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Boltzmann generators approach the sampling problem in many-body physics by combining a normalizing
flow and a statistical reweighting method to generate samples in thermodynamic equilibrium. The equilibrium
distribution is usually defined by an energy function and a thermodynamic state. Here, we propose temperature
steerable flows (TSFs) which are able to generate a family of probability densities parametrized by a choosable
temperature parameter. TSFs can be embedded in generalized ensemble sampling frameworks to sample a
physical system across multiple thermodynamic states.
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I. INTRODUCTION

Sampling equilibrium states of many-body systems such as
molecules, materials, or spin models is one of the grand chal-
lenges of statistical physics. Equilibrium densities of system
states x are often given in the form

μX (x) ∝ exp[−u(x)], (1)

where u(x) is a reduced (unitless) energy that combines the
system’s potential U (x) (if momenta are of interest we have
the Hamiltonian energy instead) with thermodynamic vari-
ables that define the statistical ensemble. In the canonical
ensemble the reduced energy is given by u(x) = U (x)/τ
where the thermal energy τ = kBT is proportional to the
temperature T and kB is the Boltzmann constant. In order to
model a system across a range of thermodynamic states, we
would like to sample a family of densities parametrized by the
thermodynamic control variables—in the canonical ensemble,

μτ
X (x) ∝ exp

(
−U (x)

τ

)
. (2)

The most common approaches to sample densities (1)
in physics and chemistry are Markov chain Monte Carlo
(MCMC) or molecular dynamics (MD)—both proceed in
steps, making small changes to x at a time, and guarantee
that the target density (1) will be sampled asymptotically.
The convergence of such sampling algorithms is often slowed
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down by barriers in the energy landscape, which may result in
very long, possibly unfeasible simulation times.

Additionally, many applications require running simula-
tions at various thermodynamic states, e.g., to study the phase
behavior and temperature dependence of materials and bio-
logical matter [1,2]. Moreover, generalized ensemble methods
such as parallel tempering (PT) are frequently used to facil-
itate transitions across energy barriers and thereby enhance
sampling. However, these techniques often require dozens
of parallel simulations to enable Monte Carlo exchanges be-
tween different temperatures [3,4].

A novel alternative to traditional sampling methods are
generative machine learning models. Recently, there has been
a lot of interest in training normalizing flows [5–9] to sample
densities of many-body physics systems such as in Eq. (1)
directly without having to run long, correlated simulation
chains. Normalizing flows (see Supplemental Material [10]
for a brief introduction) transform an easy-to-sample prior
distribution pZ (z), e.g., a multivariate normal distribution, via
a transformation x = f (z) to the output distribution pX (x). If
f (z) is invertible, pX (x) can be computed by the change of
variable formula

pX (x) = pZ (z)|det Jf (z)|−1. (3)

Boltzmann generators (BGs) [11] combine normalizing flows
to minimize the distance between Eqs. (1) and (3) with a
statistical reweighting or resampling method to generate un-
biased samples from Eq. (1). This and similar approaches
have been used to sample configurations of molecular and
condensed matter systems [11,12], spin models [13–15],
and gauge configurations in lattice quantum chromodynam-
ics [16–19]. However, these previous generative approaches
are only able to sample at a single predefined thermodynamic
state.

This Letter shows that normalizing flows can be general-
ized to families of ensembles across multiple temperatures
and thereby greatly increase the range of thermodynamic
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states accessible to a sampling algorithm. Specifically, we
develop temperature steerable flows (TSFs) that correctly
parametrize the distribution pX by a temperature variable τ

such that it follows Eq. (2). We evaluate the method on the
XY model [20] finding the correct temperature dependence of
the magnetization. Moreover, we show for two small peptides,
alanine dipeptide and tetrapeptide, that the TSF is capable of
producing samples close to equilibrium at different temper-
atures. When trained on a single high temperature, the TSF
can simultaneously sample at lower temperatures of interest,
allowing a reliable estimation of the physical observables
and conformational distributions. Finally, due to this property,
TSFs are used to facilitate exchanges in classical parallel
tempering MD and thereby reduce autocorrelation times sig-
nificantly.

