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Antimicrobial resistances (AMR) in bacteria, such as ESBL/AmpC-producing

E. coli, are a burden to human and animal health. This burden is mainly

driven by the consumption and release of antimicrobial substances into

the environment. The pollution and contamination of habitats by AMR in

bacteria and antimicrobial substances can lead to the transmission of bacterial

AMR to wildlife. Therefore, it is necessary to understand the transmission

cycle of antibiotics and resistant bacteria between humans, and animals

as well as their occurrences in the environment. Environmental factors

associated with the occurrence of bacterial AMR in wildlife can lead to a

better understanding of the distribution of bacterial AMR in humans and

animals using One Health approaches. Here, we analyzed data gathered

in the framework of the German zoonoses monitoring program in 2016

and 2020 using spatiotemporal statistics to identify relevant environmental

factors (e.g., livestock density, climatic variables, and human density) in

association with the spatial distribution of ESBL/AmpC-producing E. coli. For

this purpose, we developed a generic data integration and analysis pipeline

to link spatially explicit environmental factors to the monitoring data. Finally,

we built a binomial generalized linear mixed model (GLMM) to determine

the factors associated with the spatial distribution of ESBL/AmpC-producing

E. coli. In 2016 and 2020, 807 fecal samples from hunted wild boar (Sus

scrofa L.) were randomly taken in 13 federal states and selectively analyzed

for ESBL/AmpC-producing E. coli. Forty-eight isolates were identified in 12

German federal states, with an overall prevalence of 6%. We observed an

almost three times higher probability of ESBL/AmpC-producing E. coli isolates

in wild boar in counties with high cattle densities (OR = 2.57, p ≤ 0.01).

Furthermore, we identified a seasonal e�ect in areas with high precipitation

during the o�-hunting seasons (OR = 2.78, p = 0.025) and low precipitation

throughout the years (OR = 0.42, p = 0.025). However, due to the low

amount of identified isolates, confidence intervals were wide, indicating a

high level of uncertainty. This suggests that further studies on smaller scales

need to be conducted with multiannual data and improved metadata, e.g., on
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the location, the hunting procedure, and species characteristics to be collected

during field sampling.
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antimicrobial resistance, One Health, wildlife, spatial analysis, E. coli

Introduction

Antibiotics are used for the treatment of most bacterial

infectious diseases and are an important instrument in

veterinary and human medicine. However, the consumption

and release of antimicrobial substances into the environment

can foster the development of antimicrobial resistance (AMR)

in bacteria (1–4). While the development of resistances is an

evolutionary process in bacteria known as the “arms race”

to survive, the overconsumption and use of antimicrobial

substances can further increase the selection pressure in bacteria

to develop resistances against several antibiotics (2, 5, 6). This

leads to a high exposure of bacterial AMR in humans, animals,

and the environment (2, 3, 7, 8). In 2019, approximately 4.95

million people died as a direct consequence of infections with

antimicrobial-resistant bacteria worldwide (8). Therefore, one

key element to prevent the uncontrolled development of AMR

in bacteria is to understand the transmission cycles of antibiotics

and resistant bacteria between humans and animals, as well as

their occurrences in the environment.

The role of antimicrobial-resistant bacteria in wildlife and

the environment is of particular interest for One Health

approaches considering the human-wildlife-livestock interface.

Various studies show that multiple antimicrobial-resistant

bacteria can be found globally in wildlife and the environment,

i.e., soil, water bodies, feed, and food (1, 3, 9–13). In recent

years, major efforts have beenmade to identify the reservoirs and

sources of antimicrobial-resistant bacteria in wildlife.

In 2019, Torres et al. (12) highlighted that antimicrobial-

resistant bacteria are not ubiquitously distributed amongwildlife

species. In particular, the wild boar (Sus scrofa) was suggested

as an appropriate sentinel species to investigate the distribution

and transmission cycles of antimicrobial-resistant bacteria in

wildlife and the environment due to their omnivorous feeding

habits and their high abundances in various habitats (12,

14, 15). The transmission of antimicrobial-resistant bacteria

and antimicrobial residues to wild boar is most likely caused

through the consumption of contaminated feed and water.

Various studies have identified different sources as the origin

of the occurrence of AMR in bacteria and antibiotics in the

environment, such as manure-based fertilizers in agriculture

applied to fields or pastures, sewage wastewater treatment

plants, landfills, waste and aquacultural facilities (6, 16–18).

Therefore, environments characterized by livestock farming

and densely populated areas are often more predisposed

to be contaminated by antimicrobial-resistant bacteria and

antimicrobial substances, increasing the exposure of wildlife

species living in proximity to these areas, such as wild boar

(7, 11, 15, 19, 20).

