessary adjustments have to be made. First,
both reanalysis sets require a common observation period and are therefore
reduced to only cover the years 1981-2017. Second, ERA5’s temporal resolu-
tion is reduced to the 6-hourly interval of ERAINT.

2.2 Methods

2.2.1 Windstorm tracking and the storm severity index

For the identification and tracking of windstorms, we use the WiTRACK
scheme. It was first introduced by Leckebusch et al. (2008) with the aim to
design an objective tool for identifying and tracking windstorms based on
nothing more than fields of extreme wind speeds. Since then, the algorithm
behind the scheme has been further developed in great detail by Kruschke
(2015) and used in several studies of European windstorms (e.g. Nissen et
al., 2010; Pardowitz et al., 2016a; Walz et al., 2018). In the following, we
give a short outline on how windstorm objects are identified and tracked.
For a more comprehensive description of the algorithm we refer to Kruschke
(2015).

In the identification process, the algorithm detects contiguous areas of
surface wind speeds exceeding a certain threshold at each time step (dark
gray area in Fig. 2.1). The threshold at each grid box is a parameter that must
be set by the user. Usually it is set to the local climatological 98th percentile,
meaning the detected wind speed at a grid box belongs to the upper 2% of
the local wind speed distribution. This relationship comes from the litera-
ture, where the strongest 2% of surface wind speeds are often associated with
damage on housing or nature (e.g. Klawa and Ulbrich, 2003; Leckebusch et
al., 2007; Donat et al., 2011b).

In the tracking process, the previously identified contiguous areas are as-
signed to each other according to a nearest neighbor scheme. For a better
illustration of this process imagine the tracking of a single windstorm as
in Fig 2.1. First, the center of the contiguous area is calculated using the
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FIGURE 2.1: Tracking of 6 time steps of the windstorm "Daria". Dark grey grid boxes
exceed the local climatological 98th percentile of 10 m wind speed at the current time
step. Grid boxes that where hit at least once during the tracking are shown in light
gray (i.e. the footprint). The red dots mark the cluster centers. Linked together, the
centers build the windstorm track (red solid line).

weighted average of the longitudes and latitudes of all grid boxes within the
identified areas (Fig 2.1, red dot). A distance is calculated between the cur-
rently tracked center and the center of each object in the following time step.
The center with the shortest distance is linked to the current center (Fig 2.1,
red solid line). Centers that exceed a maximum distance of 600 km are ex-
cluded from this process. If no center falls below the maximum distance, the
tracking is stopped.

Finally, a filter is applied in which the tracks are checked for a minimum
length, minimum total physical area, and maximum translational velocity.
Should a track not exceed a minimum of 4 time steps (here, equivalent to 18
hours), it gets discarded from the tracking. The same applies to windstorm
events that do not have at least a minimum total size of 150000 km2 or exceed
a translational velocity of 600 km/h (Kruschke, 2015).

Storm severity index

In addition to introducing an identification and tracking scheme for wind-
storms, Leckebusch et al. (2008) proposed an objective index for the estima-
tion of their severity, namely the storm severity index (SSI). The SSI is based
on the same exceedance of local wind speed thresholds that was previously
used to track the windstorm and is defined as

SSI =
1

A0
·∑

t
∑
x

A(x)
(

max
{

ν(t, x)
ν98(x)

− 1, 0
})3

, (2.1)
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where A(x) and ν98(x) are the area and 98th wind speed percentile, respec-
tively, of a grid box x, and ν(t, x) the local measured wind speed at x at time
t. The parameter A0 corresponds to a reference area chosen for normalization
and is set to 12363.7 km2, approximately the area of a 1◦ × 1◦-grid box at the
equator (Kruschke, 2015), and primarily serves the purpose of keeping the
SSI dimensionless. Hence, the SSI is the cubed scaled wind speed summed
over the size and lifetime of the windstorm.

From Eq. 2.1 we can see that the SSI depends on three windstorm char-
acteristics: the duration of the event, the size of the event, and the intensity
of the surface wind speed. The SSI is proportional to each of these charac-
teristics, i.e. the larger the characteristics, the higher the magnitude of the
SSI. Therefore, the index is a useful tool to rank windstorms, identify partic-
ular extreme events or investigate climate trends in windstorm severity (e.g.
Leckebusch et al., 2008; Roberts et al., 2014; Moran, 2019). In this study, we
primarily use the SSI as a measure for the potential severity of our identified
windstorm classes.

2.2.2 Cyclone tracking

For the identification and tracking of cyclones we use an objective numerical
scheme that was developed by Murray and Simmonds (1991) for the South-
ern Hemisphere and later adapted for the Northern Hemisphere by Pinto et
al. (2005). The scheme is fully automatized and only requires fields of mean
sea-level pressure (MSLP) as input. Its general process is comparable to the
WiTRACK scheme described in Sect. 2.2.1 and consists of three major compo-
nents: (i) identification of the cyclone center, (ii) tracking of the centers and
(iii) selection by user defined criteria.

In the identification step, cyclone centers are located by detecting local
maximum in the Laplacian of pressure (∇2p) for every time step. In case such
a maximum exist, the algorithm searches for a pressure minimum within a
1200 km radius. If such a minimum is found, the cyclone is classified as
closed depression and its center is the longitude and latitude of the aforemen-
tioned pressure minimum. However, if no such pressure minimum is found,
the algorithm searches for a minimum in the pressure gradient instead. These
type of cyclones are classified as open depressions and their center is the lo-
cation of the minimum pressure gradient. Finally, the cyclone centers are
filtered by strength. Closed depressions are discarded for ∇2p < 0.3 hPa
deg.lat.−2 and open depression for ∇2p < 0.2 hPa deg.lat.−2. Additionally,
cyclones which are localized in areas with an elevation of over 1500 m are
removed as well.

The tracking of the identified cyclone centers consists of multiple steps.
To illustrate, imagine a single cyclone center for a given time step. First,
the most likely position of this cyclone center is predicted for the next time
step based on the so-called steering-flow, a measure calculated from past mo-
tion and pressure tendencies (e.g. Simmonds et al., 1999). Afterwards, the
newly predicted and previously identified cyclone centers of the next time
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step are evaluated regarding their distance. If the distance falls below a criti-
cal threshold of 12.5 deg. lat., the identified center gets assigned to the current
track. Should multiple cyclone centers fall below the threshold, the currently
tracked cyclone center is matched with the most probable candidate based
on distance and core pressure differences. The cyclone center is denoted as
decayed or newly generated, if it cannot be further matched.

Finally, the cyclone tracks are filtered based on user defined criteria. Tra-
ditionally, these criteria revolve around the cyclones minimum lifetime or
whether the system is closed or not. Here, we remove every track that has
not at least 5 time steps (equivalent to 24 hours).

2.2.3 Windstorm and cyclone matching

For the matching of the windstorm and cyclone tracks we use the method
proposed by Nissen et al. (2010). Their matching process is divided into three
iterations. At each iteration, slightly different criteria are used to match a
windstorm event to a single cyclone. Only windstorm events that cannot be
matched at the current iteration enter the next one. If they pass through all
three iterations without being matched to a cyclone, they are discarded. The
individual iterations are shortly described below.

In the first iteration, all cyclones that cover the full lifetime of the wind-
storm event are singled out, and the average distance between the centers
of the windstorm and filtered cyclones is calculated. Afterwards, if there is
more than one pair with an average distance of below 800 km, the strongest
cyclone in terms of averaged Laplacian of pressure is selected. If no cyclone
meets this criterion, the distance threshold is increased to 1200 km and the
cyclone with the shortest distance is selected for pairing instead.

After the first iteration, the vast majority of windstorms are each matched
to a cyclone, but in cases where the event is the result of two consecutive cy-
clones, a second iteration is usually required. Here, cyclones and windstorms
are matched based on a period of coexistence. This period of coexistence
must cover at least 4 time steps and must not exceed an average distance of
1200 km between the centers. If both criteria are met, the pair with longest
period of coexistence is selected.

The third and last iteration covers a special case. So far, the matching pro-
cess in the first two iteration was conducted amongst cyclones that have been
closed and stronger than 0.7 hPa deg.lat.−2 at least once during their lifetime.
In the Mediterranean region, which is part of our study area, cyclones that
never have been closed during their lifetime can be generated due to local
effects. To account for these, the process from second iteration is repeated
again, but this time for open depressions

2.3 Identification and tracking

Windstorms and cyclones are both tracked on the Northern Hemisphere be-
tween 20-90◦N for the extended winter period October to March in all years
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(1981-2017) following the methods described in Sect. 2.2.1 and Sect. 2.2.2. As
mentioned in Sect. 2.1, we use the ERA5 data for tracking windstorms and
the ERAINT data for tracking cyclones.

Since we are only interested in winter windstorms with a potential impact
on Europe, we filter all tracked windstorm events that passed through the
region 25◦E-45◦W and 25◦-75◦N (see region in Fig. 2.1). As an criteria for
this filter, the centers of the events must have spend at least 24 hours of their
lifetime within the above defined European region. This way we remove all
events that only scratched the boarders of our region of interest. After the
filtering, we are left with 2234 windstorm events.

Windstorm and cyclone tracks are matched following the procedure of
Nissen et al. (2010) described in Sect. 2.2.3. After the first iteration, 1911 of
2234 (∼85.5%) windstorms were successfully assigned to a closed and in-
tense cyclone. Another 277 of the 323 remaining windstorms were success-
fully assigned to a closed and intense cyclone within the second iteration. In
the last iteration, 15 of 46 remaining windstorm events were successfully as-
signed to an open cyclone. Overall, 2203 of 2234 (∼98.6%) windstorm events
could be assigned to a parent cyclone.

2.4 Windstorm characteristics and severity

One can define numerous windstorm characteristics, ranging from obvious
measures such as the intensity or size of the event to more complex measures
that describe the development of the cyclone or footprint, and each one of
them can be defined in multiple different ways. For example, the intensity
of a windstorm can be the average, maximum or a specific quantile of the
wind speed. It could also be defined through a severity index such as the
SSI (Leckebusch et al., 2008) or Beaufort number (see McIlveen, 1991). De-
pendent on the task, it might also be relevant whether the characteristics are
calculated over the full lifetime of the event or for each time step individu-
ally. Therefore, it is important to clarify in advance which characteristics we
are interested in and how they are defined.

As already discussed in the introduction (Chapter 1), our intention is to
focus on windstorm characteristics that are relevant for end-user, such as the
fire brigade or insurance companies, or risk communication in general. For
this purpose, we look at windstorm characteristics from the perspective of
natural hazards. According to the CapHaz-Net report on "Risk Communica-
tion and Natural Hazards" (Höppner et al., 2010), characteristics of natural
hazards that are commonly regarded to impact on the needs for risk com-
munication can be divided into two groups: characteristics that relate to the
occurrence of hazard events and those that relate to their impact. The occur-
rence group includes characteristics such as the speed of onset, which is the
time between the start of the event and its peak, the frequency or return pe-
riod, and the typical size of the event. In other words, the group covers char-
acteristics that generally describe the occurring event. The impact group, on
the other hand, includes characteristics that describe the level of threat an
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TABLE 2.1: Characteristics of natural hazards and the respective challenges for risk
communication from Höppner et al. (2010).

Characteristics of natural hazards Main challenge for risk communica-
tion

Occurrence of hazard event:

Speed of onset: for example, sudden
or slow/creeping

Perception of hazard or risks; spa-
tial and temporal specificity of fore-
casts/communication; warning

Frequency or return period Perception of risks, awareness; mem-
ory

Size Perception of hazards and risks; spa-
tial and temporal specificity of fore-
casts/communication; warning

Novelty/Change Perception of hazards and risks;
awareness; experiences

Impact of hazard event:

Area: focused or diffuse Perception of hazards, impacts and
risks; awareness, warning

Intensity Perception of hazards, impacts, conse-
quences and vulnerability

Immediacy and duration of impacts Perception of impacts, consequences
and vulnerability; awareness

event is for a region or population. Hence characteristics that answer ques-
tions such as: How intense is the event? Is only one area affected or several?
Are the effects immediate or delayed? How long are areas affected by the
event? Table 2.1 shows a list of characteristics Höppner et al. (2010) found
to be important, the group they belong too, and what type of challenges they
pose for the communication of risk.

From the characteristics listed in Tab. 2.1, we decided to adapted the
speed of onset, size, intensity and duration for study. However, a key dif-
ference between the work of Höppner et al. (2010) and our study is, that we
are only interested in windstorm characteristics that describe the occurring
event and not its impact on certain regions. In other words, characteristics
of the occurrence group in Tab. 2.1. To further elaborate this difference, con-
sider the definition of the intensity of a windstorm. Following Höppner et al.
(2010), the intensity of a windstorm could be defined in terms of the damage
it causes, be it insured loss, human casualties or fallen trees. For our pur-
poses, however, it is more appropriate to define intensity in terms of physi-
cal properties of the events, such as average or maximum wind speed. This
applies for the duration as well. Note that we did not included any types of
characteristics representing the frequency, return period or novelty/change
from the definitions in Tab. 2.1 as we believe that those are better investigate
in the framework of a trend analysis (Sect. 4.3) or climate change study. Area
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and immediacy, on the other hand, were not taken into account, as they can-
not be directly associated with the windstorm without reference to an impact
area.

Alongside the characteristics of natural hazard in Tab. 2.1, we decide to
also look into windstorm specific characteristics that might not be covered by
the general definitions of Höppner et al. (2010). Two factors, that we could
not directly or indirectly related to any of the listed characteristics, are the
origin and region of impact. Here, origin does not necessarily refer to the re-
gion of cyclogenesis, as the associated windstorm (i.e. footprint) often occurs
hours or even days after the cyclone has formed. However, various studies
(e.g. Gray and Dacre, 2006; Pinto et al., 2009; Allen et al., 2010) showed that
the origin of European cyclones is a good indicator for their intensity. There-
fore, we assume that origin of the windstorm might also be influential itself.
The region of impact usually refers to certain subregions of the European
continent. In the literature, windstroms are studied with respect to one or
more subregions to either investigate the influence or importance of different
atmospheric process for different subregions (e.g. Walz et al., 2018) or, more
commonly, to highlight windstorm activities in a specific subregion (e.g. Do-
nat et al., 2010; Nissen et al., 2010; Pardowitz et al., 2016b). As our own
addition to the commonly used characteristics from the literature, we also
investigate the travel distance and speed of windstorm events. Both could
be important features for understanding extreme windstorms from a more
complex perspective than just high wind speeds or large size. For example,
from a risk assessment perspective, there is much less time to respond to a
nearby and fast-moving extreme event than to an event that was predicted
days ago.

In summary, we look at seven windstorm characteristics, namely the in-
tensity, size, duration, origin, region of impact, travel speed and distance. In
the following subsections, we give a detailed description of how we define
and calculate each of the named characteristics. A short summary of those
descriptions, plus the respective abbreviations of the characteristics, is given
in Tab. 2.2.

Intensity and size

As mentioned in Sect. 1.5, a windstorm footprint is defined as the sum of all
contiguous area of grid boxes x where the 10 m wind speed ν(x, t) exceeded
the local climatological 98th wind speed percentile ν98(x) at the time step t
(see light gray area in Fig. 2.1). For such a footprint, we defined the inten-
sity as the average wind speed (MEANV) of the footprint, averaged over the
duration of the event, i.e.

MEANV =
1
|t| ∑ti∈t

∑
xi∈x

ν(xi, ti)/|xti |, (2.2)

where |xti | is the number of grid boxes that exceed the 98th wind speed per-
centile at time step ti and |t| the number of time steps. Therefore, MEANV
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TABLE 2.2: List of windstorm characteristics, plus their abbreviation (Abbr.), unit
and a short description. For more details, see the respective subsections.

Characteristic Abbr. Unit Description

Intensity MEANV m/s Average wind speed
Duration DUR h Lifetime of the event
Size AREA km2 Size of the event
Speed of onset ONSET h Hours between start and

peak of the event (max. SSI)
Origin OLON,OLAT degree Longitude/Latitude of first

detection
Destination DLON,DLAT degree Longitude/Latitude of last

detection
Distance DIST km Full travel distance of the

event
Travel speed TSPEED km/h Moving speed of the event

can be interpreted as average wind speed across all contiguous areas of the
event.

Analogously, we define the size of the event as the area (A) of all grid
boxes in the footprint, averaged over the duration of the event:

AREA =
1
|t| ∑

xi∈x
A(xi). (2.3)

Note, that we use AREA as abbreviation for the size of the event, while
Höppner et al. (2010) use area to characterize the spatial distribution of an
impact caused by a hazard. We do this because it is consistent with the nam-
ing in the scheme proposed by Kruschke (2015) and more accurate given that
the unit is km2.

Duration and speed of onset

The duration of an event is defined as the hours between the first and last
time step of the event track. Hence, lets t = t1, . . . , tN be a series of N time
steps at which a windstorm event was tracked, then the duration is calculated
as

DUR = tN − t1. (2.4)

Similar, the speed of onset are the number of hours between the first time
step and the time step where the event reaches its largest SSI (tmax):

ONSET = tmax − t1. (2.5)
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Origin, destination, travel speed and distance

Origin and destination (as proxy for the region of impact) are defined as the
respective longitude (LON) and latitude (LAT) of the first and last tracked
storm center of an event (see red dots in Fig. 2.1). Again, if t = t1, . . . , tN is
a series of N time steps at which a windstorm event was tracked, the origin
(with prefix O) is calculated as

OLON = LON(t1) and OLAT = LAT(t1). (2.6)

Analogously, the destination (with the prefix D) is calculated as

DLON = LON(tN) and DLAT = LAT(tN). (2.7)

To calculate the travel speed, we first have to calculate the distance. The
distance is calculate using the haversine formula as proposed in Gade (2010),
which is a formula for calculating the spherical distance d between two points
on the surface of a sphere. The formula requires three inputs: the coordinates
of the first and second point, i.e. pi = [LONi, LATi] and pj = [LONj, LATj],
and the radius of the sphere:

di,j = haversine(pi, pj, r), (2.8)

with r = 6371 km, the averaged radius of the earth. For a windstorm foot-
print, we calculate d between consecutive storm centers and sum the result-
ing d’s for the overall travel distances of the event:

DIST =
N

∑
i=2

di−1,i. (2.9)

Afterwards, we divide the previously calculated d’s by 6 to get hourly ve-
locities (remember, we track 6-hourly data), which we average to the overall
travel speed of the event:

TSPEED =
1

N − 1

N

∑
i=2

di−1,i/6. (2.10)

We have to average by dividing through N − 1, since there is one less d than
time steps t.

