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Abstract
Severe winter windstorms are amongst the most damaging weather events for Europe and show significant interannual vari-
ability. While surface variables (temperature, precipitation) have been successfully predicted for some time now, predict-
ability of severe windstorms caused by extra-tropical cyclones remains less well explored. This study investigates windstorm 
prediction skill of the UK Met Office Global Seasonal Forecast System Version 5 (GloSea5) for the Northeast-Atlantic and 
European region. Based on an objective Lagrangian tracking of severe, damage relevant windstorms, three storm parameters 
are analysed: windstorm frequency and two intensity measures. Firstly, skill based on direct tracking of simulated windstorms 
is diagnosed. Significant positive skill for storm frequency and intensity is found over an extended area at the downstream 
end of the storm track, i.e., from the UK to southern Scandinavia. The skill for frequency agrees well with previous studies 
for older model versions, while the results of event-based intensity are novel. Receiver Operating Characteristic Curves for 
three smaller regions reveal significant skill for high and low storm activity seasons. Second, skill of windstorm characteristics 
based on their multi-linear regressions to three dominant large-scale circulation patterns [i.e., the North Atlantic Oscillation 
(NAO), the Scandinavian Pattern (SCA), and the East-Atlantic Pattern (EA)] are analysed. Although these large-scale pat-
terns explain up to 80% of the interannual variance of windstorm frequency and up to 60% for intensity, the forecast skill for 
the respectively linear-regressed windstorms do not show systematically higher skill than the direct tracking approach. The 
signal-to-noise ratio of windstorm characteristics (frequency, intensity) is also quantified, confirming that the signal-to-noise 
paradox extends to windstorm predictions.
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1  Introduction

1.1 � Winter windstorms and seasonal forecasting

Severe winter windstorms are amongst the most damag-
ing natural hazards in Europe and have a large impact on 
society. A potential increase in these extreme events over 

densely populated regions of Europe can result in tragic loss. 
Consequently, this leads to a crucial interest from society 
(e.g., government, contingency planners), industry (e.g., 
the insurance sector) and scientists in order to create and to 
benefit from better prediction capabilities. Previous studies 
about mid-latitude cyclones and storminess are numerous 
and reviews of past and potential future developments can 
be found e.g., in Ulbrich et al. (2009) and Feser et al. (2015) 
or more recently in Catto et al. (2019). Multiple studies were 
conducted to quantify objectively extra-tropical cyclones 
(e.g., Murray and Simmonds 1991; Roberts et al. 2014; 
Trigo 2006). A more detailed overview of cyclone tracking 
methods and their performances can be found in Neu et al. 
(2013). Nevertheless, to allow for an analysis of the extreme, 
most damaging events at the tail of the intensity distribu-
tion, those objective trackers may not be focussed enough 
on potential impact to society. Consequently, Leckebusch 
et al. (2008b) introduced an objective percentile-based, 
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near-surface wind tracking to identify those windstorms 
which have high impact potential. This method is widely 
used and has successfully been applied to different data 
sets: synoptic forecasts (e.g., Ng and Leckebusch 2021), 
seasonal-to-decadal data (e.g. Befort et al. 2019; Kruschke 
et al. 2016; Schuster et al. 2019), as well as for climate time 
scales (e.g., Nissen et al. 2013) and in relation to potential 
damages (Walz and Leckebusch 2019).

Studies of seasonal predictability have already shown 
skill for mean seasonal conditions in Europe e.g., for temper-
ature or precipitation (cf. e.g., Fereday et al. 2012; Folland 
et al. 2012; Kim et al. 2012; Palmer et al. 2004) and have 
gained increasing interest (Domeisen 2020; Simon et al. 
2007). Recent studies focussing on seasonal predictability of 
European average temperature and precipitation has shown 
them to be usable, but with limited forecast skill. Yet, fore-
cast skill of these parameters by using circulation patterns as 
predictors are higher (Athanasiadis et al. 2017; Baker et al. 
2018; Scaife et al. 2014). Seasonal forecast skill can be fur-
ther improved using larger ensemble sizes (e.g. Mishra et al. 
2019). In winter, the extratropical skill for temperature and 
precipitation appears to originate in the tropics (Scaife et al. 
2017) where precipitation shows strong seasonal forecast 
skill especially in the east pacific (Scaife et al. 2019b). For 
other seasons, skill is generally more limited but there has 
been some skill found for summer rainfall and circulation 
(Beverley et al. 2019; Dunstone et al. 2018).

One of the first studies to investigate systematically the 
seasonal forecast skill of severe winter windstorms was pub-
lished by Renggli et al. (2011). Their study revealed over-
all only marginally usable skill, but a better skill for high 
and low frequency storm seasons than for neutral seasons. 
Recent studies investigated newer versions of operational 
seasonal forecast suites, showing now significant positive 
forecast skill for storm frequencies over North-West Europe 
and the North-East Atlantic region (e.g. Befort et al. 2019; 
Hansen et al. 2019). The former investigated the seasonal 
forecasts of the UK Met Office (Global Seasonal Forecast 
System Version 5—GloSea5) and two forecasts from the 
European Centre for Medium Weather Forecast (ECMWF—
System 3 and 4). They found positive skill for windstorm 
frequency especially over Western Europe with a high influ-
ence of the North Atlantic Oscillation (NAO). Hansen et al. 
(2019) revealed a strong connectivity of storm count predic-
tions to stratospheric sudden warmings. Other storminess 
measures (not event based/tracked) show strong and signifi-
cant skill on a seasonal scale in GloSea5 (Scaife et al. 2014). 
They also investigated the NAO as the main driver of Euro-
pean storminess and showed that signal-to-noise ratios were 
anomalously low and that the model predicted the real world 
better than its own members. Subsequent studies verified 
this for other timescales and this ‘signal-to-noise paradox’ 
appears to be widespread in long range predictions when 

there is high enough skill (Eade et al. 2014; Dunstone et al. 
2016; Scaife and Smith 2018; Weisheimer et al. 2019). This 
signal-to-noise paradox will be investigated for the first time 
for storm forecasts here.