However, the amount, composition, and durability of

antimicrobial-resistant bacteria and antimicrobial substances in

these environments often depend on additional environmental

influences. In sewage treatment facilities, for example, the

amount and composition of microorganisms, including

antimicrobial-resistant bacteria, depends on different climatic

factors, such as temperature (21). Furthermore, facilities such

as hospitals, slaughterhouses, and residential areas in the

catchment area of sewage plants can release high amounts of

antimicrobial-resistant bacteria and antibiotics into sewage.

This contaminated sewage can then enter nearby water bodies,

such as rivers, due to insufficient filtration (4).

In livestock farming environments the accumulation of

antimicrobial substances and antimicrobial-resistant bacteria is

even more complex and influenced by climate, weather, soil

properties and farm management, as well as the types of farm

animals (22). For example, the storage conditions of manure and

the timing of fertilization can have a significant effect on the

amount of antimicrobial-resistant bacteria that reach fields and

pastures (23). In the agroecosystem, environmental factors such

as soil composition, local weather conditions, adjacent drainage

ditches and habitats are also important factors leading to the

accumulation of antimicrobial substances and antimicrobial-

resistant bacteria in the environment (22). In addition, wild

boar ecology needs to be considered; as social group living

species they might serve as mobile links for AMR in bacteria

(24) which is another possible driver of spread. This leads to a

complex and dynamic transmission cycle, causing the presence

of antimicrobial-resistant bacteria in wildlife species such as

wild boar.

The German Federal Institute for Risk Assessment (BfR),

the German Federal Office for Consumer Protection and Food

Safety (BVL) and the German Federal States conduct routine

monitoring programs for zoonoses in Germany. Due to the role

of wild boar for game meat production, in 2016 and 2020, the

German monitoring program included wild boar as a target

species, testing for antimicrobial-resistant bacteria and other

zoonotic agents (25–27). During the monitoring programs, 807

fecal samples of hunted wild boar (2016 n = 547 samples, 2020

n = 260 samples) were randomly taken across Germany and

specifically tested for the presence of “extended spectrum (ESBL)
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and ampicillin class C (AmpC) beta-lactamase-producing

Escherichia coli” (in the following: ESBL/AmpC E. coli) (25–

27). The distribution pattern of ESBL/AmpC E. coli isolates

seemed to be regionally concentrated and raised the question of

whether there were spatiotemporal differences between isolates

and negative samples.

In this study, we hypothesized that anthropogenic and

environmental factors within the sampling regions could serve

as indicators for the complex transmission cycle of ESBL/AmpC

E. coli in wild boar. Regional density of livestock or human

population might be an indicator for the exposure of the

environment to contaminated sewage or fertilizers, and further,

a possible transmission to wild boar. Here, we used the data

of the German zoonoses monitoring program from 2016 and

2020 to develop an analysis pipeline that can be used in

upcoming years as a tool for a standardized analysis (25, 27). The

pipeline extracts and links environmental data to the sampling

location and tested samples on ESBL/AmpC E. coli. For this

purpose, a review of scientific literature was conducted to

identify suitable environmental factors. Based on these results,

the relevant environmental data were gathered from public

online data portals.

Thus, the primary objectives of this study were i) to link data

of the monitoring program with spatially related environmental

factor data that were collected from different public online data

sources, ii) to analyze the associations between the occurrence of

ESBL/AmpC E. coli in wild boar and the environmental variables

via geospatial analysis, and iii) to propose recommendations

on data collection for monitoring of antimcirobial-resistant

bacteria in wildlife using wild boar as a study model. This study

will support a better understanding of the role of antimicrobial-

resistant bacteria in wildlife and the environment following the

framework of One Health.

Materials and methods

Sampling data and study area

In the German zoonoses monitoring programs in 2016

and 2020, 899 fecal and nasal swab samples from hunted wild

boars were randomly collected and tested for different zoonoses

and antimicrobial-resistant bacteria (25–27). In 2016, 547 out

of 551 fecal samples of wild boar were tested specifically for

ESBL/AmpC E. coli. In 2020 260 fecal samples out of 384 were

tested specifically for ESBL/AmpC E. coli. The samples were

collected in 14 out of the 16 German federal states, excluding

Bremen, and Hamburg. We decided to exclude five samples

taken in 2016 in Berlin since the provided information on

the hunting area was not sufficient for conducting analyzes

and because Berlin was the only sampling area comprising a

metropolitan area. The minimum sample size defined for the

monitoring programs was based on the hunting bags of the

federal states 2013/2014 for the monitoring program 2016 and

the hunting bags of 2017/2018 for the monitoring program

2020 (25, 27). However, the sample collection within the

different federal states was not mandatory and depended on

the availability of samples (Figure 1). The sample size differed

from 1 to 23 per sampled county. The samples were taken

monthly in 2016 and 2020, with a focus during the hunting

seasons in the winter months of January, February, October,

November, and December, where 78% of all samples were

taken. Therefore, we defined two main seasons: the first season

is defined as main hunting season (October–February) and

the other one as the off-hunting season (March–September).