2.5 Basic characteristics of windstorm events

In this section, we provide an overview of our previously tracked windstorm
events, focusing on spatial and temporal resolution and representation of his-
torically severe events, as well as a first look at our previously defined wind-
storm characteristics. We do this for several reasons. For one, at the time of
writing, there is not a lot of published work about windstorms tracked from
the newly introduced ERA5 reanalysis data set. Therefore, this overview
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FIGURE 2.2: Temporal and spacial distribution of windstorm events from 1981-2017
over Europe with (a) showing the number of events per month and (b) the number
of times the 98th wind percentile was exceeded within a grid box.

serves as a type of quality control in which we evaluate whether or not wind-
storm tracks show what already has been established in the windstorm lit-
erature based older reanalysis data. Second, a general overview will help us
determine the contribution of each individual windstorms class to the overall
picture of European windstorms.

The majority of the events occur in the winter months December to Febru-
ary (Fig. 2.2a). Windstorm activity is generally higher over the water body of
the North Atlantic than over the European landmass (Fig. 2.2b). The max-
imum track density, here defined as number of measured exceedences of
the 98th wind percentile, lies southwest to the British Isles. From there, the
high-density field (values above 200) splits into two sidearms, one extending
northward and the other toward the northern parts of central Europe. Addi-
tionally, Fig. 2.2b shows smaller areas of high activity in the Mediterranean.
In summary, both attributes resemble the results from the literature. An in-
creased number of windstorms from December to Feburary is a common
phenomenon in the midlatitudes (see Sect. 1.1 or Pinto et al., 2009) linked
to an increased meridional temperature gradient in this season. Similar, the
shape of the high track density can be connected to the large-scale atmo-
spheric flow, which is primarily west to southwest in the midlatitudes of the
Northern Hemisphere.

In terms of overall severity, Fig. 2.3 shows that the large majority (∼ 75%)
of windstorms have a SSI value below five. This information by itself does
not mean much, since per definition of the SSI (Eq. 2.1) each of the tracked
events is extreme in its own way. However, for comparison, we marked the
SSI values (gray dashed lines in Fig. 2.3) of three of the most severe wind-
storm events in Europe based on insurance loss (Roberts et al., 2014): "Kyrill"
(∼ 6.7 bn USD), "Lothar" (∼ 8.0 bn USD) and "Daria" (∼ 8.2 bn USD). All
three events show significantly higher SSI values than a large majority of our
tracked windstorms. In fact, 19 out of the 23 windstorms highlighted by the
XWS open access catalog of extreme European windstorms from 1979 to 2012
(Roberts et al., 2014) have a SSI larger than five. Again, this does not justify
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FIGURE 2.3: Frequency distribution of the SSIs of the tracked windstorm events from
1981-2017. The dashed gray lines mark the SSIs of the cyclones "Daria", "Lothar" and
"Kyrill" (names given by Freie Universität Berlin and used by the German Meteoro-
logical Service, DWD).

to remove a large amount of tracks from the data, especially since our SSI
threshold of five was set rather arbitrary. However, it shows that even within
the context of extreme events, there is a subset of windstorms at the very top-
end of the distribution that are not only extreme but also severe in terms of
social-economical relevance.

To get an overview of how likely an event with a certain characteristic
is to occur, Fig. 2.4 shows the fraction of events per year in relation to the
characteristics. Each box shows the variation of the respective event char-
acteristic over the period from 1981-2017. The duration (Fig. 2.4a) follows
the expected behavior, with shorter events occurring more frequently than
longer ones. Approximately 35-60% of the events have a duration between
one or two days, while events with a duration above four days hardly ac-
count for 10% of the annual windstorm events. The average wind speed
(Fig. 2.4b), on the other hand, displays a completely different curve. There is
a monotonous increase of windstorm frequency for our wind speed bins up
to 15 m/s, followed by a drop between 15-17.5 m/s and recovery between
17.5-20 m/s. Events with an averaged wind speed of above 20 m/s usually
account for less than 5% of the observed windstorms per year. Windstorm
size and SSI show a very similar pattern (Fig. 2.4c and d), with the frequency
of events decreasing as the magnitude increases. In both cases, the higher
fraction in the last bin is an artifact of counting all events above a certain
threshold (1200 and 12 respectively) into one and the same bin.
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FIGURE 2.4: Box-whisker plots displaying the fraction of events per year for (a) du-
ration, (b) averaged wind speed, (c) size and (d) SSI. Each box indicates the fraction
of windstorms in the respective parameter range for the period 1981-2017. For ex-
ample, according to (a), every year approximately 0.2-0.4 (i.e., 20-40%) of the events
had a lifetime between two to three days.

2.6 Summary

In this chapter, we identified, tracked and matched cyclones and windstorm
events following the approaches described in Sect. 2.2 and using the climate
reanalysis data of the ECMWF. Windstorm tracks were generated by apply-
ing the WiTRACK scheme developed by Leckebusch et al. (2008) to the ERA5
reanlysis. The cyclone tracks, on the other hand, were generated following
the approach of Murray and Simmonds (1991) using the ERAINT reanaly-
sis. After the identification and tracking, both products where first matched
following Nissen et al. (2010) and then filtered for the European region dis-
played in Fig. 2.1.

Overall, 2203 windstorm events were identified and tracked within the
European region for the extended winter period October to March. Events
have a lifetime above 18 hours and a minimum total size of at least 150000
km2. Approximately 98% of the windstorm tracks could be matched to a
parent cyclone that was closed and reached a Laplacian of pressure of more
than 0.7 hPa deg.lat.−2 at least once during their lifetime.
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Following the identification and tracking, we introduced a set of 10 wind-
storm characteristics that will be further investigated throughout the remain-
der of this thesis. The set is a composite of the characteristics of natural haz-
ards listed by Höppner et al. (2010), a group of windstorm specific character-
istics derived from the literature and two additional characteristics that we
found to be interesting. A short description of the characteristics, the func-
tions used to estimated them and their abbreviations are given in Tab. 2.2.

Finally, for the purpose of providing a general overview, we investigated
the tracked windstorms with respect to their spatial and temporal distribu-
tion, their overall severity and how common windstorm events with certain
characteristics are. We found no surprising results regarding the spatial and
temporal distribution (Fig. 2.2). The highest windstorm activity can be ob-
served during the winter months from December to February and the pri-
marily affected areas are the northern parts of central Europe and large parts
of the North Atlantic. The density distribution of the SSI (Fig. 2.3) showed
that the large majority of events do not compare in terms of severity to a
small subset of very extreme events highlighted by the XWS catalog of ex-
treme windstorms by Roberts et al. (2014). The distribution of characteristics
shown in Fig. 2.4 complements the distribution of the SSI. Smaller, shorter
and less severe events a more frequent than their counterparts over the span
of an extended winter season. The frequency pattern of the wind speed is
less clear as it shows a comparably flat curve. Since the frequency distri-
bution of the wind speed is significantly different from the distributions of
the size and duration, this could indicate that wind speed is independent of
both variables. However, a more comprehensive study of this hypothesis is
required before a clear answer can be formulated.
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Chapter 3

Quasi-supervised k-means
(QSKM)

As discussed in Sect. 1.4, we intend to cluster our windstorm tracks (see
Chap. 2) with respect to their characteristics to obtain labels for our classi-
fication. The main challenge of this task is to design clusters that are not only
representative of all the subsets within the data, but also relevant from a risk
and hazard perspective. For this purpose, we developed quasi-supervised
k-means (QSKM), a semi-supervised clustering technique that takes advan-
tage of an already know subset of labeled data to improve the quality and
relevance of the clustering result.

This chapter will cover an introduction of QSKM clustering. Since k-
means is an integral part of QSKM, we will start by giving a comprehensive
overview of the traditional k-means clustering in Section 3.1. We will discuss
its purpose and classical algorithms as well as methodological flaws, advan-
tages, and disadvantages of the clustering method. In Section 3.3, we mo-
tivate the transition from k-means to QSKM, introduce the necessary addi-
tional processes, and how these are integrated into the clustering algorithm.
Finally, this chapter will close on Section 3.4, where we will validate the per-
formance of QSKM compared to traditional k-means clustering.

3.1 Traditional k-means clustering

Let X ∈ Rn×p be a set of n observations, each with p features. In k-means
clustering X is partitioned into k subgroups (the so-called clusters) C1, . . . , CK
in such a way that three important criteria are met:

1. C1 ∪ C2 ∪ . . . ∪ CK = {x1, . . . , xn},

2. Ck ∩ Ck′ = ∅ for k 6= k′,

3. minimize
C1,...,CK

{
K
∑

k=1
W(Ck)

}
, where W(Ck) is the within-cluster variation

(see Eq. 3.1).

The first criteria states that each observation has to belong to at least one
of the K clusters, while the second one says that no observation belongs to
more than one cluster. Together, both criteria give C1, . . . , CK the properties
of being non-empty and non-overlapping.
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The third criteria, on the other hand, says that X has to be partitioned in
such a way that the sum of the within-cluster variation W(Ck) is minimized,
where W(Ck) is commonly defined as

W(Ck) =
1

Nk
∑

xi,xi′∈Ck

p

∑
j=1

(xij − xi′ j)
2, (3.1)

with Nk being the total number of observations in the kth cluster. If we insert
Eq. 3.1 into the third criteria we get the optimization problem that defines
k-means clustering:

minimize
C1,...,CK

 K

∑
k=1

1
Nk

∑
xi,xi′∈Ck

p

∑
j=1

(xij − xi′ j)
2

 . (3.2)

Given Eq. 3.2, all that is required is an algorithm that partitions the ob-
servations into K clusters such that the criteria are met. This, however, is not
a trivial task as there are up to Kn possible ways to partition n observations
into K clusters. Under those conditions, clustering a moderate number of
observations already becomes a computational challenge. For large amounts
of observations, the optimization problem becomes virtually impossible to
solve. Therefore, k-means algorithms follow a heuristic approach of solving
Eq. 3.2. This is usually done by providing some initial starting conditions.
Given the starting conditions, the algorithm converges towards a local mini-
mum for Eq. 3.2 in favor of the initially wanted global minimum.

The by far most commonly used heuristic approach of k-means cluster-
ing is the so-called Lloyd’s algorithm (Lloyd, 1982), which is shown in Algo-
rithm 3.1. To understand why Alg. 3.1 decreases the value of the objective in

Algorithm 3.1 Lloyd’s algorithm for k-means clustering

1. Initialization step: Randomly select k observations from X ∈ Rn×p.
These serve as initial means {m1, ..., mk} ∈ Rp (the so-called cluster
centroids)

2. Iterate until cluster assignments no longer change:

(a) Assignment step: Assign each observation to the the cluster with
the closest centroid (usually calculated using Euclidean distance)

(b) Update step: Recalculate centroids for observations assigned to
each cluster

mk =
1

Nk
∑

i∈Ck

xij (3.3)
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Eq. 3.2, remember the following identity:

W(Ck) =
1

Nk
∑

i,i′∈Ck

p

∑
j=1

(xij − xi′ j)
2 = 2 ∑

i∈Ck

p

∑
j=1

(xij −mk)
2. (3.4)

Step 2 of Alg. 3.1 is designed to further update mk until the observations are
no longer reassigned to other clusters. Therefore, per definition of Eq. 3.4, the
within-cluster variation of a subgroup Ck is minimized. As result, the sum of
the within-cluster variation is minimized as well.

3.2 Challenges of k-means clustering and conse-
quent extensions of the algorithm

Traditional k-means clustering is one of the most popular algorithms for find-
ing inherent subgroups in data (Wu et al., 2008) and the method comes with
a lot of advantages. The algorithm is mathematically intuitive, easy to im-
plement and fast. Yet, despite all its simplicity, k-means clustering can still
compete with far more complex and computationally expensive clustering
algorithms (Rodriguez et al., 2019).

However, there are two major problems with using k-means, namely im-
perfect initial conditions for the algorithm and determining the optimal num-
ber of clusters (k). The first problem refers to the fact that the initial condi-
tions in Alg. 3.1 are chosen randomly. As discussed above, Alg. 3.1 only finds
a local optimum for the k-means optimization problem (Eq. 3.2). If the initial
conditions are chosen randomly, there is no way to guarantee that the local
minimum is even close to the global minimum. In other words, the clus-
tering solution found with k-means is arbitrarily far from the best available
solution. The second problem refers to the fact that the algorithm does not
specify k, which therefore must be chosen by the user. However, the correct
number of clusters within the data is usually unknown. Both of these prob-
lems have a strong impact on the clustering result and therefore have to be
accounted for in any k-means application.

It is possible to account for imperfect initial conditions either by (i) repeat-
edly using k-means or by (ii) directly improving the initialization step. As
long as the initialization includes some degree of randomness, the repeated
use of k-means will produce several different cluster solution. The user then
chooses the ’best-fit’ from among the candidates, where best is usually de-
fined as the clustering result with the overall smallest sum of within-cluster
variation (Eq. 3.1). Improving the initialization step, on the other hand, is
less straight forward as finding the location of the initial centroids is not sig-
nificantly easier than the clustering problem itself. Numerous initialization
techniques have been proposed in the literature such as kmeans++ (Arthur
and Vassilvitskii, 2007) or Maxmin (Gonzalez, 1985). As a comprehensive
discussion about different initialization techniques is outside the scope of
this thesis, we refer to Peña et al. (1999), Steinley and Brusco (2007), or Fränti
and Sieranoja (2019) for additional information about this topic
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Fränti and Sieranoja (2019) investigated the impact of using a initializa-
tion techniques compared to simple repeated runs of k-means with random
starting conditions and found that both processes generally improve the clus-
tering result, especially if used together. However, they also found that clus-
ter overlap is big factor in the initialization process. If there is high overlap,
k-means works well regardless of the initialization technique. If there is no
overlap, then k-means success depends completely on the initialization tech-
nique. Therefore, it may depend on the data whether a more complex initial-
ization is useful or not. However, if the additional computation time caused
by the initialization technique is not relevant, it should always be taken into
account when using k-means, since it has no negative impact on the cluster-
ing result.

There are several methods for determining the optimal number of clusters
k, where the most popular are the elbow method (Thorndike, 1953), average
silhouettes (Rousseeuw, 1987) and the gap statistic (Tibshirani et al., 2001).
All three use a method-specific measure to quantify the quality of the clus-
tering result. These measures are generally independent of k and therefore, if
applied to a range of k = {2, . . . , kmax}, can be used to estimate and compare
the quality of a range of clustering results. Again, a comprehensive study of
all relevant methods for determining k would exceed the scope of this thesis
and we therefore refer to the cited literature for the respective methods. That
said, we intend to use average silhouettes at a later stage of this thesis. Com-
pared to the other two, silhouettes are easier to calculate and interpret than
gap statistics, and the elbow method provides only a visual interpretation
tool for determining k, making it unsuitable for inclusion in an algorithm.
Since all three methods are capable of determining the correct k (Yuan and
Yang, 2019), our choice fell on silhouettes. A description of the method is
given in Appendix A.1.

From the discussed challenges of k-means and the demonstrated solu-
tions to the resulting problems, we can derive a generic algorithm (Alg. 3.2)
for how k-means should be applied to any clustering problem. The algo-
rithm should include an initialization technique such as kmeans++ for a bet-
ter choice of starting conditions. To even further improve the clustering re-
sult, k-means should be repeated multiple times to get the best fit from a
range of clustering solutions. Finally, the whole process should be tested for
different k to find the optimal number of clusters.

3.3 From k-means to quasi-supervised k-means

K-means clustering is an unsupervised statistical learning method that aims
to cluster data based on a user-specified set of features. In Sect. 3.1 we intro-
duced the traditional k-means algorithm (Alg. 3.1), discussed methodologi-
cal challenges that come with its application, and showed necessary exten-
sions to deal with them (Sect. 3.2). Finally, we derive a generic algorithm for
the application of k-means to real data (Alg. 3.2).

Quasi-supervised k-means is also a clustering method, yet unlike k-means
the clustering process is guided not only by a set of features, but also by a
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Algorithm 3.2 Generic k-means algorithm for the application to real data

1. For k = 2→ kmax do:

• Iterate I times:

– Estimation of initial centroids using an improved initialization
technique

– Iterate until cluster assignments no longer change:
(a) Assignment step
(b) Update step (Eq. 3.3)

• Pick ’best-fit’ from I clustering result (e.g., min. sum of within-
cluster variation)

2. Determine clustering result with optimal k (e.g., Silhouettes, Gap statis-
tic or Elbow method)

previously labeled subset of data called the reference. Hence, the idea be-
hind QSKM is to handle clustering in a semi-supervised manner, where we
retain the ability of unsupervised learning methods like k-means to discover
hidden subsets within the data, while benefiting from the response-oriented
problem solving of supervised methods.

The advantage of such a semi-supervised approach to clustering is that
the added labels will inevitable improve the relevance of the resulting clus-
ters, provided they are representative of a clusters within the data. If this is
the case, the clustering process will find observations that are close to the la-
beled data and assign them the respective labels. Therefore, under the condi-
tion that at least two clusters are found (which is the default for all clustering
methods), in the worst case scenario semi-supervised clustering will at least
extend the sample size of a known subset of data, increasing its representa-
tion within the data. This is already of great value, because the performance
of many statistical methods (e.g., trend analysis or statistical moments) scale
with sample size. In the best case scenario, semi-supervised clustering not
only increases the representativeness of a subsample, but also further stabi-
lize the clustering process and eventually improves the clustering result by
using additional information.

