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Users of quantum networks can securely communicate via so-called (quantum) conference key agree-
ment—making their identities publicly known. In certain circumstances, however, communicating users
demand anonymity. Here, we introduce a security framework for anonymous conference key agreement
with different levels of anonymity, which is inspired by the ε-security of quantum key distribution.
We present efficient and noise-tolerant protocols exploiting multipartite Greenberger-Horne-Zeilinger
(GHZ) states and prove their security in the finite-key regime. We analyze the performance of our
protocols in noisy and lossy quantum networks and compare with protocols that only use bipartite
entanglement to achieve the same functionalities. Our simulations show that GHZ-based protocols can
outperform protocols based on bipartite entanglement and that the advantage increases for protocols with
stronger anonymity requirements. Our results strongly advocate the use of multipartite entanglement for
cryptographic tasks involving several users.
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I. INTRODUCTION

Building on the “second quantum revolution” [1–3],
quantum cryptography technologies have recently seen a
rapid development both in academia and industry, with
quantum key distribution (QKD) [4–6] being a promi-
nent example [7]. The task of QKD has been generalized
to multiple users with quantum conference key agree-
ment (CKA) [8–16], where n parties establish a common
secret key when linked by an insecure quantum network
[17]. The key, called conference key, can subsequently
be used for groupwise encryption among the n parties
[18].

Besides achieving secure communication with encryp-
tion keys, an equally important privacy aspect that arises in
a multipartite network is anonymity. Indeed, in numerous
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scenarios the communicating parties want to share a secret
message and, at the same time, remain anonymous. That
is, they want to keep their identities hidden from the other
parties in the network, from the network manager, and
even between themselves. In a world ever more demanding
for privacy, many individuals would benefit from secure
anonymous communication, including voters, anonymous
informants, investigative reporters, secret agents, and users
updating an online database (e.g., medical records).

Here, this cryptographic task is formalized as fol-
lows. Consider an n-party quantum network where,
a priori, each party could be a participant, i.e.,
the sender or one of the m receivers (m < n) cho-
sen by the sender. The task is to identify a set
of participants and establish a secret conference key
between them, such that they remain anonymous at
least with respect to the other n − m − 1 parties.
The established conference key then enables secure anony-
mous conferencing among the participants.

We define protocols that accomplish the described task
with different anonymity requirements. In particular, an
anonymous conference key agreement (ACKA) protocol
reveals the participants’ identities to each participant and
provides them with the same conference key. Beyond that,
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in a fully anonymous conference key agreement (fully
ACKA) protocol we require that only the sender knows the
number and identities of the receivers, while each receiver
is only aware of their role. In both ACKA and fully ACKA
protocols the participants’ identities (and the conference
key) are unknown to the remaining parties in the network
and to a potential eavesdropper controlling the network
and the quantum source.

A fully ACKA protocol could be used by a whistle-
blower (the sender) within a company, who wants to
expose an illicit activity to some of the company’s man-
agers (the receivers). The fully ACKA protocol would
ensure the anonymity of sender and receivers, thus protect-
ing them from potential reprisals. Alternatively, an ACKA
protocol could be employed by journalists to send reports
from an area with limited freedom of press.

We distinguish three features characterizing the secu-
rity of ACKA and fully ACKA protocols. Specifically,
the protocol must be CKA-secure, which means that the
established conference key is identical for all participants,
uniformly distributed and unknown to anybody else (as in
standard CKA [14,19]). The protocol must also be anony-
mous, in the sense that the identity of each participant must
be kept secret from a subset of parties, depending on the
required level of anonymity. Finally, the protocol must be
integrous, that is, the identities of the sender and of the
chosen receivers are correctly assigned and communicated.

In this work, we introduce rigorous security definitions
for ACKA and fully ACKA, which encompass the above-
mentioned security notions and are inspired by the com-
posable security framework of QKD. Moreover, we design
ACKA and fully ACKA protocols based on multipartite
entangled states, namely n-party GHZ states, distributed
by an untrusted source and prove their security according
to our definitions.

To benchmark the performance of our GHZ-based pro-
tocols, we introduce two multiparty generalizations of
the Anonymous Message Transmission protocol [20].
The protocol in Ref. [20] allows two parties to anony-
mously send classical messages in a network with dis-
honest parties, by employing bipartite private authen-
ticated channels between every pair of parties. Such
channels can be established beforehand by distribut-
ing Bell pairs and running pairwise QKD proto-
cols. Our multiparty generalizations of the protocol in
Ref. [20], named bipartite ACKA and bifully ACKA,
achieve the same functionalities of ACKA and fully
ACKA, respectively, while exclusively relying on bipar-
tite entanglement (Bell pairs) shared between every pair of
parties.

Our simulations, run on a quantum network like the
one in Fig. 1, show that the ACKA and fully ACKA pro-
tocol based on GHZ states significantly outperform the
corresponding protocol based on Bell pairs even in the
finite-key regime. The advantage provided by GHZ states

FIG. 1. Our protocols are implemented on a quantum network
consisting of n parties (n = 8 in the picture) linked to a cen-
tral quantum server. The parties’ roles are not predetermined
and are instead assigned during the protocol’s execution. The
party designated as sender selects the desired receivers to anony-
mously establish a shared conference key. The quantum server
distributes—in each network use—either Bell pairs between dis-
tinct pairs of parties (e.g., four pairs when n = 8) or one GHZ
state shared between all parties. While the bipartite ACKA and
bifully ACKA protocols require only Bell pairs, our ACKA
and fully ACKA protocols mainly use GHZ states. The figure
of merit to compare our protocols is the secret conference key
rate, i.e., the number of secret conference key bits generated per
network use (see Sec. II C).

over Bell pairs increases with the anonymity requirements
of the protocol. In the case of fully ACKA, multipartite
entanglement increases the secret conference key rate by a
factor proportional to the square of the number of parties in
the network (n2). Our results clearly demonstrate the ben-
efit of multipartite entanglement for cryptographic tasks
involving more than two parties and reinforce previous
results supporting this claim [8,18,21].

A. Security assumptions

The eavesdropper—called Eve—can completely control
the entanglement source and the quantum network. Eve
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may also listen to the public communication generated
during the protocol and corrupt any subset of parties.
Any party who misbehaves and willingly does not follow
the prescriptions of the protocol is considered to be a cor-
rupt party and is called dishonest. Eve can collaborate with
the dishonest parties, having access to their private classi-
cal inputs and outputs, but is not allowed to impersonate
them (e.g., store their quantum systems). Analogously to
QKD, Eve has unbounded quantum power and holds a
perfect quantum memory.

Conversely, the n parties are equipped with trusted quan-
tum measurement devices and at most short-lived quantum
memories. This assumption is motivated by the current
state of the art in the field of quantum memories [22,23]
and by the fact that most end nodes in quantum networks
are simply measuring stations [24,25].

B. Relation to previous works

Early anonymous communication protocols in quan-
tum networks [26,27] aim at transmitting classical as well
as quantum information, going beyond the functionality
achieved by the Anonymous Message Transmission proto-
col of Ref. [20]. However, such protocols [26,27] require
trusted sources of multipartite entangled states, do not
address secrecy, and neither tolerate dishonest network
users nor noise.

These drawbacks are partially resolved by fol-
lowing protocols [28–30], which allow for untrusted
sources of entanglement and potentially dishonest par-
ties by introducing source-verification schemes. How-
ever, such schemes happen to be highly inefficient,
technologically demanding, and are still vulnerable to
noise.

Recently, the task of anonymously establishing a secret
conference key, with the anonymity requirements iden-
tified as fully ACKA in our work, was addressed in
Ref. [31] and further explored in Ref. [32]. The protocols
in Refs. [31,32], while requiring some level of trust in the
source of multipartite entangled states, also build on the
same source-verification scheme of Refs. [29,33] and thus
carry the same drawbacks.

In contrast to previous protocols [28–32] allowing for an
untrusted albeit noiseless source, our protocols are robust
against noise in the quantum network and in the untrusted
source, thereby representing the first secure anonymous
protocols with a noisy untrusted source.

Moreover, our protocols are remarkably more effi-
cient and implementable with present-day technology,
compared to previous proposals [26–32]. Indeed, they ver-
ify the entangled states prepared by the source over a small
fraction of states through local measurements, leaving
the majority of the states for establishing the conference
key. Previous protocols, instead, either assume a noiseless
trusted source (which is a strong assumption) [26,27], or

consume the majority of the entangled states for verifi-
cation (resulting in asymptotically null key rates even in
a noiseless scenario) [29–32], or require multiqubit gates
and perfect quantum memories [28], which are not yet
technologically available.

Regarding security, unlike any previous anonymous
quantum protocol, we prove the security and anonymity
of our protocols in the experimentally relevant regime of
finite keys, by extending the ε-security framework of QKD
to include anonymity and integrity.

Altogether, the efficiency, noise tolerance, and ε-
security of our anonymous protocols allow us to com-
pute nonzero conference key rates in noisy and lossy
quantum networks, both in the asymptotic and finite-key
regimes. We emphasize that such a result could not be
obtained in any previous anonymous-communication pro-
tocol based on multipartite entanglement for the reasons
outlined above.

C. Use of the anonymous conference key

Contrary to standard QKD and CKA, the secret confer-
ence key established by ACKA and fully ACKA protocols
must be used in a nontrivial encryption scheme in order
to protect the participants’ identities. If the sender simply
encrypts a message with the conference key and broadcasts
it, every other party would identify the sender as the party
who performed the broadcast.

In the ACKA scenario, the solution is straightfor-
ward. Every party in the network is asked to broad-
cast a random string, while the sender broadcasts the
encrypted message. Only the receivers are able to
decrypt the sender’s broadcast by using the conference
key.

In the fully ACKA scenario, the receivers do not know
the sender’s identity and the previous solution could reveal
it. In this case, a possibility would be to employ classical
anonymous broadcasting protocols [34].

II. RESULTS

A. Security definitions

Our approach to define the security of ACKA and fully
ACKA protocols starts from the identification of three
properties that an ideal protocol is expected to satisfy.

The first property that we require is integrity. At the
beginning of an ACKA (fully ACKA) protocol, the par-
ticipants are not yet determined. Therefore, the first step of
such protocols consists in running an identity-designation
(ID) subprotocol. The ID subprotocol determines the
sender, notifies the receivers of their roles and, in the case
of ACKA, notifies the receivers of the other participants’
roles. A protocol is integrous if its ID subprotocol works
perfectly, i.e., if either it correctly communicates the roles
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of sender and receivers, or it aborts for every party in the
network.

Conditioned on the fact that the ID subprotocol does
not abort and correctly assigns the identities, we require
the ideal protocol to be CKA-secure. That is, either it out-
puts the same random conference key for every participant,
uncorrelated from any information held by the nonpartic-
ipants and Eve, or it aborts from the point of view of the
participants.

Finally, an ideal protocol should be anonymous, i.e.,
the identity of each participant must be kept secret from
the nonparticipants and Eve—as well as from the other
receivers in the case of fully ACKA.

We remark that dishonest participants may broadcast
their identity—or the identity of all the participants in the
case of ACKA. Hence, in the presence of dishonest partici-
pants we cannot impose the same anonymity requirements.
Similarly, no CKA-security is required if some partici-
pants are dishonest, as they may publicly reveal the secret
conference key.

Inspired by the composable security framework of
QKD [35,36], we define the security of ACKA and fully
ACKA protocols from the output state of the proto-
col—i.e., the state of the classical and quantum registers
of each party, including the eavesdropper, at the end of
the protocol. More specifically, we introduce a security
definition, which quantifies, for every property, how close
the output state is to a state with the required property.
Informally, our security definition can be stated as fol-
lows (the rigorous definition, Definition 6, is given in
Appendix B).

Definition 1 (Security (informal)): An ACKA (fully
ACKA) protocol is ε-secure, with ε = εin + εCKA + εan, if
it satisfies the following three conditions:

(a) εin-integrity: the ID subprotocol correctly assigns
the roles of sender and receivers or aborts for every
party in the network, except for a probability smaller
than εin.

