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Introduction

Global and multidimensional problems, such as the anthropogenic climate change or the condi-

tions of persistent inequality demand permanent political and economic awareness. Sustainable

and progressive solution strategies presuppose reliable empirical evidence to plan, monitor and

adjust policy measures (Lu et al., 2015; Sachs et al., 2019). The sustainable development goals

(SDG) are 17 time-bound goals by the United Nations to motivate strategies boosting global

equality and prosperity (United Nations, 2015). In order to provide solutions to the major

global challenges of the 21st century, multilateral organizations and development agencies ac-

knowledge the importance of increasing efforts to prepare and use data (United Nations, 2014;

World Bank Group, 2015; Asian Development Bank, 2021).

Available national-level statistical indicators are often inadequate to detect vulnerability of

distinct geographical or demographic groups at desired levels of precision. The identification

and elimination of structural patterns of inequality coincides with the fundamental principle of

‘leaving no one behind’, making systematic data disaggregation a distinct SDG target (SDG-

target 17.18) (United Nations, 2015). From a methodological perspective, the dual goal of

achieving detailed and reliable estimates from national sample surveys on highly disaggregated

‘areas’ or ‘domains’ (e.g. geographical or demographic groups) is referred to as Small Area

Estimation (SAE) (Pfeffermann, 2013; Rao and Molina, 2015; Tzavidis et al., 2018).

SAE combines research on statistical procedures to obtain efficient and precise estimates

for (non-linear) economic and inequality estimators on hierarchically disjoint levels. Depend-

ing on the intended degree of precision, domain-specific sample sizes become small or even

zero. Resolving the problem of unreliable estimates due to small sample sizes, model-based

approaches link existing auxiliary information from administrative data sources (e.g. census

data) or alternative data sources (e.g. mobile phone or remote sensing data) using predictive

models (Marchetti et al., 2015; Schmid et al., 2017; Tzavidis et al., 2018; Wardrop et al., 2018).

In the existing literature, linear mixed models (LMMs) are predominantly used for prediction

tasks, because LMMs control for domain-specific dependencies using random effects.

This thesis introduces and discusses the use of flexible and adaptive algorithms for the

predictive purpose of SAE. Particularly, I focus on random forests, which combine individ-

ual nonparametric regression trees through bootstrap aggregation (Breiman, 1996, 2001a) and

exhibit excellent predictive performance under less restrictive assumptions compared to linear

models. Random forests automatically detect and exploit (high-order) relations between pre-

dictive covariates, which reduces the risk of model-misspecification for independent unit-level

data. Mixed effects random forests (MERFs) (Hajjem et al., 2014) combine the ability to con-

trol for dependency structures of survey data with the advantages of regression forests (e.g.
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Introduction

robustness against outliers and implicit model-selection). This thesis aims to bridge concepts

by remaining within the general paradigm of SAE, while simultaneously highlighting and eval-

uating the potential of predictive algorithms. In a broader sense, this includes a methodological

commitment to basic concepts of statistical inference and official statistics by accounting for

survey-specific dependency structures.

The thesis combines four papers that introduce a coherent framework based on MERFs

for the estimation of spatially disaggregated economic and inequality indicators and associated

uncertainties. Chapter 1 focusses on flexible domain prediction using MERFs. We discuss

characteristics of semi-parametric point and uncertainty estimates for domain-specific means.

Extensive model- and design-based simulations highlight advantages of MERFs in comparison

to ‘traditional’ LMM-based SAE methods. Chapter 2 introduces the use of MERFs under lim-

ited covariate information. The access to population-level micro-data for auxiliary information

imposes barriers for researchers and practitioners. We introduce an approach that adaptively

incorporates aggregated auxiliary information using calibration-weights in the absence of unit-

level auxiliary data. We apply the proposed method to German survey data and use aggregated

covariate census information from the same year to estimate the average opportunity cost of

care work for 96 planning regions in Germany. In Chapter 3, we discuss the estimation of

non-linear poverty and inequality indicators. Our proposed method allows to estimate domain-

specific cumulative distribution functions from which desired (non-linear) poverty estimators

can be obtained. We evaluate proposed point and uncertainty estimators in a design-based sim-

ulation and focus on a case study uncovering spatial patterns of poverty for the Mexican state of

Veracruz. Additionally, Chapter 3 informs a methodological discussion on differences and ad-

vantages between the use of predictive algorithms and (linear) statistical models in the context

of SAE. The final Chapter 4 complements the previous research by implementing discussed

methods for point and uncertainty estimates in the open-source R package SAEforest. The

package facilitates the use of discussed methods and accessibly adds MERFs to the existing

toolbox for SAE and official statistics.

Overall, this work aims to synergize aspects from two statistical spheres (e.g. ‘traditional’

parametric models and nonparametric predictive algorithms) by critically discussing and adapt-

ing tree-based methods for applications in SAE. In this perspective, the thesis contributes to

the existing literature along three dimensions: 1) The methodological development of alterna-

tive semi-parametric methods for the estimation of non-linear domain-specific indicators and

means under unit-level and aggregated auxiliary covariates. 2) The proposition of a general

framework that enables further discussions between ‘traditional’ and algorithmic approaches

for SAE as well as an extensive comparison between LMM-based methods and MERFs in ap-

plications and several model and design-based simulations. 3) The provision of an open-source

software package to facilitate the usability of methods and thus making MERFs and general

SAE methodology accessible for tailored research applications of statistical, institutional and

political practitioners.
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Chapter 1

Flexible domain prediction using
mixed effects random forests

This is the peer reviewed version of the following article: Krennmair, P. and Schmid, T. (2022).

Flexible domain prediction using mixed effects random forests, Journal of the Royal Statistical

Society: Series C (Applied Statistics) 71(5), 1865-1894., which has been published in final

form at: https://doi.org/10.1111/rssc.12600. This article may be used for

non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-

Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a

derivative work, without express permission from Wiley or by statutory rights under applicable

legislation. Copyright notices must not be removed, obscured or modified. The article must be

linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or

otherwise making available the article or pages thereof by third parties from platforms, services

and websites other than Wiley Online Library must be prohibited.
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Chapter 2

Analysing opportunity cost of care
work using mixed effects random
forests under aggregated census data

2.1 Introduction

Evidence-based policy requires reliable empirical information on social and economic con-

ditions summarised by appropriate indicators. For questions addressing regional and spatial

aspects of inequality, we need precise and reliable information extending beyond aggregate

levels into highly disaggregated geographical and other domains (e.g., demographic groups).

An apparent trade-off regarding the work with survey data is the inverse relation between high

spatial resolution and decreasing sample sizes on the level of interest. The estimation of indica-

tors under these circumstances can be facilitated using an appropriate model-based methodol-

ogy collectively referred to as Small Area Estimation (SAE) (Rao and Molina, 2015; Tzavidis

et al., 2018).

Models handling unit-level survey data for the estimation of area-level means are predom-

inantly regression-based linear mixed models (LMM), where the hierarchical structure of ob-

servations is captured by random effects. A well-known example is the nested error regression

model (Battese et al., 1988) - further labelled as BHF - which requires access to the survey

and to area-level auxiliary information. A versatile extension of the BHF model is the EBP ap-

proach by Molina and Rao (2010) with which even non-linear indicators can be estimated and,

unlike the BHF, requires access to population-level auxiliary data. The underlying LMM of the

BHF (and the EBP) relies on distributional and structural assumptions that are prone to viola-

tions in SAE applications. Working with social and economic inequality data in LMMs requires

assumptions of linearity and normality of random effects and error terms, which hardly meet

empirical evidence. Jiang and Rao (2020) remind, that optimality results and predictive per-

formance of model-based SAE are inevitably connected to the validity of model assumptions.

Without theoretical and practical considerations regarding violated assumptions, estimates are

potentially biased and mean squared error (MSE) estimates are unreliable.

In SAE, several strategies evolved to prevent model-misspecification: A well-known ex-
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ample is the assurance of normality by transforming the dependent variable (Sugasawa and

Kubokawa, 2017; Tzavidis et al., 2018; Sugasawa and Kubokawa, 2019; Rojas-Perilla et al.,

2020). Furthermore, the use of models under more flexible distributional assumptions is a

fruitful approach (Diallo and Rao, 2018; Graf et al., 2019). From a different perspective, semi-

or non-parametric approaches for the estimation of area-level means are investigated among

others by Opsomer et al. (2008), using penalized spline components within the LMM setting.

A distinct methodological option to avoid the parametric assumptions of LMMs are machine

learning methods. These methods are not limited to parametric models and learn predictive

relations from data, including higher order interactions between covariates, without explicit

model assumptions (Hastie et al., 2009; Varian, 2014). Recently, Krennmair and Schmid (2022)

introduce a framework enabling a coherent use of tree-based machine learning methods in SAE.

They propose a non-linear, data-driven, and semi-parametric alternative for the estimation of

area-level means by using mixed effects random forests (MERF) in the methodological tra-

dition of SAE. In general, random forests (RF) (Breiman, 2001a) exhibit excellent predictive

performance in the presence of outliers and implicitly solve problems of model-selection (Biau

and Scornet, 2016). MERFs (Hajjem et al., 2014) combine these advantages with the ability to

model hierarchical dependencies.

All previously mentioned model-based strategies against model-misspecification in SAE

assume access to auxiliary information from population-level micro-data. Due to data security

reasons, the access to unit-level census or register data is limited, which imposes a strong re-

striction for researchers and SAE practitioners. However, aggregated population-level auxiliary

data (e.g., means) are often available at finer spatial resolution.

In this paper, we present a methodology for the estimation of area-level means using

MERFs under limited population-level auxiliary information. We propose a purely data-driven

approach for solving the dual problem (model-misspecification and limited auxiliary data).

Particularly, we introduce a strategy for the adaptive incorporation of auxiliary information

through calibration-weights for the estimation of area-level means. The determination of

weights without explicit distributional assumptions is based on the empirical likelihood (EL)

approach (Chen and Qin, 1993; Qin and Lawless, 1994; Han and Lawless, 2019). For the point

estimation of area-level means, Li et al. (2019) propose the use of EL-based calibration weights

and introduce a bias-corrected transformation approach using aggregated covariate data com-

bined with the smearing approach of Duan (1983). Complementing our proposed method for

point estimates, we introduce a non-parametric bootstrap estimator assessing the uncertainty

of estimated area-level means. To the best of our knowledge, no comparable procedure exists

for uncertainty estimation in the context of non-linear semi-parametric tree-based procedures

under limited data access. We highlight strengths and weaknesses of our approach for point

and uncertainty estimates by comparing it to existing SAE methods under limited auxiliary

information in a model-based simulation.

We demonstrate our methodology using the 2011 Socio-Economic Panel (SOEP) (Socio-

Economic Panel, 2019) combined with aggregate census information from the same year to

estimate the average individual opportunity cost of care work for 96 regional planning regions

(RPRs) in Germany. We refer to care work as unpaid working hours attributed to child- or
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elderly-care reported by the SOEP. Opportunity cost is an economic concept comprising the

time allocation problem, where the time allocated for care work implicitly corresponds to time

not providing paid work (Buchanan, 1991). Informally provided care work has no direct cor-

responding monetary value and the determination of a correct shadow-price for the economic

value is difficult. Classical interpretations of labour supply in economics such as Becker (1965)

imply that an individual’s hourly wage is an acceptable approximation to the unknown oppor-

tunity cost of time for working population. Thus, we measure time cost by multiplying an

individual’s care time by the opportunity cost of the person’s time represented as the reported

hourly wage calculated also from reported income in the SOEP data. We are aware that our

application is at best a first approximation making regional differences in opportunity cost of

care work visible, accountable, and comparable. Unpaid care work mitigates public and pri-

vate expenses on needed health services and infrastructure (Charles and Sevak, 2005). On the

other hand, care-giving has a complex impact on the labour market (Truskinovsky and Maestas,

2018; Stanfors et al., 2019), for instance by affecting workforce individuals through personal

or social burdens (Bauer and Sousa-Poza, 2015). From a macro-perspective, several studies

examine the economic value of care work for countries through the concept of opportunity cost

(Chari et al., 2015; Ochalek et al., 2018; Mudrazija, 2019) and provide empirical evidence for

policy measures.

While the mapping of spatial patterns of income inequality in Germany is of scientific inter-

est (Frick and Goebel, 2008; Kosfeld et al., 2008; Fuchs-Schündeln et al., 2010), to the best of

our knowledge, no study on regional dispersion of opportunity cost of unpaid care work exists.

From a spatial perspective, Oliva-Moreno et al. (2019) provide estimates on the economic value

of time of informal care for two regions in Spain. We maintain that mapping opportunity cost of

care work in Germany is particularly interesting given the German history of Reunification and

the German Federalism, characterized by powerful regional jurisdictions and different laws for

aspects directly affecting care work. The visualization of opportunity cost highlights regional

patterns, adding insights for planning and comparison of social-compensation policies.

The rest of the paper is structured as follows: Section 2.2.1 states a general mixed model

that treats LMMs in SAE as special cases and enables the use of tree-based models. We con-

sider the estimation of area-level means using MERFs, which effectively combine advantages

of non-parametric random forests with the possibility to account for hierarchical dependen-

cies. Section 2.2.2 describes our area-level mean estimator based on MERFs under limited

data access. We scrutinize the use of EL calibration weights and subsequently address method-

ological limitations in Section 2.2.3. As a result, we propose a best practice strategy to ensure

the proper usability of EL calibration weights in the context of SAE. Section 2.3 introduces a

non-parametric bootstrap-scheme for the estimation of the area-level MSE. In Section 2.4, we

use model-based simulations under complex settings to assess the performance of our stated

methods for point and MSE estimates, showing that MERFs are a valid alternative to exist-

ing methods for the estimation of SAE means under limited data access. In Section 2.5, we

estimate the average individual opportunity cost of care work for 96 RPRs in Germany using

the 2011 SOEP data. After the introduction of data sources and direct estimates in Section

2.5.1, we highlight modelling and robustness properties of our proposed methods for point and
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uncertainty estimates compared to direct and other SAE estimates under limited auxiliary data.

In Section 2.6, we conclude and motivate further research.

2.2 Theory and method

This section introduces a general mixed model enabling a simultaneous discussion of tradi-

tional LMM-based models in SAE such as the model of Battese et al. (1988) as well as semi-

parametric interpretations such as the model of Krennmair and Schmid (2022) using MERFs.

Section 2.2.2 provides details on our proposed methodology for MERFs under limited covariate

data access and the determination of area-specific calibration weights based on EL. We close

the section with a discussion on limitations of EL for SAE and state a best practice strategy

ensuring the usability of our proposed point estimator in challenging empirical examples.

2.2.1 Model and estimation of coefficients

We assume a finite population U of size N consisting of D separate domains U1, U2, ..., UD

with N1, N2, ..., ND units, where index i = 1, ..., D indicates respective areas. The con-

tinuous target variable yij for individual observation j in area i is available for every unit

within the sample. Sample s is drawn from U and consists of n units partitioned into sample

sizes n1, n2, ..., nD for all D areas. We denote by si the sub-sample from area i. The vector

xij = (x1, x2, ..., xp)
⊺ includes p explanatory variables and is available for every unit j within

the sample s. The relationship between xij and yij is assumed to follow a general mixed effects

regression model:

yij = f(xij) + ui + eij with ui ∼ N(0, σ2
u) and eij ∼ N(0, σ2

e). (2.1)

Function f(xij) models the conditional mean of yij given xij . The area-specific random effect

ui and the unit-level error eij are assumed to be independent. For instance, defining f(xij) =

x⊺
ijβ with β = (β1, ..., βp)

⊺ coincides with the well-known nested error regression model of

Battese et al. (1988) labelled as BHF. An empirical best linear unbiased predictor for the area-

level mean µi can be expressed as:

µ̂BHF
i = x̄⊺

i β̂ + ûi,

where x̄i =
1
Ni

∑
j∈Ui

xij denotes area-specific population means on p covariates. In a variety

of real-world examples, required assumptions for the BHF model hardly meet empirical evi-

dence. Apart from transformation strategies to meet the required assumptions, non-parametric

approaches can be used alternatively (Jiang and Rao, 2020). Tree-based machine learning

methods such as RFs (Breiman, 2001a) are data-driven procedures identifying predictive rela-

tions from data, including higher order interactions between covariates, without explicit model

assumptions (Hastie et al., 2009; Varian, 2014). RFs inherently perform model-selection and

properly handle the presence of outliers (Biau and Scornet, 2016). However, an implicit as-

sumption of tree-based models is the required independence of unit-level observations.

Defining f in Model (2.1) to be a RF results in a semi-parametric framework, combining
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advantages of RFs with the ability to model hierarchical structures of survey data using random

effects. Krennmair and Schmid (2022) estimate area-level means with RFs (Breiman, 2001a)

introducing a method that enables the estimation of model components f̂ , û, σ̂2
u, and σ̂2

e in the

context of SAE. The so-called mixed effects random forest (MERF) uses a procedure reminis-

cent of the EM-algorithm (Hajjem et al., 2014). For fitting Model (2.1) (where f is a RF) on

survey data, the MERF algorithm subsequently estimates a) the forest function, assuming the

random effects term to be correct and b) estimates the random effects part, assuming the Out-

of-Bag-predictions (OOB-predictions) from the forest to be correct. OOB-predictions utilize

the unused observations from the construction of each forest’s sub-tree (Breiman, 2001a; Biau

and Scornet, 2016). The estimation of variance components σ̂2
ϵ and σ̂2

u is obtained implicitly

by taking the expectation of ML estimators given the data. For further methodological details,

we refer to Krennmair and Schmid (2022). The resulting estimator for the area-level mean for

MERFs is summarized as:

µ̂MERF
i =

¯̂
fi(xij) + ûi =

¯̂
fi(xij) +

σ̂2
u

σ̂2
u + σ̂2

e/ni

 1

ni

∑
j∈si

(yij − f̂(xij))

 , (2.2)

where ¯̂
fi(xij) =

1

Ni

∑
j∈Ui

f̂(xij).

2.2.2 MERFs under aggregated data

Estimates for the area-level mean µi using MERFs from Equation (2.2) require unit-level aux-

iliary census data as input for f . In contrast to the linear BHF model by Battese et al. (1988),

aggregated covariate data cannot directly be used for non-linear or non-parametric procedures

such as RFs, as in general f(x̄i) ̸= f̄i(xij). Although the access to auxiliary population micro-

data for the covariates imposes a limitation for practitioners, not many methods in SAE cope

with the dual problem of providing robustness against model-failure, while simultaneously

working under limited auxiliary data (Jiang and Rao, 2020). We propose a solution over-

coming this issue by calibrating model-based estimates from MERFs in Equation (2.2) with

weights that are based only on aggregated census-level covariates (means). The general idea

originates from the bias-corrected transformed nested error regression estimator using aggre-

gated covariate data (TNER2) by Li et al. (2019). We build on their idea of using calibration

weights for SAE based on EL (Owen, 1990; Qin and Lawless, 1994; Owen, 2001) and transfer

it to MERFs. As a result, our proposed method offers benefits of RFs such as robustness and

implicit model-selection, while simultaneously working in cases of limited access to auxiliary

covariate data. In short, our estimator for the area-level mean can be written as:

µ̂
MERFagg
i =

ni∑
j=1

ŵij

[
f̂(xij) + ûi

]
. (2.3)
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Note that optimal estimates for required model components f̂ and ûi are obtained similar to

Equation (2.2) from survey data using the MERF algorithm as described by Krennmair and

Schmid (2022). We incorporate aggregate census-level covariate information through the cali-

bration weights wij , which balance unit-level predictions to achieve consistency with the area-

wise covariate means from census data. Following Owen (1990) and Qin and Lawless (1994)

the technical conditions for wij are to maximize the profile EL function
∏ni

j=1wij under the

following three constraints:

•
∑ni

j=1wij(xij − x̄pop,i) = 0, monitoring the area-wise sum of distances between survey

data and the population-level mean, denoted as x̄pop,i, for auxiliary covariates;

• wij ≥ 0, ensuring the non-negativity of weights;

•
∑ni

j=1wij = 1, to normalize weights.

Optimal weights ŵij , maximizing the profile EL under the given constraints, are found by the

Lagrange multiplier method:

ŵij =
1

ni

1

1 + λ̂⊺
i (xij − x̄pop,i)

, (2.4)

where λ̂i solves
ni∑
j=1

xij − x̄pop,i

1 + λ̂⊺
i (xij − x̄pop,i)

= 0.

2.2.3 Limitation of empirical likelihood and a best practice advice for SAE

The existence of an optimum solution to the maximization problem for the calibration weights

ŵij is not necessarily guaranteed for applications in SAE. A necessary and sufficient condition

ensuring the existence of a solution for λ̂i is the existence of the zero vector as an interior

point in the convex hull of constraint matrix xij − x̄pop,i. Especially for small sample sizes

ni this condition requires scrutiny (Emerson and Owen, 2009). If sample means of xij for

area i strongly differ from x̄pop,i, for instance, due to a strong imbalance of individual sample

values xij around the area-specific mean from population data x̄pop,i, no optimal solution for

λ̂i and subsequently ŵij can be obtained. The dimensionality of existing covariates p relative

to the sample size ni exacerbates the problem. As a result, the constraints in matrix xij− x̄pop,i

are infeasible for finding a global optimum in Equation (2.4). Concrete empirical examples

are different largely unbalanced categorical covariates in xij , leading to column-wise multi-

collinearity in the ni × p matrix of constraints xij − x̄pop,i.

Overcoming mentioned technical requirements, Li et al. (2019) propose the use of the

adjusted empirical likelihood (AEL) approach by Chen et al. (2008), which forces the exis-

tence of a solution to Equation (2.4). Essentially, the introduced adjustment is an additional

pseudo-observation within each domain i, increasing area-specific sample sizes to ni+1. This

pseudo-observation is jointly calculated from respective area-specific survey and census means

of covariates (Chen et al., 2008). Although the added adjustment-observation reduces risks of

numerical instabilities, it simultaneously imposes difficulties from an applied perspective of

SAE. Emerson and Owen (2009) scrutinize the application of AEL in the context of multi-

variate population means, maintaining that the added pseudo-observation distorts the true like-
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lihood configuration even for moderate dimensions of p in cases of low area-specific sample

sizes ni. Chen et al. (2008, p. 430) note, that the problem is mitigated if the semi-parametric

model is correctly specified and if the initial estimates for x̄smp,i are not too far away from

the true population mean. Nevertheless, we observe that the influence of the bound-correction

of Chen et al. (2008) used by Li et al. (2019) has drawbacks, which we will discuss in the

model-based simulation in Section 2.4.

Dealing with empirical examples characterized by low domain-specific sample sizes, we

abstain from the approaches of adding synthetic pseudo-observations to each domain. We

maintain that in the context of non-linear semi-parametric approaches (such as RFs) there is

a risk of including implausible individual predictions from f based on the pseudo-covariates,

i.e. ŷpseudo,i. In this sense, pseudo-observations manipulate the estimation of area-level means

under limited auxiliary information in two ways: indirectly through their effect on the determi-

nation of all weights ŵij and directly through the predicted pseudo-value that is added to the

survey sample.

We postulate a stepwise approach to ensure a solution to Equation (2.4) for each area i un-

der a reduced risk of distortions driven by improper pseudo-values through optimization bound-

corrections. This approach can be interpreted as a best-practice strategy on the incorporation of

maximal auxiliary covariate information through calibration weights in Equation (2.4) for the

estimation of area-level means with MERFs. In detail, we first check for each area i whether

perfect column-wise-dependence in the p× ni matrix of constraints (xij − x̄pop,i)j=1,...,ni ex-

ists. If so, we remove perfectly collinear columns and rerun the optimization. Subsequently,

we proceed along two dimensions: a) increasing the sample size of i-th area and b) decreasing

the number of auxiliary covariates p to calculate ŵij for area i. For a) we advise to sample a

moderate number of observations (e.g., 10) randomly with replacement from an area which is

“closest” to area i. We refer to areas as “closest”, if they have the smallest Euclidean distance

in census-level information x̄pop,i. This additionally allows to handle out-of-sample areas. For

b) we propose a backward selection of covariate information based on the variable importance.

Variable importance are RF-specific metrics that enable the ranking of covariates reflecting

their influence on the predictive model. As we are primarily concerned about the order of

influence of covariates, we rank based on the mean decrease in impurity importance, which

measures the total decrease in node-specific variance of the response variable from splitting,

averaged over all trees (Biau and Scornet, 2016). Overall, our strategy to handle potential fail-

ure in the solutions for weights and out-of-sample domains is summarized in the following

algorithmic strategy:

1. Use MERF to obtain estimates f̂ , û, σ̂2
u, and σ̂2

e from available unit-level survey data and

estimate the indicator µ̂MERFagg
i (2.3) including weights ŵij following Equation (2.4).