1.2 � Forecast skill of large‑scale patterns important 
for extra‑tropical cyclones and European 
storminess

The NAO is the predominant variability pattern for Euro-
pean weather and climate, including extra-tropical cyclones 
and severe winter storms (Ambaum et al. 2001; Hurrell et al. 
2001, 2003; Leckebusch et al. 2008a). Studies of the sea-
sonal forecast skill of the NAO now show agreement that 
there is predictability of the NAO index at lead times of 
2–4 months, calculated with different methods and in vari-
ous data sets (Athanasiadis et al. 2017; Baker et al. 2018; 
Domeisen et al. 2018; Dunstone et al. 2016; Hansen et al. 
2019; Scaife et al. 2014; Weisheimer et al. 2017, 2019).

Besides the NAO, other dominant large-scale patterns 
are of interest for European weather (Zubiate et al. 2017), 
for example, the Scandinavian Pattern (SCA: Barnston and 
Livezey 1987; Bueh and Nakamura 2007) and the East-
Atlantic Pattern (EA: Nesterov 2009; Wallace and Gutzler 
1981).

The influence of NAO phases on the development of 
cyclones and extreme windstorms were investigated by 
Pinto et al. (2008) and Donat et al. (2010). They conclude 
a strong positive NAO phase leads to a higher number of 
extreme cyclones. The connection between windstorms and 
large-scale patterns was further investigated e.g., by Walz 
et al. (2018a). They developed a so-called “map of driv-
ers” revealing the spatial distribution of the most dominant 
large-scale pattern influencing the inter-annual variability 
of windstorm frequency through a multiple linear regres-
sion model. Related to this, a later publication from these 
authors showed also a link between the NAO and potential 
windstorm losses (Walz and Leckebusch 2019). Befort et al. 
(2019) and Scaife et al. (2014) used the NAO as the main 
driver over Europe for an indirect approach to statistically 
forecast windstorm numbers or general storminess, respec-
tively, based solely on the model forecasted NAO. This indi-
rect regression-based approach results in significantly posi-
tive forecast skill of windstorm frequency over the British 
Isles but with a lack of skill at around 45° N. This is in line 
with the “map of drivers” (Walz et al. 2018a), where for this 
region the EA index (rather than the NAO) is identified as 
the leading influence factor. The main dominant large-scale 
patterns influencing storm frequency over the North Atlan-
tic/European region were identified to be the NAO, SCA 
and EA. For regions with high damage potential, Walz et al. 
(2018a) could successfully model the interannual variability 
of severe windstorms based on these three steering factors.
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The present study will expand on the investigations from 
Befort et al. (2019) and Walz et al. (2018a) in two major 
aspects. For the first time, the forecast skill of the seasonal 
windstorm intensity over Europe will be analysed. Sec-
ondly, the impact of important large-scale patterns (NAO, 
SCA, and EA) for skilful seasonal windstorm predictions is 
analysed more systematically and compared to the skill of 
forecasts based on explicitly modelled storms. The paper is 
structured as follows: Data description is given in Sect. 2. 
The methodology is described in detail in Sect. 3. In Sect. 4, 
results for the direct and indirect approach and the signal-
to-noise paradox are presented. The paper finishes with a 
discussion and conclusion in Sect. 5.

2 � Data

The UK Met Office “Global Seasonal Forecast System Ver-
sion 5” (GloSea5, MacLachlan et al. 2015) is used to quan-
tify the seasonal prediction skill of objectively identified 
and tracked windstorms. Previous studies already showed 
positive skill in GloSea5 for predicting various parameters 
(Befort et al. 2019; Scaife et al. 2014, 2019a). The GloSea5 
hindcast data are available from the Copernicus Climate 
Change Service (C3S) for 1993–2016 and in this study we 
used 6 hourly resolution for 10 m wind speed and mean sea 
level pressure (MSLP). The spatial resolution of GloSea5 
is 0.83° in longitude and 0.55° in latitude. The hindcast 
has four different initialisation dates per month (1st, 9th, 
17th and 25th of each month), runs over 7 months with 7 
members for each initialisation date. The members for the 
same date differ only by use of a stochastic physics scheme 
(MacLachlan et al. 2015).

