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A B S T R A C T

Across the world, efforts to support the energy transition and halt climate change have resulted in significant
growth of the number of renewable distributed generators (DGs) installed over the last decade, among which
photovoltaic (PV) systems are the fastest growing technology. However, high PV penetration in the electricity
grid is known to lead to numerous operational problems such as voltage fluctuations and line congestions,
which could be eased by utilizing the reactive power capability of PV systems. To this end, we propose to
use artificial neural network (ANN) to predict optimal reactive power dispatch in PV systems by learning
approximate input–output mappings from AC optimal power flow (ACOPF) solutions in either a centralized
or a decentralized manner. In the case of decentralized control, we leverage Shapley Additive Explanations
(SHAP), an explainable artificial intelligence (XAI) technique, to identify non-local grid state measurements
which significantly influence the optimal dispatch of each individual system. Both centralized and decentralized
ANN-based controllers are evaluated through a case study based on the CIGRE medium-voltage distribution
grid and compared to baseline control strategies. Results show that both ANN-based controllers exhibit superior
performance, hindering voltage problems and line congestions which are encountered with baseline strategies
while recording an energy saving of 0.44% compared to fixed power factor control. By leveraging ANN and
SHAP, the proposed decentralized controllers for reactive power control are able to achieve ACOPF-level
performance while promoting data privacy and reducing computational burden.
1. Introduction

In accordance with the goal of limiting global warming to well
below 2 °C set in the Paris Agreement, concerted efforts have been
made all around the world to reduce greenhouse gas emissions from
every sector. In the electricity sector, these efforts have manifested
in the continuously increasing deployment of renewable distributed
generators (DGs) such as photovoltaic (PV) systems and wind turbines
alongside the development of strategies to plan future electricity sys-
tems with high renewables penetration [1,2]. In Germany, the share
of renewables in the gross electricity consumption has grown from
17.1% in 2010 to 45.2% in 2020 [3] and is targeted to continue to
grow to 65% by 2030. To achieve this target, the installed capacities
of solar and wind energies are projected to increase from 53.1 and
62.2 GW to 100 and 91 GW [4], respectively, making them central to
the energy transition. Since electricity production from solar and wind
energies relies on intermittent energy sources, i.e., the energy produced
at each instant depends on the available solar irradiation or wind speed,
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electricity grid operators are required to adapt their operation strategies
to cope with the change in the electricity mix.

Traditionally, electricity flows only in one direction, i.e., from large
generators connected at the extra high voltage transmission level (>
220 kV) to distribution feeders and end consumers connected at the
high (60–220 kV), medium (6–60 kV) and low (230 and 400 V) voltage
levels. In this conventional setup, grid operators determine the optimal
generation levels of the generators to minimize supply cost while con-
sidering load fluctuations and ensuring a reliable and secure electricity
supply. In an electricity grid with significant renewables penetration,
however, grid operators have to additionally cope with the intermittent
and volatile nature of the energy produced by DGs connected at high
and medium voltage levels, hence increasing the complexity of the
economic dispatch problem. Furthermore, since wind and solar power
plants are often sized larger than their conventional counterparts to
handle the same load level, reverse power flows from lower to higher
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Nomenclature

Sets and indices

𝑖 Node/bus
𝑠 Slack node/bus
(𝑖𝑗) Transmission line connecting node 𝑖 to 𝑗
ℎ ∈ 𝐻 Hidden layer in ANN
𝑘 ∈ 𝐾 Training sample
𝑚 ∈ 𝑀 SHAP coalition
𝑡 ∈ 𝑇 Time step
𝑥 ∈ 𝑋 ANN input feature
𝑦 ∈ 𝑌 ANN output
𝑁 Set of nodes/buses
𝐿 Set of transmission lines
𝐺 Set of controllable generators
𝑃𝑦 Set of important features for output 𝑦

Variables and parameters

𝑝𝑔𝑖 Active power generation at node 𝑖 [MW]
𝑞𝑔𝑖 Reactive power generation at node 𝑖

[MVAR]
𝑠𝑔𝑖 Apparent power generation at node 𝑖

[MVA]
𝑝𝑔,𝑝𝑒𝑎𝑘𝑖 Peak active power generation at node 𝑖

[MW]
𝑝𝑔,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 Current active power generation at node 𝑖

[MW]
𝑝𝑑𝑖 Active load at node 𝑖 [MW]
𝑞𝑑𝑖 Reactive load at node 𝑖 [MVAR]
𝑝𝑑,𝑛𝑜𝑚𝑖 Nominal active load at node 𝑖 [MW]
𝑝𝑓𝑖𝑗 Active power flowing on transmission line

(𝑖𝑗) [MW]
𝑞𝑓𝑖𝑗 Reactive power flowing on transmission

line (𝑖𝑗) [MVAR]
𝑠𝑓𝑖𝑗 Apparent power flowing on transmission

line (𝑖𝑗) [MVA]
𝑣𝑖 Voltage magnitude at node 𝑖 [pu]
𝛿𝑖 Voltage angle at node 𝑖 [rad]
cos𝜙𝑔

𝑖 Power factor of generator connected at
node 𝑖 [−]

𝑥 ANN input vector [−]
𝑦 ANN output vector [−]
𝜃 ANN parameters [−]
𝑂ℎ Output of ANN hidden layer ℎ [−]
𝜙ℎ Activation function of ANN hidden layer ℎ

[−]
𝑊ℎ Weight matrix of ANN hidden layer ℎ [−]
𝑏ℎ Bias vector of ANN hidden layer ℎ [−]
𝜆 Boundary tightening parameter for voltage

magnitude constraints [−]
𝜇 Boundary tightening parameter for line

loading constraints [−]
𝑧′𝑚 SHAP coalition vector 𝑚 [−]
𝛽𝑦 SHAP values matrix for output 𝑦 [−]
𝑙𝑓𝑡 Load factor at time step 𝑡 [−]
𝑔𝑓𝑡 PV generation factor at time step 𝑡 [−]

voltage levels could occur during periods of high renewables produc-
tion [5]. This could lead to a multitude of operational problems such as
voltage and frequency fluctuations, overloading of transformers or line
2

congestions [6]. To handle these problems, grid operators could either
acquire new network assets or adopt new operational strategies [7].
In [8], the authors show that in the case of UK’s electricity grid, savings
of £14.3 m by 2050 could be achieved by utilizing the reactive power
capability of DGs as opposed to upgrading the grid. In Germany, the
grid code dictates that all PV systems should be able to provide reactive
power support by varying their power factor between 0.9/0.95 lagging
and 0.9/0.95 leading, i.e., absorbing or producing reactive power as
necessary [9,10].

However, individual systems are free to determine their own re-
active power dispatch strategy, leading to the existence of different
strategies in the literature. Existing works on the topic can be classified
into two groups: rule-based and optimization-based methods [11].
Rule-based methods determine optimal reactive power dispatch in DGs
by relying on locally available measurements of the grid state and pre-
defined rules, among which droop control according to the IEEE 1547
Standard is the most commonly implemented [12]. Although these
methods are simple and computationally inexpensive, their stability
and optimality cannot be guaranteed due to their local nature. In
contrast, optimization-based methods use grid-wide information such
as grid topology, grid component parameters and current load and
generation values to formulate and solve an optimization problem,
typically referred to as the AC optimal power flow (ACOPF) or simply
OPF problem. In OPF, optimal reactive power dispatch is determined
according to a certain grid-wide objective such as minimizing energy
losses or overall supply cost while respecting physical and opera-
tional constraints, e.g., power flow (PF) equations, line PF, transformer
loading and voltage magnitude limits. In [6], the authors proposed a
simultaneous optimal allocation of PV systems and adaptive reactive
power control by formulating a chance-constrained stochastic program-
ming problem. The potential of reactive power support from wind farms
is explored in [13], in which a two-stage linear optimization problem
was formulated to determine robust reactive power dispatch ranges
bearing in mind the uncertainty of wind power generation. In [11], a
two-stage model predictive control (MPC) was designed to determine
optimal control actions on two different time scales: 1 h and 5 min
to control capacitor banks and reactive power dispatch, respectively.
A similar two-stage approach is proposed in [14] with the addition of
a distributed OPF algorithm to coordinate reactive power dispatch in
DGs.

