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ABSTRACT
The vibrational spectra of condensed and gas-phase systems are influenced by the quantum-mechanical behavior of light nuclei. Full-
dimensional simulations of approximate quantum dynamics are possible thanks to the imaginary time path-integral (PI) formulation of
quantum statistical mechanics, albeit at a high computational cost which increases sharply with decreasing temperature. By leveraging
advances in machine-learned coarse-graining, we develop a PI method with the reduced computational cost of a classical simulation. We
also propose a simple temperature elevation scheme to significantly attenuate the artifacts of standard PI approaches as well as eliminate
the unfavorable temperature scaling of the computational cost. We illustrate the approach, by calculating vibrational spectra using standard
models of water molecules and bulk water, demonstrating significant computational savings and dramatically improved accuracy compared to
more expensive reference approaches. Our simple, efficient, and accurate method has prospects for routine calculations of vibrational spectra
for a wide range of molecular systems - with an explicit treatment of the quantum nature of nuclei.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0120386

Predictive simulations of thermodynamic and time-dependent
properties of condensed and gas-phase systems lay the founda-
tions of computational materials design and discovery.1 Accurate
modeling of many systems, such as those containing light nuclei
like H, C, N, and O, must account for their quantum-mechanical
behavior to include the zero-point motion of collective modes2 and
the tunneling of the system across classically inaccessible barriers.3
The phenomena emerging from the quantum dynamics of light
nuclei are ubiquitous in chemistry and material science of molec-
ular systems, for instance, the relative diffusion of H2 in clathrate
hydrates4 and kinetic isotope effects in porous organic crystals,5
proton-transfer rates in molecular switches,6 the red shift in the IR
spectra of O–H stretch mode in ice,7 and the characterization of
(bio-)molecular systems using vibrational spectroscopy.8

Unfortunately, the exact description of quantum
dynamics—requiring the solution of Schrödinger’s equation—is
possible only for the smallest of systems, such as molecules con-
taining a few atoms.9,10 Extension to larger systems requires “local”
approximations or truncation of the interaction potential and/or an
approximate solution of the many-body Schrödinger equation,11–13

similar to the electronic structure problem. Alternatives that render
an “approximate but full” quantum-mechanical treatment of all
degrees of freedom are based on the (semi-)classical dynamics of
the system.14 In this context, imaginary time path integral (PI)
simulations, although originally formulated for incorporating the
quantum statistical effects,15 are becoming increasingly popular for
studying the approximate quantum dynamics of distinguishable
particles.14 The state-of-the-art PI approaches16–19 neglect real-time
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quantum coherence but include effects arising from the quantum
statistical distribution of the nuclei.20 These methods give a good
description of the dynamical response of condensed phase systems,
for instance, vibrational spectra of bulk water21 and ice,19 where
quantum coherence effects last only over short times. On the other
hand, predicting the vibrational response of molecules and clusters
is still a challenge, the reasons being twofold. First, the artifacts
of PI methods (arising from the neglect of real-time coherence
and approximations to non-centroid Matsubara fluctuations22),
such as spurious broadening, frequency shifts, and an incorrect
temperature-dependence of the relative intensities of quantal
modes,23,24 become worse with a reduction in temperature.25

Second, the computational cost of PI methods increases steeply with
inverse temperature,26 making them expensive to obtain a direct
comparison with experiments. In the last few decades, many new
approaches have aimed at individually improving the accuracy27–30

or efficiency19,31–33 of PI dynamical methods. These studies high-
light the urgency for an accurate, efficient, and generally applicable
method that can treat the quantum dynamics of molecules, clusters,
and bulk systems at the same footing, and aid in modeling their
vibrational response.

