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Abstract
We propose a new bootstrap algorithm for inference for impulse responses in structural
vector autoregressive models identified with an external proxy variable. Simulations
show that the new bootstrap algorithm provides confidence intervals for impulse
responses which often have more precise coverage than and similar length to the com-
peting moving-block bootstrap intervals. An empirical example shows how the new
bootstrap algorithm can be applied in the context of identifying monetary policy shocks.

Keywords Bootstrap inference · Structural vector autoregression · Impulse
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JEL Classification C32

1 Introduction

In structural vector autoregressive (VAR) analysis one strand of the literature uses
external instruments, also called proxies, to identify shocks of interest (e.g., Stock &
Watson, 2012; Mertens & Ravn, 2013; Piffer & Podstawski, 2018; Kilian &
Lütkepohl, 2017,Chapter 15). The related models and methods are often labelled
proxy VARs. In this context, frequentist inference for impulse responses is typically
based on bootstrap methods. In some of the literature, the wild bootstrap (WB) is
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used (e.g., Mertens & Ravn, 2013; Gertler & Karadi, 2015; Carriero et al., 2015).
However, work by Brüggemann et al. (2016) and Jentsch and Lunsford (2019, 2021)
shows that wild bootstrap methods are not asymptotically valid in this context and
they propose a moving-block bootstrap (MBB) which provides asymptotically
correct confidence intervals for impulse responses under very general conditions. It
can cope, for example, with conditionally heteroskedastic (GARCH) VAR errors
which is an advantage in many applied studies where financial data are of interest.
On the other hand, (Lütkepohl and Schlaak, 2019) demonstrate by simulations that
the MBB can result in confidence intervals with low coverage rates in small samples.

In this study, we propose an alternative bootstrap method for proxy VARs which is
based on resampling not only the VAR residuals but also the residuals of a model for
the proxy and is therefore signified as PRBB (proxy residual-based bootstrap). We
show by simulation that it leads to quite precise confidence intervals for impulse
responses in small samples. This makes it attractive for macroeconomic analysis
where often smaller samples with less than 200 observations are available. A major
advantage of the MBB is that it remains asymptotically valid even if the data exhibit
conditional heteroskedasticity. Although the PRBB does not explicitly account for
GARCH, we show by simulation that in small samples it may even outperform the
MBB if the VAR errors are driven by a GARCH process.

The remainder of the paper is structured as follows. The proxy VAR model is
presented in the next section. Estimation of proxy VAR models is considered in Sect.
3. The alternative bootstrap methods considered in this study are presented in Sect. 4
and a small sample Monte Carlo comparison of the bootstrap methods is discussed in
Sect. 5. An illustrative example is presented in Sect. 6, Sect. 7 concludes and Sect. 8
discusses possible extensions.

2 The Proxy VAR Model

A K-dimensional reduced-form VAR process,

yt ¼ mþ A1yt�1 þ � � � þ Apyt�p þ ut; ð2:1Þ
is considered. Here m is a ðK � 1Þ constant term and the Ai, i ¼ 1; . . .; p, are ðK � KÞ
slope coefficient matrices. The reduced-form error, ut, is a zero mean white noise
process with covariance matrix Ru, i.e., ut �ð0;RuÞ. The vector of structural errors,
wt ¼ ðw1t; . . .;wKtÞ0, is such that ut ¼ Bwt, where B is the nonsinguar ðK � KÞ
matrix of impact effects of the shocks on the observed variables yt. Thus,
wt �ð0;Rw ¼ B�1RuB�10Þ, where Rw is a diagonal matrix.

If the first column, say b, of B is known, the structural impulse responses of the
first shock, hi ¼ ðh11;i; . . .; hK1;iÞ0, can be computed as

hi ¼ ðh11;i; . . .; hK1;iÞ0 ¼ Uib; i ¼ 1; . . .;H ;

where the ðK � KÞ matrices Ui ¼
Pi

j¼1 Ui�jAj can be obtained recursively from the

VAR slope coefficients using U0 ¼ IK (e.g.,(Lütkepohl, 2005, Chapter 2). In the
following, the ðK � ðH þ 1ÞÞ matrix of impulse responses,
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HðHÞ ¼ ½h0; h1; . . .; hH � ¼ ½b;U1b; . . .;UHb�; ð2:2Þ
is of interest. It is assumed that the first shock increases the first variable by one unit
on impact. In other words, the first component of b ¼ h0 is assumed to be 1.

If b, Ru and the reduced-form errors are given, the first structural shock can be
obtained as

w1t ¼ b0R�1
u ut=b

0R�1
u b ð2:3Þ

(see Stock & Watson, 2018, Footnote 6, p. 933) or (Bruns & Lütkepohl, 2021,
Appendix A.1).

