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Abstract: We investigated coupled-qubit-based thermal machines powered by quantum measure-
ments and feedback. We considered two different versions of the machine: (1) a quantum Maxwell’s
demon, where the coupled-qubit system is connected to a detachable single shared bath, and
(2) a measurement-assisted refrigerator, where the coupled-qubit system is in contact with a hot
and cold bath. In the quantum Maxwell’s demon case, we discuss both discrete and continuous
measurements. We found that the power output from a single qubit-based device can be improved by
coupling it to the second qubit. We further found that the simultaneous measurement of both qubits
can produce higher net heat extraction compared to two setups operated in parallel where only single-
qubit measurements are performed. In the refrigerator case, we used continuous measurement and
unitary operations to power the coupled-qubit-based refrigerator. We found that the cooling power of
a refrigerator operated with swap operations can be enhanced by performing suitable measurements.

Keywords: discrete quantum measurement; continuous quantum measurement; quantum feedback;
Maxwell’s demon; refrigerator

1. Introduction

The quest to invent a thermal machine at the nanoscale has led to the new field of quan-
tum thermodynamics [1–6]. Thanks to recent advances in nanofabrication techniques, much
attention has been focused on realizing nanoscale-based quantum devices [7–15] for heat
management. Consequently, understanding how to control heat transport and dissipation
at the nanoscale is of utmost significance and could enhance the performance of quantum
devices’ power and efficiency. Within the field of quantum thermodynamics, quantum
thermal machines, such as heat engines and refrigerators, have been theoretically and ex-
perimentally investigated in detail [2,16–39]. Quantum refrigerators are quantum devices
where heat is extracted from a cold thermal bath. Usually, they are powered by external
work provided by a chemical potential imbalance [3,40] or by external driving [41–46].

Quantum-limited measurements are now being performed regularly within the field
of quantum computation. In contrast to classical measurements, quantum measurements
can be “invasive”, i.e., they can change the system’s state and, consequently, the energetics
of the system [47–50]. This leads to a change in the quantum device’s functioning and
performance depending on the measurement type and strength [47–55]. In particular, in the
case of quantum devices, it can be important to keep track of the quantum measurement
outcomes and act on the system accordingly to achieve a given task.

Technological advancement has enabled the experimental realization of quantum ther-
mal machines powered by measurements and feedback, such as Maxwell’s demons [8,56,57]
and Szilard’s engines [7]. These are devices where measurements and feedback allow, re-
spectively, the extraction of heat or work from a single thermal bath—apparently violating
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the second law of thermodynamics. These realizations have motivated further research
in the field, leading to an entire family of quantum measurement and feedback-based
thermal machines. Heat and work extraction has been studied in various quantum systems
exploiting quantum measurements with different strengths (weak or projective) and na-
tures (invasive or non-invasive) [49,50,58–65]. Although both invasive and non-invasive
quantum measurements can be used to obtain information about the quantum system
and run a feedback loop to power quantum thermal machines, it has been observed that
invasive measurements alone can be used as the fuel to power a thermal machine [49,50,64].

A Maxwell’s demon powered by projective quantum measurements was studied in
single-qubit systems in [57,66–69] and in double-quantum dot systems in [70]. Recently, it
was observed that also weak quantum measurements can be employed to realize a single-
qubit-based Maxwell’s demon and a refrigerator powered by invasive measurements and
feedback [63]. Furthermore, quantum measurements have also been utilized to realize heat
engines [71–82], qubit elevators [83], and quantum batteries [84,85], among other devices.

In this paper, we studied various configurations of coupled-qubit-based thermal de-
vices, namely a quantum Maxwell’s demon, and a measurement-assisted refrigerator, the latter
being a system that extracts heat from a cold bath exploiting the combination of external
work and invasive quantum measurements. As opposed to previous literature, we consid-
ered coupled-qubit-based devices powered by weak quantum measurements, both discrete
and continuous. We studied the performance of the machine in various configurations
using different feedback strategies based on local measurements. In the Maxwell’s demon
case, we compared the impact of performing simultaneous measurements of both qubits on
a single setup and performing only individual qubit measurements on two setups operated
in parallel. Thanks to a beneficial collective effect, we found that the former can outperform
the latter. In the continuous measurement case, we computed the work distribution related
to the stochasticity of the measurement outcome, allowing us to observe quantities, such as
power fluctuations, that are beyond the average thermodynamic quantities. At last, in the
refrigerator case, we show how the addition of invasive quantum measurements, in the ab-
sence of feedback, can enhance the performance of a refrigerator powered by external work.
The results obtained in this paper for the case of a measurement-assisted refrigerator can
be straightforwardly extended to the case of coupled-quantum dots attached to fermionic
baths. In addition, the formulation used in this paper can be used to study finite-time
statistics of different thermodynamic variables in terms of the measurement record, which
can be directly accessible in an experiment [63].