(b) εCKA-CKA-security: in the case of honest partici-
pants, conditioned on the ID subprotocol correctly
assigning the participants’ identities, the output state
is εCKA-close to the output state of a protocol that
either delivers the same secret conference key to
every participant, or aborts for every participant.

(c) εan-anonymity for ACKA: the output state of any
subset of nonparticipants and Eve is εan-close to a
state, which is independent of the identity of the
remaining parties. εan-anonymity for fully ACKA:
the output state of any subset of parties (except for
the sender) and Eve is εan-close to a state, which is
independent of the identities of the other parties.

In Sec. II B we introduce our ACKA and fully ACKA
protocols based on GHZ states shared by all parties. Moti-
vated by the fact that our fully ACKA protocol does not
satisfy the (strong) anonymity condition of Definition 1
but still retains important anonymity features, we provide a
weaker anonymity definition satisfied by our fully ACKA
protocol.

The reason for which the fully ACKA protocol cannot
satisfy the strong anonymity condition is that the receivers,
by executing the protocol, gain access to information (e.g.,
whether the protocol aborts or not) that can depend on
the identities of the other participants. Such a dependence
can occur if the untrusted source distributes asymmetric
states, which are noisier for some parties than for others,
instead of the permutationally symmetric GHZ states. Sim-
ilar problems affecting anonymity were already mentioned
in Ref. [28] regarding the protocol proposed in Ref. [37].

However, we emphasize that honest-but-curious rece-
ivers may be able to deduce the identity of other par-
ticipants only if they combine the identity-dependent
information obtained from the protocol with a detailed
knowledge of the asymmetric states distributed by the
source—or with any other asymmetric specification of
the protocol causing identity-dependent events. Therefore,
the anonymity of the parties can be preserved if honest-
but-curious receivers do not have access to the asymmetric
specifications of the protocol’s implementation (e.g., if
they are secret or if the publicly available specifications
are symmetric), even if the source actually distributes
asymmetric states. Note, however, that we cannot pre-
vent dishonest parties or Eve from broadcasting the actual,
asymmetric, specifications of the protocol’s implementa-
tion at any point in time, thus jeopardizing anonymity with
respect to honest receivers.

This weaker version of anonymity is captured by the fol-
lowing definition, where w abbreviates “weak” and (n)p
abbreviates “(non)participant.” The definition is satisfied
by our fully ACKA protocol with GHZ states (the formal
definition is given in Appendix B).

Definition 2 (Weak anonymity for fully ACKA (infor-
mal)): A fully ACKA protocol is εWan-weak-anonymous,
with εWan = εNPan + εPan, if the following two conditions
are satisfied:

1. (Anonymity with respect to nonparticipants and
Eve.) The output state of the protocol satisfies the
ε-anonymity condition for ACKA protocols with
ε = εNPan.

2. (Anonymity with respect to honest-but-curious
receivers.) When the protocol’s specifications
known to the parties are symmetric—i.e., invari-
ant under permutations of parties—any subset of
honest-but-curious receivers cannot guess the iden-
tity of other participants with a higher probability
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than the trivial guess, except for a small deviation
εPan.

B. ACKA and fully ACKA protocols

Here we present an ACKA and a fully ACKA proto-
col, which rely on the multipartite correlations of GHZ
states shared by all the parties in the network. However,
we emphasize that the untrusted source could prepare
completely arbitrary states and potentially be controlled
by Eve. Similarly, any dishonest party can behave differ-
ently from the actions prescribed by the protocol. Yet, our
ACKA and fully ACKA protocols are secure in the sense
of Definition 1.

For convenience, we identify the sender as Alice and
the intended receivers as Bobl, for l ∈ {1, . . . , m}, where
the number of receivers m is not predetermined and can be
chosen by Alice during the protocol. Both our protocols
require the following:

1. A shielded laboratory for each party, equipped with
a trusted measurement device, a trusted postprocess-
ing unit and a private source of randomness.

2. A bipartite private channel for each pair of the n
parties. We obtain it with a bipartite public authen-
ticated channel and a shared secret key to encrypt
the communication over the channel (with one-time
pad). Hence, the communication over the bipar-
tite private channel is secret (i.e., only known to
the legitimate parties), whereas the identities of the
parties using the channel are public.

3. An authenticated broadcast channel.
4. A public source of randomness that is not controlled

by the adversary.

The ACKA protocol also requires previously shared con-
ference keys among every subset of parties in the network
(note that this requirement could be dropped by introduc-
ing a minor overhead in the number of bipartite private
channel uses). Part of these keys are consumed during
the execution of the ACKA protocol, which is thus a
key-growing algorithm.

In the following, we provide a high-level description of
the steps of our ACKA and fully ACKA protocols, whose
core consists in measuring GHZ states to anonymously
generate a shared conference key. The additional steps
required to ensure integrity and CKA-security (namely the
ID subprotocol, error correction, and privacy amplifica-
tion) are summarized here and further detailed in Appen-
dices C and D, together with more exhaustive protocol
descriptions.

In order to ensure that the classical communica-
tion required by ACKA and fully ACKA is anony-
mous, we make use of classical subroutines introduced
in Ref. [20]—specifically Parity, Veto, and Collision

Detection—which are run on the bipartite private channels.
Note that, in our simulations, we account for the genera-
tion of the secret keys—needed to implement the bipartite
private channels—by running pairwise QKD protocols
over distributed Bell pairs. As the name suggests, the Par-
ity protocol computes the Parity of the input bits while
preserving the anonymity of the parties.

Protocol 1: Anonymous conference key agreement
(ACKA).

1. The parties run a subprotocol, called identity
designation for ACKA (ACKAID, Protocol 6 in
Appendix C), after which Alice is established to
be the sender and Bobl, for l ∈ {1, . . . , m}, the
receivers.

2. Alice and the Bobs recover a pre-established confer-
ence key.

3. Alice generates a random bitstring, called testing
key, where 1 corresponds to a test round and 0 to
a key generation round (each bit equals 1 with prob-
ability p). Alice broadcasts a compressed version of
the testing key, encrypted (with one-time pad) with a
portion of the pre-established conference key of step
2, so that each Bob can decrypt it and recover the
testing key. All the other parties broadcast a random
string of the same length.

4. Repeat for L rounds:
4.1. An untrusted source distributes a state to each
of the n parties. Ideally, the source prepares an n-
party GHZ state.
4.2. Alice and the Bobs measure their qubits
according to the testing key. They measure in the
(Pauli) Z basis if the round is a key generation
round, or in the (Pauli) X basis if the round is a
test round. All the other parties measure X . The out-
comes +1 and −1 of each Pauli measurement are
mapped to the binary values 0 and 1, respectively.
The Z outcomes of each participant form their raw
conference key.

5. Once all the qubits have been measured (in case the
parties hold short-lived quantum memories, we wait
for a time longer than their coherence time), the test-
ing key is anonymously revealed to all parties by
iterating the Parity protocol (Protocol 3).

6. For every round labeled as a test round, the n par-
ties perform the Parity protocol with the following
inputs: every party, except for Alice, inputs the out-
come of their X measurement while Alice inputs a
random bit. By combining the outputs of Parity with
her test-round outputs, Alice computes Qobs

X , which
is the fraction of test rounds where the X outcomes
of the n parties have parity 1.

7. Verification of secrecy: Alice compares Qobs
X with

the predefined value QX . If Qobs
X + γ (Qobs

X ) > QX +
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γ (QX ), where γ (QX ) is the statistical fluctuation,
Alice concludes that the verification failed.

8. Error correction (ACKAEC, Protocol 9): Alice
anonymously broadcasts error-correction informa-
tion based on a predefined value QZ for the pairwise
error rate between the Z outcomes of Alice and of
each Bob. The Bobs use the information to correct
their raw keys and verify that they match Alice’s
raw key. Alice’s broadcast is encrypted with the
pre-established conference key and only the Bobs
can decrypt it. If the error correction or the verifica-
tion of secrecy (step 7) failed, the participants abort
the protocol, but this information is encrypted and
only available to them.

9. Privacy amplification (PA): the public randomness
outputs a two-universal hash function. Alice and
each Bob apply the two-universal hash function
on their error-corrected keys and obtain the secret
conference keys of length �.

In the fully ACKA scenario, the participants do not
know each other’s identity, hence they cannot use pre-
established conference keys to share the testing key as
in the ACKA protocol (Protocol 1). Therefore, in the
fully ACKA protocol we introduce a subprotocol called
the Testing Key Distribution (TKD) protocol (Protocol
8 in Appendix C), which allows Alice to anonymously
distribute the testing key to the Bobs.

Protocol 2: Fully Anonymous conference key agreement
(fully ACKA)

1. The parties perform the fully ACKAID subproto-
col (Protocol 7), after which Alice is established
to be the sender and Bobl, for l ∈ {1, . . . , m}, the
receivers.

2. Alice generates a random bitstring, called testing
key, where 1 corresponds to a test round and 0
to a key generation round (each bit equals 1 with
probability p). Additionally, Alice generates the bit-
strings �rl (for l ∈ {1, . . . , m}), which are later used
to encrypt some communication between Alice and
each Bob.

3. The parties perform the TKD protocol (Protocol 8)
in order for Alice to distribute the testing key and
the string �rl to the corresponding Bobl.

4. Repeat for L rounds:
4.1. An untrusted source distributes a state to each
of the n parties. Ideally, the source prepares an n-
party GHZ state.
4.2. Alice and the Bobs measure their qubits
according to the testing key. They measure in the
Z basis if the round is a key generation round, or
in the X basis if the round is a test round. All the

other parties measure X . The Z outcomes of each
participant form their raw conference key.

5. Once all the qubits have been measured, the testing
key is anonymously revealed by iterating the Parity
protocol (Protocol 3).

6. For every round labeled as a test round, the n par-
ties perform the Parity protocol with the following
inputs: every party, except for Alice, inputs the out-
come of their X measurement while Alice inputs a
random bit. By combining the outputs of Parity with
her test-round outputs, Alice computes Qobs

X , which
is the fraction of test rounds where the X outcomes
of the n parties have parity 1.

7. Verification of secrecy: Alice compares Qobs
X with

the predefined value QX . If Qobs
X + γ (Qobs

X ) > QX +
γ (QX ), where γ (QX ) is the statistical fluctuation,
Alice concludes that the verification failed. If the
verification of secrecy failed, or if a party detected
any malfunctioning in the TKD protocol (step 3),
the protocol aborts for every party.

8. Error correction (fully ACKAEC, Protocol 10):
Alice anonymously broadcasts error-correction
information based on a predefined value QZ for the
pairwise error rate between the Z outcomes of Alice
and of each Bob. The Bobs use the information to
correct their raw keys and verify that they match
Alice’s raw key. If the error correction fails, the pro-
tocol aborts but this information is encrypted with
the strings �rl and thus only available to Alice and
the Bobs.

9. Privacy amplification (PA): the public randomness
outputs a two-universal hash function. Alice and
each Bob apply the two-universal hash function
on their error-corrected keys and obtain the secret
conference keys of length �.

In the Supplemental Material [38] we prove the secu-
rity of Protocols 1 and 2 according to the formal statement
of Definition 1, provided in Appendix B (Definition 6).
The security claims of the protocols are reported in the
following theorem.

Theorem 3 (Security): The ACKA protocol based on
GHZ states (Protocol 1) yields a secret conference key of
net length

�net = L(1 − p) [1 − h (QX + γ (QX )) − h(QZ)]

− log2
2(n − 1)

εEC
− 2 log2

1
2εPA

− Lh(p) − n, (1)

and is εtot-secure according to Definition 1, with εtot =
2−rV + (n − 1)εenc + 2εx + εEC + εPA and where h(x) =
−x log2 x − (1 − x) log2(1 − x) is the binary entropy
function.
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The fully ACKA protocol based on GHZ states (Proto-
col 2) yields a secret conference key of length

� = L(1 − p) [1 − h (QX + γ (QX )) − h(QZ)]

− log2
2(n − 1)

εEC
− 2 log2

1
2εPA

, (2)

and is εtot-secure according to Definition 1 but with the
anonymity condition replaced by Definition 2, with εtot =
2−(rV−2) + (n − 1)(6εenc + 2−(rN −1)) + εEC + 6εx + 3εPA.