This study investigates the main winter storm season from 
December to February (DJF). Consequently, the initialisa-
tions around the 1st of November (i.e., the 25th October, 
1st November and 9th November) were used. 3 system ver-
sions are available for GloSea5 which refer to small model 
updates. This results in an ensemble of 63 members (3 ini-
tialisations × 3 system versions × 7 members) for GloSea5 in 
this study. As observational reference, the ECMWF reanaly-
sis ERA5 data set (Hersbach et al. 2019) is used for the same 
years (1993–2016) as available for the hindcast data set. The 
10 m wind speed is used for windstorm identification and 
tracking and the MSLP for calculating large-scale patterns 
(for details cf. Sect. 3) both in 6 hourly steps with the 0.25° 
spatial resolution of ERA5.

The storm frequency data for both data sets is analysed on 
a 2.5° × 2.5° grid resolution as identified tracks are counted 
from the storm tracking outputs. This extrapolation is part of 
the frequency algorithm described in the Sect. 3 and retained 
for a better comparison with previous windstorm frequency 
studies. It leads to a better reflection of the true available 

track information, as a finer defined grid would contain data 
gaps. For storm intensities, the model resolution is unaf-
fected. Hence, for a grid-based comparison, ERA5 data 
were re-gridded onto the GloSea5 resolution by a bilinear 
interpolation.

3 � Methods

An overview of the investigation approach is shown in Fig. 1. 
For analysing predictive skill of severe windstorm events, 
all individual windstorm events in all ensemble members 
are identified, tracked, and then analysed with respect to 
seasonal frequency and the two intensity measures. In order 
to quantify the individual role of large-scale variability pat-
terns, an indirect (regression-based) approach uses the large-
scale patterns to build a statistical link (regression) to storm 
counts and intensity, which is then used to statistically model 
storm parameters. These regressions are built in two dif-
ferent ways: (a) ERA5-based with the observed large-scale 

Fig. 1   Workflow of methodology
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patterns and storm parameters and (b) GloSea5-based with 
forecast large-scale patterns and storm parameters. After 
creating these links, they are used with GloSea5 large-scale 
patterns to predict windstorms within the indirect approach. 
Consequently, in both indirect approach settings, the pre-
dictive skill comes solely from the predictive skill of the 
large-scale patterns of the forecast ensemble. In (a) a real-
world link to local storm parameters is utilised and in (b) a 
model-world link between large-scale patterns and storm 
parameters is used. The windstorm prediction skill from 
these statistical regressions is validated with Kendall cor-
relation as for the direct approach. Kendall correlations and 
receiver operating characteristic (ROC) are used to measure 
skill (Wilks 2011, please see the Supplementary Appendix 
for details).

3.1 � Severe windstorm tracking

Severe windstorm events are objectively identified and 
tracked following the approach by Leckebusch et al. (2008b). 
Windstorms are defined as clustered (minimum 130,000km2) 
exceedance of the local 98th percentile of the 10 m wind 
speed per grid cell. This local 98th percentile was identified 
as a suitable threshold for potential damages from extra-
tropical cyclones (Klawa and Ulbrich 2003). A storm track 
output was created if this exceedance lasted for at least 8 
time steps (~ 42 h, Angus and Leckebusch 2020; Priestley 
et al. 2020). Three core parameters are analysed for wind-
storm activity with these tracking outputs: the frequency, the 
season integrated intensity and the season-averaged event 
intensity.

Windstorm frequency was established by Leckebusch 
et  al. (2008b) as track densities (following Leckebusch 
and Ulbrich 2004) where the latter is further defined and 
described by Kruschke (2015). The storm frequency cal-
culation uses a specific radius to be representative for the 
affected area for counting events. Similar to Befort et al. 
(2019), in this study a radius of 700 km is selected in line 
with the principal area of influence of severe extra-tropical 
cyclones. A validation study with different radii can be 
found in Degenhardt et al. (2020). The storm counts per 
grid cell are accumulated per season.

Windstorm intensity per season is quantified based on 
respective storm footprints (all grid cells the windstorm is 
affecting) and the related objective intensity measure, the 
Storm Severity Index (SSI, introduced by Leckebusch et al. 
2008b) in two ways. Firstly, the so-called Event SSI (ESSI) 
is used as the total sum of all grid cell SSI values of an indi-
vidual storm track over all time steps. This ESSI is conse-
quently attributed to all grid cells of the storm footprint. To 
avoid scattered extreme values and to gain a homogeneous 
severity area, the individual grid cells are smoothed with 
their eight surrounding grid cells. Grid-cell-based intensities 

per individual storm are accumulated over the whole winter 
season to result in a seasonal intensity measure. The sea-
sonal accumulated ESSI (ESSIa) is one intensity measure 
in this study and represents the total severity of the season. 
Secondly, as a further intensity measure, the ESSIa has been 
standardised by the number of storms per grid cell. Hence, 
this measure is not a season integral, but storm-count nor-
malized ESSI (ESSIs) per season and represents thus an 
average severity of a storm in that season.