The paper is organized as follows. In the next section, we introduce the models
studied in this paper and the corresponding formalism. In Section 3, we study the coupled-
qubit device operated as a Maxwell’s demon. We study both discrete and continuous
measurements, as well as the impact of measuring a single qubit or both. In Section 4,
we study the device operated as a measurement-assisted refrigerator under continuous
measurements. In Section 5, we draw the conclusions.

2. Model

We considered the setup in Figure 1: two coupled-qubits, Q1 and Q2, are, respec-
tively, coupled to two thermal baths at temperatures T1 and T2 and to two measurement
apparatuses D1 and D2, which allows us to perform local quantum measurements on the
respective qubits. The total Hamiltonian for the setup is given by H = HQ + HB + HC,
where the Hamiltonian of the coupled-qubit system is

HQ =
ε1

2
σ
(1)
z +

ε2

2
σ
(2)
z + ∆xσ

(1)
x σ

(2)
x + ∆yσ

(1)
y σ

(2)
y + ∆zσ

(1)
z σ

(2)
z , (1)
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εi being the qubit gap for qubit Qi and ∆i the strength of the σi-σi coupling between the two
qubits. HB is the Hamiltonian describing the heat baths, which we considered as bosonic
baths with continuous degrees of freedom:

HB = ∑
i=1,2

∑
k

εikb†
ikbik, (2)

where bik(b†
ik) are the bosonic annihilation (creation) operators with energy εik and quantum

number k for bath i. We considered a linear “tunnel-like” coupling between the baths and
the system given by

HC = ∑
i=1,2

∑
k

Vik

(
σ
(i)
+ bik + b†

ikσ
(i)
−
)

, (3)

where σ
(i)
± are ladder operators for qubit Qi .

T1 T2

r1(t) = ? r2(t) = ?

D1 D2

Q1 Q2

Figure 1. Coupled-qubit-based quantum feedback thermal machine. Qubit Qi is attached to a thermal
bath with temperature Ti and is being monitored by the measurement apparatus Di for i = 1, 2. In the
case of Maxwell’s demon, T1 = T2 = T, whereas in the case of the measurement-assisted refrigerator,
the two baths have different temperatures. Similarly, the two demons can undergo measurements
with varying strengths.

We considered both discrete and continuous, as well as strong and weak quantum
measurements. All such scenarios can be described by positive-operator-valued measures
(POVMs), i.e., by a set of Krauss operators Mk, one for each measurement outcome, satisfy-
ing ∑k M†

k Mk = I for the discrete case and
´

dkM†
k Mk = I for the continuous case [63,86].

The specific form of the Krauss operators for discrete and continuous measurements will
be discussed in Section 3. The probability (probability density in the continuous case) of
measuring outcome k is given by Tr

[
ρM†

k Mk
]
, where ρ is the reduced density matrix of the

coupled-qubit system. The post-measurement state ρMk , conditioned by observation k and
assumed to occur instantaneously, is given by

ρMk =
MkρM†

k
Tr
[
ρM†

k Mk
] . (4)

Throughout this paper, we considered two operational regimes: the quantum Maxwell’s
demon and the measurement-assisted refrigerator. In the quantum Maxwell’s demon case, we
considered a single temperature of the environment, i.e., T1 = T2 = T. In this configuration,
the aim is to extract heat from the single-temperature bath exploiting invasive quantum
measurements and feedback. In the measurement-assisted refrigerator, we considered
an environment consisting of two different temperatures T1 and T2, and the aim is to
maximize the heat extracted from the cold bath. Here, the refrigerator is powered by a com-
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bination of work, delivered by an external control, and invasive quantum measurements in
the absence of feedback.

3. Quantum Maxwell’s Demon

In this section, we describe our results operating the coupled-qubit-based thermal
machine as a quantum Maxwell’s demon. Here, we only considered the σz-σz coupling
between the two qubits, i.e., ∆x = ∆y = 0. In order to restrict the space of all possible quan-
tum measurements and feedback strategies, we focused on local quantum measurements
(i.e., using local probes D1 and D2, schematically shown in Figure 1) and local feedback
strategies that are simple to implement experimentally.