The algorithm of QSKM consist of three parts: the generic k-means algo-
rithm shown in Alg. 3.2, a feature sampling, and a cluster verification against
a reference. The extended k-means algorithm is the core of QSKM, where the
actual clustering is performed. The feature sampling and cluster verification
are further described below. Both processes are contributions by the author
and are the primary factors that change k-means from an unsupervised into
a semi-supervised approach.

For the purpose of better illustration, the full algorithm is shown in Alg. 3.3.
Let X ∈ Rn×p be a set of n observation of p features and REF the reference, a
subset of observation from Xn×p handpicked by the user. The first step is the
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Algorithm 3.3 Quasi-supervised k-means

1. Draw J subsets S1, . . . , Sj ∈ Rn×q from X ∈ Rn×p such that q ≤ p and
S1 6= S2 6= . . . 6= Sj

2. For j = 1→ J do:

(a) Apply Alg. 3.2 to Sj to get K clusters Cj,1, . . . , Cj,K

(b) Count the no. of elements from the reference (REF) inside each of
the K cluster and find the maximum:

γj = max
[
count

(
Cj,1

⋂
REF

)
, . . . , count

(
Cj,K

⋂
REF

)]
(3.5)

(c) Calculate the distance between the centroid of the reference and
the centroid of the cluster(s) with most events from the reference
using the full feature space:

δj = min
[
distance

(
Cj,max, REF

)]
(3.6)

with Cj,max is a placeholder for the clusters in γj

3. Select clustering result j with smallest δ from the clustering results with
the largest γ

feature sampling. Here, the algorithm draws J subsets Sn×q
1 , . . . , Sn×q

J from
X such that q ≤ p and Sj 6= Sj′ for j 6= j′. Both parameters, J and q, have
to be specified by the user. The idea behind the feature sampling is that not
all features are necessary or suited to represent REF. In some cases, they may
even prevent a representative cluster from being found at all. Thus, the goal
of feature selection is to find the best set of features to describe the REF. The
second step consist of a loop where at each iteration j k-means (Alg. 3.2) is
applied to the respective subset Sj. Each of the resulting clusters Cj,1, . . . , Cj,K
is checked for the number of observations from REF to find the clusters with
the highest number of elements (γj) from REF. Afterwards, the distance is
calculated between the centroids of the clusters in γj and the centroid of REF
itself. Note, the distance is calculated using all p features. This way, multiple
different settings of q can be compared without having to respect a potential
bias in δj due to a reduced/increased feature space. The case of multiple clus-
ter in γj is rare, since the elements of REF would need to be evenly distributed
across more than one cluster, but can happen in theory and is account for by
δj, which is used to identify the cluster from γj closes to REF. Therefore, after
step two there is only one γj and δj for each of the J subsets. In the third
and final step, all found clusters are evaluated in terms of number of events
and distance from REF. The ’best-fit’ is the cluster with the largest number of
events from REF and the smallest distance.
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As a function for the distance in Eq. 3.6, we decided to use the root mean
square deviation (RMSD):

RMSD =

√√√√ 1
p

p

∑
i=1

(REFi − ci)
2, (3.7)

where REFi and ci are the ith element of the reference and cluster centroid re-
spectively. Larger errors have a disproportionately large effect on the RMSD,
making it sensitive to outliers. Therefore, the cases in which one or more ele-
ments of the cluster centroid (i.e., the averaged storm characteristics) deviate
significantly from the same elements in the REF are penalized.

As shown in Alg. 3.3, performance is determined based on the number of
mutual elements (Eq. 3.5) and distance (Eq. 3.6) compared to the reference.
Note that the performance evaluation is sequential and that we first check for
the number of mutual events before considering the distance. We do this with
the intention of prioritizing the result to be representative of the reference as
much as possible, rather than risking it just being close to a potentially small
subset of the reference.

Additionally, note that the algorithm is designed to identify the best clus-
tering result with respect to REF from different subsets of the feature space.
Hence, we argue that QSKM includes a feature selection. The final q features
derived by the algorithm can be interpreted as the q most suited features from
the feature space to characterize the reference. In Sect. 3.4, we will provide
proof for this statement.

As already mentioned above, QSKM requires a few user-defined hyper-
parameters, which are:

• values for the number of subsets (J) and features (q),

• a value range for the number of clusters, i.e. k = [k1, . . . , kmax],

• the reference (REF).

The reference should consist of observations with similar properties. For ex-
ample, in the context of this thesis REF consists of the 23 most severe wind-
storm events based on insured loss and highlighted by insurance experts (see
Roberts et al., 2014). In this example, all windstorm events share the property
of being "highly severe". The more similar the observations inside the refer-
ence, the more likely it is for QSKM to succeed in producing a representative
cluster. Choosing appropriate values for J and q requires less expert knowl-
edge than designing the reference. Still, these values should not be picked
without consideration. Remember, J is part of the feature sampling and thus,
in the context of finding the q most suited features, J should be sufficiently
large such that Sn×q

1 , . . . , Sn×q
j cover most (if not all) possible combinations

of q features from Xn×p. The selection of k is not directly shown in Alg. 3.3,
but is included indirectly through the extended k-means algorithm (Alg. 3.2).
When it comes to choosing the value range for k, it is less about determining
the most likely number of clusters in the data and more about minimizing
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computation time. The algorithm is designed to select the optimal number
of cluster using silhouettes (Appendix A.1). Therefore, the value range can
be arbitrary large. However, since each additional value of k increases the
runtime of the algorithm, we suggest to start with a reasonably small value
range k. For q, on the other hand, there is no rule of thumb. Therefore, we
suggest to apply Alg. 3.3 for a set of q’s. The results for the different q can be
compared against each other using the cluster verification tools from Alg. 3.3.
A practical example on how to chose J, q and k will be given in Section 3.4.1.

3.4 Application and validation of QSKM

3.4.1 Configuration of QSKM

The algorithm comes with three hyperparameters that have to be set by the
user, namely the dimension of the feature space (q), the number of subsets
(J) and a value range for the number of resulting clusters (k = [k1, . . . , K]).
Each windstorm has 10 features (see Tab. 2.2). Here, we will iterate through
a feature space with dimension 6 to 10, i.e. one application of QSKM for
q = 6, one for q = 7 and so on. Remember, QSKM will draw J subsets of
q features from the data, which is why J should be chosen large enough to
cover most (if not all) possible combinations of q out of 10 features. For 6 out
of 10 features there a 210 possible combinations. Since this is still a reasonable
number of subsets, we decided to set J to all. In this case, the algorithm uses
all possible combinations of subsets. In cases where the number of subsets
would be to large, the user will have to set a number for J in which case the
algorithm will randomly pick J different combinations. The hyperparameter
k determines the possible number of clusters the algorithm should build and
test. For example, k ∈ [2, 3, 4] would mean that the clustering result can have
2-4 clusters. Here, we will set k = 2, . . . , 10 to cover a wide range of potential
clustering results.

In addition to the three hyperparameters, QSKM requires a reference (REF),
i.e. a set of labels that classify one or more observations into a group. In the
context of this thesis, REF has to be a set of windstorms that share at least one
common characteristic. Here, we decided to use the top 23 windstorms high-
lighted by the XWS open access catalog of extreme European windstorms
(Roberts et al., 2014). All of the 23 windstorms share the characteristic of
being highly severe, which can be measured not only by different severity
indices, but also by the large social and economic impacts they had at the
time they occurred (see Roberts et al., 2014, for details). By selecting these 23
events as REF, we aim to create a single cluster that is representative of the
top-end of extreme windstorms in Europe.

After setting the hyperparameters and REF, we apply QSKM to our tracked
windstorms (see Sect. 2.3) for q = 6, . . . , 10. Table 3.1 shows both our mea-
sures, the distance δj (Eq. 3.6) and maximum number of clustered events from
the reference γj (Eq. 3.5), for different settings of q. Additionally, for the sake
of comparison, we also include the same measures for a subset of events
consisting of all windstorms that exceed the 90th percentile of the SSI. Note
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TABLE 3.1: Comparison of different setups for QSKM, where q is the number of
features QSKM had to chose. Shown are the distance (δj) of the cluster centroid to
the reference centroid, the number of events from the reference (γj) in the cluster,
the overall number of events in the cluster closest to the reference and the number
of clusters (K). Additionally, the same measures are shown for all events exceeding
the 90th percentile of the SSI.

Method δj γj(≤ 23) No. of events K

QSKMq=10 119.3 18 590 2
QSKMq=9 86.1 18 555 2
QSKMq=8 97.7 20 580 3
QSKMq=7 53.1 20 526 3
QSKMq=6 171.3 21 681 3
SSI90% 439.0 12 224 -

that q = 10 means that QSKM is not forced to pick a subset of windstorm
characteristics, as their are only 10 available, and thus reduces basically to a
traditional application of k-means (Alg. 3.2) that checks the clustering results
against REF. From Tab. 3.1 we can see how our two measures complement
each other to provide a full picture of the optimization. If we would only
look at γj, we would be tempted to select q = 6 as the best result or even
think about further reducing q as Tab. 3.1 indicates a inverse relationship be-
tween both variables. However, δj has its minimum at q = 7 and maximum
at q = 6. A closer look into the clustering result for q = 6 shows that this con-
figuration has approximately 100 and 150 more events compared to q = 7
and q = 8, respectively, while also having 3 clusters. Therefore, events from
REF are more likely to end up in the same cluster without having to be near
the cluster center. Yet, it is also not enough to consider δj as the only relevant
measure, as unlike γj the relationship between q and δj is not linear (see δj
for q = 8 and q = 9 in Tab.3.1). Ins summary, our two measures indicate
a trade-off in the configuration setup, where not all events from REF can be
represented by one cluster without it becoming too general or diffuse.

As we have mentioned earlier, we prioritize γj over δj, since we want the
result to be as representative as possible for REF. However, the configuration
q = 6 showed that for maximizing γj, we end up having a less representa-
tive result. Thus, this type of priority only holds true within the respective
setup (e.g., comparing the results of 6 random features against the results of
6 other random features). For a comparison between different configurations
of QSKM, both measures have to be treated as a trade-off. Therefore, based
on the results in Tab. 3.1, we decided to select q = 7 for QSKM, since this con-
figuration includes almost all event from REF, while also having the lowest
δj of all tested setups.

Finally, it is worth mentioning that all configurations of QSKM outper-
form the option of just selecting all events above a SSI threshold. This does
not mean that the SSI is unrepresentative for extremely severe windstorm
events. However, it indicates that the value alone is not necessarily enough
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FIGURE 3.1: Averaged silhouette values for k = 2, . . . , 10. The selected k is marked
with a gray dashed line.

to identify them.

3.4.2 Analysis of the QSKM output

Now that we have selected q = 7 as the most suitable feature space, we can
start evaluating QSKM. The algorithm has multiple outputs alongside the
clusters, each of them provides additional information about the clustering
result. Among them, the most interesting are the averaged silhouette values
(Appendix A.1) for the selected range of k, the q features picked by QSKM
and the cluster centers. Below, we will take a closer look at all three to get a
better understanding of the clusters, and then move on to a direct comparison
of the clustering results against REF.

According to the averaged silhouette values in Fig. 3.1, the optimal num-
ber of clusters for our setup is k = 3. However, the results are close to each
other, as the values show only small differences between k = 2 and k = 6.
From k = 6 onward, the values drop significantly. Considering that silhou-
ettes are defined between -1 and 1, our maximum value of approximately
0.43 means that the majority of observation were assigned to the most suit-
able cluster. However, it still does not come close to the perfect value, so
we have to expect some variance within the clusters which could affect our
results at a later stage of this thesis.

A closer look at the cluster centers returned by QSKM (Fig. 3.2), shows
what features define each cluster as well as the names of the seven features
selected by the algorithm. From the ten initial features listed in Tab. 2.2,
QSKM selected the seven that represent the intensity (MEANV), duration



3.4. Application and validation of QSKM 35

FIGURE 3.2: Standardized values (i.e. z-scores) of the cluster centers and the refer-
ence for the seven features selected by QSKM

(DUR), size (AREA), latitude of origin (OLAT) and destination (DLAT),
travel speed of the event (TSPEED) and the travel distance (DIST). The
individual cluster centeres indicated, that events in cluster No. 1 (hereafter
denoted as CL12) are primarily windstorms with long durations, larger size
and high travel speed/distance, while those in CL3 show higher wind speeds
and usually travel at higher latitudes (positive OLAT and DLAT). In con-
trast, events in CL2 have below-average values in all features representing
magnitudes such as wind speed, size, or duration, and tend to occur at lower
latitudes in the Northern Hemisphere (negative OLAT and DLAT). By com-
paring the resulting clusters to the center of REF, it becomes clear that CL1 is
the cluster closest to REF. Both show strong similarities in almost all features.
On average, only MEANV seems to be stronger for the events in CL1 than
for those in REF.

Alongside the cluster centers in Fig. 3.2, the distribution of individual
windstorm features (Fig. 3.3) further supports that CL1 is closest to REF.
For DUR and AREA (Fig. 3.3a and b), CL1 and REF show very similar dis-
tributions, with the median and quartiles close to each other for most of
the features. The features DUR and AREA of CL1 have both wider right
tails, but are otherwise very good representations of REF. Features that are
similarly well represented are OLAT, DLAT, DIST and TSPEED (see Ap-
pendix B.1). Even for features that are not from the seven picked by QSKM
such as OLON, CL1 shows an overall better representation of REF than CL2
or CL3 (Fig. 3.3d). Only for MEANV it is hard to argue whether CL1 or CL2
is closer to REF. Still, Fig. 3.3 shows that QSKM is indeed able to define a rep-
resentative cluster of events with respect to a given reference. To even further
support this claim, we want to not only point out how close certain features
of CL1 are to REF, but also how different the distributions of CL2 and CL3

2For simplicity, all cluster will be referred to as CL plus their respective number, i.e. clus-
ter No. 3 is CL3 and so on.
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FIGURE 3.3: Boxplots of (a) duration, (b) size, (c) averaged wind speed and (d) lon-
gitude of origin for the elements in the three clusters of QSKM (CL1-CL3) and the
reference (REF).

look in comparison. Especially for DUR and AREA, large parts of the dis-
tribution of CL2 and CL3 show significant smaller magnitudes compared to
REF.

To summaries the characteristic differences between the clusters that are
displayed in Fig. 3.2 and 3.3, Tab. 3.2 shows averaged values of various wind-
storm features for each cluster. On average, the wind speed of the events
does not differ as much between the clusters as we would have expected
from Fig. 3.2 or 3.3. Mean, minimum and maximum values of wind speed
are very similar (less than 2 m/s) for CL1 and CL3, and even CL2 falls only

TABLE 3.2: Averaged values for different windstorm characteristics representing the
intensity, size and duration of the events inside a certain clusters (No. 1–3). Peak is
not an average, but the highest measured wind speed in the respective cluster.

No. Wind speeds [m/s] Duration [h] Area [km2 · 104] Peak [m/s] SSI

Mean Min. Max.

1 15.18 8.37 21.03 77.70 1175.32 30.10 10.60
2 12.01 5.87 17.06 43.10 377.36 23.44 3.95
3 16.75 8.14 21.92 46.52 362.34 31.37 2.36
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behind by approximately 3-4 m/s in the respective statistical measures. The
peak wind speed measured in each cluster follows a similar pattern, only that
the gap is larger between CL2 and the other two. Still, there is a considerable
difference between a potential physical peak of more than 30 m/s and one
below 25 m/s. However, even larger differences can be found for the dura-
tion, size and SSI. On average, windstorms in CL1 are 30 hours longer, have
thrice the size and a significantly larger SSI than events from CL2 and CL3.

To obtain an overview of the primarily active regions of each cluster,
Fig. 3.4 shows the respective storm tracks over Europe. Events from CL3 are
primarily active over the northern parts of Europe and the Atlantic (Fig. 3.4c),
with only a few windstorm entering Central Europe. In contrast, events
from CL2 are more active in Central Europe and the Mediterranean region
(Fig. 3.4b), with a noticeable higher track count in the latter. Both of the active
regions for CL2 and CL3 could already be derived from OLAT and DLAT in
the cluster centers (Fig. 3.2). However, it is still surprising how clear the re-
gional differences are between both clusters. On the other hand, the tracks
for CL2 fall in between and mix with the two previous cluster (Fig. 3.4a),
where the majority of events can be found in the central parts of Europe and
the Atlantic, but also, in a smaller amount, in the northern and southern parts
of Europe. In comparison to REF (Fig. 3.4d), the higher track count of CL1 in
Central Europe aligns with the results of the previous comparisons and fur-
ther completes the picture of CL1 as a good representative for our extreme
and severe windstorm events of the past.

Additionally, Fig. 3.4 also contains the number of events in each clus-
ter. Almost half of our tracked windstorms are classified as CL2. This large
amount of events, plus the weak wind speeds, small size and short duration
shown in Tab. 3.2 and Fig. 3.2, would suggest that CL2 includes the over-
all least extreme events. However, this contradicts with the averaged SSI in
Tab. 3.2, which is higher than the SSI of CL3. The remaining windstorm are
almost fairly split into CL1 and CL3, where CL3 has only around 140 events
more than CL1.

3.5 Summary and conclusion

In this chapter, we provided a comprehensive introduction of QSKM algo-
rithm. We started by giving a detailed overview of a traditional k-means clus-
tering approach, discussed its advantages as well as methodological flaws.
In this way, we motivated our transition from k-means to QSKM, or, less
generally, our transition from an regular unsupervised approach to a semi-
supervised approach to clustering.