II. TEMPERATURE STEERABLE FLOWS

A. Temperature scaling

Up to a normalization constant, a change from temperature
τ to τ ′ corresponds to raising the Boltzmann distribution to
the power of κ = τ/τ ′, μτ ′

X (x) ∝ [μτ
X (x)]κ . We now consider

normalizing flows fτ with priors pτ
Z that depend on τ as a

steerable parameter. Using Eq. (3) the output distribution of a
flow scales temperatures equally, if for any two temperatures
τ, τ ′,

pτ ′
Z (z)|det Jfτ ′ (z)|−1 ∝ [pτ

Z (z)|det Jfτ (z)|−1]κ . (4)

In this Letter we thus consider flows to be temperature
steerable, if they preserve this scaling condition. We construct
flows that preserve this proportionality in two different man-
ners: by either keeping the Jacobian constant and preserving
the scaling condition in the prior or selecting a constant prior
and respecting the scaling condition in the flow.

B. Temperature steerable flows by volume preservation

The proportionality in the prior distribution can be matched
by Gaussians with variance τ , i.e., pτ

Z (z) = N (z|0, τ ), which
fulfills pτ ′

Z (z) ∝ [pτ
Z (z)]κ . This results in a condition on the

Jacobian of the flow | det Jfτ (z)|κ ∝ | det Jfτ ′ (z)|. Hence, flows
with constant Jacobians, i.e., | det Jfτ ′ (z)| = const, are temper-
ature steerable.

This still holds for so-called augmented normalizing
flows [21], where the prior and target distributions are aug-
mented with a Gaussian distribution pτ

A(q) = N (q|0, τ ) and
pτ

A(p) = N (p|0, τ ), respectively. This augmented flow fτ is
trained to match the output distribution pτ

X,A(x, p) with the
joint target distribution μτ

X (x)pτ
A(p). The auxiliary variables

can be interpreted as physical momenta [6], making the archi-
tecture similar to the Hamiltonian Monte Carlo method [22].
However, in contrast we do not propagate the system by
Hamiltonian dynamics, but learn a (deterministic) flow, as
in Hamiltonian flows [23,24]. As we are mostly interested
in the Boltzmann distribution μX (x) of the positions, this
architecture can also be viewed as a stochastic normalizing
flow [12].

To generate configuration samples x from the marginal
output distribution pτ

X (x) at temperature τ , we follow three
consecutive steps: (1) sample the latent configuration z ∼

FIG. 1. Temperature steerable flow architectures based on cou-
pling layers, which include elementwise multiplication (×) and
addition (+). Top: Auxiliary momenta q and coordinates z are
coupled with volume-preserving networks where the outputs of the
multilayer perceptron (MLP) used to generate the scaling variables
are normalized. The first layer multiplies the latent space coor-
dinates z with a scalar factor k, which adjusts for the difference
in entropy between latent and phase space. Bottom: Temperature
steerable neural spline flow architecture. Samples from the uniform
distribution are split into two channels which are conditioned on the
neural spline flow (NSF) transformation of the other channel. The
parameters for the flow are transformed to the given temperature τ .
This is followed by several layers of volume-preserving transforma-
tions [25]. See Supplemental Material [10] for a description of the
flow transformations.

pτ
Z (z) and auxiliary momenta q ∼ pτ

A(q), and define the point
in phase space (z, q); (2) propagate the point in phase space
by the flow (x, p) = fτ (z, q); and (3) project onto the config-
uration variables x.

An expressive volume-preserving dynamics, i.e.,
|det Jfτ (z, q)| = 1, is obtained by altering real-valued
non-volume-preserving transformations [25], such that
the product of the outputs of the scaling layers is equal
to unity. This is done by subtracting the mean of the log
outputs from each scaling layer as in Ref. [26]. In addition
to these volume-preserving layers we scale the latent space
coordinates by a trainable scalar, which allows us to adjust
for the entropy difference between the prior and the target.
The resulting flow architecture, which still fulfills the scaling
condition (4), is shown in Fig. 1 (top).

