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ABSTRACT

Taste is one of the crucial organoleptic properties in-
volved in the perception of food by humans. Taste
of a chemical compound present in food stimulates
us to take in food and avoid poisons. Bitter taste of
drugs presents compliance problems and early flag-
ging of potential bitterness of a drug candidate may
help with its further development. Similarly, the taste
of chemicals present in food is important for eval-
uation of food quality in the industry. In this work,
we have implemented machine learning models to
predict three different taste endpoints—sweet, bit-
ter and sour. The VirtualTaste models achieved an
overall accuracy of 90% and an AUC of 0.98 in 10-
fold cross-validation and in an independent test set.
The web server takes a two-dimensional chemical
structure as input and reports the chemical’s taste
profile for three tastes—using molecular fingerprints
along with confidence scores, including information
on similar compounds with known activity from the
training set and an overall radar chart. Addition-
ally, insights into 25 bitter receptors are also pro-
vided via target prediction for the predicted bitter
compounds. VirtualTaste, to the best of our knowl-
edge, is the first freely available web-based platform
for the prediction of three different tastes of com-
pounds. It is accessible via http://virtualtaste.charite.
de/VirtualTaste/ without any login requirements and
is free to use.

GRAPHICAL ABSTRACT

INTRODUCTION

Organoleptic properties such as taste and smell are very im-
portant for the evaluation of quality of products in the food
and pharmaceutical industries (1). Taste is an important
organoleptic property and is one of the crucial senses in-
volved in the perception of food by humans (2). Taste is sim-
ulated when fundamental nutrients or harmful compounds,
such as toxic molecules, activate specialized receptors lo-
cated in taste buds. Taste of a chemical compound present in
food stimulates us to take in nutrients and avoid poisons (3).
The major gustatory receptors from the largest G protein-
coupled receptor (GPCR) family in mammals are responsi-
ble for sensing taste molecules (4). The taste prediction of
a compound is of considerable interest in the food industry.
However, the science of taste and the molecules that initiate
it, is no longer the exclusive domain of food research. Many
active ingredients present in drugs taste bitter and thus are
aversive to children as well as many adults. The bitterness
of medicines presents compliance problems, and early flag-
ging of potential bitterness of a drug candidate may help
with its further development (5). Similarly, sour taste is the
key element in the flavor profile of food acidulants (6). Un-
derstanding the chemistry and physiology of sour taste is
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critical for efficient control of flavor in the formulation of
acid and acidified foods (7). Sour taste is the aspect of fla-
vor most commonly associated with acids, but they are also
able to elicit non-sour taste characteristics such as bitterness
(8). Therefore, efficient tools for predicting and masking the
taste of ingredients are often sought after by pharmaceuti-
cal and food industries.

Chemoinformatic-based analysis of chemical features
present in bitter and sweet compounds revealed significant
information (9). The chemical structure of sweet tasting
compounds is known to be incredibly diverse (10). The list
of chemically diverse sweet tasting compounds is long and
it includes structural classes like heterocyclics (saccharin,
acesulfame K); amino acids (glycine, D-tryptophan), dipep-
tides (aspartame, neotame), sulfamates (cyclamate), halo-
genated sugars (sucralose), terpenes and terpene glycosides
(hernandulcin, stevioside, rebaudiosides), polyols (sorbitol,
maltitol, lactitol), urea derivatives (dulcin, superaspartame,
suosan), oximes (perillartine) and nitroanilines (11). Addi-
tionally, a number of proteins are known to have a sweet
taste (4). On the other hand, bitter agonists include plant-
derived and synthetic compounds such as amides, peptides,
heterocyclic compounds, glycosides, alkaloids, terpenoids,
phenols and flavonoids (2). The sour taste receptors are trig-
gered by acids, more specifically hydrogen ions (H*) (6).