2. If the calculation of weights fails due to infeasibility of constraints in the optimization

problem for area i:

(a) Check the feasibility of constraints used in the optimization and remove perfectly

co-linear columns in (xij − x̄pop,i)j=1,...,ni . Retry the optimization in Equation

(2.4).
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(b) If the calculation of weights fails again, optionally enhance the domain-specific

sample size of area i by sampling randomly with replacement from the most “sim-

ilar” domain according to the minimal row-wise Euclidean distance between area-

specific aggregated covariate vectors x̄pop,i. Retry the calculation of weights ŵij .

(c) If it fails again, reduce the number of covariates used for the calculation of weights

for area i. Starting with the least influential covariate based on variable importance

from f̂ , reduce the number of covariates in each step and retry the calculation of

weights after each step.

(d) If the calculation of weights was not possible in step (c), set ŵij to 1/ni. These

weights are non-informative for incorporating auxiliary information, however, the

model-based estimates f̂(xij)+ ûi still comprise information from other in-sample

areas.

3. Calculate the indicator for the i-th area as proposed by Equation (2.3).

The general performance is illustrated by the results of the model-based simulation in Sec-

tion 2.4. Furthermore, the proposed best-practice strategy will be demonstrated in the applica-

tion in Section 2.5.

2.3 Uncertainty estimation

The area-wise MSE is a conventional measure for SAE to assess the uncertainty of provided

point estimates. While the quantification of uncertainty is essential for determining the quality

of area-level estimates, its calculation remains a challenging task. For instance, even for the

BHF model with block diagonal covariance matrices, the exact MSE cannot be analytically

derived with estimated variance components (Prasad and Rao, 1990; Datta and Lahiri, 2000;

González-Manteiga et al., 2008; Rao and Molina, 2015). Thus, the estimation of uncertainty

by elaborate bootstrap-schemes is an established alternative (Hall and Maiti, 2006; González-

Manteiga et al., 2008; Chambers and Chandra, 2013).

General statistical results concerning the inference of area-level indicators from MERFs in

SAE are rare, especially in comparison to the existing theory of inference using LMMs. Al-

though the theoretical background for predictions from RFs grows (Sexton and Laake, 2009;

Wager et al., 2014; Wager and Athey, 2018; Athey et al., 2019; Zhang et al., 2019), existing

research mainly aims to quantify the uncertainty of individual predictions. From a survey per-

spective, Dagdoug et al. (2021) recently analyse theoretical properties of RF in the context of

complex survey data. The extension of these results for partly-analytical uncertainty measures

in the context of dependent data structures and towards area-level indicators is non trivial and

a conducive topic for theoretical SAE.

In this paper, we propose a non-parametric bootstrap for finite populations estimating the

MSE of the introduced area-level estimator under limited aggregate information defined by

Equation (2.3). Essentially, we aim to find a solution to two problems simultaneously: Firstly,

we need to flexibly capture the dependence-structure of the data and uncertainty introduced
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by the estimation of Model (2.1). Secondly, we face problems in simulating a full bootstrap

population in the presence of aggregated census-level data.

Our proposed solution to this dual problem is the effective combination of two existing

bootstrap schemes introduced by Chambers and Chandra (2013) and González-Manteiga et al.

(2008). Addressing the problem of non-parametric generation of random components, we

rely on the approach introduced by Chambers and Chandra (2013). One key-advantage is

its leniency to potential specification errors of the covariance structure, as the extraction of

the empirical residuals only depends on the correct specification of the mean behaviour func-

tion f of the model. Solving the problem of missing unit-level population covariate data, we

base the general procedure on the methodological principles of the parametric bootstrap for

finite populations introduced by González-Manteiga et al. (2008) adapted to the estimation

of domain-level means. This allows us to find (pseudo-)true values by generating only error

components instead of simulating full bootstrap populations. An important step concerning

the handling and resampling of empirical error components is centring and scaling them by a

bias-adjusted residual variance proposed by Mendez and Lohr (2011). In short, the estimator

of the residual variance under the MERF from Equation (2.2), σ̂2
ϵ is positively biased, as it

includes excess uncertainty concerning the estimation of function f̂ . Further methodological

details on the modification of the approach by Chambers and Chandra (2013) for MERFs for

area-level means under unit-level models are found in Krennmair and Schmid (2022). Note

that our proposed non-parametric MSE-bootstrap algorithm works for in- and out-of sample

areas. The steps of the proposed bootstrap are as follows:

1. Use estimates f̂ , σ̂e, σ̂u, and respective weights ŵij from the application of the proposed

method as summarized in Equation (2.3) on survey data with metric target variable yij .

2. Calculate marginal residuals r̂ij = yij−f̂(xij) and use them to compute level-2 residuals

for each area by r̄i =
1
ni

∑ni
j=1 r̂ij for i = 1, ..., D.

3. To replicate the hierarchical structure we use the marginal residuals and obtain the vector

of level-1 residuals by rij = r̂ij−r̄i. Level-1 residuals rij are scaled to the bias-corrected

variance σ̂2
bc,ϵ (Mendez and Lohr, 2011) and centred, denoted by rcij . Level-2 residuals

r̄i are also scaled to the estimated variance σ̂2
v and centred, denoted by r̄c.

4. For b = 1, ..., B:

(a) Simple random sampling with replacement (srswr) for each area i from the em-

pirical distribution of scaled and centred level-1 (sample 1 value for each area i)

and level-2 (sample ni value for each area i) residuals to obtain the following three

random components:

r
∗(b)
ij = srswr(rcij , ni) , ē

∗(b)
i = srswr(rcij

σ̂bc,ϵ√
Ni − ni

, 1), and

u
∗(b)
i = srswr(r̄c, 1).
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(b) Compute (pseudo-)true values for the population based on the fixed effects from

area-wise mean estimates µ̂MERFagg
i , as:

ȳ
(b)
i =

ni∑
j=1

ŵij f̂(xij) + u
∗(b)
i + Ē

(b)
i , where

Ē
(b)
i =

ni

Ni
r̄
∗(b)
ij +

Ni − ni

Ni
ē
∗(b)
i .

(c) Use the known sample covariates xij to generate the bootstrap sample response

values in the following way:

y
(b)
ij = f̂OOB(xij) + u

∗(b)
i + r

∗(b)
ij .

We use OOB-predictions from f̂ to imitate variations of xij covariates through

predictions from unused observations within each tree in the fitting process that

vary throughout the bootstrap replications.

(d) Estimate µ̂
MERFagg(b)
i with the proposed method from Equation (2.3) on bootstrap

sample values y
(b)
ij . Note that weights ŵij remain constant over B replications

because the original survey covariates xij and population-level covariates x̄pop,i

remain unchanged over B.

5. Finally, calculate the estimated MSE for the area-level mean for areas i = 1, ..., D

M̂SEi =
1

B

B∑
b=1

[(
µ̂

MERFagg(b)
i − ȳ

(b)
i

)2]
.

2.4 Model-based simulation

The model-based simulation allows for a controlled empirical assessment of our proposed

methods for point and uncertainty estimates. Overall, we aim to show, that the proposed

methodology from Section 2.2 and Section 2.3 performs as well as traditional SAE methods

and has advantages in terms of robustness against model-failure. In particular, we study the

performance of the proposed MERFs under limited data access (MERFagg, (2.3)) to the direct

estimator, the TNER2 estimator proposed by Li et al. (2019), the BHF estimator (Battese et al.,

1988) as well as the MERF assuming access to unit-level census data (MERFind, (2.2)) by

Krennmair and Schmid (2022). The direct estimator only uses sampled data to estimate the

mean, which implies a strong dependence between the area-specific sample size and the qual-

ity of estimates. The BHF model serves as an established baseline model for the estimation of

area-level means under limited auxiliary data. The TNER2 aims to provide an alternative to the

BHF, introducing aspects of transformations under limited data access. General differences

in the performance of the direct, BHF, and TNER2 estimator to the two MERF candidates

(MERFagg, MERFind) indicate advantages of semi-parametric and non-linear modelling in the

given data scenarios. The additional inclusion of the MERFind enables a direct comparison

regarding the effect of access to aggregated auxiliary data (MERFagg) and existing unit-level

auxiliary data (MERFind).
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We consider four scenarios denoted as Normal, Pareto, Interaction, and Logscale and re-

peat each scenario independently M = 500 times. All four scenarios assume a finite population

U of size N = 50000 with D = 50 disjunct areas U1, ..., UD of equal size Ni = 1000. We

generate samples under stratified random sampling, utilizing the 50 small areas as stratas, re-

sulting in a sample size of n =
∑D

i=1 ni = 1229. The area-specific sample sizes range from 5

to 50 sampled units with a median of 21 and a mean of 25. The sample sizes are comparable

to area-level sample sizes in the application in Section 2.5 and can thus be considered to be

realistic.

The choice of the simulation scenarios is motivated by our aim to evaluate the performance

of the competing methods for economic and social inequality data. This includes skewed data,

deviations from normality of error terms, or the presence of unknown non-linear interactions

between covariates, that might trigger model-misspecifications in traditional SAE approaches

based on LMMs. The data generating processes for the used scenarios are provided in Table

2.1. Scenario Normal provides a baseline under a LMM with normally distributed random ef-

fects and unit-level errors. As the model assumptions for LMMs are fully met, we aim to show

that the MERFagg performs similarly well compared to linear competitors. Scenario Pareto

is based on the same linear additive structure as scenario Normal, but has Pareto distributed

unit-level errors. This leads to a skewed target variable, comparable to empirical cases of mon-

etary data. The data generating process of scenario Interaction likewise results in a skewed

target variable yij , although it shares its structure of random components with Normal. The

Interaction scenario portrays advantages of semi-parametric and non-linear modelling meth-

ods protecting against model-failure arising from models with unknown interactions. Scenario

Logscale introduces an additional example resulting in a skewed target variable. Log-normal

distributed variables mimic realistic income scenarios and constitute a showcase for SAE trans-

formation approaches. We want to show the ability of MERFs and particularly of MERFagg

to handle such scenarios as well by identifying the non-linear relation introduced trough the

transformation on the linear additive terms.

Table 2.1: Model-based simulation scenarios

Scenario Model x1 x2 µi v ϵ

Normal y = 5000− 500x1 − 500x2 + v + ϵ N(µi, 3
2) N(µi, 3

2) unif(−1, 1) N(0, 5002) N(0, 10002)
Pareto y = 5000− 500x1 − 500x2 + v + ϵ N(µi, 3

2) N(µi, 3
2) unif(−1, 1) N(0, 5002) Par(3, 800)

Interaction y = 1000 + 100x1x2 + 75x2 + v + ϵ N(µi, 2
2) N(µi, 1) unif(−7, 7) N(0, 5002) N(0, 10002)

Logscale y = exp(7.5− 0.25x1 − 0.25x2 + v + ϵ) N(µi, 1) N(µi, 1) unif(−3, 3) N(0, 0.152) N(0, 0.252)

We evaluate point estimates for the area-level mean over M replications by the empirical

root MSE (RMSE), the relative bias (RB), and the relative root mean squared error (RRMSE).

As quality-criteria for the evaluation of the MSE estimates, we choose the relative bias of

RMSE (RB-RMSE) and the relative root mean squared error of the RMSE (RRMSE-RMSE):

RMSEi =

√√√√ 1

M

M∑
m=1

(µ̂
(m)
i − µ

(m)
i )2,
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RBi =
1

M

M∑
m=1

(
µ̂
(m)
i − µ

(m)
i

µ
(m)
i

)
,

RRMSEi =

√√√√ 1

M

M∑
m=1

(
µ̂
(m)
i − µ

(m)
i

µ
(m)
i

)2

,

RB-RMSEi =

√
1
M

∑M
m=1MSE

(m)
est,i −RMSEi

RMSEi
,

RRMSE-RMSEi =

√
1
M

∑M
m=1

(√
MSE

(m)
est,i −RMSEi

)2

RMSEi
,

where µ̂
(m)
i is the estimated mean in area i based on any of the methods mentioned above

and µ
(m)
i defines the true mean for area i in replication m. MSE

(m)
est,i is estimated by the

proposed bootstrap from Section 2.3.

For the computational realization of the model-based simulation, we use R (R Core Team,

2022). The BHF estimates are realized from the sae-package (Molina and Marhuenda, 2015).

For the estimates of the TNER2, we used code provided by Li et al. (2019). For estimates

based on the MERF approach, we use the packages ranger (Wright and Ziegler, 2017) and

lme4 (Bates et al., 2015) to implement our method (MERFagg) and the MERFind estimator

(Krennmair and Schmid, 2022). For RFs, we set the number of split-candidates to 1, keeping

the default of 500 trees for each forest.

2.4.1 Performance of point estimators of the small area means

We start with a focus on the performance of point estimates. Figure 2.1 reports the empiri-

cal RMSE of each point estimation method under the four scenarios. As expected, the direct

estimates perform poorest due to the low sample sizes and the complexity of the data gen-

erating process. In these specific settings, the TNER2 estimator outperforms direct estimates

but performs worse compared to the BHF. In the Pareto and Logscale scenario, benefits of

transformations might be suppressed by the influence of pseudo-observations due to the AEL

approach, as discussed throughout the methodological Section 2.2.3 of this paper.

In the Normal scenario, the BHF performs best as it replicates the data generating process.

The MERFind and the MERFagg perform on a comparable level, underlining the quality of

our proposed calibration approach to incorporate aggregated census-level information through

the weights. MERFagg shows a better performance in median values, however, the range of

area-specific RMSE values is larger compared to MERF estimates based on unit-level census

information. One area with particularly low sample size has a relatively high level of RMSE,

which is explainable by the dependence of the optimum function for the weights in Equation

(2.4) on ni.

We observe similar patterns in the Pareto scenario. The BHF has one outlier for an area

with low sample size. As anticipated, the performance of both MERF candidates is comparable

to the Normal scenario, confirming robust behaviour under skewed data and violations of the

normal distribution of errors. Since MERFagg behaves comparably, the robustness also holds
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Figure 2.1: Empirical RMSE comparison of point estimates for area-level averages under four
scenarios

for the calculation of calibration weights.

In the Interaction scenario, the point estimates of the proposed MERFagg outperform tra-

ditional SAE approaches under limited auxiliary information. Apparently the LMM-based

methods cannot sufficiently capture the underlying predictive relation between the covariates,

while the MERFs detect the non-linear term. Regarding the impact of restricted covariate data

access, we observe relatively low values of mean and median RMSE compared to the hypo-

thetical case of existing unit-level data in MERFind. Four outliers in areas with low sample

sizes for MERFagg become apparent, although the median RMSE is lowest. We maintain, that

this phenomenon can be mitigated if we increase the size of “close” observations from other

areas to a higher level, especially in cases of complex interactions of effects in covariates such

as Interaction. The last scenario Logscale shows that the MERFagg outperforms the direct and

LMM-based competitors. Similar to the Interaction and Pareto scenario, the effect of covariate

data access - comparing MERFagg and MERFind - is not severe for an average area.

Overall, the results from Figure 2.1 indicate that the MERF performs comparably well

to LMMs in simple scenarios, and outperforms traditional SAE-models in the presence of

complex data generating processes, such as unknown non-linear relations between covariates

or non-linear functions. Additionally, the robustness against model-misspecification of MERFs

and their calibration weights ŵij holds if distributional assumptions for LMMs are not met, i.e.

in the presence of non-normally distributed errors and skewed data. The influence of unit-level

versus aggregated covariate information appears to be marginal in all of our four scenarios. We

observe a moderate dependence between sample sizes and the quality of area-specific means

for MERFagg, which is mainly explained by the way the calibration weights rely on the quality
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Table 2.2: Mean and Median of RB and RRMSE over areas for point estimates in four scenarios

Normal Pareto Interaction Logscale
Median Mean Median Mean Median Mean Median Mean

RB

Direct 0.0000 0.0002 0.0001 0.0004 -0.0005 0.0076 0.0003 0.0010
TNER2 0.0002 -0.0001 -0.0003 -0.0008 0.0010 0.0187 -0.0014 -0.0020

BHF 0.0009 0.0013 0.0019 0.0022 0.0031 0.0233 -0.0188 -0.0225
MERFind 0.0014 0.0019 0.0033 0.0038 0.0071 0.0061 0.0076 0.0082
MERFagg 0.0001 0.0005 0.0011 0.0016 0.0034 0.0138 0.0004 0.0002

RRMSE

Direct 0.0984 0.1080 0.0994 0.1100 0.1570 1.1500 0.0978 0.1030
TNER2 0.0838 0.0886 0.0876 0.0915 0.1550 1.2900 0.0866 0.0879

BHF 0.0392 0.0418 0.0368 0.0418 0.1590 1.2900 0.1670 0.1760
MERFind 0.0417 0.0450 0.0398 0.0441 0.1370 1.5900 0.0620 0.0636
MERFagg 0.0409 0.0451 0.0409 0.0446 0.1330 1.2900 0.0610 0.0634

of survey data for a respective area i as discussed in Section 2.2.2.

Table 2.2 reports the corresponding values of RB and RRMSE for the discussed point

estimates. The RB and the RRMSE from the MERFagg attest a competitively low level under

all scenarios. All model-based MERF estimators have a lower mean and median RRMSE

compared to the direct estimator in all scenarios. Despite a few outliers for RMSE and RB

(cf. Figure 2.1), the median and mean values of MERFagg are remarkably low emphasizing

the quality of estimates given the the substantial reduction in required covariate information.

2.4.2 Performance of the bootstrap MSE estimator

We scrutinize the performance of our proposed MSE estimator on the four scenarios, examin-

ing whether the proposed procedure for uncertainty estimates performs equally well in terms

of robustness against model-misspecification and in cases of limited access to auxiliary infor-

mation.

For each scenario and each simulation round, we choose B = 200 bootstrap replications.

From the comparison of RB-RMSE among the four scenarios provided in Table 2.3, we infer,

that the proposed non-parametric bootstrap-procedure effectively handles all four scenarios.

This is demonstrated by relatively low mean values of positive RB-RMSE over the 50 areas

after M replications. From an applied perspective, we prefer over- to underestimation for

the MSE as it serves as an upper bound. We mainly use the area-level MSE for the further

assessment in terms of CVs and consequently overestimation of area-level MSEs leads to an

increased CVs. If our CVs are still below the thresholds, the estimates are definitely acceptable.

The difference in RB-RMSE between Normal and Pareto is marginal, indicating that the non-

parametric bootstrap effectively handles non-Gaussian error terms.

Figure 2.2 provides additional intuition on the quality of our proposed non-parametric

MSE-bootstrap estimator. Given the area-wise tracking properties in all four scenarios, we

conclude that our MSE estimates strongly correspond to the empirical RMSE. We infer that

the overestimation in Table 2.3 is mainly driven by overestimation in areas with low sample
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Figure 2.2: Estimated and empirical area-level RMSEs for four scenarios

Table 2.3: Performance of MSE estimator in model-based simulation: mean and median of
RB-RMSE and RRMSE-RMSE over areas

Normal Pareto Interaction Logscale
Median Mean Median Mean Median Mean Median Mean

RB-RMSE 0.0525 0.0591 0.0596 0.0643 0.0192 0.0205 -0.0117 0.0054
RRMSE-RMSE 12.7000 15.6000 30.6000 34.3000 9.9000 12.4000 22.9000 25.3000

sizes. Thus, our non-parametric MSE estimator provides an upper bound for the uncertainty of

particular difficult point estimates due to low sample sizes. Apart from this characteristic, we

observe no further systematic differences between the estimated and empirical MSE estimates

regarding their performance throughout our model-based simulation.

2.5 Application

This section starts with a description of data sources and outlines our empirical analysis. We

describe the survey data SOEP (Socio-Economic Panel) and discuss primary direct estimates

on spatial differences of average individual opportunity cost of care work for German RPRs.

Moreover, we propose the use of model-based SAE, which incorporates auxiliary variables

from the 2011 German census. Demonstrating our proposed method of MERFs with aggre-

gated data for point and uncertainty estimates, we show advantages to existing model-based

SAE methods. Finally, we discuss our empirical findings concerning the cost of care work in

Germany. We conduct the analysis with R (R Core Team, 2022).
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2.5.1 Data sources and direct estimates of spatial opportunity cost of care work

The SOEP was established in 1984 by the German Institute of Economic Research (DIW) and

evolved into an imperative survey for Germany regarding multidisciplinary social information

on private households (Goebel et al., 2019). Statistical considerations regarding sampling de-

signs and representativeness of the longitudinal data set, justify its relevance for governmental

institutions, policy makers, and researchers alike. For our primary calculation of opportunity

cost of care work, we need information on individual income as well as hours worked on the job

and for care work. This information is only provided in the SOEP, in contrast to the German

Microcensus (Statistisches Bundesamt, 2015), where income is only available as an interval

censored variable.
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Figure 2.3: Overview of direct estimates, corresponding CVs and the distribution of opportu-
nity cost of care work in Germany.

We construct the target variable of individual monthly opportunity cost of care work from

the SOEP in 2011 (Socio-Economic Panel, 2019) and use the available refreshment samples.

We choose the year 2011 because the last census was in this year and therefore census and

survey data have no time inconsistencies. The underlying sampling design is a multi-stage

stratified sampling procedure: Initially, stratification is carried out into federal states, govern-

mental regions, and municipalities. Subsequently, addresses are sampled using the random

walk methodology within each primary sampling unit (Kroh et al., 2018). Our analysis focuses

on the working age population aged between 15 to 64, as defined by international standards

(OECD, 2020). In detail, we calculate the individual opportunity cost in Euro per month for

2011 as follows: first, we compute opportunity cost as hourly wage by taking the mean gross

individual income divided by hours of paid work. Then, we multiply the hours of monthly

unpaid work due to child- or elderly-care by the hourly cost of opportunity. The resulting
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metric target variable yij for Germany is highly skewed, ranging from 0e to 2413.79e (mean:

100.96e and median: 176.93e ). A histogram is provided in Figure 2.3.

In total we have 3939 sample survey observations. National averages do not serve for

monitoring efficacy of regional developments and policy measures. Our major interest is a finer

spatial resolution to map regional patterns of opportunity cost of care work across Germany.

We analyse 96 respective RPRs in Germany, resulting in area-specific sample sizes from 4 to

158 with a mean of 35 and median of 41. First results of direct estimates can be seen in the map

in Figure (2.3). Estimates of the mean monthly opportunity cost of individual care work range

from 64.31e (Oberpfalz-Nord) to 409.38e (Neckar-Alb). In general, we observe no major

difference between former East and West Germany. Additionally, levels of opportunity cost

are higher in metropolitan areas surrounding cities than in the cities itself and compared to

rural areas.

Small sample sizes lead to unreliable estimates accompanied by high variances. Further-

more, we are not allowed to report direct estimates from regions with sample size below 10

due to confidentiality agreements with the data provider. This is the case for 7 RPRs. To ob-

tain variances and subsequently determining the coefficients of variation (CV) for the direct

estimates, we use the calibrated bootstrap by Alfons and Templ (2013) implemented in the

R-package emdi by Kreutzmann et al. (2019). Eurostat (2019) postulates that estimates with a

CV of less than 20% can be considered as reliable. As reported by Figure 2.3, more than half

of the regions (47 out-of remaining 89) exceed this threshold.

The direct estimation results suffer from differences in quality due to low area-level sample

sizes and specifically high variability. Model-based SAE methods help to improve the estima-

tion accuracy of results. As SOEP auxiliary variables are measured in the same way as in the

Germans census (Statistisches Bundesamt, 2015), census covariate data can serve as auxiliary

information needed in SAE-models. However, the German census provides information only

at aggregated RPR-levels. Overall, we have 19 covariates on personal and socio-economic

background within our sample for which we additionally received corresponding means from

the German Statistical Office calculated from the German 2011 census. Details on available

covariates and their variable importance is provided within the Appendix in Table B.1.

2.5.2 Model-based estimates

This section illustrates the application of our proposed method for MERFs with aggregate

covariate data for the estimation of area-level means. We map the estimated monthly mean

opportunity cost of unpaid care work for 96 RPRs in Germany for the year 2011. Moreover,

we assess the quality of our estimates by providing CVs based on our proposed non-parametric

MSE-bootstrap procedure discussed in Section 2.3 and juxtapose our results to the previously

discussed direct estimates and the well-established BHF model by Battese et al. (1988). A full

comparison to the TNER2 estimates (Li et al., 2019) is not possible because Li et al. (2019) do

not provide uncertainty estimators required for a qualitative comparison in terms of CVs.

As reported by Figure 2.3, our target variable of individual opportunity cost is highly

skewed, indicating that traditional LMMs (such as the BHF) run the risk of model-misspe-

cification. In contrast, our proposed procedure shows robustness against model-failure due to
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Figure 2.4: Spatial representation of area-level mean estimates from MERFagg (2.3) for mean
monthly opportunity cost of care work [e ].

outliers or complex data structures. Apart from specifying separate regions being modelled as

random intercepts, the proposed MERFagg approach can be seen as purely data-driven: We

train a predictive model on the survey set and incorporate as much auxiliary information for

the determination of area-specific calibrations weights as possible based on the variable impor-

tance obtained from the fitted RF object f̂ . For this example we set the tuning parameter of the

RF to 500 sub-trees. Repeated 5-fold cross-validation supports the choice of proposing 5 ran-

domly drawn split candidates at each split for the forest. Regarding our best-practice strategy,

we chose that we want to calculate the weights based on a minimum of the 3 most influential

variables. An overview of the number of covariates included can be found in the Appendix

(Figure B.1). For the non-parametric MSE bootstrap-procedure, we use B = 200.

