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H I G H L I G H T S  

• A sectoral and regional source attribution for Berlin was performed. 
• The most important source sectors for PM are households and industry & energy. 
• Transboundary contributions are smaller than domestic contributions. 
• Missing resuspension processes may explain the underestimation of the coarse mode.  
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A B S T R A C T   

The exposure to ambient particulate matter in metropolitan areas is a major health problem. A prerequisite for 
formulating effective mitigation strategies it to understand the origin of particulate matter in terms of source 
regions and sectors. We performed a source attribution of particulate matter (PM) for the Berlin agglomeration 
area covering the period from 2016 to 2018 using the LOTOS-EUROS chemistry transport model. The (3 year-) 
mean modelled urban background PM2.5 concentration (10.4 μg/m3) is largely explained by households (3.2 μg/ 
m3) and industry & energy (2.0 μg/m3), while the remaining source sectors contribute the other half. The 
modelled annual mean urban increment for PM2.5 is mainly attributed to households (1.6 μg/m3) and traffic (0.5 
μg/m3). With respect to its relative shares the PM10 source attribution looks similar to that of PM2.5 throughout 
the year, but with enhanced natural contributions. From a geographical perspective the main source area for the 
PM2.5 in Berlin is Germany (5.1 μg/m3) itself, followed by the contributions from transboundary transport (3.4 
μg/m3). The German sources could be further split into Berlin (2.6 μg/m3), Brandenburg (0.7 μg/m3) and 
remaining states of Germany (1.8 μg/m3). About one third of the foreign shares can be attributed to Germany’s 
neighbouring countries Poland and Czech Republic. During episodes these contributions can significantly differ, 
e.g. in February 2017 the Polish contribution is about 1/3rd. The sectoral contributions agree with previous 
findings except that our study indicates lower contributions for traffic. The model’s underestimation of total PM 
is largely caused by an underestimation of the coarse mode PM. Both the coarse mode urban increment as well as 
the regional background concentrations are underestimated by the model, especially during summer. We suggest 
that the enhanced coarse material (in the city) during warm seasons is predominated by (road) resuspension 
processes which need more of our attention to further improve our models.   

1. Introduction 

Air pollution remains the single largest environmental health risk in 
Europe according to the World Health Organization (World Health Or
ganization Regional Office for Europe, 2015). The adverse health effects 
of air pollution are dominated by exposure to particulate matter (PM) 
(Boldo et al., 2006; Brook et al., 2010; Costa et al., 2014). Harmful ef
fects as cardiovascular and respiratory diseases, can ultimately lead to 

premature death (Newby et al., 2015). In Europe, the average reduction 
in life expectancy due to fine particulate matter (PM2.5) is estimated in 
the order of 8–10 months (Boldo et al., 2006; Brook et al., 2010). 
Although a large proportion of the European population is exposed to 
levels above the WHO air quality guidelines, current EU limit values for 
PM in Europe are exceeded to a limited extent. Exceedances of the daily 
limit value for PM10 in Germany are measured particularly at moni
toring sites close to traffic and industry in large conurbations 
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(Umweltbundesamt, 2019). To protect citizens from the negative effects 
of air pollution and to bring PM concentration levels below the limit 
value, it is necessary to elaborate effective mitigation strategies. In order 
to develop effective mitigation strategies, it is crucial to understand 
which sources contribute to the particulate matter exposure (Pandolfi 
et al., 2020) and which mitigation options have the largest impact, 
especially for high concentration episodes (Belis et al., 2020). A pre
requisite is that the modelling systems used for developing mitigation 
strategies explain the observed levels and variability in particulate 
matter well. 