Suppose there is an instrumental variable zt satisfying

Eðw1tztÞ ¼ c 6¼ 0 (relevance), ð2:4Þ

EðwktztÞ ¼ 0; k ¼ 2; . . .;K; (exogeneity). ð2:5Þ
These conditions imply that

EðztutÞ ¼ BEðztwtÞ ¼ cb:

In other words, the proxy zt identifies a multiple of b.
In line with some of the proxy VAR literature (e.g., Jentsch & Lunsford, 2019 or

Bruns & Lütkepohl, 2021), the proxy zt is assumed to be generated as

zt ¼ Dtð/w1t þ gtÞ; ð2:6Þ
where Dt is a random 0-1 variable which determines the number of nonzero values of
the proxy. It is assumed to have a Bernoulli distribution, B(d), with parameter d,
0\d� 1, and captures the fact that many proxies are measured only at certain
announcement days or when special events occur. The Dt are assumed to be
stochastically independent of w1t and the error term gt which is thought of as rep-
resenting measurement error. This error term is assumed to have mean zero and
variance r2g, i.e., gt �ð0; r2gÞ, and it is distributed independently of w1t. The

parameter /, the error gt and the distribution of the Bernoulli random variable Dt (i.
e., the parameter d) determine the strength of the correlation between zt and w1t and,
hence, the strength of the proxy as an instrument.

The variance of zt is VarðztÞ ¼ dð/2Varðw1tÞ þ r2gÞ for 0\d� 1. Moreover, the

covariance between w1t and zt is

Eðw1tztÞ ¼ Eðw1tDtð/w1t þ gtÞÞ ¼ /dVarðw1tÞ
so that the correlation between w1t and zt is

Corrðw1t; ztÞ ¼ /
ffiffiffi
d

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðw1tÞ

p . ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2Varðw1tÞ þ r2g

q
:

Thus, the correlation between the proxy and the first shock declines with declining d
and increasing r2g.
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3 Estimation

Suppose an effective sample y1; . . .; yT of size T is available for the model variables,
plus all required presample values, y�pþ1; . . .; y0. Moreover, a corresponding sample
z1; . . .; zT is available for the proxy.

Then the VAR(p) is estimated by bias-adjusted least squares (LS) giving estimates

m̂; Â1; . . .; Âp, residuals û1; . . .; ûT and an error covariance matrix estimator

bRu ¼ 1

T

XT
t¼1

ût û
0
t

based on mean-adjusted residuals. Kilian (1998) shows that employing bias-adjusted
LS estimators improves inference for impulse responses. Therefore we use the bias-
adjustment based on Pope (1990), as proposed by Kilian (1998), throughout the
paper.

The first column b of B is estimated using the proxy zt,

b̂ ¼
XT
t¼1

ûtzt
.XT

t¼1

û1tzt; ð3:1Þ

where ût are the residuals corresponding to bias-adjusted LS estimation and û1t is
their first entry. The impulse response matrix HðHÞ is estimated as

bHðHÞ ¼ ½b̂; Û1b̂; . . .; ÛH b̂�;
where

Ûi ¼
Xi
j¼1

Ûi�jÂj; i ¼ 1; . . .;H :

Moreover, the first shock is estimated as

ŵ1t ¼ b̂
0bR�1

u ût=b̂
0bR�1

u b̂; t ¼ 1; . . .; T ; ð3:2Þ

and / is estimated by LS from

zt ¼ lþ /ŵ1t þ gt

for all t 2 T D, where T D ¼ ftjDt ¼ 1g. The estimate of / is denoted by /̂ and the
residuals are ĝt for t 2 T D and ĝt ¼ 0 for t 62 T D.

4 Bootstraps

As mentioned in the introduction, the WB and the MBB are the bootstrap methods
most frequently used in the proxy VAR literature for frequentist inference for impulse
responses. The WB generates asymptotically invalid confidence intervals while the
MBB yields confidence intervals with the correct coverage level asymptotically
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under quite general conditions (Jentsch & Lunsford, 2019, 2021). It may be
imprecise in small samples, however, and therefore we propose the PRBB which
turns out to have better properties in small samples. The three bootstrap versions
differ in the way they generate bootstrap samples of yt and zt. Based on N bootstrap

samples yðnÞ�pþ1; . . .; y
ðnÞ
0 ; yðnÞ1 ; . . .; yðnÞT and zðnÞ1 ; . . .; zðnÞT , n ¼ 1; . . .;N , they all use the

following steps to determine bootstrap impulse responses and confidence intervals:

1. AVAR(p) model is fitted to the sample by LS and bias-adjusted, giving bootstrap

estimates Â
ðnÞ
,

Û
ðnÞ
i ¼

Xi
j¼1

Û
ðnÞ
i�jÂ

ðnÞ
j ; i ¼ 1; . . .;H ; with Û

ðnÞ
0 ¼ IK ;

and residuals ûðnÞt .
2. Then bootstrap estimates

b̂
ðnÞ ¼

XT
t¼1

ûðnÞt zðnÞt

.XT
t¼1

ûðnÞ1t z
ðnÞ
t :

of the structural parameters are determined.
3. Finally bootstrap estimates of the impulse responses of interest are computed as

bHðHÞðnÞ ¼ ½b̂ðnÞ; ÛðnÞ
1 b̂

ðnÞ
; . . .; Û

ðnÞ
H b̂

ðnÞ�
and stored.

The N bootstrap estimates bHðHÞð1Þ; . . .; bHðHÞðNÞ are used to construct pointwise
confidence intervals based on the relevant quantiles of the bootstrap distributions.
Alternatively, percentile-t or Hall intervals could be used (see (Kilian & Lütkepohl,
2017, Section 12.2). However, the intervals based on quantiles are quite common in
practice and the relative performance of the alternative bootstrap versions is not
expected to depend on the type of interval used.