In particular, we considered unitary feedback consisting of local single-qubit unitary

rotations around the y-axis, i.e., of the form Ui(θi) = e−iθiσ
(i)
y , where θi is a suitable angle.

We considered both discrete and continuous quantum measurements of the spin state of
each qubit in the x-direction. Discrete weak σx measurements performed on qubit Qi using
probe Di, for i = 1, 2, are described by the operators {Mi+, Mi−}, where

Mi± =
1
2

(√
κi +

√
1− κi

)
I2 ⊗ I2 ±

1
2

(√
κi −

√
1− κi

)
·
{

σ
(1)
x ⊗ I2 for i = 1,

I2 ⊗ σ
(2)
x for i = 2,

(5)

I2 is the 2 × 2 identity, and κi = 1/2−
√

2γ′iδt is an indicator of the strength of the discrete

measurement with characteristic measurement rate γ′i and measurement time δt; these
can be related to the resolution of the detector [47,87]. The k→ 0, 1 limits describe strong
(projective) measurements, where the demon acquires maximum information about the
system, whereas k→ 1/2 describes the opposite limit, where no information is acquired.
Intermediate values of k describe the transition from strong to weak measurements.

In the case of continuous measurement, we have a continuum of Krauss operators
{Mi,ri}ri , one for each measurement apparatus i, where ri is the continuous measurement
outcome. They are given by

M1,r1 =

(
δt

2πτ

) 1
4

exp




−

δt
(

r1 I2 − σ̂
(1)
x

)2
⊗ I2

4τ





,

M2,r2 =

(
δt

2πτ

) 1
4

exp




−

δt I2 ⊗
(

r2 I2 − σ̂
(2)
x

)2

4τ





,

(6)

where δt is the time allocated to perform a single measurement and τ is the characteris-
tic measurement time scale taken to separate the two-measurement distribution by two
standard deviations [53,63]. In other words, τ can be understood as the inverse of the
measurement strength and is the time required to achieve the unit signal-to-noise ratio [53].
When δt/τ is large, the measurement is often referred to as strong measurement, whereas
the measurements for which δt/τ is small are called weak measurements. Following
Equation (6), the measurement readout is randomly sampled from two Gaussian distri-
butions with variance

√
τ/δt and mean +1 (associated with the σx = +1 measurement

outcome) and −1 (associated with the σx = −1 measurement outcome).
We operated the system as a Maxwell’s demon considering the following thermodynamic

cycle, consisting of three strokes: (i) measurement, (ii) feedback, and (iii) thermalization:
(i) Assuming the system to be initialized in a thermal state ρT = e−HQ/(kBT)/Z, where

Z = Tr
[
e−HQ/(kBT)

]
, the initial energy of the coupled-qubits is given by

ET = Tr
[
ρTHQ

]
. (7)
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Let ρi = Trĩ[ρ] be the single-qubit density matrices given by tracing out the other qubit,
where ĩ = 2 (ĩ = 1) for i = 1 (i = 2). Notice that, in the thermal state ρT, the Bloch vectors of
each single-qubit density matrix only have a z component, since ∆x = ∆y = 0. A quantum
measurement is now performed using either D1 or both D1 and D2. After performing a
measurement, the state changes to ρMk . Now, the Bloch vector of the measured qubits
acquires an x component, and the norm of the vector may change.

(ii) Feedback is performed by applying unitary rotations Ui(θi) around the y-axis
to the qubits that have been measured. The angle θi is conditioned on the measurement
outcome. Indeed, it was chosen such that the single-qubit states ρi, corresponding to
the measured qubits, are rotated to the positive or negative z-axis of the Bloch sphere.
The feedback that brings the state of Qi back to the positive (negative) z-axis will be
denoted as Fi = 1 (Fi = −1). The state after the measurement and feedback is given by
ρFk = U1(θ1)ρMkU†

1 (θ1) if only D1 is used and by ρFk = U2(θ2)U1(θ1)ρMkU†
1 (θ1)U†

2 (θ2) if
both detectors are used. The energy of the system after measurement and feedback is given
by EFk = Tr

[
ρFk HQ

]
. Notice that EF+ = EF− = EF.

(iii) The cycle is closed, allowing a full thermalization of the system with the thermal
baths. During this stroke, the state of the system returns to ρT , and an amount of heat
Q = ET − EF is extracted from the bath.