In this work, we combine PI and coarse-graining methods via
machine learning to render the calculation of quantum vibrational
spectra accurate and computationally affordable. We demonstrate
the capabilities of our method on paradigmatic aqueous systems.
Our approach builds on the state-of-the-art centroid molecular
dynamics16,34 (CMD) approach, which time-evolves the system clas-
sically on the free energy surface (FES) of the centroid of the imag-
inary time path—a modified PES that includes nuclear quantum
effects. Its two key features, a temperature elevation (Te) ansatz and
path integral coarse-graining simulations (PIGS), ensure accuracy
and computational efficiency. On the one hand, the Te ansatz allevi-
ates the spurious redshift in CMD, leading to an improvement in the
accuracy of the vibrational spectra over the state-of-the-art methods.
On the other hand, with PIGS, we machine-learn the centroid FES
in a general manner, i.e., without making prior assumptions about
the functional form of the system’s PES, and use it to evolve the
system classically. This method, referred to as Te PIGS, enables the
calculation of the IR spectra of aqueous systems, including nuclear
quantum effects, in excellent agreement with numerically exact or
more expensive reference methods. Furthermore, we demonstrate
that our approach is transferable across phases and temperatures,
allowing modeling of vibrational spectra at cryogenic temperatures
at orders of magnitude lower computational cost using classical MD.

We first discuss CMD and introduce Te PIGS in the context of
a simple yet realistic anharmonic system that highlights the deficien-
cies of PI methods at low temperatures: a 2D radial Morse oscillator
mimicking an O–H bond, described by the Hamiltonian,

Ĥ = (2μ)−1[p̂2
x + p̂2

y] +D[1 − e−α(
√

q̂ 2
x+q̂ 2

y−r0)]
2
, (1)

where the parameters μ, D, α, and r0 are defined in Sec. I A of
the supplementary material. For simplicity, we ignore the coupling
between the rotations and vibrations of the system, making this a
simple but physically relevant one-dimensional problem that high-
lights the limitations of PI-based dynamical methods. The O–H
bond has a large zero-point energy E0 ≈ 1843 cm−1 ≈2652 K and

a 0→ 1 transition energy E1 − E0 ≈ 3568 cm−1 ≈5134 K (see Sec.
I A of the supplementary material for more details), meaning that
even at a temperature of 600 K, the system resides almost exclusively
in its ground state, yet probes the anharmonic regions of the PES
due to zero-point motion. As shown in Fig. 1(a), this results in a
temperature-independent line position of the IR spectrum, at least
up to 600 K, as well as a red shift of around 200 cm−1 with respect to
the classical spectrum due to quantum nuclear motion.

The CMD approach16 is based on the imaginary time path
integral isomorphism35 between the thermodynamics of a quantum
system at inverse temperature β and a classical ring polymer made
of P replicas of the system at βP = β/P,

Z = Tr[e−βĤ ]∝ lim
P→∞∫ dq e

−βP[∑
j

U(q( j)
)+U spr

(q)]
, (2)

where q ≡ {q(1), . . . , q(P)} is a shorthand for positions of the P repli-
cas of the system with q( j+P) ≡ q( j) implied, U(q) defines the classical
PES, and Uspr(q) is a temperature-dependent spring term35 that
connects consecutive replicas of the system. Within CMD, the sys-
tem is time evolved classically on UCMD(qc; β), defined as the free
energy surface of the centroid of the imaginary time path (modulo a
constant) at β,

U CMD(q c; β) = −β−1 log ⟨ δ
⎛
⎝

1
P

P

∑
j=1

q( j) − qc
⎞
⎠
⟩

β

, (3)

where ∑P
j=1 q( j)/P is the centroid of the ring polymer and ⟨⋅⟩ is an

average over the path integral Hamiltonian in Eq. (2). The thermo-
dynamic force acting on the centroid can be calculated on the fly
from a constrained PI simulation at each CMD step,16

f CMD(q c; β) = −∇U CMD(q c; β) = ⟨f c δ
⎛
⎝

1
P

P

∑
j=1

q( j) − q c
⎞
⎠
⟩

β

, (4)

where f c = ∑P
j=1 f( j)/P, and f( j) is the physical force acting on the jth

replica. Alternatively, the centroid can be evolved on its FES within
a PI simulation in a partially adiabatic manner36 by decoupling the
centroid from the rest of the system. Dynamical properties, such as
the IR spectrum, can be easily calculated via classical time correla-
tion functions (TCFs) based on the centroid trajectory, similar to
the classical MD.