The samples are generated by one of the three alternative bootstrap methods, WB,
MBB and PRBB, as follows:

WB: For t ¼ 1; . . .; T, independent standard normal variates wt, wt �N ð0; 1Þ, are
drawn and bootstrap residuals and proxy variables are generated as

uWB
t

zWB
t

 !
¼ wt

ût
zt

� �
:

The uWB
t are de-meaned and multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=ðT � Kp� 1Þp

, as in (Davidson
and MacKinnon (2004, p. 597), and they are used to generate

yWB
t ¼ m̂þ Â1yWB

t�1 þ � � � þ ÂpyWB
t�p þ uWB

t , t ¼ 1; . . .; T , starting from

yWB
�pþ1; . . .; y

WB
0 , which are obtained as a random draw of p consecutive values

from the original sample.
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MBB: A block length ‘\T has to be chosen for the MBB. The blocks of length ‘
of the estimated residuals and proxies are arranged in the form of the matrix

û1
z1

� �
û2
z2

� �
. . .

û‘
z‘

� �
û2
z2

� �
û3
z3

� �
. . .

û1þ‘

z1þ‘

� �
..
. ..

. ..
.

ûT�‘þ1

zT�‘þ1

� �
ûT�‘þ2

zT�‘þ2

� �
. . .

ûT
zT

� �

2666666666664

3777777777775
:

The bootstrap residuals and proxy are re-centered columnwise by constructing

~uj‘þi ¼ ûj‘þi � 1

T � ‘þ 1

XT�‘

r¼0

ûiþr

and

~zj‘þi ¼ zj‘þi � 1

T � ‘þ 1

XT�‘

r¼0

ziþr

for i ¼ 1; 2; . . .; ‘ and j ¼ 0; 1; . . .; s� 1. Then s ¼ T=‘½ � of the re-centered rows
of the matrix are drawn with replacement, where ½�� denotes the smallest number
greater than or equal to the argument such that ‘s� T . These randomly drawn
blocks are joined end-to-end and the first T bootstrap residuals and proxies are
retained,

uMBB
t

zMBB
t

 !
; t ¼ 1; . . .; T :

Finally, the uMBB
t are de-meaned, multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=ðT � Kp� 1Þp

, and used to

generate yMBB
t ¼ m̂þ Â1yMBB

t�1 þ � � � þ ÂpyMBB
t�p þ uMBB

t , t ¼ 1; . . .; T , starting from

yMBB
�pþ1; . . .; y

MBB
0 , which are obtained as a random draw of p consecutive values

from the original sample.
PRBB: Samples

uPRBBt

gPRBBt

wPRBB
1t

0B@
1CA; t ¼ 1; . . .; T ; are drawn from

û1
ĝ1
ŵ11

0B@
1CA; . . .;

ûT
ĝT
ŵ1T

0B@
1CA;

with replacement. Bootstrap samples yPRBBt ¼ m̂þ Â1yPRBBt�1 þ � � � þ ÂpyPRBBt�p þ
uPRBBt , t ¼ 1; . . .; T , are generated, starting from yPRBB�pþ1, . . ., yPRBB0 , which are

obtained as a random draw of p consecutive values from the original sample.
Samples of the proxy are generated as
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zPRBBt ¼ ~Dtð/̂wPRBB
1t þ gPRBBt Þ;

where ~Dt is a random 0-1 variable following a Bernoulli distribution, Bðd̂Þ, with d̂
being the share of non-zero observations of the proxy in the original sample.

We emphasize again that the WB does not result in asymptotically valid confidence
intervals but is presented here and included in the simulation comparison in Sect. 5
because it has been used in the proxy VAR literature. The WB and the MBB draw the
proxies directly from observed values and, hence, do not make assumptions on the
exact DGP of zt. In contrast, the PRBB samples from the residuals of the assumed
DGP for zt in (2.6) and constructs new proxy values in each bootstrap replication. In
addition, while the WB by construction sets the share of non-zero observations of the
bootstrap proxy equal to the share in the original sample, this is not generally the case
in the MBB and the PRBB design. Apart from that, all three bootstraps are recursive-
design residual based bootstraps for generating the yt samples.

In all three bootstrap algorithms, the initial values yðnÞ�pþ1; . . .; y
ðnÞ
0 are a random

draw of p consecutive values from the original yt sample. Alternatively, the original
initial values y�pþ1; . . .; y0 could have been used as initial values for each bootstrap
sample. If the yt are mean-adjusted, one could even simply use zero initial values if
stationary models are under consideration. For example, Jentsch & Lunsford (2019)
used zero initial values, generated more than T sample values and then dropped some
burn-in values.