PM encompasses a wide range of particle types, regarding size 
(coarse: PM10 and fine: PM2.5), chemical composition (e.g., mineral dust, 
combustion particles, sea salt, secondary inorganic aerosol, secondary 
organic aerosol, metals), and sources (e.g., natural, traffic, industry, 
domestic households, secondary processes) (Putaud et al., 2004). Its 
contributions depend on local sources as well as its location with respect 
to source regions located further away and vary strongly depending on 
synoptic meteorological conditions and season (Lenschow et al., 2001; 
Mues et al., 2012; Fuzzi et al., 2015; van Pinxteren et al., 2019). Sources 
of PM in urban areas are traffic, domestic heating, cooking, construction 
sites, industries, power generation or mineral dust (e.g., Querol et al., 
2004). Long-range transport prevalent as the rural background is nor
mally dominated by contributions from combustion processes and sec
ondary aerosols, e.g. ammonium nitrate and sulphate (van Pinxteren 
et al., 2019). Whereas PM episodes may be driven by a local or regional 
build-up of pollution (e.g. Banzhaf et al., 2013), the urban concentration 
levels during episodes may also be largely controlled by long range 
transport to a city (Beekmann et al., 2015). Hence, many cities are un
able to meet target levels for air pollutants through local action alone 
(van Pinxteren et al., 2019). To identify the origin and quantify both 
natural and anthropogenic source contributions to urban PM levels is an 
important task. 

There are various methodologies to identify and apportion PM to 
different sources. Statistical data analyses of observations are often used. 
The Lenschow approach is a simple method, in which urban increments 
that correspond to the concentration difference between the urban and 
the regional locations are calculated (Lenschow et al., 2001). The 
increment is assumed to be the impact of a city on its own air pollution. 
The main advantage is a simplified data treatment with low impact of 
mathematical artefacts (Viana et al., 2008). A weakness of the method is 
that the assumption of the independency of the two locations may not be 
fulfilled (Thunis, 2018). A further helpful method is to apply air tra
jectories to identify source regions which can be long-range or 
trans-boundary (e.g., Potier et al., 2019). Positive Matrix Factorization 
(PMF) attempt to apportion the sources based on observations (internal 
correlations) at the receptor site alone. A very distinct advantage is the 
detailed source profiles PMF provides. This method is often used for 
analysis because detailed prior knowledge of the sources and source 
profiles is not required and software to perform this type of analysis is 
widely available (Viana et al., 2008). Normally, receptor modelling 
studies can distinguish a limited number of broad source categories. An 
essential disadvantage is the inability to provide a source apportionment 
for secondary components. Furthermore, these experimental approaches 
do not yield information on the geographical origin. Finally, the 
required chemical analyses are expensive leading to many applications 
in campaigns and a limited availability of long time series (Hendriks 
et al., 2013). 

Complementary to methods based on observations, deterministic 
Eulerian Chemistry Transport Models (CTMs) are widely used to obtain 
more detailed information on air pollution and its origins. By involving 
atmospheric process descriptions and emission inventories they provide 
calculations of the evolution of the air pollution situation across a region 
(Baklanov et al., 2014). To gain insights in source contributions, several 
methodologies have been used in the past. The simplest approach is the 
brute force (BF) method, in which the emissions of the source sectors 
under investigation are reduced and compared to a base case simulation 