As shown in Fig. 1(b), the IR spectrum of the O–H bond com-
puted with CMD is in excellent agreement with the numerically
exact result at 600 K. Unfortunately, at lower temperatures, the
system experiences a spurious red shift that gets worse as the tem-
perature is reduced. This well-known artifact is referred to as the
“curvature problem”25 and arises in cases where the ring polymer
has a shape such that its centroid lies outside the ring (see Fig. 2), and
thus does not represent the quantum-mechanical probability density
of the system (as obtained by the replicas). Interestingly, the cur-
vature problem is purely a structural artifact, and, as shown in the
inset of Fig. 1(b), it can be diagnosed from PI trajectories: the mis-
alignment of the distribution of the centroid at 300 and 150 K to the
(physical) probability density obtained from the replicas. As men-
tioned above, another issue with CMD, and more generally with PI
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FIG. 1. Temperature-dependent IR spectrum of an O–H bond described by a Morse oscillator. The IR spectrum of a 2D Morse oscillator mimicking an O–H at 600, 300,
and 150 K calculated by (a) solving the Schrödinger equation numerically (QM),30 (b) using centroid molecular dynamics (CMD), and (c) Te path integral coarse-graining
simulations (PIGS) using Te = 600 K. Panel (d) shows the dependence of the Te PIGS IR spectrum on the temperature of the centroid free energy surface (Te). Insets show
the temperature-dependent radial probability densities calculated by using the respective methods, and the dashed gray vertical line is the mode of quantum-mechanical
distribution. Note that the range of y axes is not kept the same to aid clarity.

methods, is that the required number of replicas scales inversely with
the temperature and the maximum physical frequency of the system,
P ∼ βh̵ωmax.37 Therefore, its computational cost increases steeply as
the temperature is reduced. These challenges prevent investigations
of systems at cryogenic temperatures where most experimental data
are available.

Recently, Trenins et al.30 have proposed a quasi-centroid
molecular dynamics (QCMD) scheme that evolves the system on
the FES of an ad hoc curvilinear function of replica positions—a
quasi-centroid that does not “fall out” of the hull of the path integral.
A careful selection of this function does not hamper the quantum
Boltzmann statistics and results in a compact PI ring polymer that
alleviates the curvature problem. This results in an excellent agree-
ment of the vibrational spectrum of a molecule of water, liquid water,
and proton-disordered hexagonal ice38 with (numerically exact) ref-
erence methods. More recently, Fletcher et al.33 have proposed an
efficient fast QCMD scheme that avoids the costly on-the-fly quasi-
centroid forces by precomputing an analytic FES based on a PI
trajectory. This reduces the cost of predicting an accurate vibrational

spectrum to that of the classical MD, resulting in an improve-
ment over standard PI methods for the calculation of vibrational
spectra of exemplary molecular systems.33 Unfortunately, the com-
putational cost of these approaches still grows unfavorably with the
temperature due to the need for a low-temperature PI trajectory for
fitting the FES. Moreover, an extension to general systems requires
a general/universal procedure to fit the FES of the centroid and
careful knowledge of appropriate curvilinear coordinates that do
not suppress the sampling of the physical regions of the configu-
rational space.39 Nonetheless, the advancements brought forth by
(fast) QCMD30,33 suggest that further improvements in CMD pro-
vide a promising route toward the accurate and efficient calculation
of vibrational spectra.