The results from the application of MERFagg are reported in Figure 2.6. We primarily focus

on a discussion of technical details of estimates from our proposed approach and postpone the

contextual discussion of results to the end of this section. Overall we observe a dominance

of covariates of age, size of the household, households with a child, gender and whether the

person is employed in the public sector (cf. Table B.1 in the Appendix). Throughout all

96 areas, we incorporate auxiliary information from 3 up to 15 covariates from census-level

aggregates through optimal calibration-weights ŵij . A detailed map on the number of included

census-level covariates is provided in the Appendix within Figure B.1. Unfortunately this

attempt failed for 5 regions, which were left with uninformative weights ŵij = 1/ni. Although

these estimates do not incorporate auxiliary information, recall from Equation (2.3) that the

corresponding estimates are reduced to f̂(xij) + ûi and thus still rely on the model-based

estimates comprising information from other in-sample areas.

A comparison between the maps from direct estimates in Figure 2.3 and estimates based
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Figure 2.5: Detailed comparison of area-level mean estimates for monthly opportunity cost of
care work [e]. The 96 German RPRs are sorted by increasing sample size. We compare results
based on methods direct, BHF, and MERFagg.

on MERFagg from Figure 2.4 indicates that results form MERFagg appear to be more balanced

and overall no major differences regarding changes in regional patterns of opportunity cost of

care work are observable. Figure 2.5 sorts areas by increasing survey sample sizes and thus

allows for a more precise discussion on peculiarities of point estimates for area-level means

of monthly opportunity cost for the 96 RPRs. Estimates from the BHF method are produced

form the R-package sae (Molina and Marhuenda, 2015). Although the raw comparison of

point estimates only allows for limited findings regarding the quality of methods, we report

the mitigation of two outlier-driven direct estimates. Compared to the direct estimates, as well

as the estimates from the BHF, the MERFagg produces relatively lower values although the

estimates track patterns of high- and low levels with increasing survey sampling size.

As already discussed, direct estimates suffer from relatively low accuracy measured by

their respective CVs. Figure 2.6 juxtaposes CVs for direct estimates, the BHF, and our pro-

posed method of MERFagg to contextualize the performance of point estimates from Figure

2.5. We observe that CVs for MERFagg are on average smaller compared to CVs from direct

estimates as well as the BHF. According to the boxplots in Figure 2.6, model-based estimates

produce more accurate results indicated by lower CVs than direct estimates. MERFagg shows

the lowest CVs compared to the other methods in mean and median-terms. Two areas can be

considered as outliers reporting CVs over 0.3. For one of these two regions, the calculation of

weights failed. The MERFagg estimates improve the direct estimates: Only 15 areas from 96

do not meet the required threshold of 20%. As expected, especially for areas that are unreliable

due to low sample sizes, model-based estimates improve the accuracy. In turn, we observe
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Figure 2.6: Left: Comparison of area-specific CVs ordered from low to high sample sizes.
Right: Comparison of CVs over 96 respective areas between direct, BHFand MERFagg. The
red line marks the 20%-criterion for defining reliable estimates by Eurostat (2019).

that the direct estimates are relatively accurate for areas with high sample sizes. Compared to

other model-based SAE methods, survey weights are not directly used in the model-fitting for

MERFagg. Although it is generally possible to incorporate survey weights in the importance

sampling within a forest, we maintain that the efficient use of survey weights with MERFs for

the estimation of area-level indicators requires further research, which would exceed the scope

of this paper.

Overall, all RPRs throughout Germany report comparable levels of average individual

monthly opportunity cost of care work. Nevertheless, a detailed inspection of Figure 2.4 re-

veals a small cluster of lower values in the North-East of Germany. From a causal perspective,

the explanation of such patterns appears to be difficult and not effective. Wage and individual

opportunity cost directly relate while time spent for care work negatively affects opportunity

cost. Thus, it is not observable whether the effect is driven by differences in average income

or increased time-allocation for care work or both. On the other hand, the concept allows us to

uncover and map the value of unpaid care work on a sub-regional-level in Germany.

2.6 Conclusion

In this paper, we provide a coherent framework enabling the use of RFs for SAE under limited

auxiliary data. Our approach meets modern requirements of SAE, including the robustness

against model-failure and aspects of data-driven model-selection within the existing method-

ological framework of SAE. We introduce a semi-parametric unit-level mixed model, treating
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LMM-based SAE methods, such as the BHF and the EBP, as special cases. Furthermore, we

discuss the MERF procedure (Hajjem et al., 2014) and its application to SAE as introduced

by Krennmair and Schmid (2022). We address the challenging task of incorporating aggre-

gated census-level auxiliary information for MERFs and propose the use of calibration weights

based on a profile EL optimization problem. We deal with potential issues of numerical in-

stabilities of the EL approach and propose a best practice strategy for the application of our

proposed estimator MERFagg for SAE. The proposed point estimator for area-level means is

complemented by a non-parametric MSE-bootstrap-scheme. We evaluate the performance of

point and MSE estimates compared to traditional SAE methods by a model-based simulation

that reflects properties of real data (e.g., skewness). From these results, we conclude that our

approach outperforms traditional methods in the existence of non-linear interactions between

covariates and demonstrates robustness against distributional violations of normality for the

random effects and for the unit-level error terms. Moreover, we observe that the inclusion of

aggregated information through calibration weights based on EL works reliably. Regarding the

performance of our MSE-bootstrap scheme, we observe moderate levels of overestimation and

report authentic tracking behaviour between estimated and empirical MSEs. We focus on a

distinctive SAE example, where we study the average individual opportunity cost of care work

for Germany RPRs. Overall, we provide an illustrative example on how to use our data-driven

best practice strategy on MERFs in the context of limited auxiliary data. Comparing direct to

model-based results, we show that differences between German RPRs are small and balanced.

Nevertheless, we allocate a small cluster of lower levels of average individual opportunity cost

of care work in the North-Eastern part of Germany.

From an empirical perspective, we face limitations that directly motivate further research.

Firstly, we only calculate the opportunity cost of the working population and neglect care work

done by people who already left the labour market due to care work issues. Despite its long

tradition in economics, the basic concept of opportunity cost (treating the shadow value of

care work equivalently to hourly wage from labour) faces drawbacks. Different models from a

health and labour economic perspective (e.g., Oliva-Moreno et al. (2019)) can be integrated into

our approach. Nevertheless, given the data and our initial aim to provide a general methodology

for regional mapping of care work specific regional differences, we consider the hourly wage

as a first reasonable approximation to the unobservable “real” shadow price.

We motivate two major dimensions for further research, including theoretical work and

aspects of generalizations. From a theoretical perspective, further research is needed to inves-

tigate the construction of a partial-analytical MSE for area-level means or the construction of

an asymptotic MSE estimator. From a statistical perspective, an in-depth analysis regarding

the effects of incorporating survey weights into RFs and particularly MERFs under aggregated

covariate data is needed for point and uncertainty estimates, as this would clearly exceed the

scope of the present paper. Our approach shares the EL-calibration-argument with Li et al.

(2019), however, saves on the computationally intensive procedure of a smearing step (Duan,

1983) without drawbacks on the predictive performance, because no transformations and cor-

responding bias exists. Nevertheless, we maintain that pairing our approach with a smearing

argument allows for a more general methodology and subsequently for the estimation of in-
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dicators such as quantiles (Chambers and Dunstan, 1986). Although we will leave a detailed

discussion of this idea to further research, a short outline of the argument can be found in the

Appendix B.2. Apart from generalizations to quantiles, the approach of this paper is generaliz-

able to model (complex) spatial correlations. Additionally, a generalization towards binary or

count data is possible and left to further research. The semi-parametric composite formulation

of Model (2.1) allows for f to adapt any functional form regarding the estimation of the condi-

tional mean of yij given xij and technically transfers to other machine learning methods, such

as gradient-boosted trees or support vector machines.
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Appendix B

B.1 Additional information on the application (Section 2.5)

Table B.1: Auxiliary variables on personal and socio-economic background and their variable
importance based on the trained RF f̂ .

Covariates Variable importance

Age in years 30715147.623
Number of persons living in household 17109846.300
Position in Household: Child 7519805.884
Sex 4031803.086
Employment status: civil servants 3704520.439
Employment status: employed without 3078656.890

national insurance (e.g. mini-jobber)
Tenant or owner 2632970.858
Position in Household: single parent 2500261.812
Migration background: direct 2453187.125
Position in Household: living alone 1380917.681
Position in Household: marriage-like 1341933.482
Migration background: indirect 1207604.491
Grouped nationality: European Union (excluding Germany) 697919.972
Grouped nationality: remaining European countries 468653.092
Grouped nationality: Asia 367207.174
Grouped nationality: North America 224042.331
Grouped nationality: Australia 45084.788
Grouped nationality: Africa 10109.844
Grouped nationality: South America 5150.957
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B.2 Extension towards the estimation of quantiles

Smearing approach and estimation of means: The smearing argument form Duan (1983)

could be optionally inserted in Equation (2.3) to estimate mean values

µ̂
MERFagg Smearing
i =

ni∑
j=1

[
ŵij

1

R

R∑
r=1

(f(xij) + ûi + e∗ir)

]
, (B.1)

where R is a suitably large number of smearing residuals and e∗ir are OOB model residuals:

e∗ij = yij − f(xij)
OOB − ûi.

Note that the formulation of Equation (B.1) coincidences with the estimator of Li et al. (2019),

if we choose f = x⊺
ijβ and draw e∗r from N(0, σ̂2

e). Additionally, they apply a data-driven

transformation on f(xij) + ûi + e∗ir.

Extension towards quantile estimation: The combination of a smearing argument (Duan,

1983) with a model of a finite-population CDF of y enables the estimation of area-specific

CDFs for yi. Chambers and Dunstan (1986) develop a model-consistent estimator for a finite-

population CDF from survey data and provide asymptotic results under LMMs. Tzavidis et al.

(2010) propose the use of the CDF method within a general unit-level SAE framework to

produce estimates of means and quantiles using robust methods. In the case of RF, it holds

that the predicted value of a non-sampled individual observation in area i is given by µ̂ij =

f̂(xij) + ûi, which expresses its expected value conditional on area i. We propose to obtain an

estimator of the area-level CDF F̂ ∗
i (t) using existing survey information modifying the CDF

method, by substituting µ̂ij = f̂(xij) + ûi and incorporating census-level information for

unsampled predictions via weights ŵij . The respective estimator for the area-level CDF F̂ ∗
i (t)

is summarized as:

F̂ ∗
i (t) = N−1

i

∑
j∈si

I(yij ≤ t) +R−1
∑
j∈si

R∑
r=1

niŵijI
(
f̂(xij) + ûi + e∗ir ≤ t

) , (B.2)

where e∗ij = yij − f(xij)
OOB − ûi. The area-level quantile q(i, ϕ) of ϕ ∈ [0, 1] can straight

forwardly be calculated by:

q̂i(ϕ) = F̂ ∗−1
i (ϕ).
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Chapter 3

The estimation of poverty indicators
using mixed effects random forests:
case study for the Mexican state of
Veracruz

3.1 Introduction

The sustainable development goals (SDGs) are a committed agenda by the United Nations,

comprising 169 targets for 17 time-bound goals on equality and prosperity under the general

premise of ‘leaving no one behind’ (United Nations, 2015). SDG1 addresses the eradication of

poverty. Knowledge on the deprivation at low geographic or administrative levels (e.g. ‘areas’

or ‘domains’) facilitates efficient allocation of aid. Data gaps constrain reliable disaggregation

of indicators to monitor SDGs on a finer spatial scale. Available national statistical indicators

are inadequate to monitor tailored policies and potentially hide vulnerable groups in national-

level aggregates (Wardrop et al., 2018). From a methodological perspective, this dual goal of

achieving detailed and reliable estimates from national sample surveys on highly disaggregated

geographical and other domains (e.g. demographic groups) is scientifically referred to as Small

Area Estimation (SAE) (Pfeffermann, 2013; Rao and Molina, 2015; Tzavidis et al., 2018).

Direct domain-specific estimates of statistical indicators are prone to undermine tolerable

levels of reliability due to the inverse relation between the level of disaggregation and cor-

respondingly decreasing sample sizes on the scale of interest. Multilateral organizations in-

creasingly acknowledge the use of model-based SAE to close existing data gaps by combining

official (or alternative) data sources with survey data and subsequently provide reliable and

precise area-level estimates for desired linear and non-linear indicators (World Bank Group,

2015; Asian Development Bank, 2021). Kilic et al. (2017) maintain that model-based SAE

significantly mitigates survey costs for multilateral organizations, while ensuring reliability of

estimates. Reductions of multiple inequalities between and within countries depend on the for-

mulation of transformative strategies based on reliably measurable metrics combing profound

research and data-sources (Lu et al., 2015; Sachs et al., 2019). In addition, the fundamental
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principle of ‘leaving no one behind’ is inevitably connected to disaggregated measures mon-

itoring progress for demographic or geographic subgroups (Asian Development Bank, 2021).

In fact, systematic data disaggregation is a distinct SDG target (SDG-target 17.18) (United

Nations, 2015).

In this paper, we propose a flexible, data-driven, and semi-parametric alternative for the es-

timation of non-linear domain-specific indicators using mixed effects random forests (MERF).

Random forests (Breiman, 2001a) excel in terms of predictive performance without explicit

model assumptions in the presence of skewed data and outliers and are applicable to high-

dimensional data (Hastie et al., 2009; Varian, 2014). Few tuning parameters and automated

model-selection including the detection of complex and higher order interactions of covari-

ates justify their popularity as non-parametric prediction algorithms (Biau and Scornet, 2016).

MERFs (Hajjem et al., 2014) are a composite model linking random forests for fixed effects

with a structural component, accounting for hierarchical dependencies of survey data with ran-

dom effects. Krennmair and Schmid (2022) introduce MERFs in the methodological tradition

of SAE to estimate area-level means and extensively evaluate the performance of point and

uncertainty estimators under design- and model-based simulations. The major methodological

contribution of this paper is the extension of the approach by Krennmair and Schmid (2022) to-

wards an estimator for a finite-population cumulative distribution function (CDF) from survey

sample data as originally proposed by Chambers and Dunstan (1986) (CD). Resulting estimates

of domain-specific CDFs directly allow to derive (non-linear) indicators. Additionally, we pro-

pose two non-parametric MSE bootstrap schemes to assess the uncertainty of domain-specific

estimates.

A distinct advantage of our proposed approach is the generic robustness against model-

failure (e.g. flexible protection against model-misspecification, valid variable selection and the

effective handling of outliers) (Jiang and Rao, 2020). ‘Traditional’ unit-level SAE methods,

which combine data sources to estimate non-linear indicators, are regression-based and rely

predominantly on the theoretical framework of linear mixed models (LMM) (Rao and Molina,

2015). LMMs rely on Gaussian assumptions that hardly meet empirical evidence for economic

and inequality data. Well known examples for poverty mapping are the empirical best predic-

tor (EBP) (Molina and Rao, 2010) or the World Bank Method (ELL) proposed by Elbers et al.

(2003). Several strategies evolved to counter improperly met assumptions and associated bias

in point and uncertainty estimates by advanced transformation strategies on the dependent vari-

able (Sugasawa and Kubokawa, 2017; Tzavidis et al., 2018; Sugasawa and Kubokawa, 2019;

Rojas-Perilla et al., 2020). Another strategy to mitigate effects of failed model assumptions, is

the formulation of predictive models under more flexible distributions (Diallo and Rao, 2018;

Graf et al., 2019). Alternatively, Tzavidis et al. (2018) propose a method based on M-quantile

models, which are a robust method avoiding distributional assumptions including the formal

specification or area-level random effects. Recently, Marchetti and Tzavidis (2021) scrutinize

the estimation of inequality indicators using M-quantile models.

Despite conceptual differences between machine learning and ‘traditional’ statistical meth-

ods (e.g. best possible predictions vs. parametric representation and interpretation), machine

learning methods became a substantial element in statistical methodology research (Efron,
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2020). In SAE, relatively few studies concern the integration of predictive algorithms. For

instance, the comparison of LMM-based and tree-based estimates for sub-populations was in-

vestigated by Anderson et al. (2014) in the context of population densities and by De Moliner

and Goga (2018) in the context of electricity consumption. Singleton et al. (2020) combine

unsupervised learning and boosted regression trees to map digital inequality. Mendez (2008)

provides initial theoretical and empirical considerations using random forests for SAE and

Dagdoug et al. (2021) analyse theoretical properties of random forests in the context of com-

plex survey data. Bilton et al. (2017) use classification trees to estimate household poverty and

Bilton et al. (2020) use regression trees to estimate non-linear poverty indicators.

Apart from its statistical contribution, this paper aims to inform a methodological discus-

sion. Efron (2020) reviews objectives of prediction, estimation and attribution and thereby ex-

tends the discourse on two cultures of predictive algorithms and statistical methods initiated by

Breiman (2001b). Owed to its purpose, SAE combines concepts of prediction and estimation.

We utilize models and auxiliary information from census data for pure prediction and estimate

indicators combining observed and predicted values requiring concepts of inference and survey

statistics. Using random forests for the primary prediction part is an agnostic option, however,

we must meet basic premises and requirements of SAE including a framework for valid infer-

ences and considerations of dependency structures of survey data. From our perspective, the

introduction of MERFs for SAE aligns with the postulate of Efron (2020), maintaining that an

opportunity for modern statistics lies in critical attempts to make predictive algorithms ‘scien-

tifically applicable’ to meet methodological requirements of specific applications or statistical

subdisciplines.

This paper introduces our proposed method of MERFs to reliably uncover spatial concen-

trations of poverty measured by the head count ratio (HCR) and the poverty gap (PGAP). Our

case study targets economic vulnerability in the Mexican State of Veracruz that might other-

wise be hidden in macro-level aggregates. We describe provided data in detail in Section 3.2.

The rest of the paper is organized as follows: Section 3.3.1 introduces a general unit-level

model framework for MERFs in SAE. Section 3.3.2 focuses on the estimation of area-level

CDFs and Section 3.3.3 demonstrates the determination of (non-linear) indicators. Uncertainty

estimation based on two elaborate non-parametric bootstrap schemes is the focus of Section

3.3.4. Section 3.3.5 critically reflects on potential improvements concerning the modelling of

dependency structures or the introduction of transformation strategies. We assess the quality

of point and uncertainty estimates in the design-based simulation in Section 3.4. We discuss

results of the application of municipality-level poverty mapping in Veracruz in Section 3.5 and

Section 3.6 concludes.

3.2 Veracruz case study: data sources and initial analysis

Monitoring regional aspects of poverty is imperative for progressive policies (such as the

SDGs) to translate into inclusive and sustainable actions. Monetary transfer programs in Mex-

ico have been beyond their expectations concerning reductions of multidimensional poverty

and inequality (Lambert and Park, 2019). The analysis on sub-national health related SDG
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indicators in Mexico exposes spatial heterogeneity and emphasizes the need for tailored policy

programs reducing local concentration of poverty to reach the SDG commitments until 2030

(Gutierrez et al., 2020). In this paper, we focus on district-level differences in monetary poverty

for one of the 32 federal entities in Mexico. Veracruz is located in the east of the country and is

characterized by its long coast with the Gulf of Mexico. According to the sub-national Human

Development Index (Smits and Permanyer, 2019), Veracruz is among the least developed states

of Mexico. A major characteristic of the state is its geographical, ethnic, and linguistic diver-

sity which transfers into various community structures and economic as well as agricultural

systems (Dietz, 2012).

We use data from 2010 provided by CONEVAL (Consejo Nacional de Evaluación de la

Polìtica des Desarrollo Social), which combines the Mexican household income and expendi-

tures survey ENIGH (Encuesta Nacional de Ingreso y Gastos de los Hogares) with a sample

of census microdata by the National Inistitute of Statistics and Geography (Instituto Nacional

de Estadística y Geografía). Our dataset comprises income and socio-demographic data with

equally measured variables in the survey as well as the census data. We construct poverty in-

dicators based on the total household per capita income (ictpc, measured in pesos), which is

exclusively available in the survey. Veracruz is organized into 212 municipalities. The survey

data comprises information on 1453 households from 58 municipalities, resulting in domain-

specific samples sizes ranging from a minimum of 2 to a maximum of 120 with a median

of 19 households. This leaves 154 municipalities out-of-sample. In the census dataset, we

have 246899 households from all 212 municipalities. A summary of domain-specific data is

provided in Table 3.1.

Table 3.1: Summary statistics on in- and out-of-sample areas:
area-specific sample size of census and survey data

Total In-sample Out-of-sample
212 58 154

Min. 1st Qu. Median Mean 3rd Qu. Max.
Survey domain sizes 2 10 19 25 33 120
Census domain sizes 393 794 969 1165 1131 7734

Direct domain-level estimates of poverty indicators for Veracruz are possible for 58 out

of 212 domains. Even for sampled municipalities, the low domain-specific sample sizes com-

promise the reliability of point estimates. Statistical offices assess the quality of estimates by

its coefficient of variation (CV), which is defined as the indicator’s standard deviation relative

to its value (Eurostat, 2004). The CVs for direct estimates report high variation with mean/-

median values for HCR of 0.415/0.338 and for the PGAP of 0.489/0.413. Direct estimates

are mapped in Figure 3.3 in Section 3.5, where we will focus on a detailed interpretation of

results. The initial analysis on direct estimates highlights limits concerning the depiction of

the spatial distribution of poverty and the identification of geographical hotspots. The avail-

ability of equally measured auxiliary data in the census and survey data showcases advantages

of model-based SAE methods. An incorporation of covariate census data enables estimates

for out-of-sample domains and simultaneously improves the quality of point and uncertainty

estimates for sampled areas (Tzavidis et al., 2018).
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Predominant unit-level models for the estimation of domain-specific non-linear poverty

indicators rely on LMMs (Rao and Molina, 2015). This paper’s approach based on MERFs

for the estimation of non-linear indicators introduces a new method and simultaneously new

perspectives on best practices. We motivate the use of alternative models for the prediction task

by suggesting an initial experiment. We divide the survey data 100 times randomly into a 80%

training and 20% test set and compare the predictive performance of trained unit-level models

for the random forest (RF), the MERF, a linear model (LM) and a LMM. For the computational

realization throughout the paper, we use R (R Core Team, 2022). For the initial calculations, we

use packages lme4 (Bates et al., 2015) and ranger (Wright and Ziegler, 2017). We summarize

the performance in terms of the average mean and median root squared prediction errors in

Table 3.2. This repeated prediction experiment is thought to provide initial insights concerning

two paradigms of SAE, i.e. predictive advantages of algorithms compared to traditionally used

LMMs and the importance of modelling domain-specific variation with random intercepts.

Table 3.2: Comparison of unit-level mean and median root squared
prediction error on 100 randomly generated training (80%) and test (20%)

set splits on the survey data.

Median Mean
MERF 1670.025 677.0150
RF 1718.750 701.5135
LMM 1734.220 794.3899
LM 1787.230 791.7486

Table 3.2 reports increased predictive performance of tree-based methods (RF and MERF)

compared to the linear alternatives of LM and LMM. Additionally, models that account for the

structural nature of the survey data using random intercepts (MERFs and LMMs) outperform

competitors, which neglect dependency structures. Although Table 3.2 approves the use of

MERFs, we abstain from over-interpreting the results as the superior performance in this ex-

periment does not automatically transfer to the quality of domain-specific poverty indicators.

We compare the performance of ‘traditional’ SAE methods and MERFs in detail in Section

3.4. Before we proceed with the technical introduction of our proposed method and its sub-

sequent evaluation, we aim to discuss an alternative workflow and diagnostics associated to

non-parametric modelling using (ME)RFs.

Considering SAE based on LMMs (e.g. the EBP), the next step towards improved estimates

for indicators is achieved by a critically inquiry into the validity of model assumptions and the

subsequent use of suitable transformations and procedures of model-selection (Tzavidis et al.,

2018). Rojas-Perilla et al. (2020) use the Bayesian Information Criterion (BIC) to identify

an optimal model for predicting ictpc based on available covariates. In contrast, RFs perform

an implicit model-selection (Breiman, 2001a). Although we postpone the full comparison of

results based on ‘traditional’ and tree-based estimates and complementary model properties

to Section 3.5, we discuss visual model-diagnostics of random forests. The following figures

further motivate the use of tree-based models for SAE and mitigate the general argument that

improved prediction serves naturally at the cost of interpretability.