Although optimization-based approaches achieve satisfying results,
they are not always practical. Since PF equations are non-linear, OPF
is a non-convex optimization problem which is computationally ex-
pensive to solve. Additionally, OPF assumes centralized coordinated
control by the grid operator which necessitates an extensive and expen-
sive monitoring and communication infrastructure [15]. As alternatives
to centralized OPF, a number of distributed and decentralized OPF
methods have been proposed in the literature. Distributed methods
break down the centralized optimization problem into smaller sub-
problems to be solved by individual systems and later consolidated
to produce feasible setpoints [14,15], while decentralized methods
assume that each system is fully responsible for their own optimal set-
point by only communicating with its physically-connected neighbors
without the need of a central control entity [16]. A comparison of
distributed and decentralized OPF methods is presented in [17]. Both
distributed and decentralized OPF methods hold several advantages
over centralized OPF, in that they support data privacy preservation by
reducing the amount of information exchange between systems while
also enabling parallel computation [18]. However, the computational
burden of OPF remains even in distributed and decentralized settings,
hence machine learning (ML) methods have been implemented to solve
this issue.

In machine learning-based optimal power flow (ML-OPF), ML mod-
els are trained to learn an input–output mapping between load profiles

and their corresponding optimal generator set points so that the latter
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can be predicted in a data-driven way, i.e., without actually solv-
ing complex optimization problems. A survey of ML-OPF applications
proposed in the literature could be found in [19], which classifies
existing applications into five categories: (1) direct mapping of OPF
solutions, (2) predicting active constraints, (3) mapping binary decision
variables, (4) learning OPF control policy and (5) predicting warm-
start points. The first two applications are first explored in [20] using
artificial neural network (ANN). Direct mapping of OPF solutions is also
used in [21], in which the authors proposed pre- and post-processing
procedures to ensure the feasibility of ML-OPF solutions. Similarly, the
authors in [22] proposed the use of dual Lagrangian method to penalize
OPF constraint violations and drive ML-OPF solutions towards feasible
solution space. In [23], reinforcement learning is used to derive ANN
for solving standard OPF and grid congestion management problems
guided by learning policies obtained from PF equations.

In this paper, we propose the use of machine learning to leverage
ML-OPF for reactive power control. Bearing in mind the highly fluc-
tuating nature of PV generation, ML-OPF allows for more fine-grained
control of reactive power in PV systems by finding optimal set points
almost instantaneously and enabling control to be administered with
higher frequency, e.g., close to real-time. The main contributions of this
paper are as follows:

• We propose to use ANN to provide an end-to-end prediction of
optimal reactive power dispatch in PV systems from entire grid
state measurements. To this end, we trained an ANN to learn a
mapping between nodal loads and PV active powers (input) and
optimal PV reactive powers obtained by solving standard ACOPF
(output), i.e., replacing ACOPF with a less computationally ex-
pensive ANN to perform centralized control of reactive power in
PV systems. Existing studies with similar focus on ML for reactive
power control have only sought to predict optimal reactive power
dispatch from local measurements [24–26]. Furthermore, none of
the existing ML-OPF studies have explored the use of the learning
paradigm to optimize reactive power dispatch [20–22]. Hence,
in this paper we show that it is possible to perform centralized
control of reactive power dispatch in PV systems using ML-OPF
with satisfactory results.

• We utilize Shapley Additive Explanations (SHAP) [27], an ex-
plainable artificial intelligence (XAI) technique, to provide further
insights into the behavior of the centralized ANN controller. SHAP
generates feature importances, i.e., it identifies relevant grid state
measurements for each PV system when determining their opti-
mal reactive power output. Based on this knowledge, we trained
smaller ANNs, one for each PV system, to act as decentralized con-
trollers. These smaller ANNs are trained only on a subset of the
centralized controller’s features, i.e., in addition to the local mea-
surements, they are only allowed access to certain measurements
from other nodes. This allows each system to determine its own
optimal set point given partial knowledge of the grid state and
eliminates the need for centralized coordination. To the best of
our knowledge, none of the existing studies have looked into the
possibility of using SHAP in this context. Moreover, decentralized
reactive power control using only local measurements was shown
to cause small constraint violations during operation [24]. We
aim to demonstrate SHAP’s capability to provide highly relevant
information which could then be used to build ANN-based decen-
tralized controllers with all the corresponding advantages with
no perceivable loss in performance compared to their centralized
counterpart.

The rest of this paper is organized as follows: Section 2 provides an
verview of the tools and methods used in this paper, while Section 3
overs the results obtained and the corresponding interpretation and
iscussion. Finally, conclusions drawn from the results as well as an
3

utlook for future research are presented in Section 4.
2. Methodology

In this section, descriptions of the relevant methods covering stan-
dard ACOPF formulation and the use of ANN and XAI for ACOPF are
provided. Additionally, an overview of the case study built to showcase
the merits of the proposed ML-OPF paradigm as well as the steps taken
to derive the subsequent results are presented.

2.1. AC optimal power flow (ACOPF) problem for reactive power control

The standard ACOPF formulation is described below. For a fixed
grid topology, let 𝑁 denote the set of nodes (buses), 𝐿 the set of edges
(lines), 𝐷 ⊆ 𝑁 the set of loads (demands) and 𝐺 ⊆ 𝑁 the set of
controllable generators. Furthermore, let 𝑝𝑔𝑖 and 𝑞𝑔𝑖 represent the active
and reactive power generation at node 𝑖, respectively, while 𝑝𝑑𝑖 and 𝑞𝑑𝑖
represent the active and reactive power load. The active and reactive
power flowing on the transmission line (𝑖𝑗) ∈ 𝐿 connecting buses 𝑖 and 𝑗
are denoted by 𝑝𝑓𝑖𝑗 and 𝑞𝑓𝑖𝑗 , respectively. Meanwhile, let 𝑣𝑖 and 𝛿𝑖 denote
he voltage magnitude and voltage angle at node 𝑖. The ACOPF problem
an then be formulated as follows:

minimize
𝑝𝑔𝑖 ,𝑣𝑖

∑

𝑖∈𝐺
𝐶𝑖(𝑝

𝑔
𝑖 ) (1a)

ubject to

𝑝𝑔,𝑚𝑖𝑛𝑖 ≤ 𝑝𝑔𝑖 ≤ 𝑝𝑔,𝑚𝑎𝑥𝑖 ∀𝑖 ∈ 𝐺 (1b)

𝑞𝑔,𝑚𝑖𝑛𝑖 ≤ 𝑞𝑔𝑖 ≤ 𝑞𝑔,𝑚𝑎𝑥𝑖 ∀𝑖 ∈ 𝐺 (1c)

𝑣𝑚𝑖𝑛𝑖 ≤ 𝑣𝑖 ≤ 𝑣𝑚𝑎𝑥𝑖 ∀𝑖 ∈ 𝑁 (1d)

𝛿𝑚𝑖𝑛𝑖 ≤ 𝛿𝑖 ≤ 𝛿𝑚𝑎𝑥𝑖 ∀𝑖 ∈ 𝑁 (1e)

𝑝𝑔𝑖 − 𝑝𝑑𝑖 =
∑

(𝑖𝑗)∈𝐿
𝑝𝑓𝑖𝑗∀𝑖 ∈ 𝑁 (1f)

𝑞𝑔𝑖 − 𝑞𝑑𝑖 =
∑

(𝑖𝑗)∈𝐿
𝑞𝑓𝑖𝑗∀𝑖 ∈ 𝑁 (1g)

√

(𝑝𝑓𝑖𝑗 )2 + (𝑞𝑓𝑖𝑗 )2≤ 𝑠𝑓,𝑚𝑎𝑥𝑖𝑗 ∀(𝑖𝑗) ∈ 𝐿 (1h)