3.1. Discrete One-Qubit Measurement

In this subsection, we only perform measurements with D1. As a consequence, only
the state ρ1 of Q1 changes. Let us denote with x1 and z1 the x and z components of the
Bloch vector corresponding to ρ1 after the measurement. The angle of the unitary rotation
U1(θ1) corresponding to feedback F1 = 1 is given by θ1 = − 1

2 tan−1
(

x1
z1

)
, whereas for

feedback F1 = −1, it is given by θ1 = − 1
2 tan−1

(
x1
z1

)
+ π/2. The angle is chosen to rotate

the qubit to the positive (F1 = 1) or negative (F1 = −1) z-axis.
In Figure 2, we investigate the heat Q, extracted from the heat bath, as a function of the

qubit–qubit coupling strength ∆z for different values of κ1 and feedback strategies (Panel
(a)) and as a function of the measurement strength κ1 for different values of ∆z (Panel (b)
corresponding to feedback F1 = 1 and Panel (c) to F1 = −1). In the case of decoupled-
qubits, i.e., ∆z = 0, we know that heat extraction can be obtained only with F1 = −1 [63],
since F1 = 1 would increase the energy of the qubit, resulting in heating the baths, rather
than cooling them. However, for finite ∆z, we observe that positive heat extraction can
be obtained even with F1 = +1 (see the solid black and dotted red curves in Figure 2a).
The heat extraction, in this case, is obtained when ∆z > 0.1 kBT. The behavior above can be
explained by considering that the energetics of the coupled systems is influenced by ∆z.
Note that, for a suitable choice of feedback, the heat extraction is an increasing function
of ∆z in the considered parameter regime. In Figure 2b,c, we observed that, for κ1 = 0.5,
i.e., when the demon acquires no information from the measurement, the qubit dissipates
heat to the bath for all values of ∆z. Since no information is obtained, the demon has no
resources to extract heat from a single thermal bath. Conversely, the maximum heat is
extracted from the bath when κ1 → 0, 1, which corresponds to maximum information
extraction (the demon performs a projective measurement and feedback). Comparing
Figure 2b,c, we observed that changing the feedback strategy F1 from +1 (Panel (b)) to −1
(Panel (c)) or vice versa changes the sign of heat extraction.
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°0.4 °0.2 0.0 0.2 0.4
¢z[kBT ]

°0.75

°0.50

°0.25

0.00

0.25

Q
[k

B
T

]

∑1 =0, F1 = +1

∑1 =0.4, F1 = +1

∑1 =0, F1 = °1

∑1 =0.4, F1 = °1

0.0 0.5 1.0
∑1

°0.1

0.0

0.1

Q
[k

B
T

]

¢z =0
¢z =0.05kBT

¢z =0.15kBT

¢z =0.2kBT

0.0 0.5 1.0
∑1

F1 = + 1 F1 = − 1(b) (c)

(a)

Figure 2. Heat extracted (Q) as a function of qubit–qubit coupling strength (Panel (a)) and mea-
surement strength κ1 (Panel (b) for F1 = +1 and Panel (c) for F1 = −1). In Panel (a), the black and
red curves give the heat extraction for two values of the measurement strength κ1 and for feedback
F1 = +1 (rotation to positive z-axis). Similarly, the purple and blue curves give the heat extraction
for feedback F1 = −1 (rotation to negative z-axis). In Panels (b,c), we plot the heat extraction as
a function of κ1 for F1 = +1 and F1 = −1, respectively, taking different coupling strengths between
the qubits. We take ε1 = 0.1 kBT, ε2 = 2 kBT.

3.2. Discrete Two-Qubit Combined Measurement

In this section, we measure the state of the system using both D1 and D2 simultaneously.
As a consequence, both ρ1 and ρ2 are affected by the measurement, so we will apply both
U1(θ1) and U2(θ2) as feedback. Let us denote with xi and zi the x and z component of the
Bloch vector corresponding to ρi after measurement. The angle of the unitary operation
that corresponds to feedback Fi = 1 applied to Qi is given by θi = − 1

2 tan−1
(

xi
zi

)
, whereas

for feedback Fi = −1 applied to Qi, it is given by θi = − 1
2 tan−1

(
xi
zi

)
+ π/2.