After its introduction, we applied QSKM to our tracked windstorms from
Sect. 2.3 to illustrate its performance and evaluate the clustering. The results
showed that

• only seven out of our ten windstorm features are necessary for the clus-
tering (MEANV, DUR, AREA, OLAT, DLAT, TSPEED, DIST),

• QSKM is able to define a cluster similar to REF (that cluster is CL1),
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FIGURE 3.4: Windstorm tracks of (a-c) the different cluster and (d) the reference. The
number in the top right is the number of tracks in the respective plot.

• there are 3 different classes of European winter windstorms, each of
them having different prominent characteristics.

The further study of CL1 and REF indicated that highly severe and ma-
jor events define themselves through a large size, long durations and far
above average travel speed and distances. These type of events primarily
affect Central Europe, but can also extend, in smaller numbers, towards the
Mediterranean region or northern parts of Europe. In Chapter 4, we will
comeback to the characteristics of CL1 to study their driving mechanisms
and how they have change over the years.

In conclusion, the results are a good display of QSKMs advantages over
a regular clustering approach. Thanks to QSKMs ability to cluster the data
with respect to a reference, we were able to define a class of windstorms that
met our requirements for a relevant subset of extreme events that includes
both historically severe windstorms and a large number of events with simi-
lar characteristics. Additionally, the algorithm provided us with a tool to se-
lect relevant features from a pool of rather general characteristics of hazards.
Arguably, a traditional k-means approach would have already produced a
similar cluster from all of our ten defined characteristics (see QSKMq=10 in
Tab. 3.1). However, the cluster would have neither been as representative of
REF as ours, nor would k-means have been able to identify key characteris-
tics that determine the clustering result.

The only two disadvantages of QSKM are (i) the increased complexity of
the algorithm and (ii) the high impact some hyperparameters can have on the
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performance. The first point refers mainly to the significant increase in com-
putation time due to a large number of additional k-means iteration caused
by the feature sampling (step 1 in Alg. 3.3). Considering how the algorithm
is designed, it is generally desirable to iterate through all possible combina-
tions of a feature subset. However, dependent on the size of the feature space
and the desired subset, the number of combinations can easily lead to an un-
reasonable high computation time. For example, on a Intel CoreTM i5-8250U
CPU at 1.60GHz × 8 using the high performance programming language Ju-
lia (Bezanson et al., 2017), the computation time for 6 out of 10 features (i.e.
J = 210 subsets) was approximately 7 minutes. If we extend this example to
a simple case of 6 out of 13 features, we already end up with more than 1700
possible combinations and a projected run time of almost a hour.

The second disadvantage is a direct consequence of the first one. Since
the computation time can increase significantly dependent on the dimension
of the feature space, the choice of hyperparamters such as q (number of se-
lected features from the feature space) and J (number of samples drawn from
all possible combinations) can have a high impact on the clustering perfor-
mance. To save computation time, users might test an insufficient number of
setups for q and J, which could cause QSKM not to converge to its optimal
result.

A semi-supervised approach comparable to QSKM, was proposed by Bair
and Tibshirani (2004) who aimed to utilize gene expression data and the clini-
cal data for the purpose of identifying subtypes of cancer. In their study, they
used the clinical data as reference to identify a list of genes that correlate
with the clinical variable of interest, to which they than apply an unsuper-
vised clustering technique. The key methodological difference between the
method of Bair and Tibshirani (2004) and QSKM is that they reduce their fea-
ture space based on the reference, i.e. the clinical variable of interest, before
the actual clustering. Therefore, their method depends heavily on the quality
of the reference and its ability to correctly represent the desired subset within
the data. In contrast, QSKM only provides measures of how well a reduced
feature space represents the reference. Theses measure are independent and
thus allow a comparison between different configurations of QSKM. Hence,
in QSKM the clustering is used to reduce the feature space.

In summary, we are convinced of QSKMs ability to produce a good sub-
set of windstorms from our data that is representative of the top 23 wind-
storms highlighted by the XWS open access catalog of extreme European
windstorms (Roberts et al., 2014). The presented results not only showed
that events from CL1 and REF have remarkably similar characteristics, but
also that the other two clusters display significant different magnitudes for
multiple characteristics. Unlike regular unsupervised approaches, our clus-
tering algorithm is able to select a subset of relevant characteristics from a
pool of general characteristics of hazards, while also optimizing the cluster-
ing results towards a given reference. Therefore, our method has a method-
ological advantage compared to other clustering techniques.





41

Chapter 4

Evaluation of European windstorm
classes

In Chapter 3, we introduced QSKM, a semi-supervised clustering method,
and used it to identify three different windstorm classes (i.e. clusters) based
on our in Chapter 2 defined windstorm characteristics and with respect to a
reference catalog of severe European windstorms. Among those three classes,
CL1 is the class closest to our chosen reference (20 out 23 windstorm events)
and therefore represents a subset of potentially severe European windstorms.
We also found that the three classes are governed by seven characteristics
that describe the intensity, size, duration, travel speed and distance, as well
as region of origin and impact.

In this chapter, the windstorm classes are further analyzed not only in
terms of their characteristics and impacts on Europe, but also in terms of their
connection to prominent large-scale atmospheric processes and how each of
the classes may have changed over time. Therefore, this chapter primarily
focuses on answering our second and third research question (Sect. 1.4). We
start by providing a comprehensive overview of the potential impact, occur-
rence and temporal development of a windstorm from each of the respective
classes (Sect. 4.1). Afterwards, for the purpose of understanding and quan-
tifying the influence of large-scale atmospheric process on the type of wind-
storm, a random forest classification model (Appendix. A.2) is used to link
the windstorm classes to characteristics of their parent cyclone, European
teleconnection patterns and measures of baroclinic instability (Sect. 4.2). Fi-
nally, Sect. 4.3 covers a trend analysis where we investigate past changes in
the occurrence of our windstorm classes. The chapter ends on a summary
and discussion of the results (Sect. 4.4).

4.1 Impact, occurrence and temporal characteris-
tics of the windstorm classes

In Sect. 3.4.2, we have already given a brief summary of the windstorm
classes, their characteristics and how they differ from each other. We showed
that CL1 primarily contains exceptionally large windstorm events with a
long duration and high wind speed, and that it is the cluster closest to our
reference. On the other hand, CL2 and CL3 consists of comparably smaller
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FIGURE 4.1: Number of occurred windstorm events in the respective months of our
extended winter period October to March for the period 1981-2017, shown for (a)
CL1, (b) CL2 and (c) CL3.

events with a shorter duration, where CL2 events have an overall lower wind
speed, and CL3 events partially exceed the wind speeds in CL1 (see Tab. 3.2).

Here, however, we want to investigate our derived windstorm classes
with respect to their occurrence and temporal structure, as well as quantify
their impact on Europe using our characteristics from Tab. 2.2. We aim to pro-
vide a comprehensive overview of the inherent characteristics of our wind-
storm classes and how they compare to each other.

4.1.1 Occurrence

Regardless of the class, most of the windstorm events occur in December and
January (Fig. 4.1), with the only notable difference being that CL1 and CL3
have more events in January than December, while CL2 has slightly more
events in December. However, for CL2 and CL3 (Fig. 4.1b,c), the difference
in the number of events in January and December is too small to assume or
prove statistical significance. Overall, the event distribution is similar for CL1
and CL2 (Fig. 4.1a and b, respectively). In both classes windstorm events are
considerably less frequent in October to November than for December, espe-
cially for CL1, where both months combined have not as much windstorm
events than December alone. After they peak in December to January, the
event numbers decline slowly towards March. Again, this decline is much
more rapid for CL1 than for CL2. The event distribution for CL3 (Fig. 4.1c) is
flatter from October through January, with a difference of less than 50 events
between both months.

The differences in event numbers for October and November between
CL3 and the other two are most likely due to the southward transition of
the polar front in the winter months. As already discussed in Sec. 1.1, the
polar front is a region of strong baroclinicty along which cyclones develop
and intensify. In summer, the polar front can be found further north due
to a weaker temperature gradient between warm subtropical and cold polar
air masses. In October and November, the polar front is still in transition
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FIGURE 4.2: Locations of (a,c,e) cyclogenesis and (b,d,f) strongest intensification for
(a,b) CL1, (c,d) CL2 and (e,f) CL3. The red circles mark regions where events cluster.

towards the south and therefore windstorm events are more likely to occur
in the northern parts of Europe, which usually results in events of CL3 (see
Fig. 3.4).

Analogously, the strength of the polar front could explain the differences
in event numbers for the early winter months between CL1 and CL2. On
average, the events of CL1 are larger and more intense than the events of
CL2 (see Tab. 3.2). Therefore, it is likely that events of CL1 require a stronger
polar front to even develop at all. The possible implications of a weaker
or stronger polar front on the class of the occurring windstorm is further
explored in Sect. 4.2.

Additionally to the temporal distribution of the occurrence of our wind-
storm classes, Fig. 4.2 shows the spatial distribution of two key processes of
their parent cyclones, namely the cyclogenesis and intensification. The re-
gion of cyclogenesis is here defined as the coordinates of the cyclone center
at the first time step of its tracking. Analogously, the region of intensification
is defined as the coordinates of the cyclone center at the time step with the
strongest decrease in minimum core pressure.

Although the regions of cyclogenesis and intensification are scattered all
over of the North Atlantic, Europe and even the United States, there are areas
where they cluster for each of the classes and thus indicate preferred regions
for both processes. For events of CL1, the cyclogenesis (Fig. 4.2a) seems to
start primarily along the east coast of the United States and the western parts



44 Chapter 4. Evaluation of European windstorm classes

of the North Atlantic in general. The intensification (Fig. 4.2b) then usually
peaks in the middle or eastern parts of the North Atlantic. A completely
different picture can be seen for the events of CL2, where cyclogenesis pri-
marily starts in the eastern parts of the North Atlantic and Mediterranean
region (Fig. 4.2c) and intensification seems to happen shortly after along the
west coast of Europe or the eastern parts of the Mediterranean, respectively
(Fig. 4.2d). The regions of cyclogenesis for CL3 events (Fig. 4.2e) are loosely
scattered across the North Atlantic, with only smaller clusters in the west-
ern parts of the North Atlantic, near the east coast of the United States, and
around Iceland. The preferred region of intensification, on the other hand, is
characterized by basically a single large cluster between southeast of Green-
land and Europe (Fig. 4.2f).

Our results from Fig. 4.2 are consistent with the findings of Moran (2019),
who have shown that windstorms with large footprints in the European re-
gion (i.e., events as in CL1) often originate along the east coast of the United
States, while those with comparatively smaller footprints (i.e., events as in
CL2) are more likely to originate in the western parts of the North Atlantic.
Analogously, Moran (2019) have also shown that events with a larger foot-
print tend to have their intensification phase over the western parts of the
North Atlantic, while windstorms with a small footprint often further inten-
sify near the European coast or in the Mediterranean region.

4.1.2 Temporal development

For the purpose of understanding the temporal development of a windstorm
event from our identified classes, Fig. 4.3 shows the averaged 10 m wind
speed and size of the windstorm over its lifetime, as well as the respective
minimum core pressure of the parent cyclone, for each of the classes. The
boxes in each panel are calculated from all events of the respective class at the
given time step. For each box, at least 10 events were used for the calculation.
Later time steps that could not reach this threshold were removed from the
figure.

When comparing the averaged wind speed (Fig. 4.3a-c), one can see that
the events of CL1 show an overall drop in magnitude for the median with in-
creasing lifetime, while the median for CL2 and CL3 hardly changes. This is
most likely due to fact that most CL1 events develop in the North Atlantic, a
region with low surface friction, and transition over land, a region with high
variation in surface friction, during their lifetime, while the events of CL2
and CL3 often remain over the respective water body over which they orig-
inated (see windstorm tracks in Fig. 3.4). Therefore, CL1 events have their
highest wind speeds in the early hours of their lifetime and are probably the
most dangerous when they hit land. There is also a small decrease in the me-
dian wind speed for CL3 events (Fig. 4.3c) between 42-60 hours accompanied
by an increase in variance. This suggest that most CL3 events disappear in
this time frame, which is further supported by the averaged event duration
of 46.52 hour for CL3 in Tab. 3.2.
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FIGURE 4.3: Temporal development of the windstorm events of (a,d,g) CL1, (b,e,h)
CL2 and (c,f,i) CL3 over its lifetime, characterized by (a-c) the averaged 10 m wind
speed, (d-f) the size of the event and (g-i) the minimum core pressure of the respec-
tive parent cyclones. Each box is calculated from at least 10 events.

For the size of the windstorms (Fig. 4.3d-f), again, the magnitudes vary
stronger among CL1 events, but the overall temporal structure is more com-
parable between the classes. Windstorms of CL2 and CL3 usually reach their
maximum size within the first 18-24 hours. For CL1 events, this time frame
shifts to 30-42 hours. The fact that they reach their maximum size later than
those of CL2 and CL3 suggest that CL1 windstorms are either longer effect
by cyclone growth factors such as the jet stream or upper-level divergence,
or spend more of their lifetime over areas with low friction such as the ocean.
This would also explain the overall higher severity of CL1 events. After-
wards, the events continuously decrease in size (see median line in Fig. 4.3d-
f). Both, CL1 and CL2 (Fig. 4.3d and e, respectively), show an increase in
windstorm size in the later time steps, which in both cases can be traced back
to exceptional long and large events that skew theses boxes towards larger
magnitudes.

Figure 4.3g-i indicates that the minimum core pressure of the parent cy-
clone is inversely related to the windstorm size. Meaning, for CL2 and CL3,
the minimum core pressure reaches its minimum between 18-24 hours, and
for CL1 at approximately 30-42 hours. Afterwards, the minimum core pres-
sure continuously increases until the cyclone disappears. These changes are
again much more prominent for CL1 than for the other two classes.
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FIGURE 4.4: Averaged anomalies in (a-c) precipitation and (d-f) 10 m wind gusts in
case of the occurrence of an windstorm events of (a,d) CL1, (b,e) CL2 or (c,f) CL3 for
each grid box. The anomalies are calculated with respect to the baseline 1981-2010.

4.1.3 Impact

Windstorms are defined as extreme winds that are strong enough to cause
damage to trees or buildings in the affected area (Pielke, 2007), but some-
times they are also accompanied by heavy precipitation. Due to the major
socio-economical impact that extremes of both variables can produce, it is
important to look at their potential magnitudes in case of a windstorm event.
Local impacts are of particular interest in this regard, since wind and precip-
itation values averaged over the storm object are not representative of what
is happening in a particular country or region. Therefore, Fig. 4.4 shows
maps of anomalies for the daily maximum 10 m wind gusts and precipitation
amount, averaged over the days a windstorm occurred within the respective
grid boxes, for each of the three classes. The daily anomalies were calculated
with respect to the climate baseline period 1981-2010.

Independent of the meteorological variable, the positive anomalies can
be associated with the tracks of the respective windstorm class (compare to
Fig. 3.4). Windstorm events of CL1 cause above-average precipitation and
wind gusts in central and parts of northern Europe (see Fig. 4.4a and d), es-
pecially in the United Kingdom, which not only has positive anomalies in
precipitation but also by far the strongest wind gusts anomalies compared
to any other European land mass. Other maxima in precipitation can be
found at the south coast of Norway and the coast of Portugal. For CL2
events, there are weak precipitation anomalies in central and south Europe
(Fig. 4.4b). Stronger precipitation anomalies can be found at the southern
coast of Turkey. Positive anomalies in 10 m wind gust are also weaker com-
pared to CL1 and CL3 events and are primarily distributed across central
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and southern Europe, where the largest anomalies can found across Mediter-
ranean Sea (Fig. 4.4e). For CL3 events, larger than average precipitation
amounts can be found over the North Atlantic, which primarily affects Scot-
land, Iceland, and the Scandinavian region, especially the west coast of Nor-
way, which shows the largest precipitation anomalies (Fig. 4.4c). Weaker, but
still positive, precipitation anomalies can also be found in the western parts
of the Mediterranean Sea. The same applies for 10 m wind gust (Fig. 4.4f),
except that the positive anomalies in the northern parts of Europe extend
further south and now also affect the whole of the United Kingdom and the
North and Baltic Seas.

Independent of the class, the negative anomalies in precipitation and wind
gusts are found in the opposite cardinal direction to the positive anomalies,
i.e. if there are mainly positive anomalies in the north, then most anomalies
in the south are negative (and vice versa). A possible explanation for this
pattern could be the North Atlantic Oscillation (NAO) and its influence on
the windstorm occurrence of Europe. During its positive phase, the NAO
can be associated with an increase in windstorm activity over central Eu-
rope and the eastern Mediterranean region (Donat et al., 2010; Nissen et al.,
2010) and a decrease in the western parts of the Mediterranean (Nissen et al.,
2010). Similar applies for precipitation. Hence, the anomaly patterns for CL1
(Fig 4.4a,d) and CL3 (Fig 4.4c,f) resembles the windstorm activity described
in the literature for the positive NAO phase. However, there is no link be-
tween a negative NAO phase and an increase in windstorm activity over the
eastern parts of the Mediterranean region and we therefore lack an explana-
tion for the anomaly patterns for CL2.

Another component to the potential impact of a windstorm is the dura-
tion of the event and the available response time for citizens in the affected
area. Therefore, Fig. 4.5 shows maps of windstorm duration and speed of on-
set, i.e. the time required for the event to reach its peak (here defined as the
time between the first and highest exceedance of the 98th percentile). Each
grid box in Fig. 4.5 shows averaged numbers of hours the grid box is affected
(Fig. 4.5a-c) in case of the occurrence of an event at the very same location
and how fast this event usually reaches its peak (Fig. 4.5d-f). It should be
noted that not all windstorm classes affect the entire study area and there-
fore in some areas the speed of onset becomes zero just because no event of
the studied class occurred in the respective grid boxes (e.g., south Europe in
Fig. 4.5f for CL2). However, these grid boxes are easy to identify, because the
same grid boxes show no duration in the respective figures for the duration
of an event as well.