(e.g., Belis et al., 2020; Banzhaf et al., 2013). Through extrapolation of 
the resulting concentration changes the source sector contribution can 
be estimated. For inert compounds these approaches provide equivalent 
results (Thunis et al., 2019). It has to be highlighted that the BF method 
and labelling approach lead to different source attribution (SA) results 
due to non-linear chemical effects, such as for the formation of sec
ondary inorganic aerosol (e.g. Thunis et al., 2020). The main advantage 
of the BF methodology is that it directly provides information on the 
effectiveness of potential measures. However, by upscaling the impacts 
one may over- or underestimate the baseline concentration, which be
comes a larger issue in case of situation with a limiting formation pro
cess and on short time scales (Li et al., 2014; Thunis et al., 2015; 
Pommier et al., 2020; Thürkow et al., 2022). Moreover, in case of a 
limitation in the formation small sized emission sources may be given a 
zero or low impact and thus may be overlooked as a relevant contributor 
(Thunis et al., 2020; Thürkow et al., 2022). In this situation detailing a 
large sector as traffic further into subsectors may lead to the situation 
that the sum of the sub-sectors is away from the sector estimate (Clap
pier et al., 2017). This may be amplified in case also the spatial and 
temporal variability are different per subsector. Also, the resulting 
source apportionment is sensitive to the reduction percentage applied 
(Napelenok et al., 2006). Due to the intrinsic assumption that each 
molecule has the same chance of reaction adopted in the labelling 
implementation these effects do not occur. The resulting source appor
tionment is additive and complete, but does not per se indicate the 
effectiveness. Note that above mentioned concerns disappear when the 
brute force apportionment is performed within its limits of applicability, 
i.e. for a limited range of emission reduction strengths (Clappier et al., 
2017). Hence, we see a labelling based source apportionment as a 
valuable first step to identify and quantify the relevant sectors to be 
further addressed in brute force calculations to determine efficiency of 
potential measures. This is further supported by the fact that the label
ling strategy is more computationally efficient enabling to detail a larger 
number of source contributions than normally feasible in brute force 
studies (Belis et al., 2020). Methods like Decoupled Direct Method 
(DDM; Dunker et al., 2002; Zhang et al., 2012) at least partly, solve this 
computational burden for brute force approaches. Although first oper
ational applications are becoming available (Pommier et al., 2020), the 
experience using such model-based source apportionment is still rela
tively scarce in Europe. 

In this paper, we apply the LOTOS-EUROS CTM version 2.1 to 
identify the most relevant sources with regards to their contributions of 
PM for the German capital Berlin. The model was applied to a 3-year 
time frame from January 2016 to December 2018 for which we quan
tified the urban sector contributions as well as the long-range transport 
contributions using a labelling approach. As CTMs do not fully explain 
the observed PM concentration and variability (e.g., Belis et al., 2020), 
special emphasis is put on the identification of shortcomings. For com
parison of modelled urban increments to observational data we adopted 
the Lenschow-approach (Lenschow et al., 2001). Finally, we discuss our 
findings in comparison to earlier studies oriented at source attribution 
for Berlin or model-based source apportionment. 

2. Methodology 

2.1. Chemical transport modelling 

In this paper, we apply the LOTOS-EUROS CTM version 2.1 to 
investigate the origin of PM in Berlin during a 3-year time frame from 
January 2016 to December 2018. LOTOS-EUROS is a 3D chemistry 
transport model (CTM) developed by the Netherlands Organization for 
Applied Scientific Research (TNO) and partners including the Freie 
Universität Berlin (FUB, Germany). The LOTOS-EUROS CTM is an 
Eulerian grid model, which was originally developed to simulate ozone 
and smog concentration levels in the lower troposphere in Europe. In the 
vertical a mixed-layer approach is applied (Manders et al., 2017) using 5 
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terrain following layers extending up to 5 km above sea level (orog
raphy). In this study we set up a European domain (D1) with a horizontal 
resolution of 0.5◦ (longitude) and 0.25◦ (latitude) corresponding to 
about 28 × 32 km2. An increased resolution is obtained for a nested 
domain (D2) covering Germany and Poland with 0.125◦ (longitude) and 
0.0625◦ (latitude), approximately 7 × 8 km2. Poland was included in the 
high-resolution domain as the transboundary component is of specific 
interest for the local policy (details see Fig. 1). The model describes the 
fate of anthropogenic primary particulate matter (ppm), including a 
separation of elemental carbon (EC) and organic material (POM). The 
formation of secondary inorganic aerosol (SO4, NO3 and NH4) from its 
precursor gases and the emissions of (semi-) natural emissions of sea salt 
and mineral dust are also described. The model follows a bulk approach 
for the fine (f) and coarse (c) aerosol mode (a). The total particulate 
matter mass is computed from the individual model compounds: 

PM2.5 = SO4af + NH4af + NO3af + ECf + POMf + PPMf + 3.26 ∗ Naf

+ Dustf (1)  

PM10 =PM2.5 + NO3ac + POMc + PPMc + 3.26 ∗ Nac + Dustc (2) 

The LOTOS-EUROS model adopts sodium as the preserved sea salt 
tracer, and its concentration is multiplied by a factor 3.26 to arrive at the 
total sea salt contribution. 