Taking inspiration from fast implementations of CMD,40,41 we
propose path integral coarse-grained simulations (PIGS) that per-
form MD on a modified PES—including quantum nuclear effects.
In particular, we leverage the recent developments in the definition
of coarse-grained machine-learning potentials42–44 and of high-
order correlation functions45,46 to obtain this modified potential by
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FIG. 2. The curvature problem in centroid molecular dynamics Contour plots
of a 2D Morse radial potential up to half the dissociation energy (black to gray
solid lines), the probability density of the system (red to white indicating high to
low), and a snapshot of the ring polymer (red) and its centroid (blue) at (a) 150 K
and (b) 600 K.

coarse-graining the imaginary time path integral to that of a clas-
sical system. In this work, we use PIGS to accelerate CMD in a
general manner, i.e., it applies to systems exhibiting a wide range
of interparticle interactions. To obtain the centroid FES at βe, we
use the force matching method47,48 that is typically used to build
thermodynamically consistent bottom-up coarse-grained models for
macromolecular systems, i.e., the coarse-grained model reproduces
the thermodynamic properties of the all-atom system projected onto
the coarse-grained coordinates. It has been shown48 that Eq. (3) can
be recast as a variational principle—UCMD(qc; β) corresponds to the
minimum of the force matching functional,

U CMD(qc; β) = arg min
G∈C(Rn)

⟨∥fc +∇G(qc)∥
2⟩

β
, (5)

where the average is performed at inverse temperature β with the PI
centroid constrained at q c ∈ R

n, and the minimization is performed
over the space C(Rn) of all real continuous functions G : Rn → R.
In this work, we optimize a machine-learning model as a surrogate
for the potential of mean force to reproduce the thermodynamics of
the centroid without having to explicitly simulate P replicas of the

system. In practice, we only learn the difference between the cen-
troid FES and the classical PES, as it is done in Ref. 40. This keeps
the amount of training data to a minimum and provides an appro-
priate prior in the absence of data or for collective modes that do not
exhibit quantum nuclear effects.

The centroid potential of mean force associated with an atomic
configuration is expressed as a sum of the classical PES associated
with U and atom-centered contributions,

Ũ CMD(qc; θ) = U(qc) +∑
i

Aai(qc − qci; θ), (6)

where θ is a set of model parameters, qc ≡ {qc1, . . . , qcN} is a short-
hand for the set of atomic positions of a structure, qci is the position
of the ith atom of species ai, and the A ai functions are parameterized
using a machine-learning model that captures the multi-body inter-
actions emerging from the coarse-graining procedure.49 We model
the atomic potentials of mean force, A ai , by representing the atomic
environment with the normalized SOAP power spectrum50–52 and
pass these three-body features to a multi-layer perceptron with three
hidden layers of width [400, 200, 200] and the hyperbolic tangent
activation function. The parameters of the model are obtained by
minimizing the force matching loss,

∥fc +∇Ũ CMD(qc; θ)∥2
, (7)

over a set of centroid sample forces fc and configurations qc obtained
from a PIMD simulation at β performed with the i-PI code53 (see
Sec. I C of the supplementary material for more details). The model
and its training have been implemented in pytorch,54 and the
codes are available upon request.

We next propose a simple and physically motivated tempera-
ture elevation (Te) ansatz that alleviates the curvature problem of
CMD as well as eliminates the unfavorable temperature dependence
associated with the computational cost of the vibrational spectra.
We note that for a system in its ground state, i.e., h̵ω ≫ β−1,
the IR spectrum—related by the dipole correlation function—is
only trivially dependent on the temperature (see Sec. II A of the
supplementary material). It is easy to show that after rescaling with
the inverse temperature β, the Kubo-transformed time-correlation
function is temperature-independent for a system in its ground state,

βC̃μ̂μ̂(ω; β) = (h̵ω)−1∑
j,k
⟨ j∣μ̂∣k⟩⟨k∣μ̂∣ j⟩δ(ω − h̵−1(Ek − Ej)), (8)

where Ej and Ek are the vibrational energies of the j-th and k-th
eigenstates of the system.