The sampling locations were notified to the authorities at

municipality or county level. Unfortunately, the samples were

collected with the intention of aggregating the monitoring

data at federal and national level. Therefore, detailed species

information such as sex and age of the shot animals, as well

as the exact locations, were often not concise or sufficiently

reported. Furthermore, no information was provided on the

hunting method within the different sampling regions. The

results of the zoonoses monitoring programs have previously

been published by Plaza-Rodriguez et al. (26) and in the report

on the respective zoonosesmonitoring in 2016 and 2020 (25, 27).

These studies describe their findings on a national level for

different animal species and zoonotic bacteria. Our study is

based on the raw data of the monitoring program focusing

on the wild boar samples tested for ESBL/AmpC E. coli. We

extended the reported data with additional information to allow

detailed spatial analysis.

Laboratory analysis

The primary isolation of ESBL/AmpC E. coli in collected

fecal samples was carried out in accredited state laboratories

according to the EU reference laboratory protocol for the

isolation of ESBL-, AmpC- and carbapenemase-producing

E. coli in caecal samples (28). These results were reported to

the German Federal Office for Consumer Protection and Food

Safety (BVL) for aggregation and reporting at national level.

The confirmation, characterization, and phenotypic resistance

testing of ESBL/AmpC E. coli isolates was performed at the

National Reference Laboratories for Antimicrobial Resistance

(NRL-AR) at the BfR. The antimicrobial susceptibility testing

(AST) was conducted with broth microdilution method

according to CLSI M07-A10 and CLSI M45-A, using the

standardized EUVSEC and EUVSEC2 plates (TREK Diagnostic

Systems) for 14 antibiotics (Commission Implementing

Decision (CID) 2013/652/EU) (26). A further characterization

in regard to harbored ESBL/AmpC genes within E. coli isolates

resistant to third generation cephalosporins was conducted in

three steps (26). First, a prescreening by real-time PCR was

performed for the detection of the typical beta-lactamases
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FIGURE 1

Spatial distribution of ESBL/AmpC E. coli isolates (map A) and negative samples taken (map B) in the counties. The color of the polygons

represents the number of (A) number of isolates taken and in (B) the number of negative samples taken. The white areas marked as NA represent

areas with no isolates identified.

TEM, CTX, SHV, and CRY (26). Thereafter, the PCR products

were analyzed by Sanger sequencing for the determination

of the ESBL variant (26). In a third step, isolates that were

negative with real time PCR were screened by PCR for the

presence of blaFOX , blaMOX , blaCIT , blaDHA, and blaEBC
genes (26). Since some discovered beta-lactamase types

differed within the primer regions, it was not possible to

distinguish between CTX-M-14 and -17 (CTX-M-14 like),

between CTX-M-65 and 90 (CTX-M-65-like), and between

CMY-2/-22 and−66 (CMY-2-like) (26). The detailed laboratory

analysis is already published in Plaza-Rodriguez et al. (26).

We used the discovered resistance genes in our study to look

for specific spatial patterns for further validation of the origin

of resistances.
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Data analysis pipeline

The data analysis pipeline (Figure 2) consists of three

main steps: i) data cleaning, ii) data linking and extraction

of environmental predictor variables and iii) statistical data

analysis (29). During the data cleaning step, we deleted

duplicated data from the same wild boar sample. Subsequently,

the information on the sample origin was merged according

to the county code with the spatial vector data of the Federal

Agency for Cartography and Geodesy (BKG, scale 1: 250,000)

(30). This vector data contains the polygon information of

the borders of all counties of Germany. Data on explicit

environmental factors were collected from different public data

sources and formats (raster, csv and Excel). Tabular data were

linked based on the reported county keys. We harmonized

raster datasets using Lambert azimuthal equal-area projection

(LAEA: EPSG-Code 3035). The template raster resolution

was 100 square meters (m²), which represents the specific

information about the transformed data set in each grid cell. The

processed environmental raster files were stacked and extracted

according to the reported counties, months, and years using the

“exactextractr” R-package (31). The data analysis pipeline was

developed in R 4.1.1 (32), combining all steps in one code base.

We used, among others, the packages raster, sf, exactextractr and

tidyverse (31, 33–35).