Figure 3.1 demonstrates partial dependence plots (pdp) (Greenwell, 2017) and variable im-
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Figure 3.1: Visual diagnostics on predictive relations between dependent
variable ictpc and predictors. a) Partial dependency plots; b) variable

importance plot

portance plots (Greenwell et al., 2020). The pdp plot estimates the marginal effect for specified

predictors on the target variable. The variable importance ranks the importance of predictors

based on the mean decrease in impurity (variance) calculated for each predictor as the sum over

the number of splits across all trees that include the predictors. From the combined information

of the two plots, we infer the predictive impact of variables and whether relationships between

ictpc and corresponding predictors tend to be complex or linear. Figure 3.1b shows the 25 (out

of 39) most influential covariates and we observe high rankings for information on education

(escol_rel_hog, jnived, jeasc), the condition of the household and its goods (bienes, actcom,

jtocup, est_calidad_vivienda), work-related variables (pcocup, jexp, pcpering), and the age

(jedad, tdep). Table C.1 in the Appendix summarizes details on the variables and additionally

states whether the most influential variables are also selected into the optimal EBPbc model.

Overall, Figure 3.1 indicates non-linear relations between the target variable and its predictors,

such as for escol_rel_hog, jtocup, jexp, jedad or tdep. This observation promotes the use of

methods that implicitly detect and handle complex interactions.

3.3 General model and estimation of finite population parameters

This section introduces the estimation of non-linear indicators within a general semi-parametric

framework focusing on MERFs. The construction of relevant area-level metrics presupposes

methodology on the estimation of area-level CDF functions for continuous target variables in
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the context of SAE. We follow the approach of Chambers and Dunstan (1986) for the estimation

of a finite-population CDF of yij from which non-linear indicators can be directly obtained.

3.3.1 Unit-level models for Small Area Estimation

We assume a finite population P with D disjunct areas Pi of sub-population sizes Ni, where

i = 1, ..., D specifies the areas and N =
∑D

i=1Ni defines the population size of all areas. The

sample s consists of area-specific sub-samples si with overall size n =
∑D

1 ni. In contrast,

non-sampled observations are denoted as ri with size Ni − ni. We denote individual units

within each area as j ∈ si for sampled and j ∈ ri for unsampled observations. The continuous

unit-level target variable is given by yij , assuming information on y for n observations of our

sample. Vector xij = [x1, x2, ..., xp]
⊺ captures p auxiliary covariates and auxiliary variables

are known for N units in our population P . We assume that yij follows the semi-parametric

general model:

yij = f(xij) + vi + ϵij , (3.1)

where

ϵij
iid∼ N(0, σ2

ϵ ) and vi
iid∼ N(0, σ2

v).

Essentially, Model 3.1 consists of two major parts: the (non-parametric) fixed part of xij
and the structural part vi, representing area specific random intercepts, which characterizes

small area differences in the conditional distribution of yij given xij . Individual independently

distributed unit-level errors are denoted by ϵij , which are mutually independent to the random

effects vi. Assumed correlations arise only due to between-area variations with associated vari-

ance components σ2
v (area-specific effects) and σ2

ϵ (unit-level effects). Model 3.1 is extendable

to capture complex correlation structures as well as higher-order hierarchical dependencies

through modifications of respective variance-covariance matrices of random components. A

full discussion is beyond the scope of this paper, however, we motivate a general formulation

of Model 3.1 in Krennmair and Schmid (2022).

The goal is the estimation of a relation f between covariates xij and the target variable

yij using a survey sample, to provide values for non-sampled observations of yij utilizing

available supplementary covariate data and information across areas. In general, f can be

any parametric or non-parametric function expressing the conditional mean of target variable

y given x. The general formulation of Model 3.1 synergizes several unit-level SAE-models.

For instance, the linear nested-error unit-level model proposed by Battese et al. (1988) is a

special case of Model 3.1. We state f to be the linear model f(xij) = x⊺ijβ, with regression

parameters β = [β1, ..., βp]. This setting also defines the structural baseline for the simulation

of the conditional distribution in the case of the EBP (Molina and Rao, 2010) as well as the

EBP under data-driven transformation (Rojas-Perilla et al., 2020). Defining f in Model 3.1 as

a random forest, results in the MERF-approach proposed by Hajjem et al. (2014), which is the

preferred specification throughout the rest of the paper.

Model 3.1 expresses the conditional mean of a continuous unit-level dependent variable.

While Section 3.3.2 focusses on the estimation of the area-specific CDF from which (non-)

linear indicators are obtainable, we scrutinize optimality estimates for the model parameters
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f, σ2
v , σ

2
ϵ first. For the linear nested-error unit-level model, optimal parameters are found by

ML or REML (Battese et al., 1988; Rao and Molina, 2015). For fitting Model 3.1, where f is

a random forest, we use an approach reminiscent of the EM algorithm similar to Hajjem et al.

(2014). In short, the MERF-algorithm subsequently estimates a) the forest function, assuming

the random effects term to be correct and b) estimates the random effects part, assuming the

Out-of-Bag-predictions (OOB-predictions) from the forest to be correct. OOB-predictions uti-

lize the unused observations from the construction of each forest’s sub-tree (Breiman, 2001a;

Biau and Scornet, 2016). The proposed algorithm is as follows:

1. Initialize b = 0 and set random components v̂(0) to zero.

2. Set b = b+ 1. Update f̂(xij)(b) and v̂(b):

(a) y∗ij,(b) = yij − v̂i,(b−1)

(b) Estimate f̂()(b) using a random forest with dependent variable y∗ij,(b) and covariates

xij . Note that f̂()(b) is the same function for all areas i.

(c) Get the OOB-predictions f̂(xij)OOB
(b) .

(d) Fit a linear mixed model without intercept and restricted regression coefficient of 1

for f̂(xij)OOB
(b) :

yij = f̂(xij)OOB
(b) + v̂i,(b) + ϵij .

(e) Extract the estimated variance components σ̂2
ϵ,(b) and σ̂2

v,(b) and estimated random

effects v̂(b). Note that the random effect for area i is calculated as:

v̂i,(b) =
σ̂2
v

σ̂2
v + σ̂2

ϵ /ni

 1

ni

∑
j∈si

(yij − f̂OOB
(b) (xij))


3. Repeat Step (2) until convergence is reached.

The convergence of the algorithm is assessed by the marginal change of the modified gen-

eralized log-likelihood (GLL) criterion:

GLL(f, vi|yij) =
D∑
i=1

([yij−f(xij)−vi]
⊺Iiσ

−1
ϵ [yij−f(xij)−vi]+v⊺i σ

−1
v vi+log|σv|+log|Iiσϵ|)

(3.2)

In the linear case with f() = x⊺ijβ, and for given variance components σϵ and σv, the max-

imization of the GLL-criterion is equivalent to the solution of so-called mixed model equations

(Wu and Zhang, 2006), leading to the best linear unbiased predictor (BLUP) for every out-of-

sample unit j ∈ ri for each area i:

µij = f(xij) + vi = x⊺ijβ +
σ2
v

σ2
v + σ2

ϵ /ni

 1

ni

∑
j∈si

(yij − x⊺ijβ)


A similar result holds, when we assign f to be a random forest: the corresponding solution

for the random intercept vi, optimizing the GLL-criterion 3.2 for known parameters σv and σϵ
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is given by:

vi =
σ2
v

σ2
v + σ2

ϵ /ni

 1

ni

∑
j∈si

(yij − f(xij))

 (3.3)

Mathematical details of the derivations are provided in Krennmair and Schmid (2022). After

the convergence of the algorithm, we propose v̂i from Step 2.e) to be a suitable estimator for

vi. This result is in line with Capitaine et al. (2021), claiming that v̂i under the EM-based

algorithm is obtained by taking the conditional expectation given the data yij and subsequently

v̂i can be considered as the EBLUP for the linear part of Model 3.1. Thus, we propose µ̂ij as a

suitable estimator for individual out-of-sample observations under our proposed general mixed

model:

µ̂ij = f̂(xij) + v̂i = f̂(xij) +
σ̂2
v

σ̂2
v + σ̂2

ϵ /ni

 1

ni

∑
j∈si

(yij − f̂(xij))

 (3.4)

3.3.2 Estimation of finite population parameters

In the context of unit-level mixed models, Krennmair and Schmid (2022) use Estimator 3.4

directly to estimate area-level means. For the estimation of quantiles or (non-linear) poverty

indicators, such as the FGT-indicators (Foster et al., 1984), we need information on the area-

specific CDF of yij . Chambers and Dunstan (1986) develop a model-consistent estimator for

a finite-population CDF from survey sample data and provide asymptotic results under the

linear mixed model. Essentially, Chambers and Dunstan (1986) combine a model for a finite-

population CDF of yij with the smearing-approach by Duan (1983). The concept of smearing

relates to the bootstrap principle, as the unknown error distribution is constructed using the

empirical CDF of the regression residuals and subsequently expected values of the resulting

error distribution are taken. Tzavidis et al. (2010) introduce the use of the CD-method within a

general unit-level framework and focus on the estimation of SAE means and quantiles. Under

an unit-level estimator expressing the expected value conditional on area i for a non-sampled

observation j (such as µ̂ij in Equation 3.4), Tzavidis et al. (2010) express the CDF-estimator

for area i as:

F̂CD
i (t) = N−1

i

∑
j∈si

I(yij ≤ t) + n−1
i

∑
j∈si

∑
k∈ri

I (µ̂ik + (yij − µ̂ij) ≤ t)

 (3.5)

Originally, Tzavidis et al. (2010) estimate area-level means and quantiles assuming µ̂ij =

x⊺ij β̂Ψ(θ̂i), where β̂Ψ(θ̂i) is a robust, M-quantile estimator (Breckling and Chambers, 1988).

However, the proposed framework enables the estimation of various social inequality and

poverty indicators (Marchetti et al., 2012; Marchetti and Tzavidis, 2021) and simultaneously

allows for a broader class of models: for instance, Tzavidis et al. (2010) emphasize that in the

context of unit-level linear models, a bias-adjusted alternative to the EBLUP is achieved by

substituting µ̂ij = x⊺ij β̂ + v̂i.

Based on Model 3.1, we propose a modified estimator of F ∗
i (t) for MERFs building on the

CD-method from Equation 3.5. We use µ̂ij = f̂(xij)+ v̂i, where f̂ is a random forest and esti-
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mates f̂ and v̂ are obtained from the MERF-algorithm presented in Section 3.3.1. Additionally,

we propose the use of OOB-residuals e∗ij = yij − µ̂OOB
ij , where µ̂OOB

ij = f̂(xij)OOB + v̂i. Using

OOB-residuals is a simple and genuine solution to achieve more robust estimates of the CDF

for MERFs. Moreover, we ensure that these model residuals e∗ij mirror the estimated variance

properties under our Model 3.1. Our proposed estimator is given by:

F̂ ∗
i (t) = N−1

i

∑
j∈si

I(yij ≤ t) + n−1
i

∑
j∈si

∑
k∈ri

I

µ̂ik + (yij − µ̂OOB
ij )︸ ︷︷ ︸

e∗ij

≤ t


 (3.6)

Estimating F̂ ∗
i (t) based on a smearing approach is computationally intensive. Monte Carlo

(MC) approximations are an alternative to the smearing-type Estimator 3.5 for area-specific

CDFs. Marchetti et al. (2012) and Marchetti and Tzavidis (2021) discuss MC-based alterna-

tives in the context of M-quantile models. MC-based alternatives approximate E(yik|ys; ĉ),
where ĉ is an suitable estimator for c, which captures unknown super-population parameters.

This draws conceptual parallels to the EBP. The EBP builds on a firm theoretical background

rooted within the methodology of empirical Bayes (EB) for which statistical properties based

on structural and distributional assumptions have been scrutinized (Molina and Rao, 2010; Rao

and Molina, 2015). To the best of our knowledge, there exist no theoretical considerations ex-

tending the EBP towards semi- or non-parametric model classes. A solution to this discussion

exceeds the purpose of this paper, but provokes further research. We provide details on an

algorithm for an MC approximation to Equation 3.6 in the Appendix. In short, our empirical

observations coincide with the propositions of Marchetti et al. (2012) and Marchetti and Tza-

vidis (2021), stating that no systematic differences in the quality of point estimates for various

indicators between the discussed smearing and MC-based approaches is observable.

3.3.3 Estimation of poverty indicators

In this section, we focus on the calculation of selected area-level indicators obtainable from the

area-level CDF-Estimator 3.6. Based on F̂ ∗
i , we can directly obtain desired domain-specific

estimators following a flexible and convenient strategy: let δi be a parameter of interest for

area i and h() is a function that calculates the indicators. We can write δi = h(ysi ∪yri), where

si are sampled and ri are non-sampled observations. The resulting estimate for indicator δi is

defined as:

δ̂i = h(ysi ∪ ŷ∗i(kj)),

where ŷ∗i(kj) is the vector of smearing values of length j × k from Equation 3.6 given by

ŷ∗i(kj) = µ̂ik + e∗ij .

For instance, the first key indicator for the eradication of poverty (HCR) is a realization of

a more general class of poverty indicators referred to as so-called FGT-indicators (Foster et al.,

1984):

FGTij(α, t) =

(
t− yij

t

)α

I(yij ≤ t),

where t states a predefined poverty line. Setting α = 0 gives the HCR and setting α = 1
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defines the PGAP. While the HCR simply refers to the proportion of households with income

below a defined poverty line t, the PGAP measures poverty intensity by quantifying the degree

of average income difference to the poverty line of people below the poverty line relative to

the poverty line. For our example assuming h() = FGTij(α, t), area-specific estimates on

required indicators can be obtained as follows:

F̂GT i(α, t) = N−1
i

∑
j∈si

F̂GT ij(α, t) +
∑
j∈ri

F̂GT ij(α, t)

 ,

where the unknown part for out-of-sample observations can be estimated using unit-level

predictions µ̂ij and residuals e∗ij by:

∑
j∈ri

F̂GT ij(α, t) = n−1
i

∑
j∈si

∑
k∈ri

(
t− ŷ∗i(kj)

t

)α

I(ŷ∗i(kj) ≤ t)

3.3.4 Uncertainty estimation

A discussion on the precision of area-level indicators necessitates reliable uncertainty esti-

mates. An analytical assessment of uncertainty for area-level indicators is a challenging task

even in the basic scenario of unit-level LMMs with block diagonal covariance matrices un-

der unknown variance components (González-Manteiga et al., 2008; Rao and Molina, 2015).

There exist partly-analytical approximations for means and totals (Prasad and Rao, 1990; Datta

and Lahiri, 2000), however, for the determination of MSE estimates under complex model set-

tings or for non-linear indicators, bootstrap schemes provide a suitable alternative (Hall and

Maiti, 2006; González-Manteiga et al., 2008; Chambers and Chandra, 2013). We propose two

flexible non-parametric bootstrap schemes (random effects block bootstrap (REB) and wild)

for the estimation of domain-specific MSEs for economic and inequality indicators.

A major difference between the two bootstrap schemes roots in the generation of bootstrap

populations. The REB bootstrap for non-linear indicators builds on the non-parametric boot-

strap introduced by Chambers and Chandra (2013) modified for MERFs by Krennmair and

Schmid (2022). The second bootstrap (wild) is inspired by Rojas-Perilla et al. (2020) and ex-

clusively relies on centred OOB-residuals and a specific matching-scheme introduced by Feng

et al. (2011) to build needed bootstrap populations.

The REB bootstrap captures the dependence-structure of the data and uncertainty intro-

duced by the estimation of Model 3.1. Empirical residuals only depend on the correct speci-

fication of the mean behaviour function f of the model. The constructed bootstrap population

requires an unbiased estimate on the residual-variance. However, the variance under the model,

σ̂2
ϵ is positively biased, as it includes excess uncertainty regarding the initial estimation of the

random forest f̂ from the data (Mendez and Lohr, 2011). We maintain the extrapolation of this

uncertainty, captured in the naive residuals, before the bootstrap population is simulated. Kren-

nmair and Schmid (2022) scale and centre the empirical residuals by a bias-corrected residual

variance (Mendez and Lohr, 2011) and eliminate uncertainty from the estimation of f̂ . Details

regarding this bias-adjusted estimator for the residual variance of σ2
ϵ can be found in Krenn-

mair and Schmid (2022) and Section C.1.2 in the Appendix. Remaining steps of the proposed
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bootstrap are as follows:

1. For given f̂(), calculate the marginal residuals zij = yij − f̂(xij).

2. Using the marginal residuals ẑij , compute level-2 residuals for each area by

z̄i =
1

ni

ni∑
j=1

zij for i = 1, ..., D

3. To replicate the hierarchical structure, we use the marginal residuals and obtain the vector

of level-1 residuals by ẑij = zij − z̄i. The residuals ẑij are scaled to the bias-corrected

variance σ̂2
bc,ϵ (Appendix Equation C.1) and centred, denoted by ẑcij . Level-2 residuals

z̄i are also scaled to the estimated variance σ̂2
v and centred, denoted by z̄c.

4. For b = 1, ..., B:

(a) Sample independently with replacement from the scaled and centred level-1 and

level-2 residuals:

z
(b)
ij = srswr(ẑcij , N) and z̄

(b)
i = srswr(z̄c, D).

(b) Calculate the bootstrap population as y(b)ij = f̂(xij) + z̄
(b)
i + z

(b)
ij and calculate the

true bootstrap population indicator of interest δ(b)i for i = 1, ..., D.

(c) For each bootstrap population (b), draw a bootstrap sample with the same ni as

the original sample. Use the bootstrap sample to obtain estimates f̂ (b)() and v̂
(b)
i

as discussed in Section 3.3.1. Obtain estimates for indicators of interest δ̂(b)i from

estimated CDFs as discussed in Section 3.3.2.

5. Using the B bootstrap samples, the MSE estimator is obtained as follows:

M̂SEi = B−1
B∑
b=1

(
δ
(b)
i − δ̂

(b)
i

)2
.

For the non-parametric wild bootstrap, we generate the bootstrap populations based on

centred OOB-unit-level residuals and the empirical distribution of area-specific random effects.

Details of the proposed bootstrap are as follows:

1. For given f̂(), calculate OOB-residuals eOOB
ij = yij − f̂(xij)OOB − v̂i and save random

effect elements v̂.

2. Centre residuals eOOB
ij and random effects v̂ and denote them by eOOB*

ij and v̂∗.

3. For b = 1, ..., B:

(a) Generate v
(b)
i

iid∼ srswr(v̂∗, D).

(b) Calculate unit-level predictor values η(b)ij = f̂(xij) + v
(b)
i .
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(c) Match η
(b)
ij with the set of estimated unit-level predictors from the sample {η̂k|k ∈

s} by finding the corresponding index k̃ solving mink∈s |η
(b)
ij − η̂k|.

(d) Generate weights w, where w is a simple two-point mass distribution with proba-

bilities 0.5 at w = 1 and w = −1. This distribution satisfies the conditions in Feng

et al. (2011).

(e) Generate the bootstrap population: y(b)ij = f̂(xij)+v̂
(b)
i +wk|e

OOB*(b)
k̃

| and compute

bootstrap population indicators of interest δ(b)i for i = 1, ..., D.

(f) For each bootstrap population, draw a bootstrap sample with the same ni as the

original sample. Use the bootstrap sample to obtain estimates f̂ (b)() and v̂
(b)
i as

discussed in Section 3.3.1. Obtain estimates for indicators of interest δ̂(b)i from

estimated CDFs as discussed in Section 3.3.2.

4. Using the B bootstrap samples, the MSE estimator for the indicator of interest is obtained

as follows:

M̂SEi = B−1
B∑
b=1

(
δ
(b)
i − δ̂

(b)
i

)2
.

3.3.5 Distributional assumptions and transformation strategies

Our aim to introduce MERFs for the estimation of non-linear indicators follows the postu-

late of Efron (2020) to focus on the scientific applicability of machine learning methods for

statistical subdisciplines. In the context of SAE, this leads inevitably to a discussion on trade-

offs between model-flexibility and required control for dependency structures of survey data.

In ‘traditional’ applications of SAE, domain-specific dependency is captured by random in-

tercepts. Accordingly, we clarify consequences of the semi-parametric formulation of Model

3.1. The EM algorithm bridges concepts and exploits a Gaussian likelihood function to ensure

the convergence towards a local maximum within the parameter space for required variance

components σv and σϵ (Hajjem et al., 2014). In Krennmair and Schmid (2022), we argue that

the normality assumption on error terms ensures the existence of a closed-form solution of the

integral over the Gaussian likelihood to calculate random effects, however, is not affecting the

non-parametric estimation of fixed effects.

We aim to inform a transparent discussion and motivate further research between the

spheres of traditional parametric SAE and the application of predictive algorithms by deliver-

ing empirical arguments along two dimensions: a) completely neglecting structural aspects of

survey data, when using tree-based algorithms and b) exploring effects of transformation strate-

gies on the dependent variable. The modification towards a fully non-parametric formulation

of Model 3.1, for instance using discrete mixtures (Marino et al., 2019), is subject to further

research. The idea of neglecting structural components follows the conjecture that increased

predictive capabilities of random forests sufficiently capture patterns of area-level variations in

the fixed effects part of the model. The idea of transformation strategies follows the general

paradigm of fulfilling Gaussian assumptions on the transformed scale for the structural part of

the model. For a), Predictor 3.4 reduces to µ̂ij = f̂(xij), which makes the application of the

EM algorithm obsolete. The estimation of the area-level CDF is straight-forward by Equation
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3.6 and we refer to following poverty estimates based on this approach as RF. For b) we trans-

form yij by yt
ij = log(yij) and obtain estimates for f̂ t(), v̂t

i, σ̂
2,t
v , σ̂2,t

ϵ as well as the estimated

CDF F̂ t,∗
i on the transformed scale. Indicators are calculated on the inverted scale of smeared

values and we refer to this estimator as MERFlog.

A complete answer to the aspects raised in this section exceeds the purpose and capacity

of this paper. Nevertheless, we will provide empirical arguments and discuss consequences of

the two paradigms as part of the following design-based simulation.

3.4 Design-based simulation

Design-based simulations serve as realistic and controlled experiments to assess the perfor-

mance of proposed methods for point and uncertainty estimates. We additionally test our

method in a model-based simulation, which can be found in the Appendix. The following

discussion of simulation results provides empirical evidence for the conceptual questions on

distributional and structural assumptions raised in Section 3.3.5. Moreover, the analysis of

performance highlights comparative efficiency advantages of our method, which helps to con-

textualize the estimates for our case study on the spatial distribution of poverty for the state of

Veracruz in Section 3.5.

The variable inglabpc describes earned per capita income from work and exists in the cen-

sus and in the survey data. Although inglabpc covers only one aspect of household income and

deviates from the desired income definition, it is highly correlated to the target variable ictpc.

Thus, our design-based simulation with the variable inglabpc is highly effective to assess the

quality of our proposed estimates. We sample M = 500 independent samples from the fixed

population of our census data set. Each pseudo-survey sample comprises the same number of

in-sample households and shares identical domain-specific properties with the original survey

data set as described by Table 3.1. True values of area-level HCR and PGAP are calculated

based on census data for inglabpc.

We compare the performance of MERFs to established SAE methods that allow for the es-

timation of economic and inequality indicators. In particular, we juxtapose results to the EBP

(Molina and Rao, 2010), the log-transformed EBP (EBPlog) and the EBP under data-driven

Box-Cox transformation (EBPbc) by Rojas-Perilla et al. (2020). The EBP estimates serve

as LMM-baseline for the estimation of non-linear indicators. The EBPlog mitigates deviations

from Gaussian model assumptions and the EBPbc extends the transformation perspective by in-

corporating flexible and accurate transformations. Differences in the performance of estimates

between the EBP, EBPlog and the EBPbc showcase advantages of the insurance to distribu-

tional violations of models by (data-driven) transformations. While differences between the

MERF and the LMM-based methods highlight advantages of robustness due to less restrictive

model assumptions and implicit model-selection. We additionally use RFlog and MERFlog

to provide empirical evidence to the discussion in Section 3.3.5. RFlog trains a random for-

est on the log-transformed target variable and calculates indicators based on inverted values

of domain-specific CDFs. Differences in the performance of tree-based approaches provide

intuition on the importance of structural a priori model-specifications and the combined use of
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transformation strategies in the the context of machine learning methods within the paradigm of

SAE. Overall, we aim to show that our proposed estimator, which bridges concepts of flexibility

and the incorporation of structural information, has comparative advantages over ‘traditional’

methods for estimation of area-level poverty indicators.

For the computational realization of the design-based simulation, we rely on the R-packages

emdi (Kreutzmann et al., 2019) for the EBP, EBPlog and the EBPbc and package SAEforest
(Krennmair, 2022) for estimates of our proposed MERF-approach and associated tree-based

competitors. We monitor the convergence of the MERF-algorithm introduced in Section 3.3.2

with a precision of 1e−5 in relative difference of the GLL-criterion and keep the default of 500

trees for each forest. Based on three times repeated 5-fold cross-validation on the original sur-

vey data, we use 4 randomly drawn covariates as potential split-candidates at each tree’s node

(mtry) and a minimum of 5 observations in final nodes (min.node.size). The replication for the

MSE bootstrap procedures are set to B = 200. For the EBP competitors, we do BIC-based

stepwise selection on the (transformed) depend variable and keep the model fixed throughout

the simulation. Details on the covariates of the optimally selected model are summarized in

Table 3.1.