As shown in Fig. 1(b), the CMD does not follow a temperature-
independent line position because of the curvature problem at low
temperatures. of the curvature problem at low temperatures. To
avoid this artifact, we propose a Te ansatz, i.e., we rewrite a time-
correlation function in terms of a CMD time-correlation function
computed at an elevated temperature Te,

C̃ Te
μ̂μ̂(ω, β; β e) =

β e

β
C̃CMD

μ̂μ̂ (ω, β e). (9)

This ansatz is valid for any quantum system (of distinguish-
able particles) and can be used to improve PI-based methods
that exhibit diminishing performance at low temperatures. To
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ease the calculation of quantum dynamical properties for general
(high-dimensional) systems, we approximate this relation as

C̃ Te
μ̂μ̂(ω, β; β e) ≈ Z−1 F[∫ dq′e−βU CMD

(q′ ;βe)μ(0) ⋅ μ(t)], (10)

where F is a Fourier transform with respect to time so that it is
simply estimated by evolving the centroid at β on a FES calcu-
lated at a high temperature βe. This approximate form of Eq. (9)
bears advantages such as it is exact in the harmonic and the clas-
sical limit, and does not require any posterior rescaling of the TCF.
These limits also suggest that Eq. (10) should give a good descrip-
tion of the stiff modes, weakly coupled with the rest of the system,
without perturbing the dynamics of the low-frequency (classical)
modes. Notably, an elevated temperature leads to computational
efficiency as it reduces the number of replicas needed to discretize
the imaginary time path and improves sampling efficiency - similar
to the use of a high temperature in the adiabatic free energy dynam-
ics approach to improve sampling of a high-dimensional space. In
this work, we perform fully adiabatic CMD by separately computing
the FES at a higher temperature; however, we also plan to imple-
ment and study a partially adiabatic implementation of the Te ansatz
with CMD.

As shown in Fig. 1(b), the CMD IR spectrum remains in
excellent agreement with the exact result at 600 K, and the radial dis-
tribution function of the centroid of the O–H bond is aligned with
the physical distribution. These observations suggest that the sys-
tem does not exhibit the curvature problem at 600 K, and thus, we
test the Te ansatz for Te = 600 K, where β e = (k BT e)−1. As shown
in Figs. 1(c) and 1(d), increasing the “elevated temperature” pro-
gressively improves the description of the IR spectrum at 150 K.
Moreover, using Te = 600 K leads to an excellent agreement of the
temperature-dependent IR spectrum with the exact result. Note that
for the Morse potential, there exists a wide window of suitable Te
(see Sec. II B of the supplementary material for more details), which
is large enough to alleviate the curvature problem as well as small
enough for the harmonic approximation in Eq. (10) to be valid,
and we observed similar features with the water molecule and bulk
water. Figure 1(c) shows that the line position of the predicted IR
spectra and the radial distribution of the O–H bond are largely
temperature-independent using Te = 600 K, as expected for a system
in its ground state. Finally, the number of replicas needed to calcu-
late UCMD(q′; βe) is P ≈ βeh̵ωmax < βh̵ωmax, which is independent
of β. Thus, within the Te ansatz, the cost of simulating the quan-
tum dynamics of a system in its ground state at β does not scale with
temperature.

The workflow for computing the quantum vibrational spec-
trum of a system using PIGS and the Te ansatz can be summarized
as follow. First, we perform short PIMD simulations exploring a
range of temperatures and select the lowest temperature Te by
checking for the alignment between the centroid and the physi-
cal radial distributions. In this study, we use radial distribution
functions (RDFs) to check for this alignment; however, more gen-
eral systems might require many-body correlation functions such as
SOAP50 or ACE58 (of which RDFs form a subset), combined with the
state-of-the-art dimensionality reduction schemes to compare the
centroid and physical distributions. Then, we use Eqs. (6) and (7)
to machine-learn the centroid FES at βe as a sum of local

atom-centered components. In the final step, we predict the quan-
tum dynamical properties by performing MD at the desired tem-
peratures. These simple steps enable the development of an effective
PES that includes quantum nuclear effects for dynamics—a FES
trained on a single high-temperature PI trajectory—and that is trans-
ferable across temperatures. The computational details of all the sim-
ulations are described in Secs. I B, I D, and I E of the supplementary
material.