As the flow fulfills the temperature scaling condition, a
temperature change of the augmented prior, i.e., τ → τ ′,
changes the output accordingly. In the case of a factorized
output distribution pτ

X,A(x, p) = pτ
X (x)pτ

A(p), the marginal
output distribution pτ

X (x) is scaled correctly with the temper-
ature as well. This is ensured if the joint target distribution
μτ

X,A(x, p) = μτ
X (x)pτ

A(p) is matched correctly.

C. Temperature steerable flows with uniform prior

Instead of a Gaussian prior, one can also use a uniform
prior distribution on the unit box [0, 1]d in combination
with a single flow layer that scales with the temperature
to construct a TSF. While finding a flow architecture that
precisely reproduces the temperature scaling property is dif-
ficult, a good approximation is obtained using neural spline
flows [27,28]. With this type of flow we can adjust the parame-
ters given the temperature, such that the temperature scaling is
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approximately correct (see Supplemental Material [10]). In
addition we combine it with volume-preserving flows, i.e.,
nonlinear independent component estimation (NICE) [29], to
obtain a more expressive transformation [see Fig. 1 (bottom)].

D. Training

As in Ref. [11], the flows are trained by a combination
of a maximum-likelihood and energy-based loss. Maximum-
likelihood training minimizes the negative log likelihood

LML = 〈− log pτ
X,A

〉
μτ

X,A

= 〈− log pZ,A
[

f −1
τ (x, p)

]
− log

∣∣ det Jf −1
τ

(x, p)
∣∣〉

x,p∼μτ
X (x)pτ

A(p), (5)

which agrees with the forward Kullback-Leibler divergence
up to a constant. Computing this expectation requires samples
from the product distribution μτ

X (x)pτ
A(p), where the configu-

rations x are generated by (MD) simulations, and momenta p
are independent Gaussian noise.

As the target energy u(x, p) is defined by the physical
system of interest, we can also use energy-based training,
which minimizes the reverse Kullback-Leibler divergence

LKL = 〈− log μτ
X,A + log pτ

X,A

〉
pτ

X,A

=
〈
τ−1

(
U (x) + |p|2

2

)
− log |det Jfτ (z, q)|

〉
z,q∼pτ

Z (z)pτ
A(q)

+ const, (6)

with (x, p) = fτ (z, q). This expectation is computed over the
thermodynamic ensemble generated by the flow at a given
temperature. A TSF trained with Eqs. (5) and (6) will im-
plicitly learn a representation of the Boltzmann distribution
that is transferable across temperatures. It can still be useful
to combine different target temperatures during training to
broaden the range of temperatures at which the TSF performs
well.

Furthermore, we can also combine training by example and
training by energy [11] using a convex combination L = (1 −
λ)LML + λLKL.

E. Unbiased sampling: Importance sampling
and latent Monte Carlo

As in Ref. [11], we use two different methods to produce
unbiased samples from the target distribution μτ

X . First, we
employ the flow as an importance sampler and compute ther-
modynamic observables 〈o〉μτ

X
by Zwanzig reweighting,

〈o〉μτ
X

= 〈o · e−U/τ−log pτ
X 〉pτ

X

〈e−U/τ−log pτ
X 〉pτ

X

. (7)

Second, we extend the flow-based MCMC moves from
Ref. [11] to the (augmented) phase space.