Meteorological data were taken from ECMWF (European Centre for 
Medium-range Weather Forecasts). The model configuration, except the 
domain definition, resembles the set-up used within the regional 
ensemble of the Copernicus Atmospheric Monitoring Service (CAMS). 
Within CAMS LOTOS-EUROS is applied to provide operational air 
quality forecasts and analyses for Europe (Marécal et al., 2015) 
including source apportionment information for major cities (Pommier 
et al., 2020). For a more detailed description of LOTOS-EUROS we refer 
to Manders et al. (2017). 

The gas-phase chemistry is described by the TNO CBM-IV scheme, a 
modified version based on the development by Whitten et al. (1980). 
Aerosol chemistry is formulated within the thermodynamic equilibrium 
module ISORROPIA2 (Fountoukis and Nenes, 2007). Coarse mode ni
trate formation is modelled dynamically through a surface reaction on 
sea salt. Sea salt emissions are parameterized using two schemes for the 
fine and coarse mode (Mårtensson et al., 2003; Monahan et al., 1986). 
Resuspended mineral dust from road-traffic is parameterized using 
constant emission factors and depends on the traffic intensity in the 
respective grid cell (Schaap et al., 2009). In a similar vein, the agricul
tural land management emissions are parameterized using constant 
emission factors per activity and are allocated over the months in which 
the activity typically occur (Schaap et al., 2009). Both sources are 

switched off in case of rain. Windblown dust is parameterized by sand 
blasting schemes (Manders et al., 2017), but normally do not impact 
Berlin. Forest fire emissions were taken from the CAMS global fire 
assimilation system (Kaiser et al., 2012). Dry deposition fluxes for 
reactive gases are calculated using the resistance approach as imple
mented in the DEPAC (Deposition of Acidifying Compounds) module 
(Wichink Kruit et al., 2012). Particle deposition follows the scheme of 
Zhang et al. (2001). Wet deposition is parameterized as described in 
Banzhaf et al. (2012). Secondary organic aerosol formation was 
neglected, as the VBS-module was not yet implemented in the source 
apportionment approach of the model. 

The annual total emissions were based on the official country 
reporting to the UNECE and the EU for 2017. Except for Germany, 
emissions were gridded based on the CAMS reporting (Copernicus At
mospheric Monitoring System) database. For Germany, the gridded 
emissions were obtained from the GrETa system (GRETA – Gridding 
Emission Tool for ArcGIS v1.1; Schneider et al., 2016). The totals are 
apportioned to monthly, daily, and hourly amounts by sector-specific 
time factors. For CO and VOC temperature-dependent factors were 
used (Manders et al., 2017). The official emissions for residential wood 
combustion (RWC) were replaced by a scientific bottom-up inventory 
for Europe (Denier Van Der Gon et al., 2015). This contains a consistent 
set of emission factors for wood combustion and includes the impact of 
condensable material (Denier Van Der Gon et al., 2015). Overall, the 
RWC emissions in this study were by a factor of 2–3 higher than the 
officially reported. To incorporate the dependency of heating demand 
on temperature the temporal variability of RWC emissions was calcu
lated using heating degree days. The heating degree demand was 
calculated relative to a reference temperature (18 ◦C). We used a frac
tion of 20%, for emissions not related to heating following Mues et al. 
(2014). 