For the MBB a decision on the block length ‘ is needed. To make the asymptotic
theory work, it has to be chosen such that ‘ ! 1 and ‘3=T ! 0 as T ! 1 (see
Jentsch & Lunsford, 2019, 2021). The choice is less clear in small samples. Choosing
‘ too small, the blocks may not capture the data features well and may result in poor
confidence intervals. A small block length may not be a big problem if the VAR
errors and the proxy are iid (independently, identically distributed) and, hence, no
higher order moments and dependencies have to be captured within the blocks but a
small ‘ may be a problem if there are higher order features and dependencies. On the
other hand, choosing ‘ large undermines inference precision because there are too
few blocks to choose from. Note that the number of available blocks is T � ‘þ 1
and, hence, depends on the block length. Jentsch and Lunsford (2019) mention a
block length of ‘ ¼ 5:03T1=4 as a rule of thumb and we use this rule of thumb in our
simulations in Sect. 5 and in the empirical example in Sect. 6.

5 Small Sample Comparison of Bootstraps

In this section a small sample simulation comparison of the three bootstrap methods
is presented. The simulation design is considered first and then the simulation results
are discussed.
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5.1 Monte Carlo Design

5.1.1 DGP 1

The first data generating process (DGP1) is similar to a DGP that has been used
frequently in related work on comparing inference methods for impulse responses (e.
g., Kilian, 1998; Kilian & Kim, 2011; Lütkepohl et al., 2015a, b). It is a two-
dimensional VAR(1) of the form:

yt ¼
a11 0

0:5 0:5

� �
yt�1 þ ut; ð5:1Þ

where 0\a11\1. The process is stable with more persistence for a11 closer to one.
The structural errors, wt, are normally distributed with mean zero and variances 4

and 1 such that wt �N ð0; diagð4; 1ÞÞ, and ut ¼ Bwt with

B ¼ 1 0

0:5 3

� �
;

such that b ¼ ð1; 0:5Þ0. These ut errors are used to generate the yt as in Eq. (5.1),
starting from a standard normal y0, i.e., y0 �N ð0; I2Þ. In the simulations, we fit VAR
models of order p ¼ 1 and p ¼ 12, without constant term, to de-meaned data.

In line with the related literature (e.g., Jentsch & Lunsford, 2019), the proxy zt is
generated as in Eq. (2.6), i.e., zt ¼ Dtð/w1t þ gtÞ, where Dt, / and the error gt
determine the strength of the correlation between zt and w1t and, hence, the strength
of the proxy which is important for how well the impact effects of the shock can be
estimated and these estimates are of central importance for estimating the impulse
responses. The error term gt is generated independently of w1t as gt �N ð0; r2gÞ, with
different values of r2g. The random variable Dt has a Bernoulli distribution with

parameter d, B(d), which specifies the average proportion of nonzero zt variables. Dt

is stochastically independent of gt and w1t. For d ¼ 1, the proxy variable is nonzero
with probability one for all sample periods t ¼ 1; . . .; T .

The parameter values used in our simulations are summarized in Table 1. We use
propagation horizons up to H ¼ 20 to capture not only the short-term effects of a
shock but also the longer-term effects which may still be a bit away from zero for the
more persistent processes. Sample sizes T ¼ 100; 250, and 500 are considered. The

Table 1 Design Parameters for DGP1

T p a11 B Rw d / r2g Corrðw1t ; ztÞ H

100
250
500

1
12

0:5
0:9
0:95

1 0
0:5 3

� �
4 0
0 1

� �
1
0:4

1 0:2346
3

0:9
0:5

0:5692
0:3162

20
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number of replications for each Monte Carlo design is R ¼ 1000 and we use N ¼
2000 bootstrap repetitions within each replication.

Because the MBB is constructed so as to account for GARCH errors while this is
not the case for the PRBB, we also generate DGP1 with GARCH errors to explore
the performance of the bootstraps under conditions which may be unfavorable for the
PRBB but may still be present in practice. The way the GARCH errors are generated
is described in detail in Appendix A. Here we just mention that we use a bivariate
GARCH process with high persistence in each component as it is often observed for
financial data.

Our criteria for evaluating the bootstrap methods are the coverage precision and
the lengths of the confidence intervals obtained from the bootstraps. These criteria
capture main features of interest in related empirical studies and they have also been
used in related small sample comparisons of bootstrap inference (e.g., Kilian & Kim,
2011; Lütkepohl & Schlaak, 2019).

5.1.2 DGP 2

Our second DGP (DGP2) mimics a VAR model from a study of Gertler and Karadi
(2015). It is based on parameters estimated from their dataset. One of the models
used by Gertler and Karadi is a four-dimensional US monthly model. We use their
data from 1990M1 to 2016M6 and fit a VAR(1) model with constant term to the data.
Using bias-adjusted estimates, the reduced-form parameters of DGP2 are m ¼ 0,

A1 ¼

0:97 0:00 0:00 � 0:13

0:01 1:00 0:00 � 0:09

�0:03 0:00 1:00 � 0:53

0:02 0:00 0:00 0:91

26664
37775 and Ru ¼

0:04 0:00 0:01 � 0:01

0:00 0:11 0:03 0:00

0:01 0:03 0:37 � 0:01

�0:01 0:00 � 0:01 0:07

26664
37775:

The maximum eigenvalue of A1 has modulus 0.9997. Thus, DGP2 is stable but very
persistent. These parameters are used to generate the yt based on ut �N ð0;RuÞ and
starting from y0 ¼ 0, the unconditional mean of the yt.