The objective is to determine the optimal generator active power
outputs 𝑝𝑔𝑖 and voltage set points 𝑣𝑖 so as to minimize the overall cost
of active power generation according to (1a), where 𝐶𝑖() denotes the
ost function of the generator at node 𝑖. Constraints (1b) and (1c)
imit all generator active and reactive power outputs to be within their
hysical limits as given by [𝑝𝑔,𝑚𝑖𝑛𝑖 , 𝑝𝑔,𝑚𝑎𝑥𝑖 ] and [𝑞𝑔,𝑚𝑖𝑛𝑖 , 𝑞𝑔,𝑚𝑎𝑥𝑖 ], respec-
ively. Meanwhile, voltage magnitudes 𝑣𝑖 and angles 𝛿𝑖 also have to
e kept inside a certain range [𝑣𝑚𝑖𝑛𝑖 , 𝑣𝑚𝑎𝑥𝑖 ] and [𝛿𝑚𝑖𝑛𝑖 , 𝛿𝑚𝑎𝑥𝑖 ] as dictated by
onstraints (1d) and (1e). Constraints (1f) and (1g) represent nonlinear
F equations used to calculate the active and reactive power flowing
n the transmission lines 𝑝𝑓𝑖𝑗 and 𝑞𝑓𝑖𝑗 and enforce energy conservation
n accordance with Kirchhoff’s current law. Finally, constraint (1h)
estricts the apparent power flowing on the transmission lines to not
xceed the physical limits as dictated by the lines’ specifications. Note
hat ACOPF is always solved assuming the presence of a slack bus
∈ 𝑁 whose voltage magnitude and angle are set to a certain value,

.g., 𝑣𝑠 = 1.0 pu and 𝛿𝑠 = 0.
For reactive power control, we assume that only PV generators

re present, which is usually the case in medium-voltage (MV) distri-
ution grids. No voltage set points could be determined in PV gen-
rators, rather only the reactive power outputs of the generators 𝑞𝑔𝑖 .
ccordingly, the ACOPF problem should be reformulated as follows:

inimize
𝑞𝑔𝑖

𝐶𝑠(𝑝𝑔𝑠 ) (2a)

ubject to
(1d) – (1h)

𝑝𝑔𝑖 = 𝑝𝑔,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 ∀𝑖 ∈ 𝐺 (2b)

𝑞𝑔,𝑚𝑖𝑛𝑖 ≤ 𝑞𝑔𝑖 ≤ 𝑞𝑔,𝑚𝑎𝑥𝑖 ∀𝑖 ∈ 𝐺 (2c)
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Hence, the objective now is to minimize the active power imported
from the high-voltage (HV) transmission grid assumed to be connected
at the slack bus 𝑠 as shown in (2a). Through constraint (2b), we assume
that the active power generation from PV generators cannot be cur-
tailed and the active power generated at each time instant 𝑝𝑔,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 has
to be accommodated. Constraint (2c) dictates the admissible reactive
power generation from the PV generators 𝑞𝑔𝑖 by setting a bounding box
𝑞𝑔,𝑚𝑖𝑛𝑖 , 𝑞𝑔,𝑚𝑎𝑥𝑖 ], which depends on the current active power 𝑝𝑔,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 and
he maximum allowable inverter power factor cos𝜙𝑔,𝑚𝑎𝑥

𝑖 . Active and
eactive power are related through the power factor according to the
ollowing set of equations:

𝑝𝑔𝑖 = 𝑠𝑔𝑖 ⋅ cos𝜙
𝑔
𝑖 (3)

𝑔
𝑖 = 𝑠𝑔𝑖 ⋅ sin𝜙

𝑔
𝑖 (4)

𝑠𝑔𝑖 =
√

(𝑝𝑔𝑖 )2 + (𝑞𝑔𝑖 )2 (5)

𝑞𝑔𝑖 = 𝑝𝑔𝑖 ⋅ tan𝜙
𝑔
𝑖 , (6)

where 𝑠𝑔𝑖 denotes the apparent power flowing from the PV system. The
power factor could be set to either leading or lagging depending on
whether the system is needed to absorb or produce reactive power, re-
spectively. Hence, the relationship between reactive power generation
limits, maximum power factor and current active power is described as
follows:

𝑞𝑔,𝑚𝑖𝑛𝑖 = −𝑝𝑔,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 ⋅ tan𝜙𝑔,𝑚𝑎𝑥
𝑖 (7)

𝑞𝑔,𝑚𝑎𝑥𝑖 = 𝑝𝑔,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 ⋅ tan𝜙𝑔,𝑚𝑎𝑥
𝑖 (8)

We assume that inverters on the PV systems are sufficiently oversized to
admit the required apparent power at peak PV active power generation
𝑝𝑔,𝑝𝑒𝑎𝑘𝑖 , e.g., for cos𝜙𝑔,𝑚𝑎𝑥

𝑖 = 0.9 the required inverter capacity 𝑝𝑖𝑛𝑣𝑖 would
be equal to 1

0.9 ⋅ 𝑝𝑔,𝑝𝑒𝑎𝑘𝑖 = 1.11 ⋅ 𝑝𝑔,𝑝𝑒𝑎𝑘𝑖 . Oversizing PV inverters in this
way has been shown to be effective in preventing voltage problems in
grids with high renewables penetration [28,29].

2.2. Artificial neural network (ANN) for ACOPF

ANNs are known to be high-performing approximators of nonlinear
mappings. Given an input vector 𝑥 ∈ R|𝑋| and its corresponding output
vector 𝑦 ∈ R|𝑌 |, ANN learns a mapping function 𝑓 (𝑥, 𝜃) = �̂�, where 𝜃
denotes the parameters of the ANN, such that the distance between 𝑦
and �̂� is minimized. In practice, ANN represents 𝑓 (𝑥, 𝜃) as a series of
nonlinear operations referred to as hidden layers given by:

𝑂ℎ = 𝜎ℎ(𝑊ℎ ⋅ 𝑂ℎ−1 + 𝑏ℎ) | ℎ ∈ [1, 2,… ,𝐻 + 1], (9)

where the subscript ℎ indicates the position of the hidden layer, 𝐻 the
number of hidden layers, 𝑊ℎ ∈ R𝑛ℎ×𝑛ℎ−1 the weight matrix in layer ℎ,
𝑏ℎ ∈ R𝑛ℎ the bias vector in layer ℎ, 𝑂ℎ−1 the output of the previous
hidden layer and 𝜎ℎ a nonlinear function referred to as activation
function in layer ℎ. 𝑛ℎ denotes the number of neurons in layer ℎ, which
is a tunable parameter. Taking 𝑂0 = 𝑥 and 𝑛𝐻+1 = |𝑌 | allows us
to obtain �̂� as the output of the last hidden layer, i.e., 𝑂𝐻 . As seen
in (9), ANN parameters 𝜃 consist of the weight matrices and bias vectors
𝑊ℎ, 𝑏ℎ∀ℎ ∈ [1, 2,… ,𝐻], which have to be derived through a learning
process. Given a dataset of |𝐾| input–output pairs

{

(𝑥1, 𝑦1),… , (𝑥𝑘, 𝑦𝑘)
}

,
the learning process minimizes a loss function 𝑜 which can be chosen
based on the task at hand. For regression tasks, a simple loss function
such as mean squared error is usually used, which entails representing
the learning process as the following optimization problem:

minimize
𝜃

𝑜 =
1
𝐾

𝐾
∑

𝑘=1
‖𝑦𝑘 − 𝑓 (𝑥𝑘, 𝜃)‖2 (10)

In this paper, an ANN is used to learn a mapping between grid states in
the form of nodal loads and PV active powers and optimal settings in
the form of PV reactive powers by modeling ACOPF as a regression task.
For a fixed grid topology with |𝐷| connected loads and |𝐺| connected
4

PV generators, the input to the ANN is the vector 𝑥 ∈ R|𝐷|+|𝐺|,
which is the concatenation of all current loads and PV active powers,
i.e., (𝑝𝑑𝑖 , 𝑝

𝑔
𝑗 )∀𝑖 ∈ 𝐷, 𝑗 ∈ 𝐺. Meanwhile, the output is the vector 𝑦 ∈ R|𝐺|

representing the optimal PV reactive powers, i.e., 𝑞𝑔𝑖 ∀𝑖 ∈ 𝐺. To generate
a dataset of |𝐾| training samples for the ANN, loads and PV active
powers are simultaneously varied to obtain |𝐾| variations of the grid
state, reflecting their dynamic nature. Subsequently, the correspond-
ing optimal PV reactive powers for each variation are obtained by
solving the ACOPF optimization shown in (2b), hence creating |𝐾|

input–output pairs
{

(𝑥1, 𝑦1),… , (𝑥𝑘, 𝑦𝑘)
}

.
ANN is a function providing a numerical approximation which

might produce infeasible solutions to the original ACOPF problem.
Since the ANN is only used to predict the PV reactive powers 𝑞𝑔𝑖 , the
remaining state variables, i.e., voltage magnitudes 𝑣𝑖 the power flowing
on the transmission lines 𝑝𝑓𝑖 have to be recovered by plugging the
predictions into the nonlinear PF equations (1f) and (1g). However,
the following problems might be encountered when using ANN-derived
solutions:

• The predicted outputs 𝑞𝑔𝑖 might be outside the boundaries dictated
by constraint set (2c).