Traditionally, discovering the taste of compounds is done
using the human taste panel or cell-based high through-
put screening (9). This process is not only time-consuming
and expensive but also laborious. Additionally, the use of
sensory panellists is also challenging because of the poten-
tial toxicity related to the chemical as well as subjectivity
of taste panellists (3). There is certainly a strong rationale
to apply predictive models to the initial stages of the inno-
vation pipeline, where a larger pool of compounds is avail-
able. Hence, computational models can provide significant
alternatives to rapidly identify the taste of chemical com-
pounds. Furthermore, with the increasing influx of chemi-
cals, traditional discovery processes will be facilitated using
the computational models and as a result the chemicals can
be tested in a timely manner (12). Over the last decade, ar-
tificial intelligence and machine learning models played an
ever-increasing role in understanding the physicochemical
properties and activities of chemical compounds (13). These
efforts have led to some significant prediction of novel ac-
tivity endpoints and understanding of the mode of action
of these compounds in the field of chemical research, drug
discovery and also food research to some extent (9). How-
ever, it is prudent to admit that the models are only as good
as the data they are based on; there is still no exception to
the GIGO principle ‘garbage in, garbage out’. Several com-
putational methods have been published in the literature to
either predict ‘bitter taste’ (14) or ‘sweet taste’ (15) of chem-
ical compounds. The BitterSweetForest Model is the first
published model which was developed to predict bitter and
sweet taste, as well as bitter-sweet features present in a chem-
ical compound (9).

In this study, we present the first online prediction server
which predicts three different taste endpoints: sweet, bit-
ter and sour. The VirtualTaste models for sweet, bitter and
sour taste were validated by both internal 10-fold cross-

validation and external validation with performance eval-
uated by five different performance metrics: accuracy, sen-
sitivity, specificity, area under the receiver operating curve
(ROC-AUC) and Fl-measure. The top-performing models
were applied to predict the taste of approved drugs from
DrugBank (16) and natural compounds from the Super-
Natural II database (17). Furthermore, the similarity-based
method was applied to predict the bitter receptors, which
could provide insights into the mechanism of the predicted
bitter taste for compounds.

MATERIALS AND METHODS
Software implementation

The VirtualTaste prediction platform was developed as
an integrated, searchable for predicted compounds and
machine-learning knowledge-based web server. The pre-
predicted data for approved drugs and natural compounds
are stored in a relational MySQL database. For similar-
ity search using OpenBabel (http://openbabel.org/), data is
stored in a structure-data file (SDF) format. The web server
was developed using PHP7, Python, JavaScript and Chem-
Doodle Web components (https://web.chemdoodle.com/),
an open source JavaScript library for the chemistry inter-
face. RDKit package (http:/www.rdkit.org/) was used for
handling the storing and representation of the chemical
data in the database and the webserver. The web server
back-end is built using PHP and Python; web access is
enabled via the Apache HTTP Server. Redis is employed
for queuing and assessing the API requests. The server has
been tested on the recent version of Mozilla Firefox, Google
Chrome and Apple Safari.

Input and output

The VirtualTaste web server consists of several
features—such as three different taste models (sweet,
bitter and sour), target prediction for 25 bitter receptors
and the predicted taste of approved drugs and natural
compounds with higher confidence (above 75%). The user
can submit small molecules in four different ways into
the web server via the tab ‘Prediction’. The molecule can
be uploaded as a standard molecule file, molecule name,
SMILES (Simplified Molecular-Input Line-Entry System)
string of the compound or the user can simply sketch
their molecule of interest. Optionally, the user may select
different models or all models for prediction. The results
are displayed in tabular format, and include the molecular
structure with the physicochemical properties and the three
most similar molecules from the training set to define the
applicability domain of the VirtualTaste prediction models.
The user can access the result in the results section or can
download the important information in comma-separated
values (csv) file format. These prediction results are also
displayed as a radar plot comparing the average confidence
score of the active compounds in the training set of each
taste model, to that of the input compound (see Figure 1).
Additionally, if the compound is predicted as bitter, the
potential bitter receptors profile of the compound is also
provided in the ‘Target prediction’ table.
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Figure 1. Illustration of an example compound (Denatonium) used as an application case. Denatonium is the input compound; the user can choose either
a single or all endpoints for the prediction. In this case all taste endpoints were selected. The results displayed show the taste profile of the input compound.
The result page also includes information on similar compounds, overall radar plot, and bitter receptor (target) prediction.

Datasets

The data was collected from literature sources and dif-
ferent publicly available databases (18). Ambiguous com-
pounds, salts and mixtures, as well as entries classified
as inconclusive were removed from the final dataset. The
data were standardized using the RDkit node of the KN-
IME analytics platform (19). For each of the three Vir-
tualTaste models, compounds were divided into train-
ing and external validation sets, keeping the ratio of the
actives (sweet/bitter/sour) and inactives (non-sweet/non-
bitter/non-sour) constant (see S1). Brief descriptions on the
respective datasets are as follows:

Sweet data: The sweet data was taken from the SuperSweet
database (11) and from our published work BitterSweet-
Forest (9). The total number of compounds in the train-
ing set is 1608 molecules, and the test set contained 403
molecules.