2.2. Source attribution 

To assess the contribution of different source sectors and regions we 
applied the source apportionment module implemented in the LOTOS- 
EUROS CTM (Hendriks et al., 2013; Kranenburg et al., 2013a). 
Through a labelling procedure the origin of species is traced through the 
process descriptions for the transport and chemical reactions (Kranen
burg et al., 2013a). The labelling approach works for primary, inert 
aerosol tracers and chemically tracers in which a C, N (oxidized and 
reduced) or S atom is conserved. The validation of this module was done 
in (Kranenburg et al., 2013b) in dedicated experiments. The module was 
applied to PM (episodes) (Hendriks et al., 2013, 2015; Timmermans 
et al., 2017, 2020) and nitrogen oxides (Curier et al., 2014; Schaap et al., 

Fig. 1. The D1 domain for Europe and therein the D2 domain for Germany/Poland/Czech Republic, the position of Berlin is indicated with a white circle (left). 
Illustration of the measurement locations in Berlin and the surrounding federal state of Brandenburg (right). The colours correspond to the related labels. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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2013). The source attribution for ammonium nitrate is calculated as a 
weighted mean of the source sectors contributing to the reduced and 
oxidized N-atom (in i.e., ammonium and nitrate) on a molar basis 
(Hendriks et al., 2013). 

We defined 32 combinations of sectors and regions to be tracked. The 
5 sectors we considered are the main source sectors for particulate 
matter (traffic, households, industry & energy, agriculture) and all 
remaining sectors combined as rest. To quantify the urban, regional, 
domestic, and transboundary contributions we separated 6 geographic 
regions: Berlin, Brandenburg, Rest of Germany, Poland, Czech Republic 
and all remaining countries as “other countries”. In addition, the natural 
and boundary (incl. initial) conditions were traced (see Table 1). 

2.3. Monitoring data 

The present work focuses on a dataset containing daily PM10 and 
PM2.5 mass concentrations for 6 selected air quality monitoring stations 
of the federal states of Berlin (4) and Brandenburg (2). For comparison 
reasons one urban traffic station is included additionally. The data were 
provided by the German Federal Environmental Agency (Umweltbun
desamt, UBA) and the Senat of Berlin. Classifications, geographic co
ordinates, component, and short names of the measurement stations are 
listed in Table 2. 

The observed data provides no information about the source region 
and/or the source sectors. This leads to the Lenschow approach, where 
rural and urban stations are selected and can be investigated separately 
and/or in a combined manner. As the approach can be also applied for 
modelled data, the modelled spatial gradient can be compared to the 
measured spatial gradient. Statistical indicators for the model perfor
mance were calculated in a common way (e.g., RMSE, BIAS, MEAN). For 
the correlation coefficient the Pearson correlation was used. When the 
spatial mean of a specific station type was calculated, the daily mean 
values were used. Suburban sites pose a challenge to the model, as the 
stations are located close to the city border. Grid cells which include 
these stations may be affected by substantial urban emissions leading to 
an overestimation of the rural to suburban increment. Hence, we mainly 
focus our analysis on the gradients between rural and urban background 
concentrations. The RB stations investigated are located west and east of 
the city, thus they show mean values for the RB, normally only upwind 
stations should be used. Meteorological data (such as wind and precip
itation) were taken from the WMO station Berlin-Dahlem. 

2.4. Investigation domain and periods 

In this study we focus on the capital of Germany with around 4 
million inhabitants. Berlin is located in the north-eastern part of Ger
many and surrounded by the federal state of Brandenburg. The closest 
neighbouring country, Poland, is about 60 km east of the city. The 
climate is characterized by westerlies, bringing maritime air towards 
Berlin while during some episodes preferably in midsummer and winter 
easterlies can prevail for several days up to weeks due to a continental 
high. For Berlin, the long-term annual precipitation amount of about 
600 mm and mean temperatures of around 13 ◦C were observed. Pre
vailing wind directions are westerlies (~75%, NW to SW) and easterlies 

(~25%, NE to SE), with easterly wind directions mainly occurring 
during the winter season. Apart from a large power plant in the western 
part of the city, there is no major industry in the city or in the sur
rounding area. 