Environmental predictor variables

We based the selection of environmental predictors on

a review of current scientific literature focusing on the

development and contamination of bacterial AMR in the

environment. In several publications, the role of agriculture and

densely populated areas are described, but also climatic factors

such as high temperatures and precipitation (11, 12, 15, 20–

22, 26). Therefore, we collected meteorological, agricultural

and geographical data from publicly available websites listed in

Table 1. The meteorological data originate from the “Deutscher

Wetterdienst” (DWD), a federal authority that is responsible

for weather and climate information in Germany (36). We

derived monthly information on air temperature (measured

in 2016 and 2020 in 2m height) and precipitation (from

2016 and 2020). We also included the climatic precipitation

and temperature (both measured and averaged from 1991 to

2020) to identify weather anomalies during the years 2016

and 2020. This information was provided as raster files for

each month and year. We projected the raster files into the

target LAEA projection (see Section 2.3), and the values of the

weather data were extracted as median values for each notified

county of origin and the month of sampling. Information

on the human population density and livestock production

systems in 2016 and 2020 were collected from the data portal

“www.regionalstatistik.de” provided by the German federal

FIGURE 2

Data analysis pipeline that combines monitoring raw data with

data of explicit environmental factors (right vertical axis). On the

left the 3 main steps of the data pipeline are described.

statistical offices. We downloaded information on the human

population density, cattle density, and pig density per km²

in each county from the “Regional Atlas of Germany” as csv

files. The downloaded data were merged according to the

county code (NUTS) with the monitoring data. To account

for the transmission of ESBL/AmpC E. coli within the wild

boar population, we used raster data of the MaxEnt model

prediction based on presence-background data describing

suitability for wild boar occurrence (2014–2017) published by

the ENETWILD-consortium 2019 (37). The wild boar presence

probability raster data was also reprojected into the target

LAEA projection and extracted as median for each county

(see Section 2.3). Thus, all data sources were summarized in

one master file that contained the information on ESBL/AmpC

E. coli isolates obtained from fecal samples, the environmental

variables and the spatial information given as the geometry of

the county.

Statistical analysis

The statistical analysis was performed in four main steps.

We first conducted a descriptive analysis of the spatial
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TABLE 1 Collected data and their origin.

Category Factors Unit Year Source Reference

Weather/Climate Average monthly temperature Degree Celsius 2016, 2020 DWD cdc.dwd.de

Average monthly precipitation mm 2016, 2020 DWD cdc.dwd.de

Average monthly temperature (climate)

(1991–2020)

Degree Celsius 1991–2020 DWD cdc.dwd.de

Average monthly precipitation (climate)

(1991–2020)

mm 1991–2020 DWD cdc.dwd.de

Sources/Proxys Human population density Human population

density/ Km²

2016, 2022 Regionalstatitik.de www.regionalstatistik.de

Cattle density Cattle density /Km2 2016, 2020 Regionalstatitik.de www.regionalstatistik.de

Pig density Pig density /Km2 Regionalstatitik.de www.regionalstatistik.de

Wild boar Wild boar presence probability Suitability

(Low:0/High:1)

2014–2017 ENETWILD-consortium https://enetwild.com/maps/

Geographic County Germany GE250 data base 2016 BKG www.bkg.bund.de/

Time Month 2016 Raw Data

Main hunting season and off-hunting

season

generated

distribution of samples. Before model fitting, we tested all

extracted environmental variables for multicollinearity with

the Spearman’s rank correlation test (“ggally” R-package) and

kept all variables with |rho| < 0.7 (Supplementary Figure 1).

We tested the samples taken on spatial autocorrelation using

Moran’s I, which relies on a comparison of the distance

between the center points of each county. All counties

sampled were spatially independent (p = 0.01). Next, we

used generalized linear mixed-effects models (GLMM) with the

presence or absence of ESBL/AmpC E. coli represented as binary

response variable (1/0), with logic link function, binomial error

distribution. As explanatory predictor variables, we included

the environmental factors (covariates) such as cattle density,

pig density, human population density, the average monthly

precipitation, the climatic mean precipitation, the wild boar

presence probability, and the average monthly temperature.

All explanatory predictor variables were normalized using

the scale function to account for different units. To assess

the temporal dynamics of the occurrences of ESBL/AmpC

E. coli in wild boar, we included season as an interaction

term combined with each environmental covariate. To account

for regional and yearly differences, we used the county

ID as well as the year as random effects. We ran the

GLMM using the R-package “glmmTMB” (38). Estimates

were transformed to odds ratios (OR) with the sjPlot

package (39). The standard significance threshold was set

to p < 0.05 (95% confidence interval, CI). Finally, we

examined the model for linearity of predictors, independence

of errors and dispersion with the DHARMa package (40)

(Supplementary Figures 2, 3).