3.2 � Calculation of large‑scale patterns

Besides the validation of the principle forecast skill of win-
ter windstorms derived from the model, our study utilizes the 
three dominant large-scale patterns over Europe as predictors 
to statistically calculate storm parameters. Our definition and 
calculation of large-scale patterns follows the NOAA (National 
Oceanic and Atmospheric Administration) definitions (Barn-
ston and Livezey 1987) also used e.g., in Walz et al. (2018b). 
Large-scale patterns are calculated as monthly means with an 
EOF analysis over a standardized monthly mean anomaly of 
MSLP for the North Atlantic/European region (100° W–40° 
E, 30°–75° N). The first EOF is identified as the North Atlan-
tic Oscillation (NAO), the second as the Scandinavian Pattern 
(SCA) and the third is the East-Atlantic Pattern (EA). These 
patterns for ERA5 and GloSea5 respectively, can be found in 
the Supplementary Appendix (Fig. A1). To enable a better 
comparison between the reanalysis data set and the forecast 
model, the principal component analysis (PCA) calculation 
for both data sets is based on the monthly EOF patterns from 
ERA5. This method of projection can be done because the 
EOF patterns for the three selected large-scale patterns are 
spatially well represented in the GloSea5 hindcast data set (cf. 
Fig. A1): the climatological EOF patterns are similar in ERA5 
and GloSea5. The resulting indices are used as seasonal means 
(DJF) to compare with the seasonal windstorm parameters, 
seasonal frequency and intensity.

3.3 � Skill analysis for direct and indirect approaches

In the first, direct approach, predictive skill of windstorm 
parameters (frequency, ESSIa and ESSIs) are diagnosed 
directly based on storms identified and tracked in individual 
members of the seasonal hindcast ensembles (GloSea5). This 
approach was also utilised in Befort et al. (2019) for wind-
storm frequency forecasts, consequently our results should 
be directly comparable with this previous study. In addition, 
windstorm intensity is investigated in a similar way.

In the second, indirect approach, storm parameters are cal-
culated via a statistical regression, based on a combination of 
large-scale patterns as predictors. This method was previously 
used (e.g. in Befort et al. 2019; Scaife et al. 2014). To do this, 
a multiple linear regression model is built for each of the three 
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windstorm parameters as predictands (frequency, ESSIa or 
ESSIs) and with the three selected large-scale patterns (NAO, 
SCA and EA) as predictors (see Eqs. 1, 2). For GloSea5 the 
ensemble mean is used to build the regression model.

Step 1 to build the regressions for the indirect approach 
is to use the large-scales patterns, either from ERA5 or Glo-
Sea5 and link them to the storm parameters in the respective 
data set. As seen in Eqs. 1 and 2 this leads by the definition 
of a multi-linear regression to the regression coefficients β.

These regressions will be validated by an ANOVA (analysis 
of variance) testing (Von Storch and Zwiers 2001) to investi-
gate the influence of the three large-scale patterns on the storm 
parameter prediction individually and in combination.

In step 2 of this approach, these coefficients are used and 
connected with GloSea5 large-scale pattern indices to statis-
tically predict the storm parameters by using the large-scale 
patterns (see Eqs. 3, 4).

ERA5-based regression as well as the GloSea5-based regres-
sion to windstorms are applied to finally deduce windstorm param-
eters; more details can be found in the Supplementary Appendix.

Studies have also used a generalised linear Poisson model for 
the investigation of severe windstorm event counts (e.g., Walz 
et al. 2018b). Here we are not just investigating storm counts, 
but also continuous storm intensity values, thus a simple multi-
linear model was chosen. Nevertheless, the performance of a 
simple multi-linear model in comparison to a Poisson model 
was tested but revealed no significant difference in performance. 
More detailed descriptions of the 2 different regression settings 
and skill measures can be found in the Supplementary Appendix.

3.4 � Signal‑to‑noise paradox

The Signal-to-noise paradox is investigated as described by Eade 
et al. (2014) and Scaife and Smith (2018) by using the ratio of 
predictable component (RPC). The RPC is the ratio of the direct 
forecast skill of the model ensemble mean (rmo) and the aver-
age correlation of ensemble members with the ensemble mean 
(rmm). If the RPC (= rmo/rmm) is higher than 1 then the skill of 

(1)

StormParameterERA5 ∼ �NAO∶ERA5NAOERA5

+ �SCA∶ERA5SCAERA5 + �EA∶ERA5EAERA5

(2)

StormParameterGloSea5 ∼ �NAO∶GloSea5NAOGloSea5

+ �SCA∶GloSea5SCAGloSea5 + �EA∶GloSea5EAGloSea5

(3)

�NAO∶ERA5NAOGloSea5 + �SCA∶ERA5SCAGloSea5

+ �EA∶ERA5EAGloSea5 = StormParameterstat.forcasted

(4)

�NAO∶GloSea5NAOGloSea5 + �SCA∶GloSea5SCAGloSea5

+ �EA∶GloSea5EAGloSea5 = StormParameterstat.forcasted

the model in predicting observations is higher than the skill of 
the model in predicting its own ensemble members.

4 � Results

4.1 � Direct forecasts of frequency and intensity

The windstorm frequency forecast skill following the direct 
approach is assessed by the ranked Kendall-�b-correlation 
between ERA5 and GloSea5 ensemble mean (Fig.  2a). 
Highly significant positive correlations over extended 
areas over Europe at the end of the Atlantic storm track are 
revealed: the British Isles, northern France, the Scandina-
vian region and over the Azores. Significant skill at the 95% 
level is found with a significance test for Kendall correlation. 
These results corroborate similar patterns in Befort et al. 
(2019) and Scaife et al. (2014) but within the latest GloSea5 
model version and on event-based storm counts.