3. Results 

3.1. Observed levels for the investigation period 

We provide an overview of the observed annual mean particulate 
matter mass concentration for 2016 to 2018 following the Lenschow’s 
incremental approach (Fig. 2). The concentrations are classified by sub- 
categories of the UBA measurement network for the rural background 
(RB, light grey), urban background (UB, dark grey) and urban traffic 
(UT, black). We provide the overview for PM10, PM2.5 and the coarse 
mode fraction (PMCO, difference between PM10-PM2.5) for 2016 (left), 
2017 (middle) and 2018 (right), separately. The share for the urban 
background is the difference between the concentration in the urban 
background and in the rural background and is called the urban incre
ment. The same applies to the urban traffic and is accordingly referred to 
as the traffic increment. 

The overall annual mean PM10 concentration at urban traffic sites 
was about 27–28 μg/m3. The PM2.5 level was about 17 μg/m3, and the 
coarse mode was about 10 μg/m3. The annual mean PM10 concentration 
in the urban background is in the range of 21–23 μg/m3, while that of 
PM2.5 is about 15 μg/m3. Hence, the coarse mode contributes about 6–7 
μg/m3. For PM2.5 the rural background (12–13 μg/m3) is contributing 
about three quarters of the urban background concentrations, whereas 
for the coarse mode the relative contribution of the rural background is 
smaller, about 50% (3–4 μg/m3). For PM10 the rural background con
centration is measured to be about 15–17 μg/m3. For PM2.5 the urban 
increment (~3 μg/m3) is slightly larger than the observed traffic 
increment (~2 μg/m3). A low variability from year to year can be seen 
for annual-averaged levels of the PM2.5 rural background, urban incre
ment, and traffic increment. For the coarse mode, the urban background 
and traffic increments are similar (~3 μg/m3 each). 

Fig. 3 shows daily mean particulate matter mass concentrations 
averaged over all urban background stations from 2016 to 2018. The 
PM10 seasonal cycle reflects a pattern common to many cities in Europe. 
Largest PM10 concentrations are observed during wintertime, while 
smallest concentrations occur during summer. During episodes in 
winter, daily mean PM10 concentrations between 70 and 100 μg/m3 

were observed, whereas concentrations in summer hardly exceeded 40 
μg/m3. PM2.5 shows a stronger seasonal cycle than PM10 as PM10 con
centration episodes in winter consist mainly of fine material. The coarse 
mode shows the opposite seasonal cycle with maximum contributions 
during summer and early fall with enhanced fractions throughout the 
year at traffic and urban background stations. 

Fig. 4 shows the observed PM10 daily concentrations for station 
DEBE034 with respect to the prevalent wind direction. During 2016 and 
2017 the westerly wind directions (from NW to SW) dominate associated 
with low to medium PM10 concentrations (5–35 μg/m3). In contrast, up 
to ¼ of the weather situations of the days with easterlies (from NE to SE) 
show concentrations above the daily limit value (up to more than 100 
μg/m3). These situations are often associated with cold temperatures, 
low wind speeds and stagnation conditions with shallow boundary 
layers in winter or spring. 2016 and 2017 can be considered as typical 
for the investigation period and correspond to the common climato
logical conditions. The meteorological conditions in 2018 on the other 
hand were atypical as easterlies were present for almost half of the year 
(~40%) and westerlies were less apparent (~45%). A prolonged 
drought characterized by low amounts of precipitation from mid-April 
until the end of the year occurred. Consequently, this year had the 
lowest annual precipitation (393 mm) on record since the beginning of 
measurements in Berlin/Brandenburg in 1881, whereas the long-term 
mean (1961–1990) is 557 mm (Deutscher Wetterdienst, 2020). During 

Table 1 
Labelled source regions (left) and source sectors (right).  