We also use a proxy with similar properties as the proxy for monetary policy
shocks constructed by Gertler and Karadi (2015). More precisely, we estimate the b
vector of impact effects of the first shock, giving a vector b ¼ ð1;�0:14; 0:70; 0:24Þ0,
and estimate the parameters / and r2g of the model (2.6) as described in Sect. 3 from

the Gertler/Karadi data with nonzero zt values and the first shock obtained from
Eq. (2.3). This yields values / ¼ 0:1019 and r2g ¼ 0:0020 that are used for

generating zt as in Eq. (2.6) with Dt having a B(0.82) distribution. The parameter,
d ¼ 0:82, of the Bernoulli distribution is chosen because the Gertler-Karadi proxy
has nonzero values for 82% of the sample periods. The implied correlation between
proxy and shock is 0.36 and, hence, it is rather low.

Note that the generation mechanism for DGP2 differs from that of DGP1, where
the structural shocks are generated directly and the reduced-form data as well as the
proxy are computed from the generated structural shocks and the generated gt series.
In contrast, we generate the reduced-form errors for DGP2, construct the first
structural shock from the structural parameters b and the error covariance matrix Ru
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as in equation (3.2) and then generate zt as in Eq. (2.6) with an additionally generated
gt �N ð0; r2gÞ.

The rational behind using DGP2 is that we will also use the Gertler/Karadi data for
an illustrative example in Sect. 6 and, hence, the simulation results for DGP2 may be
indicative of what to expect in the example. Moreover, it is, of course, of interest to
see whether the results for our small bivariate process underlying DGP1 carry over to
a higher-dimensional DGP.

For DGP2, we fit VAR models of orders p ¼ 1 and p ¼ 12, including a constant
term, to samples of size T ¼ 200 and 500. The smallest sample size considered is a
bit larger than for DGP1 to account for the larger model dimension. It is not far from
the sample size used in the example in Sect. 6. The number of bootstrap replications
is again N ¼ 2000 and the number of Monte Carlo repetitions is R ¼ 1000, as for
DGP1.

5.2 Small Sample Results

5.2.1 Results for DGP1

Some key findings from simulating DGP1 are presented in Figs. 1 and 2.
Specifically, in Fig. 1 the implications of changing the VAR order p, the persistence
of the VAR process (a11) and the strength of the proxy reflected in the Bernoulli
parameter d on the coverage and average length of the bootstrap confidence intervals
can be seen for relatively short samples of size T ¼ 100. In Fig. 2, the impact of
increasing the sample size is presented.

A main observation from Fig. 1 is that, for some designs and propagation
horizons, there are clear differences in the coverage of the confidence intervals of the
three bootstrap variants. The PRBB yields overall the coverage results closest to the
desired 90% while the MBB tends to yield coverage rates a bit smaller and, in
particular for short propagation horizons, the WB yields conservative intervals with
coverage rates often larger than 90% and greater length than MBB and PRBB.
Interestingly, the average lengths of the intervals of all three bootstrap methods are
often very similar despite differences in coverage. For example, the PRBB intervals
for short propagation horizons are in most cases very similar to the MBB intervals
although the latter have a coverage which is below the PRBB coverage and it is also
lower than the nominal 90%. Thus, Fig. 1 clearly shows that the PRBB tends to be
more precise in terms of coverage and often it does so without sacrificing much
interval length. Thus, under these two criteria it is preferable to the MBB and the
WB. The latter bootstrap is often conservative and also yields larger confidence
intervals than the other two bootstrap methods.

There are also some more specific results related to the VAR order and the proxy
strength that can be seen in Fig. 1.

● The VAR order p has an important impact on both the coverage and average
lengths of the confidence intervals. In particular, considering the order p ¼ 12 of a
short-memory process with a11 ¼ 0:5 results in substantial over-coverage,
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especially for longer propagation horizons, for all three bootstrap variants. The
interval lengths tend to increase for all propagation horizons and substantially so
for the longer propagation horizons for all three bootstraps if the VAR order
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(a) a11 = 0.5, p = 1, d = 1, corr = 0.9
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(d) a11 = 0.95, p = 12, d = 1, corr = 0.9
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(e) a11 = 0.95, p = 1, d = 0.4, corr = 0.5692
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(f) a11 = 0.95, p = 12, d = 0.4, corr = 0.5692

Fig. 1 Coverage and average lengths of alternative pointwise bootstrap 90% confidence intervals for
DGP1 with iid errors and T ¼ 100
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(a) T = 100, p = 1
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(b) T = 100, p = 12
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(c) T = 250, p = 1
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(d) T = 250, p = 12
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(e) T = 500, p = 1
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(f) T = 500, p = 12

Fig. 2 Coverage and average lengths of alternative pointwise bootstrap 90% confidence intervals for
DGP1 with iid errors and d ¼ 1, a11 ¼ 0:95, corr ¼ 0:9
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increases from p ¼ 1 to p ¼ 12 (compare the second and fourth columns of
Fig. 1).

● Comparing panels (c) and (e) as well as (d) and (f) in Fig. 1, it is apparent that the
proxy strength does not have much of an effect on the coverage but partly leads to
larger intervals (see in particular the average lengths of h21 intervals for short
horizons). In panels (e) and (f) in Fig. 1, the proxy has a lower correlation with the
structural shock of interest due to the reduced number of event dates, d, for which
the proxy is constructed. A similar result is obtained, however, if d ¼ 1 is
maintained but the correlation between proxy and shock is reduced due to a larger
variance r2g of the error term in Eq. (2.6), as can be seen in Fig. 6 in the Appendix.