For the integrated seasonal intensity (ESSIa, Fig. 2b), 
similarly positive significant skill over western central 
Europe especially over the UK, the North Sea and large 
parts of Scandinavia is found. A secondary positive skill 
area is also found over the Azores. In comparison to the 
skill pattern for storm frequency, the significant signal is 
shifted slightly towards the northwest. The skill pattern for 
the standardised storm intensity (ESSIs, Fig. 2c) shows a 
very coherent pattern, although with slightly reduced areas 
of significance. Interestingly, a core region at the end of the 
North Atlantic storm track, mainly the region upstream of 
Ireland and over the south of Norway shows significant posi-
tive forecast skill. Overall, for the first time, coherent and 
significant skill for a dedicated, objective storm intensity 
measure is identified in seasonal forecasts for highly relevant 
regions over Europe and the Northeast Atlantic.

In addition to correlations, the ROC curve statistic is 
used as forecast verification. The ROCSSs are presented as 
spatial distributions (Fig. 3). Skill for storm parameters is 
assessed using terciles. ROCSS values are increased over 
similar regions as already revealed by the correlation-based 
analysis: For frequency and both intensity measures, regions 
over western central Europe and Scandinavia (e.g., the Brit-
ish Isles, the North Sea, northern France, Norway, Sweden 
and the Baltic region) show high and significant ROCSS 
with values up to 0.9, depending on the specific region, ter-
cile and storm parameter. Overall, the lower and higher fre-
quency/intensity terciles seem to be better forecast than the 
middle tercile as is often seen in seasonal forecasts (Mason 
et al. 2021).

The spatial patterns of positive and significant Kendall 
correlations (Fig. 2) are similar to the pattern of ROCSS. 
This means the high correlation skill in windstorm frequen-
cies over the UK, Azores and east Scandinavia are shown 
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as high ROCSS in the lower frequency seasons and the cor-
relation skill over Norway in the higher frequency cases. 
Same for ESSIa where the correlation skill over the UK 
(Norway) is seen spatially coherent with the significant areas 
of the lower (higher) intensity seasons. For ESSIs, the sig-
nificant ROCSS areas are seen in line with the correlation 
skill within the lower (higher) intensity season over Ireland 
(Norway). This suggests that the ROC and correlation scores 
contain largely similar information about the forecast skill 
(cf. Yang et al. 2018) and that the skilful forecast originate 
mainly from the extreme seasons.

Seasonal forecasts are highly likely to be skilful on 
greater spatial scales. With the ROC curves (Fig. 4), an 
investigation on a city scale was made to ensure skilful pre-
dictions for densely populated regions. Three cities were 
selected as small-scale representative and averaged with the 
adjacent westerly and north-westerly grid cell. The British 
Isles are represented by a London (0° E, 52.5° N) region. 
An area for Hamburg (10° E, 52.5° N), Northern Germany, 
was picked as representative for Central Europe. And for the 
Scandinavian region, Oslo (10° E, 60° N) is selected.

At all 3 locations and for all 3 storm parameters the mid-
dle tercile (green) never shows significant ROC scores and 
they are mainly close to the zero-skill line (Fig. 4). This 
means that neutral seasons are not skilfully predicted. For 
the highest and lowest tercile, the ROCSS reveal an over-
all capability for skilful prediction (Fig. 4). In detail, the 
London area forecast has significant positive prediction skill 
for the higher tercile of storm frequency, but not for lower 
or middle tercile seasons. However, for ESSIa and ESSIs: 
the ROC curves are close to the no-skill line, especially for 
medium and high intensity seasons, although the low inten-
sity seasons are close to significant. The Hamburg grid cells 
show significant forecast skill for high and low frequency 
seasons. The total accumulated intensity measure (ESSIa) 
and storm-count standardised intensity (ESSIs) show no sig-
nificant ROC scores for either category. For the Oslo region, 
the highest tercile (purple in Fig. 4) of all three storm param-
eters is significantly well predicted, as well as the lower 
activity tercile for the standardised intensity (ESSIs). The 
storm frequency has the highest and significant forecast skill 
in all three city regions in the higher tercile seasons.

4.2 � Indirect forecasts of frequency and intensity

Here the role of the relevant large-scale circulation patterns 
in producing skilful predictions of windstorm parameters is 
analysed over the Northeast-Atlantic and Europe by the two 
different algorithms described above (Sect. 3).

The indirect approach with ERA5-based regression is 
generated with ERA5 storm parameters and ERA5 large-
scale pattern indices. The derived regression slopes per 
grid cell are presented in Fig. 5 for the 3 different wind-
storm parameters, respectively. These slopes represent the 
connection between windstorms and large-scale patterns. 
For windstorm frequency, the regression slopes show, as 
expected, a strong relation between the windstorm fre-
quency and the large-scale pattern, NAO, SCA and EA. 
Both windstorm intensity measures, ESSIa and ESSIs, 
show similar patterns in the relation between storms 
and large-scale pattern, but with less strong slopes, and 
therefore with less strong linear relations. For all three 
windstorm parameters, the large-scale patterns cover dif-
ferent regions which potentially could increase the area 

Fig. 2   Forecast skill for storm parameter (Frequency, ESSIa, ESSIs). 
Ranked Kendall-�b-correlation between ERA5 and GloSea5 GC2 
ensemble mean (63 member) from winter season 1993/94 to 2015/16, 
regions with 1.9 or less storms in observation (ERA5) are shaded, 
dotted grid points are significant on 95% level
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of skilful windstorm forecast using this combination of 
predictors, although skill in patterns other than the NAO 
on seasonal timescales is only suggested in a few studies 
(e.g., Lledó et al. 2020; Baker et al. 2018).