Bitter data: The bitter compound data was taken from the
BitterDB (20) and from our published work BitterSweet-
Forest (9). The total number of compounds in the train-
ing set is 1289 molecules, and the test set contained 323
molecules.

Sour data: The sour data was extracted from public
databases (18) and manually curated from literature
sources from the PubMed database (https://pubmed.ncbi.
nlm.nih.gov/) (21). The dataset consists of 1214 training
set molecules, and 133 test set molecules.

Bitter Receptor data: A dataset of diverse ligands that in-
teract with the 25 human bitter taste receptors (TAS2Rs)

which belong to the superfamily of G-protein-coupled re-
ceptors (GPCRs) (8), was extracted from various pub-
licly available databases (18,20) and from literature us-
ing a text mining approach (21). A total of 356 lig-
ands were extracted which interacts with 25 human
T2Rs.

Performance evaluation of the virtualtaste models

Each model was validated using 8 different sampling meth-
ods for 10-fold cross-validation (22). The data was split into
10-fold, keeping the ratio of active and inactive data con-
stant as published in our previous work (22). Additionally,
an external set was used for the evaluation of the predictive
performance of each model. Each model was evaluated by
the following performance metrics:

e Prediction Accuracy is defined as the ability of a model to
correctly predict the total number of activities and inac-
tives.

o Sensitivity is the trained model’s ability to correctly pre-
dict the positive (taste) class.

e Specificity is defined as the trained model’s ability to cor-
rectly predict the negative (non-taste) class.

e The area under the curve (AUC) of a receiver operat-
ing characteristic (ROC) curve is computed using the
ROC curve which plots the true positive rate (sensitivity)
against the false positive rate (1 — specificity) at different
thresholds. The value of AUC ranges from 0.50 (random
classifiers) to 1.00 (perfect classifiers) (22).
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Table 1. Performance statistics for the VirtualTaste models applied to cross-validation and external validation sets

VirtualTaste models VirtualSweet VirtualBitter VirtualSour
Data sampling method SMOTETC SMOTE VDM AugRandOS
Cross-validation Prediction accuracy 0.88 0.94 0.98
Sensitivity 0.97 0.94 0.94
Specificity 0.96 0.92 0.97
ROC-4UC 0.99 0.97 0.97
F-measure 0.87 0.94 0.98
External validation Prediction accuracy 0.89 0.90 0.97
Sensitivity 0.86 0.88 0.80
Specificity 0.92 0.97 0.99
ROC-AUC 0.95 0.96 0.99
F-measure 0.88 0.88 0.84

e FI measureis a measure of a test’s accuracy and is defined
as the weighted harmonic mean of the precision and re-
call of the test.

The performance statistics both on cross-validation as
well as external validation for the top- performing Vir-
tualTaste models are summarized in Table 1. The mod-
els achieved a prediction accuracy of 88% and above on
both, cross-validation and external validation. The speci-
ficity and sensitivity of the VirtualTaste models are bal-
anced and scored 90% and above, except for the sensitivity
of VirtualSweet (86%), VirtualBitter (88%) and VirtualSour
(80%) on the external validation set. The ROC-AUC val-
ues of all the three models is between 0.95 and 0.99. The FI
measure of all the models is higher than 0.84 (See Table 1).

VirtualTaste prediction models

The VirtualTaste models were developed using our previ-
ously published BitterSweetForest model (9) based on the
Random Forest (RF) algorithm and eight different data
sampling methods (23). The BitterSweetForest classifica-
tion model gives a numerical estimate of the features and
can produce interpretable models with low complexity. The
RF classification algorithm performs classification using an
ensemble method, which considers votes from multiple un-
biased classifiers (decision trees) resulting in less scope for
class bias and overfitting (24). The number of trees (ntree,
settings: 100, 200, 300, 500, 1000) was used for training
the models. The models were implemented using the Scikit-
learn package (version 0.20) in Python (version 3.6.6) and
the 10-fold cross-validation was used for the model opti-
mization. The standard deviation and average of the accu-
racy and other parameters loss are computed (See Supple-
mentary data). The MACCS and Morgan molecular finger-
prints (http:/www.rdkit.org/) were used and have shown an
optimal performance for the prediction (Table 1). A detailed
information on the construction of the models and evalua-
tion can be found at the web server FAQ section as well as in
the published work (22). More details on individual models
and the features responsible for class predictions are pro-
vided in the “‘Model Information’ section of the web server.