● The impact of higher persistence (a larger a11 parameter) of the process can be
seen by comparing panels (a) and (c) as well as (b) and (d) in Fig. 1. Generally the
coverage is reduced and the intervals become larger, especially for longer
propagation horizons, if a11 increases from 0.5 to 0.95. The reduction in coverage
is most severe for the MBB, while the PRBB continues to have acceptable cov-
erage for persistent processes. In Fig. 7 of the Appendix, additional results for
a11 ¼ 0:9 are presented and it can be seen that the results for a11 ¼ 0:9 are similar
to those of a11 ¼ 0:95.

In Fig. 2, the impact of the sample size on the confidence intervals is exhibited for the
case of a persistent process with a11 ¼ 0:95 and a relatively strong proxy with
correlation 0.9 with the shock and d ¼ 1. As we saw in Fig. 1 already, in this
situation the MBB has a coverage clearly smaller than the nominal 90% for p ¼ 1
and all three bootstrap methods tend to yield under-coverage for T ¼ 100. In Fig. 2 it
can be seen that the coverage clearly improves for T ¼ 250 already and the coverage
deficiencies largely disappear for T ¼ 500. Also, the interval lengths for all three
methods become very similar and are reduced for larger sample sizes, as one would
expect. Only the WB intervals for some short propagation horizons remain wider and
less precise for larger samples. This result may be a reflection of the asymptotic
inadmissibility of the WB.

As the PRBB does not explicitly account for GARCH in the VAR residuals, we
have also applied the three bootstraps to processes with GARCH errors to see how
such features impact on their properties. Results corresponding to Figs. 1 and 2 are
presented in Figs. 8 and 9 in the Apprendix. It turns out that for small samples of
T ¼ 100 the relative performance of the three bootstraps in terms of coverage and
interval length is not much affected. Despite the fact that the MBB is the only
asymptotically valid procedure for this case, comparing its confidence intervals to the
PRBB intervals, they have lower coverage and similar length as in the case of iid
residuals. In Fig. 9 it can be seen that even for larger samples with T ¼ 500, MBB is
not clearly superior to the PRBB. Thus, at least for our DGP1 the MBB does not
have an advantage over PRBB even if data features such as GARCH are present that
are not accounted for explicitly by the PRBB. These results suggest that for
macroeconomic studies where rarely samples larger than T ¼ 500 are available, the
PRBB may lead to superior inference as compared to MBB and WB.
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5.2.2 Results for DGP2

Coverage and average interval lengths for DGP2 are depicted in Fig. 3 for sample
size T ¼ 200 and in Fig. 4 for T ¼ 500. Even for the smaller sample size T ¼ 200,
all coverage rates of the nominal 90% confidence intervals of WB and PRBB are
between 80% and 100%, except for the long-run response of the third variable. In
other words, the two bootstrap methods yield rather precise confidence intervals for
three out of four variables across our Monte Carlo designs. Given the asymptotic
inadmissibility of the WB, this result may, of course, not be generalizable to other
simulation designs.

Even the MBB has coverage rates above 80% for variables 1, 2 and 4 and
propagation horizons up to 30 periods when T ¼ 200. Thus, even the MBB is
relatively precise in terms of coverage for three out of four variables. There are,
however, differences in interval lengths among the three bootstraps. Typically, the
WB intervals are a bit longer than the MBB and PRBB intervals which are often
close together on average. Overall the performance of the WB is inferior to MBB and
PRBB. Thus, although there is often not much to choose between MBB and PRBB in
terms of coverage and interval length, it is remarkable that the PRBB tends to have
typically coverage rates closer to 90% than the MBB. Thus, even for the higher-
dimensional DGP2, PRBB performs well relative to its competitors, at least for three
of the four variables.

For the third variable, VAR order p ¼ 1 and T ¼ 200 all three bootstrap methods
yield coverage rates below 80% for a propagation horizon of 48 periods. For T ¼
500 and p ¼ 1, only the MBB still has a coverage below 80% for long horizons (see
Fig. 4). The coverage rates for long horizons are actually a bit closer to 90% for
p ¼ 12, although one might expect lower precision for the larger VAR order as the
larger VAR order implies a model with substantially more parameters. Even for
p ¼ 12, the PRBB outperforms the MBB in terms of coverage and is almost as good
in terms of interval length.

In summary, our simulations show that the WB is often conservative and yields
more than the nominal coverage. In turn, its confidence intervals are often
considerably larger than those of the MBB and PRBB. Thus, the WB is overall
inferior to the MBB and the PRBB. Between the latter two, the PRBB is preferable
because it yields typically coverage rates closer to the nominal rate than the MBB.
Moreover, the PRBB confidence intervals are often about as long on average as those
of the MBB. Hence, our simulations show that the PRBB has merit. In the next
section, it will be applied to an illustrative example model from the literature.