The ability of this combined linear ERA5-based regres-
sion to explain observed storms is shown in Fig. 6. The 
coefficient of determination, R2, shows the percentage of 
the explained variance. A high R2 value of the model for 
storm frequency is seen especially over the storm track 
region from North Atlantic to the British Isles, mid-
Europe, North Sea and Baltic Sea. The explained variance 
for the entire regression is up to almost 80%, meaning 
the calculated regression with NAO, SCA and EA covers 
up to 80% of the variance found in seasonal windstorm 
frequencies. For both intensity measures, less variance is 
explained. However, over the UK and the North Sea, the 
combined regression model can explain up to 50–60% of 
the observed storm intensity. The intensity measures have 
a higher proportion of variance which is not explained by 
the large-scale pattern indices, perhaps suggesting it is 
less predictable.

ANOVA is used to quantify the influence of the three 
large-scale patterns (Fig. 6d–l). This means the individual 

figures for each large-scale pattern show the percentage of 
explained variance that contributes to the total explained 
variance R2. For all three storm parameters, the NAO is 
the dominant variability mode to explain the variance in 
the storm parameters over most of the European region 
north of 45° N. It is even closer to 1 over Scandinavia 
which means the NAO is mainly responsible for the sta-
tistical performance of the regression. But the ANOVA 
shows an absence of connection between NAO and wind-
storm parameters between 40° and 50° N. Exactly in this 
region, SCA and EA show high values of explained vari-
ances for all three windstorm parameters and are thus 
potentially good candidates to improve skill if they are 
predictable.

Besides the ERA5-based regression, the link between 
storm parameters and large-scale patterns is investigated 
within the model (ensemble mean), thus based on the link 
between large-scale circulation and windstorm param-
eters purely from GloSea5 data. The resulting figures, like 
GloSea5-based regression slopes and verification (R2 and 
ANOVA), can be found in the Supplementary Appendix. 
The regression slopes, respectively for each large-scale pat-
tern in the regression (Supplementary Appendix Fig. A2), 

Fig. 3   Forecast ROC skill scores. Area under the ROC curve per 
grid cell between ERA5 and GloSea5 GC2 ensemble (63 member) 
for storm parameter (Frequency, ESSIa, ESSIs) from winter season 

1993/94 to 2015/16, regions with 1.9 or less storms in observation 
(ERA5) are shaded, dotted grid points are significant on 95% level
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show, similar to Fig. 5, a very strong connection between 
the windstorm parameter and the individual large-scale 
patterns. Only the spatial pattern from the SCA slopes 
is slightly different compared to the equivalent from the 
ERA5 regression as the maximum slope is shifted towards 
the northwest (model bias). The validation of the GloSea5 
regression is calculated the same way as the ERA5 regres-
sion validation and can be found in Fig. A3 in the Sup-
plementary Appendix. The R2 (Fig. A3, a–c) shows a high 
percentage of explained variance of the total regression over 
similar regions to ERA5 (Fig. 6). The R2 for storm fre-
quency shows a slight extension of high values over larger 
parts of the North Atlantic. This means the GloSea5 large-
scale patterns are explaining more of GloSea5 windstorm 

counts in this region than the ERA5 patterns explain of the 
ERA5 storm counts in the reanalysis data set. The indi-
vidual contribution to the explained variance (ANOVA; Fig. 
A3, d–l) for NAO shows similar patterns as the ERA5-based 
regression. The GloSea5-based regression seems to show a 
stronger influence of EA over the region that is independent 
of the NAO. The results of the ERA5-based regression lead 
to a similar ratio of explained variance from SCA and EA. 
As mentioned for the GloSea5-based regression slopes, the 
dominant SCA pattern is shifted towards the northwest and 
the same is seen in the ANOVA. The regions where SCA 
explains a significant part of the variance of storm param-
eters are shifted west-northwest and hence, play a smaller 
part in complementing the NAO as a source of variability.

Fig. 4   Forecast skill of the city scale. Mean ROC curve for 3 grid 
cells (London, Hamburg and Oslo) and their respective westerly and 
northwesterly grid cell, between ERA5 and GloSea5 GC2 ensemble 
(63 member) for storm parameter (Frequency, ESSIa, ESSIs) from 

winter season 1993/94 to 2015/16, associated ROC skill score as area 
under the curve in the bottom corner for the single “city”-grid cell, 
significance of ROCSS on 95% level marked with *; highest tercile 
(purple), middle tercile (green), lower tercile (orange)
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4.3 � Skill comparison between direct and indirect 
forecast approach