In general, the local windstorm durations (Fig. 4.5a-c) peak over the wa-
ter bodies southwest of Spain, the Mediterranean Sea, and north of Iceland,
while over land the longest durations can be primarily found in central and
eastern Europe. Due to their overall longer lifetime in comparison to events
of CL2 and CL3, CL1 events are responsible for the majority of these peaks
across Europe. Outside the peaks, there seems to be a southwest to northeast
gradient in duration for all three classes, where coastal regions tend to have
shorter durations compared to the inland, which is particularly interesting
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FIGURE 4.5: Averaged (a-c) duration and (d-f) speed of onset in case of the occur-
rence of an windstorm event of (a,d) CL1, (b,e) CL2 or (c,f) CL3 for each grid box.
When a box is 0 (purple), no event occurred at this grid box.

in the case of CL1, where precipitation and wind gusts show a completely
opposite pattern (Fig. 4.4a,d). This shows that although different regions
are affected by the same type of events, they still face different aspects of
their characteristics. For example, in a direct comparison of the United king-
dom and Germany, the United Kingdom would be stronger impacted by CL1
events with respect to wind gusts and precipitation, but all within a shorter
duration. However, that said local windstorm durations above 20 hours are
rare and thus the respective regions in Fig, 4.5a-c are probably the result of a
few very long storms.

The speed of onset (Fig. 4.5d-f) mirrors the patterns of the duration for
each of the three classes, and shows that, in general, the longer an area is af-
fected by a windstorm, the later it will experience its maximum wind speed.
This rather simple proportional relationship between duration and speed of
onset could be due to the size of the event. Imagine the windstorm at a given
time as a cell with a gradient of wind speed, with high wind speeds in the
center and comparably low wind speeds at the edges. Given this scenario, a
grid box would first experience the lower wind speeds at the edges, which
would continuously increase with time as the windstorm center travels to-
wards the grid box. The larger the event, the longer this process would take.
Overall, the maximum wind speed does not seem to be a good variable for
defining the speed of onset. Given the interpretation of the speed of onset as
a measure of available response time, it would be better if we had the time
between the forecast of the event and the date of impact. However, this is
outside the scope of this study.
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4.2 Identification and quantification of the large-
scale atmospheric processes behind the wind-
storm classes

In this section, we aim to identify and quantify the impact of large-scale at-
mospheric drivers such as the North Atlantic oscillation or the jet stream
on the windstorm classes we previously derived from the ERA5 windstorm
tracks using QSKM (see Sect. 3.4). In the following subsections, we present
a set of features for various large-scale atmospheric factors associated in the
literature with the development, occurrence and intensification of European
winter windstorms (Sect. 4.2.1). Afterwards, we train a random forest classi-
fier (Appendix A.2) between our windstorm classes and the aforementioned
features. With the help of the random forest model, we can identify and
quantify the impact of large-scale features on the windstorm classes. Over-
all, our goal is to answer our second research question (see Sect. 1.4) and
identify atmospheric drivers that are important for our windstorm classes
and to what extent they help to shape them.

4.2.1 Motivation and calculation of large-scale atmospheric
drivers

A key challenge in windstorm classification is the selection, design, and cal-
culation of features that serve as proxies for our desired large-scale atmo-
spheric drivers. The pool of potential candidates ranges from indices de-
scribing modes of teleconnections such as the North Atlantic or Arctic oscil-
lation to the intensity or location of the jet stream, or the depth, magnitude
and location of atmospheric depressions. However, identifying suitable pre-
dictors is only the first task, calculating them is the second. Calculating the
selected predictors is not trivial and requires careful considerations of what
information we want to extract from the various atmospheric drivers. In the
following, we will give a brief motivation and description of our selected
predictors. A summary of the variable names and a short description of our
selected predictors is given in Tab. 4.1.

Teleconnenction patterns of the Northern Hemisphere

The influence of teleconnection patterns on European winter windstorms
has been extensively investigated and demonstrated in previous studies (e.g.
Pinto et al., 2009; Donat et al., 2010; Walz et al., 2018). Given the influence of
teleconnections on the occurrence of windstorms, it makes sense to include
them in our classification model to see if they are also determinant for the
class of windstorms as well.

We include five teleconnetion patterns that are influential for weather and
climate variability in Europe, namely the North Atlantic Oscillation (NAO),
East Atlantic pattern (EA), East Atlantic/Western Russia pattern (EA/WR),
Scandinavia pattern (SCA) and Polar/Eurasia pattern (POL). The patterns
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TABLE 4.1: Abbreviates of the large scale features used in our classification model
and a short description of their definition.

Variable names Description

NAO North Atlantic Oscillation pattern index
EA East Atlantic pattern Index
EA/WR East Atlantic/Western Russia pattern index
SCA Scandinavia pattern Index
POL Polar/Eurasia pattern Index
PMIN Minimum core pressure of matched cyclone
LATP, LONP Latitude/Longitude of PMIN
LATO, LONO Latitude/Longitude of cyclone origin
JET Wind speed anomalies at 250 hPa, Avg. around footprint center
PJET Footprint position w.r.t max. wind speed at 250 hPa
EGR Eady growth rate between 850-500 hPa
EPT Equivalent-potential temperature at 850 hPa

and their respective indices are estimated following the approach of the Cli-
mate Prediction Center3 (CPC). Their procedure is an extension of the work
from Barnston and Livezey (1987) and aims to isolate the primary teleconnec-
tion patterns using rotated principal component analysis of monthly mean
standardized 500 hPa geopotential height anomalies over the Northern Hemi-
sphere for a baseline climate period 1950-2000. The monthly patterns are
projected onto daily data to create daily time series of pattern indices.

For the classification model, we calculate the daily pattern indices and
average them over the duration of the respective windstorm event. A key
difference in this thesis is that we isolate the desired patterns from the ERA5
data (Sect. 2.1), rather than the NCEP reanalysis (Kalnay et al., 1996) used by
the CPC, for the baseline climate period 1981-2010. For the monthly indices,
this only had a minor impact. A comparison of our estimated indices and
those of the CPC showed an average correlation of 96% between them. The
daily indices, on the other hand, showed almost no correlation. To a certain
degree, this was to be expected, because ERA5 is a newer product with a
significantly larger temporal and spatial resolution than NCEP, which should
primarily impact the smaller time scales such as hours and days. Since our
windstorms are tracked from ERA5, we are inclined to rather rely on our
indices than those of the CPC.

Characteristics of the parent cyclone

In Section 2.3, we assigned each of the tracked windstorms to a parent cy-
clone to examine whether and how their characteristics affect the classifica-
tion. Dependent on the study field or interest, cyclones have a similar ar-
bitrary amount of characteristics as their footprints, ranging from statistical

3A detailed explanation of their methodology is given under https://www.cpc.ncep.

noaa.gov/data/teledoc/telecontents.shtml

https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
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properties such as the size, duration and intensity, to more complex informa-
tion that describe their development or explosiveness.

For our classification, we decided to specifically focus on three character
traits of the parent cyclone: its intensity, location and origin. In general, the
minimum core pressure (pmin) of the cyclone is a good proxy for its intensity.
The lower the core pressure, the deeper and more extreme the cyclone usu-
ally is. The cyclone identification and tracking algorithm used in this thesis
(see Sect. 2.2.2) comes with a pmin for each time step of the cyclone track.
Here, we take the smallest pmin as proxy for the cyclone intensity, i.e.

PMIN = min (pmin,1, . . . , pmin,t) , (4.1)

where t is the lifetime of the cyclone. For the location we will use the respec-
tive longitude (LONP) and latitude (LATP) of PMIN. By doing so, we hope
to add more complexity to PMIN. For example, we do not want that a very
deep cyclone in the West Atlantic has the same weight in the model than a
similar cyclone in the East Atlantic, which is closer to (and part of) our study
area.

The origin refers to the region of cyclogenesis. Severe cyclones that show
an explosive intensification usually originate in the West Atlantic (Gray and
Dacre, 2006; Allen et al., 2010). However, Dacre and Gray (2009) also point
out that type C cyclones (Deveson et al., 2002), which are cyclones with
strong upper-level forcing but a very weak low-level baroclinicity, domi-
nantly origin in the Mid to East Atlantic. Furthermore, Fig. 4.2 already showed
that the classes have preferred regions of cyclogenesis. Therefore, a distinc-
tion between the origin of the different cyclone types should significantly
improve the model quality. Same as for Fig. 4.2, we will use the longitude
(LONO) and latitude (LATO) of the first time step of the cyclone track as
proxy for its origin. Note that this is not the same origin as defined for
windstorms in Sect. 2.4, since there can be a considerable time lag of mul-
tiple hours between the first detection of the cyclone and the windstorm (see
Moran, 2019).

All of the above defined characteristics are directly or indirectly part of
the output from the cyclone tracking (Sect. 2.2.2) and therefore non of them
needs to be calculated. However, this also means that, unlike most other
features described in this section, they are calculated from ERAINT (Sec. 2.1)
and not ERA5.

The jet stream

The jet stream is a meandering, long and narrow band of high-speed winds
that typically flow eastward in the middle and upper troposphere. In the
Norther Hemisphere, the jet stream is related to the polar front, a region of
strong baroclinicty which plays a major role in the development and intensi-
fication of cyclones.

Numerous studies have shown that the jet stream is an important contrib-
utor in the development of deep cyclones and extreme windstrom events in
the North Atlantic. For example, Pirret et al. (2017) and Priestley et al. (2017)
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showed that the relative positioning of the cyclone to the jet stream has a ma-
jor influence on its deepening and propagation. Their results are consistent
with several other studies that have shown that cyclones experience rapid
deepening in the left jet exit (e.g. Baehr et al., 1999; Ulbrich et al., 2001), a
region of intense upper-air divergence. Furthermore, due to the physical re-
lationship to the polar front, the strength of the jet stream is a good proxy
for baroclinic instability, since both are directly related to large-scale merid-
ional temperature differences between the subtropics and the polar region
(e.g. Eady, 1949).

Given its influential role, we include the strength of the jet stream (JET)
and the relative positioning of the footprint to the jet steam (PJET) in our
classification. Here, JET is calculated as the averaged wind speed anomalies
(ν
′
) at 250 hPa in a 1000 km radius (r) around the windstorm center at his

highest severity, i.e. the time step of the maximum SSI (tmax):

JET =
1
|ν′ |∑i

ν
′
i , i = 1, . . . , |ν′ |, (4.2)

where ν
′
= {ν′r,t|r ≤ 1000km and t = tmax} and |ν′ | is the number of el-

ements in ν
′
. The wind speed anomalies are estimated with respect to the

baseline climate period 1981-2010 using daily averages of 6 hourly fields.
We define PJET as the difference between the latitudes of maximum wind

speed at 250 hPa (LATν) and the windstorm center (LATc), both again at the
time step of the maximum SSI

PJET = LATν,tmax − LATc,tmax . (4.3)

This way, PJET indicates not only the relative distance between jet stream
and windstorm, but also whether the event is located north (PJET < 0) or
south (PJET > 0) of the jet.

Eady growth rate and equivalent-potential temperature

The maximum Eady growth rate (σ; Lindzen and Farrell, 1980) is a measure
frequently used to describe baroclinic instability in the atmosphere and is
defined as

σ = 0.31 f |∂ν/∂z|N−1, (4.4)

where f is the Coriolis parameter, |∂ν/∂z| the vertical wind shear, and N the
Brunt-Väisälä frequency. Barolclinic instability is widely excepted as the pri-
mary mechanism by which cyclones develop in the midlatitudes and σ has
been successfully used as a diagnostic tool for baroclinicty in various stud-
ies (e.g. Ulbrich et al., 2001; Pinto et al., 2009; Willison et al., 2015). Here, we
include σ in our classification model to study to what degree baroclinic insta-
bility is responsible for different types of windstorms. Following Pinto et al.
(2009) and Moran (2019), we calculate σ from 6-hourly fields for the atmo-
spheric layer between 850-500 hPa and apply a 3-day running mean over the
times series to account for the high-frequency variability of σ. Afterwards,



4.2. Identification and quantification of the large-scale atmospheric
processes behind the windstorm classes 53

the time series is averaged to daily means at each grid box. Same as JET (see
Sect. 4.2.1), we calculate the model value (EGR) as a local average in a 1000
km radius (r) around the windstorm center on the day where the SSI peaks
(tmax):

EGR =
1
|σ|∑i

σi, i = 1, . . . , |σ|, (4.5)

where σ = {σr,t|r ≤ 1000km and t = tmax} and |σ| is the number of elements
in σ.

The equivalent-potential temperature (θe) is the temperature that an air
parcel would reach if all the water vapor it contains were to condense, re-
leasing its latent heat in the process, and it were adiabatically brought to a
standard reference pressure (here 1000 hPa). Latent heat is a crucial compo-
nent in the lifting process of an air parcel. The more moisture the air parcel
contains, the more latent heat it can release and θe increases. Therefore, θe is a
good indicator for atmospheric instability, where higher values of θe indicate
less stable the atmosphere. Pinto et al. (2009) studied the contribution of θe to
cyclone intensification by comparing non-extreme and extreme cyclones and
found that the latter generally had higher θe values. It will be interesting to
see whether or not θe is also indicative for a certain class of windstorm. We
calculate θe at 850 hPa according to a formula given by Bolton (1980) using
6-hourly fields and average the results to a time series of daily means at each
grid box. For our model, we again use the local average in a 1000 km radius
around the windstorm center on the day where the SSI peaks, i.e.

EPT =
1
|θe|∑i

θe,i, i = 1, . . . , |θe|, (4.6)

where θe = {θe,r,t|r ≤ 1000km and t = tmax} and |θe| is the number of ele-
ments in θe

Other potential predictors

In addition to the predictors listed in Tab. 4.1, there are numerous other po-
tential candidates that we could include in our classification model. For ex-
ample, Walz et al. (2018) studied the impact of 20 different Large-scale fea-
tures on serial-clustering of windstorms for different regions of Europe. Their
list of features includes features such as teleconnection patterns, sea ice cover,
land and sea temperature differences, and various other indices for a number
of oscillation patterns. Pinto et al. (2009) investigated not only the influence
of the jet stream, EGR and latent heat on cyclone development, but also the
effects of upper-air divergence. Moran (2019) studied the role of land-sea
contrasts and gradients of sea surface temperature as cyclonic growth factors
in the West Atlantic.

However, for reasons of model complexity and in light of our research
questions, we decided to reduce the number of features and include only
variables that are either directly related to, or generally known to be involved
in, the occurrence, propagation, development or intensification of European
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TABLE 4.2: Confusion matrix for the RF model tested on the last 30% of the data, i.e.
the last 661 of 2203 windstorm events. Also shown are the precision and recall for
each class.

Ground truth

Predicted CL1 CL2 CL3 Precision

CL1 95 25 30 0.63

CL2 40 269 9 0.85

CL3 27 14 152 0.79

Recall 0.59 0.87 0.80

windstorms. Table 4.1 contains features that are commonly used in the liter-
ature to describe all of the above properties. In addition, we have added cy-
clone characteristics as diagnostic tool for the relationship between the wind-
storm and its parent cyclone.

4.2.2 Model tuning and verification

We fit a random forest (RF; Appendix A.2) classification model to the wind-
storm clusters identified by QSKM (see Sect. 3.4) using the the features from
Tab. 4.1. For this task, we use the RF classifier of the MLJ package (Blaom et
al., 2020), a package for composable machine learning for the programming
language Julia (Bezanson et al., 2017). We tune the classifier with respect to
three hyperparameters, namely the number of trees (between 100-500), the
maximal depth of a tree (between 4-20) and the number of features used at
each split (between 4-10). The different possible combinations of hyperpa-
rameters are each tested by 3-fold cross validation using the accuracy (Ap-
pendix A.3, Eq. A.7), the fraction of correct predictions, as a performance
metric. The accuracy is a commonly used metric in machine learning to get
an overview of the general performance of the model. The complete tuning
process is performed on the first 70% of the data (1542 out of 2203 windstorm
events). This split is done without shuffling of the events so that the results
can be reproduced. After the best hyperparameters are determined by tun-
ing, we use the tuned classifier to predict the classes of the remaining 30%
of the data (661 of 2203 storm events). All results in this section are based
on the performance of the tuned RF classifier in predicting last 30% of the
windstorms.

The confusion matrix (Appendix A.3) in Tab. 4.2 shows that the tuned RF
classifier performs well with an overall accuracy of 78% correctly predicted
windstorm classes. However, Tab. 4.2 shows that the disparity in model
performance is rather large between the classes. The recall (Appendix A.3,
Eq. A.10), the fraction of a correctly predicted class out of all observations of
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FIGURE 4.6: Feature importance for our features from Tab. 4.1 derived from Shap-
ley values. The larger the mean absolute (abs.) Shapley value, the more important
feature. The different colors show the importance of the feature for each class. Com-
bined they show the global feature importance. The bracketed numbers in the leg-
end is the baseline, i.e. the average prediction, of each class.

the respective class, for CL2 and CL3 is by 87% and 80%, respectively, com-
pared to only 59% for CL1. Similar the precision (Appendix A.3, Eq. A.9),the
fraction of a correctly predicted class out of all model predictions of the re-
spective class, for CL1 is only at 63%, while it goes up to 79% and 85% for
CL3 and CL2, respectively. Both metrics indicate that windstorm events of
CL2 and CL3 are very well partitioned in the model tuning and can be cor-
rectly predicted with high confidence. CL1 events, on the other hand, seem
hard to discriminate from those of CL2 and CL3, as precision and recall are
considerably lower for CL1 than for the other two.