6 Empirical Example

We consider an example based on the study of Gertler and Karadi (2015) mentioned
earlier to illustrate the differences between the three bootstrap methods. One of the
models used by Gertler and Karadi is a four-dimensional US monthly model for the
variables (1) one-year government bond rate, (2) log consumer price index (CPI), (3)
log industrial production (IP) and (4) excess bond premium. They employ the three
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(b) T = 200, p = 12

Fig. 3 Coverage and average lengths of alternative pointwise bootstrap 90% confidence intervals for DGP2
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Fig. 4 Coverage and average lengths of alternative pointwise bootstrap 90% confidence intervals for DGP2
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months ahead federal funds rate future surprises as the baseline proxy to identify a
monetary policy shock and they find their proxy to be a strong instrument. We re-
estimate their model, shortening the sample to include only periods for which all four
variables and the proxy are available. This leaves us with a sample running from
1990M1 through 2016M6, i.e., the sample size is T ¼ 270. As the Gertler-Karadi
proxy is autocorrelated and predictable, we pre-whiten it by regressing it on its own
lags and lags of the endogenous variables and use the residuals as our proxy.1 The
proxy is available in d ¼ 82% of the sample periods. Following the Gertler-Karadi
baseline model specification we include a constant and 12 lags in the VAR.

Figure 5 shows the pointwise 90% confidence bands of the impulse responses to a
monetary policy shock that increases the one-year-rate by 25 basis points on impact.
Such a shock corresponds roughly to a one standard deviation shock in Gertler and
Karadi (2015). The point estimates of the impulse responses are qualitatively in line
with the findings by Gertler and Karadi (2015).2 A monetary tightening induces
declining point estimates of the response of industrial production and consumer
prices and an increase in the excess bond premium by slightly more than 10 basis
points on impact. However, the bootstrap confidence intervals indicate that the
responses of industrial production and the CPI may not be significant. Clearly, the
choice of the bootstrap procedure affects the widths of the confidence intervals, in
line with the simulation results reported in Sect. 4.

From Fig. 5a, it is apparent that the bands estimated via PRBB and MBB tend to
be either very similar or the PRBB intervals are slightly larger than the MBB
intervals. This outcome is consistent with the simulation evidence, see for example
Fig. 3, panel (b). Recall, however, that the shorter MBB intervals in the simulations
come at the price of a lower coverage rate which may be below the nominal 90%
rate. Although the interpretation of the impulse responses does not depend on the
choice of bootstrap in this case, it is, of course, desirable to employ the most reliable
inference procedure. Figure 5b compares the PRBB intervals to the WB intervals and
shows that the intervals estimated via WB tend to be larger than the PRBB intervals
which is again in line with our simulations.

7 Conclusions

In proxy VAR models, an external proxy variable that is correlated with a structural
shock of interest and uncorrelated with all other shocks, is used for inference for the
impulse responses. In this study, we have proposed a new bootstrap algorithm for
such inference. So far frequentist inference in this context is typically based on the
WB or the MBB. The former is not valid asymptotically and often yields rather wide

1 Miranda-Agrippino & Ricco, (2021) find that the proxy by Gertler and Karadi (2015) is explained by up
to 4 of its own lags, 10 lags of state variables (dynamic factors extracted from the set of monthly variables
in McCracken and Ng (2015)), and a constant term. We regress the proxy by Gertler and Karadi (2015) on
these variables and use the residuals as our proxy.
2 Differences compared to Gertler and Karadi (2015) are the result of a shorter sample, the adjustment of
the proxy, and differences in the bootstrap procedures. Note that Gertler & Karadi (2015) use a WB with wt
from a Rademacher distribution.
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Fig. 5 Pointwise bootstrap 90% confidence intervals for the empirical example
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confidence intervals, whereas the latter has poor coverage properties in small samples
as they are often encountered in macroeconomic studies. We have proposed an
alternative bootstrap method which assumes a specific model for the DGP of the
proxy variable and samples from the estimated reduced-form errors and the residuals
of the proxy model to generate bootstrap samples.

We have shown by simulation that our new PRBB method works well in relatively
small samples. Specifically, it yields bootstrap confidence intervals for impulse
responses with more accurate coverage than and similar length for comparable
coverage to the WB and the MBB. Thus, it has merit for empirical studies for which
only relatively small samples are available.

One advantage of the MBB is that it also works asymptotically for conditionally
heteroskedastic model errors while the PRBB is not designed for such data features.
In our simulations we have found, however, that the PRBB also outperforms the
MBB in small samples if such data properties are present. The price paid for the
additional generality of the MBB is its reduced accuracy in small samples.

8 Discussion and Extensions

We have proposed a new bootstrap algorithm for inference for proxy VAR models
which differs from its main competitors by utilizing an explicit model for the DGP of
the proxy. Thereby we achieve more accurate small sample properties of confidence
intervals for impulse responses than the WB and the MBB. Clearly, for using the
bootstrap algorithm for applied research, the superior small sample accuracy is the
key advantage of the new bootstrap algorithm, while the need for modelling the DGP
of the proxy is a limitation. So far, the setup of the new bootstrap algorithm does not
account for heteroskedastic or conditionally heteroskedastic VAR processes. As the
MBB remains asymptotically valid even under changing volatility, it is more general
than the new bootstrap algorithm with respect to asymptotic properties. As we show
by simulation, the new bootstrap algorithm may still yield more precise confidence
intervals than the other two bootstrap algorithms if the data exhibit changing
volatility. Thus, our new bootstrap algorithm can be recommended, in particular, for
macroeconometric studies where only small or medium sample sizes are available,
for example, if only 20 years of quarterly or monthly data are available. In that
situation, its superior accuracy makes the new bootstrap algorithm an attractive
alternative to the WB and MBB.