We demonstrate the capabilities of the Te PIGS approach by
applying it to the IR spectrum of a water molecule—a challenging
system that exhibits a strong red shift of the stretching modes due
to zero-point motion and a fine temperature-dependent splitting of
the vibrational peaks due to the coupling of rotations and vibrations.
We study the IR spectrum at 150, 300, and 600 K using the well-
known Partridge–Schwenke model,55 which exhibits spectroscopic
accuracy, and compare with experimental and numerically exact
results.60 We also compare with the state-of-the-art approaches
such as CMD and thermostatted ring polymer molecular dynamics
(TRPMD).18

The water molecule resides in its vibrational ground state at
least up to 600 K but exhibits a sensitive dependence of the rovi-
brational splitting of the modes with the temperature, as seen from
the numerically exact IR spectra30 in Fig. 3. The TRPMD approach
largely captures the correct line positions of the (envelopes of) the
stretching and the bending bands but is artificially broadened.18 The
CMD approach gives a good description of the full IR spectrum at
600 K but is artificially red-shifted at 300 and 150 K due to the onset
of the curvature problem. This is confirmed by observing in Fig. 3
that the centroid distributions at 300 and 150 K indicate a lower
(unphysical) O–H bond length and misalignment with the physi-
cal radial distribution. Nevertheless, at 600 K, we do not observe any
“symptoms” of the curvature problem, and thus, we use Te = 600 K
for the Te PIGS approach.

As shown in Fig. 3, the Te PIGS spectra at 600 K are in excellent
agreement with the exact and independent CMD results, underly-
ing the accuracy of the learned FES. More importantly, Te PIGS
describes the fundamental frequencies and the rotational splittings
of the stretching and the bending modes at 300 and 150 K, a sub-
stantial improvement over state-of-the-art PI methods in terms of
accuracy. However, we note that like CMD, Te PIGS does not cap-
ture the subtle temperature dependence of the relative intensities
of the bending mode with respect to the stretching mode. This
is largely an artifact of PI-based approximate quantum dynamics
methods, which lack quantum coherence in their dynamics23 arising
from the momenta not being drawn from their quantum Boltzmann
distribution.24 On the other hand, Te PIGS is computationally effi-
cient since the FES is estimated from a 100 ps PI trajectory with
eight replicas and a timestep of 0.5 fs, suggesting computational
gains of at least a factor of 500×, 1000×, and 2000× at 600, 300,
and 150 K, respectively, if one knows an appropriate Te, compared
to a 1 ns long CMD simulations needed to converge the TCFs.
The overall cost for identifying Te, namely, a set of 100 ps PIMD
simulations across 100–600 K, was at least two orders of magni-
tude lower than that of a CMD simulation needed to calculate the
spectrum at 150 K. Moreover, we expect this cost to be overes-
timated, due to the over-conservative nature of our benchmark.
These could easily be made an order of magnitude less expen-
sive using out-of-the-box accelerated-sampling methods15 based on
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FIG. 3. Quantum dynamics of a water molecule. Comparison of the vibrational spectrum of a water molecule described by the Partridge–Schwenke model55 at (a) 600, (b)
300, and (c) 150 K using discrete value representation (yielding numerically exact results) in black, the proposed Te PIGS approach using the centroid free energy surface
calculated at 600 K in red, CMD in blue, and TRPMD in green. The insets show the probability distribution of the O–H bond length calculated from the CMD and Te PIGS,
and the black dashed line indicates the mode of the distribution obtained from PIMD—constant across temperatures. Panel (d) displays the temperature-dependent IR
spectrum of a water molecule from 600 K down to 0.5 K. The gray dashed line indicates the reference 0→ 1 transition frequency, while the black line is shifted by 40 cm−1