4.2.3 Quantifying the contribution of large-scale atmospheric
drivers

Using Shapley values, a metric for quantifying the contribution of a feature
to the model prediction of an observation, we can derive the feature impor-
tance from our tuned RF classifier (Sect. 4.2.2) by calculating the mean abso-
lute Shapley value for each feature and class (see Fig. 4.6). Note the baseline
values, i.e. the averaged probability, of each class in the legend. Those are
important, because in case of a classification scenario Shapley values mea-
sure the contribution of features in terms of added value on top of the av-
eraged probability of the class. For a better understanding of this, assume
the prediction of the probability P̂ of an event y being part of CL1 given an
observed feature space x. The Theory behind Shapley values assumes that
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P̂(y = CL1|X = x) can be defined as the averaged probability P(y = CL1)
of predicting CL1 plus the individual contributions of the features θ1, . . . , θp,
i.e.

P̂(y = CL1|X = x) = P(y = CL1) + Sθ1(y = CL1|X = x)
+ . . . + Sθp(y = CL1|X = x), (4.7)

where −1 ≤ S ≤ 1 is the contribution, i.e. added probability. Shapley values
help us to assign a value to each S(θ). For a more comprehensive description
of the Shapley values see Appendix A.4 or Molnar (2019).

According to Fig. 4.6, the most important large-scale atmospheric drivers
for our model are JET, LATP, EPT and PMIN. Since both the jet stream and
atmospheric instability play major roles in the development of cyclones, it is
not surprising that JET and EPT are important to our model. It also makes
sense that PMIN, as a proxy for the cyclone intensity, is a strong indicator for
our windstorm classes, as more intense cyclones are more likely to produce
severe windstorms, and our classes differ in severity (see SSI in Tab. 3.2). It is
interesting that LATP has so much weight in our model, but can be explained
through the fact that our windstorm classes have regions where they are pri-
marily active (see Fig. 3.4). CL1 and CL3 are primarily active in Central and
Northern Europe, while events of CL2 usually occur in the Mediterranean.
Therefore, it is likely that LATP serves as threshold for the model whether an
event is more likely to occur in the south (e.g. CL2) or further north (e.g. CL1
or CL3).

Large-scale atmospheric drivers that play a surprisingly minor role are
the teleconnections and LATO. In the literature, teleconnection patterns are
often associated with windstorm occurrence (e.g. Pinto et al., 2009; Donat et
al., 2010). However, our model indicates that they have only little influence
on what type of windstorm occurs. For LATO, on the other hand, the reason
seems to be that the origin of the windstorms is too widely scattered across
the meridians, independent of the class (compare to Fig. 4.2a,c,e). This stands
in contrast to LONO, where at least the differentiation between east and west
seems to matter.

From Fig. 4.6 we can also deduce how important the features are for each
classes by looking at their individual contribution to the global feature im-
portance. For example, PMIN plays a larger role in the prediction of CL1
and CL2 events (mean abs. Shapley value of approximately 0.09 and 0.13,
respectively) compared to CL3 events (approximately 0.04). Overall, the pre-
diction of CL1 events seems to be guided primarily by PMIN and JET, which
are the two features with the highest individual importance for CL1. Be-
sides these two, most other features have a similar weight in the prediction
of CL1 events (outside the previously mentioned teleconnection patterns and
LATO). Analogously, the most influential features for CL2 are PMIN, LATP
and EPT, while for CL3 its LATP, EPT and JET.

The Shapley values can also be used to show the feature dependence, i.e.
how the average model prediction changes with the magnitude of a feature.
Figure 4.7 shows the feature dependence for the four features with highest



4.2. Identification and quantification of the large-scale atmospheric
processes behind the windstorm classes 57

FIGURE 4.7: Feature dependence for (a) JET, (b) LATP, (c) PMIN and (d) EPT, the four
features with the highest feature importance. The dots are the respective Shapley
value of a track and class in our test sample. Again, the Shapley values are estimated
with respect to the average model prediction of the class (see Fig. 4.6).

feature importance (Fig. 4.6), namley JET, LATP, EPT and PMIN. Each of the
dots is a Shapley value, i.e. feature contribution, of the respective feature.
Overall, each class in every panel has 661 dots; one for each of the 661 tracks
in the test sample. Together, they represent the dependency curve of the
respective feature and class.

For PMIN (Fig. 4.7a) the dependence curves are similar for CL1 and CL3,
where the Shaply values increases with decreasing PMIN. Hence, both types
of events are more likely to have a parent cyclone with a minimum core pres-
sure of below 980 hPa. As PMIN decreases (increases), the dependence curve
of CL1 splits from CL3, and the occurrence of a CL1 event becomes increas-
ingly (decreasingly) likely. The complete opposite can be seen for the depen-
dence curve of CL2. Here, the probability of a CL2 events increases with an
increasing PMIN, while pressure values below 980 hPa are unlikely for this
type of event. Cyclones with a low core pressure are often related to severe
windstorms and therefore, considering CL1 and CL3 events are events with
higher wind speeds in general (see Tab. 3.2), it is not surprising that the oc-
currence of these two types of events are more likely with decreasing PMIN.
This is especially true for CL1, which is designed to represent historical se-
vere events.

Similar, but mirrored, dependency curves can be seen for LATp (Fig. 4.7b)
and EPT (Fig.4.7c). For LATp, the dependence curves of CL1 and CL2 show
a similar behavior, where with increasing latitude both types of event get
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more and more unlikely. A key difference between CL1 and CL2 is the loca-
tion of their maximum, which is between 45-50◦N for CL1 and 30-40◦N for
CL2. Like CL2 in Fig. 4.6a, the dependency curve of CL3 shows the oppo-
site behavior to CL1 and CL2, where the occurrence of a CL3 events is more
likely for higher values of LATp. However, this tendency only starts at 50◦N.
Before this threshold, the Shapley values stays between -0.2 and -0.1. As al-
ready mentioned, for EPT the orientation of the curves are almost mirrored
to LATp. Events of CL1 and CL2 are more likely for higher EPT values, while
those of CL3 are more likely for lower values. Both features, LATp and EPT,
are well suited to distinguish CL3 events from those of CL1 and CL3 and the
reason for this is that apparently both features have a close relationship to the
region in which CL3 events are primarily active. CL3 events usually occur in
the polar regions above 60◦N (see Fig. 3.4). The Shapley values of LATp for
CL3 are starting to be positive around 60◦N. Around the same latitude, the
polar air mass begins, a large volume of air defined by its low temperatures
compared to the midlatitudes. Therefore, since the air temperature is propor-
tional to EPT, it is not surprising that lower EPT values are clear indicator for
CL3 events.

JET (Fig. 4.7d) shows almost linear dependence curves for all three classes,
where each of them has different slope. Small values of JET, i.e. values be-
tween -15 and 5 m/s, correspond to positive Shapley values for CL3 and
negative values for CL1. After the 5 m/s threshold this relationship swaps
to positive Shapley values for CL1 and negative values for CL3. The Shapley
values for CL2 are between -0.1 and 0, with a maximum at approximately 5
m/s, for the full range of JET. Overall, Figure 4.7d suggest that a jet stream
with higher wind speeds compared to the climatological mean favors the de-
velopment or occurrence of windstorm events typical of CL1. Note, that we
calculate JET using wind speed anomalies at 250 hPa (Tab.4.1). Therefore,
Fig.4.7a is not a contradiction to the results from Tab. 3.2, where larger wind
speeds are a prevalent characteristic of events from CL3 rather then CL1 or
CL2. Here, small values of JET only means that the events where either far
away from the jet stream, i.e. outside the 1000 km radius around the wind-
storm center that was used for averaging, or that the jet stream was weaker
compared to the climatological average.

The remaining 10 features start to become less and less distinguishable
with decreasing importance (see Appendix B.2). As we already suspected
from Fig. 4.6, features for the teleconnection patterns such as NAO, POL or
EA and LATO seem to have close to no visible impact on the model predic-
tion (Appendix B.2e-j). The features LONP and LONO (Appendix B.2a,b) are
weak but clear indicators for CL2 and can be summarized as the further east
PMIN and the origin are, the more likely the event belongs to CL2. Also
interesting to note, weaker values of EGR are indicative for CL2 events (Ap-
pendix B.2c). The dependence curve of PJET shows that in the case of the
windstorm occurring far south of the jet stream (PJET < −10), it is likely to
be an event of CL3.
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FIGURE 4.8: Contribution of each large-scale feature on the model prediction of the
class for Kyrill. The contribution is given with respect to the average (avg.) probabil-
ity of 0.24. In the upper-right corner we also show the actual predicted probability
of the event belonging to CL1.

4.2.4 Case studies: Daria, Lothar and Kyrill

Finally, to extend on our findings from Sect. 4.2.3 and to gain a more compre-
hensive understanding of the interaction between the individual large-scale
atmospheric drivers and extreme windstorm events, we conduct a case study
of three historical severe windstorms, namely Daria, Lothar and Kyrill. All
three events are from our reference and thus part of CL1. Together, they are
the three most severe windstorm events of the past 40 years, measured on
insured loss (Roberts et al., 2014). In the following, we focus on quantify-
ing and understanding of the relationship between our large-scale features
(Tab. 4.1) and these events. For a detailed description of the development
and impact of the three individual events, we refer to McCallum (1990) for
Daria, Ulbrich et al. (2001) for Lothar, and Fink et al. (2009) for Kyrill.

The Shapley values derived from the prediction of the class for Kyrill
(Fig. 4.8), shows that Kyrill had a very deep parent cyclone with a minimum
core pressure of approximately 960 hPa and was influenced by a comparably
strong jet stream. Both were the dominant factors for the model prediction,
with the next closest feature being EGR with less than half the Shapley value
of JET. The value for PJET show us that with a difference of only 3.14◦N, the
center of Kyrill was north of and very close to the jet stream, which might
be reason for the magnitude of JET. Interesting is the impact of NAO, POL,
LONO and LONP on the prediction. The Shapley values of all four features
are negative, which means that their magnitude is characteristic for one of



60 Chapter 4. Evaluation of European windstorm classes

the other classes but not CL1. This also the reason why the predicted prob-
ability of 0.55 is low compared to these of Daria and Lothar (Appendix B.3
and B.4).

Daria and Lothar (Appendix B, Fig. B.3 and B.4) show larger Shapley val-
ues and predicted probabilities, with 0.89 and 0.95 respectively, than Kyrill.
Both windstorms had a intense parent cyclone with a minimum core pres-
sure below 950 hPa and were influenced by a closely located and strong
jet stream. Again, the features PMIN and JET are stronger than for Kyrill.
They both originated in the West Pacific (Daria: LONO = −83.39; Lothar:
LONO = −74.55) and reached their highest intensity close to the European
continent (see LONP and LATP in Appendix B, Fig. B.3 and B.4). Hence, both
events are the poster example of a windstorm event that originated near the
U.S. East coast and intensified on their way across the Atlantic. This stands in
contrast to Kyrill, which first occurred in the East Atlantic (Fig. 4.8, LONO).

Overall, Fig 4.8 and Fig. B.3-B.4 show that despite the difference in origin
and intensification, our model is still able to correctly classify Kyrill. How-
ever, this difference might be an indication for why our model struggles to
correctly predict CL1 events in general (see precision and recall in Tab. 4.2).
Clearly, although the extreme windstorms in our reference have comparable
characteristics they do not all have a similar cyclogenesis and intensification
phase, and those difference might have been carried over in the construc-
tion of our classes. This means that some of the events in CL1 are compara-
ble in their development to Kyrill, others are more comparable to Daria or
Lothar, while some might even be completely different from the three afore-
mentioned events. If those events now lack strong indicators such as JET
or PMIN, features that were decisive for the prediction of Kyrills’ class, it is
possible that they are incorrectly classified. Therefore, it is not likely that ad-
ditional or different features in our classification model would improve the
model performance with regard to CL1 events. Rather, a further partitioning
of CL1 would be required to account for events with similar characteristics,
but different origin, development and intensification. However, this is out-
side the scope of this dissertation as our focus lies on windstorm characteris-
tics.

4.3 Trend analysis of European windstorm activity

Finally, we close this chapter on a study of European windstorm activity. In
Sect. 1.2 we summarized that reanalysis data indicates an overall increase in
cyclone and windstorm activity over Europe, but that there are substantial
difference in the magnitude, or sometimes even the sign, of these trends in
the literature due to variations in the cyclone/windstorm data caused by the
tracking scheme, definitions of extremes and/or the underlying reanalysis
data (Ulbrich et al., 2009). Here we hope to add to or to further clarify the cur-
rent understanding of trends in European windstorms by estimating trends
from our windstorm classes, providing information on potential changes in
the activity of certain windstorms types.
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In Sect. 4.3.2, we describe the methodology used to estimated the trends,
while the actual results are presented in Sec. 4.3.3. Trends are estimated for all
tracks and for each class of tracks individually, to provide a comprehensive
trend analysis of European windstorms from the ERA5 reanalysis.

4.3.1 Windstorm count data

We define windstorm activity as the number of days on which a windstorm
event occurred per extended winter period. To account for regional differ-
ences, we analyze windstorm activity for each grid box individually. Thus,
for each grid box x we calculate the time series

Yx,t = (Yx,1981/1982, . . . , Yx,2016/2017), (4.8)

where each Yx,u ∈ N is the count of days with an windstorm event for the
respective extended winter period. For example, Y10,1981/1982 would be all
days with an windstorm event at the 10th grid box for the months October
to March in 1981 to 1982. Since we have 37 years of windstorms, we have 36
complete extended winter period and thus Yx,t consists of 36 values at each
grid box.

Note that we do not distinguish between events in Yx,t, i.e. if a consecutive
number of windstorm days at a grid box is caused by a single windstorm,
they are still counted individually. We believe that this is the most honest
representation of local windstorm activity, since from perspective of decision
makers or local residents only the actual number of days with a hazardous
events matters, not the event itself. However, since it is relevant information
whether the increasing/decreasing number of windstorm days is caused by
longer or more frequent windstorm events, we define a second time series

Zx,t = (Zx,1981/1982, . . . , Zx,2016/2017), (4.9)

where each Zx,u ∈ N is the count of windstorm event for the respective ex-
tended winter period at a grid box x.

As already mentioned above, we intent to estimate trends not only for the
combined sum of windstorms, but also for the individual classes. In cases,
where we estimate trends for a class of windstorms, the definition of our
time series (Eq. 4.8 and 4.9) does not change, except that they are now only
counting events from the investigated cluster.

Lastly, from Fig. 2.2 we could already see that some grid points experi-
enced much more windstorm events than others. Since we reduce the time
series down to 36 values, the overall event density at a grid point should not
be a problem as long as there were a few windstorm events for the majority
of the winter periods. However, since we intent to also estimate trends for
the windstorm classes, the event density at some grid points could fall below
a critical value where we have to many years with no events to estimate a
reliable trend. Therefore, we decided to only include grid points in the trend
estimation with values above zero for at least 20 out of 36 winter periods.
Again, this applies to all studied trend scenarios. That means in cases where
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FIGURE 4.9: Grid boxes and their respective number of windstorm days that are left
after the selection process for (a) all, (b) CL1, (c) CL2 and (d) CL3. Trends are only
estimated at grid boxes that are not white.

we estimate trends for CL1, the respective grid boxes also need windstorm
events of CL1 for at least 20 winter periods . Figure 4.9 shows the map of all
grid boxes that are left for the individual trend scenarios after the selection
process.

4.3.2 Methodology for trend estimation

Various approaches can be found in the literature to capture trends in wind-
storm activity. For example, Neu et al. (2013), Nissen et al. (2010) and Befort
et al. (2016) used least square regression on winter cyclone counts. Donat et
al. (2011c) also used a least squares regression, but for two different measures
of storm intensity, namely gale days and wind speed percentiles, and tested
for significance with the Mann-Kendall test (Kendall, 1948). Paciorek et al.
(2002), on the other hand, used Poisson regression (McCullagh and Nelder,
1999) on regional counts of winter cyclones, with an additional focus on in-
tense cyclone (minimum core pressure below 970 hPa).

For our trend estimation, we follow the approach of Paciorek et al. (2002),
with slight modifications regarding the Poisson regression model and how
we define our windstorm counts (see Sect. 4.3.1). We decided for a Pois-
son regression in favor of the more commonly used least square regression,
as we believe it is the more suitable model to describe windstorm counts.
Our main argument against least square regression is that windstorm counts
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are discrete measures and therefore cannot be described using a continu-
ous probability distribution such as the Normal distribution. However, nor-
mally (or continuously) distributed residuals are one of the key assumptions
of least square regression for hypothesis testing, i.e. for testing for signifi-
cance. The Poisson distribution, on the other hand, has been frequently used
to describe count data and access trends in various studies across different
research fields (e.g. Thompson and Sorte, 2008; Achcar et al., 2011; Le et al.,
2021).

In our Poisson regression model, the windstorm counts Y ∈ Rn are as-
sumed to be a Poisson random variable with mean

E [Y(t)] = exp(α + βt), (4.10)

where α ∈ R is the intercept, β ∈ Rn the regression coefficient and t ∈ Rn

the independent variable, which is here the trend and therefore denoted as
t. An important consequence of assuming a Poisson process for our observa-
tions is that the variance of Y equals the mean of Y. However, this a fact that
non of our time series can fulfill, since the variance of Y is always larger than
its mean. The case of the variance of Y being larger than its mean is called
overdispersion. Overdispersion does not necessarily influences the estimate
of β, but generally leads to underestimated standard errors of β, which are
essential for calculating the p-value. Underestimated standard errors lead to
smaller p-values and thus more time series might show a significant trend
than is actually the case. To prevent this, we include a dispersion term fol-
lowing McCullagh and Nelder (1999) which adjusts the standard errors for
overdispersion before the p-values are estimated. For a comprehensive dis-
cussion of the overdispersion problem and how a dispersion term can be
calculated and included in the model, we refer to Hilbe (2014).