Results

Spatial distribution of the samples

We linked and analyzed the data of 802 fecal samples of dead

wild boars tested for ESBL/AmpC E. coli as part of the zoonoses

monitoring program in 2016 and 2020. The sample size differed

between the years: for 2016, 542 samples, and for 2020, 260

samples. The samples originated from 181 German counties

in 13 federal states (Figure 1). Most samples, were collected in

the federal state of Lower Saxony in the northwestern part of

Germany (n = 271, 33.6%). At the county level, most fecal

samples were collected in 2016 in Goslar, where all 23 samples

were negative. In 2020, most samples originated from the

federal state Mecklenburg-Western Pomerania (n= 40) and the

counties Leipzig (n = 11) and North Saxony (n = 11) (Saxony).

Most samples tested for ESBL/AmpC E. coli (78.4%) were taken

during the main hunting season, especially in November (56%).

During the off-hunting season (March-September), 15.8% of the

samples were taken.

A total of 48 ESBL/AmpC E. coli isolates out of 802 fecal

samples were detected in 39 counties and 11 federal states

(Figure 1). In 2016, 37 isolates out of 544 samples and in 2020, 13

isolates out of 260 samples were identified. The highest number

of ESBL/AmpC E. coli isolates in 2016 were found in the federal

state Lower Saxony with 13 isolates out of 241 fecal samples and

on the county level in Rotenburg (Wümme) (5 isolates out of

15 fecal samples) (Supplementary Figure 5). The distribution of

the sample size and the sample regions differed between 2020

and 2016, and most isolates of 2020 were identified in the federal
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state Brandenburg, with four isolates. No county had more than

one identified isolate in 2020.

The overall temporal distribution of the taken samples was

characterized by the hunting season (Figure 3). In November

2016, 22 isolates were found in the 306 samples taken, which

is the highest number of isolates found. In January (n = 83),

February (n = 15) and May (n = 8) no isolates were identified.

The overall proportion of identified isolates during the off-

hunting season was 30% higher than in the main hunting

season. However, the samples taken during the off-hunting

season represented only 16% of all collected samples (Figure 3).

The proportion of isolates ranged from 33% (n = 6, isolates

= 2) in June, 50% in July (n = 6, isolates = 3), 22% in

August (n = 9, isolates = 2) and 25% in September (n = 4,

isolates = 1) (Figure 3). In 2020, isolates were identified only

in 3 months: March, September, and November. In September

(n= 6) and November (n = 6) 12 out of 13 identified isolates

were found. Hence, 53% of all isolates were identified within the

off-hunting season.

In 2016, 25 isolates of the 35 identified ESBL/AmpC E.

coli isolates were additionally tested for their resistance genes.

Fifty-seven percent of the isolates were contained blaCTX−M−1

(n = 11) genes, 17% blaCTX−M−15 (n= 5) genes and 13% as

blaCTX−M−14 -like genes (n = 3). Furthermore, one isolate

contained blaCTX−M65, and another isolate was classified as

AmpC phenotype blaCMY2-like gene. Sixty-four percent of the

25 analyzed isolates were identified during the hunting season

and 28% during the off-hunting season. Most isolates identified

in 2016 contained blaCTX−M−1 genes, with nine isolates in

the main hunting season and four in the off-hunting season.

At the county level, most ESBL/AmpC E. coli were identified

during the main hunting season in Rotenburg (Wümme) in

Lower Saxony, with the ESBL genes blaCTX−M−1 (n = 3) and

blaCTX−M−15 (n = 2). Most of the analyzed resistance genes

(40%) originated from the federal state of Lower Saxony. The

resistance genes blaCTX−M−1 (n = 5), blaCTX−M15 (n = 3),

blaCTX−M−14 -like (n = 1) and one blaCTXM−M−65 were

identified in the isolates from Lower Saxony. These isolates

were collected during the main hunting season. Most samples

during the off-hunting season originated from the federal state

of North Rhine-Westphalia, with one isolate detected with

blaCTX−M−1 and another with blaCTX−M−15 collected during

FIGURE 3

Distribution of isolates and the total number of samples throughout the years 2016 and 2020. The first number at each bar represent the number

of identified ESBL/AmpC E. coli isolates within the month, and the second number after the slash sign represents the total number of samples

taken within the month. The colors of the bars and numbers represent the associated year.
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FIGURE 4

E�ect plots showing the increase or decrease in the probability to identify ESBL/AmpC E. coli in wild boar per covariate and season. The red line

represents the course of the main hunting season and the blue line the course of the o�-hunting season. The covariates shown are (A) average

monthly precipitation 2016 and 2020 in mm, (B) average monthly climatic precipitation (1991-2020) in mm, (C) average monthly temperature of

2016 and 2020 in ◦C, (D) cattle density per km2, (E) Human population density per km2, (F) pig density per km2, and (G) wild boar abundance.