Since Protocol 1, differently from Protocol 2, is a key-
growing algorithm, in Eq. (1) we reported the net key
length after one run of the protocol, which is obtained by
subtracting from � the number of consumed bits of pre-
established conference keys. The protocols’ parameters
appearing in the conference key length and in the security
parameter εtot are specified in Table I of Appendix D.

C. Performance comparison

In order to assess the performance of Protocols 1 and 2
and the benefit of GHZ states in anonymously establishing
a conference key, we design protocols achieving the same
tasks without resorting to multipartite entanglement. The
protocols, which use only bipartite private channels hence
named bipartite ACKA and bifully ACKA, are generaliza-
tions of the Anonymous Message Transmission protocol
[20] to more than two parties. In Appendix E we provide
a detailed description of bipartite ACKA (Protocol 11)
and bifully ACKA (Protocol 12) along with their security
claims according to Definition 1.

All the protocols are run on the same quantum net-
work (see Fig. 1). We model the network of n parties
as a star-shaped network where every party is linked
to an untrusted quantum server—potentially operated
by Eve—by an equally lossy quantum channel of
transmittance η.

The quantum server is programmed to distribute either
the n-party GHZ state |GHZn〉 = (|0〉⊗n + |1〉⊗n)/

√
2,

which is used to extract the conference key in ACKA and
fully ACKA, or the Bell state |GHZ2〉 to every pair of par-
ties in order to implement the bipartite private channels by
running BB84 protocols [4].

We assume that both states are encoded in some binary
degree of freedom of single photons (e.g., polarization),
such that the probability of detecting a (potentially noisy)
Bell pair and GHZ state is η2 and ηn, respectively. We
allow for noisy states due to a faulty state preparation by
the quantum server, which prepares the states by apply-
ing CNOT gates with failure probability fG. This leads to
nonzero error rates QX and QZ of the GHZ state and QXb
and QZb of the Bell pairs. We refer the reader to the Sup-
plemental Material [38] for the exact relation between the
error rates and fG.

We compare the four protocols—ACKA versus bipar-
tite ACKA, and fully ACKA versus bifully ACKA—in
terms of their conference key rate, that is, the number of
secret conference bits shared by Alice and the intended
Bobs per network use. We define one network use to be
the preparation and attempted distribution of photons from
the quantum server to the parties, regardless of whether
the photons are lost or not. We assume that each chan-
nel between the server and a party can transmit at most
one photon per network use. However, multiple photons
can be transmitted in parallel from the server to the parties
in a single network use, namely entangled in a GHZ state
shared between all parties or in multiple Bell pairs shared
between disjoint pairs of parties (see Fig. 1).

The conference key rate of the ACKA (fully ACKA)
protocol reads r = �net/Ltot (r = �/Ltot), where �net (�) is
given in Eq. (1) [respectively, Eq. (2)] and Ltot is the total
number of network uses. Recall that the ACKA and fully
ACKA protocols employ GHZ states (for key generation)
and Bell pairs (for the bipartite private channels), both
contributing to the total number of network uses Ltot. How-
ever, the contribution of Bell pairs is marginal since, in the
majority of the rounds, the parties are generating confer-
ence key bits by measuring a GHZ state. Conversely, all
the network uses in bipartite ACKA and bifully ACKA are
devoted to the distribution of Bell pairs, which are also
used to establish the conference key.

In Fig. 2 we plot the conference key rates of the
four protocols in the finite-key regime. The key rates are
numerically optimized over the protocols’ parameters for
each value of Ltot, having fixed the security parameter
(Definition 1) to εtot = 10−8.

In the optimizations, we set the CNOT gate failure prob-
ability to fG = 0.02 and to fG = 0.01 [41], while the trans-
mittance is given by η = 10−γ d/10, where d is the length of
the channel party server and γ = 0.17 dB/km (each chan-
nel is assumed to be an ultralow-loss fiber). We set the
distance to d = 2 km and d = 10 km to simulate common
metropolitan communication scenarios. Further details on
the conference key rates and their optimization are given
in the Supplemental Material [38].

From Fig. 2 we deduce that the ACKA and fully ACKA
protocols, based on GHZ states, can yield higher confer-
ence key rates than the protocols exclusively based on
Bell pairs (bipartite ACKA and bifully ACKA), espe-
cially in the high-Ltot regime, where finite-key effects can
be neglected. In order to understand the intrinsic reason
behind this, we compute the asymptotic conference key
rates of our anonymous protocols. Indeed, the asymptotic
key rates are devoid of statistical corrections and are inde-
pendent of the subprotocols requiring a fixed number of
network uses regardless of the key length (e.g., Veto or
ID). Hence, they reveal the bare scaling of the protocols’
performance with respect to the number of parties and the
quality of the source states.
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FIG. 2. Secret conference key rates of our anonymous protocols as a function of the total number of network uses (Ltot), for different
numbers of parties in the network (n). The security parameter is fixed to εtot = 10−8. The protocols based on GHZ states (ACKA
and fully ACKA) outperform the ones based on Bell pairs (bipartite ACKA and bifully ACKA) already for a relatively low number
of network uses. In our network model a quantum server prepares either GHZ states or Bell pairs by repeatedly applying a faulty
CNOT gate with failure probability fG. The qubits are encoded on single photons and distributed to the equally distanced parties via
ultralow-loss fiber. The gate failure probability is either fixed to fG = 0.02 or fG = 0.01 (the difference in the rates of bipartite ACKA
and bifully ACKA is negligible, hence we report only the fG = 0.02 case) and the distance party server is fixed to d = 2 km (top) and
d = 10 (bottom).

The asymptotic conference key rates of the ACKA and bipartite ACKA protocol are given by

r∞ = lim
Ltot→∞

r = ηn [1 − h(QX ) − h(QZ)] , (3)

r∞
b = lim

Lbtot→∞
rb = 	n/2
 η2 [1 − h(QXb) − h(QZb)]

n(n − 1)
, (4)

respectively, while the asymptotic conference key rates of the fully ACKA and bifully ACKA protocol read

r∞
f = lim

Lf tot→∞
rf = ηn [1 − h(QX ) − h(QZ)]

1 + n(n − 1)ηn−2h(QZ)/{	n/2
 [1 − h(QXb) − h(QZb)]} , (5)

r∞
bf = lim

Lbf tot→∞
rbf = 	n/2
 η2 [1 − h(QXb) − h(QZb)]

n(n − 1)2 . (6)
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For completeness, we also report the asymptotic confer-
ence key rate of a standard CKA protocol (namely, the
multipartite BB84 protocol introduced in Ref. [9]), which
distils a secret conference key for the n parties in the
network by distributing single photons entangled in GHZ
states:

r∞
CKA = ηn [1 − h(QX ) − h(QZ)] . (7)

Interestingly, we note that the above rate is identical to the
asymptotic rate of the ACKA protocol (3), even though the
latter protocol is more involved as it guarantees anonymity
for the participants.

Even in the case of standard CKA, we can devise an
alternative protocol, which uses only Bell pairs to establish
the conference key. Note that such a protocol would require
at least two network uses for every shared conference
key bit, regardless of the number of parties. For instance,
in the case of four parties—Alice and three Bobs—the
first network use distributes Bell states to Alice-Bob1 and
Bob2-Bob3, while the second network use distributes a
Bell pair to Bob1-Bob2. By employing a one-time pad the
n parties can establish a shared conference key from their
pairwise secret keys. If we then consider that the Bell pairs
distributed by the source can be noisy or lost, the asymp-
totic key rate of a CKA protocol exclusively based on Bell
pairs is independent of n and reads

r∞
bCKA = 1

2
η2 [1 − h(QXb) − h(QZb)] . (8)

5 10 15 20 25 30

n

10–2

10–1

100

101

102

A
sy

m
pt

ot
ic

 r
at

es
’ r

at
io

d = 5 km

d = 8 kmCKA bCKA

FIG. 3. Ratios between the asymptotic (Ltot → ∞) secret con-
ference key rates of the fully ACKA (squares), ACKA (trian-
gles), and CKA (circles) protocols with GHZ states and the rates
of the corresponding protocols with Bell pairs, as a function of
the number of parties in the network. The ratios of ACKA and
fully ACKA are well into the green region (i.e., greater than one),
indicating that the use of GHZ states is advantageous compared
to using only Bell pairs, when anonymity requirements are added
to a standard CKA scheme. The error rates of the GHZ (QZ , QX )
and Bell states (QZb, QXb) are fixed to 2%, the distance party
server to d = 5 km and d = 8 km. The blue lines are given by
Eq. (9) with d = 8 km.

In Fig. 3 we plot the ratios r∞/r∞
b , r∞

f /r∞
bf and r∞

CKA/r∞
bCKA

as a function of the number of parties n, for a distance
party server of d = 5 km and d = 8 km. We fix the error
rates of the GHZ state and Bell state to the same value
(2%), rather than modeling the state preparation with CNOT
gates, to highlight implementation-independent behaviors.
The ratios for the task of ACKA and fully ACKA are well
above 1 and can comfortably exceed one order of magni-
tude, indicating the advantage of using GHZ states over
Bell pairs to anonymously establish conference keys. Con-
versely, the use of GHZ states barely brings any benefit
for standard CKA, at least in our network model where the
server can simultaneously distribute several Bell pairs (this
is not necessarily true when considering different network
models [8]).

III. DISCUSSION

We introduced a security definition that reflects all
the desired properties of an anonymous conference-key-
agreement protocol and encompasses different levels of
anonymity. Even though our security definition is inspired
by the composable security paradigm, it remains an open
point whether the three conditions given in Definition 1
imply composability for an ACKA (fully ACKA) protocol.

We designed efficient and noise-robust protocols
exploiting the multipartite entanglement of GHZ states,
proved their security according to our security definition,
and benchmarked their performance with counterpart pro-
tocols exclusively relying on the bipartite entanglement of
Bell pairs.

Our security proofs rely on the assumption that the
n parties either hold a short-lived quantum memory or
have no quantum memory at all (bounded storage model
[42]). The eavesdropper, instead, holds a perfect quantum
memory and can perform coherent attacks as in standard
QKD. While the bounded storage assumption is crucial
for the security of ACKA and fully ACKA, it is irrele-
vant for the bipartite ACKA and bifully ACKA protocols,
which would still remain secure even if this assumption
is dropped. Potentially, there might exist protocols based
on multipartite entanglement that are secure without the
bounded storage assumption for the n parties, and at the
same time retain the valuable properties of efficiency, noise
robustness (untrusted source), and anonymity featured by
our ACKA and fully ACKA protocols. However, we think
that there could be a fundamental reason forbidding the
existence of such protocols. A hint in this direction comes
from the impossibility of quantum bit commitment [43].
Indeed, our ACKA and fully ACKA protocols essentially
require each nonparticipant to commit to a bit for each
distributed state, where the bit is their X measurement
outcome, and to reveal the bit when the state distribution
is over. Thus, quantum bit commitment can be viewed
as a resource in our protocols, which, however, can only
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be implemented when other assumptions (e.g., bounded
storage) are made.

From the plots of Fig. 2, we observe that the protocols
based on GHZ states (ACKA and fully ACKA) outperform
the protocols exclusively based on Bell pairs (bipartite
ACKA and bifully ACKA) for an experimentally feasible
[18] number of network uses, starting from values as low
as Ltot = 105. However, increasing the distance between
the parties and the source of entanglement is more detri-
mental for the protocols based on GHZ states (bottom
plots), due to the higher probability of losing at least a
photon in a GHZ state compared to a Bell state. This
effect can be partially mitigated if the preparation quality
of the entangled states is improved (dotted lines in Fig. 2).
Indeed, reducing the gate failure probability from 2% to
1% significantly impacts the rates of the protocols based
on GHZ states, while leaving the rates of the Bell-state
protocols almost unchanged—hence in Fig. 2 we reported
only the fG = 2% case for the protocols based on Bell
pairs.