To account for more general data features, it may be of interest to explore more
general models for the proxy variable in future research. In particular, allowing for
serially correlated proxies may be of interest. Moreover, accounting explicitly for
changing volatility by modelling such features and designing a bootstrap algorithm
accordingly may be an interesting topic for future research. Given the variety of
potential deviations of real economic data from the standard model setup, it may also
be a fruitful topic for future research to investigate the accuracy of the simple setup of
the new bootstrap algorithm considered in this study if more elaborate data features
are ignored.
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Appendix

A Generating DGP1 with GARCH Residuals

If, instead of drawing ut from N ð0;RuÞ, we aim to generate data with DGP1 with
GARCH residuals, we follow Lütkepohl & Schlaak (2018) and proceed in the
following steps:

1. Generate 2T bivariate standard normal variates, ðe1t; e2;tÞ�N ð0; I2Þ.
2. Generate r2k;tjt�1 ¼ ð1� ck � gkÞ þ ck�

2
k;t�1 þ gkr2k;t�1jt�2, where �k;t ¼

ek;trk;tjt�1 and r2k;1�1j1�2 ¼ 1, k ¼ 1; 2, are chosen as initial values.

3. Generate ut ¼ B diagð2; 1ÞK0:5
tjt�1et, where Ktjt�1 ¼ diagðr21;tjt�1; r

2
2;tjt�1Þ.

4. Generate data yt recursively from Eq. (5.1), the proxy from Eq. (2.6), and retain
the last T observations.

The unconditional variance of ut is Ru ¼ BRwB0, where Rw ¼ diag(4, 1). We use
GARCH parameters ðc1; g1Þ ¼ ð0:1; 0:85Þ0 and ðc2; g2Þ ¼ ð0:05; 0:92Þ0.

B Additional Simulation Results

See Figs. 6, 7, 8 and 9.
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(a) T = 100, p = 1, corr = 0.9
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(b) T = 100, p = 12, corr = 0.9
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(c) T = 100, p = 1, corr = 0.5

0 10 20

0.8

0.9

1

0 10 20
0

0.5

1

1.5

2

0 10 20

0.8

0.9

1

0 10 20
0

1

2

3

(d) T = 100, p = 12, corr = 0.5
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(e) T = 500, p = 1, corr = 0.5
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(f) T = 500, p = 12, corr = 0.5

Fig. 6 Coverage and average lengths of alternative pointwise bootstrap 90% confidence intervals for
DGP1 with iid errors and d ¼ 1, a11 ¼ 0:95
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(a) a11 = 0.5, p = 1, d = 1, corr = 0.9
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(b) a11 = 0.5, p = 12, d = 1, corr = 0.9
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(c) a11 = 0.9, p = 1, d = 1, corr = 0.9
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(d) a11 = 0.9, p = 12, d = 1, corr = 0.9
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(e) a11 = 0.95, p = 1, d = 1, corr = 0.9
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(f) a11 = 0.95, p = 12, d = 1, corr = 0.9

Fig. 7 Coverage and average lengths of alternative pointwise bootstrap 90% confidence intervals for
DGP1 with iid errors and T ¼ 100
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(a) a11 = 0.5, p = 1, d = 1, corr = 0.9
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(b) a11 = 0.5, p = 12, d = 1, corr = 0.9
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(c) a11 = 0.95, p = 1, d = 1, corr = 0.9
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(d) a11 = 0.95, p = 12, d = 1, corr = 0.9
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(e) a11 = 0.95, p = 1, d = 0.4, corr = 0.5692
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(f) a11 = 0.95, p = 12, d = 0.4, corr = 0.5692

Fig. 8 Coverage and average lengths of alternative pointwise bootstrap 90% confidence intervals for
DGP1 with GARCH errors and T ¼ 100

123

An Alternative Bootstrap for Proxy... 1879



0 10 20

0.8

0.9

1

0 10 20
0

0.5

1

1.5

2

0 10 20

0.8

0.9

1

0 10 20
0

0.5

1

1.5

2

(a) T = 100, p = 1

0 10 20

0.8

0.9

1

0 10 20
0

0.5

1

1.5

2

0 10 20

0.8

0.9

1

0 10 20
0

0.5

1

1.5

2

(b) T = 100, p = 12

0 10 20

0.8

0.9

1

0 10 20
0

0.5

1

1.5

2

0 10 20

0.8

0.9

1

0 10 20
0

0.5

1

1.5

2

(c) T = 250, p = 1
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(d) T = 250, p = 12
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(e) T = 500, p = 1
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(f) T = 500, p = 12

Fig. 9 Coverage and average lengths of alternative pointwise bootstrap 90% confidence intervals for
DGP1 with GARCH errors and d ¼ 1, a11 ¼ 0:95, corr ¼ 0:9
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