June 2016. Most samples in 2020 contained genes classified

as blaCTX−M−1 (n= 6) and blaCTX−M14-like. In the other

isolates, the AMR genes were classified as blaCTX−M−15,

blaCTX−M−27, blaSHV−12, and blaTEM−52−B.

Environmental factors associated with
the distribution of ESBL/AmpC E. coli

ESBL/AmpC E. coli in wild boar was almost three times

more likely (OR = 2.78, p = 0.03) in counties with high average

precipitation during the off-hunting season. In contrast, the

overall probability to identify ESBL/AmpC E. coli in areas with

low monthly average precipitation was significant as a single

effect (OR = 0.42, p = 0.02) (Figure 4A and Table 2). The

climatic average precipitation showed no significant effect in

our model (Figure 4B and Table 2). Furthermore, areas with a

higher average monthly temperature showed an almost four

times higher occurrence of ESBL/AmpC E. coli in wild boar

(OR= 3.61, p= 0.06) (Figure 4C and Table 2). Nevertheless, this

effect was not significant.

In counties with a high cattle density, an almost three

times higher (OR = 2.57, p = <0.01) (Figure 4D and Table 2)

probability of ESBL/AmpC E. coli occurrence in wild boar was

estimated. However, no effect in interaction with the hunting

season was observed (Figure 4D and Table 2). The human

population density (OR = 0.97, p = 0.89) (Figure 4E and

Table 2) and pig density (OR = 0.79, p = 0.29) (Figure 4F and

Table 2) showed no significant association with the likelihood

of ESBL/AmpC E. coli occurrence as single effects, as well as

in interaction with the hunting seasons (Table 2). The wild boar

presence probability estimated by the MaxEnt prediction of the

ENETWILD-consortium showed a slight positive effect (OR =

1.55, p = 0.10) even though it was non-significant (Figure 4G

and Table 2). The overall model explained 35% of the variance

in the data, whereas another 7% was explained by the random

effects, year and county.

Discussion

The occurrence of ESBL/AmpC E. coli in wild boar feces had

seasonal and spatial differences in 2016 and 2020 in Germany.

We identified anthropogenic and seasonal effects such as cattle

density, and precipitation associated with the occurrence of

ESBL/AmpC E. coli isolates in wild boar.
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TABLE 2 Estimates of fixed e�ects influencing the presence of ESBL/AmpC E. coli in wild boar (Sus scrofa L.) with the county as random e�ect

(significance threshold p < 0.05).

Predictors Odds ratios CI p

(Intercept) 0.03 0.01–0.09 <0.001

Hunting season [Off-hunting season] 1.30 0.33–5.19 0.709

Average monthly precipitation in mm 0.42 0.21–0.87 0.020

Average monthly precipitation in mm (climate) 0.61 0.29–1.28 0.193

Human population density per km2 0.97 0.65–1.47 0.893

Average monthly temperature 3.61 0.92–14.18 0.066

Wild boar presence probability 1.55 0.91–2.62 0.104

Cattle density per km2 2.57 1.53–4.32 <0.001

Pig density per km2 0.79 0.51–1.23 0.293

Hunting season [Off-hunting season] * Average monthly precipitation in mm 2.78 1.13–6.80 0.025

Hunting season [Off-hunting season] * Average monthly precipitation in mm (climate) 1.07 0.38–3.04 0.899

Hunting season [Off-hunting season] * Human population density per km2 1.07 0.61–1.89 0.810

Hunting season [Off-hunting season] * Average monthly temperature 0.46 0.11–1.97 0.299

Hunting season [Off-hunting season] * Wild boar presence probability 0.57 0.25–1.28 0.171

Hunting season [Off-hunting season] * Cattle density 0.59 0.25–1.39 0.226

Hunting season [Off-hunting season] * Pig density 1.21 0.58–2.54 0.618

Random effects

σ2 3.29

τ00 County 0.20

τ00 Year 0.21

ICC 0.11

N County 180

N Year 2

Observations 802

Marginal R2/Conditional R2 0.357/0.429

The fixed effects explained∼ 35% of the variance (marginal R2), while adding the random structure explained another 7%.