A proposal x′ is generated from configuration x by sam-
pling auxiliary momenta p ∼ pτ

A(p), then applying the inverse
dynamics (z, q) = f −1

τ (x, p), followed by a random displace-

ment (z′, q′) = (z + �z, q + �q), with �z,�q ∼ N (0, σ 2),
and finally transforming back (x′, p′) = fτ (z′, q′). Accepting
such a step with probability

pτ
acc[(x, p) → (x′, p′)]

=min

{
1, exp

[
−τ−1

(
U (x′) − U (x)+ ‖p′‖2

2
− ‖p‖2

2

)]}

(8)

guarantees detailed balance in configuration space and thus
ensures convergence to the Boltzmann distribution. As the
TSF is able to generate distributions at several temperatures,
we can combine the MCMC moves with PT [4,30,31]. Addi-
tionally to TSF-MCMC steps at a set of temperatures, samples
can be randomly exchanged between two randomly chosen
temperatures with the usual acceptance probability. A sum-
mary of the sampling algorithm is given in the Supplemental
Material [10].

III. EXPERIMENTS

We carry out experiments for the XY model and two
small peptides, showing that TSFs can sample the respective
Boltzmann distributions at different temperatures efficiently.
The resulting flows are used to compute observables at low-
temperature states from high-temperature simulations and
compute temperature-dependent quantities such as absolute
free energy from samples at a single thermodynamic state (see
Supplemental Material [10]).

A. XY model

As an example with angular symmetry, we investigate the
XY model, which can be considered a continuous state-space
version of the Ising model. In our experiments we consider
quadratic two-dimensional lattices with N × N spins. Each
spin has a continuous angle θi ∈ [−π ; π ] and is represented
by si = (cos θi, sin θi )T . Each spin interacts with its four near-
est neighbors and an external field h = (h, 0). Hence, the
Hamiltonian of the system is given by

H(s1, . . . , sN2 ) = −J
∑
〈i j〉

si · s j −
∑

i

h · si,

where
∑

〈i j〉 denotes the sum over all nearest-neighbor pairs
with periodic boundaries and J is the interaction constant. For
our experiments we select the parameters as J = h = kBT0 and
a lattice of 16 × 16 spins. As observable, we select the mean-
squared magnetization per spin 〈M2〉/N2 = N−2〈∑i si · si〉
at a given temperature. For producing reference configura-
tions, we use long runs of Glauber dynamics [32]. The TSF
consists of a uniform prior, a temperature scaled NSF, fol-
lowed by seven blocks of circular NICE [see Fig. 1 (bottom)
and Supplemental Material [10] for details]. Training is per-
formed solely with the energy-based loss [Eq. (6)]. Since
NSFs are only approximately temperature scaling, we use
a convex combination of temperatures T = {0.5, 1.0, 1.3}T0

for training. We generate data sets at temperatures ranging
0.5T0, 0.6T0, . . . , 1.0T0 and observe an excellent overlap of
the reweighted energies at the highest and lowest temperature
with the reference configurations [Fig. 2 (top)]. Furthermore,
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FIG. 2. Results of the TSF trained on the two-dimensional XY
model. Top: Distribution of energies at the training temperatures
T0 and 0.5T0 obtained by MCMC, TSF, and TSF with reweighting.
Bottom: Magnetization as a function of the temperature compared
between the TSF and MCMC samples.

we compare the mean-squared magnetization per spin and
again find excellent agreement between TSF and Glauber
dynamics [Fig. 2 (bottom)].

B. Alanine di- and tetrapeptide

We further test TSFs on the alanine di- and tetrapeptide
molecules in an implicit solvent model. For this system we
use an invertible coordinate transformation layer and operate
the TSF on a representation of the molecule in terms of dis-
tances and angles. Our goal is to use samples at T = 600 K to
train the TSF and then use the TSF to sample at T = 300 K,
comparing it to a MD simulation at T = 300 K.

1. Alanine tetrapeptide

With the TSF we are able to generate samples at T =
300 K that closely resemble the equilibrium distribution. To
demonstrate this, we project the configurations into the space
of the slowest transition between states. These are determined
by a time-independent component analysis (TICA [33]) from
an exhaustive MD simulation at T = 300 K. We observe
generally good agreement with MD simulations at the low
temperature [Figs. 3(e)–3(g)] in the relevant slowest co-
ordinates, while slightly underestimating the barrier height
[Fig. 3(g)].