Moreover, we observe that the protocols based on GHZ
states require a higher number of network uses to yield
a nonzero key rate, compared to the protocols based on
Bell states. This is partially explained by the fact that
we did not include finite-key effects in the rate at which
the bipartite private channels distribute secret bits, while
we performed a full finite-key analysis for the confer-
ence key rate with GHZ states. Since the bipartite ACKA
and bifully ACKA protocols rely on the bipartite private
channels much more prominently than ACKA and fully
ACKA, the former protocols are advantaged compared
to the latter for low numbers of network uses. Even if
we performed a full finite-key analysis for the bipartite
ACKA and bifully ACKA rates, they would still outper-
form the rates of ACKA and fully ACKA in the low-Ltot
regime (see Supplemental Material [38] for a detailed
discussion).

Finite-key effects aside, Fig. 3 clearly displays the ben-
efit of employing multipartite entanglement, in the form
of GHZ states, over Bell pairs, for the cryptographic
tasks of ACKA and fully ACKA. Interestingly, the supe-
riority of GHZ-based protocols does not increase mono-
tonically with n and instead displays an optimal value of
n for which GHZ states are most beneficial. This is due to
the interplay between two effects.

On the one hand, establishing one conference key bit
while maintaining anonymity requires only one GHZ state
in both ACKA and fully ACKA, while it requires n(n − 1)

Bell pairs in the case of bipartite ACKA and n(n − 1)2 Bell
pairs in bifully ACKA (due to the iteration of Parity proto-
cols). This is only partially mitigated by the parallel distri-
bution of Bell pairs from the source in each network use,
which compensates by a factor 	n/2
−1. This effect dom-
inates at low n and causes the ratios of ACKA and fully
ACKA to increase with n. On the other hand, when the

number of parties—and hence the number of simultane-
ously transmitted photons in a GHZ state—increases, the
rate of the GHZ-based protocols exponentially decreases
due to photon loss with a factor ηn, while the rates of bipar-
tite ACKA and bifully ACKA present a constant factor η2.
Overall, the ratios exponentially decrease at high n.

The interplay between a polynomial increase due to the
efficiency of GHZ states and an exponential suppression
due to photon loss becomes clear when computing the
ratios, having set the error rates to zero and ignoring the
floor functions:

r∞
CKA

r∞
bCKA

∼ 2ηn−2,

r∞

r∞
b

∼ 2(n − 1)ηn−2,

r∞
f

r∞
bf

∼ 2(n − 1)2ηn−2.

(9)

The above functions are plotted as solid lines in Fig. 3
for d = 8 km and reproduce the scaling of the plot points
well.

From Eq. (9) we conclude that, starting from a standard
CKA scenario, if we require the participants to be anony-
mous with respect to the other parties and to Eve (ACKA
scenario), the conference key rate of a GHZ-based pro-
tocol gains a factor of n − 1 over the rate of a protocol
based on Bell pairs. If we additionally require anonymity
among the participants (fully ACKA scenario), the key
rate of a GHZ-based protocol gains a factor of (n − 1)2

compared to just using Bell pairs. This holds despite
allowing the source to simultaneously distribute multi-
ple Bell pairs in one network use. Overall, this suggests
that adding anonymity requirements significantly increases
the advantage of multipartite entanglement over bipartite
entanglement.

Furthermore, we point out that the exponential suppres-
sion in Eq. (9) due to photon loss is heavily dependent
on the length in kilometers d of each party-server chan-
nel. This implies that the maximum number of parties n
for which the GHZ-based protocols provide an advantage
(the ratios are above one) increases rapidly as d decreases,
as suggested by Fig. 3. Indeed, for applications where
the distance between parties is of few kilometers, the use
of GHZ states is still advantageous in networks of more
than 100 parties (see discussion in Supplemental Mate-
rial [38]). Additionally, the suppression due to photon loss
could be avoided altogether by resorting to a different
class of multipartite entanglement, namely W states [44].
Indeed, it has been shown that CKA can also be achieved
when the parties share a W state postselected after single-
photon interference [10]. This means that only one out of
n photons needs to be successfully transmitted, yielding a
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conference key rate that scales with η (instead of ηn when
using GHZ states).

The performance advantage provided by GHZ states in
the fully ACKA scenario, however, comes at the expense
of a slightly weaker anonymity claim with respect to
honest-but-curious receivers. Indeed, the fully ACKA pro-
tocol is anonymous according to Definition 2 while the
bifully ACKA protocol satisfies Definition 1. This is the
result of a trade-off with the robustness to noise and effi-
ciency featured by the fully ACKA protocol. Indeed, the
fact that our protocol efficiently verifies the source state
only in a small fraction of rounds and is robust against
noisy state preparations, allows it to succeed even when
asymmetries affect the multipartite states distributed to the
parties. On one hand, this makes our protocol very effi-
cient, noise robust, and practical, as opposed to previous
anonymous protocols based on multipartite entanglement
[26–32]. On the other hand, it prevents the protocol from
satisfying the strong anonymity condition when asymmet-
ric multipartite states are distributed by the source, as
already discussed in Sec. II A.

In summary, our work identifies the anonymous commu-
nication tasks of ACKA and fully ACKA, provides them
with a rigorous security framework, and demonstrates that
the multipartite quantum correlations of GHZ states can
increase the rate at which conference keys are anony-
mously generated within a quantum network, compared to
solely relying on bipartite entanglement. The gain in the
rate increases as anonymity requirements are added to the
protocol, it can comfortably exceed one order of magni-
tude, and scales with the square of the number of parties
in the network (∼n2) in the case of a fully ACKA proto-
col. This is a striking result when compared to previously
known scaling improvements due to multipartite entangle-
ment [8,18,21], which expected at most a linear gain in
the rate scaling (∼n). Moreover, previous results apply in
the case of particularly favorable network structures (e.g.,
networks with bottlenecks), whereas in this work we con-
sider a network that is symmetric and does not privilege
any party. Additionally, we obtain such a scaling advantage
despite the fact that the simultaneous distribution of multi-
ple Bell pairs and of a single GHZ state contribute equally
to the count of network uses, differently from previous
works.

Therefore, our results provide strong evidence for the
superiority of multipartite entanglement over bipartite
entanglement for multiuser cryptographic tasks and pave
the way for the implementation of quantum communica-
tion protocols beyond QKD and CKA.
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APPENDIX A: NOTATION

Here we describe the formalism and notation used in the
Appendices and the Supplemental Material [38].

(a) Strings of numbers and bitstrings are denoted with
the vector sign�, while symbols that are in boldface
denote the tensor product of multiple subsystems,
e.g., |∅〉〈∅|K1K2...Kn = ⊗n

t=1 |∅〉〈∅|Kt .
(b) If � indicates an event, then �c indicates the com-

plementary event and Pr[�] denotes the probability
that event � occurs.

(c) We use the running indices i and �j to indicate
the sender and the set of receivers, respectively,
for different protocol instances. Both indices run in
the set of all parties: {i, �j } ⊂ {1, . . . , n}. We refer
to the sender and receivers ({i, �j }) as the partici-
pants of the protocol, while the remaining parties
({1, . . . , n} \ {i, �j }) are called nonparticipants. In the
case of multiple candidate senders, we indicate them
with �i. Note that the size of the vectors �i and �j is not
fixed.

(d) With D ⊂ {1, . . . , n} we indicate the set of dishonest
parties that may collaborate with the eavesdropper
Eve.

(e) We denote by ID (for Identity Designation) the sub-
protocol of any ACKA and fully ACKA protocol
that either unambiguously assigns the identities of
sender and receivers to the parties in the network or
aborts. In the case of ACKA, every receiver is also
informed about the identity of the other participants
when ID does not abort.

(f) Let p(�i, �j ) be the probability that, when running
the ID protocol, the parties in the set �i apply to
become the sender and select their receivers in
�j (for instance, �j = {�ji1 , �ji2 , . . . , �ji|�i| }, where �jik are
the receivers selected by party ik if they become
the sender). If there is only one party apply-
ing to become the sender (|�i| = 1), then �j is the
set of receivers selected by the candidate sender
i. The probability of this instance is indicated
by p(i, �j ).

(g) We define the following events.
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(i) �: the ID subprotocol aborts from the point of
view of every party in the network.

(ii) �: the ID subprotocol does not abort from the
point of view of any party in the network and
correctly designates the identity of the partici-
pants. That is, if party i is the only one applying
to become the sender with intended receivers �j ,
then the protocol designates party i as the sender
and �j as the receivers. In the case of ACKA,
the receivers are correctly informed about the
identities of the other participants.

(iii) 	P : the ACKA (fully ACKA) protocol ends
without aborting from the point of view of every
participant.

(iv) �P : the ACKA (fully ACKA) protocol aborts
from the point of view of every participant.

(h) Every party t ∈ {1, . . . , n} holds three personal clas-
sical registers: Pt, Kt, and Ct.

(i) The register Pt stores information about the
identity of party t and eventual information on
the identity of the other participants, as assigned
by the ID subprotocol. More specifically, Pt = r
if t is a receiver of a fully ACKA protocol,
Pt = r, i, �j if t is a receiver of an ACKA pro-
tocol, Pt = s, �j if t is the sender with intended
receivers in �j , and Pt =⊥ if t is a nonpartic-
ipant. We emphasize that r, s, and ⊥ are just
symbols used to discriminate the identity of the
parties. Finally, Pt = ∅ if the protocol aborts
during ID.

(ii) The register Kt stores either the conference key
if t is a participant, or any information that the
party might use to compute a guess of the con-
ference key once the protocol is over if t is not
a participant (a dishonest or honest-but-curious
nonparticipant might want to learn the confer-
ence key). If the protocol aborts for party t, we
set Kt = ∅.

(iii) The register Ct stores all the classical side
information held by party t at any point in the
protocol, which includes their private inputs and
outputs to classical protocols and the public
outputs.

(i) We indicate with K the set of registers Kt of every
party, i.e., K = K1K2 . . . Kn, and similarly for C and
P. When we insert subscripts, it means that we
restrict to the registers of the parties in the subscript.
For instance, if G ⊂ {1, . . . , n} is a subset of parties,
KG is the set of conference key registers of the par-
ties in G. Similarly, (PKC)G indicates the content
of the registers Pt, Kt, and Ct for every party t ∈ G.

Finally, with the superscript c in Kc
G , we denote the

registers of the complement of G.
(j) E is the quantum register of Eve.
(k) If the state of some registers depends on the value

of a random variable X , we can express it as ρ =∑
x Pr[X = x]ρ|x, where ρ|x is the state of the regis-

ters when X = x.
Let � be an event for the variable X , i.e.,
Pr[�] = ∑

x∈� Pr[X = x]. With ρ|� we indicate the
normalized state of the registers conditioned on
the event �, ρ|� := (1/ Pr[�])

∑
x∈� Pr[X = x]ρ|x.

With ρ∧� we indicate the subnormalized state con-
ditioned on � whose trace corresponds to the prob-
ability of event � occurring: ρ∧� := ∑

x∈� Pr[X =
x]ρ|x.

(l) With ρPKCE|i,�j (ρPKCE|�i,�j ) we indicate the state of
registers P, K , C, and E conditioned on the event
where party(ies) i (�i) applied to be the sender with
the corresponding intended receivers in �j .

(m) If Alice is the sender and Bob1, Bob2, . . . , Bobm
are the m receivers, we replace the indices i and
�j pointing to their registers with A and �B, respec-
tively. Thus, for instance, KA is Alice’s key register
containing her conference key kA and KBl is Bobl’s
key register containing his conference key �kBl (for
l ∈ {1, . . . , m}).

(n) Let |�x| be the number of entries of the string �x.
Let ωr(�x) be the relative Hamming weight of the
bitstring �x, i.e., ωr(�x) := |{k : xk = 1}| / |�x| ‘.