VirtualSweet. The VirtualSweet prediction model predicts
the sweet taste of a chemical compound. The model is
based on the RF algorithm and the Synthetic Minor-
ity Over-Sampling Technique-using Tanimoto Coefficient

(SMOTETC) data sampling method (22). The active com-
pounds in the training set contain sweet compounds and
inactives were represented using bitter and tasteless com-
pounds. The model achieved a prediction accuracy of 88%
on 10-fold cross-validation and 89% on external validation.
The AUC-ROC values of cross-validation and external val-
idation are 0.95 and 0.99, respectively (Table 1).

VirtualBitter. The VirtualBitter prediction model predicts
the bitter taste of a chemical compound. The model is
based on the RF algorithm and the Synthetic Minority
Over-Sampling Technique-using Value Difference Metric
(SMOTEVDM) data sampling method (22). The active
compounds in the training set contain bitter compounds
and inactives were represented using sweet and tasteless
compounds. The model achieved a prediction accuracy of
94% on 10-fold cross-validation and 90% on external val-
idation. The AUC-ROC values of cross-validation and ex-
ternal validation are 0.97 and 0.96, respectively (Table 1).

VirtualSour. The VirtualSour prediction model predicts
the sour taste of a chemical compound. Sour taste is in-
fluenced by pH and acids present in foods. Here, a data-
driven machine-learning method based on a ligand-based
approach is employed to predict the sour/non-sour com-
pounds. The model is based on the RF algorithm and the
Augmented Random Over Sampling (AugRandOS) data
sampling method (22). The model achieved a prediction ac-
curacy of 98% on 10-fold cross-validation and 97% on ex-
ternal validation. The AUC-ROC values of cross-validation
and external validation are 0.97 and 0.99, respectively (Ta-
ble 1).

Bitter receptors. The target prediction for the 25 hu-
man bitter receptors (h"TAS2Rs) were performed using a
similarity-based approach (25). It is observed that over-
all similarity-based approaches can outperform machine
learning methods even with a low similarity threshold, es-
pecially in cases where there is less data (25). The respective
receptors (targets) are predicted for a query molecule only
if the query molecule is predicted as bitter by the Virtual-
Bitter model. The target protein is predicted by computing
pairwise similarity of the query molecule to the known lig-
ands of that protein. The similarity is measured using the
Tanimoto Coefficient (TC) (26) and molecular fingerprints.
Prediction strength is defined computing maximum pair-
wise similarity between the query molecule to any of the
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ligands of the protein (maxTC). More information on the
receptors and respective chemical space similarity and dis-
similarity heatmaps can be found at the ‘Receptors’ section
of the web server.

Taste of medicines (approved drugs) and natural compounds

Medicines often taste bitter, thus are aversive to children
and many adults. Often an unpleasant taste of drugs be-
comes a challenge in administering medicine to children (1).
It is reported that in 90% of the cases, the drug taste and
palatability were the biggest hindrance to treatment in this
sensitive group (5). Hence, prediction of bitter taste of drugs
and taste masking of the bitter drugs is important for bet-
ter patient compliance, especially in paediatrics and geri-
atric population (27). On the other hand, identification of
novel sweetening compounds from natural resources is an
active research topic in the food industry. Understanding
of the structure-taste relationships of natural compounds
can help to expand the chemical space associated with both
sweet and bitter tastes. To check the applicability domain of
the VirtualTaste models, we applied our VirtualSweet and
VirtualBitter models to predict the taste of chemical com-
pounds from the approved drugs and the natural product
chemical space. A total of 1969 compounds were collected
from the DrugBank database (16) and were predicted us-
ing the VirtualTaste models. A total number of 1898 of ap-
proved drugs were predicted to taste bitter and 71 drugs as
sweet in taste. The list of drugs and their taste class and con-
fidence score is provided in a table under the section ‘Drug
Taste’ on the web server. Additionally, IDs are linked to the
DrugBank database to help the user access detailed infor-
mation on the drug. Similarly, 326 000 compounds were ex-
tracted from the SuperNatural II database (17) and were
predicted. A total of 3864 compounds were predicted to be
bitter and 197 compounds as sweet with a confidence of
95% and above. These findings are similar to our published
work (9). The list of natural compounds with SuperNatural
II database ids, SMILES, VirtualTaste class and confidence
is provided in the section ‘Natural compounds’ of the web
server.