In Figure 3, we study the heat extraction (Q) out of the baths as a function of the
qubit–qubit coupling strength (∆z). Since ε1 � ε2, kBT, we observed that heat extraction is
possible only for the feedback F2 = −1 on the qubit Q2 (see the negative values of Q in the
inset). However, the choice of feedback on the qubit Q1 depends on the value of ∆z (see
the red and black curves). As opposed to the single-qubit case [63] (see Figure 2a), here,
there are value of ∆z where both feedback strategies F1 = +1 and F1 = −1 result in cooling.
In the other limit, when ε2 � ε1, kBT (not shown in the figure), heat extraction can be
obtained only with feedback F1 = −1 on Q1. For ε1, ε2 � kBT, we observed heat extraction
only for the feedback F = (F1, F2) = (−1,−1), since the system effectively behaves as two
decoupled-qubits.
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−0.4 −0.2 0.0 0.2 0.4
∆z[kBT ]

−0.4

−0.2

0.0

0.2

Q
[k

B
T

]
F = (+1,−1)

F = (−1,−1)

F = (−1,+1)

F = (+1,+1)

−0.5 0.0 0.5

−4.5

−4.0

Figure 3. Heat extracted Q as a function of ∆z for κ1 = κ2 = 0.2. The feedback is represented as
F = (F1, F2), where Fi is the feedback applied to the qubit Qi. Finite heat extraction is obtained only
when F2 = −1 (see the dashed black and solid red curves obtained with feedback F = (+1,−1)
and F = (−1,−1), respectively). The dotted purple and dashed blue curves obtained with feedback
F = (+1,+1) and F = (−1,+1) lead to the heating of the baths (see the inset). We take the same
parameters as Figure 2.

We now study whether the combined use of both detectors D1 and D2 on a single-
coupled-qubit system (“combined case”) can lead to a better performance with respect
to having two-coupled-qubit systems operated in parallel where only D1 is applied to
one system and D2 to the other one (“individual case”). Notice that, in this comparison,
the number of measurements is the same. In Figure 4, we plot the extracted heat as
a function of ∆z, comparing these two scenarios. The solid red curve corresponds to the
individual case, whereas the dashed black curve corresponds to the combined case. Notably,
for the set of parameters considered, we observed that the combined case can outperform
the individual case. Interestingly, we noticed that the advantage of the combined case,
i.e., the difference between the two curves, is enabled by the interaction between the
qubits, and for ∆z > 0, it increases monotonically with increasing interaction strength.
For large values of ∆z, the state of the coupled-qubit system after feedback has larger energy
compared to its initial thermal energy, leading to a heating effect instead of cooling.

0.0 0.1 0.2 0.3 0.4
∆z[kBT ]

0.00

0.01

0.02

0.03

0.04

Q
[k

B
T

]

Individual case
Combined case

Figure 4. Heat extracted (Q) as a function of ∆z for individual measurement (solid red curve) and
combined measurement of two qubits (dashed black curve). As feedback, we applied F = (+1,−1)
in both cases. We take ε1 = 0.1 kBT, ε2 = 0.5 kBT, κ1 = κ2 = 0.3.
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3.3. Continuous One- and Two-Qubit Measurement

Continuous feedback, which is widely used in optimal control in classical systems,
depends on the continuous input of the measurement record. Continuous-quantum-
measurement-based feedback is a natural extension of the classical optimal control theory.
In the quantum feedback theory based on continuous measurement, one studies the evolu-
tion of the density matrix under the influence of measurement and other external probes
and suitably tunes the feedback control based on the continuous stream of the measure-
ment record. The evolution of the density matrix based on the stream of the measurement
record is referred to as a quantum trajectory [88,89]. Experiments utilizing continuous-
measurement-based feedback have been realized on several platforms, including quantum
optics [90] and quantum error correction [91].

In this subsection, we study the distribution of the extracted heat performing a cooling
cycle as in the previous subsections, but replacing the discrete measurement with a con-
tinuous measurement. Using Equation (4), the state of the coupled-qubit system after
measurement can be written as

ρM,r1 =
M1,r1 ρM†

1,r1

Tr
[
ρM†

1,r1
M1,r1

] , (8)

when measurement is performed only with D1 and

ρM,r1r2 =
M2,r2M1,r1 ρM†

1,r1
M†

2,r2

Tr
[
ρM†

2,r2
M†

1,r1
M1,r1M2,r2

] , (9)

for combined measurement.
We describe a continuous measurement as a sequence of n measurements of duration

δt, each one described by the Krauss operators in Equation (6). Each sequence of measure-
ment produces a trajectory for the state of the coupled-qubit system. In order to calculate
the average and variance of the heat extraction, we shall consider N different trajectories.
Along each trajectory, we computed the exchanged heat for that particular sequence of
measurement outcomes, taking into account only the stochasticity induced by the quantum
measurements, and not by the stochastic nature of heat exchange with the baths [59,92].