Metrics of evaluation for the competing methods are the empirical root mean squared error

(RMSE) and the Bias for each specific indicator in area i (δ̂method
i ):

RMSE(δ̂method
i ) =

√√√√ 1

M

M∑
m=1

(
δ̂method(m)
i − δ

(m)
i

)2
(3.7)

Bias(δ̂method
i ) =

1

M

M∑
m=1

(
δ̂method(m)
i − δ

(m)
i

)
,

where δ
(m)
i defines the true value of the indicator for area i in simulation round m.

We will start our discussion on the performance of point estimates focusing on the mean

and median values of RMSE for HCR in Table 3.3. With respect to the total amount of 212

areas, our proposed MERF method has the lowest RMSE in mean and median terms. In general

tree-based methods outperform the LMM-based competitors based on lower RMSE in mean

and median terms. The data-driven EBPbc outperforms the EBPlog, however, interestingly the

EBP without transformations delivers the best overall results in the class of LMM competitors.

The results for the LMM-based methods are interesting and can partly be explained by the fact

that transformations introduce bias. Usually, efficiency loss is outweighed by gains following

the fulfilment of Gaussian assumptions. Comparing the HCR results to the PGAP for the

EBP indicates that the untransformed EBP reproduces the distribution around the poverty line,

however, completely fails to provide suitable information on other parts of the distribution

needed to derive the PGAP.

We observe that the untransformed forests, outperform the log-transformed alternatives.

This finding underlines initial claims on the resiliency to distributional assumptions on error

terms. Moreover, smearing based on untransformed (i.e original scale) residuals leads to more

accurate estimates for area-level CDFs compared to estimates based on scaled and back trans-

86



CHAPTER 3. THE ESTIMATION OF POVERTY INDICATORS USING MERFS

formed CDF estimates especially for higher quantiles. Our second major observation is that

modelling the structural dependencies using random intercepts is rewarded by more accurate

estimates in the transformed and untransformed case, although the comparative advantages are

smaller in magnitude compared to unit-level mean and median squared prediction errors dis-

cussed in Table 3.2 from Section 3.2. The general observations on all areas are not affected

by a detailed focus on in- and out-of-sample areas. Most interestingly, the RF and the RFlog

have marginally lower RMSEs compared to the MERF and MERFlog for in-sample domains,

which reverses for the majority of areas, i.e. the out-of-sample domains. The simulation re-

sults indicate that neglecting the structural knowledge on dependencies leads to overfitting on

the implicit ‘training’ set , i.e. the survey data. Explicitly modelling the dependency structure

of survey data leads to overall more reliable estimates.

Table 3.3: Mean and median for RMSE and Bias over total, in- and
out-of-sample areas for point estimates of indicators HCR and PGAP.

RMSE BIAS
HCR PGAP HCR PGAP

Median Mean Median Mean Median Mean Median Mean
Total EBP 0.0888 0.0916 0.4139 0.4239 0.0821 0.0656 0.4119 0.4223

EBPbc 0.0975 0.1014 0.0519 0.0547 0.0950 0.0914 0.0496 0.0483
EBPlog 0.1148 0.1166 0.0515 0.0537 0.1123 0.1092 0.0496 0.0462
RFlog 0.0870 0.0912 0.0357 0.0408 0.0838 0.0759 0.0305 0.0214
MERFlog 0.0870 0.0911 0.0351 0.0409 0.0785 0.0691 0.0258 0.0137
RF 0.0808 0.0870 0.0303 0.0399 0.0726 0.0562 0.0152 0.0005
MERF 0.0777 0.0854 0.0294 0.0420 0.0559 0.0364 0.0090 -0.0086

In-sample EBP 0.0960 0.0999 0.3286 0.3270 0.0942 0.0913 0.3258 0.3247
EBPbc 0.1004 0.1062 0.0482 0.0507 0.0974 0.1017 0.0459 0.0479
EBPlog 0.1168 0.1220 0.0481 0.0504 0.1135 0.1179 0.0460 0.0473
RFlog 0.0875 0.0921 0.0330 0.0356 0.0870 0.0875 0.0309 0.0300
MERFlog 0.0970 0.0998 0.0338 0.0367 0.0889 0.0917 0.0267 0.0305
RF 0.0775 0.0855 0.0241 0.0288 0.0761 0.0762 0.0200 0.0158
MERF 0.0832 0.0884 0.0243 0.0300 0.0753 0.0755 0.0161 0.0163

Out-of-sample EBP 0.0835 0.0884 0.4414 0.4604 0.0710 0.0559 0.4406 0.4591
EBPbc 0.0953 0.0996 0.0526 0.0562 0.0937 0.0876 0.0511 0.0484
EBPlog 0.1128 0.1145 0.0517 0.0549 0.1106 0.1060 0.0505 0.0458
RFlog 0.0869 0.0909 0.0380 0.0427 0.0817 0.0715 0.0304 0.0181
MERFlog 0.0828 0.0878 0.0356 0.0425 0.0755 0.0606 0.0232 0.0074
RF 0.0827 0.0876 0.0328 0.0441 0.0680 0.0486 0.0134 -0.0053
MERF 0.0740 0.0843 0.0320 0.0466 0.0410 0.0217 0.0024 -0.0180

Focusing on the more complex indicator of PGAP, we see a substantial improvement of

transformation (and tree-based) strategies compared to estimates based on the untransformed

EBP. Comparably to the results of the HCR, the tree-based competitors perform better than

the LMM-alternatives resulting in lower levels of RMSEs. In comparison to the results of the

HCR, we observe similar patterns between transformed and untransformed forests. Again, the

RF has the lowest in-sample RMSE, however, for out-of-sample the MERF outperforms the

RF in median terms. Comparing the performance of RF and MERF actuates the importance of

modelling structural dependencies using random intercepts, although differences are marginal

for the PGAP. Depending on the indicator, small differences in the RMSE between RF and

MERF can also partly be explained by occasionally low intraclass correlations throughout the

M = 500 simulation runs, as they vary approximately between a minimum of 0.005 and a
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maximum of 0.11 with a median of around 0.04.

Apart from the RMSE, the Bias of area-level poverty indicators is a central aspect of qual-

ity. Table 3.3 reports that for the HCR, MERF estimates exhibit the lowest Bias in mean and

median terms. Additionally, we observe a noticeable difference of about 30% reduction in

Bias between the RF and the MERF over all areas and examine that the Bias of transformed

approaches is relatively higher. For the PGAP, we observe similar patterns as compared to

the HCR. Differences in Bias for transformed and untransformed LMM competitors are more

pronounced compared to tree-based alternatives and confirm the necessity for suitable trans-

formations for LMM-based approaches.

Overall, the comparison of point estimates indicates that MERFs perform competitively

well in real-data applications and produce highly accurate results for the majority of areas.

Their superior performance compared to LMM-based alternatives for non-linear indicators is

in line with the observations for area-level means (Krennmair and Schmid, 2022). Although

the tree-based methods without random intercept (RF and RFlog) perform competitively, we

conclude that structure matters in terms of protection against in-sample overfitting and clearly

in terms of reduced Bias for estimates. From the presented observations, there is no intention to

use RFs or MERFs with a transformation for the estimation of HCR or PGAP for the example

of Veracruz. Nevertheless, we observed that transformations in the context of MERFs and

the estimation of area-level CDFs show comparative advantages for the estimation of lower

quantiles. Poverty indicators, such as the PGAP and the HCR, however, mainly benefit from

the preservation of the general shape of the distribution and a correct determination of the

conditional mean, which is depended on a precise estimation of higher quantiles and extreme

values. This is appropriately achieved by the proposed non-parametric generation of area-level

CDFs with smearing. Nevertheless, the joint investigation of smearing under transformation

and non-parametric procedures is subject to further research.

Table 3.4: Mean and median for relative RMSE and relative Bias of the
estimated RMSE over total, in- and out-of-sample areas for point

estimates of indicators HCR and PGAP.

RRMSE_RMSE RB_RMSE
[%] HCR PGAP HCR PGAP

Median Mean Median Mean Median Mean Median Mean
Total REB 40.42 89.86 45.84 103.85 9.84 65.33 14.65 76.96

wild 42.20 98.37 42.66 109.05 5.79 69.59 5.21 77.09
In-sample REB 26.84 36.19 29.75 43.80 -16.25 -1.91 4.99 22.14

wild 36.73 41.96 34.03 45.08 -24.97 -11.11 -21.32 2.91
Out-of-sample REB 44.04 110.08 53.49 126.46 35.60 90.65 21.01 97.61

wild 45.24 119.61 50.83 133.14 37.21 99.99 23.86 105.03

We introduce a non-parametric REB and a wild bootstrap scheme in Section 3.3.4. The

evaluation of MSE estimators based on real-world scenarios is computationally demanding

and the most challenging and transparent way of assessing performance and reliability. Table

3.4 reports the RMSE and relative Bias of estimated RMSEs for the HCR and the PGAP. To

determine the relative Bias and relative RMSE, we treat the empirical RMSE over Monte Carlo

simulation rounds as basis of true values. Interestingly, the RRMSE_RMSE for the HCR and
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the PGAP lie within the same range for total, in- and out-of-sample domains. The levels of

RRMSE_RMSE are comparable for the wild as well as the REB bootstrap scheme. The large

difference between mean and median values is attributed to heterogeneity of areas and outliers

among the sampled and unsampled domains throughout the simulation rounds.

Regarding the RB_RMSE, we observe moderate levels of overestimation in median terms

for the HCR and the PGAP for all domains. The wild bootstrap scheme reports moderate un-

derestimation for in-sample areas for the HCR and the PGAP in median terms. The levels

of RB_RMSEs for in-sample estimates align to comparable design-based studies within the

field (Rojas-Perilla et al., 2020; Marchetti and Tzavidis, 2021), the evaluation of our proposed

MSE procedures among the unsampled areas is challenging. The median levels of RB_RMSEs

for HCR and PGAP for both MSE bootstrap schemes are acceptable and indicate overestima-

tion, however, mean values appear to be extreme. Going into detail, we identify about 10% of

out-of-sample areas that exhibit extreme variability throughout the simulation rounds. Interest-

ingly, our proposed bootstrap estimators counter these issues with a tendency of overestimation,

which is a more beneficial property than systematic underestimation in challenging data set-

tings. We aim to provide a transparent discussion and realistic presentation of our method.

Thus, we use most challenging scenarios to provide practitioners with a guidance on realistic

properties of our methods. Complementing these results for the MSE estimators, we provide a

model-based simulation in the Appendix to focus on the specific behaviour of our estimator in

terms of controlled simulation experiments.
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Figure 3.2: a) RMSE tracking properties for in-sample domains; b)
summary of aggregated RMSEs over in- and out-of-sample domains.

Figure 3.2a reports the tracking properties of the wild and REB MSE procedure, visualizing
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their estimated RMSE in comparison to the true RMSE for in-sample areas. We observe no

systematic deviations and especially for the PGAP we report excellent tracking properties.

Figure 3.2b summarizes the aggregated RMSEs over all in- and out-of-sample areas. Overall,

we conclude that the wild and the REB bootstrap have a tendency to overestimate and thus

deliver reliable, however, conservative MSE estimates in the context of realistic disaggregated

poverty data applications. The wild and non-parametric procedure deliver comparable results.

3.5 Application and discussion of results

A major constraint for the spatial depiction of poverty in Veracruz is the lack of survey data

for a majority of municipalities. In Section 3.2, we additionally maintain that the small sam-

ple sizes affect the precision and reliability of directs estimates. Model-based SAE improves

the precision of in-sample estimates and provides empirical evidence for unsampled areas.

Given our interest in subregional (non-linear) poverty indicators of HCR and PGAP based on

the highly skewed target variable ictpc, we suggest the use of modelling techniques that handle

non-normality and exhibit robustness against model-failure (Jiang and Rao, 2020). Particularly,

we focus on the EBPbc and the proposed MERF as described in Section 3.3. We focus on two

advanced modelling techniques, that stem from two alternative perspectives of predictive mod-

elling in SAE. While the EBPbc remains within the paradigm of LMMs and uses data-driven

parameter determination to find the optimal transformations ensuring Gaussian assumptions,

MERFs bridge concepts of non-parametric flexibility and a priori model-specifications of de-

pendency structures.
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Figure 3.3: Estimated poverty based on household per capita income ictpc
for the state of Veracruz based on direct estimates, EBPbc and MERF.
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Figure 3.3 reports direct estimates, EBPbc and MERF estimates for the HCR and the PGAP.

Referring to the direct estimates, we observe that sampled municipalities are located rather

uniformly from north to the south and that the direct estimates are insufficient to identify spatial

clusters of poverty. Inspecting the estimates based on the EBPbc and the MERF provides a

complete poverty map. The juxtaposition of results reveals that MERF estimates for HCR and

PGAP exhibit lower levels compared to the EBPbc. A comparison between direct estimates

and the results from the two model-based variants confirms that high poverty areas remain

unchanged in direct as well as model-based estimates, however, the EBPbc and MERF provide

more balanced estimates. While the levels of HCR from EBPbc and MERF are comparable,

PGAP estimates from MERFs are lower and show less variation. The results from the design-

based simulation in Section 3.4 demonstrate more accurate estimates for municipality-level

PGAP from MERFs for in- and out-of-sample areas. As the correlation between inglabpc

and our target variable ictpc is high, we rely on estimates produced by the MERF. Following

the empirical evidence, we infer that spatial patterns of poverty exist, however, the poverty

intensity measured by the PGAP is moderate and relatively balanced throughout Veracruz.
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Figure 3.4: Estimated poverty based on household per capita income ictpc
for the state of Veracruz based on direct estimates, the EBPbc and the

MERF ordered by decreasing area sample sizes.

Figure 3.4 complements the discussion on the results of poverty estimates for the 212 mu-

nicipalities. We order the 58 in-sample estimates by decreasing sample size to compare direct

and model-based estimates in detail. Additionally, we add results from an untransformed EBP

to highlight effects of data-driven transformations as well as the MERF’s flexibility and robust-

ness to model-failure. In the case of the HCR, we observe great similarities between model-
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based and direct estimates for areas with higher sample sizes. The coherence between direct

and model-based estimates reduces as expected with decreasing sample sizes. The EBP with-

out transformation overestimates the PGAP drastically, which manifests the discussed inferior

performance in the design-based simulation in Section 3.4.

The model-based poverty maps in Figure 3.3 provide empirical evidence for patterns of spa-

tial distribution of poverty. Based on the HCR we identify several clusters of poverty. Going

from north to south, we observe three major concentrations of poverty: firstly in the north-

western regions sharing the border with the State of Hidalgo; secondly in the centre-western

region Las Montañas sharing its border to Puebla and finally in the coastal region in the south-

east, but northern to the harbour city of Coatzacoalcos. These three poverty clusters share the

geographical characteristics of being in mountainous regions including the highest mountain

Pico de Orizaba (5636m). The coastal regions and municipalities including the major cities,

such as the capital Xalapa, are characterized by overall lower levels of poverty. Especially the

coastal regions benefit from the economic opportunities of agriculture, tourism and petrochem-

ical industry.

National statistical offices and multilateral organizations require empirical evidence of

point estimates and associated information on the statistical reliability of indicators. The MSE

of domain-specific indicators is used to construct important measures such as coverage rates,

confidence intervals or CVs. The estimated MSE for each method is reported in Table 3.5 and

was produced using the non-parametric REB bootstrap from Section 3.3.5 for the MERF. Vari-

ances of the direct estimates rely on the naive bootstrap (Alfons and Templ, 2013) and MSE

estimations for EBPs are based on the parametric bootstrap introduced by Rojas-Perilla et al.

(2020). All uncertainty measures were produced using B = 200 replications.

Table 3.5: MSE estimates for in- and out-of-sample domains of poverty
indicators for competing methods.

MSE HCR PGAP
Median Mean Median Mean

In-sample Direct 0.0075 0.0104 0.0010 0.0024
EBP 0.0031 0.0032 0.0156 0.0168
EBPlog 0.0034 0.0036 0.0011 0.0011
EBPbc 0.0032 0.0035 0.0011 0.0012
MERF 0.0049 0.0052 0.0006 0.0008

Out-of-sample EBP 0.0109 0.0107 0.0726 0.0806
EBPlog 0.0145 0.0141 0.0059 0.0061
EBPbc 0.0160 0.0155 0.0070 0.0073
MERF 0.0244 0.0255 0.0037 0.0042

The MSEs of the HCR from Table 3.5 for in-sample domains report a substantial reduction

in uncertainty for all model-based methods in mean and median terms compared to associated

uncertainty of direct estimates. Interestingly, the MERFs exhibit higher levels of MSEs com-

pared to the LMM-based alternatives for HCR. Given the superior precision of MERF point

estimates in the design-based simulation in Section 3.4 and the fact that the RB_RMSE of the

REB bootstrap signals moderate underestimation, we infer that the small MSE values of the

EBP competitors may stem from underestimation. Focusing on the estimated uncertainty of

PGAP indicators, we observe that the non-parametric REB bootstrap results report the low-
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est values among all competitors for in- and out-of-sample domains. From the discussion of

uncertainty estimates in the design-based simulation Section 3.4 reported in Table 3.4, we ob-

serve tendencies of moderate overestimation on the MSE values. Thus, we treat the reported

MSEs as conservative upper bounds. A comparison between the variance of direct estimates

and the MSEs of the poverty indicators indicate model-failure of the untransformed EBP for

the estimation of domain-specific PGAPs in Veracruz. Also this observation is in line with the

results from the design-based simulation.

3.6 Conclusion

In this paper, we propose MERFs for the estimation of disaggregated (non-linear) poverty indi-

cators. In addition, we aim to inform a transparent methodological discussion on discrepancies

between existing traditions of SAE and new emerging methods, such as (tree-based) machine

learning methods and their contribution for poverty mapping. We maintain that our proposed

estimators for point and uncertainty estimates meet modern requirements of SAE, including

robustness against model-failure (Jiang and Rao, 2020). In a broader sense, this paper aims to

introduce predictive methods to SAE by a critical scrutiny on statistical and practical require-

ments and with distinct focus on scientific applicability (Efron, 2020). Moreover, we aim to

provide reliable empirical instruments to monitor the progress on disaggregated progress for

the SDGs.

We introduce the case study on the Mexican state of Veracruz and motivate the necessity to

use model-based SAE to provide empirical evidence for the spatial distribution of poverty. Fol-

lowing alternative perspectives to identify the best predictive model linking survey and census

data, we focus on the semi-parametric unit-level model of MERFs and their subsequent exten-

sion to estimate area-level CDFs. We estimate poverty indicators of HCR and PGAP, which

are predominantly used to measure progress on the eradication of poverty (SDG1). We com-

plement approaches of point estimates by the introduction of two MSE bootstrap schemes: the

non-parametric REB bootstrap and the wild bootstrap. We start a discussion on the necessity

of bridging two concepts for the estimation of poverty indicators and subsequently evaluate

our proposed methods for point and MSE estimates in a design-based simulation. The design-

based simulation manifests that our proposed estimates have comparative advantages in terms

of RMSE and Bias compared to ‘traditional’ model-based approaches. Our approach is charac-

terized by robustness against distributional violations of normality and shows advantages in the

presence of unknown and potentially complex interactions of covariates. We use a design-based

simulation to evaluate and compare our proposed methods and additionally provide results of

a model-based simulation in the Appendix.

Further research from a methodological perspective are extensions using MERFs for non-

linear indicators to capture multidimensional aspects of poverty. Our general discussion and

our methodological framework for the production of (non-linear) poverty indicators addition-

ally aims to motivate the use of other predictive machine learning approaches such as Boosting,

Support Vector Machines or Bayesian additive regression trees. Depending on the flexibility

of the predictors, fully non-parametric formulations capturing area-level dependency structures
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impose an interesting direction for further research. From the perspective of advanced applica-

tions, questions concerning the estimation of disaggregated indicators in the absence of census

data using geospatial information become increasingly relevant (Wardrop et al., 2018). Ac-

cordingly, the use of alternative big data covariates (Marchetti et al., 2015; Schmid et al., 2017)

is an interesting application for our proposed method and the needed monitoring of progress

on SDGs on subregional levels. This research direction potentially extends the methodological

discussion on cultures of SAE (e.g. traditional vs. flexible predictive models) to dimensions

of ‘traditional’ (e.g. census and administrative) and alternative data sources (e.g. telephone or

geospatial data) and corresponding best practices.
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Appendix C

C.1 Technical appendix

C.1.1 Algorithm of Monte Carlo approximation to the CDF

Let δi be a (poverty) indicator of interest for area i and h() is a function that calculates this

indicator. We can write δi = h(ysi ∪ yri), where si are sampled and ri are non-sampled

observations. We summarize unknown parameters for our assumed super-population model in

Section 3.3.1 in parameter c. We can write a predictor for δi by:

δ̂i = h(ysi ∪ E(yri |ys; ĉ))

The following Monte Carlo simulation can be used to approximate the unknown indica-

tor of interest by simulating the estimated conditional distribution of yij for units outside the

sample:

1. For given f̂() calculate the model residuals êij = yij − f̂(xij) − v̂i and save random

effects v̂ from each area i and variance components σ̂ϵ and σ̂v.

2. Scale êij by σ̂ϵ and centre the residuals. Scale the vector of random effects v̂ by σ̂v.

Denote adjusted variance components as êcij and v̂c respectively. Additionally calculate

γi =
σ̂v

σ̂v + σ̂ϵ/ni
.

3. For m = 1, ...,M :

(a) Sample independently with replacement from the empirical distributions of êcij and

v̂c:

e
(m)
ij = srswr(êcij , N) and ṽ

(m)
i = srswr(v̂c(1− γi), D).

(b) Simulate the bootstrap population as y(m)
ij = f̂(xij) + v̂i + ṽ

(m)
i + e

(m)
ij .

(c) Determine the indicators of interest δ(b)i for i = 1, ..., D.

4. Using the M simulation rounds, final estimates of indicators are:

δ̂i = M−1
M∑

m=1

δ̂
(m)
i
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Please note that for out-of-sample observations, v̂ = 0 and the shrinkage factor γi becomes

1 such that the marginal distribution is simulated. Additionally, in many applications of SAE

the sampling fraction is very small and it is impossible to clearly separate covariate information

in xij between sampled and non sampled population units. Thus, we take the whole available

covariate information such that our estimate reduces to δ̂i = h(E(yik|ys; ĉ)).

C.1.2 Bias-adjustment of residual variance

The estimation of variance components in Step 2 (d) of the MERF-algorithm in Section 3.3.1

for σ̂2
ϵ and σ̂2

v is obtained by taking the expectation of maximum likelihood estimators given

the data. Although σ̂2
ϵ is a naive estimator within the discussed framework, it cannot be consid-

ered as an unbiased estimator for the variance σ2
ϵ of the unit-level errors ϵij . Breiman (2001a)

maintains that the sum of squared residuals from OOB-predictions is a valid estimator for the

squared prediction error of new individual observations. However, as an estimator of the resid-

ual variance under the model, σ̂2
ϵ is positively biased, as it includes uncertainty regarding the

estimation of the random forest f̂ . Following Mendez and Lohr (2011) we use a bias-adjusted

estimator for the residual variance σ2
ϵ from Model 3.1 using a bootstrap bias-correction. The

essential steps to obtain the corrected residual variance are summarized as follows:

1. Use the OOB-predictions f̂(xij)OOB from the final model f̂() after convergence of the

algorithm.

2. Generate B bootstrap samples y⋆ij,(b) = f̂(xij)OOB + ϵ⋆ij,(b), where the values ϵ⋆ij,(b) are

sampled with replacement from the centred marginal residuals êij = yij − f̂(xij)OOB.

3. Recompute f̂(xij)OOB
(b) using a random forest with y⋆ij,(b) as dependent variable.

4. Estimate the correction-term K(f̂) by:

K̂(f̂) = B−1
B∑
b=1

[
f̂(xij)OOB − f̂(xij)OOB

(b)

]2
.

The bias-corrected estimator for the residual variance is then given by:

σ̂2
bc,ϵ = σ̂2

ϵ − K̂(f̂). (C.1)
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Table C.1: Explanation of variables ranked by importance of the random
forest including all variables from the optimal model of the EBPbc after

model-selection from 39 potential covariates.