For the ease of comparison, Fig. 7 compares the Kendall cor-
relations between windstorm parameters of ERA5 and those 
directly derived from GloSea5 with the skill resulting from 
the indirect method. These windstorm parameters are forecast 
using the ERA5-based regression, thus reflecting the real-
world link between large-scale patterns and storms, but the pre-
diction is coming from using the forecast GloSea5 large-scale 
patterns. Following this ERA5-based regression link, all three 
storm parameters reveal a very similar spatial pattern to the 
direct approach, which corroborates the principal usefulness of 
such a regression-based forecast approach. Nevertheless, over-
all, the area of significant positive skill is less pronounced. For 
the storm frequency over northern France, the English Chan-
nel, and southern Scandinavia, a slightly higher forecast skill 
is provided by the direct approach and for most areas over the 
British Isles there are no significant differences. In addition, 
the accumulated storm intensity measure, ESSIa, shows higher 
skill for the direct approach over the whole region stretching 
from the Northeast-Atlantic across the British Isles to the Nor-
wegian Sea and Scandinavia. For the ESSIs the differences 
are very scattered, but upstream of Ireland the direct approach 

shows some stronger skill than the indirect. The correspond-
ing skill using entirely GloSea5-based regression by apply-
ing GloSea5 large-scale pattern indices to the model link also 
shows overall very similar skill patterns but fewer significant 
grid cells than the direct approach. Only a few grid cells down-
stream of Ireland show more skill in the GloSea5-based regres-
sion approach than in the direct approach.

The GloSea5-based regression skill is lower in most regions 
than the direct approach and the ERA5-based regression. Both 
ERA5- and GloSea5-based regression relations cannot pre-
dict windstorm frequency or intensity as well as the explicit 
storms in the forecast model itself in storm relevant regions 
(Fig. 7, 4th and 5th row). These regressions are calculated 
using the total time series with all data points, to eliminate 
any potential internal effects. The leave-one-out method with 
one season as test data was tested for the ERA5-based regres-
sions and the differences show the same patterns for all three 
storm parameters (see Supplementary Appendix, Fig. A4). The 
windstorm relevant areas with significant correlations in the 
direct approach show strong positive differences from the other 
methods. For storm frequencies this difference corresponds 
to a skill increase of up to 75% and for the intensity measure 
even more than 100% compared to the indirect approach. As in 
Befort et al. (2019) the focus is on significant changes in skill 

Fig. 5   Linear models of storm parameters (Frequency, ESSIa, ESSIs). Regression slopes from multiple linear regressions to the first three EOF 
patterns (NAO, SCA and EA), in ERA5 winter season 1993/94 to 2015/19
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and the differences show that the direct approach has higher 
skill over north-western Europe than in the indirect approach.

4.4 � Skill verification and signal‑to‑noise paradox 
(direct approach)

The possibility of a signal-to-noise paradox in the seasonal 
winter windstorm forecast, for tracked windstorms and their 
parameters (frequency and intensity measures), is investi-
gated using the direct approach. The ratio of predictable 
component (RPC) for the storm parameters shows very 
similar patterns (Fig. 8) as the direct forecast skill (Fig. 2) 
itself. The RPC values are high and exceed 1 in the same 
regions where the direct approach shows significant fore-
cast skill. The RPC is up to 3 for the storm frequency and 
up to 5 for the intensity measures over the British Isles. 

This implies that the forecast windstorm signals, like the 
large-scale flow, are too weak in amplitude given the high 
correlation skill. Hence, from the presented findings, it can 
be concluded that seasonal forecasts underpredict the ampli-
tude of year-to-year fluctuations in windstorms. This finding 
will be investigated in more depth in an independent study.

5 � Discussion and conclusion

This study investigated three storm parameters that define 
extra-tropical winter windstorms: the storm frequency 
(Befort et  al. 2019; Kruschke 2015), the accumulated 
storm severity per season (ESSIa) and the average storm 
severity per season (ESSIs).

Fig. 6   Variance explained by linear models of storm parameters (Fre-
quency, ESSIa, ESSIs). Determination parameter R2 (a–c) and indi-
vidual ratio of explained variance from ANOVA of first three EOF 

patterns (NAO (d–f), SCA (g–i), EA (j–l)), in ERA5 winter season 
1993/94 to 2015/16
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Two approaches to assess forecast skill are applied for 
relevant storm characteristics. The “direct approach” diagno-
ses the forecast skill by identifying and tracking windstorms 
directly within the hindcasts. The indirect approach uses multi-
linear regression to large-scale circulation patterns, where 

the regression relation can be taken from observations or the 
model.

The storm frequency and other storminess definitions 
show similar significance patterns over Europe to those 
found by Befort et al. (2019) and Scaife et al. (2014). The 

Fig. 7   Forecast skill for storm parameter (frequency, ESSIa, 
ESSIs).  Ranked Kendall-�b-correlation between ERA5 and GloSea5 
GC2 ensemble mean (63 member) (1st row), between ERA5 and 
regression model storm parameters (2nd row) and difference of sig-
nificant correlation values as (1st row) minus (2nd and 3rd row) (4th 

and 5th row). Regions with 1.9 or less storms in observation (ERA5) 
are shaded. Dotted grid points are significant on 95% level (1st 3 
rows). For the ease of comparison only those regions where one of 
the approaches shows positive significant skill are shown as differ-
ences and marked by a dot (last 2 rows)
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highest positive skill for frequency is found over southern 
Great Britain, northern France and southern Scandinavia. 
In addition to existing studies which exclusively investigate 
windstorm frequency, the intensity forecast is evaluated: the 
combined storm intensity measure (ESSIa) shows similar 
high skill but is shifted towards the northwest, hence positive 
skill is identified more over the North Atlantic and the exit 
region of the North Atlantic storm track. The event-averaged 
storm severity measure (ESSIs) shows positive skill only in 
a region downstream of Ireland.