In June 2016, the precipitation in the counties Borken and

Recklinghausen was 120mm higher than the climatic monthly

average (1991–2020) (DWD) (Supplementary Figure 4). During

that time, heavy rainfalls and floods were reported in the

regions where the isolates were identified (41). These events

and hence the significant model outcome indicated a positive

association between high precipitation in summer 2016 and the

occurrence of ESBL/AmpC E. coli in wild boar. The transmission

might be caused by the overflow of sewage water in sewage

water plants. This is one of the main sources leading to the

uncontrolled spread of bacterial AMR and other zoonotic

pathogens into water bodies (4). We assume that wild boars

came into contact with contaminated sewage water or with

water from rivers next to sewage plants where an overflow

occurred. The genes blaCTX−M−1 and blaCTX−M−15 were

detected in isolates taken during the flooding event in June

2016 in Borken and Recklinghausen in the federal state of

North Rhine-Westphalia. BlaCTX−M−1 genes were previously

found in non-clinical isolates of humans as well as in livestock

(42), while blaCTX−M−15 genes are predominantly found in

clinical isolates from humans (43). The region of Borken and

Recklinghausen has a high number of human settlements, which

supports the assumption of transmission from sewage to wild

boar. This positive association is in line with other studies that

demonstrated a connection between high human population

density and bacterial AMR emergence (11, 12, 15, 26). However,

in our model, the human population density did not show a

positive association with the isolates identified, and we were

unable to distinguish the effects of the human population density

and the pig density on the ESBL/AmpC E. coli occurrences in

wild boars within our model. In contrast, lower average monthly

precipitations had a significant effect on the probability of

ESBL/AmpC E. coli occurrence in wild boar for the whole year.

This may indicate that single weather events can significantly

change the outcome of the ESBL/AmpC E. coli occurrence in

wild boar. For example, for 2020 we were unable to identify a

difference in the average monthly precipitation and the average

climatic monthly precipitation within the counties. Moreover,

we saw an almost four times higher probability of ESBL/AmpC

E. coli occurrence in wild boars hunted in counties with a
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higher average temperature. Even though this effect was not

significant with a p-value of 0.07. Higher temperatures can

enhance biological activity in soils and water and therefore

might also influence the occurrence of AMR in bacteria in

the environment (4, 18, 22). This can also lead to seasonal

differences in the occurrence of ESBL/AmpC E. coli in sewage

water of sewage cleaning plants (6). Even during winter, the

occurrence in counties with milder temperatures was higher

than in colder ones. However, in 2020 in May, June, and July no

isolates were identified in the sampled areas with overall similar

sample sizes compared with 2016.

Interestingly, the cattle density showed a highly significant

association with the occurrence of ESBL/AmpC E. coli in wild

boar. This is in line with the report of the zoonoses monitoring

in 2015 and 2017, where cattle populations had a prevalence of

60 and 68% ESBL/AmpC E. coli isolates, respectively (44, 45).

The high prevalence of ESBL/AmpC E. coli isolates in cattle

populations also appears to impact the incidence of ESBL/AmpC

E. coli isolates in wild boar, suggesting exposure from manure,

farms, and cattle. In addition, 66% of the identified isolates

were found during November. During this month, the spread

of slurry is not allowed. However, prior to November, farmers

attempt to apply manure to empty storage capacities before

winter. This may lead to a temporary increased exposure of

wildlife to manure contaminated with antimicrobial-resistant

bacteria. Pastures were the only areas where fertilization was

allowed until November 1st. Therefore, this would also mean

that the prevalence of antimicrobial-resistant bacteria in wildlife

would increase at the beginning of the vegetation period when

farmers fertilize crops like wheat (Triticum aestivum) and barley

(Hordeum vulgare) with nitrogen and slurry. In March, we saw

in both years one ESBL/AmpC E. coli isolate in wild boars, but

not during April and May. Another possible transmission route

might be the release of contaminated sewage water from sewage

plants, for example, from the slaughtering production industry

releasing antimicrobial-resistant bacteria to the environment.

Even though, this is not specific to the month of November

itself (46, 47). To determine valid statements on the origin of

the isolates, further studies are needed on smaller sampling

areas to investigate such relations and to link, for example,

genetic information of isolates identified in samples of sewage

and farms with isolates of wild boar. Farm management might

be another factor influencing AMR in bacteria release into

the environment. Unfortunately, the monitoring data for 2016

and 2020 is too limited to provide information on the direct

transmission of ESBL/AmpC E. coli between wild boar and

cross-species transmission with other wildlife and livestock

species. However, we observed a non-significant positive trend

of ESBL/AmpC E. coli occurrence in areas with a higher wild

boar presence probability by using theMaxEnt model prediction

of the ENETWILD-consortium. This result may indicate that

transmission of ESBL/AmpC E. coli may also be driven in part

by the wild boar population itself, even though the association

was non-significant. Accordingly, wild boar ecology needs to be

considered in future studies to gain a better understanding of

the transmission cycles of ESBL/AmpC E. coli within the wild

boar population.