Application case

For a given input compound (as SMILES or name or user
designed structure), in this case ‘Denatonium’, the Virtual-
Taste web server will predict a single or up to three differ-
ent taste endpoints (sweet, bitter and sour) as specified by
the user in the ‘Prediction’ tab. The result output will in-
clude information on the input molecule such as SMILES
or Name, calculated physicochemical data, similar com-
pounds present in the training set of the models along with
TC values, and the compound’s known active/inactive class.
The taste activity prediction table displays information on
the respective models (VirtualBitter, VirtualSweet, Virtual-
Sour), descriptors and the predicted class (active or inac-
tive) along with a confidence score for each endpoint. Using
the radar plot, users can evaluate the strength of the predic-
tion for a particular endpoint. This is done by comparing
the predicted confidence score of the input compound to
that of the average prediction confidence of the training set

Nucleic Acids Research, 2021, Vol. 49, Web Server issue W683

molecules of that model. Additionally, if a compound is pre-
dicted as bitter (as in this case), the target prediction table
will also include information on possible bitter receptor ac-
tivity of that molecule along with the predicted score (see
Figure 1). VirtualTaste also provides the user with down-
loadable files for similar compounds, taste activity predic-
tion, and target prediction. All data is available for viewing
and downloading as comma-separated values (csv) files by
clicking the relevant links. For convenience, the results of all
different result tables can be downloaded as separate indi-
vidual output files and results are saved on the server during
the entire session and can be retrieved by the active user by
clicking the ‘Results’ tab in the home page.

CONCLUSIONS AND FUTURE UPDATES

In this work, we present a computational platform “Virtu-
alTaste’ to predict three different tastes (sweet, bitter, sour)
of chemical compounds. The models achieved a prediction
accuracy of 88% and above both on cross-validation and ex-
ternal validation. The specificity and sensitivity of the Vir-
tualTaste models are balanced and scored 90% and above,
except for the sensitivity of VirtualSweet (86%), VirtualBit-
ter (88%) and VirtualSour (80%) on external validation sets.
The ROC-AUC values of all the three models is between
0.95 to 0.99. The FI measure of all the models is higher
than 0.84. When compared with other published models for
taste prediction (14,15) all the models of the VirtualTaste
web server performed from the range of comparatively good
to better in some cases. Performance based comparison us-
ing measures like accuracy, sensitivity, specificity and AUC-
ROC has been provided as S1 and S2. Additionally, the Vir-
tualTaste web server also provides prediction for potential
bitter receptors using a pairwise similarity-based approach.
One of the major challenges of computing machine learn-
ing models is the availability of diverse and quality data.
Therefore, a similarity-based method was used to predict
25 human bitter receptors.

Furthermore, the VirtualTaste models were applied to
predict bitter and sweet tastes of the approved drugs and
natural compounds, and this predicted data is provided in
the ‘DrugTaste’ and ‘Natural Compounds’ sections of the
web server. This will help the user to quickly look into the
structure-taste relationship of the compounds without indi-
vidually predicting it.

We hope that the VirtualTaste web server will help the
experimental food chemist to predict compounds of three
different tastes in a fast and easy way. Besides providing
support for the basic taste chemistry research community,
VirtualTaste also aims to help in the identification of novel
sweet, bitter and sour tasting compound discoveries in the
industry (28). Furthermore, identification of novel TAS2R
agonists is important in the research related to inflamma-
tory lung diseases like asthma and chronic obstructive pul-
monary disease (COPD) (29). It is believed that understand-
ing TAS2R receptor-agonists and their role in airway cells
can help in therapy in obstructive airway diseases (30).

As an evolutionary step, VirtualTaste will focus on
method development towards other organoleptic properties
in the future such as scents. Furthermore, to maintain the
high standard of the VirtualTaste web server, regular up-
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dates will be executed, including addition of new models for
the prediction of receptors.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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