• The recovered voltage magnitudes 𝑣𝑖 and power flowing on the
transmission lines 𝑝𝑓𝑖 might violate constraints (1d) and (1h),
respectively.

To avoid these problems, we adopted a strategy inspired by [21] to
ensure the feasibility of ANN-derived solutions. For the first problem,
note that Eqs. (7) and (8) dictate the reactive power limits to be
symmetric. Hence, dividing constraint (2c) by 𝑞𝑔,𝑚𝑎𝑥𝑖 yields:

−1 ≤
𝑞𝑔𝑖

𝑞𝑔,𝑚𝑎𝑥𝑖
≤ 1, (11)

where 𝑞𝑔𝑖
𝑞𝑔,𝑚𝑎𝑥𝑖

could be interpreted as the fractions of available reactive
ower actually produced (> 0) or absorbed (< 0). These fractions
re then used in the place of 𝑞𝑔𝑖 as outputs of the ANN. By using a
uitable activation function in the last layer, i.e., tanh, the outputs of the
NN could be squashed to [−1, 1], therefore ensuring that the solutions
roduced by the ANN are always admissible.

Meanwhile, to address the second problem, it is necessary to ensure
hat the ANN does not learn solutions that are located on the constraint
oundaries, e.g., 𝑣𝑖 = 𝑣𝑚𝑖𝑛𝑖 or

√

(𝑝𝑓𝑖𝑗 )2 + (𝑞𝑓𝑖𝑗 )2 = 𝑆𝑓,𝑚𝑎𝑥
𝑖𝑗 for 𝑖 ⊆ 𝑁 . Hence,

e introduce two parameters 𝜆 and 𝜇, which act as boundary tightening
arameters for voltage magnitude limit and line loading limit, respec-
ively. Accordingly, we solve the following restricted ACOPF problem
o generate training samples for the ANN:

minimize
𝑞𝑔𝑖

𝐶𝑠(𝑝𝑔𝑠 ) (12a)

ubject to
(1e) – (1g), (2b), (2c)

𝑣𝑚𝑖𝑛𝑖 + 𝜆≤ 𝑣𝑖 ≤ 𝑣𝑚𝑎𝑥𝑖 − 𝜆 ∀𝑖 ∈ 𝑁 (12b)
√

(𝑝𝑓𝑖𝑗 )2 + (𝑞𝑓𝑖𝑗 )2≤ 𝜇 ⋅ 𝑠𝑓,𝑚𝑎𝑥𝑖𝑗 ∀(𝑖𝑗) ∈ 𝐿 (12c)

The resulting outputs of the restricted ACOPF problem deviate from
the original ACOPF mapping because of the tightening of the constraint
boundaries, which might result in inferior solutions with regard to the
objective function. Hence, the parameters 𝜆 and 𝜇 induce an optimality-
feasibility trade-off, i.e., larger 𝜆 values and smaller 𝜇 values should
ensure feasibility while degrading the objective function value and vice-
versa. However, it is also important to note that when either 𝜆 is too
large or 𝜇 is too small, the restricted ACOPF problem might become
infeasible and no optimal solution could be found. In this paper, we set
𝜆 = 0.0025 and 𝜇 = 0.95, which were determined empirically to produce

strictly feasible solutions with negligible optimality loss.
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2.3. Explainable artificial intelligence (XAI) for ACOPF

In this paper, we use SHAP, a model-agnostic XAI technique to
generate explanations in the form of feature importance values from
ANN. In SHAP’s terminology, feature importance values are calculated
as Shapley values from coalitional game theory. Accordingly, SHAP
treats the input of an ANN as players in a game, which could either
be playing (‘‘present’’) or not playing (‘‘absent’’).

To represent the input as such, binary arrays (coalitions) 𝑧′ ∈
{0, 1}|𝑋| are generated, where |𝑋| is the number of input features.

hese arrays are subsequently used as masking arrays for the input:
eatures masked with 1 (‘‘present’’ features) retain their original values
nd the values of the features masked with 0 (‘‘absent’’ features) are
eplaced by random values of the corresponding features sampled from
he data set (background samples), creating hypothetical samples. For
ach coalition, multiple hypothetical samples are generated so as to
void sampling bias and approximate truly random samples. Next, these
ypothetical samples are passed to the ANN to obtain the predictions,
hich are subsequently averaged within coalitions to obtain one aver-
ge prediction value per coalition. Finally, we obtain coalition-output
alue pairs which are then used to fit a linear model to derive the
verage influence of each feature being ‘‘present’’ or ‘‘absent’’ on the
utput, i.e., the feature importance values.

Given a data set of |𝐾| input–output pairs
{

(𝑥1, 𝑦1),… , (𝑥𝑘, 𝑦𝑘)
}

with
𝑥 ∈ R|𝑋| and 𝑦 ∈ R|𝑌 | and an ANN 𝑓 (𝑥, 𝜃) as described in Section 2.2,
calculating the SHAP values 𝛽𝑢 ∈ R|𝑋|×|𝑌 | for an observation (𝑥𝑢, 𝑦𝑢)
entails:

1. Creating |𝑀| coalitions 𝑧′𝑚 ∈ {0, 1}|𝑋| to create a coalition set 𝑀
2. For each coalition 𝑧′𝑚:

• Calculate coalition weight 𝜋𝑥(𝑧′𝑚) with the SHAP kernel

𝜋𝑥(𝑧′𝑚) =
|𝑋| − 1

(

|𝑋|

|𝑧′𝑚|

)

|𝑧′𝑚|(|𝑋| − |𝑧′𝑚|)
, (13)

where |𝑧′𝑚| denotes the number of present features (1’s) in
𝑧′𝑚

• Repeat 𝑝 times:

– Map 𝑧′𝑚 into the original input feature space to create
a hypothetical sample: ℎ𝑥(𝑧′𝑚)|𝑧′𝑚=1 = 𝑥𝑢, ℎ𝑥(𝑧′𝑚)|𝑧′𝑚=0
= 𝑥𝑣, where 𝑣 is sampled randomly from {1, 2,… , 𝑘||

|

𝑣 ≠ 𝑢}
– Calculate ANN prediction for the hypothetical sample

�̂�𝑧′𝑚 = 𝑓 (ℎ𝑥(𝑧′𝑚), 𝜃)

• Calculate average ANN prediction for the coalition ̄𝑦𝑧′𝑚 by
averaging over 𝑝 runs

̄𝑦𝑧′𝑚 =

∑𝑝
𝑟=1 �̂�𝑧′𝑚
𝑝

(14)

3. Fitting linear model 𝑔(⋅):

𝑔(𝑧′𝑚) = 𝛽0 + 𝑧′𝑚 ⋅ 𝛽𝑢 (15)

by minimizing the sum of squares loss (16) over the coalition set
𝑀

minimize ∑

𝑚∈𝑀 [ ̄𝑢𝑧′𝑚 − 𝑔(𝑧′𝑚)]
2𝜋𝑥(𝑧′𝑚)

subject to 𝑔(𝑧′𝑚)= 𝑦𝑢∀𝑚 ∈ 𝑀|

|

|

|𝑧′𝑚| = |𝑋|

(16)

Repeating the process for all |𝐾| observations yields a distribution
of SHAP values over all possible input values in the data set which
provides a global explanation of the ANN’s behavior. In the case of re-
active power control, calculating the SHAP values distribution enables
the quantification of the impact of loads 𝑝𝑑𝑖 and PV active powers 𝑝𝑔𝑖 on
the corresponding optimal PV reactive powers 𝑞𝑔𝑖 , i.e., which grid state
5

information has significant influence on the optimal reactive power
Table 1
Summary of nominal nodal loads and installed PV capacities for the case study.