Variable name Explanation EBPbc-model
ictpc Total household income per capita.
escol_rel_hog Average relative amount of schooling standardized by age and sex of

household members.
✓

bienes Availability of goods in the household. ✓
actcom Assets in the household. ✓
jnived Formal education of the household’s head.
jaesc Average years of schooling of household members. ✓
jtocup Occupation type. ✓
pcocup Percentage of employed household members.
est_calidad_vivienda Classification of dwellings based on their conditions and services.
jexp Years of working experience of household’s head.
jedad Household member’s age.
tdep Household members under 16 years and over 65, divided by the mem-

bers between 16 to 64.
pcpering Percentage of income earners in the household. ✓
tam_loc Number of inhabitants of closest town. ✓
jsector Indicator for sector of activity of head and/or spouse. ✓
iingmuj Identifies households with female prevalence income. ✓
muj_hog Total number of women in the household. ✓
bengob Identifies whether the household receives government income com-

pensation.
✓

tam_hog Number of household members. ✓
autoconsumo Household with the presence of a member working in the primary

sector.
✓

nalfab Total number of literates in the household. ✓
totocup_hog Total number of employed in the household. ✓
muj16_notrb_hog Women over 16 years of age not working at home. ✓
rururb Indicates whether household location is rural or urban. ✓
hijas_hog Total number of daughters in the household. ✓
jubi Presence of retired people or pensioners in the household. ✓
clase_hog Identifies the type of household. ✓
tmor_hog Measures the mortality rate in the household. ✓
alimc_2 Identifies the households in which members report days without food. ✓
pob_ind Identifies whether household members speak indigenous languages. ✓

C.2 Model-based simulation
The model-based simulation compares the performance of area-level estimates for the HCR and

PGAP. We use the same competing methods from Section 3.4 (EBP, EBPlog, EBPbc, MERF,

MERFlog, RF and RFlog). Overall, we assess the quality of point and uncertainty estimates

from our proposed methodology and highlight advantages of robustness in controlled scenarios

of model-misspecification.

The simulation-setting follows survey-sample properties of our case study for Veracruz.

We assume a finite population P of size N = 58000 with D = 58 separate areas P1, ..., PD of

equal size Ni = 1000, which corresponds to the median area size of original census data from

Table C.1. We utilize the 58 small in-sample areas to generate stratified random samples, which

resemble our empirical data. The total sample size is n =
∑D

i=1 ni = 1453, which coincides

with the design-based simulation (Section 3.4) and the application (Section 3.5). The poverty

line for all scenarios is set to 30% of y, which corresponds to the mean of poverty over all 212

domains from Section 3.5.
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Table C.2: Model-based simulation scenarios

Scenario Model x1 x2 µ v ϵ

Normal y = 10000− 500x1 − 500x2 + v + ϵ N(µ, 32) N(µ, 32) unif(−1, 1) N(0, 5002) N(0, 10002)
Interaction-lowICC y = 5000 + 500x1x2 + 250x22 + v + ϵ N(µ, 12) N(µ, 22) unif(−1, 1) N(0, 2002) N(0, 10002)

Interaction-highICC y = 5000 + 500x1x2 + 250x22 + v + ϵ N(µ, 12) N(µ, 22) unif(−1, 1) N(0, 5002) N(0, 10002)
Logscale y = exp(7.5− 0.25x1 − 0.5x2 + v + ϵ) N(µ, 12) N(µ, 12) unif(1, 2) N(0, 0.12) N(0, 0.252)

Normal-GB2 y = 10000− 1000x1 − 500x2 + v + 0.5ϵ N(µ, 32) N(µ, 32) unif(0, 1) N(0, 12502) GB2(2.2, 2500, 18, 1.46)

The simulation comprises five scenarios denoted as Normal, Interaction-lowICC, Interaction-

highICC, Logscale and Normal-GB2. We repeat each scenario independently M = 500 times.

Two major dimensions of model-failure contextualize the following discussion on competing

estimates for various indicators: firstly, the presence of skewed data delineated by non-normal

error-terms or log-transformed data and secondly, the presence of unknown non-linear interac-

tions between covariates. The baseline Scenario Normal meets model assumptions for LMMs.

The Scenarios Interaction-lowICC and Interaction-highICC share a similar error-structure with

Scenario Normal, however, the fixed effects include quadratic terms and interactions, showcas-

ing comparative advantages of automated model-selection of MERFs. The two interaction

scenarios emphasize the necessity to model structural dependencies using random intercepts

and differ in estimated intraclass correlations (ICCs) from MERFs of approximately 2% for

Scenario Interaction-lowICC and around 15% for Scenario Interaction-highICC. In Section

3.3.5 we discuss transformation approaches for MERFs. Scenario Logscale demonstrates ben-

efits of transformations and Scenario Normal-GB2 combines the linear additive structure of

LMMs with GB2-distributed unit-level errors. Both scenarios aim to promote the use of trans-

formation strategies to meet distributional assumptions of LMMs. Additionally, we highlight

robustness properties of our proposed methods for point and uncertainty estimates. Further

details on the data-generating process for each scenario are provided in Table C.2.

C.2.1 Discussion of point estimates

Comparably to Section 3.4, we analyse the performance of competing methods based on RMSE

and Bias of HCR and PGAP. In the baseline Scenario Normal, we observe that the EBP shows

the lowest RMSE for HCR and PGAP and results are similar to the EBPbc. This demon-

strates benefits of the flexible data-driven Box-Cox transformation in comparison to the fixed

transformation of EBPlog. Secondly, we observe that the MERF outperforms tree-based com-

petitors and that levels of RMSE are competitively close to the LMM-based alternatives, which

mirror the data-generating process. Scenarios Interaction-lowICC and Interaction-highICC

demonstrate comparative advantages of flexibility and automated model-selection of the RF

and MERF. The MERF reports the smallest RMSE for all indicators. Irrespectively of the de-

gree of ICC, we observe efficiency gains of modelling structural dependencies using random

intercepts, which become more serious with increasing ICC. We observe the lowest RMSE

among the LMM competitors for the EBPbc. Although the EBPbc fails to replicate the cor-

rect model, it outperforms the RF for HCR and PGAP in both Scenarios (Interaction-lowICC,

Interaction-highICC), which is attributed to the importance of accounting for domain-specific

dependencies.
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Table C.3: Mean and median for RMSE and Bias in model-based
scenarios for point estimates of indicators HCR and PGAP.

RMSE BIAS
HCR PGAP HCR PGAP

Median Mean Median Mean Median Mean Median Mean
Normal EBP 0.0341 0.0356 0.0080 0.0084 -0.0026 -0.0026 -0.0005 -0.0005

EBPbc 0.0341 0.0356 0.0081 0.0084 -0.0027 -0.0027 -0.0005 -0.0005
EBPlog 0.0636 0.0642 0.0133 0.0142 0.0487 0.0491 0.0027 0.0027
RFlog 0.0745 0.0729 0.0177 0.0173 0.0164 0.0161 0.0016 0.0014
MERFlog 0.0415 0.0424 0.0093 0.0102 0.0144 0.0144 0.0005 0.0004
RF 0.0729 0.0711 0.0177 0.0173 0.0017 0.0011 0.0007 0.0005
MERF 0.0355 0.0370 0.0085 0.0088 -0.0012 -0.0014 -0.0007 -0.0009

Interaction-lowICC EBP 0.0509 0.0508 0.0376 0.0372 -0.0075 -0.0061 0.0347 0.0345
EBPbc 0.0513 0.0518 0.0129 0.0129 0.0166 0.0176 0.0052 0.0052
EBPlog 0.0528 0.0528 0.0177 0.0178 0.0125 0.0135 0.0079 0.0079
RFlog 0.0534 0.0532 0.0126 0.0125 0.0134 0.0135 0.0009 0.0007
MERFlog 0.0464 0.0453 0.0106 0.0109 0.0131 0.0132 0.0001 -0.0000
RF 0.0518 0.0513 0.0133 0.0132 -0.0012 -0.0013 0.0045 0.0043
MERF 0.0425 0.0427 0.0110 0.0109 -0.0020 -0.0027 0.0036 0.0031

Interaction-highICC EBP 0.0898 0.0905 0.0418 0.0404 -0.0080 -0.0071 0.0328 0.0324
EBPbc 0.0810 0.0823 0.0223 0.0222 0.0179 0.0181 0.0052 0.0053
EBPlog 0.0838 0.0850 0.0265 0.0266 0.0187 0.0189 0.0082 0.0079
RFlog 0.1188 0.1173 0.0309 0.0310 0.0164 0.0163 0.0015 0.0014
MERFlog 0.0642 0.0660 0.0171 0.0184 0.0188 0.0183 -0.0002 -0.0005
RF 0.1181 0.1162 0.0316 0.0313 0.0002 -0.0001 0.0054 0.0051
MERF 0.0592 0.0617 0.0159 0.0166 -0.0025 -0.0037 0.0018 0.0016

Logscale EBP 0.0506 0.0509 0.1429 0.1432 -0.0204 -0.0212 0.1269 0.1277
EBPbc 0.0340 0.0347 0.0136 0.0141 0.0005 0.0006 0.0002 0.0004
EBPlog 0.0340 0.0348 0.0136 0.0141 0.0006 0.0007 0.0002 0.0004
RFlog 0.0567 0.0565 0.0231 0.0231 0.0041 0.0039 0.0019 0.0019
MERFlog 0.0356 0.0361 0.0145 0.0147 0.0027 0.0024 0.0007 0.0006
RF 0.0579 0.0582 0.0257 0.0257 -0.0070 -0.0072 0.0112 0.0112
MERF 0.0430 0.0443 0.0218 0.0218 -0.0089 -0.0091 0.0114 0.0113

Normal-GB2 EBP 0.0621 0.0647 0.0485 0.0493 0.0023 0.0017 0.0311 0.0315
EBPbc 0.0698 0.0712 0.0296 0.0307 0.0455 0.0452 0.0141 0.0138
EBPlog 0.2260 0.2263 0.2423 0.2418 0.2084 0.2083 0.2367 0.2366
RFlog 0.1144 0.1140 0.0651 0.0649 0.0415 0.0413 0.0353 0.0353
MERFlog 0.1178 0.1189 0.0742 0.0739 0.0588 0.0589 0.0462 0.0457
RF 0.1074 0.1067 0.0542 0.0542 0.0100 0.0101 -0.0035 -0.0037
MERF 0.0616 0.0638 0.0326 0.0340 0.0051 0.0048 -0.0064 -0.0062

Scenario Logscale highlights benefits of (log-)transformation approaches. As expected

the EBPlog estimates HCR and PGAP most efficiently, closely followed by the EBPbc. The

EBPlog has the lowest RMSE among all competitors for HCR and PGAP. Comparing the EBP

and EBPlog for the PGAP reveals that the magnitude of efficiency gains from correct transfor-

mation is larger compared to tree-based alternatives (e.g comparing MERFlog to the MERF).

The final Scenario Normal-GB2 addresses skewed data due to GB2-distributed error terms.

Comparing the RMSE of EBP and EBPlog for HCR and PGAP demonstrates a case, where

the wrong transformation is less efficient than neglecting Gaussian assumptions. Benefits of

EBPbc become visible for the complex PGAP indicator. Interestingly, MERFlog and RFlog

outperform the EBPlog, which again highlights the general adaptability of (ME)RFs. The

MERF and the EBPbc perform competitively well with lowest RMSE of MERFs for HCR and

the EBPbc for the PGAP.

The Bias of estimates is an essential detail of the RMSE. We do not observe severe discrep-

ancies in the performance of competitors between RMSE and their Bias. MERFS are charac-
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terized by relatively low levels of Bias throughout all scenarios. Except for Scenario Logscale,

EBPbc results are associated with more (positive as well as negative) Bias compared to the

MERF. This is particularly interesting as unit-level predictions from random forests usually

achieve efficiency gains with introduced Bias. However, in our example this behaviour from

unit-level predictions does not transfer to the Bias of constructed non-linear poverty domain

indicators. Overall, the model-based results complement insights from the design-based simu-

lation in Section 3.4 and demonstrate that MERFs serve as insurance to model-misspecification

and are an agnostic competitor to ‘traditional’ SAE approaches balancing required flexibility

and structural dependencies.

C.2.2 Discussion of MSE estimates

We use our five scenarios to assess the quality of proposed uncertainty estimators from Section

3.3.4. We determine relative Bias and relative RMSE by defining the empirical RMSE over

Monte Carlo simulation rounds as basis for true values. Table C.4 reports mean and median

percent of relative RMSE and Bias over all 58 areas and M = 500 simulation rounds. Starting

with the RRMSE_RMSE, we observe that all values for the wild bootstrap exceed the non-

parametric REB bootstrap for all indicators and scenarios. Regarding the RB_RMSE, we see

that under Scenario Normal the REB bootstrap is essentially unbiased for HCR and PGAP and

the wild bootstrap exhibits moderate overestimation. For the Scenarios Interaction-lowICC and

Interaction-highICC, we observe moderate underestimation of the REB bootstrap for HCR and

PGAP, which reduces with higher ICC. The wild bootstrap is a conservative uncertainty esti-

mator for the PGAP in both scenarios. Scenario Logscale is constructed to showcase benefits

of transformations. The REB bootstrap handles the challenging data scenario more reliably

compared to the wild bootstrap exhibiting overestimation for both non-linear poverty indica-

tors. Scenario Normal-GB2 is characterized by a skewed distribution and extreme outliers.

Both bootstrap schemes indicate negative RB_RMSE. Nevertheless, the non-parametric REB

bootstrap appears to reproduce extreme distributional characteristics of error-terms better than

the wild bootstrap, leading to less biased results, especially for the HCR.

Table C.4: MERF: Mean and median for relative RMSE and relative Bias
of the estimated RMSE for HCR and PGAP in model-based scenarios.

RRMSE_RMSE RB_RMSE
[%] HCR PGAP HCR PGAP

Median Mean Median Mean Median Mean Median Mean
Normal REB 7.02 7.31 8.16 8.36 -0.09 0.08 0.10 -0.14

wild 8.43 8.88 10.25 10.40 3.59 4.02 4.98 5.10
Interaction-lowICC REB 16.68 16.28 14.32 14.13 -3.46 -3.65 -0.92 -0.80

wild 18.78 19.00 22.63 22.88 -11.56 -11.67 18.25 18.02
Interaction-highICC REB 6.93 7.60 9.82 10.41 -1.41 -1.92 -0.19 -0.72

wild 10.28 10.80 15.88 16.52 -7.73 -7.81 12.32 11.90
Logscale REB 28.82 29.13 36.51 37.90 16.97 16.00 17.88 15.93

wild 40.05 40.41 57.08 57.74 31.38 30.82 42.47 41.40
Normal-GB2 REB 12.26 12.60 28.26 28.21 -8.62 -8.43 -27.02 -26.83

wild 18.88 19.16 36.01 36.25 -17.35 -17.46 -35.24 -35.33
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Chapter 4

The R package SAEforest

4.1 Introduction

Reliably measurable metrics are imperative to monitor demographic, economic and social de-

velopment. Typically national statistical offices produce and administer elaborate statistical

indicators based on survey data. With increasing availability of (alternative) data sources, re-

search institutes and multilateral organizations aim to quantify precise information at a finer

geographical resolution. The terms ‘domain’ or ‘area’ define separate entities within a joint

population, such as (but not limited to) districts within a country. Many surveys are designed

to produce accurate estimates at national (or sub-national levels). With deliberated disaggrega-

tion of domains, the accuracy of direct estimates decreases with domain-specific sample sizes

and model-based small area estimation (SAE) offers promising tools. By combining auxiliary

data sources via models with survey data, SAE methods implicitly increase the effective preci-

sion of domain-specific indicators of a target variable. Overviews of existing methods for SAE

are found in Pfeffermann (2013), Rao and Molina (2015) or Tzavidis et al. (2018).

Predominant models for SAE are conceptualized within the regression-setting and the ma-

jority relies on linear mixed models (LMM) to account for the hierarchical structure of survey

data (Rao and Molina, 2015). The predictive performance of parametric models relies on the

fulfilment of (Gaussian) model assumptions, but economic and inequality data is often highly

skewed and characterized by deviations from the normal distribution. Jiang and Rao (2020)

maintain that methodological improvements in SAE must focus on robustification of models

against model-failure (e.g. providing insurances against model-misspecification, valid vari-

able selection and the effective handling of outliers). Optimality results of parametric LMMs

depend on the validity of model assumptions, which becomes challenging for applications

dealing with social and economic inequality data. Existing strategies to cope with deviations

from (Gaussian) assumptions are, for instance, (data-driven) transformation strategies of the

dependent variable (Molina and Martín, 2018; Sugasawa and Kubokawa, 2019; Rojas-Perilla

et al., 2020) or less restrictive assumptions on unit-level models (Diallo and Rao, 2018; Graf

et al., 2019). In the presence of outliers, means can be determined using robustified LMMs

(Sinha and Rao, 2009) or M-quantile approaches (Chambers and Tzavidis, 2006), which es-

timate non-linear indicators without a formal specification of random effects (Tzavidis et al.,

2010; Marchetti and Tzavidis, 2021). Opsomer et al. (2008) use penalized splines regression
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for the estimation of are-level means, dealing with non-linearities by treating spline coefficients

as additional random effects.

Machine learning methods offer non-linear and nonparametric alternatives, combining ex-

cellent predictive performance and a reduced risk of model-misspecification. Krennmair and

Schmid (2022) introduce mixed effects random forests (MERF) as versatile tools for appli-

cations in model-based SAE. MERFs combine advantages of regression forests (e.g. implicit

model-selection and robust predictive performance in the presence of outliers) with the abil-

ity to model hierarchical dependencies. Package SAEforest provides a coherent user-friendly

framework facilitating the use of MERFs for the estimation of spatially disaggregated (non-)

linear indicators and their respective uncertainty, measured by reliable mean squared errors

(MSE).

In recent years, ongoing methodological contributions in (model-based) SAE are increas-

ingly complemented by the development of open-source R-packages. I aim to give a compre-

hensive overview of existing SAE related packages on the Comprehensive R Archive Network

(CRAN) focussing on unit-level models. Moreover, I aim to discuss existing packages dealing

with random forests under dependent data sources, to motivate the functionality of the SAE-
forest package:

The package sae (Molina and Marhuenda, 2015) offers a suitable collection of SAE meth-

ods for point and uncertainty estimates for area and unit-level models. Package emdi (Kreutz-

mann et al., 2019) focusses on the estimation of disaggregated economic and inequality indica-

tors (and respective uncertainty) and insures against model-misspecification implementing an

EBP under data-driven transformations (Rojas-Perilla et al., 2020). The package treats the EBP

by Molina and Rao (2010) as a special case and combines computationally efficient methods

with a genuine workflow on data processing and presentation of results. Additional packages

for unit-level survey data are package JoSAE (Breidenbach, 2018), which focuses on models

coping with heteroskedasticity. From a Bayesian perspective, the package hbsae (Boonstra,

2022) combines functions for various unit- and area-level models, bridging frequentist and

Bayesian perspectives. A complete Bayesian workflow for the estimation demographic and

health indicators is found in package SUMMER (Li et al., 2021). Outlier-robust estimators

from a Bayesian perspective are provided by package robustsae (Ghosh et al., 2016) and from

a more frequentist perspective by saeRobust (Warnholz, 2018) or the rsae package Schoch

(2014).

Existing packages for dependent data and tree-based machine learning methods are not

concerned with topics of SAE and hardly focus on inference. The package LongituRF (Capi-

taine, 2020) bundles functions that allow for time-invariant covariance structures and rely on a

semi-parametric unit-level mixed model for regression trees and forests. Although the primary

focus of package MixRF (Wang and Chen, 2016) is the imputation of clustered and incomplete

data, the package comprises a genuine function, with which MERFs can be estimated. Func-

tions from package RandomForestGLS (Saha et al., 2021) model spatial random effects as

Gaussian processes by developing dependency adjusted split-criteria handling dependent error

processes similarly to generalized least squares. Package splinetree (Neufeld and Heggeseth,

2019) builds regression trees and random forests for longitudinal or dependent data using a
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spline projection method.

The major aim of package SAEforest is the provision of a complete and coherent use of

MERFs for SAE. Current packages with a focus on random forests for dependent data are

not intended to estimate SAE indicators and associated measures of uncertainty. On the other

hand, existing unit-level SAE packages neglect tree-based methods. The use of MERFs in SAE

promotes general flexibility for domain-level predictions and package SAEforest combines

methods on the estimation of point and MSE estimates for various indicators.

Implemented estimators rely on the empirical and methodological contributions introduc-

ing MERFs for SAE of means by Krennmair and Schmid (2022), for non-linear indicators by

Krennmair et al. (2022a) as well as in the case of aggregated auxiliary information by Kren-

nmair et al. (2022b). The flexibility of the package does not only stem from methodological

aspects, but from the provision of a genuine workflow for practitioners of SAE. SAEforest
puts emphasis on the integration of methods and generic functions that facilitate the summary

and visualization of results. Additionally, predefined tools for diagnostics and the tuning of

MERF hyper-parameters are available, such as the number of trees (num.trees) or the num-

ber of randomized split-candidates at each node (mtry). Implemented functions for MERFs

are easily adaptable and allow for potential extensions to advanced patterns of correlation and

multilevel structures.

The paper is organized as follows: Section 4.2 provides an overview of the statistical

methodology used in the package. This includes a formal introduction to MERFs, details

on the estimation of domain-level means with unit-level and aggregated covariates, as well as

the estimation of non-linear indicators and corresponding MSEs. Section 4.3 describes data

sources used as examples in the package. The core functionality of the package and its features

are explained in Section 4.4. Section 4.5 summarizes methods and results and raises ideas for

further research.

4.2 Statistical methodology

This section introduces a general mixed model enabling a simultaneous discussion of tradi-

tional LMM-based models in SAE, such as the nested error regression model of Battese et al.

(1988) and semi-parametric interpretations, such as the model of Krennmair and Schmid (2022)

using MERFs. Machine learning methods are popular alternatives for predictive modelling in

various scientific disciplines (Varian, 2014; Efron, 2020). Tree-based data-driven prediction

algorithms (such as random forests (Breiman, 2001b)) combine flexible modelling properties

without explicit model assumption. Moreover, they identify complex higher-order relations in

covariates and show robustness properties in the presences of outliers (Hastie et al., 2009; Biau

and Scornet, 2016). Thus, random forests contribute to the robustification of models against

model-failure (Jiang and Rao, 2020). In order to become a genuine tool for SAE, predictive

data-driven procedures must meet basic premises of survey and inference theory, such as the

handling of hierarchically dependent data structures and measures of uncertainty for produced

indicators.

In the following sections, we will discuss the estimation of reliable domain-specific statis-
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tical indicators from survey data using MERFs and focus on their respective MSEs. Additional

emphasis lies on the estimation of area-level means without population micro-data. The meth-

ods introduced are illustrated as part of an example on synthetic Austrian income data in Sec-

tion 4.4 and rely on the theoretical and empirical methods provided by Krennmair and Schmid

(2022) and Krennmair et al. (2022b) for means and Krennmair et al. (2022a) for non-linear

indicators.

4.2.1 A general mixed effects model for SAE and MERFs

We assume a finite population U of size N consisting of D domains U1, U2, ..., UD with

N1, N2, ..., ND units, where index i = 1, ..., D denotes respective areas. For every individ-

ual observation j in area i in the sample, we observe the continuous target variable yij . We

draw sample s of size n from population U and sampled observations are assigned to D re-

spective areas resulting in sample sizes n1, n2, ..., nD. A sub-sample from area i is denoted by

si and corresponding non-sampled observations are denoted by ri. The p predictive covariates

xij = (x1, x2, ..., xp)
⊺ are assumed to be available for every unit within the sample s. The

following general mixed effects regression model describes the relationship between xij and

yij :

yij = f(xij) + ui + eij with ui ∼ N(0, σ2
u) and eij ∼ N(0, σ2

e). (4.1)

Function f(xij) models the conditional mean of yij given xij . The hierarchical structure of

observations is captured by area-specific random intercepts ui and we assume independence

between ui and unit-level errors eij .

For instance, defining f(xij) = x⊺
ijβ with β = (β1, ..., βp)

⊺ resembles the definition of the

nested error regression model by Battese et al. (1988), which serves as basis for a majority of

unit-level SAE-models. Well known examples are the EBP by Molina and Rao (2010) or the

EBP under data-driven transformations by Rojas-Perilla et al. (2020). Under known optimality

results of LMMs, optimal estimates of fixed effects β̂ and variance components σ̂2
u, σ̂

2
e are

obtained by maximum likelihood (ML) or restricted maximum likelihood (REML) (Rao and

Molina, 2015).