2. Alanine dipeptide

We use the TSF to generate samples in configuration
space and compare the Ramachandran plots. At T = 300 K
[Figs. 3(a) and 3(b)] the TSF still finds the major minima
at around φ ≈ −2, but undersamples the minimum at φ ≈ 1.
This deviation from the target distribution likely stems from
limited expressivity of the flow. We further utilize the TSF
to compare the free-energy difference of the two states along
the φ axis as a function of the temperature [Fig. 3(c)]. We
observe an exact match at the training temperature and slight
deviations when moving away from it. To recover the cor-
rect distribution along the φ angles, we use the Monte Carlo
scheme in a PT fashion with eight temperatures in the range
300–600 K [see Supplemental Material [10] for details].

FIG. 3. Results for alanine dipeptide (ala2) [(d), first row] and alanine tetrapeptide (ala4) [(h), second row] in implicit solvent. All TSFs
are trained from samples at 600 K. (a), (b) Ramachandran plots produced by the TSF and MD at 300 K. (c) Comparison of the free-energy
difference of the two metastable states along the φ axis. (e), (f) Comparison of the first two time-independent components (TICs) of ala4 at the
sampling temperature of 300 K. (g) The free energy along the first TIC.
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FIG. 4. Comparison of replica exchange molecular dynamics
simulation (REMD) and the TSF with parallel tempering (TSF-PT),
operating in a PT scheme on eight different temperatures in the
range between 300 and 600 K. Top: One example trajectory of φ

angles of the ten independent runs. Despite being over two times
longer, no transitions are observed in three out of the ten REMD
runs, while all of the TSF-PT trajectories cross many times between
the two metastable states. Bottom: Autocorrelation of the φ angle
as a function of underlying MCMC/MD steps. The autocorrelation
function decays more rapidly in the TSF-PT method. This hints
toward this method being more sampling efficient. Nontraversing
trajectories of the REMD method were excluded in the calculation
of the autocorrelation.

To assess the efficiency of the sequential sampling pro-
cedure, we compare it to the replica exchange molecular
dynamics simulation (REMD) at the same temperatures. We
observe that for ten independent runs, in REMD only seven
transition between the metastable states within 10 M steps,
while all ten transition with the TSF-PT method, which addi-
tionally only consists of 4 M steps [Fig. 4 (top)]. Furthermore,
the autocorrelation of the slowest process [Fig. 4 (bottom)],
which are the transitions along the φ angle, decays consider-
ably faster in the TSF-PT method. In addition, we compare
the methods based on their sampling efficiency η = Neff/N ,
where N is the number of underlying MCMC steps and Neff

is the effective sample size (see Supplemental Material [10]
for details). Table I shows that the TSF-PT method produces
independent samples at about four times the rate of the REMD
method.

TABLE I. Efficiency as the number of effective steps per under-
lying sampling step for different sampling methods.

Method TSF-PT REMD MD (600 K) MD (300 K)

η × 104 1.36 0.32 0.38 0.02

IV. DISCUSSION

In this Letter, we derived and constructed temperature
steerable flows (TSFs) that correctly scale the output distri-
bution of a BG with temperature. To this end we formulated a
condition for such flows and introduced two different methods
of constructing them. We showed that this type of flow can be
used to train a BG at one temperature and generate distribu-
tions at lower temperatures.

For the XY model we were able to predict the correct
temperature dependence of the magnetization. Furthermore,
we showed for alanine dipeptide that the efficiency of parallel
tempering can be improved by using our TSF for the MCMC
proposals at different temperatures. Further progress could be
made by combining samples at different temperatures when
collecting training data and thus improve the quality of the
BG.

While the presented results demonstrate the promise and
uniqueness of the TSF method, practical applications to
high-dimensional physical systems of interest will likely re-
quire further modifications to the network architecture. Future
work should consider combining TSF with conditioner net-
works that respect the symmetries of the potential energy.
In this spirit, the presented temperature scaling property
complements existing equivariant flows that maintain group
transformations such as rotation and permutation [34–37].
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