(o) The trace distance between two states ρ and σ

is given by ‖ρ − σ‖tr = 1
2 Tr[

√
(ρ − σ)2] and is

proportional to the trace norm of the operator
ρ − σ .

(p) ρ
f
PKCE is the output state, or final state, of an ACKA

(fully ACKA) protocol. We also simply indicate it
as ρ f .

APPENDIX B: SECURITY DEFINITIONS

As discussed in Sec. II, we identify three
properties that an ideal ACKA (fully ACKA) protocol is
expected to satisfy, namely, integrity, CKA-security, and
anonymity. Here we introduce a formal security definition,
which quantifies, for every property, how close the output
state of the real protocol is from a state with the required
property. Note that the output state ρ f of a generic ACKA
(fully ACKA) protocol can always be decomposed as the
following:

ρ f =
∑

i,�j
p(i, �j )ρ f

PKCE|i,�j +
∑

�i,�j
p(�i, �j )ρ f

PKCE|�i,�j , (B1)

where the first term contains the output states of the pro-
tocol when only one party applied to become the sender
(party i), while the second term groups the output states
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when multiple candidate senders are applied (parties �i).
The output state of an integrous protocol is of the form

σ in =
∑

i,�j
p(i, �j )

(
Pr[�|i, �j ] ξ

(i,�j )
P ⊗ ρ

f
KCE|i,�j ,�

+ Pr[�c|i, �j ]|∅〉〈∅|P ⊗ ρ
f
KCE|i,�j ,�c

)

+
∑

�i,�j
p(�i, �j )|∅〉〈∅|P ⊗ ρ

f
KCE|�i,�j , (B2)

where ξ
(i,�j )
P is the ideal state of registers P, provided that

party i applied to become the sender with receivers in �j
and the identities were correctly assigned. For an ACKA
protocol the state ξ

(i,�j )
P reads

ξ
(i,�j )
P := |s, �j 〉〈s, �j |Pi ⊗ |r, i, �j 〉〈r, i, �j |P�j ⊗ |⊥⊥⊥〉〈⊥⊥⊥|Pc

i,�j
,

(B3)

while for a fully ACKA protocol it reads

ξ
(i,�j )
P := |s, �j 〉〈s, �j |Pi ⊗ |r〉〈r|P�j ⊗ |⊥⊥⊥〉〈⊥⊥⊥|Pc

i,�j
. (B4)

The distinction between the two states in Eqs. (B3)
and (B4) is always clear from the context of the protocol
being addressed (either an ACKA or a fully ACKA proto-
col).

We remark that the integrous state, Eq. (B2), is con-
strained only by the states of its P registers. As such, it
is obtained from the output state of the real protocol (B1)
by replacing the P register of every party with the abort
symbol ∅, whenever event �c occurs or when there are
multiple candidate senders or no sender (|�i| �= 1).

The output state of a CKA-secure protocol, conditioned
on having honest participants ({i, �j } ∩ D = ∅) and on �, is
of the form

σ CKA
KCc

i,�j E|i,�j ,� = Pr[	P |i, �j , �]τKi,�j ⊗ ρ
f
(KC)c

i,�j E|i,�j ,�,	P

+ Pr[	c
P |i, �j , �]|∅〉〈∅|Ki,�j ⊗ ρ

f
(KC)c

i,�j E|i,�j ,�,	c
P

,

(B5)

where the key registers Ki,�j of the participants, for a key of
� bits, are perfectly correlated and random:

τKi,�j := 1
|K|

∑

�k∈K
|�k〉〈�k |Ki ⊗ |�kkk〉〈�kkk |K�j , K = {0, 1}�. (B6)

Note that, similarly to Eq. (B2), the output state of a
CKA-secure protocol (B5) is obtained by replacing the Ki,�j
registers in the state of the real protocol with the ideal
outputs.

Finally, an ideal ACKA (fully ACKA) protocol must
be anonymous, i.e., the identity of each participant must
be kept secret from the nonparticipants and Eve—and
from the other receivers in the case of fully ACKA. In
this case we cannot simply replace the real output regis-
ters by their ideal counterparts, as in Eqs. (B2) and (B5),
since anonymity is a property of the global quantum state
accounting for different instances of sender and receivers.
For example, if a protocol is anonymous with respect to
a nonparticipant t, its output state satisfies ρ

f
PtKtCt|i,�j =

ρ
f
PtKtCt|i′,�j ′ for i �= i′ and �j �= �j ′, i.e., it is independent of

the choice of sender and receivers. We remark that dishon-
est participants may broadcast their identity, or the identity
of all the participants in the case of ACKA. Hence, in
these scenarios we cannot require the output state to be
independent of the identities that could be revealed.

We now introduce the formal definitions of anonymity
for an ACKA and a fully ACKA protocol. We denote the
output state of an anonymous ACKA (fully ACKA) proto-
col by σD. This emphasizes the fact that the anonymity
requirements on σD crucially depend on the set of dis-
honest parties D. For instance, no anonymity require-
ment is imposed on the output state of an ACKA pro-
tocol for the instances in which some participant is
dishonest.

Definition 4 (ACKA anonymity): Let D be the set of
dishonest parties taking part in an ACKA protocol, with
output state σD of the form (B1). Then the ACKA protocol
is anonymous if for any subset of parties G ⊆ {1, . . . , n} it
holds that

σD
PGKGCGE|i,�j = σD

PGKGCGE|i′, �j ′ ∀ i, i′, �j , �j ′ /∈ G ∪ D, (B7)

σD
PGKGCGE|�i,�j = σD

PGKGCGE|�i′, �j ′ ∀ �i, �i′, �j , �j ′ /∈ G ∪ D, (B8)

where σD
PGKGCGE|i,�j = TrPc

GKc
GCc

G [σD
PKCE|i,�j ].

The anonymity conditions (B7) and (B8) establish that
the final state of any subset of nonparticipants and Eve
is independent of the identity of the remaining parties.
In other words, the reduced output states σD

(PKC)c
i,�j E|i,�j and

σD
(PKC)c

�i,�j E|�i,�j do not contain any information about the iden-

tities of the participants. Note that if a participant would be
contained in G, the register PG would also carry informa-
tion about the identities of all the other participants (recall
that an ACKA protocol reveals the participants’ identi-
ties to each participant) and therefore there would be no
condition to be satisfied. Moreover, note that Eqs. (B7)
and (B8) do not impose any condition if the sender(s) or
receivers are dishonest, since nothing prevents them from
broadcasting the identities of all the participants.
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Definition 5 (Fully ACKA anonymity): Let D be the set
of dishonest parties taking part in a fully ACKA proto-
col, with output state σD of the form (B1). Then the fully
ACKA protocol is anonymous if for any subset of parties
G ⊆ {1, . . . , n} it holds that

σD
PGKGCGE|i,�j = σD

PGKGCGE|i′, �j ′∀ i, i′, �j , �j ′ : i, i′ /∈ G ∪ D,

�j ∩ G = �j ′ ∩ G, �j ∩ D = �j ′ ∩ D, (B9)

σD
PGKGCGE|�i,�j = σD

PGKGCGE|�i′, �j ′∀ �i,�i′, �j , �j ′ : �i,�i′ /∈ G ∪ D,

�j ∩ G = �j ′ ∩ G, �j ∩ D = �j ′ ∩ D. (B10)

The anonymity conditions (B9) and (B10) extend the
requirements of Eqs. (B7) and (B8) due to the fact that
in a fully ACKA protocol the receiver is unaware of the
identity of the other participants. Indeed, conditions (B9)
and (B10) establish that in all the instances of the proto-
col in which the parties in subsets G and D have a fixed
role (except for the role of sender), their reduced state is
independent of the identities of the other parties.

Definition 6, which is a formal restatement of Definition
1, defines the security of an ACKA (fully ACKA) pro-
tocol through the trace distances of the output state
of the protocol from an integrous state (B2), a CKA-secure
state (B5), and an anonymous state satisfying Definition 4
(Definition 5), respectively.

Definition 6 (Security (rigorous)): An ACKA (fully ACKA) protocol with dishonest parties in D is ε-secure, with
ε = εin + εCKA + εan, if it satisfies the following three conditions.

(a) εin-integrity:

max
i,�j

Pr[�c ∩ �c|i, �j ] ≤ εin ∧ max
�i,�j

Pr[�c|�i, �j ] ≤ εin, (B11)

(b) εCKA-CKA-security:

max
{i,�j }∩D=∅

Pr[	P |i, �j , �]
∥
∥
∥
∥ρ

f
KCc

i,�j E|i,�j ,�,	P
− τKi,�j ⊗ ρ

f
(KC)c

i,�j E|i,�j ,�,	P

∥
∥
∥
∥

tr
+ Pr[	c

P ∩ �c
P |i, �j , �] ≤ εCKA, (B12)

(c) εan-anonymity:

max
i,�j

∥
∥
∥
∥ρ

f
(PKC)c

i,�j E|i,�j − σD
(PKC)c

i,�j E|i,�j

∥
∥
∥
∥

tr
≤ εan ∧ max

�i,�j

∥
∥
∥
∥ρ

f
(PKC)c

�i,�j E|�i,�j − σD
(PKC)c

�i,�j E|�i,�j

∥
∥
∥
∥

tr

≤ εan (ACKA), (B13)

max
i,�j

∥
∥
∥ρ

f
(PKC)c

i E|i,�j − σD
(PKC)c

i E|i,�j

∥
∥
∥

tr
≤ εan ∧ max

�i,�j

∥
∥
∥
∥ρ

f
(PKC)c

�i E|�i,�j − σD
(PKC)c

�i E|�i,�j

∥
∥
∥
∥

tr

≤ εan (fully ACKA), (B14)

where ρ f is the output state of the ACKA (fully ACKA)
protocol, σD is the output state of any ACKA (fully
ACKA) protocol, which satisfies Definition 4 (Definition
5), and τKi,�j is given in Eq. (B6).

We remark that to simplify the integrity condition, we
replaced the trace distance from the integrous state (B2)
with a sufficient condition on the probabilities of unwanted
events.

The CKA-security condition (B12) establishes that the
final state of the protocol, conditioned on honest parties i
and �j correctly designated as sender and receivers, is close
to a state in which an ideal key (B6) is distributed to the
participants or where the protocol aborts for every partic-
ipant. Indeed, in the ACKA scenario, it could happen that

the protocol aborts for some participants but not for oth-
ers (event 	c

P ∩ �c
P ). This would spoil the CKA-security

of the protocol, since not all the participants would end up
with the same conference key (recall that if the protocol
aborts for party t, then Kt = ∅). We remark that in the stan-
dard QKD and CKA scenarios there is no need to account
for such instances, since the identities of the participants
are public and they can communicate over the authenti-
cated classical channel, thus agreeing on when the protocol
aborts.

Finally, the anonymity conditions (B13) and (B14)
account for deviations of the real protocol from an
anonymous protocol, as defined by Definitions 4 and
5, respectively. Nevertheless, since the property of
anonymity is intertwined with integrity and CKA-security,
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any issue of the real protocol with regards to the latter may
at the same time increase its deviation from a perfectly
anonymous protocol.

We observe that the conditions (B11)–(B14) are
independent of the distribution {p(i, �j ), p(�i, �j )}, which
describes the probability that certain parties apply to
become senders with specified receivers. This is a desir-
able feature since the distribution may not be accessible to
a party who wants to prove the protocol’s security.

As discussed in Sec. II, our fully ACKA protocol (Pro-
tocol 2) does not satisfy the anonymity condition (B14)
of Definition 6, but rather a weaker anonymity condition
provided in Definition 2 and formally stated here.