In Figure 5, we compare the extracted heat distribution in the one-qubit measurement
case (Panel (a)) and in the combined measurement case (Panel (b)) for N = 20,000 simula-
tions of the heat extraction processes and for F1 = −1 in the left panel and F = (−1,−1)
in the right panel. Each simulation was obtained by performing feedback after n = 20
sequential measurements each of duration δt. Interestingly, in the case of a one-qubit
continuous measurement, we found that the engine is more likely to extract zero heat,
and the probability of extracting heat Q > 0 decreases monotonically with Q. However,
in the combined measurement case, a finite amount of heat (whose magnitude depends
on the value of ∆z) is extracted more often than zero heat. The distribution in green is for
the case when the two qubits are decoupled, whereas the blue distribution gives the finite
coupling case (∆z = −0.1 kBT). We observed that the coupled system produces a larger
average heat extraction (blue dashed line) compared to the decoupled system (green dashed
line). However, the greater average heat extraction is accompanied by larger fluctuations,
as observed from the broader width of the probability distribution for ∆z = −0.1 kBT. This
can also be observed in Figure 6, where we plot the average heat extraction 〈Q〉 (upper
panels) and the fluctuation quantified by the standard deviation σQ (lower panels), as
a function of ∆z. The panels on the left-hand side are for the one-qubit measurement case,
whereas the right-hand side corresponds to the two qubits combined measurement case.
We observed that the standard deviation reaches a minimum when the average extracted
heat goes to zero. In addition, fluctuations are present both when the system is cooling and
heating the environment. The maximum fluctuation is observed when the average heat
extraction takes the maximum value. From the inset, we observe that the ratio between
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the average heat extracted and its standard deviation shows a maximum as a function
of ∆z in the 〈Q〉 > 0 regime. Comparing the one-qubit measurement and two qubits
combined measurement cases, we observed that, although combined measurement gives
better average heat extraction, it is also associated with larger fluctuations.

0.00 0.05 0.10 0.15
Q[kBT ]

0

500

1000

1500

C
ou

nt
s

(a)

∆z = −0.1kBT

∆z = 0

0.00 0.05 0.10 0.15 0.20
Q[kBT ]

0

200

400

600

800

1000
(b)

∆z = −0.1kBT

∆z = 0

Figure 5. Count distribution of the heat extraction for one-qubit continuous measurement (Panel
(a)) and the two-qubit combined continuous measurement (Panel (b)) for δt/τ = 0.01. The dashed
lines indicate the averages of the distributions. The simulation is performed for n = 20 sequential
measurements with feedback application only at the end. The distributions are for N = 20,000
simulations. As feedback, we applied F1 = −1 in the left panel and F = (−1,−1) in the right panel.
We take the same parameters as Figure 2 for ε1, ε2, kBT.
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Figure 6. Average and standard deviation of the heat extraction for one-qubit continuous measure-
ments (left panels) and two-qubit combined continuous measurements (right panel) for δt/τ = 0.01.
The simulation is performed for n = 20 sequential continuous measurements with feedback appli-
cation only at the end. The distributions are for N = 20,000 simulations. As feedback, we applied
F1 = −1 in the left panel and F = (−1,−1) in the right panel. In the inset, we show the variation
of the signal- (average heat extracted) to-noise (standard deviation of the extracted heat) ratio as a
function of ∆z. We take the same parameters as Figure 2 for ε1, ε2, kBT.

As we did for the discrete measurement case (see Figure 4), we now assess the impact
of the combined quantum measurements. In Figure 7, we compare the “individual” and
“combined” cases. The average heat extraction in the individual case is denoted with red
circles, whereas the combined case is given by black crosses. The errors bars denote the
standard deviation in the respective cases. As we observed in the discrete measurement
case, there are system parameters (as the ones chosen in Figure 7) where the combined case
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outperforms the individual case. However, the larger heat extraction is also accompanied
by larger fluctuations (compare the range of red and black error bars). This highlights
once again the benefits of collective measurements for the average power of quantum
thermal machines at the expense of larger fluctuations. This trade-off between power and
power fluctuations is reminiscent of the thermodynamic uncertainty relations that have
been derived, in the absence [93–100] and presence [101] of measurements, for quantum
thermal machines.