Node 𝑝𝑑,𝑛𝑜𝑚𝑖 (MW) 𝑞𝑑,𝑛𝑜𝑚𝑖 (MVar) 𝑝𝑔,𝑝𝑒𝑎𝑘𝑖 (MW)

0 – – –
1 19.84 4.64 –
2 – – –
3 0.5 0.21 1
4 0.43 0.11 0.86
5 0.73 0.18 1.46
6 0.55 0.14 1.1
7 0.08 0.05 –
8 0.59 0.15 1.17
9 0.57 0.36 1.15
10 0.54 0.16 1.09
11 0.33 0.08 0.66

dispatch of each PV system. For example, the optimal setting of a PV
system at node 𝑖 might depend on the load at node 𝑗 ≠ 𝑖, 𝑝𝑑𝑗 . This type
of information is particularly important when moving from centralized
to decentralized control paradigm, as it enables to determine strictly
relevant information to be communicated with and supplied to each PV
system’s controller, hence reducing both the required bandwidth of the
overall communication infrastructure and the computational burden on
the individual controllers.

2.4. Case study

In this paper, a case study based on the CIGRE MV distribution
grid [30] is developed. A schematic of the grid is shown in Fig. 1. The
grid has a radial structure and consists of 12 buses with 10 connected
loads (|𝐷|), 8 PV systems (|𝐺|), 10 transmission lines and a transformer

hich connects the grid to the HV transmission grid. For the purpose
f our case study, the following changes were made to the initial grid
odel:

• Feeder line 2 was removed because no PV system was installed
on the line.

• Wind turbine installed at node 8 was removed.
• At each node where PV is present, the PV installed capacity was

set to be twice the nominal nodal load, representing 200% PV
penetration level as measured by installed capacity.

summary of the nominal nodal loads and installed PV capacities
s shown in Table 1. To generate grid state variations reflecting its
luctuating nature, 𝑝𝑑𝑖 and 𝑝𝑔,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 were generated by perturbating
𝑑,𝑛𝑜𝑚
𝑖 and 𝑝𝑔,𝑝𝑒𝑎𝑘𝑖 as follows:

𝑝𝑑𝑖 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.4 ⋅ 𝑝𝑑,𝑛𝑜𝑚𝑖 , 1.3 ⋅ 𝑝𝑑,𝑛𝑜𝑚𝑖 ) (17)

𝑝𝑔,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.4 ⋅ 𝑝𝑔,𝑝𝑒𝑎𝑘𝑖 , 1.3 ⋅ 𝑝𝑔,𝑝𝑒𝑎𝑘𝑖 ) (18)

We assume that the loads in all the nodes have a constant power factor,
i.e., the reactive loads 𝑞𝑑𝑖 can be calculated as follows:

𝑞𝑑𝑖 =
𝑝𝑑𝑖

𝑝𝑑,𝑛𝑜𝑚𝑖

⋅ 𝑞𝑑,𝑛𝑜𝑚𝑖 (19)

lugging 𝑝𝑑𝑖 , 𝑞𝑑𝑖 and 𝑝𝑔,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 into the restricted ACOPF problem for-
ulation shown in (12b) and additionally setting 𝑣𝑚𝑖𝑛𝑖 and 𝑣𝑚𝑎𝑥𝑖 to

0.95 and 1.05 pu, respectively, leads to a complete definition of the
optimization problem. We solved the nonlinear optimization problem
using the open-source Interior Point Optimizer (Ipopt) [31] solver
integrated in pandapower [32] and PowerModels [33]. As training data
for the ANN, 50,000 samples (|𝐾|) were generated and solved to obtain
the corresponding optimal PV reactive power dispatch for each sample,
i.e., each grid state variation.

Using the generated samples, an ANN was trained to predict the
solutions to the restricted ACOPF problem. Fig. 2 depicts the structure
of the ANN used to learn the mapping function for reactive power
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Fig. 1. Schematic of CIGRE MV distribution grid.

Fig. 2. Proposed ANN structure for reactive power control.

control. The ANN has 5 hidden layers and the number of neurons in
each layer, shown below the layer depiction, was determined as such
to create a decoder–encoder structure as proposed in [22]. For our case
study, |𝑋| is equal to 18 and |𝑌 | is equal to 8. All hidden layers use the
rectified linear unit (ReLU) activation function and the output layer
uses tanh activation function to ensure admissible outputs as described
in Section 2.2. The ANN was implemented using TensorFlow [34] and
Keras [35] and trained using the Adam optimizer [36]. The learning
rate and the maximum number of epochs during training were set to
0.001 and 100, respectively. The ANN was trained using 80% of the
samples generated as described previously and the remaining 20% were
set aside for testing.
6

Let the sets 𝑋, 𝑌 and 𝑆 represent the ANN’s input feature set,
output set and samples set, respectively. Once a trained ANN with
satisfactory performance was obtained, SHAP was used to generate
feature importance values. Accounting for the number of samples, the
full set of SHAP values obtained is a tensor 𝛽 ∈ R|𝐾|×|𝑋|×|𝑌 |. Since our
objective is to determine the set of important features for each output,
we sliced the tensor over the third dimension to obtain |𝑌 | matrices
{𝛽1,… , 𝛽𝑦} ∈ R|𝐾|×|𝑋|, each representing the distribution of feature
importance values of each feature for the corresponding output. Each
element in the matrix 𝛽𝑦(𝑘,𝑥) represents the feature importance value
of feature 𝑥 with regard to output 𝑦 for sample 𝑘. First, we calculated
the mean absolute feature importance value for each output across all
samples and input features as given by:

𝛽𝑦 =
∑

𝑘∈𝐾
∑

𝑥∈𝑋 |𝛽𝑦(𝑘,𝑥)|
|𝐾| ⋅ |𝑋|

, (20)

which will then be used as a threshold to indicate whether a feature is
deemed as important. Correspondingly, we calculated the per-feature
mean absolute feature importance values as follows:

̄𝛽𝑦(𝑥) =
∑

𝑘∈𝐾 |𝛽𝑦(𝑘,𝑥)|
|𝐾|

, (21)

which is equivalent to taking the absolute values of each column in 𝛽𝑦
and averaging them, yielding |𝑋| mean values. Lastly, we determined
the subsets of important input features 𝑃𝑦 ⊆ 𝑋|

|

|

̄𝛽𝑦(𝑝) ≥ 𝛽𝑦 for all 𝑦 ∈ 𝑌 .
These features are subsequently used to build decentralized controllers.

Since each output 𝑦 ∈ 𝑌 represent one PV system connected to the
grid, an ANN was built for each system using the subsets of important
features 𝑃𝑦 identified above. This way, each system has its own individ-
ual controller and does not depend on the centralized ANN controller
any longer to determine its optimal reactive power dispatch. The same
ANN structure as shown in Fig. 2 was kept but the numbers of neurons
in the hidden layers were fixed to {32, 128, 256, 128, 32}. The training
samples used to train the centralized ANN were also used to train the
decentralized ANNs. However, note that each decentralized ANN has
only one output and uses important feature subsets 𝑃𝑦 instead of the full
feature set 𝑋 as input so the samples were adjusted accordingly before
training. The learning rate, maximum number of epochs and train-test
split configurations from the centralized ANN were maintained for the
training process of the decentralized ANNs.

To analyze the marginal value of additional grid state measurements
for decentralized controllers, we conducted a sensitivity analysis. For
the baseline, we consider the case in which all decentralized controllers
only have access to local measurements, e.g., the ANN controller for
𝑞𝑔8 only has 𝑝𝑑8 and 𝑝𝑔8 as input features and so on. For each system,
i.e., output 𝑦 ∈ 𝑌 , we took the per-feature mean absolute feature
importance values ̄𝛽𝑦(𝑥) calculated previously and sorted them in a
descending manner, i.e., ranking the input features from most to least
important. After removing the local measurements from the full set of
input features, the sensitivity analysis was subsequently conducted by
adding the next most important feature for each system to its current
input feature set, training new decentralized ANNs with these expanded
input feature sets and evaluating the ANNs’ performance. The whole
train-evaluate-expand loop was conducted for |𝑋| = 2 (baseline, local
measurements only) to 10. For the sensitivity analysis, the learning
rate and train-test split configurations were carried over as described
previously, whereas the maximum number of epochs was reduced to
30 to ease some of the computational burden.