Definition 7 (Weak anonymity for fully ACKA (rigor-
ous)): Let D be the set of dishonest parties taking part in
a fully ACKA protocol, with output state ρ f . The fully
ACKA protocol is εWan-weak-anonymous, with εWan =
εNPan + εPan, if the following two conditions are satisfied:

1. (Anonymity with respect to nonparticipants and
Eve.) The output state of the protocol satisfies the
anonymity condition (B13) for ACKA protocols:

max
i,�j

∥
∥
∥
∥ρ

f
(PKC)c

i,�j E|i,�j − σD
(PKC)c

i,�j E|i,�j

∥
∥
∥
∥

tr
≤ εNPan∧

max
�i,�j

∥
∥
∥
∥ρ

f
(PKC)c

�i,�j E|�i,�j − σD
(PKC)c

�i,�j E

∥
∥
∥
∥

tr
≤ εNPan, (B15)

where σD satisfies Definition 4.
2. (Anonymity with respect to honest-but-curious

receivers.) When the protocol’s specifications are invariant
under permutations of parties, any subset of honest-but-
curious receivers R ⊆ �j cannot guess the identity of other
participants with a higher probability than the trivial guess,
except for a small deviation εPan. In formulas, the probabil-
ity of correctly guessing the set of participants is bounded
as follows:

pguess ≤ max
i,�j ⊇R

pR(i, �j ) + εPan, (B16)

pguess ≤ max
�i,�j ⊇R

pR(�i, �j ) + εPan, (B17)

where pR(i, �j ) (pR(�i, �j )) is defined as pR(i, �j ) :=
p(i, �j )/(∑i,�j ⊇R p(i, �j )) (pR(�i, �j ) := p(�i, �j )/(∑�i,�j ⊇R
p(�i, �j ))).

APPENDIX C: SUBPROTOCOLS

Before presenting the ACKA and fully ACKA proto-
cols, we introduce the subprotocols on which they built
upon. Such protocols involve many different bitstrings,
whose length in many cases is not defined to be an
integer number, unless a ceiling or floor function is

applied. In order not to increase the complexity of the nota-
tion, we omit the ceiling and floor functions. Note that,
from the point of view of the plots, this omission is irrele-
vant since few bits of difference do not sensibly modify the
key rates (consider that all plots start from Ltot = 105).

To start with, we make use of the classical Parity, Veto,
and Collision Detection protocols from [20]. The first two
protocols compute the Parity and the logical OR of their
inputs, respectively, while Collision Detection detects the
presence of multiple parties applying to become the sender.
Importantly, in our version of the Parity protocol we do not
require simultaneous broadcast, contrary to Ref. [20].

Protocol 3: Parity [20]

Let xt ∈ {0, 1} be the input of party t and yt the output of
the protocol for party t. Then yt = x1 ⊕ x2 ⊕ · · · ⊕ xn for
every t.

Every party t ∈ {1, . . . , n} does the following.

1. Select uniformly at random an n-bit string �rt =
r1

t r2
t . . . rn

t such that xt = ⊕n
j =1rj

t .
2. Send rj

t to party j and keep rt
t.

3. Compute zt = ⊕n
j =1rt

j , i.e., the Parity of the bits
received (including rt

t).
4. Broadcast zt.
5. Compute yt = ⊕n

k=1zk to obtain the Parity of the
inputs {xt}t.

Protocol 4: Veto [20]

Let xt ∈ {0, 1} be the input of party t and yt the output
of the protocol for party t. Then yt = x1 ∨ x2 ∨ · · · ∨ xn for
every t ∈ {1, . . . , n}.

1. Initialize yt = 0 ∀ t.
2. For every party t, repeat the following rV times:
2.1. Each party j sets the value of qj according to the

following:

qj = 0 if xj = 0
qj ∈R {0, 1} if xj = 1, (C1)

where qj ∈R {0, 1} denotes that qj is picked uniformly at
random in {0, 1}.

2.2. The parties execute the Parity protocol (Protocol 3)
with inputs q1, q2, . . . , qn, such that party t is the last to
broadcast. If the outcome of the Parity protocol is 1 or any
party refuses to broadcast, then set yt = 1 ∀ t ∈ {1, . . . , n}.

Note that, due to the probabilistic action in step 2.1, Pro-
tocol 4 allows a given party t to learn whether any other
party has input 1 even when the input of party t is xt = 1,
which would not happen in an ideal implementation of the
Veto function [20]. This crucial fact allows a candidate
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sender to detect the presence of other candidate senders
in the first Veto performed in Collision Detection.

Protocol 5: Collision Detection [20]
This protocol is used to detect the presence of multiple

candidate senders, or no senders at all. Let xt ∈ {0, 1, 2}
be the input of party t and yt the output of the protocol
for party t. Then the output of every party t ∈ {1, . . . , n} is
interpreted as follows:

yt = 0 no sender applies and the protocol aborts
yt = 1 one sender applied and the protocol proceeds
yt = 2 a collision is detected (multiple senders)

and the protocol aborts
(C2)

The protocol steps are given in the following.

1. Veto A:

1.1. Each party j sets aj = min{xj , 1}.
1.2. All participants perform the Veto protocol (Pro-

tocol 4) with input a1, a2, . . . , an.

2. Veto B (skip if Veto A outputs 0):

2.1. Each party j sets

bj = 1 if xj = 2, or if xj = 1 and party j
detected that another party had input 1
in Veto A

bj = 0 otherwise
(C3)

2.2. All participants perform the Veto protocol (Pro-
tocol 4) with input b1, b2, . . . , bn.

3. Every party t ∈ {1, . . . , n} sets their output to

yt = 0 if the output of Veto A is 0
yt = 1 if the outputs of Veto A and B sum to 1
yt = 2 if the outputs of Veto A and B sum to 2

(C4)

In the Collision Detection protocol (Protocol 5), the
input xt = 2 can describe the action of a dishonest party
that wants to force the protocol to detect a collision and
output yt = 2.

In the ACKA protocol, Alice must disclose her identity
and the identities of the other Bobs to every Bob. This is
achieved by transmitting a bitstring containing the posi-
tions of the sender and the chosen receivers in the network.
In particular, let �dt be an (n − 1 + log2 n)-bit long string
that Alice transmits to every other party t. If Alice is trans-
mitting dt to a Bob, then the first bit of dt is 1, the following
log2 n bits contain the position of Alice with respect to

some predefined ordering of the n parties, and the remain-
ing n − 2 bits indicate the identities of the other parties (bit
1 for receiver and bit 0 for a nonparticipant), except for
Alice and the Bob receiving dt. If instead Alice is trans-
mitting dt to a nonparticipant, then the first bit is 0 and the
remaining bits are random.

In order to ensure that the transmission of �dt is error-
free, Alice encodes the bitstring with a public encoding
algorithm (F , G) composed of an encoding function F and
a decoding function G, denoted Algebraic Manipulation
Detection (AMD) code [20,39]. An AMD code has the
important property of detecting, with high probability, any
tampering with the encrypted message, as stated in the
following lemma.
Lemma 8 (AMD code [20,39]): Let �x be a bitstring.
There exists an AMD code (F , G), whose encoded string
F(�x) has length

|F(�x)| = |�x| + 2
(

log2 |�x| + log2
1

εenc

)

, (C5)

such that G(F(�x)) = �x for every �x and such that
Pr[G(F(�x) ⊕ �b) �= �] ≤ εenc for every bitstring �b �= �0
chosen without prior knowledge of the encoded bitstring
F(�x), while a complete knowledge of �x is allowed [39]
[note that, due to the probabilistic nature of an AMD code,
F(�x) can still be unknown even when the input �x is known].

For the use in ACKA, the encoded string F(�dt) has
length

|F(�dt)| = n − 1 + log2 n

+ 2
(

log2(n − 1 + log2 n) + log2
1

εenc

)

, (C6)

and it is then used by Alice as her input in a sequence
of Parity protocols in order to anonymously transmit it
to party t. This is the core of the identity designation
subprotocol used by the ACKA protocol, named ACKAID.

Protocol 6: Identity designation for ACKA (ACKAID)
Before the protocol starts, the n parties set vt = 0 ∀t.

1. The n parties perform the Collision Detection pro-
tocol (Protocol 5), where party t inputs 1 if they
want to be the sender or 0 otherwise. If the Collision
Detection outputs 0 or 2 then the ACKA protocol
aborts for all the n parties. Else, they proceed with
the next steps.

2. If the protocol does not abort in step 1, then there is
a single sender, whom we identify as Alice, except
for a small probability.

3. For every party t ∈ {1, . . . , n}, do the following.

3.1. The n parties perform the Parity protocol for
|F(�dt)| times with the following inputs. If t �= A,
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Alice uses F(�dt), party t uses a random bitstring
�rt and the other parties input �0. If t = A, then
Alice uses F(�0) ⊕ �r, where �r is a random bit-
string, and the other parties input �0. Let �o be the
output of the Parity protocols.

3.2. Party t computes G(�rt ⊕ �o). If G returns �,
party t sets vt = 1, otherwise party t recovers
their identity as assigned by Alice (and eventu-
ally the identity of the other participants if they
are a receiver). If t = A, then Alice computes
G(�r ⊕ �o). If G returns �, Alice sets vt = 1.

4. The n parties perform the Veto protocol (Protocol
4) with inputs vt. If the Veto outputs 1, the ACKA
protocol aborts for all the n parties.

The total number of bipartite channel uses required by
the ACKAID protocol is n2(n − 1)(3rV + |F(�dt)|), where
|F(�dt)| is given by Eq. (C6).

Recall that, differently from ACKA, in a fully ACKA
protocol Alice needs only to communicate to each party
whether they are a Bob or a nonparticipant. Thus, we
present the fully ACKAID protocol, where we denote dt
the bit that Alice sends to every other party t to commu-
nicate their identity. In particular, dt = 1 (dt = 0) means
that party t is a receiver (nonparticipant). In order to detect
bit flips in the transmission of dt, Alice encodes dt with an
AMD code [20,39] (F , G), which satisfies the statement of
Lemma 8 and is such that

|F(dt)| = 1 + 2 log2
1

εenc
. (C7)

Protocol 7: Identity Designation for fully ACKA (fully
ACKAID)

Before the protocol starts, the n parties set vt = 0 ∀t.

1. The n parties perform the Collision Detection pro-
tocol (Protocol 5), where party t inputs 1 if they
want to be the sender or 0 otherwise. If the Collision
Detection outputs 0 or 2 then the fully ACKA pro-
tocol aborts for all the n parties. Else, they proceed
with the next steps.

2. If the protocol does not abort in step 1, then there is
a single sender, whom we identify as Alice, except
for a small probability.

3. For every party t ∈ {1, . . . , n}, do the following.

3.1. The n parties perform the Parity protocol for
|F(dt)| times with the following inputs. If t �= A,
Alice uses F(dt), party t uses a random bitstring
�rt and the other parties input �0. If t = A, then

Alice uses F(0) ⊕ �r, where �r is a random bit-
string, and the other parties input �0. Let �o be the
output of the Parity protocols.

3.2. Party t computes G(�rt ⊕ �o). If G returns �,
party t sets vt = 1, otherwise party t recovers
their identity as assigned by Alice. If t = A, then
Alice computes G(�r ⊕ �o) and if G returns �,
Alice sets vt = 1.

4. The n parties perform the Veto protocol (Protocol 4)
with inputs vt. If the Veto outputs 1, the fully ACKA
protocol aborts for all the n parties.

The total number of bipartite channel uses required by
the fully ACKAID protocol is n2(n − 1)(3rV + |F(dt)|),
where |F(dt)| is given by Eq. (C7).

As discussed in Sec. II, the fully ACKA scenario pre-
vents Alice from distributing the testing key through a
pre-established conference key shared by all participants.
For this, we introduce another subprotocol called the Test-
ing Key Distribution protocol. With this protocol, Alice
anonymously provides each Bobl (for l ∈ {1, . . . , m}) with
a key �kl that is given by the concatenation of two inde-
pendent bitstrings: �kl = (�kT, �rl), where �kT (|�kT| = Lh(p))
is the testing key and �rl is additional randomness used in
the error-correction phase of fully ACKA. The string �rl
is obtained by encoding the concatenated random string
(bl, �r∅) with an AMD code (F , G): �rl = F(bl, �r∅). In princi-
ple, Bobl can recover the concatenated string by computing
G(�rl) = (bl, �r∅) and use it in error correction. In particular,
the random bit bl and the random string �r∅, with |�r∅| =
1 + 2 log2 1/εenc, are employed in two separate steps of
error correction. By adding the lengths of the two bitstrings
composing �kl, we obtain the total length of �kl:

|�kl| = Lh(p) + 4
(

1 + log2
1

εenc

)

+2 log2

(

1+ log2
1

εenc

)

.