0.0 0.1 0.2 0.3 0.4
∆z[kBT ]

−0.10

−0.05

0.00

0.05

0.10

Q
[k

B
T

]

Individual case
Combined case

Figure 7. Heat extracted Q as a function of ∆z in the individual (solid red curve) and the combined
(dashed black curve) cases. The circles and crosses represent the average heat extracted 〈Q〉, whereas
the error bars give the respective fluctuations σQ. We consider the number of measurements n = 20
and the number of trajectories N = 5000. As feedback, we applied F = (+1,−1) in both cases. We
take ε1 = 0.1 kBT, ε2 = 0.5 kBT, δt/τ = 0.01.

4. Measurement-Assisted Refrigerator

In this section, we operate the continuously monitored coupled-qubit system as
a measurement-assisted refrigerator. The two baths were considered non-detachable and
will be kept at different temperatures to realize a refrigerator. More specifically, the refriger-
ator is powered by “swap operations” [102], which can be interpreted as work provided
by a time-dependent driving that implements the unitary swap operation and by invasive
quantum measurements in the absence of feedback. The state ρ of the coupled-qubits
weakly coupled to the heat baths, under the influence of continuous measurements, is
described by

dρ

dt
= −i

[
HQ, ρ

]
+ LBρ + LMρ, (10)

where [. . . , . . . ] represents the commutator. The first term in the right-hand side represents
the unitary evolution of the system, whereas LB is a linear superoperator describing the
dissipative dynamics induced by the coupling to the baths. To ensure the thermodynamic
consistency of our results, the dissipative term LBρ is derived using the global master
equation [103], which satisfies the local detailed balance (see Appendix A for details).
This guarantees that, for T1 = T2 = T and in the absence of measurements and feedback,
the state will evolve into thermal Gibbs state ρT . The third term on the right-hand side of
Equation (10) is the quantum measurement contribution. It can be expressed as [47,48,86]

LMρ = ΓMD[X]ρ +
√

ΓMH[X]ρ
dW
dt

, (11)

whereD[X]ρ =
[

XρX− 1
2 [XXρ + ρXX]

]
gives the dissipative contribution of the quantum

measurement and H[X]ρ = [Xρ + ρX− 2〈X〉ρ] is the stochastic contribution. ΓM deter-
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mines the strength of the measurement, and X is the system observable being measured.
Only the first term survives upon averaging over the ensemble of measurement records.
dW is a stochastic quantity, which results from the random nature of the measurements.
The distribution for dW is Gaussian with zero mean and variance dt.

Let us denote the product of the eigenstates of σ
(i)
z as {|0〉, |1〉, |2〉, |d〉}, where |0〉

represents the state where both qubits are in the ground state, |1〉 when only Qubit 1 is
excited, |2〉 when only Qubit 2 is excited, and |d〉 when both qubits are excited. Motivated
by the Hamiltonian of tunnel-coupled single-level quantum dot systems, where the doubly
excited state may be energetically prohibited due to strong Coulomb interactions between
the two quantum dots, we chose E1 = (ε1 − ∆̃)/2, E2 = (ε2 − ∆̃)/2, ∆z = ∆̃/2, ∆x = ∆y =
∆/2, and we considered the limit of large interaction ∆̃/(kBT). We can thus neglect the |d〉
state, and Equation (1) for the coupled-qubit Hamiltonian reduces to

HQ = E1|1〉〈1|+ E2|2〉〈2|+ ∆(|1〉〈2|+ |2〉〈1|). (12)

The diagonalization of HQ leads to the basis {|0〉, |+〉, |−〉}, where the energy of the state
|0〉 is zero, and the energy of the states |±〉 is

E± =
E1 + E2

2
± 1

2

√
(E1 − E2)2 + 4∆2. (13)

The master equation in Equation (10) prescribes the evolution for the density matrix,
which we express in the {|0〉, |+〉, |−〉} basis in terms of transition rates and measurement
parameters (see [64] for details). Here, we measured the state of Q2 using D2 by measuring
the operator ΠX = |2〉〈2|.

In addition, after every measurement step of duration δt, we applied a unitary rotation
given by

Urot =




1 0 0
0 cos Θ sin Θ
0 sin Θ − cos Θ


. (14)

For Θ = π/2, the unitary rotation Urot becomes an effective swap gate USWAP between the
|+〉 and |−〉 states.

Although we kept both diagonal and off-diagonal terms in our density matrix, we
observed that, in the weak coupling and weak measurement limit, the contribution from
the off-diagonal terms is very small compared to the contribution from the diagonal terms
for ∆� E1, E2.