All proposed ANNs were tested with load and PV generation profiles
typical for Germany. The load profile was obtained from the ENTSO-E
Transparency Platform [37], which provides the total electricity load
in the transmission grid of European countries in 15-minute resolution.
For this purpose, the German grid’s load profile for the year 2021 was
retrieved and was subjected to the following preprocessing steps:

• The annual average 15-minute loads for each timestep, e.g. 00:00,
00:15, . . . , 23:45, was calculated to derive typical load fluctua-
tions throughout the day.
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Fig. 3. Load factor time series over a typical day.

• The resulting 15-minute loads were subsequently upsampled to 1-
minute resolution assuming constant load inside each 15-minute
period.

• Finally, the 1-minute loads were normalized by the annual peak
load to yield load factors, i.e., ratios of the actual load inside each
1-minute period to the peak load.

The derived evolution of the load factor throughout a typical day
is depicted in Fig. 3. It could be seen that between midnight and
early morning, the load factor stays largely constant at around 0.53
before rising constantly starting from around 04:00 in the morning and
reaching its peak of approximately 0.85 around noon. From then on,
the load factor is mostly stable for a few hours before slowly dropping
off towards the evening.

Meanwhile, the PV generation profile was retrieved for a PV sys-
tem located in Berlin (latitude 52.47357°, longitude 13.40332°). Since
we would like to have a high-resolution PV generation profile, an
irradiance time series with 1-minute resolution for the year 2017
was generated as described in [38] and provided online in [39]. The
provided time series was subsequently preprocessed as follows:

• All irradiance values were divided by 1000 W/m2 to yield PV
generation factors, i.e., ratios of the actual generation to the
peak power. We assume that the power generated by PV systems
depends only on the available irradiance and the relationship
between the generated power and irradiance is linear. Since PV
systems can only generate up to their peak power, generation
factor values above 1 were truncated so that the maximum PV
generation factor in the time series is equal to 1.

• To simulate the capability of reactive power control to cope with
significant PV generation fluctuations, the PV generation profile
for a partly cloudy summer day was chosen.

The resulting PV generation factors are shown in Fig. 4. It could be
seen that on this particular day, the PV generation factors are in general
high although they fluctuate significantly, indicating a sunny day with
scattered clouds. More importantly, at some points in the day, the PV
generation factor is equal to 1, i.e., during this period PV systems
are generating at their peak power, which might lead to voltage and
stability issues in a grid with high PV penetration as considered in our
case study.

The obtained load factors 𝑙𝑓𝑡 and PV generation factors 𝑔𝑓𝑡 for all
𝑡 ∈ 𝑇 representing 1-minute time steps over an entire day were used to
perform a closed loop evaluation of reactive power control strategies.
For each time step, the load factors and the PV generation factors are
multiplied with the nominal nodal loads and the installed PV capacities,
respectively, to obtain the current nodal load and PV active power
generation:

𝑝𝑑 = 𝑙𝑓 ⋅ 𝑝𝑑,𝑛𝑜𝑚 (22)
7

𝑖 𝑡 𝑖
Fig. 4. PV generation factor time series over a typical day.

𝑝𝑔,𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖 = 𝑔𝑓𝑡 ⋅ 𝑝
𝑔,𝑝𝑒𝑎𝑘
𝑖 , (23)

while the assumed constant load power factor allows 𝑞𝑑𝑖 to be calculated
using Eq. (19). Using the optimal reactive powers 𝑞𝑔𝑖 obtained from
controllers leads to a completely defined PF problem which has to be
solved to retrieve the remaining state variables as described in 2.2.
The following metrics are used to evaluate the performance of the
controllers:

• Total electricity imported from the transmission grid (𝜂1): the
ACOPF’s objective function to be minimized as defined in (2b),
summed over the entire evaluation period of one day and con-
verted to MWh.

𝜂1 =
∑

𝑡∈𝑇 𝑝𝑔𝑠
60

(24)

• Voltage violation count (𝜂2): the number of time steps (or min-
utes) constraint (1d) is violated for the evaluation period.

𝜂2 =
∑

𝑡∈𝑇
|𝑡|∀𝑡 ∈ 𝑇 ||

|

𝑣𝑖 > 𝑣𝑚𝑎𝑥𝑖 ∨ 𝑣𝑖 < 𝑣𝑚𝑖𝑛𝑖 , 𝑖 ∈ 𝑁 (25)

• Mean voltage violation (𝜂3): the average violation magnitude of
constraint (1d) in pu.

𝜂3 =

∑

𝑡∈𝑇
∑

𝑖∈𝑁 max
(

max(𝑣𝑖 − 𝑣𝑚𝑎𝑥𝑖 , 0),max(𝑣𝑚𝑖𝑛𝑖 − 𝑣𝑖, 0)
)

|𝑇 | ⋅ |𝑁|

(26)

• Maximum voltage violation (𝜂4): the maximum violation magni-
tude of constraint (1d) in pu.

𝜂4 = max

(

max
(

max(𝑣𝑖 − 𝑣𝑚𝑎𝑥𝑖 , 0),max(𝑣𝑚𝑖𝑛𝑖 − 𝑣𝑖, 0)
)

(27)

∀𝑡 ∈ 𝑇 , 𝑖 ∈ 𝑁

)

• Line loading violation count (𝜂5): the number of time steps (or
minutes) constraint (1h) is violated for the evaluation period.

𝜂5 =
∑

𝑡∈𝑇
|𝑡|∀𝑡 ∈ 𝑇 ||

|

𝑠𝑓𝑖𝑗 > 𝑠𝑓,𝑚𝑎𝑥𝑖𝑗 , (𝑖𝑗) ∈ 𝐿 (28)

To compare our proposed approach with existing approaches, we con-
sider two baseline control strategies and one alternative decentralized
control strategy for reactive power control. In total, we compared six
approaches as described below:

1. Fixed power control (s1): according to this strategy, a constant
power factor of 0.9 (lagging) is used by all PV systems, i.e., as
much reactive power as possible is absorbed by each PV sys-
tem. In theory, this should eliminate most overvoltage problems
as voltage magnitudes sink at nodes where reactive power is
imported.
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2. Power factor as a function of active power (cos𝜙(𝑃 )) control
(s2): according to the standard set by the German association
VDE [10], PV systems should operate with a unity power factor
when they operate below than or at half of their peak power and
beyond that, the power factor should drop gradually so that a
linear degradation to a power factor of 0.9 (lagging) is achieved
when the peak power is reached.

3. ACOPF (s3): optimal reactive powers obtained by solving the
optimization problem shown in (2b). This is the state-of-the-
art strategy for reactive power control and represents the upper
limit of the performance level ML-OPF based controllers can
achieve since training samples for the latter are generated from
ACOPF.

4. Centralized ANN (s4): an ANN with 5 hidden layers as shown in
2 with all grid state measurements as input and all PV reactive
powers as output.

5. Decentralized ANN (s5): smaller ANNs to administer optimal
reactive power setting for all PV systems, one for each system.
Each ANN has one output and varying number of input features
as identified by SHAP from the centralized ANN.

6. Multiple linear regression with local measurements (s6): the
control strategy proposed in [40]. The controller is a multi-
ple linear regression model with interactions using only local
measurements.

3. Results and discussion

In this section, the results of the case study are presented and
discussed. The section is divided into four subsections as follows:
Section 3.1 compares the performance of the first four control strate-
gies, i.e., baseline and centralized approaches, Section 3.2 contains an
analysis of the SHAP values obtained from centralized ANN, Section 3.3
presents a comparison of the two considered decentralized control
strategies and Section 3.4 shows the results of the sensitivity analysis.