to reflect the results obtained with Matsubara dynamics.22

generalized Langevin equation thermostats61–63 and high-order
splittings of the Boltzmann operator32,64–66 combined with replica-
exchange67 across 100–600 K. Other accelerated techniques such as
ring polymer contraction and multiple time stepping37,68 promise a
classical computational cost for the calculation of quantum dynam-
ical properties,21,31 contingent to finding an inexpensive surrogate
for the high-frequency modes of the system; however, they bear the
inaccuracies of traditional path-integral methods that we address
using the Te ansatz.

To showcase the absence of computational scaling with tem-
perature, we calculate the IR spectrum of a water molecule down
to 0.5 K. A decrease in the temperature expectedly reduces the
rotational splitting of the vibrational modes, and below 10 K, the
system falls into its rotational ground state with well-resolved peaks
for the three vibrational modes. This temperature is in excellent
agreement with the experimentally known rotational constants of
a water molecule, i.e., 13–35 K.69 Furthermore, the frequencies of
the ground state vibrational bending mode matches the experi-
mental/exact results60 up to 8 cm−1—the resolution of calculated
spectra—and those of the two stretching modes are expectedly
blue-shifted by around 40 cm−1 in excellent agreement with the
results obtained from Mastubara dynamics22—the true reference
for PI-based dynamical methods. We emphasize that the calcula-
tion of the quantum mechanical spectrum at cryogenic temperatures
using classical dynamics at this level of accuracy-to-cost ratio is
unprecedented to our knowledge.

As a final test of our approach, we study the IR spectrum of con-
densed phase aqueous systems: bulk water at 300 K and hexagonal

ice at 150 K. The presence of inter-molecule or crystal modes that
couple with high-frequency modes should constitute a challenge for
Te PIGS as has been the case with previous PI approaches.27,28 An
additional challenge is that ice melts below the onset temperature
of the curvature problem, which could complicate the calculation of
the FES at βe. To circumvent this issue, we exploit the local nature
of the FES [see Eq. (6)] and insights from deep inelastic neutron
scattering experiments7 that probe the quantum nuclear motion of
atoms. These experiments suggest that the local potential felt by the
nuclei due to quantum delocalization is short-ranged70 and sensi-
tive/unique to their local environments.71 Given that Eq. (6) makes
the fitted FES size-extensive and local environments of H and O
atoms in ice are present in liquid water,72 we conjecture that the Te
FES of hexagonal ice can be constructed from a high-temperature
simulation of liquid water. We estimate the vibrational spectra
using the q-TIP4P/f water potential59 and a linear dipole moment
surface. Although this model does not exhibit “experimental” or
“spectroscopic” accuracy, it has been extensively used for comparing
the performance of various PI-19,30,38,73 and wavefunction-based11,12

methods, and it exhibits a good agreement with the experimen-
tal spectra when combined with an appropriate dipole moment
surface.74

As shown in Fig. 4, we obtain well-resolved spectra for both
liquid water at 300 K and hexagonal ice at 150 K using a Te = 600 K
kB FES fitted on a 10 ps PI simulation of liquid water. Our results
are in good agreement with CMD, TRPMD, and QCMD for room-
temperature liquid water, where the curvature problem is small.75

In the case of hexagonal ice at 150 K, we see a quantitative and
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FIG. 4. Quantum dynamics of bulk water. Comparison of the vibrational spectrum of (a) liquid water at 300 K and (b) hexagonal ice at 150 K, described by a q-TIP4P/f59

water model, calculated using QCMD in black, the proposed Te PIGS approach using the centroid free energy surface calculated at 600 K in red, CMD in blue, and TRPMD
in green. Panel (c) displays the Te PIGS IR spectrum predictions for hexagonal ice from 150 K down to 0.5 K.

qualitative improvement in the description of the high-frequency
band with respect to CMD and TRPMD, and an excellent agreement
with QCMD.30 In addition to the increased accuracy, our approach
is over three orders of magnitude less expensive (as measured by the
number of force evaluations) than the state-of-the-art approaches at
300 and 150 K. Furthermore, the absence of temperature-dependent
scaling behavior of the cost allows us to also compute the IR spec-
trum of hexagonal ice all the way down to 0.5 K. As expected, we
observe that the system resides in its ground state and does not
exhibit any line shifts of the high-frequency modes.