We combine predictive advantages of random forests with the ability to model hierarchical

structures of survey data with random effects by defining f in Model 4.1 to be a random forest

(Breiman, 2001a). Resulting MERFs rely on a procedure reminiscent of the EM-algorithm

(Hajjem et al., 2014) to obtain optimal estimates on model components f̂ , û, σ̂2
u, and σ̂2

e . The

proposed MERF algorithm fits parameters for Model 4.1 (where f is a random forest) by it-

eratively estimating a) the forest function, assuming the random effects term to be correct and

b) the random effects part, assuming the Out-of-Bag-predictions (OOB-predictions) from the

forest to be correct. OOB-predictions correspond to the unused observations in the internal

bootstrap step prior to the construction of each forest’s sub-tree (Breiman, 2001a; Biau and

Scornet, 2016). We estimate variance components σ̂2
ϵ and σ̂2

u by implicitly taking the expecta-

tion of ML estimators given the data. Computationally, the MERF algorithm is implemented in

the function MERFranger of SAEforest. Note that step a) is realized using package ranger
(Wright and Ziegler, 2017), while the estimation of variance components and random effects

builds on package lme4 (Bates et al., 2015). The convergence of the algorithm is monitored
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by marginal changes of log-likelihood of the composite semi-parametric model. For further

methodological details, we refer to Krennmair and Schmid (2022). The proposed estimator for

model-based predictions is given by:

µ̂MERF
ij = f̂(xij) + ûi =f̂(xij) +

σ̂2
u

σ̂2
u + σ̂2

e/ni

 1

ni

∑
j∈si

(yij − f̂OOB(xij))

 . (4.2)

4.2.2 Flexible domain prediction of means under unit-level and aggregated co-
variates

The predictions µ̂MERF
ij (4.2) depend on auxiliary unit-level information to estimate unit-level

conditional means for the continuous dependent variable. In the context of SAE, however, re-

searchers are mainly interested in estimating and mapping indicators such as area-level means

or metrics measuring income deprivation and inequality (Rao and Molina, 2015). For now, we

will focus on the construction of area-level means depending on the availability of unit-level

or aggregated auxiliary covariate information. The construction of domain-specific cumula-

tive distribution functions (CDFs) from which non-linear indicators can be obtained will be

discussed in Section 4.2.3.

For unit-level (i.e. xij) supplementary data (usually census or administrative data), we

calculate the mean-estimator for each area i by:

µ̂MERF
i =

¯̂
fi(xij) + ûi =

¯̂
fi(xij) +

σ̂2
u

σ̂2
u + σ̂2

e/ni

 1

ni

∑
j∈si

(yij − f̂OOB(xij))

 , (4.3)

where ¯̂
fi(xij) =

1

Ni

∑
j∈Ui

f̂(xij).

We exploit the fact that random forest estimates of the fixed part f̂() express the conditional

mean at unit-level and that ûi is the best linear unbiased predictor (BLUP) for the linear part of

Model 4.1 (Krennmair and Schmid, 2022). For non-sampled areas, the proposed estimator for

the area-level mean reduces to the fixed part from the random forest:

µ̂i =
¯̂
f(xij).

The access to auxiliary population micro-data for covariates imposes a limitation for re-

searchers and practitioners. As a direct consequence of non-linearity and non-continuity of

random forests, we observe that f(x̄i) ̸= f̄i(xij) and aggregated auxiliary information cannot

directly be processed into predictions on µi in Equation 4.2. Krennmair et al. (2022b) solve

this issue by incorporating aggregate population-level covariate information through calibra-

tion weights wij , balancing unit-level predictions from MERFs in Equation 4.2 in coherence

with the area-wise covariate means from census data. In short, the estimator for area-level

means under limited auxiliary information is given by:

105



CHAPTER 4. THE R PACKAGE SAEFOREST

µ̂
MERFagg
i =

ni∑
j=1

ŵij

[
f̂(xij) + ûi

]
. (4.4)

The optimal estimates from survey data for required model components f̂ and ûi using the

MERF algorithm are similar to Equation 4.2. The xij for Estimator 4.4 are unit-level covariates

from the survey and population-level auxiliary information is incorporated through optimal

calibration weights ŵij maximizing the profile empirical likelihood (EL) function
∏ni

j=1wij

under the following three constraints:

•
∑ni

j=1wij(xij − x̄pop,i) = 0, monitoring the area-wise sum of distances between survey

data and the population-level mean, denoted as x̄pop,i, for auxiliary covariates;

• wij ≥ 0, preventing the cancellation of weights;

•
∑ni

j=1wij = 1, ensuring the normalization of weights.

The Lagrange multiplier method is suitable to find optimal weights (Owen, 1990, 2001) and

Krennmair et al. (2022b) discuss technical conditions for the feasibility of solutions in the

context of SAE and propose a best practice strategy that is implemented in this package.

Irrespectively of the quality of auxiliary data sources (aggregated or unit-level), the func-

tion SAEforest_model provides methods to assess the uncertainty of point estimates with

domain-specific MSEs. The quantification of uncertainty of domain-indicators is challenging,

yet essential for the assessment of reliability of area-level estimates. Approximating the analyt-

ical MSE of domain-level indicators with estimated variance components remains challenging

even in the base scenario of LMMs with block diagonal covariance matrices (Prasad and Rao,

1990; Datta and Lahiri, 2000; González-Manteiga et al., 2008; Rao and Molina, 2015). Elab-

orate bootstrap-schemes for the estimation of MSEs are an established alternative (Hall and

Maiti, 2006; González-Manteiga et al., 2008; Chambers and Chandra, 2013) and the preferred

choice under our general mixed model.

We propose a nonparametric random effect block (REB) bootstrap for estimating the MSE

of area-level means of sampled and unsampled domains. The major aim is the correct reproduc-

tion of dependence-structures of data and an incorporation of uncertainty introduced through

the estimation of the MERF. The nonparametric generation and resampling of random com-

ponents was originally introduced by Chambers and Chandra (2013). Krennmair and Schmid

(2022) postulate the importance to resample centred and scaled empirical error components by

a bias-adjusted residual variance introduced by Mendez and Lohr (2011) before constructing

a bootstrap population. In short, the estimator of the residual variance under the MERF from

Equation 4.2, (σ̂2
ϵ ) is positively biased as it includes excess uncertainty concerning the estima-

tion of function f̂ . Further methodological and performance details are found in Krennmair and

Schmid (2022). For cases of existing unit-level auxiliary covariates, we imitate the sampling

process by random draws from the simulated bootstrap populations. In the presence of aggre-

gated population-level data, we generate (pseudo-) true values by resampling error components

only. This idea follows methodological principles of the bootstrap for finite populations intro-

duced by González-Manteiga et al. (2008). For details, model-based simulations and examples,

please see Krennmair et al. (2022b).
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4.2.3 Non-linear indicators

The analysis of distributional aspects of consumption and income (in-) equality based on sta-

tistical indicators builds on a long tradition in statistical research (Atkinson, 1987; Cowell,

2011). In contrast to the estimation of domain-specific means, the model-based estimation of

quantiles and (non-linear) poverty indicators requires information on the area-specific CDF of

yij . Chambers and Dunstan (1986) (CD) combine a model for a finite-population CDF of yij
with a smearing-argument (Duan, 1983) to develop a model-consistent estimator for a finite-

population CDF from survey sample data. Tzavidis et al. (2010) introduce the CD-method

within a general unit-level framework for SAE with a focus on the estimation of SAE means

and quantiles in the context of a bias-adjusted alternative to the EBLUP and outlier-robust

M-quantile estimators. Extensions towards poverty (Marchetti et al., 2012) and inequality in-

dicators (Marchetti and Tzavidis, 2021) were investigated.

Rooted within the general unit-level framework of Tzavidis et al. (2010), Krennmair et al.

(2022a) propose an estimator F ∗
i (t) for the area-specific CDF of yij using MERFs. Essentially,

we extend the smearing method to µ̂ij as given by Estimator 4.2 using OOB-residuals e∗ij =

yij − µ̂OOB
ij , where µ̂OOB

ij = f̂OOB(xij)+ ûi. OOB-residuals are a genuine choice for achieving

more robust estimates of the CDF of MERFs, ensuring that these model-residuals e∗ij mirror

the estimated variance properties under Model 4.1. The estimator for F ∗
i (t) is given by:

F̂ ∗
i (t) = N−1

i

∑
j∈si

I(yij ≤ t) + n−1
i

∑
j∈si

∑
k∈ri

I

µ̂ik + (yij − µ̂OOB
ij )︸ ︷︷ ︸

e∗ij

≤ t


 (4.5)

Smearing is computationally intensive and a Monte Carlo (MC) approximation to the area-

specific CDF of yij provides an alternative. The MC-based approach draws conceptual par-

allels to the EBP (Molina and Rao, 2010), however, lacks theoretical foundation (Marchetti

et al., 2012). Nevertheless, the MC approximation to Equation 4.5 is time-efficient and given

a sufficiently high number of iterations (e.g. B_MC = 200) no obviously identifiable differ-

ence between point estimates for various indicators are observable. SAEforest provides both

methods and recommends the use of the theoretically supported smearing approach as default.

Estimates for indicators δi are calculated from F̂ ∗
i (t) using a known function h(). De-

fault indicators and corresponding functions h() are defined in Table 4.1. Package SAEforest
includes the (10%, 25%, 50%, 75%, 90%) quantiles as default indicators characterizing the dis-

tribution of yij . We additionally include common economic measures of poverty such as the

head count ratio (Hcr) and the poverty gap (Pgap) (Foster et al., 1984) and inequality measures

such as the Gini coefficient (Gini, 1912) and the Quintile share ratio (Qsr) (Eurostat, 2004). The

Hcr defines the rate of being at risk of poverty, while the Pgap ratios the mean income shortfall

of the poor to its respective poverty line. Both poverty indicators require a poverty threshold

(z), which can be defined in absolute terms (e.g. numerical values of national poverty lines)

or relative terms (e.g. defining a function depending on yij). Package SAEforest allows for

both options. Focussing on distributional aspects, the Gini is a common measure summarizing

inequality between 0 (absolute) equality and 1 (absolute inequality). While the Gini bundles
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information on the whole distribution, the Qsr focusses on the relation between joint income (or

consumption) of the 80 and 20 percent quantile. Additionally, users can use a custom function

for arbitrary statistical indicators relying on input Y and threshold z. The example in Section

4.4.1 will discuss customizable features in detail.

Table 4.1: List of predefined population indicators in SAEforest. Fi is the
empirical distribution function in domain i.

Indicator Definition h() Range

Meani

∑Ni
j=1 yij

Ni
R

Qi,q F−1
i (q) = inf{yij ∈ R : Fi(yij) ≥ q} R

Hcri
1

Ni

∑Ni
j=1 I(yij ≤ z) [0, 1]

Pgapi
1

Ni

∑Ni
j=1(

z − yij
z

)I(yij ≤ z) [0, 1]

Ginii
2
∑Ni

j=1 jyij

Ni
∑Ni

j=1 yij
− Ni + 1

Ni
[0, 1]

Qsri

∑Ni
j=1 I(yij > Qi,0.8)yij∑Ni
j=1 I(yij ≤ Qi,0.2)yij

[0, 1]

customi g(yij , z) R

Following the work of Krennmair et al. (2022a), the package provides two bootstrap

schemes (nonparametric and wild), each applicable for the smearing and the MC-based

versions. The major difference between the two bootstrap schemes is the generation of the boot-

strap population. The nonparametric bootstrap prepares and resamples random components for

its bootstrap population in the same way as described in Section 4.2.2 and subsequently calcu-

lates (non-linear) indicators from the simulated data. The wild bootstrap (wild) exclusively

relies on centred OOB-residuals and a specific matching scheme between sampled and syn-

thetic observations building the bootstrap population. Details and performance specifics for

both procedures are found in Krennmair et al. (2022a).

4.3 Data set description
Typical applications of SAE comprise survey sample data on target variable yij and predictive

variables xij . Since existing auxiliary data sources (census or administrative/register data)

do not include information on the target variable, auxiliary data sources strengthen estimates

on disaggregated metrics of yij through a predictive model. As discussed in Section 4.2, we

provide models, which handle auxiliary covariates of domain-specific individual observations

or domain-level aggregates (e.g means). The exemplary datasets in this package include both

types of information for illustrative purpose.

In general, this package uses data examples provided by package emdi (Kreutzmann et al.,

2019). In short, the datasets comprise simulated synthetic data from the European Union Statis-

tics on Income and Living Conditions (EU-SILC) for Austria from 2006. Although no conclu-

sions regarding the official levels of inequality and poverty in Austrian districts must be in-
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ferred, the simulated population micro-dataset eusilcA_pop exhibits realistic distributional

characteristics. Originally, the eusilcA_pop data is a modification of the eusilcP data

used in package simFrame (Alfons and Templ, 2013), which reports micro-data on the nine

states as lowest geographical level. Kreutzmann et al. (2019) use publicly available sources,

such as population sizes or income rankings of districts, to assign households to one of the 94

districts. Further details on the process of data synthetization can be found in Kreutzmann et al.

(2019).

Focussing on social and economic inequality indicators, the target variable is the equiv-

alized household income (eqIncome). For the construction of eqIncome, total household

disposable income is divided by the equivalized household size (Hagenaars et al., 1994). Apart

from domain-level identifiers for states (state) and the districts (districts), auxiliary

variables are socio-demographic characteristics, such as gender or the receipt of state bene-

fits. An overview of model covariates is provided in Table D.1 in the Appendix. The dataset

eusilcA_popAGG comprises aggregated district-level means and is used for the illustration

of Method 4.4 in Section 4.2.2. For the production of uncertainty estimates, Method 4.4 re-

quires information on population-level domain sizes. Synthetic population sizes for Austrian

districts are provided by popnsize.

The unit-level sample eusilcA_smp is drawn by stratified random sampling from the

population dataset, where districts are defined as stratas. The resulting dataset comprises

1945 observations with domain-specific sample sizes ranging from 14 (“Lienz”) to 200 for

the Austrian capital (“Wien”). About 25 percent of domains are not covered by the survey

dataset, additionally motivating the use of model-based SAE approaches. For the illustration

of the mapping function map_indicators, we use a shape file for the Austrian districts of

class SpatialPolygonDataFrame (Bivand et al., 2013), obtainable from package emdi
(Kreutzmann et al., 2019).

4.4 Core functionality: the package

The statistical methods for point and MSE estimates from Section 4.2 are implemented in

the main function SAEforest_model. The functionality of the package mirrors the pro-

posed methodological flexibility of tree-based machine learning methods: firstly, depending

on the available auxiliary data sources (aggregated or unit-level covariates) and the indica-

tors of interest (means or non-linear indicators), domain-specific estimates are produced using

SAEforest_model. Users must specify corresponding scenarios with options meanOnly

= TRUE and/or aggData = TRUE. Resulting model objects can be checked by summary

statistics and visual model diagnostics using the generic functions summary and plot. Func-

tion tune_parameters assesses potential improvements of the model by tuning model

hyper-parameters. Finally, function summarize_indicators extracts final domain-specific

estimates and function map_indicators visualizes and maps indicators upon request. De-

tailed examples on the functionality of proposed methods follow in the subsections below.

Generic functions of the package rely on S3 objects of class SAEforest (Chambers and

Hastie, 1992). The function SAEforest_model wraps the basis function MERFranger.
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Table 4.2: Details on inputs for main function SAEforest_model.

meanOnly =
Input Description TRUE FALSE

Y Continuous target variable. ✓ ✓
X Matrix or data.frame of predictive covariates. ✓ ✓
dName Character of domain identifier. ✓ ✓
smp_data data.frame of survey sample data. ✓ ✓
pop_data data.frame of population-level covariates X. ✓ ✓
MSE Specification of uncertainty estimates. Currently avail-

able options are: none, nonparametric and for
meanOnly = F additionally wild.

✓ ✓

importance Variable importance processed by ranger. Must be one of
the following: "impurity", "impurity_corrected" or "per-
mutation".

✓ ✓

initialRandomEffects Initial estimate of random effects. Defaults to 0. ✓ ✓
ErrorTolerance Value monitoring MERF algorithm’s convergence. De-

faults to 1e-04.
✓ ✓

MaxIterations Value specifying maximal amount of iterations for MERF
algorithm. Defaults to 25.

✓ ✓

B Bootstrap replications for MSE estimation. Defaults to
100.

✓ ✓

B_adj Bootstrap replications for adjustment of residual variance.
Defaults to 100.

✓ ✓

na.rm Logical. Whether missing values should be removed. ✓ ✓
... Additional parameters passed to ranger. Most impor-

tant parameters are mtry (number of variables to possibly
split at in each node), or num.trees (number of trees).

✓ ✓

aggData Logical. Whether aggregated covariate information is
used.

✓

popnsize Information of population size of domains. Only needed
if aggData = TRUE and MSE is requested.

✓

OOsample_obs Out-of-sample observations taken from the closest area.
Only needed if aggData = TRUEwith default set to 25.

✓

ADDsamp_obs Out-of-sample observations taken from the closest area
if first iteration for the calculation of calibration weights
fails. Only needed if aggData = TRUE with default set
to 0.

✓

w_min Minimal number of covariates from which informative
weights are calculated. Only needed if aggData =
TRUE. Defaults to 3.

✓

threshold Set a custom threshold for indicators. The threshold can
be a known numeric value or function of Y. Defaults to
NULL resulting in 60% of median of Y.

✓

custom_indicator A list of additional functions containing the indicators to
be calculated. These functions must only depend on the
target variable Y and the threshold. Defaults to NULL.

✓

smearing Logical input indicating whether a smearing based ap-
proach or a MC-based version for point estimates is ob-
tained. Defaults to TRUE.

✓

B_MC Bootstrap populations to be generated for the MC version.
Defaults to 100.

✓

The implementation of the MERF algorithm is done by a composite model of a random forest

fitted by the package ranger (Wright and Ziegler, 2017) and random intercepts and corre-

sponding variance components obtained by the package lme4 (Bates et al., 2015). Thus, users

benefit from the full functionality of both package environments including generic functions of

respective classes ranger and merMod. Moreover, users can directly pass hyper-parameters
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to the function ranger or choose alternative splitrules for trees. Although the basis function

MERFranger is only addressed through wrapper functions for the average package user, we

additionally provide the function to enable unit-level predictions under more advanced correla-

tion and dependency structures. By this, we aim to facilitate further research and development

using MERFs for SAE. For details, see help(MERFranger) or the methodology discussed

in Krennmair and Schmid (2022).

4.4.1 Estimation of domain-level indicators

The following examples use the synthetic Austrian EU-SILC data discussed in Section 4.3.

Firstly, we focus on the most ideal case including unit-level survey sample data and access to

unit-level covariate data from a census to estimate the area-level mean. The information on the

equivalized income is only measured in the survey data, but covariates X_covar are measured

on survey and census level.

R> #Loading data

data("eusilcA_pop")

data("eusilcA_smp")

income <- eusilcA_smp$eqIncome

X_covar <- eusilcA_smp[,-c(1,16,17,18)]

This data scenario corresponds to Method 4.2. As we are only interested in the area-level

mean, we specify option meanOnly = TRUE and define target variable Y and corresponding

covariates in the sample X = X_covar. Input values for covariates X must be predictors only

and we remove columns containing area-level codes and the target variable for the assignment X

= X_covar. We explicitly denote dName to indicate separate areas for random intercepts and

assign the survey dataset smp_data and the dataset comprising population-level information

pop_data. For the current example, point estimates are sufficient and we specify MSE =

"none". As discussed in Section 4.2, the current implementation has an option to produce

uncertainty estimates of area-level means with option nonparametric referring to the MSE

procedures discussed in Krennmair and Schmid (2022). Dealing with unit-level population

data, we keep the default of aggData = FALSE. Note that this option must be replaced by

TRUE in the case of limited covariate information.

R> MERFmodel1 <- SAEforest_model(Y = income, X = X_covar,

+ dName = "district", smp_data = eusilcA_smp, pop_data =

+ eusilcA_pop, MSE = "none", meanOnly = TRUE,

+ aggData = FALSE)

Before we discuss model components and respective results, we focus on inputs for esti-

mating more complex area-level indicators, such as quantiles or inequality indicators. Func-

tion SAEforest_model with option meanOnly = FALSE corresponds to the method-

ology explained in Section 4.2.3 and allows for further scenario-dependent inputs. The op-

tion smearing determines whether we want to construct a full smearing CDF or choose
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a Monte-Carlo simulated marginal distribution of yij . Depending on computational feasi-

bility, we advice the general use of smearing-based estimates due to its theoretical corrob-

oration compared to the MC version. For MSE estimates, we have options none, wild

or nonparametric as described in Krennmair et al. (2022a). The default indicators re-

turned by SAEforest_model with option meanOnly = FALSE include the mean, me-

dian, quantiles (10%, 25%, 75% and 90%), Hcr, Pgap, Gini, and the Qsr. Users specify a

custom threshold by passing a known numeric value or a function of Y. If the threshold is

NULL, 60 % of the median of Y is taken as threshold. Additionally, SAEforest_model al-

lows for custom indicators. In the following example, we constructed a new indicator, defining

area-level maximum incomes. The input for custom_indicator must be a list of functions

depending only on inputs Y and threshold.

R> MERFmodel2 <- SAEforest_model(Y = income, X = X_covar,

+ dName = "district", smp_data = eusilcA_smp,

+ pop_data = eusilcA_pop, smearing = FALSE,

+ meanOnly = FALSE, MSE = "nonparametric", B = 100,

+ mtry=5, num.trees = 500, threshold =

+ function(Y){0.5 * median(Y)}, custom_indicator =

+ list(my_max = function(Y, threshold){max(Y)}))

Function SAEforest_model allows to pass arguments directly to the function ranger

using the generic three-dotted option (...). Most important inputs to specify a random forest

are the number of randomized variables for each node split decision (mtry) or the overall

number of trees (num.trees). Any option available for ranger (such as alternative split

criteria) can be directly passed to the function. For details, see Wright and Ziegler (2017) and

our discussion on tuning parameters in Section 4.4.3. Table 4.2 in the Appendix summarizes

and explains the inputs for SAEforest_model.

Function SAEforest_model produces an output object of class SAEforest, which

always includes at least four elements: (i) point estimates of specified regionally disaggregated

indicators; (ii) a MERFmodel object including information on the model fit for fixed effects

and random effects; (iii) MSE estimates if requested and NULL otherwise; (iv) the value of

the adjusted standard deviation used in the MSE bootstrap or NULL otherwise. In the case

of domain-level means under aggregated covariate information (aggData = TRUE), the ob-

ject additionally includes an element, capturing the number of variables used in the weighting

process from aggregated covariate information. Table 4.3 summarizes and explains individual

components of SAEforest objects. Several generic methods are applicable and we firstly

focus on model diagnostics produced by summary and plot in the following section.

4.4.2 Summary function and diagnostic plots

Function summary is an important generic method to obtain essential information on a fit-

ted model object. An exemplary output from summary of a fitted model object of class

SAEforest is given below:

R> summary(MERFmodel1)
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Call:

SAEforest_model(Y = income, X = X_covar, dName = "district",

smp_data = eusilcA_smp, pop_data = eusilcA_pop, MSE = "none",

aggData = FALSE, importance = "impurity")

Domains

In-sample Out-of-sample Total

70 24 94

Totals:

Units in sample: 1945

Units in population: 25000

Min. 1st Qu. Median Mean 3rd Qu. Max.

Sample_domains 14 17.0 22.5 27.78571 29.00 200

Population_domains 5 126.5 181.5 265.95745 265.75 5857

Random forest component:

Type: Regression

Number of trees: 500

Number of independent variables: 14

Mtry: 3

Minimal node size: 5

Variable importance mode: impurity

Splitrule: variance

Rsquared (OOB): 0.62036

Structural component of random effects:

Linear mixed model fit by maximum likelihood [’lmerMod’]

Formula: Target ~ -1 + (1 | district)

Data: data

Offset: forest_preds

AIC BIC logLik deviance df.resid

39225.2 39236.3 -19610.6 39221.2 1943

Scaled residuals:

Min 1Q Median 3Q Max

-3.1425 -0.5243 -0.0577 0.4433 11.6832

Random effects:

Groups Name Variance Std.Dev.

district (Intercept) 12132734 3483

Residual 30771664 5547

Number of obs: 1945, groups: district, 70

ICC: 0.2827853

Convergence of MERF algorithm:

Convergence achieved after 8 iterations.

A maximum of 25 iterations used and tolerance set to: 1e-04

Monitored Log-Likelihood:

-19546.21 -19572.14 -19588.23 -19592.72 -19604.67 -19599.86 -19609.86
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Table 4.3: Details on an object of class SAEforest.

Object of class SAEforest

Component Short description

MERFmodel The MERFmodel object comprises information on the model fit, details on the
algorithm and variance components.

Indicators Element comprising area-level identifiers and estimates.
MSE_estimates Includes area-level identifiers and uncertainty estimates if requested and NULL

otherwise.
AdjustedSD If MSE results are requested residual variance proposed by Mendez and Lohr

(2011) is reported and NULL otherwise.
NrCovar Exists only if meanOnly = TRUE. Set to NULL except aggData = TRUE

for which it includes a list of variable names of covariates used for the calcu-
lation of calibration weights. See Krennmair et al. (2022b) for details.

Details on MERFmodel

Component Short description

Forest Random forest of class ranger modelling fixed effects of the model.
EffectModel Model of random effects of class merMod capturing structural components of

MERFs.
RandomEffects List element containing the values of random intercepts from EffectModel.
RanEffSD Standard deviation of random intercepts.
ErrorSD Standard deviation of unit-level errors.
VarianceCovariance VarCorr matrix from EffectModel.
LogLik Vector of log-likelihood of the MERF algorithm.
IterationsUsed Iterations used until convergence of the MERF algorithm is reached.
OOBresiduals Vector of OOB-residuals.
Random Character specifying the random intercept in the random effects model.
ErrorTolerance Value monitoring the MERF algorithm’s convergence.
initialRandomEffects Vector of initial specification of random effects.
MaxIterations Value specifying the maximal amount of iterations for the MERF algorithm.
call The summarized function call for the object.
data_specs Data characteristics such as domain-specific sample sizes or number of out-of-

sample areas.
data The survey sample data.