The for overdispersion adjusted Poisson regression model is fitted for the
time series discussed in Sect. 4.3.1 for each grid box. We test the estimated
trends (i.e. β) for significance using the z-test (see Berger and Casella, 2001).
Trends below a significance level of α = 0.1 are considered to be significant.
All the necessary tools for the modeling are included in the GLM package
(https://juliastats.org/GLM.jl/stable/) for the programming language
Julia (Bezanson et al., 2017).

4.3.3 Estimated trends within the windstorm cluster

Figure 4.10 shows the regional trends in the number of windstorm days
(hereafter denoted as βu

D, where u is the respective time series) for our dif-
ferent time series (i.e. all events or only those from the clusters). When all
events are included in the trend analysis (Fig. 4.10a), βAll

D shows contrasting
magnitudes between the southern and central to northern parts of Europe,
where all trends above (below) 40◦N are negative (positive). The strongest
decrease in βAll

D can be found in the northern parts of France and Southwest
Germany, while the strongest increase lies in a small cluster south of Italy.
Overall, the clusters of negative trends are larger and further spread across
Europe than their counterparts in the south. For CL1 (Fig. 4.10b), βCL1

D is

https://juliastats.org/GLM.jl/stable/


64 Chapter 4. Evaluation of European windstorm classes

FIGURE 4.10: Regional trends in the number of windstorm days in units of (36 win-
ter periods)−1 for (a) all windstrom events and only events of (b) CL1, (c) CL2 and
(d) CL3. Show are only grid boxes with a significant trend (significance level of
α = 0.1).

exclusively negative and can be only found in Central to Northern Europe.
There a four clusters of βCL1

D : over Northern France and Southwest Germany,
Belarus/Ukraine, Iceland and the northern parts of Finland. Each of these
can be found in similar version in Fig. 4.10a, when all events are consid-
ered. The trends in CL2 (Fig. 4.10c) are similar divided than for all events. A
large cluster of positive βCL2

D can be found over western parts of the Mediter-
ranean and smaller batches south of Italy and the Levant region. Decreasing
trends are found in similar location than for all and CL1 (Fig. 4.10a,b) with
an additional small cluster west of the coast of France. There are almost no
significant trends in CL3 (Fig. 4.10), besides very small batches of βCL3

D north
of Scandinavia, Russia and the east coast of Greenland, and an even smaller
cluster of positive βCL3

D west of the coast of Norway.
Overall, the trends in Fig. 4.10 indicate an increase in windstorm days

in the Mediterranean and decrease for central and the northern parts of Eu-
rope. The decrease seems to be mostly due to the decrease in windstorm
days from CL1 and partly CL2, while the increase in the south is solely due
to an increase in windstorm days in CL2. Events of CL3 seem to have little
to no impact on the full picture of trends in European windstorm days be-
sides a small batch of negative trends north of Scandinavia. The decrease in
windstorm activity in the central and northern parts of Europe is consistent
with the results of Paciorek et al. (2002),Nissen et al. (2010) and Wang et al.,
2011, and contradicts the results of Donat et al. (2011c) and Neu et al. (2013).
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FIGURE 4.11: Regional trends in the number of windstorm events in units of (36
winter periods)−1 for (a) all windstrom events and only events of (b) CL1, (c) CL2
and (d) CL3. Show are only grid boxes with a significant trend (significance level of
α = 0.1).

Similar, the positive trends around Spain and Portugal can only be partly
found in Paciorek et al. (2002), but are otherwise contradicting the results in
the literature (e.g. Nissen et al., 2010; Neu et al., 2013).

To complement the results from Fig. 4.10 and to identify whether changes
in European windstorm activity are due changes in the overall event dura-
tion or rather their frequency, Fig. 4.11 shows trends in the number of wind-
storm events across Europe (hereafter denoted as βu

N, where u is the respec-
tive time series). Both, Fig. 4.10 and 4.11, show the same trend patterns across
all studied time series, with only small difference for individual grid points.
Therefore, it can be assumed that the trends in European windstorm activ-
ity are caused by changes in windstorm frequency. However, one does not
exclude the other. The strong link between windstorm days and number of
events is favored by our tracking setup, since we only use 6-hourly data and
events have to be at least a day long. Therefore, it makes sense that changes
in windstorm numbers have a stronger influence on the overall trend behav-
ior, since a single additional event can already add multiple days to our time
series.

4.4 Summary and discussion

In this chapter we investigated our derived windstorm classes with respect
to their impact, occurrence and temporal evolution (Sect. 4.1), as well as their
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connection to large-scale atmospheric processes (Sect. 4.2) and observed cli-
mate trends (Sect. 4.3). We provided an overview of their origin, potential
impact, and the relationship between the windstorm and its parent cyclone.
Many of our results further support the findings of previous studies. Only
a few results contradict the results from the literature. Here, we provide a
summary of our findings, and further discuss our conclusions.

We found that windstorm events in CL1 primarily affect central and north-
ern parts of Europe with larger than average precipitation amounts and wind
gusts (Fig. 4.4a,d), and that they usually occur in December, January or Febru-
ary (Fig. 4.1a). A typical parent cyclone of these events origins along the east
coast of the United States and intensifies over the mid and eastern parts of
the North Atlantic (Fig. 4.2). Their minimum core pressure often falls be-
low 970 hPa (Fig. 4.7c), especially in the case of severe windstorm events
such as Kyrill, Lothar or Daria (see Fig. 4.8 and Fig. B.3-B.4). Windstorm
events of CL1 can be associated with an unusually strong jet stream (Fig. 4.7a)
and are typically found north of the strongest jet wind speeds (Fig. B.2a).
In case of the occurrence of a CL1 type event, local areas are affected be-
tween 15-20 hours, where peak wind gusts are to be expected within the first
10 hours (Fig. 4.5a,d). Our trend analysis showed that in the period 1981-
2017 the number of CL1 events has decreased for central and eastern Europe
(Fig. 4.11). Positive trends could not be found within our study area.

Windstorm events of CL2, on the other hand, usually affect the Mediter-
ranean region, although anomalies in precipitation and wind gust are small
compared to CL1 and CL3 (Fig. 4.4b,e). Again, the largest number of wind-
storm events are found for the winter months December to February. Yet,
unlike CL1 and CL3, CL2 events are more common in December instead of
January (Fig. 4.1). Their parent cyclones usually form over the mid and west-
ern parts of the North Atlantic or the Mediterranean Sea (Fig. 4.2c). Depen-
dent on the origin, the cyclones intensify along the European coast or further
east in the Mediterranean (Fig. 4.2d). Their core pressure rarely falls below
990 hPa and increases only slowly during its lifetime (Fig. 4.3h). This be-
havior makes the core pressure one of the strongest feature for distinguish-
ing CL2 type events from those of CL1 or CL3 (see Fig. 4.7a). On the lo-
cal scale, windstorm events of CL2 affect the Mediterranean region up to 20
hours and more (Fig. 4.5), which is surprising considering that CL2 events
are the shortest on average (see Tab. 3.2). This suggest that windstorms in
the Mediterranean region are slow moving events, which leads to longer lo-
cal durations regardless of an overall shorter lifetime. The trend analysis
showed that the overall number of CL2 events has increased in the western
parts of the Mediterranean region but decreased for central Europe between
1981-2017 (Fig. 4.11).

Typical CL3 type windstorm events primarily occur in the northern parts
of Europe, especially the North Atlantic and coastal regions are affected by
positive anomalies in precipitation and wind gusts (Fig. 4.4c,f). Again, the
most active season are the winter months December to February. However,
compared to CL1 and CL2, the difference between the number of events
in October and December is small (Fig. 4.1c). A typical parent cyclone of
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theses events origins in western parts of the North Atlantic and further in-
tensify eastwards between the coast of Greenland and the United Kingdom
(Fig. 4.2e,f). Similar to CL1, their minimum core pressure lies between 970-
980 hPa, but experiences much less variance across its lifetime (Fig. 4.3i). Due
to the fact that CL3 events are most active in the northern parts of Europe,
the lowest values of the minimum core pressure can be found above 60◦N
(Fig. 4.7b). In general, these type of events can be associated with lower val-
ues of latent heat release in the atmosphere (Fig. 4.7d) and a weaker jet stream
(Fig. 4.7a). In cases of the occurrence of a CL3 type event, local areas are affect
for 8-15 hours, with peak wind gusts between 5-10 hours (Fig. 4.5c,f). Our
trend analysis showed very small cluster of negative trends in windstorm
days and number of events were found in Russia and north of the Scandi-
navian coast (Fig. 4.10 and 4.11). Otherwise, CL3 has the least climate trend
signals of all three classes.

Overall, we showed that the most important large-scale atmospheric pro-
cesses are related to the strength and relative positioning of the jet stream, the
characteristics of the parent cyclone (i.e. core pressure and positioning) and
the equivalent-potential temperature, which could suggest a strong influence
of latent heat release (Fig. 4.6). However, each class was differently affected
by changes in their magnitude or location. We also showed that large-scale
teleconnection patterns such as the NAO or POL have no impact on the class
of windstorm (Fig. 4.6 and B.2), which is an interesting result considering
how influential some of these patterns are for the occurrence of European
windstorms (e.g. Pinto et al., 2009; Donat et al., 2010; Walz et al., 2018). Our
trend analysis showed that windstorm activity decreased over large parts of
central and north Europe, but increased in the Mediterranean. These trends
are consistent with the findings of some previous studies, but also contra-
dicts the findings of other studies. This shows the disparity in information
that can be caused by the use of different data, methods and/or investigated
time period.
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Chapter 5

Synopsis

The two main objectives of this dissertation were to classify European win-
ter windstorms based on their inherent characteristics such as duration, size,
and intensity, and to evaluate the windstorm classes with the goal of identi-
fying key characteristics, understanding the driving large-scale atmospheric
mechanisms, quantifying impacts, and estimating trends. From those two
objectives, we derived four research questions (see Sect. 1.4), which ulti-
mately defined the structure and methodology of this thesis. In this last
chapter, we summarize the key answers to our goals and research questions,
critically evaluate the methods we used and developed, and discuss possible
improvements (Sect. 5.1). Finally, we provide an outlook on potential future
studies that could build on our shown results (Sect. 5.2).

5.1 Conclusion

To answer our first research question and main goal of this dissertation,
whether it is possible to construct objective and universal applicable wind-
storm classes based on their characteristics, we developed and applied the
semi-supervised clustering technique QSKM. This novel clustering approach
is designed to partition windstorm events and compare the resulting classes
with a reference, in our case the XWS open access catalog of extreme Euro-
pean windstorms (Roberts et al., 2014). During the clustering, QSKM selected
the most appropriate characteristics to represent the reference from a set of
characteristics that we derived from the literature of the windstorm and nat-
ural hazard community (see Tab. 2.2). The result were three classes of Eu-
ropean winter windstorms, one of which showed exceptional similarities to
the given reference (Fig. 3.2), even for characteristics that were not part of the
seven characteristics (AREA, DUR, MEANV, DLAT, OLAT, DIST, TSPEED)
filtered by QSKM (Fig. 3.3 and Fig. B.1). Throughout this thesis, we referred
to this class as CL1. Windstorms of this class are characterized by their excep-
tional size, lifetime, travel speed and distance (Fig. 3.2). Large SSIs and high
wind speeds (see Tab. 3.2) further underlined that QSKM successfully distin-
guished a subset of extreme and potentially dangerous windstorm events.

Overall, we believe that we achieved our goal of creating transparent and
reproducible windstorm classes. Our proposed methodology maintains a
high degree of objectivity throughout the classification. While the reference
and characteristics are arguably subjective and provided by the user, they
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are merely constraints as the final selection of characteristics and the class
construction itself is unsupervised. Furthermore, since the classes were con-
structed from very basic properties, their inherent characteristics, they are
suitable for a range of different studies. At least one of the classes resembles
observed historical extreme events in their characteristics and can therefore
be regarded as an extension to the list or stand-alone catalog of extreme Eu-
ropean windstorm events. This alone makes our data interesting for every
user that requires a list of extreme European winter windstorms. The fact
that the class contains more than 500 events further supports this claim, as
this a sample size that current windstorm catalogs cannot provide (compare
to Roberts et al. (2014) or Stucki et al. (2014)).

Given our second objective, we undertook a comprehensive analysis to
gain further insight into the origin and nature of the windstorms classes. The
aim of this analysis was to assess their potential impacts, occurrence, and
temporal characteristics, and to understand and quantify the driving large-
scale atmospheric processes that determine classification. For the latter, we
used a random forest classification model and Shapley values, two powerful
statistical tools that are commonly used in machine learning for knowledge
discovery. Combining the two tools allowed us to directly measure feature
importance and dependence, revealing which of our selected large-scale fea-
tures were decisive in the classification and how they interacted with the
windstorm classes. We concluded the evaluation of the classes with a trend
analysis, using Poisson regression to identify past trends.

As we already gave a comprehensive summary and conclusion in Sect. 4.4,
we will not further discuss the result for our second objective in this part
of the dissertation, but rather point out a few key findings. Overall, the
evaluation further underlined the nature of CL1 as a subset of especially
extreme events as we found several indicators that already have been dis-
cussed in the literature such as deep parent cyclones with a core pressure be-
low 970 hPa, primarily originating in the West Atlantic, a strong and close jet
stream to support development and intensification. Furthermore, the evalu-
ation showed the strong influence of the parent cyclone on the windstorm
class. Three of the five most important features relate to the positioning
and strength of the parent cyclone (Fig. 4.6) and each of them influences the
classes in a different way. Another key results was that according to our
trend analysis the windstorm activity decreases for central and northern Eu-
rope and increases in parts of southern Europe.

The primary source of uncertainty, that has to be accounted for in the
results of both of our objectives, are the characteristics and features. In both
cases, the clustering and random forest model, we motivated and argued for
the used features (see Sect. 2.4 and 4.2.1, respectively), often citing their use
and impact in other windstorm studies. Still, the range of characteristics and
features that can be included in this type of study is wide and their potential
impact on the results hard to estimate. Furthermore, all of the features and
characteristics have to be regarded as estimates or proxies of a real event
or atmospheric situation. Therefore, their performance can vary dependent
on the way they are calculated. In this regard, the evaluation indicated that
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two of our features (under-)overperform due to the way we calculated them,
namely PJET and EPT. As a feature that is meant to represent the relative
positioning of the windstorm and jet stream and thus the impact of the left
jet exit on windstorm intensification, PJET had are comparable low impact
in the model (Fig. 4.6). Our definition of PJET (Eq. 4.3) might have been to
simple to really represent such an important component. EPT, on the other
hand, played an important role in the model. However, it is arguable how
much of its impact just comes from the relationship to the air temperature,
considering the fact that EPT is most influential for events in the northern
parts of Europe, but indifferent for events in central and southern Europe.

5.2 Outlook

In the case study of Kyrill, Lothar and Daria (Sect. 4.2.4), we have already
mentioned that although the events in CL1 have similar characteristics, they
can show notable differences in their origin, development and other charac-
teristics, and that those differences might be the reason behind the low pre-
dictability of CL1 events in our random forest model (see Tab. 4.2). For exam-
ple, with regard to our case study, while Kyrill, similar to Daria and Lothar,
originated near the US east coast, it developed a secondary cyclone in the
area of the occlusion point several days later in the East Atlantic (Fink et al.,
2009). Due to its favorable positioning to the jet stream, this secondary cy-
clone (usually referred to as Kyrill II) continued to grow, eventually exceed-
ing the core pressure anomaly of the parent cyclone and ultimately causing
the devastating destruction that made Kyrill famous in the windstorm com-
munity. The cyclone matching introduced in Sect. 2.2.3 assigned the wind-
storm to Kyrill II, which can be see from the LONO in Fig. 4.8. Regardless of
whether this is considered to be correct or false, it does show the potential
differences within CL1 due to differences in development or other charac-
teristics. Exploring those differences might reveal additional sub-classes of
windstorms in CL1 and, consequently, improve our classification model and
understanding of European windstorms.

Another potential expansion of our work is the application of our method-
ology to windstorm tracks from climate projections. Climate change is an im-
portant topic of increasing urgency and while trends and changes in wind-
storms and cyclone activity have been extensively studied (see Sect. 1.2 and
4.3), the possible occurrence of new types of windstorms is still a less ex-
plored field. Our methodology could help to fill this gap. The study could
be conducted in two different ways: for one, the same characteristics that
have been identified in this thesis can be used to cluster the projected wind-
storms, or second, QSKM is applied to the projected windstorms using the
same reference and the full list of characteristics as shown in Tab. 2.2. Both
cases would answer the question of whether new classes are formed under
climate change conditions. In the first case, however, the additional aim is to
detect shifts in the distribution of characteristics between classes, while the
second case covers the scenario in which previously ignored characteristics
gain importance in the future.
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A third possible application of our results are the use of windstorm classes
in impact studies or storm loss models. In the course of this dissertation, we
have shown that CL1 is representative of extreme European winter wind-
storms in every aspect we tested. Therefore, CL1 is the optimal sample for
studying the impact of windstorms on Europe. Especially considering that
the class contains more than 500 events, a sufficient sample size for a variety
of impact studies. Furthermore, the class can be used to quantify the vari-
ance in impact between events with different characteristics, rather than just
simple differentiation through scores such as the SSI.
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Appendix A

Statistical methods and measures

A.1 Silhouettes

Silhouettes is a method for evaluating and interpreting the quality of clus-
tering. The method is designed to be independent of the clustering tech-
nique, and therefore can be applied to any desired clustering output from
any given clustering method. This independence is especially helpful for
comparing the quality of multiple k-means clustering results for different k’s
against each other, since the number of clusters has no effect on the silhouette
values.