3.1. Baseline and centralized control

Results of the closed loop evaluation for the baseline and centralized
controllers are summarized in Table 2. Firstly, it could be seen that with
regard to 𝜂1, the ACOPF control (s3) records the best performance, fol-
lowed by the centralized ANN (s4), the cos𝜙(𝑃 ) control (s2) and lastly
the fixed power control strategy (s1). Since the performance of the
centralized ANN is very similar to the ACOPF control, it could be said
that the two controllers are equal, i.e., the centralized ANN successfully
learned the input–output mapping of the ACOPF which minimizes the
objective function of the latter. Between the best controller (s3) and
the worst (s1), a difference of 1.54 MWh can be observed, meaning
that switching from the fixed power control strategy to using ACOPF
for controlling reactive power yields an energy saving of 0.44% over
the course of the evaluated day. A similar amount of energy saved is
observed when centralized ANN is deployed and although a saving of
0.44% might seem trivial, the size of the grid should be taken into
account when evaluating the magnitude of the savings. For example,
the average daily load of the German electricity grid in 2021 is equal
to 5528 GWh [37], which means that a saving of 0.44% would be equal
to 24.33 GWh.

With regard to the voltage-related metrics 𝜂2, 𝜂3 and 𝜂4, all con-
trollers successfully prevented voltage problems from occurring in the
grid by applying their respective strategy. The voltage profiles at node 3
and 11, representing the first and the last node on the grid where PV is
installed, are shown in Figs. 6 and 7. From the figures, it could be seen
that the ACOPF controller and the centralized ANN provide optimal
reactive power settings as such to absorb just enough reactive power to
keep the voltage at or close to the upper limit when high PV generation
is observed. There is a small difference between the voltage profiles of
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the ACOPF and the centralized ANN, which could be attributed to the
Table 2
Summary of evaluation results for the baseline and centralized controllers.

Controller 𝜂1 𝜂2 𝜂3 𝜂4 𝜂5
[MWh] [min] [pu] [pu] [min]

s1 353.58 0 0 0 218
s2 352.75 0 0 0 98
s3 352.05 0 0 0 0
s4 352.06 0 0 0 0

Fig. 5. Distribution of loading values in percentage for lines (12) and (23).

fact that the latter was trained using samples generated from solving the
reduced ACOPF problem where the constraints are tightened. In con-
trast to the more complex controllers, the baseline controllers instruct
more reactive power to be absorbed during the same period, leading to
voltages far below the upper limit.

When it comes to 𝜂5, however, both the fixed power and the cos𝜙(𝑃 )
controllers perform poorly, recording 218 and 98 min of line loading
violations, respectively. This might be caused by the controllers in-
structing the PV systems to absorb more reactive power than necessary,
subsequently leading to overloading of the transmission lines. The
excessive absorption of reactive power is also likely to be the reason
behind both baseline controllers’ inferior performance since increasing
energy flowing on the transmission lines also leads to higher losses. In
reality, the line loading limits cannot physically be exceeded so once
the power flowing on a transmission line is detected to approach the
maximum capacity, i.e., a congestion is about to occur, grid operators
would need to dispatch control measures to clear the congestion which
incur additional system costs. Fig. 5 shows the distribution of line
loading values for the transmission lines connecting nodes 1 and 2 and
nodes 2 and 3, where the congestions occur.

On the whole, it could be said that both ACOPF and centralized
ANN are superior to the evaluated baseline controllers for controlling
reactive power in PV systems with regard to all the metrics considered
in this paper. Furthermore, it has been shown that the centralized ANN
successfully imitates the behavior of the ACOPF controller and hence, it
is possible to control reactive power in PV systems using ANNs trained
with ACOPF-generated input–output mappings.

3.2. SHAP analysis for centralized ANN

Once the centralized ANN for reactive power control has been
evaluated and its performance has been validated, SHAP values were
calculated to generate additional insights with regard to the optimal
reactive power dispatch of each PV system. The SHAP summary plots
for the PV systems at node 3 and 11 are shown in Figs. 8 and 9. The
plots depict the spread of the input features’ SHAP values and their
influence on the output. Note that only the five most important features
to each output are shown to ease the interpretation. In Fig. 8, it could
be seen that the optimal reactive power at node 3 𝑞𝑔3 is mostly affected
by the load at node 1 𝑝𝑑 , the load at node 3 𝑝𝑑 and the actual PV active
1 3
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Fig. 6. Voltage profile at node 3 for the baseline and centralized controllers.

Fig. 7. Voltage profile at node 11 for the baseline and centralized controllers.

power generation at node 3 𝑝𝑔3 . With regard to 𝑝𝑑1 and 𝑝𝑑3 , the correlation
is positive, i.e., higher 𝑝𝑑1 and 𝑝𝑑3 lead to higher 𝑞𝑔3 . Since 𝑝𝑑1 represents
the largest load in the entire grid, this behavior would be expected, as
high 𝑞𝑔3 values indicate high reactive power production, presumably to
be exported to node 1. It is rather expected that 𝑝𝑑3 and 𝑝𝑔3 are important
to determine 𝑞𝑔3 , as they represent local measurements which have the
largest influence on the voltage behavior.

The same behavior for local measurements is also observed for 𝑞𝑔11
as shown in Fig. 9, as 𝑝𝑔11 and 𝑞𝑑11 are deemed to be the most influential.
The other three most important features identified are 𝑝𝑑1 , 𝑝𝑔10 and 𝑝𝑔9 .
As mentioned before, 𝑝𝑑1 represents the largest load grid-wide, therefore
partly explaining its inclusion although nodes 1 and 11 are separated
by a large distance. In contrast, 𝑝𝑔9 and 𝑝𝑔10 represent the active power
generations of the PV systems at node 9 and 10, respectively, which
are in close vicinity to node 11. Hence, they indirectly influence 𝑞𝑔11 in
that high generation at nodes 9 and 10 might necessitate the PV system
at node 11 to absorb more reactive power in order to avoid potential
overvoltage at all three nodes.

Table 3 lists the features identified by SHAP for each PV system’s
dedicated ANN controller alongside the threshold values used to iden-
tify them. First of all, it could be seen that the threshold value varies
between PV systems and does not seem to follow any particular trend
with regard to where the PV system is located in the grid, i.e., close to
the beginning or the end of the feeder line. However, it is interesting
to note that there seems to be a weak positive correlation between the
number of important features and the threshold value, e.g., 𝑞𝑔4 has the
lowest threshold value and the lowest number of features (2), while
𝑞𝑔6 has the second highest threshold value and the highest number of
features (6). Furthermore, as observed previously, local measurements
have a large influence on the optimal reactive power dispatch of all PV
systems, as they are identified as important for each PV system. Using
these feature sets, we built decentralized ANNs to allow each PV system
to determine their optimal reactive power dispatch independently given
access to some of the identified non-local grid measurements.
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Fig. 8. SHAP summary plot for optimal reactive power dispatch at node 3.

Fig. 9. SHAP summary plot for optimal reactive power dispatch at node 11.

Table 3
List of input features identified by SHAP for the decentralized ANN:
features highlighted in bold indicate local measurements.

Output 𝛽𝑦 Input features

𝑞𝑔3 0.027 𝑝𝑑1 ,𝒑
𝒅
𝟑 ,𝒑

𝒈
𝟑

𝑞𝑔4 0.009 𝒑𝒅
𝟒 ,𝒑

𝒈
𝟒

𝑞𝑔5 0.023 𝒑𝒅
𝟏 ,𝒑

𝒈
𝟒 ,𝒑

𝒅
𝟓 ,𝒑

𝒈
𝟓

𝑞𝑔6 0.06 𝑝𝑑1 , 𝑝
𝑔
4 , 𝑝

𝑑
5 , 𝑝

𝑔
5 ,𝒑

𝒅
𝟔 ,𝒑

𝒈
𝟔

𝑞𝑔8 0.016 𝑝𝑑7 ,𝒑
𝒅
𝟖 ,𝒑

𝒈
𝟖 , 𝑝

𝑔
9

𝑞𝑔9 0.055 𝑝𝑑1 , 𝑝
𝑔
8 ,𝒑

𝒅
𝟗 ,𝒑

𝒈
𝟗

𝑞𝑔10 0.067 𝑝𝑑1 , 𝑝
𝑔
8 , 𝑝

𝑔
9 ,𝒑

𝒅
𝟏𝟎 ,𝒑

𝒈
𝟏𝟎

𝑞𝑔11 0.054 𝑝𝑑1 , 𝑝
𝑔
10 ,𝒑

𝒅
𝟏𝟏 ,𝒑

𝒈
𝟏𝟏

3.3. Decentralized control

Table 4 presents a comparison of the two decentralized control
strategies under consideration, decentralized ANN (s5) and multiple
linear regression with local measurements (s6). It could be seen that
while the decentralized ANN achieves practically the same level of
performance as the centralized ANN, the multiple linear regression
controller induces voltage problems lasting for a total of 182 min. The
voltage profiles at node 3 and 11 for these two controllers are shown in
Figs. 10 and 11, respectively. From the table and the figures, it could
be observed that while both the mean violation 𝜂3 and the maximum
violation 𝜂4 are very low in the case of the multiple linear regression
controller, overvoltages do occur during periods of high PV generation.
As is the case with line congestions, grid operators would need to
dispatch control measures to eliminate the overvoltage problem which
entails additional costs. Meanwhile, the decentralized ANN controller is
always able to keep the voltage below the upper limit and at the same
time, no line loading violations as measured by 𝜂5 are recorded.