(C8)

In order not to reveal the number m of Bobs chosen by
Alice, the distribution of the key �kl is repeated for n − 1
times. In each iteration, Alice first notifies one party, say
party s, to be the recipient of the key �ks = (�kT, �rs) and then
runs a sequence of Parity protocols to transmit the bits of
the key, with s �= A. In case the recipient is not a Bob,
Alice sums modulo two the bits of the key with random
bits before transmitting them. Alice’s notification proce-
dure is inspired by the Notification protocol in Ref. [20]
and it successfully notifies party s with probability at least
1 − 2−rN , thanks to the iteration of rN rounds.

Protocol 8: Testing Key Distribution (TKD)

Let yt ∈ {0, 1} be the output of the Notification subpro-
tocol for party t: if yt = 1, party t has been notified as the
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recipient. Before the TKD protocol starts, we set the ver-
ification bits of Alice and Bobl to vA = vBl = 0 for every
l ∈ {1, . . . , m}. The following sequence of steps is repeated
n − 1 times.

1. Alice randomly picks a party s ∈ {1, . . . , n} that has
not been notified in previous iterations.

2. Notification: the n parties repeat the following steps
for every party t ∈ {1, . . . , n}.

2.1. Initialize yt = 0.
2.2. Repeat rN times.

2.2.1. Every party j �= A sets pj = 0. Alice sets

pA = 0 if t �= s
pA ∈R {0, 1} if t = s. (C9)

2.2.2. The n parties perform Parity (Protocol 3)
with inputs p1, p2, . . . , pn but party t does
not broadcast. In this way party t is the only
who can compute the outcome of the Parity
protocol. If the Parity outcome is 1, party t
sets yt = 1.

3. The party s is notified (ys = 1) with high probability.
4. Distribution: the n parties perform the Parity proto-

col for |�kl| times with the following inputs. If party
s corresponds to Bobl (for l ∈ {1, . . . , m}), Alice
inputs �kl, Bobl inputs a random bitstring �r, and the
other parties input �0. Otherwise, if s is a nonpartici-
pant, Alice inputs �ks ⊕ �r, where �r is a random string,
and the other parties input �0. Let �o be the output of
the Parity protocols.

5. If s corresponds to Bobl, he computes �o ⊕ �r and
recovers the testing key �kT. Moreover, Bobl applies
the decoding function G on the last |�rl| bits of �o ⊕ �r.
If G returns �, then Bobl sets vBl = 1. Otherwise,
Bobl recovers the bit bl and the string �r∅ to be used in
error correction.If s is a nonparticipant, Alice com-
putes �o ⊕ �r and applies the decoding function G on
the last |�rs| bits of �o ⊕ �r. If G returns �, then Alice
sets vA = 1.

If Bobl (for l ∈ {1, . . . , m}) has not been notified in none of
the n − 1 notification rounds, he sets vBl = 1.

The total number of bipartite channel uses required for
the TKD protocol is n2(n − 1)2rN + n(n − 1)2|�kl|, where
|�kl| is given in Eq. (C8).

The verification bits vA and vBl are used to abort the
fully ACKA protocol in step 7 (cf. Protocol 2) if a dis-
honest party attempts to modify the random bit bl or the
random string �r∅ destined to Bobl. The fact that Alice and
the Bobs verify this fact in the exact same way, prevents

nonparticipants and Eve from learning the identity of the
participant who causes fully ACKA to abort.

Additionally, the bits vBl are used to abort the fully
ACKA protocol in step 7 if some Bob has not been notified
and has not received �kl. Note that, in order not to reveal
the number of Bobs from the outcome of step 7, we will
require the nonparticipants to behave like a Bob if they
have not been notified in TKD.

Finally, we illustrate the one-way error-correction pro-
tocols adopted in ACKA (Protocol 9) and fully ACKA
(Protocol 10), where Alice provides the Bobs with a syn-
drome that allows them to correct their faulty raw keys
and match Alice’s. Together with the syndrome, Alice dis-
tributes a hash of her raw key so that each Bob can verify
the success of his error-correction procedure.

Protocol 9: Error correction for ACKA (ACKAEC)

1. Alice computes the syndrome �y, with |�y| = L(1 −
p)h(QZ), from her raw key, i.e., from the string
of measurement outcomes corresponding to key
generation rounds in �k′

T.
2. All the parties broadcast a random string of |�y| bits,

while Alice broadcasts �y ⊕ �k2, where �k2 is extracted
from a previously established conference key.

3. From the knowledge of �k2, each Bob recovers �y
from Alice’s broadcast and uses it to correct his raw
key.

4. In order to verify if the error correction is success-
ful, the public randomness picks a two-universal
hash function mapping keys of L(1 − p) bits to keys
of bh := log2

n−1
εEC

bits. Alice and the Bobs compute

the hashes �hA and �hBl (for l ∈ {1, . . . , m}) by apply-
ing the hash function on their (error-corrected) raw
keys.

5. All the parties broadcast a bh-bit random string,
except for Alice who broadcasts �hA ⊕ �k3, where �k3 is
extracted from a previously established conference
key.

6. Each Bob recovers �hA and compares it with his hash
�hBl . If �hA �= �hBl , then the error-correction procedure
failed for Bobl and he sets vBl = 1, otherwise he sets
vBl = 0.

7. All the parties broadcast a bit. Alice (Bobl, for l ∈
{1, . . . , m}) broadcasts vA ⊕ bA (vBl ⊕ bl), where bA
(bl) is extracted from a previously established con-
ference key. The predefined ordering of the n parties
could be used to assign the bits bA and bl of a
previous key to Alice and Bobl, respectively.

8. From the knowledge of the bits bA and bl, Alice and
the Bobs learn if the verification bit vA or vBl of any
participant is equal to 1, in which case they consider
the protocol aborted and set their conference keys to
�kA = �kBl = ∅ for l ∈ {1, . . . , m}.
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Protocol 10: Error correction for fully ACKA (fully
ACKAEC)

1. The public source of randomness picks a two-
universal hash function. Alice uses it to compute the
syndrome �y, an L(1 − p)h(QZ)-bit long string, from
her raw key, i.e., from the string of measurement
outcomes corresponding to key generation rounds in
�k′

T.
2. The n parties repeatedly perform the Parity protocol

for L(1 − p)h(QZ) times. Alice uses as an input the
bits of �y, while the other parties input �0. The output
string of the Parity protocols is �o1.

3. Each Bob uses �o1 as the syndrome to correct his raw
key [45,46].

4. In order to verify if the error correction is success-
ful, the public randomness picks a two-universal
hash function mapping keys of L(1 − p) bits to keys
of bh := log2

n−1
εEC

bits. Alice and the Bobs compute

the hashes �hA and �hBl (for l ∈ {1, . . . , m}) by apply-
ing the hash function on their (error-corrected) raw
keys.

5. The n parties perform the Parity protocol bh times,
using input �0 except for Alice who uses the bits of
�hA. The output string of the Parity protocols is �o2.

6. Each Bob compares �o2 with his hash �hBl . If �o2 �=
�hBl then Bobl sets vBl = 1, otherwise he sets vBl =
0. Then, all the parties broadcast a random bit,
except for Bobl who broadcasts bl ⊕ vBl (for l ∈
{1, . . . , m}).

7. From the knowledge of the bits bl, Alice retrieves
the verification bits vBl from the broadcast.

8. The n parties execute the Parity protocol |�r∅| times,
where every party except for Alice inputs �0. If vBl =
0 for every l and if �o2 = �hA, Alice inputs �r∅ ⊕ F(0),
otherwise she inputs �r∅ ⊕ F(1). Let �o3 be the output
of the Parity protocols.

9. Alice considers the fully ACKA protocol aborted if
�o3 differs from her input or if she inputs �r∅ ⊕ F(1),
while every Bob computes G(�r∅ ⊕ �o3). If G(�r∅ ⊕
�o3) ∈ {�, 1}, the Bobs consider the fully ACKA
protocol aborted.

Note that if a dishonest party flipped some of the bits of
�o1 or �o2 or �o3 by inputting 1 in the Parity protocols, then
the fully ACKA protocol aborts with high probability for
Alice and all the Bobs.

APPENDIX D: PROTOCOLS WITH GHZ STATES

Here we provide a more detailed description of
Protocol 1 (ACKA) and Protocol 2 (fully ACKA), which
anonymously extract a conference key thanks to the

multipartite entanglement of GHZ states. The protocols’
parameters are summarized in Table I. We prove the
protocols’ security in the Supplemental Material [38].

Protocol 1: Anonymous conference key agreement
(ACKA)

1. The parties perform the ACKAID protocol (Protocol
6). If the ACKAID protocol does not abort, Alice is
guaranteed to be the only sender and the Bobs learn
the identities of Alice and of each other, except for
a small probability.

2. Alice and the Bobs recover a shared conference key
previously established.

3. Alice generates a random bitstring of length L where
1 corresponds to a test round and 0 to a key gen-
eration round. Given that p is the probability that
a round is identified as a test round, she com-
presses the string to a testing key �kT of length Lh(p)

[typically h(p) < 8%]. All the parties broadcast a
random string of Lh(p) bits, except for Alice who
broadcasts �kT ⊕ �k1, where �k1 is extracted from a pre-
viously established conference key. Thanks to the
knowledge of �k1, each Bob recovers the testing key
�kT from Alice’s broadcast.

4. Repeat the following for L rounds.

4.1. An n-party GHZ state is distributed to the n
parties.

4.2. Alice and the Bobs measure their qubits accord-
ing to the testing key �kT. They measure in the Z
basis if the round is a key generation round, or
in the X basis if the round is a test round. All
the other parties measure X .

5. Once all the qubits have been measured (bounded
storage assumption), the testing key �kT is publicly
revealed. This is done anonymously by iterating the
Parity protocol (Protocol 3) Lh(p) times. In each
instance of the Parity protocol, Alice inputs a bit of
�kT, while the other parties input 0. The output of the
Parity protocols is �k′

T.
6. For every round in step 3 that is labeled as a test

round by �k′
T, the n parties perform the Parity pro-

tocol with the following inputs. Let Xt (for t ∈
{1, . . . , n}) be the outcome of party t if they mea-
sured X in that round, otherwise Xt ∈R {0, 1}. Every
party except for Alice (t �= A) inputs Xt, while Alice
inputs TA ∈R {0, 1}. Let �oT be the output of the Par-
ity protocols for all the test rounds in �k′

T. Alice
computes Qobs

X = ωr( �XA ⊕ �TA ⊕ �oT).
7. Verification of secrecy: Alice compares Qobs

X with
the predefined value QX . If Qobs

X + γ (Qobs
X ) > QX +

γ (QX ) Alice sets vA = 1, otherwise she sets vA = 0.
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8. ACKAEC (Protocol 9): Alice broadcasts L(1 −
p)h(QZ) bits of error-correction (EC) information,
in order for the Bobs to correct their raw keys and
match Alice’s. Additionally, she broadcasts a hash
of log2

n−1
εEC

bits so that each Bob can verify the
success of the EC procedure. Alice’s broadcasts
are encrypted and only the Bobs can decrypt them.
If the EC or the verification of secrecy failed, the
participants abort the protocol, but this information
is encrypted and only available to them.

9. PA: the public randomness outputs a two-universal
hash function that maps keys of length L(1 − p) to
keys of length �, where � is given by

� = L(1 − p) [1 − h (QX + γ (QX ))] − 2 log2
1

2εPA
.

(D1)

Alice and each Bobl apply the two-universal hash
function on their error-corrected keys and obtain
the secret conference keys �kA and �kBl . However, if
the protocol aborted in the previous step, they do
nothing.