The summary output provides preliminary insights into SAE characteristics such as domain-

specific sample sizes, information on sampled and unsampled domains and the total amount of

observations. In this example, we face domain-specific sample sizes with a median of 22.5

households, motivating the use of model-based SAE. Moreover, for 24 out of 94 domains, no

direct estimates are obtainable. The second essential insight from the output reports model-

specific metrics. Starting with the random forest part, we find values such as tuning parameters

and R2 on fixed effects. The R2 of around 0.62 substantiates the model’s predictive capabil-

ity. The information on the fit of the structural component of our MERF model describes the

variance for the area-level random intercept and the individual residuals as well as the intra-

class-correlation coefficient (ICC). The ICC of about 0.29 justifies the need for an area-level

random effect. The last block of our summary-output highlights convergence properties of the

MERF algorithm, such as the amount of needed iterations and the monitored level of likelihood.

As discussed in Section 4.2, the MERF model is a composite model of a random forest

and a structural model. This structure is not only mirrored in the output of summary, but

also within each fitted model object. Thus, users can address elements directly from the fitted

model object and use the generic functions from ranger (Wright and Ziegler, 2017) and lme4
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(Bates et al., 2015), respectively. Corresponding objects are stored in ForestModel and

Effectmodel. Especially for objects of class merMod (Bates et al., 2015), there exist advan-

tageous generics to extract model components. The following functions are directly applicable:

getData, VarCorr, sigma, residuals, ranef, fixef. For instance, ranef

obtains random effects and VarCorr directly accesses the variance-covariance matrix:

R> ranef(MERFmodel1)

R> VarCorr(MERFmodel1)

An major complement of summaries and descriptive statistics are diagnostic plots. The generic

plot function in the package SAEforest, produces random forest specific diagnostic tools,

like variable importance plots (vip) and partial dependence plots (dpd). A variable importance

plot ranks the importance of predictive covariates in the estimation process of the model. Fig-

ure 4.1 reports the mean decrease in impurity (variance) calculated for each predictor as the

sum over the number of splits across all trees that include the predictor. For the variable impor-

tance plot, arguments are passed internally to the function vip (Greenwell et al., 2020). The

additional partial dependence plot (pdp) depicts the estimated marginal effect for a given num-

ber of influential covariates on the target variable. The pdp plot is produced using the package

pdp (Greenwell, 2017).

The function plot offers several options of customization: most importantly, users can

decide whether they want both plots or just the vip plot by specifying pdp_plot = FALSE.

The plotting engine is ggplot2 (Wickham, 2016) and several graphical arguments, such as

colours or themes can be directly specified. Additionally, the method function plot provides

the possibility to export a list including requested plots, which allows for modifications based

on the additivity of layers for ggplot-objects.

R> plot(MERFmodel1, num_features = 6, col = "darkgreen",

+ fill = "darkgreen", alpha = 0.8,horizontal = TRUE,

+ gg_theme = theme_minimal(), lsize = 1.5, lty = "solid",

+ grid_row = 2, out_list = FALSE,

+ pdp_plot = TRUE)

Figure 4.1 shows the first plot on the fitted object MERFmodel1. Most influential vari-

ables in the estimation process of fixed effects are net cash income (cash), age-related benefits

(age_ben), whether a person is self-employed (self_empl), obtains income from rent (rent),

profits from capital investment (cap_inv) or receives family related allowances (fam_allow).

Importance plots do not allow for inferences on predictive relations between our target vari-

able of equivalized household income and the covariates. A scrutiny of the pdp plot in Figure

4.1 highlights potential non-linear relations for instance for cash, where the average marginal

effect flattens with cash values over 50000. A similar pattern is observable for self-employed

income. Another non-linear peculiarity is the discontinuity for fam_allow around 20000.
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(b) Partial dependence plots (pdp) for 6 most influential variables.

Figure 4.1: Output from function plot.
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4.4.3 Model-tuning and important parameters

Random forests are nonparametric procedures, which performance depends on tuning parame-

ters. Function tune_parameters assists in fine-tuning of parameters for the implemented

MERF method. Essentially, this function is a modified wrapper for train from the package

caret (Kuhn, 2022), treating MERFs as a custom method. Tuning can be performed on the

following four parameters: num.trees (the number of trees for a forest), mtry (number

of variables as split candidates at in each node), min.node.size (minimal individual node

size) and splitrule (general splitting rule of individual trees).

Necessary inputs for tune_parameters are control parameters for function train

from package caret (Kuhn, 2022), such as the type of cross validation (method =

"repeatedcv"), the number of folds (number = 5), and corresponding repetitions

(repeats = 1). Moreover, the input of potential tuning parameters must be defined by a grid

of parametrization candidates. Data-specific inputs, such as the defined target variable, covari-

ates and the survey dataset resemble the input for the wrapper function SAEforest_model

discussed in Section 4.4.1.

R> fitControl <- caret::trainControl(method = "repeatedcv",

+ number = 5, repeats = 3)

# Define a tuning-grid

R> merfGrid <- expand.grid(num.trees = 500, mtry = c(3,7,9),

+ min.node.size = c(10), splitrule = "variance")

R> tune_parameters(Y = income, X = X_covar, data = eusilcA_smp,

+ dName = "district", trControl = fitControl, tuneGrid =

+ merfGrid, plot_res = FALSE)

1945 samples

15 predictor

No pre-processing

Resampling: Cross-Validated (5 fold, repeated 3 times)

Summary of sample sizes: 1557, 1557, 1556, 1556, 1554, ...

Resampling results across tuning parameters:

mtry RMSE Rsquared MAE

3 5769.200 0.7126250 3832.716

7 5496.742 0.7333739 3565.051

9 5514.225 0.7306313 3556.285

Tuning parameter ’num.trees’ was held constant at value of 500

Tuning parameter ’min.node.size’ held constant at value of 10

Tuning parameter ’splitrule’ held constant at value of variance

RMSE used to select the optimal model using the smallest value.

Final values used for the model were num.trees = 500, mtry = 7,

min.node.size = 10 and splitrule = variance.
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The output of tune_parameters coincides with output from train in the package

caret (Kuhn, 2022). Users can specify whether the summarized information should be accom-

panied by visualized diagnostics based on ggplot2 (Wickham, 2016). Most important metrics

for fine-tuning decisions are cross-validated results of the RMSE, MAE or the conditional R2.

Following the default specifcation using RMSE as most important criterion for regression, the

optimal tuning parameter on the number of randomized split candidates at each node (mtry)

is 7.

4.4.4 Mapping of results and presentation of indicators

The previous functions focussed on the estimation of indicators and the diagnosis of model

quality as well as improvements using optimized tuning parameters. Equally important to

the package SAEforest, however, is the clear and intuitive presentation of results. Function

summarize_indicators reports point and MSE estimates as well as calculated coeffi-

cients of variation (CV) from a fitted SAEforest object. The CV is an established indicator

for national statistical offices to assess associated uncertainty and quality of estimates and is

defined as:

CV(δ̂i) =

√
M̂SE(δ̂i)

δ̂i
.

Users can optionally include a character vector specifying indicators to be reported, refer-

ring to all calculated indicators (all); each default indicator’s name (Mean, Quant10,

Quant25, Median, Quant75, Quant90, Gini, Hcr, Pgap, Qsr or the func-

tion name/s of custom_indicator/s) or a vector of multiple indicator names. If the object

is estimated by SAEforest_model under option meanOnly = TRUE, all indicator argu-

ments are ignored and only the Mean is returned.

The output object of class summarize_indicators.SAEforest allows for generic

functions for data.frames such as head, tail, as.matrix, as.data.frame

and subset. In the following example, we provide a summary on the Mean, Gini and our

customized indicator, identifying the area-level maximum income and respective CVs.

R> head(summarize_indicators(MERFmodel2, MSE = FALSE, CV =TRUE,

+ indicator = c("Mean", "Gini", "my_max")))

district Mean Mean_CV Gini Gini_CV my_max my_max_CV

Amstetten 14249.76 0.055 0.248 0.070 56579.45 0.334

Baden 22648.20 0.030 0.177 0.066 69621.40 0.296

Bludenz 12411.98 0.096 0.277 0.091 45723.53 0.456

Braunau am Inn 12046.12 0.069 0.277 0.070 53530.96 0.386

Bregenz 32554.19 0.031 0.156 0.115 77513.46 0.236

Revealing spatial patterns of inequality and poverty necessitates the presentation of re-

sults with maps. Function map_indicators visualizes estimates from a fitted model ob-

ject of class SAEforest on a specified map. Essential inputs for map_indicators are

the fitted model object, the map_object of class SpatialPolygonsDataFrame (Bi-

vand et al., 2013) and the domain-level identifier from the map_object. For differing
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area-level identifiers between the model object of class SAEforest and the map_object,

map_tab provides a possibility to enter a data.frame linking areas effectively. Compa-

rably to summarize_indicators, users can choose specific indicators and whether MSE

or CV results should be mapped. For further details, we refer to the help page of function

map_indicators or Bivand et al. (2013) for a concise overview on the handling of spatial

data in R.

Emphasis lies on the flexibility to customize and adapt produced maps. Users can choose

colours and themes of the plot based on the plot engine ggplot2 (Wickham, 2016) and export

a list of ggplot-elements for further customization if return_plot = TRUE. Addition-

ally, users can export a fortified data frame comprising map data and the chosen indicators to

produce customized maps using preferred alternative mapping and plotting procedures.

Continuing on our example, we load the shape file on 94 Austrian districts and map results

from the fitted object MERFmodel2 for the Mean and the Gini.

R> data("shape_Aut")

R> map_indicators(object = MERFmodel2, MSE = FALSE, CV = TRUE,

+ map_obj = shape_Aut, indicator = c("Mean", "Gini"),

+ map_dom_id = "PB")

The map of mean equivalized household income shown by Figure 4.2 indicates differences

across Austrian districts, where “Mödling” reports the highest value, which is in accordance

to official statistics of income in Austria (Statistik Austria, 2021). Also inequality measured

by the Gini is not equally distributed ranging from 0.141 (“Urfahr-Umgebung”) to a maximum

of 0.301 (“Zell am See”). The majority of CVs for domain-specific values of mean and Gini

estimates lies below the 20% threshold, which meets the reliability criterion of Eurostat (2019).

Figure 4.2: District-level estimates for Mean and Gini-coefficient
including CVs mapped on Austrian territory. Resulting plots are produced

from function map_indicators.
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4.5 Discussion and outlook

This package aims to bridge concepts of machine learning methods and ‘traditional’ perspec-

tives of SAE. From a methodological perspective, the estimation of point and uncertainty es-

timates for domain-level indicators is performed under unit-level and aggregated covariates

and dependency structures of observations are modelled using a semi-parametric framework of

MERFs. Benefits of random forests align with the proclaimed focus on robustification of SAE-

models against model-failure (e.g. providing insurances against model-misspecification, valid

variable selection including complex and potentially non-linear interactions between covariates

and the effective handling of outliers) (Jiang and Rao, 2020). Moreover, random forests handle

high-dimensional (p > n) datasets enabling additional perspectives on research concerning

Big Data sources (Marchetti et al., 2015; Schmid et al., 2017).

The package SAEforest adds valuable insights and advantages to the existing repertoire of

SAE methods and yet remains within the methodological tradition of SAE. This includes ef-

forts to provide solutions within the context of domain-level indicators, dependent data struc-

tures and in the broader context of survey methodology. We acknowledge that compared to

LMMs, benefits of flexibility serve at cost of explainability and attribution, however, this is

mitigated by the package’s emphasis on informative summary diagnostics and plots (e.g. vip

and pdp plots). In addition, the package functionality is characterized by an intuitive workflow

and functions to facilitate the visualization of geospatial data. Future versions of the package

will ideally include a generalization of our framework to binary and count data. Additionally,

the extension towards other machine learning approaches, such as Support Vector Machines,

Gradient Boosting and Bayesian Additive Regression Trees is a thought-provoking goal for

further research.
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Appendix D

D.1 Explanation of variables

Table D.1: Details on the predictive covariates in the survey and
population-level datasets.

Variable Explanation

eqIncome numeric; a simplified version of the equivalized household income. Only available in the
survey sample.

eqsize numeric; the equivalized household size according to the modified OECD scale.
gender factor; the person’s gender (levels: male and female).
cash numeric; employee cash or near cash income (net).
self_empl numeric; cash benefits or losses from self-employment (net).
unempl_ben numeric; unemployment benefits (net).
age_ben numeric; old-age benefits (net).
surv_ben numeric; survivor’s benefits (net).
sick_ben numeric; sickness benefits (net).
dis_ben numeric; disability benefits (net).
rent numeric; income from rental of a property or land (net).
fam_allow numeric; family/children related allowances (net).
house_allow numeric; housing allowances (net).
cap_inv numeric; interest, dividends, profit from capital investments in unincorporated business

(net).
tax_adj numeric; repayments/receipts for tax adjustment (net).
state factor; state (nine levels).
district factor; districts (94 levels).
weight numeric; constant weight.
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Abstracts in English

Abstract: Estimating regional income indicators under transformations and ac-
cess to limited population auxiliary information

This paper promotes the use of random forests as versatile tools for estimating spatially disag-

gregated indicators in the presence of small area-specific sample sizes. Small area estimators

are predominantly conceptualized within the regression-setting and rely on linear mixed mod-

els to account for the hierarchical structure of the survey data. In contrast, machine learning

methods offer non-linear and non-parametric alternatives, combining excellent predictive per-

formance and a reduced risk of model-misspecification. Mixed effects random forests combine

advantages of regression forests with the ability to model hierarchical dependencies. This

paper provides a coherent framework based on mixed effects random forests for estimating

small area averages and proposes a non-parametric bootstrap estimator for assessing the uncer-

tainty of the estimates. We illustrate advantages of our proposed methodology using Mexican

income-data from the state Nuevo León. Finally, the methodology is evaluated in model-based

and design-based simulations comparing the proposed methodology to traditional regression-

based approaches for estimating small area averages.

Keywords: official statistics, small area estimation, mean squared error, tree-based methods

Abstract: Analysing opportunity cost of care work using mixed effects random
forests under aggregated census data

Reliable estimators of the spatial distribution of socio-economic indicators are essential for

evidence-based policy-making. As sample sizes are small for highly disaggregated domains,

the accuracy of the direct estimates is reduced. To overcome this problem small area estimation

approaches are promising. In this work we propose a small area methodology using machine

learning methods. The semi-parametric framework of mixed effects random forest combines

the advantages of random forests (robustness against outliers and implicit model-selection)

with the ability to model hierarchical dependencies. Existing random forest-based methods

require access to auxiliary information on population-level. We present a methodology that

deals with the lack of population micro-data. Our strategy adaptively incorporates aggregated

auxiliary information through calibration-weights - based on empirical likelihood - for the es-

timation of area-level means. In addition to our point estimator, we provide a non-parametric

bootstrap estimator measuring its uncertainty. The performance of the proposed point estima-
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tor and its uncertainty measure is studied in model-based simulations. Finally, the proposed

methodology is applied to the 2011 Socio-Economic Panel and aggregate census information

from the same year to estimate the average opportunity cost of care work for 96 regional plan-

ning regions in Germany.

Keywords: official statistics, small area estimation, mean squared error, tree-based methods

Abstract: The estimation of poverty indicators using mixed effects random forests:
case study for the Mexican state of Veracruz

Mapping and analysing the spatial concentration of poverty is imperative for evidence-based

policies to translate into inclusive and sustainable actions. The use of national sample surveys

to obtain detailed and reliable estimates for poverty indicators on disaggregated geographical

and other domains (e.g. demographic groups) imposes a methodological challenge. Small Area

Estimation is a collective term for (model-based) procedures, which combine survey data with

existing auxiliary information (e.g. census or administrative data) using predictive models to

estimate domain-specific statistical indicators. We propose the use of mixed effects random

forests as flexible, robust, and reliable method to produce domain-specific cumulative distribu-

tion functions from which (non-linear) poverty estimators can be obtained. This paper is driven

by our aim to inform a transparent and steady discussion on current methodological improve-

ments for Small Area Estimation, such as the use of (tree-based) machine learning methods and

their contribution to recent requirements for poverty assessment. We evaluate proposed point

and uncertainty estimators in a design-based simulation and focus on a case study uncovering

spatial patterns of poverty for the Mexican state of Veracruz.

Keywords: official statistics; small area estimation; mean squared error; mixed models, ran-

dom forest

Abstract: The R package SAEforest

The R package SAEforest promotes the use of Mixed Effects Random Forests (MERFs) for

applications of Small Area Estimation. The package effectively combines functions for the

estimation of spatially disaggregated linear and non-linear indicators using survey sample data.

Models increase the precision of direct estimates from survey data, combining unit-level or

aggregated covariate information from auxiliary data. Included procedures facilitate the es-

timation of domain-level economic and inequality metrics and assess associated uncertainty.

The package provides procedures to simplify the analysis of model performance of MERFs

and enables the visualization of predictive relations from covariates. Additionally, the pack-

age includes a function for fine-tuning of required hyper-parameters. General emphasis lies on

straightforward interpretation and mapping of results.

Keywords:official statistics, mixed effects random forests, small area estimation, poverty map-

ping
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Kurzzusammenfassungen auf Deutsch

Zusammenfassung: Flexible Schätzung von Mittelwerten für kleine Stichprobe-
numfänge mit Mixed-Effects-Random-Forests

In diesem Beitrag wird die Verwendung von Random-Forests als vielseitiges Instrument zur

Schätzung räumlich disaggregierter Indikatoren bei kleinen Stichprobengrößen vorgestellt. Schät-

zer für diese sogenannten Small-Areas werden vorwiegend durch linear gemischte Regressi-

onsmodelle erzeugt, um die hierarchische Struktur der Erhebungsdaten zu berücksichtigen. Im

Gegensatz dazu bieten Methoden des maschinellen Lernens nicht-lineare und nicht-parametrische

Alternativen, die eine hervorragende Prädiktion mit geringerem Risiko von Modellfehlspezi-

fizierungen kombinieren. Mixed-Effects-Random-Forests kombinieren die Vorteile von baum-

basierten prädiktiven Algorithmen mit der Fähigkeit hierarchische Abhängigkeiten zu model-

lieren. In diesem Beitrag wird ein methodologischer Rahmen für die Grundlage von Random

Forests für die Schätzung von Durchschnittswerten für kleine Stichprobenbereiche geschaf-

fen. Darüber hinaus wird ein nicht-parametrischer Bootstrap-Schätzer für die Bewertung der

Unsicherheit der Schätzungen vorgeschlagen. Wir veranschaulichen die Vorteile unserer vor-

geschlagenen Methodik anhand mexikanischer Einkommensdaten aus dem Bundesstaat Nuevo

León. Die Methodik wird in modellbasierten und designbasierten Simulationen evaluiert und

traditionellen, regressionsbasierten Verfahren gegenübergestellt.

Schlüsselwörter: Amtliche Statistik, Small-Area-Schätzung, mittlerer quadratischer Fehler,

baumbasierte Methoden

Zusammenfassung: Analyse der Opportunitätskosten von Pflegearbeit mit
Mixed-Effects-Random-Forests unter Verwendung aggregierter Zensusdaten

Für evidenzbasierte politische Entscheidungsfindungen sind zuverlässige Schätzungen der

räumlichen Verteilung sozioökonomischer Indikatoren unerlässlich. Da höhere räumliche

Auflösungen mit kleineren Stichprobengrößen einhergehen, ist die Genauigkeit der direkten

Schätzer reduziert. Um dieses Problem zu lösen, sind Small-Area-Verfahren vielversprechend.

Diese Arbeit schlägt eine Small-Area-Methode vor, die Machine-Learning-Verfahren verwen-

det. Das semiparametrische Konzept von Mixed-Effects-Random-Forests kombiniert die

Vorteile von Random-Forests (Robustheit gegenüber Ausreißern und implizite Modellauswahl)

mit der Fähigkeit hierarchische Abhängigkeiten zu modellieren. Allerdings benötigen Random-

Forest-Methoden Zugang zu Hilfsinformationen auf Populations-Ebene. Daher wird eine

Methode vorgestellt, die mit fehlenden Populations-Mikrodaten umgehen kann. Die Strategie

beruht auf dem adaptiven Einbezug - basierend auf der empirischen Likelihood - von aggre-

gierten Hilfsinformationen in die Kalibrierungsgewichte für die Schätzung von Mittelwerten

auf Gebietsebene. Zusätzlich zu dem Punktschätzer wird ein nicht-parametrischer Bootstrap-

Schätzer als Unsicherheitsmaß bereitgestellt. Die Qualität des vorgeschlagenen Punktschät-

zers sowie dessen Unsicherheitsmaß wird in modellbasierten Simulationen untersucht. Ab-

schließend wird die vorgeschlagene Methode auf das Sozioökonomische Panel von 2011 unter

Verwendung von aggregierten Zensusdaten aus demselben Jahr angewandt, um die durch-

schnittlichen Opportunitätskosten für Pflegearbeit in den 96 deutschen Raumordnungsregionen

zu schätzen.
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Summaries

Schlüsselwörter: Amtliche Statistik, Small-Area-Schätzung, mittlere quadratische Abweich-

ung, baumbasierte Verfahren

Zusammenfassung: Die Schätzung von Armutsindikatoren unter Verwendung
von Mixed-Effects-Random-Forests: Fallstudie für den mexikanischen Bundes-
staat Veracruz

Die Visualisierung und Analyse der räumlichen Konzentration von Armut ist für die Realisie-

rung von langfristigen und nachhaltigen Politikmaßnahmen von Bedeutung. Die Verwendung

nationaler Stichprobenerhebungen für detaillierte und zuverlässige Schätzungen von (räum-

lich) disaggregierten Armutsindikatoren stellt eine methodische Herausforderung dar. Small-

Area-Estimation ist ein Sammelbegriff für (modellgestützte) Verfahren, bei denen Erhebungs-

daten mit vorhandenen Zusatzinformationen (z. B. Zensus- oder Verwaltungsdaten) unter Ver-

wendung von Vorhersagemodellen kombiniert werden, um statistische Indikatoren für kleine

Stichprobenbereiche zu schätzen. Dieser Beitrag empfiehlt die Verwendung von sogenannten

Mixed-Effects-Random-Forests als flexible, robuste und zuverlässige Methoden zur Erstellung

kumulativer Verteilungsfunktionen für kleine Stichprobenumfänge. Auf Basis dieser geschätz-

ten kumulativen Verteilungsfunktionen können (nicht-lineare) Armutsschätzer gewonnen wer-

den. Ein weiteres Ziel dieser Arbeit ist es, eine transparente und kontinuierliche Diskussion

über aktuelle methodische Entwicklungen im Bereich von Small-Area-Estimation zu eröffnen,

wie z.B. die Verwendung von Methoden des maschinellen Lernens und ihre Beiträge zur Ar-

mutsforschung. Wir evaluieren vorgeschlagene Punkt- und Unsicherheitsschätzer in einer de-

signbasierten Simulation und konzentrieren uns auf eine Fallstudie zur Ermittlung räumlicher

Armut für den mexikanischen Bundesstaat Veracruz.

Schlüsselwörter: Amtliche Statistik; Small-Area-Schätzung; mittlerer quadratischer Fehler;

gemischte Modelle, Random Forest

Zusammenfassung: Das R-Paket SAEforest

Das R-Paket SAEforest erleichtert die Verwendung von Mixed-Effects-Random-Forests für

Anwendungen (räumlich) disaggregierter Schätzungen (i.e. Small-Area-Estimation). Das Pa-

ket kombiniert Funktionen für die Schätzung (nicht-)linearer Indikatoren unter Verwendung

von Erhebungsstichprobendaten. Die Modelle erhöhen die Präzision direkter Schätzungen aus

Umfragedaten, indem sie Informationen über Kovariaten auf individualer oder aggregierte Ebe-

ne aus verfügbaren alternativen Hilfsdaten kombinieren. Enthaltene Verfahren erleichtern die

Schätzung von Wirtschafts- und Ungleichheitsmaßzahlen für räumliche oder demografischen

Gruppen und bewerten die verbundene Unsicherheit der Schätzungen. Das Paket bietet Me-

thoden zur einfachen Darstellung der Modeleigenschaften von Mixed-Effects-Random-Forests

und ermöglicht die Visualisierung der Vorhersagebeziehungen der Kovariaten. Zusätzlich ent-

hält das Paket eine Funktion zur Feinabstimmung der erforderlichen Hyperparameter. Der

Schwerpunkt des Pakets liegt auf einer einfachen Anwendung von Mixed-Effects-Random-

Forests sowie der Interpretation und Abbildung der Ergebnisse.

Schlüsselwörter: Amtliche Statistik, Mixed Effects Random Forests, Small-Area-Schätzung,

Armutskartierung
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