The silhouette value s for a data point i is defined as

s(i) =
b(i)− a(i)

max (a(i), b(i))
, (A.1)

where a(i) is the averaged distance d from the ith data point to the other
points in the same cluster Ck:

a(i) =
1

|Ck| − 1 ∑
j∈Ck,i 6=j

d(i, j), (A.2)

where |Ck is the number of observation in Ck, and b(i) the smallest averaged
distance of the ith data point to all points in any other cluster:

b(i) = min
k′ 6=k

1
|C′k|

∑
j∈C′k

d(i, j). (A.3)

Equation A.1 ranges from −1 ≤ s(i) ≤ 1, where a high (low) value indicates
that the ith data point is well (poorly) matched to its own cluster while also
being poorly (closely) matched to the neighboring clusters.

Each individual s(i) contains information about how well a single object
fits into its assigned cluster. Therefore, we can derive the overall clustering
quality by averaging all s(i). If their are a lot of objects with a high s, the
average will be high itself and the clustering configuration can be considered
to be appropriate. On the other hand, if the average is small, one should
consider adding/removing clusters from the configuration.
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A.2 Random Forests

Random forests (RF) is a supervised machine learning method based on de-
cision trees. As such, the modeling process involves stratifying or segmenta-
tion of the feature space into regions representative of the target values. One
of the main advantages of RF, and the reason why the model is used, is that
due to its simple design, RF can be used for classification and regression pur-
poses without requiring major changes to the theory or evaluation tools. In
this section, we will give a brief overview of the RF model and how it func-
tions. For a more comprehensive description of RF or tree-based methods in
general, we suggest Hastie et al. (2017) or Gareth et al. (2021).

Since RF is based on decision trees, it is beneficial to look into the concept
of decision trees first. As already mentioned above, the idea of decision trees,
and therefore of all tree-based methods, consists of splitting the feature space
into several regions. The splitting process is recursive and starts from the so-
called root, which is the first node. Nodes are split points at which the data is
segmented into two partitions based on the most suited feature value. Popu-
lar methods for determining suitability is through the reduction of variance
in each split, in case of regression, or the gini index (see Gareth et al., 2021),
in case of classification. The splitting process continuous for each partition
until some stopping rule is applied. The resulting endpoints of the tree are
called leafs. Mathematically, leafs express the relationship between the target
prediction f̂ (X) and the features X:

f̂ (X) =
M

∑
m=1

cm I {X ∈ Rm} , (A.4)

where M is the number of regions (i.e. partition) R and I the identity func-
tion, which is 1 if X is in the region Rm and 0 otherwise. The constant cm is
the target value for Rm. In case of a RF regression model, an estimate for cm
is given by the mean value of all observations of the target value in Rm. For
a classification model, it is the majority vote of all classes in Rm.

The advantages of decision trees are that they are simple, easily inter-
pretable and able to handle qualitative (i.e. categorical) features without re-
quiring any type of transformation. They can be visualized in a convenient
flow structure that maps the full decision process, split criteria and feature
importance (for example, Fig. A.1).

However, a common problem with decision trees is their strong tendency
to overfit the data, resulting in models that have low bias but also high vari-
ance. This tendency makes them non-robust to the point that small changes
in the data can cause a significantly different tree structure. In other words,
in a real machine learning application, predictions from decision trees suffer
from high-variance as the predicted value is highly dependent on the sub-
set of data the model was trained on. Therefore, decision trees are best suited
for describing finite data such as the data used in Fig. A.1, but more elaborate
methods are required for accurate predictions.

A popular method for dealing with the high variance of decision trees is
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FIGURE A.1: Example decision tree showing survival chances of passengers on the
Titanic based on 3 feature: sex (categorical - male or female), age (continuous) and
number of siblings on board (sibsp; continuous). People with a good survival chance
where either female (probability of 0.73, 36% of the passengers) or young boys from
smaller families (probability of 0.89, 2% of the passengers). Source: Stephen Milbor-
row, https://commons.wikimedia.org/w/index.php?curid=14143467

a process called bagging. In bagging, bootstrap is used to create B different
samples of the data, to each of which a decision tree is fitted. If we are now in-
terested in a prediction f̂ (x) for a instance x, we can calculate f̂1(x), . . . , f̂B(x)
using the previously fitted trees, and average them in order to obtain a single
low-variance prediction:

f̂ (x) =
1
B

B

∑
b=1

f̂b(x) (A.5)

To motivated this process mathematically, assume N independent and iden-
tically distributed (i.i.d) random variables X1, . . . , XN, each with variance σ2.
The Bienaymé formula (Bienaymé, 1855) states that the variance of the mean
(X) can be described as

Var
(
X
)
= Var

(
1
N

N

∑
i=1

Xi

)
=

1
N2

N

∑
i=1

Var (Xi) =
1

N2 Nσ2 =
σ2

N
. (A.6)

https://commons.wikimedia.org/w/index.php?curid=14143467
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Hence, the variances of the average decreases as N increases. In the con-
text of bagging this means, that given a large enough B the variance of the
prediction should decrease.

Random Forests is an improved version of Bagging, i.e., the method uses
bootstrap sampling and averaging (Eq. A.5) for its prediction, but in addition
also fixes a methodological problem arising from bootstrapping the data. Re-
member, for Eq. A.6 to hold true we assume i.i.d random variables. Since
each tree is build from a poll of the same data, the trees are identically dis-
tributed. However, since they are build with respect to a number of fea-
tures, they may not necessarily be independent. For example, consider a very
strong feature within the data. In such a case, there is a high chance that each
tree starts by splitting the data based on that feature alone, making them all
correlated (i.e. not independent). To resolve this, Breiman (2001) proposed
to decorrelate the trees by forcing the algorithm to chose a random subset of
features as split candidates at each split. In other words, while building the
tree, the algorithm is not allowed to consider the full set of features when it
choses the best suited candidate for splitting the data. This prevents a very
strong feature from dominating and leads to uncorrelated trees from each
bootstrap sample. Therefore, RF is strictly better and should be preferred
over simply bagging of decision trees in a machine learning application.

A.3 Confusion matrix

The confusion matrix is a popular verification tool for classification mod-
els and aims to provide a general overview on the model performance. In
general, the confusion matrix is a N × N matrix, where N is the possible
number of observed outcomes. On one axis of the matrix are the labels that
the model predicted, and the other axis are the actual observed labels (the
so-called ground truth). Table A.1 shows the structure of a confusion matrix
using the example of a classification of the state of aggregation of water with
three possible outcomes: gaseous, solid and liquid. Independent of N, on the
diagonal from top left to bottom right are always the cases where the model
predicted the same outcome as was observed in the ground truth. Above
and below the diagonal are the cases where the model predicted the wrong
outcome. The cases above the diagonal are often referred to as false positives
or false alarms, while the cases below the diagonal are often referred to as
false negatives or misses.

A reason why the confusion matrix is so popular is because of the various
model performance metrics that can be derived from the distribution of cases
in the matrix, with the three most commonly know metrics being accuracy,
precision, and recall. The accuracy is the fraction of correct predictions, i.e.

Accuracy =
Number of correct predictions

Total number of predictions
, (A.7)

and thus a metric for quantifying the overall model performance. The higher
the accuracy, the better the model. For example, the accuracy of the classifier
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TABLE A.1: Confusion matrix showing the performance of a classifier trained to
recognize the state of aggregation of water. Also shown are examples for the column-
wise (row-wise) calculation of the precision (recall).

Ground truth

Predicted Gaseous Solid Liquid Precision

Gaseous 12 9 8 12
12+9+8

Solid 8 38 14 38
38+8+14

Liquid 17 12 150 150
150+17+12

Recall 12
12+8+17

38
38+9+12

150
150+8+14

used in Tab. A.1 is

Accuracy =
12 + 38 + 150

268
= 0.746, (A.8)

or approximately 75%, when convert into percentages. However, the accu-
racy alone can be misleading. In the classification problem shown in Tab. A.1
the number of correct predictions of Liquid are far greater than the number of
correct predictions for Gaseous or Solid. In such a case, the accuracy would be
governed by the skill of the model to correctly predict Liquid. Therefore, pre-
cision and recall are often used alongside the accuracy to get a more complete
picture of the model performance. The precision is defined as the fraction of
a correctly predicted class out of all model predictions of the respective class,
i.e.

Precision =
Number of correct predictions of the class

Total number of predictions of the class
. (A.9)

The recall, on the other hand, is the fraction of a correctly predicted class out
of all observations of the respective class, i.e.

Recall =
Number of correct predictions of the class
Total number of observation of the class

. (A.10)

Thus, precision and recall complement the accuracy by providing additional
information about the model performance with respect to a given class. Ex-
amples for the calculation of precision and recall are given in Tab. A.1.

Although precision and recall are similar in their design, they both have
fundamentally different interpretations. Precision quantifies the performance
of the model in terms of how well it predicted a class on average, while re-
call indicates how often the model failed to detect a class on average. For
example, assume we have a high precision of 0.84 and relatively low recall of
0.50 for a class X. In this example, the model was correct in 84% of the cases
it predicted X, but only managed to correctly identify 50% of X. In other
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words, the model would be very good for half the observation in the class,
but ignored the other half completely.

A.4 Shapley values

In science, the interest in a statistical model often lies not in its ability to
precisely estimate a target variable, but rather in the possibility to evaluate
and quantify the contribution of certain features to the model prediction. In
case of a linear model, calculating the individual contribution is rather easy.
Consider a linear model prediction for a given instance x:

f̂ (x1, . . . , xp) = β0 + β1x1 + . . . + βpxp, (A.11)

where each xj with j = 1, . . . , p is a feature value and β j is the correspond-
ing regression parameter (i.e. weight) gained from fitting the model. The
contribution φj of the j-th feature on the prediction f̂ (x) can be calculated as

φj(x) = β jxj − E(β jXj) = β jxj − β jE(Xj). (A.12)

Equation A.12 is also known as situational importance (Achen, 1982). It is
the difference between what the feature j contributes when its value is xj
and what it is expected to contribute. If φj is positive (negative), than the
feature has a positive (negative) contribution. If it is 0, then the feature has
no contribution at all.

However, not every statistical model provides a convenient interpretation
tool such as the one shown in Eq. A.12, but rather resemble a black box. This
means that the design of the model and the role of certain features in it are
often not interpretable. Typical examples for such models are random forest
or neural networks.

For models like this, we can use the Shapley value to quantify and inter-
pret the contribution of each individual feature. The Shapley value was first
introduced by Shapley (1953) and is a measure from coalitional game theory,
where it is used to assign payouts to players depending on their contribution
to the total payout. It was later adopted to machine learning as a model-
agnostic tool to quantify the impact of a feature based on its contribution to
the prediction. In this section, we give a short overview of the Shapley value
and introduce the interpretation tools that can be derived from it. For a more
comprehensive discussion of the Shaply value, we suggest Molnar (2019).

Similar to Eq. A.12, the goal of the Shapley value is to explain the con-
tribution of a feature as the difference between the prediction f̂ (x) and the
average prediction. The Shapley value itself gives us the contribution of a
feature value to a model prediction f̂ (x), weighted and summed over all
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possible feature value combinations:

φj(x) =

A︷ ︸︸ ︷
∑

S⊆{1,...,xp}\{xj}

|S|!(p− |S| − 1)!
p!︸ ︷︷ ︸
B

(∆(S ∪
{

xj
}
)− ∆(S))︸ ︷︷ ︸

C

, (A.13)

where S is the feature subset, p the number of features and ∆ the prediction
for feature values in set S that are marginalized over features that are not
included in set S:

∆ =
∫

f̂ (x1, . . . , xp)dPx6∈S − EX( f̂ (X)). (A.14)

For a better understanding of Eq. A.13, let us breakdown the function to its
individual components. Part A is the sum over all possible combinations,
i.e. coalitions, of the features minus the feature of interest xj. Part B is the
weight, defined by the length of the subset |S| and p. In part C, the marginal
contribution of the feature value is calculated as the difference between the
model prediction minus the average prediction of the feature set S with and
without xj .

Since the number of coalitions increases exponentially as the number of
features increases, computing an exact solution for the Shapley value be-
comes a computational challenge. Therefore, Štrumbelj and Kononenko (2014)
propose an approximation with Monte-Carlo sampling:

φj(x) =
1
M

M

∑
m=1

(
f̂ (xm

+j)− f̂ (xm
−j)
)

, (A.15)

where M is the number of possible coalitions and m an indicator for the coali-
tion. Here, f̂ (xm

+j) is the model prediction with xj and f̂ (xm
−j) the same pre-

diction without it.

Example: bike rental data

The concept and theory behind the Shapley values can be difficult to un-
derstand, so it is beneficial to look at an example of how these values are
used and interpreted. For our example, we look at bike rental data from the
company Capital-Bikeshare in Washington D.C., an openly available dataset
from the UCI Machine Learning Repository (http://archive.ics.uci.edu/
ml/datasets/Bike+Sharing+Dataset). Table A.2 shows a list and short de-
scription of the variables in the dataset. The information about the weather
and season were added by Fanaee-T and Gama (2014). A minor preprocess-
ing of the data was done by Molnar (2019).

Our goal is to understand how the rented number of bikes (cnt in Tab. A.2)
varies dependent on weather, day or season. For this purpose, we train a
random forest regression model (Appendix A.2) to predict the number of
rented bikes per day. Our features are all variables from Tab. A.2 except cnt,
which is our target variable.

http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
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TABLE A.2: Variable names and their description for the bike rental dataset.

Short name Long name Description

cnt Bike count Number of bikes rented that day
season Season Spring, Summer, Fall or Winter
yr Year The year, either 2011 or 2012
mnth Month Months from January to December
holiday Holiday Holiday, yes or no
weekday Weekday Day of the week
workingday Working day Working day, yes or no
weathersit Weather situation Misty, good or rain/snow/storm
temp Temperature Mean daily temperature
hum Humidity Mean daily relative humidity
windspeed Wind speed Mean daily wind speed in 10 m
days_since_2011 Days since 2011 No. of days since 2011

Remember, Shapley values explain the contribution of a feature as the
difference between the model prediction of a data instance and the average
prediction of all instances (see Eq. A.13 and A.14). Therefore, it is meaningful
to first look at the Shapley values for the prediction of a single day. Figure A.2
shows the estimated Shapley values of each feature for the 12th October in
2011. For this day, the model predicts 2603 rented bikes, while the aver-
age prediction for all days is 4518 rented bikes. The Shapley values explain
how each feature contributes to the deficit of -1915 rented bikes. According
to Fig. A.2, the biggest contributers are the humidity, the weather situation,
temperature, wind speed, and the number of days since 2011 as proxy for a
trend. The high humidity and rainy weather of that day are the main reason
behind the reduced number of rented bikes. Only the temperature on this
day has a meaningful positive impact on the number of rented bikes.

Although a local interpretation of the feature contribution, as shown in
Fig. A.2, can be interesting and also serves as a "sanity check" for the fitted
model, a global interpretation is often more informative, especially when the
general relationship between the target and a certain feature is of interest. For
this purpose, Lundberg and Lee (2017) introduced SHAP (short for SHapley
Additive exPlanations), a framework for the global interpretation of the fea-
ture contribution based around the aggregation of Shapley values. Two of the
more important global interpretation tools from their framework are visual-
ization tools for the feature importance and dependence. The SHAP feature
importance is defined as the average absolute Shapley value of all predicted
instances:

Ij =
1
N

N

∑
n=1
|φj|. (A.16)

The interpretation is rather simple: the larger the absolute Shapley value, the
more important is the feature. Figure A.3 shows the feature importance for
the bike dataset. Contrary to what the local Shapley values (Fig. A.2) might
suggest, the most important feature is the trend (days_since_2011), followed
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FIGURE A.2: Shapley values (i.e. feature value contribution) for the 12th October,
2011. The model prediction for this day is 2603 rented bikes; average prediction for
all days is 4518 rented bikes.

FIGURE A.3: SHAP feature importance for the bike dataset calculated from Eq. A.16
for the features in Tab. A.2
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FIGURE A.4: SHAP feature dependence for the bike dataset. The dependence is
visualized as the local Shapley value of all instances against their respective feature
value.

by the temperature, humidity and wind speed. The high Shapley values for
the trend come from a large increase in rented bikes from 2011 to 2012 (not
shown). To get an understanding of how the other three features interact
with the number of rented bikes, we can look at the SHAP feature depen-
dence in Fig. A.4. As you can see, the SHAP feature dependence is nothing
more than the local Shapley values plotted against their respective feature
values. Therefore, the plot provides a good overview of how features con-
tribute to the prediction dependent on their magnitude.
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TABLE B.1: Characterization of the different types of windstorms as shown in Dreveton et al. (1998).

Origin Atlantic Ocean Mediterranean
Sea

Direction of the
flow

West South

Location of the
low pressure

British Isles Biscay Iberian Penin-
sula

Italy-Corsica

Direction of the
winds

North-west to west South-west to south South-east North-east

Affected areas All the country Half North Half North All the country South-eastern
part

South-eastern
part

Centre of low
pressures

One centre One center One center One center A complex
area of low
pressures

One center One center

Associated
phenomena

Cold thunder-
storms, strong
shower with
hail or snow

Showers and
sometimes
thunderstorms,
mid tempera-
tures

Mild tempera-
tures

Mild temper-
atures and
heavy rain

Mild tempera-
tures, close to
average, thun-
derstorms with
hailstones

Heavy rain,
sometimes
snow

Snow

Type of Storm N W SW S TH E NE
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B.2 Supplemental material to Section 3.4

FIGURE B.1: Same as Fig. 3.3, but for OLAT, DLAT, DIST and TSPEED.
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B.3 Supplemental material to Section 4.2.3

FIGURE B.2: Same as Fig. 4.7, but for (a) PJET, (b) LONO, (c) LONP, (d) SCA, (e)
EGR, (f) LATO, (g) EA, (h) NAO, (i) EA/WR adn (j) POL.
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B.4 Supplemental material to Section 4.2.4

FIGURE B.3: Same as Fig. 4.8, but for the windstorm Daria.

FIGURE B.4: Same as Fig. 4.8, but for the windstorm Lothar.
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