These regions are all located at the end of the North 
Atlantic storm track. The region over the central North 
Atlantic which contains the climatological maximum wind-
storm activity does not show strong forecast skill. This may 
be due to the fact that large scale modes, which explain much 
of the skill, have a smaller influence there. This study shows 
that NAO, SCA and EA are responsible for forecast storm 
variations at the end of the storm track. SCA and EA show 
higher explained variabilities over the central North Atlantic 
than NAO, but it seems this is not enough to strengthen the 
forecast skill. The addition of SCA and EA helps in regions 
where these large-scale patterns show their centres of action 
(Fig. A1), but not in the central North Atlantic, this region 
would need further investigations with additional factors.

A separate skill analysis for seasons with positive/neutral/
negative large-scale patterns has been done by Renggli et al. 
(2011) and shows stronger skill for extreme NAO seasons.

The study from Clark et al. (2017) additionally investi-
gated the reliability of the GloSea5 forecast for 1.5 m tem-
perature and 10 m wind speed. They summarized for air 
temperature a reliable forecast over the same region as found 
in this study for forecast skill of windstorms. Interestingly, 
for wind speed most of this region (storm track area over 
North Atlantic and the UK) was found to be “underconfi-
dent” in its prediction. As seen in the RPC results (Sect. 4.4), 
the signal-to-noise paradox is present in the forecasts for 
all three windstorm parameters, suggesting that forecast 
ensemble mean signals are too weak which would explain 
the underconfidence. Further investigations of the signal-
to-noise paradox in storm predictions are required and are 
planned in a separate study.

The ROCSS maps and selected ROC curves allow skill 
estimates for different storm parameter categories. The low-
est and highest terciles of the storm parameter are more pre-
dictable than the middle tercile. This is in agreement with 
Renggli et al. (2011), who also found better prediction skill 
for the lower and higher terciles of storm frequency. Their 
study investigated just storm frequency, but here we show 
similar results for better prediction of lower and higher ter-
ciles of storm intensity.

The second approach used in this study is the “indirect 
approach”. A combined linear regression with the three 
dominant large-scale patterns (EOF-based definition) for the 
North Atlantic and Europe (Walz et al. 2018a)—NAO, SCA 
and EA. The resulting EOF patterns of ERA5 and GloSea5 
MSLP do not reveal any significant spatial difference. The 
applied PCA is done by using the ERA5 EOF pattern for 
both data sets without loss of generality to ensure a robust 
comparison.

Using the ERA5-based regression, 80% of the interan-
nual storm frequency variance can be explained by the three 
large-scale patterns. For storm intensity measures the linear 
regression model is less well defined but is still significant. 

Fig. 8   Ratio of predictable components (RPC) for storm parameter 
(Frequency, ESSIa, ESSIs). RPC = rmo/rmm, with r as ranked Kend-
all-�b-correlation between ERA5 and GloSea5 GC2 ensemble (63 
member) from winter season 1993/94 to 2015/16, regions with 1.9 
or less storms in observation (ERA5) are suppressed (grey). A ratio 
above 1 means that the signal-to-noise paradox exists as the model 
mean is better representing the reality than its individual members
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The results for the ERA5-based regression show very clearly 
the main influence of the NAO around 60° N over Europe. A 
gap of explained variance from NAO is seen at around 45° N 
for all storm parameters as expected given this is close to the 
neutral line of the NAO influence. SCA is the leading pattern 
for the western part of the gap and EA for the more eastern 
part in the ERA5-based regressions. For the GloSea5-based 
regression, the same area shows EA as the dominant con-
tributor for the variance. SCA is less important for the storm 
track region over the North Atlantic in the model climate. 
The magnitude of explained variance is very high for the 
NAO which is in line with this mode being the main large-
scale mode influencing the North Atlantic region (Hurrell 
et al. 2001) and the result by Scaife et al. (2014), showing 
the NAO is the strongest predictable factor for seasonal fore-
casts for Europe. The link between storm frequency and the 
NAO has also been shown by Befort et al. (2019), with the 
same kind of lack of storm predictions around 45° N. This 
study showed SCA and EA can be used to increase storm 
forecast skill by including those two additional large-scale 
patterns compared to Befort et al. (2019).

The different regression approaches show on one hand 
that there is a link between the large-scale patterns: NAO, 
SCA and EA, and storm count and storm intensity. This link 
also exists in the model climate with the SCA pattern hav-
ing a smaller influence in the model than the real climate. 
The comparison between the direct method and the indirect 
method shows that the direct forecast model skill is higher 
than for the regression approach. A comparison of prediction 
skill for intensity shows a similar higher skill in the direct 
method. Compared to storm frequency, the increase in skill 
for intensity is more pronounced. This study improved the 
forecast skill based on large-scale pattern regressions for 
storm frequency in comparison to Befort et al. (2019) and 
show similar high difference between regression-based and 
direct-model skill for storm intensity measures.

In summary, this study showed that in addition to posi-
tive seasonal windstorm count prediction skill, there is also 
positive event-based windstorm intensity skill in the Glo-
Sea5 seasonal forecasts. A statistical regression approach 
combining the three dominant large-scale patterns over 
Europe improves the indirect windstorm forecast compared 
with NAO-based regression alone, but it still does not show 
higher forecast skill than the direct approach.
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