We remark that, in order to fairly compare the per-
formance of Protocol 1, for the plots we consider the
net number of generated bits, i.e., the number of confer-
ence key bits produced by one execution of the protocol,
minus the bits consumed from previously established con-
ference keys. The latter amounts to |�k1| + |�k2| + |�k3| + n
bits, which yield a net conference key length given by
Eq. (1).

Since one of the major novelties of our ACKA protocol
is the efficient parameter estimation (or source verification)
in step 6 of Protocol 1, we would like to spend a few words
on its functioning.

First of all, we emphasize that the parameter Qobs
X esti-

mates the phase error rate of the state distributed by the
untrusted source. If in a test round a GHZ state is dis-
tributed, the Parity of the outcomes obtained by measuring
every qubit in the X basis is zero: ⊕n

t=1Xt = 0. Thus these
instances do not contribute to the error rate Qobs

X . As a mat-
ter of fact, one can simplify the error rate expression pro-
vided in step 6 by noting that �oT = �TA ⊕ (⊕t�=A �Xt), which
substituted in the error rate yields Qobs

X = ωr(⊕n
t=1

�Xt).
The reason for which we require Alice to input a random

bit TA in place of her outcome XA in the Parity protocol is
that, in this way, we prevent any dishonest party from artifi-
cially decreasing the error rate (Qobs

X = ωr(⊕n
t=1

�Xt)) based
on the Xt outcomes of all the other parties. Indeed, if Alice
would input XA, a dishonest party who is the last to broad-
cast in the Parity protocol can arbitrarily set the output of
Parity—and thus ⊕n

t=1Xt—to zero.
Finally, we employ the Parity protocol to compute

the Parity �oT = �TA ⊕ (⊕t�=A �Xt) instead of using a regular
broadcast in order to preserve the participants’ anonymity.

To see why their identities would be under threat, let
us suppose that we replace the Parity protocol with a reg-
ular broadcast. Then, based on the state that Eve—who
controls the source—distributed in a given test round, she
could make predictions on the X outcomes of the parties
and compare them with the broadcast bits. Since Alice
always broadcasts a random bit instead of her X outcome
as the other parties do, Eve could distinguish her broadcast
and learn her identity. Similarly, if a Bob did not measure
in the X basis for some test round in �k′

T (due to a mis-
match between �k′

T and his testing key), he must broadcast
a random bit and Eve could learn his identity.

Protocol 2: Fully anonymous conference key agreement
(fully ACKA)

TABLE I. Parameters used in Protocols 1 and 2.

L total number of GHZ states distributed and detected (including noisy states)
p probability of a test round (typically p ≤ 0.01)
QZ estimation of the largest error rate between the Z outcomes of Alice and of any Bob
QX threshold value of the test error rate, picked in the interval [0, 1/2) and defined as the frequency of

nonpassed test rounds. A test round is passed if ⊕n
t=1Xt = 0, where Xt ∈ {0, 1} is party t’s outcome

in the X basis mapped to a binary value
vA, vt, and vBl verification bits of Alice, a generic party t ∈ {1, . . . , n} and Bobl (for l = 1, . . . , m), respectively
rV number of iterations in the Veto protocol (Protocol 4)
rN number of iterations in the TKD protocol (Protocol 8)
εEC failure probability of the error-correction subprotocol
εenc failure probability of the AMD code (F , G) [20,39]
γ (QX ) statistical fluctuation, defined as the positive root of the equation

[10,40]: ln
(L(1−p)γ+LQX

LpQX

) + ln
(L(1−QX )−L(1−p)γ

Lp(1−QX )

) = ln
( L

Lp

) + 2 ln εx

ε2
x upper bound on the probability that the test error rate affecting the key-generation rounds is larger

than the observed test error rate (Qobs
X ) corrected by the statistical fluctuation γ

εPA probability related to the success of privacy amplification
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1. The parties perform the fully ACKAID protocol
(Protocol 7). If the fully ACKAID protocol does not
abort, Alice is guaranteed to be the only sender and
the Bobs are notified to be receivers, except for a
small probability.

2. Alice generates a random bitstring of length L where
1 corresponds to a test round and 0 to a key gen-
eration round. Given that p is the probability that
a round is identified as a test round, she com-
presses the string to a testing key �kT of length
Lh(p). Additionally, Alice generates the strings �rl =
F(bl, �r∅) (for l ∈ {1, . . . , m}) where (F , G) is an
AMD code and (bl, �r∅) is a concatenated random
string.

3. The parties perform the TKD protocol (Protocol 8)
in order to distribute the key �kl = (�kT, �rl), which
includes the testing key �kT, to every Bob.

4. Repeat the following for L rounds.

4.1. An n-party GHZ state is distributed to the n
parties.

4.2. Alice and the Bobs measure their qubits accord-
ing to the testing key �kT. They measure in the Z
basis if the round is a key generation round, or
in the X basis if the round is a test round. All
the other parties measure X .

5. Once all the qubits have been measured (bounded
storage assumption), the testing key �kT is publicly
revealed. This is done anonymously by iterating the
Parity protocol (Protocol 3) Lh(p) times. In each
instance of the Parity protocol, Alice inputs a bit of
�kT, while the other parties input 0. The output of the
Parity protocols is �k′

T.
6. For every round in step 4 that is labeled as a test

round by �k′
T, the n parties perform the Parity pro-

tocol with the following inputs. Let Xt (for t ∈
{1, . . . , n}) be the outcome of party t if they mea-
sured X in that round, otherwise Xt ∈R {0, 1}. Every
party except for Alice (t �= A) inputs Xt, while Alice
inputs TA ∈R {0, 1}. Let �oT be the output of the Par-
ity protocols for all the test rounds in �k′

T. Alice
computes Qobs

X = ωr( �XA ⊕ �TA ⊕ �oT).
7. Verification of secrecy: Alice compares Qobs

X with
the predefined value QX and sets vs = 1 if Qobs

X +
γ (Qobs

X ) > QX + γ (QX ) and vs = 0 otherwise. All
the parties perform Veto (Protocol 4), where Alice
inputs vs ∨ vA, Bobl inputs vBl and the nonpartic-
ipants input 1 if they have not been notified in
TKD, otherwise they input 0. If Veto outputs 1, the
protocol aborts for every party.

8. Fully ACKAEC (Protocol 10): Alice anonymously
broadcasts L(1 − p)h(QZ) bits of EC information,
in order for the Bobs to correct their raw keys
and match Alice’s. Additionally, she anonymously

broadcasts a hash of log2
n−1
εEC

bits so that each Bob
can verify the success of the EC procedure. If the
EC fails for at least one Bob, the protocol aborts but
this information is only available to Alice and the
Bobs.

9. PA: the public randomness outputs a two-universal
hash function that maps keys of length L(1 − p) to
keys of length �, where � is given by

� = L(1 − p) [1 − h (QX + γ (QX )) − h(QZ)]

− log2
2(n − 1)

εEC
− 2 log2

1
2εPA

. (D2)

Alice and each Bobl apply the two-universal hash
function on their error-corrected keys and obtain
the secret conference keys �kA and �kBl . However, if
the protocol aborted in the previous step, they do
nothing.

APPENDIX E: PROTOCOLS WITHOUT
MULTIPARTITE ENTANGLEMENT

In order to evaluate the benefits of using GHZ states to
perform ACKA and fully ACKA, we develop alternative
protocols, which rely only on bipartite private channels,
implemented with Bell pairs. For this reason, we denote
these protocols as bipartite ACKA and bifully ACKA,
respectively. We remark that bipartite ACKA and bifully
ACKA are not mere extensions of the Anonymous Mes-
sage Transmission protocol [20] to multiple parties, as
they are thoroughly optimized to achieve the tasks under
consideration.

Protocol 11: ACKA without multiparty entanglement
(bipartite ACKA)

1. The parties perform the ACKAID protocol (Protocol
6). If the ACKAID protocol does not abort, Alice is
guaranteed to be the only sender and the Bobs learn
the identities of Alice and of each other, except for
a small probability.

2. Alice generates uniformly at random an Lb-bit con-
ference key, �kA.

3. Every party—except for Alice—sends a random
string of Lb bits to every other party through the
bipartite private channels. Alice sends the confer-
ence key �kA to the Bobs and a random string to the
other parties. Bobl identifies the string �kA received
from Alice as his conference key: �kBl = �kA, for l ∈
{1, . . . , m}.

040306-21



FEDERICO GRASSELLI et al. PRX QUANTUM 3, 040306 (2022)

Protocol 12: Fully ACKA without multiparty entangle-
ment (bifully ACKA)

1. The parties perform the fully ACKAID protocol
(Protocol 7). If the fully ACKAID protocol does not
abort, Alice is guaranteed to be the only sender and
the Bobs are notified to be receivers, except for a
small probability.

2. Alice generates uniformly at random an Lb-bit con-
ference key, �kA, and encodes it as F(�kA) with
an AMD code (F , G), such that |F(�kA)| = Lb +
2(log2 Lb + log2 1/εenc). She also sets her verifica-
tion bit to vA = 0.

3. Repeat for n − 1 times.

3.1. Alice randomly picks a party s ∈ {1, . . . , n} that
has not been notified in previous iterations.

3.2. The n parties perform the Notification proto-
col (step 2 in Protocol 8), such that party s is
notified with high probability.

3.3. The n parties execute |F(�kA)| rounds of the Par-
ity protocol with the following inputs. If the
notified party s corresponds to Bobl (for l ∈
{1, . . . , m}), Alice inputs F(�kA), Bobl inputs a
random bitstring �r, and the other parties input �0.
Otherwise, if s is a nonparticipant, Alice inputs
F(�kA) ⊕ �r, where �r is a random string, and the
other parties input �0. Let �o be the output of the
Parity protocols.

3.4. If s corresponds to Bobl, he retrieves the confer-
ence key by computing �kBl = G(�r ⊕ �o). If �kBl =
�, then he sets vBl = 1, otherwise vBl = 0. If
s is a nonparticipant, Alice computes G(�o ⊕ �r).
If the computation returns �, then Alice sets
vA = 1.

4. Bobl (for l ∈ {1, . . . , m}) sets vBl = 1 if he has
not been notified in step 3. The n parties perform
Veto (Protocol 4) where Bobl inputs vBl (for l ∈
{1, . . . , m}), Alice inputs vA and the other parties
input 1 if they have not been notified in step 3,
otherwise they input 0. If Veto outputs 1, the pro-
tocol aborts for every party and the participants set
�kA = �kBl = ∅ ∀ l.

We emphasize that the bifully ACKA protocol (Proto-
col 12) satisfies the anonymity condition for fully ACKA
protocols (B14) given in Definition 6, opposed to the fully
ACKA protocol based on GHZ states (Protocol 2), which
satisfies a weaker anonymity property (Definition 7). More
specifically, the bifully ACKA protocol is εan-anonymous
with respect to (dishonest) receivers in the sense of condi-
tions (B9) and (B10), i.e., the reduced state of the receivers

is close to a state independent of the identity of the other
participants. Conversely, Protocol 2 satisfies a weaker
anonymity condition with respect to the receivers, formal-
ized in terms of their guessing probability by conditions
(B16) and (B17).

Moreover, note that the security of bipartite ACKA
and bifully ACKA can be proved without the assumption
about the n parties holding a short-lived quantum mem-
ory (bounded storage assumption), while this assumption
is crucial for the security of the ACKA and fully ACKA
protocols (Protocols 1 and 2), as discussed in Sec. III.

Theorem 9 (Security of bipartite ACKA and bifully
ACKA): The bipartite ACKA protocol (Protocol 11),
exclusively based on bipartite private channels, yields
a secret conference key of length Lb and is εtot-secure
according to Definition 6, with εtot = 2−rV + (n − 1)εenc.

The bifully ACKA protocol (Protocol 12), exclusively
based on bipartite private channels, yields a secret con-
ference key of length Lb and is εtot-secure according
to Definition 6, with εtot = 3 × 2−rV + (n − 1)(2−(rN −1) +
3εenc).
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