In summary, we propose a new approach, Te PIGS, that accu-
rately simulates the quantum dynamics of light nuclei at the cost
of classical MD by combining PI quantum mechanics, machine
learning, and bottom-up coarse-graining. This combination is both
timely and significant as exemplified by other recent works (which
we discovered during the review process) that implement a fast
version of CMD76,77 using machine-learning potentials. We use a
physically motivated temperature elevation ansatz that moves the
system on the centroid FES obtained at a high temperature and
fitted efficiently by using machine-learning-based coarse-graining
approaches.42–44 The Te ansatz is exact in the high-frequency har-
monic limit where the vibrational mode essentially exists in its
ground state, as well as for low-frequency modes for which the ring
polymer distribution collapses on the centroid. Furthermore, our
study of condensed aqueous phase water shows that it also per-
forms well for intermediate frequencies h̵ω ∼ β−1, for instance, the
librational/rotational modes. These limits suggest that our approach
could be useful for studying a wide range of systems with high-
frequency modes that exhibit weak coupling to the rest of the
system. We show that the Te PIGS FES is transferable across tem-
peratures and phases, as well as size extensive, meaning that it
allows for further computational savings by learning the FES on a
smaller system. We believe that our approach constitutes a substan-
tial improvement in the accuracy over routinely used state-of-the-art

methods such as CMD and TRPMD. In addition, its low computa-
tional cost and the absence of its scaling behavior with temperature
allow for accurate IR spectra predictions even at cryogenic tem-
peratures, which are considered prohibitive with state-of-the-art
methods.

The routine use of the Te PIGS approach on materials and
the chemical system will require a careful and thorough study of a
diverse set of “difficult” systems, which could challenge the accuracy
of the Te ansatz. For instance, one could imagine highly flux-
ional molecules, systems exhibiting a near-continuum of strongly
coupled high-frequency modes, or dynamical processes dominated
by “rare” quantum tunneling events being testing cases probing
the regimes in which the Te ansatz is not exact or expected to
be accurate. Similarly, the extension of Te PIGS to general sys-
tems described by first-principles electronic structure methods will
require the development of a hierarchical framework leveraging
recent advances in active-learning strategies for the development
of accurate and reliable machine-learning PES, enhanced sampling
of the quantum Boltzmann distribution using accelerated path-
integral methods, and, subsequently, the calculation of the centroid
FES at an elevated temperature. In addition, these systems would
also form an ideal test bed for understanding what range of ele-
vated temperatures could be used to treat a frozen ground-state
vibrational mode. Could a “universal” range of Te ∈ [500, 600] K.
be used for chemical systems, displaying high-frequency modes in
the 3000–5000 cm−1 regime, to completely avoid the process of
selecting an elevated temperature for a general system? Finally, one
could envisage the use of the PIGS approach for the calculations
of the equilibrium properties. We plan to address all these direc-
tions in future studies. Overall, we believe that the simplicity, low
cost, and high accuracy of Te PIGS could open up prospects for
routine modeling of quantum-vibrational spectra of general systems
and direct comparisons with experiments, often performed at low
temperatures.78
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Section I of the supplementary material contains computational
details of the DVR calculations (I A), the PIMD simulations (I B), the
ML model (I C), CMD simulations (I D), and MD/TRPMD/PIGS
(I E). Section II contains the derivation of the linear scaling of
the Kubo-transformed TCF of a ground state system (II A) and a
discussion on selecting a suitable Te.
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