The results show that for reactive power control, using only local
measurements might lead to small constraint violations, which agrees
with the findings in [24]. By using a combination of ACOPF input–
output mapping with ANN and SHAP to identify important features,
decentralized ANNs which only use a subset of grid state measure-
ments as input are able to optimize reactive power dispatch in PV
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Table 4
Summary of evaluation results for the decentralized controllers.

Controller 𝜂1 𝜂2 𝜂3 𝜂4 𝜂5
[MWh] [min] [pu] [pu] [min]

s5 352.06 0 0 0 0
s6 352.05 182 2.5e−4 8.4e−3 0

Fig. 10. Voltage profile at node 3 for the decentralized controllers.

Fig. 11. Voltage profile at node 11 for the decentralized controllers.

systems with comparable performance to the state-of-the-art ACOPF
control. One concern which might be raised regarding the proposed
decentralized ANN is the ‘‘unfair’’ treatment of the PV systems as some
systems have access to more grid state measurements than others as
shown in Table 3. Hence, we conducted a sensitivity analysis in which
all decentralized ANNs are assumed to be granted access to the same
number of grid state measurements, i.e., input features for the ANNs in
order to qualitatively assess the marginal value of information for the
controllers.

3.4. Sensitivity analysis

The list of important features for each PV system excluding local
measurements used for the sensitivity analysis is provided in Table 5.
Since the sensitivity analysis was conducted for |𝑋| = 2 to 10, each
output is shown as having 8 important features, ordered from the most
to the least important as measured by the mean absolute SHAP value.
It could be seen that with the exception of 𝑞𝑔4 and 𝑞𝑔8 , 𝑝𝑑1 is always
identified as the most influential feature for optimal reactive power
dispatch on top of the local measurements owing to its magnitude. Oth-
erwise, no obvious trend could be identified aside from the tendency of
nodes located in close vicinity having more influence on one another
compared to ones separated by a large distance. For example, 𝑞𝑔9 is
identified as being significantly influenced by 𝑝𝑔8 and 𝑝𝑑8 and 𝑞𝑔6 by 𝑝𝑔5
and 𝑝𝑑 .
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Table 5
List of important features for each output in
decreasing order of importance per SHAP values.

Output Input features

𝑞𝑔3 𝑝𝑑1 , 𝑝
𝑔
5 , 𝑝

𝑔
8 , 𝑝

𝑔
9 , 𝑝

𝑔
10 , 𝑝

𝑔
6 , 𝑝

𝑔
4 , 𝑝

𝑔
11

𝑞𝑔4 𝑝𝑔5 , 𝑝
𝑑
1 , 𝑝

𝑔
6 , 𝑝

𝑔
3 , 𝑝

𝑑
5 , 𝑝

𝑔
9 , 𝑝

𝑑
3 , 𝑝

𝑑
6

𝑞𝑔5 𝑝𝑑1 , 𝑝
𝑔
4 , 𝑝

𝑔
3 , 𝑝

𝑑
4 , 𝑝

𝑔
6 , 𝑝

𝑔
10 , 𝑝

𝑑
3 , 𝑝

𝑔
9

𝑞𝑔6 𝑝𝑑1 , 𝑝
𝑔
5 , 𝑝

𝑑
5 , 𝑝

𝑔
4 , 𝑝

𝑔
3 , 𝑝

𝑑
4 , 𝑝

𝑔
10 , 𝑝

𝑑
3

𝑞𝑔8 𝑝𝑑7 , 𝑝
𝑔
9 , 𝑝

𝑑
9 , 𝑝

𝑑
1 , 𝑝

𝑔
10 , 𝑝

𝑑
10 , 𝑝

𝑔
3 , 𝑝

𝑔
11

𝑞𝑔9 𝑝𝑑1 , 𝑝
𝑔
8 , 𝑝

𝑑
8 , 𝑝

𝑔
3 , 𝑝

𝑔
10 , 𝑝

𝑑
3 , 𝑝

𝑔
4 , 𝑝

𝑔
6

𝑞𝑔10 𝑝𝑑1 , 𝑝
𝑔
9 , 𝑝

𝑔
8 , 𝑝

𝑑
9 , 𝑝

𝑑
8 , 𝑝

𝑔
3 , 𝑝

𝑔
5 , 𝑝

𝑔
4

𝑞𝑔11 𝑝𝑑1 , 𝑝
𝑔
10 , 𝑝

𝑔
9 , 𝑝

𝑔
8 , 𝑝

𝑑
10 , 𝑝

𝑔
5 , 𝑝

𝑑
9 , 𝑝

𝑔
3

Fig. 12. Sensitivity analysis results for 𝜂1.

Results of the sensitivity analysis are summarized in Figs. 12 to 16.
The following trends could be observed from the figures:

• 𝜂1 is largely unaffected by the number of features in the decen-
tralized ANNs, i.e., using only local measurements is sufficient
to achieve satisfactory control performance as measured by the
ACOPF’s objective function.

• As is the case with the multiple linear regression controller,
decentralized ANNs with only local measurements induce voltage
problems. This indicates that the problem lies more in the lack of
necessary information rather than model complexity.

• With one additional feature, the mean and maximum voltage
violation decrease slightly but with two additional features, they
are eliminated almost entirely. Four additional features for each
controller are required to ensure that no voltage problem occurs.

• No line loading violations are recorded with all controllers con-
sidered in the sensitivity analysis.

From the results, it could be concluded that up to a certain point,
increasing the number of features in the decentralized ANNs leads
to an improvement in control performance. Once the number of fea-
tures which allows for eliminating constraint violations is reached, no
marginal value of information could be observed.

4. Conclusion

In this paper, we propose the use of ANN for the purpose of reactive
power control in PV systems by learning approximate optimal input–
output mappings from ACOPF. Through our case study, we show that
ANN is able to produce optimal reactive power predictions which
satisfy all grid constraints with practically the same performance as
ACOPF, thereby providing an alternative to the latter for centralized
reactive power control. Deploying centralized ANN controller instead
of fixed power control is shown to lead to an energy saving of 0.44%.
In addition to that, we show that using SHAP to generate feature
importance values from the trained ANN used for reactive power
control, it is possible to isolate important subsets of features which



Applied Energy 328 (2022) 120004C. Utama et al.
Fig. 13. Sensitivity analysis results for 𝜂2.

Fig. 14. Sensitivity analysis results for 𝜂3.

Fig. 15. Sensitivity analysis results for 𝜂4.

Fig. 16. Sensitivity analysis results for 𝜂5.
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could be subsequently utilized to built decentralized ANN controllers.
No performance difference is observed between the proposed cen-
tralized and decentralized ANN controllers, opening the possibility
for non-coordinated decentralized control with lower communication
bandwidth and computational power requirements. Lastly, with the aid
of SHAP, non-local grid measurements are shown to contain relevant
information for decentralized ANNs to eliminate voltage problems.

For future work, we will look to implement our proposed approach
in more complex ACOPF formulations such as the security-constrained
ACOPF in order to test its robustness. With increasing complexity, it is
expected that more complex constraint boundary tightening techniques
than the one used in this paper will be needed to ensure the feasibility
of ANN-derived solutions. Additionally, we aim to further test our
proposed approach by building case studies based on larger grids with
more nodes and higher complexity, approaching real-life grids and
therefore allowing for a more accurate approximation of the benefits
of our proposed approach. At the moment, such analysis would not be
possible with publicly available data and hence, we hope to cooperate
with electricity grid operators in the future to obtain the necessary data.
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