In Figure 8, we study the heat current J2 flowing out of the bath at temperature
T2 ≤ T1 when the coupled-qubit system is subject to continuous measurement and the
swap operation after each measurement. The average heat flow out of the colder bath
is given by the dashed black curve. The blue and red curves are obtained when only
individual trajectories are considered and takes into account the stochastic nature of the
measurement. We observed that, when E1 > E2, the swap operation leads to a considerable
cooling effect. However, when E2 > E1, the swap operation leads to the heating effect.

In Figure 9a, we study J2 as a function of rotation angle Θ for E1 > E2. We observed
that cooling is obtained even when there is no input work (Θ = 0) [64] and maximum
cooling is obtained for swap operation (Θ = π/2). The former is possible thanks to the
invasive nature of quantum measurements, which changes the energetics of the quantum
system, leading to a cooling effect upon an appropriate choice of the measurement [49,50].
The black dashed curve is obtained when there is input work without measurement, and
the red curve is obtained when one considers both measurement and input work. We
observed that the impact of continuous measurements on the heat current can be positive
or negative depending on the rotation angle Θ. However, changing the value of parameter
∆, we observe in Figure 9b that a parameter regime exists where the combined effect of the
invasive measurement and external work gives a better cooling effect for all values of Θ.
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Figure 8. Refrigeration obtained as a result of measurement and a swap operation in the coupled-
qubit system attached to two baths with different temperatures. The black dashed line gives the
average heat current, whereas the red and blue curves are the heat current obtained for a single
trajectory of measurement. We take E1 = 5 kBT, E2 = 2 kBT, Γ1 = Γ2 = 0.05, ∆ = 0.2 kBT,
ΓM = 0.02 kBT, T1 = 1.1 T, T2 = T, and δt = 0.01 h̄/kBT. Γi parameterizes the coupling strength
between the coupled-qubit system and the bath i = 1, 2 (see Appendix A).
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Figure 9. Heat current flowing out of the cold bath as a function of the rotation angle Θ for ∆ = 0.5 kBT
(Panel (a)) and ∆ = kBT (Panel (b)). We take T1 = 1.1 T, T2 = T, E1 = 5 kBT, E2 = 2 kBT,
Γ1 = Γ2 = 0.01.

5. Conclusions

We studied coupled-qubit-based quantum thermal machines powered by quantum
measurement and feedback. In the case of Maxwell’s demon, we studied various ways
of implementing quantum measurement. We investigated both discrete and continuous
measurement, as well as one-qubit measurement and two-qubit combined measurement.
In the case of one-qubit measurement, and for a suitable choice of feedback, we observed
that the heat extraction from the thermal bath increases monotonously as a function of
σz-σz coupling strength (∆z) between the two qubits for a range of values of ∆z. We then
compared the heat extracted from a single setup subject to combined measurements of
both qubits, with the heat extracted from two setups operated in parallel, where only
individual qubits are measured. Thanks to a collective effect, we found that the former can
outperform the latter. In the case of continuous measurement, we studied the distribution
of heat extraction for both one- and two-qubit measurement. Similar to the case of discrete
measurement, in a certain parameter regime, we observed better average heat extraction
with the combined measurement of two qubits compared to the individual measurement
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of each qubit in two parallel setups. However, better average heat extraction was always
associated with higher fluctuations.

In the second part of the paper, we studied the measurement-assisted refrigeration
in the coupled-qubit system attached to two thermal baths at different temperatures. We
showed that although measurement and swap operations alone can power refrigeration,
a combination of the two can yield higher refrigeration.
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Appendix A. Quantum Master Equation

The contribution of the baths to the master equation can be written in terms of transi-
tion rates given by

Γi,m0 = h̄−1γi(εm0)
(

1± ni(εm0)
)

,

Γi,0m = h̄−1γi(εm0)ni(εm0), (A1)

where m = +,− are the states of the coupled-qubit system, γi(ω) = Γiωe−ω/ωC and
ni(ω) = (exp{ω/kBTi} − 1)−1 are the Ohmic spectral density and the Bose–Einstein
distribution function for the bath with temperature Ti, and ωC is the cut-off frequency. Γi,m0
gives the transition rate into the bath i, whereas Γi,0m gives the outgoing transition rate from
bath i. The full master equation with the contribution from the baths as the measurement
probe including both diagonal and off-diagonal terms was studied in the Appendix of [64].
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