There are further limitations in this study to be

acknowledged. We observed wide confidence intervals for

all factors that indicate statistical uncertainties. Furthermore,

there are possible biases in the sampling related to the

non-reported hunting procedures. This, together with the

low numbers of ESBL/AmpC E. coli isolates, might lead

to confounding effects. Firstly, the hunting strategy itself

might contribute to the unequal distribution of the samples

throughout the years. While traditionally large drive hunts

dominate in winter and whole sounders are shot, hide hunts

in summer target single individuals (48). Repeated samples

from the same sounder might lead to clustering, e.g., if the

entire sounder had not encountered sources of bacterial AMR,

the likelihood of finding many isolates might be on average

lower and vice versa. Moreover, we need to consider that the

samples in summer were only taken in few municipalities. For

this reason, we can only speculate if the higher prevalence

observed during the off-hunting season in 2016 (Figure 3) is

truly representative or just subject to sampling bias, especially

when considering the data of 2020, where only during May,

September, and November isolates were identified, and the

model outcome was not significant for the hunting season.

Additionally, we cannot provide detailed information on how

the sampling process was affected by the corona pandemic

throughout 2020, which caused an overall smaller sample size

during the year.

Not only was the sampling different throughout the years,

but also in space. For example, the authorities in Lower Saxony

took the required minimum sample of wild boar samples in

2016 in periods of time instead of during the whole main

hunting season. Lower Saxony is one of the most important

regions in Germany for livestock production. However, during

the off-hunting season, the federal state of Lower Saxony

was underrepresented in the samples taken, while during the

winter of 2016 it was overrepresented (Supplementary Figure 5).

Likewise, samples taken in areas with a high cattle density are

temporarily underrepresented. This may bias our model results

even though we integrated the sample region as a random effect.

Therefore, further studies and upcoming monitoring programs

of wildlife need a standardized annual data collection and

should report information on the type of hunting as well as the

exact locations.

Moreover, the livestock industry in our model is not

completely represented. The poultry industry, one of the largest

users of antibiotics in livestock farming, was not included in the

model (49, 50). In the study of Urra et al. (23), the authors show

that in fresh manure from chickens, high proportions of AMR

in bacteria can be identified. It is then likely that poultry can

contribute to the distribution of AMR in bacteria to wildlife as
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well. We were unable to identify suitable data sources on the

density of poultry for the years 2016 and 2020 and therefore did

not include this as a covariate. Thus, the poultry industry should

also be considered in future studies to determine the impact of

different livestock species on the distribution of antimicrobial-

resistant bacteria in wildlife. A comparison of the spatiotemporal

prevalence data of livestock with the data of wildlife species

could be beneficial as well, to better understand the transmission

pathways from agriculture to wildlife.

Overall, our data pipeline allowed an extension and

spatiotemporal analysis of the monitoring data. The analysis

reveals the value of linking different environmental open data

sources with data of monitoring programs in order to determine

effects that might be associated with the distribution of bacterial

AMR in wildlife. Our study demonstrates that monitoring

programs targeting the distribution of antimicrobial-resistant

bacteria in wildlife require further adjustments regarding the

metadata collected during sampling to account for biases.

Food safety monitoring programs are often designed based

on livestock and food products for aggregation on a national

level, considering privacy protection. Therefore, metadata on

the individual level such as information on the correct sampling

location is limited. In the case of free-ranging wildlife, sufficient

harmonized information on age, sex, hunting methods and the

correct sampling location is important. Furthermore, regarding

wildlife the report of national units such as municipality or

county level is not as beneficial as the report of specific

coordinates (longitudes and latitudes), where the animals were

sampled. Accurate coordinates are much more flexible to use

regarding data extraction, linking, and processing on different

spatial scales. It would also improve the comparability with

other studies in the field and retrospective analyses, even though

analytical methods might differ (15).

Conclusion

The distribution of ESBL/AmpC E. coli in wild boar

is associated with environmental and anthropogenic factors.

We showed that seasonal effects such as temperature and

precipitation can have a significant association with the

occurrence of ESBL/AmpC E. coli isolates in fecal samples

from wild boar. Our results hint that weather events such as

heavy rainfalls, floods, and high temperatures may increase

the abundance of bacterial AMR in the environment, which is

relevant to the potential effects of climate change. Interestingly,

we also identified a positive effect on the distribution of

ESBL/AmpC E. coli in wild boar by cattle density. This suggests

that wild boars are exposed to antimicrobial-resistant bacteria

in areas with large cattle populations. However, our analysis

showed a high level of uncertainty, suggesting that multiannual

data and small-scale studies in wildlife are needed to verify

our findings.
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