Labelled regions Labelled sectors 

Berlin Traffic 
Brandenburg Households 
Rest of Germany Industry & Energy 
Poland Agriculture 
Czech Republic Rest 
Others  
Natural Natural 
Boundary Boundary  
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2018 the easterly wind directions were associated with more moderate 
PM10 mass concentrations than the previous years as these easterlies 
occurred in the summer. 

3.2. Model performance 

To assess the robustness of the applied model to simulate PM con
centrations, we compared the LOTOS-EUROS CTM results for Berlin to 

daily observations at UB and RB monitoring stations. Fig. 5 shows the 
observed and modelled PM2.5 timeseries in the form of a bar chart and 
Fig. 6 shows the corresponding scatter plots. A selection of statistical 
measures (mean values, correlation, normalized RMSE and BIAS) for 
PM10, PM2.5 and PMCO is presented in Table 3. While the model can 
reproduce a fair part of the temporal variability of PM2.5 concentrations 
throughout the year, it is not able to catch major amplitudes. The un
derestimation is particularly visible in summer and early autumn while 
wintertime peaks are better reproduced. The model performs best dur
ing spring season in capturing concentration variability and amplitude. 
Also, the concentration level increase starting in early autumn is well 
reproduced by the model. During winter, the modelled PM2.5 concen
tration averaged over all UB sites captures 75% of the observed (PM10: 
74%) concentration, while during summer only 57% (PM10: 53%) is 
reproduced. The annual statistics show the underestimation of the 
model for PM in a negative BIAS at all stations (by 13–48% for the 
normalized BIAS). For all fractions - PM10, PM2.5 and PMCO - the un
derestimation is more distinct at UB stations than at RB stations and 
generally larger during episodes. Furthermore, the correlation coeffi
cient reveals that the model is better in capturing the variability in PM2.5 
concentrations than in those of PM10. There is one RB station (DEBB065) 
which is slightly better simulated than all other stations, especially for 
PM2.5. 

When looking at the coarse mode material, modelled summertime 
concentration levels reflect only about fifty percent of those observed. In 
numbers, at RB (UB) stations the model captures 57% (47%) of the 
observed mass during summertime while during wintertime 132% 
(73%) of the observed mass at RB (UB) stations is modelled by LOTOS- 
EUROS. The mean observed summertime coarse mode urban increment 
of about 2.5 μg/m3 is with 0.6 μg/m3 considerably underestimated by 
the model. This is also valid for wintertime with an observed urban 
increment of 2.8 μg/m3 compared to the modelled urban increment of 
0.8 μg/m3. The BIAS, correlation coefficients and normalized RMSE 
show that the coarse mode is largely underestimated, and that the 
temporal variability is poorly explained by the model. 

The PM2.5 and coarse mode urban increments (modelled and 
observed) are shown in Fig. 7. To suppress short-term fluctuations a 

Table 2 
Measurement sites in Berlin and Brandenburg containing UBA-code, location, street, shortcut, longitude, latitude, characteristic, PM10 and PM2.5 observed for 2018. 
B=Berlin, BB=Brandenburg; UT=Urban Traffic, UB=Urban Background, RB = Rural Background.  

Station UBA-Code Region & district Address Acronym Geogr. latitude Geogr. longitude Type PM10 [μg/m3] PM2.5 [μg/m3] 

DEBE010 B Wedding Amrumer Str./Limburger Str. BEAMR 52.542744 13.349119 UB 21.43 15.07 
DEBE034 B Neukölln Nansenstraße 10 BENAN 52.489451 13.430844 UB 24.42 16.34 
DEBE065 B Fried-richshain Frankfurter Allee (86b) BEFRA 52.514072 13.469931 UT 27.77 17.56 
DEBE068 B Mitte Brückenstr. 6 BEBRU 52.513606 13.418833 UB 22.74 15.44 
DEBB053 BB Hasenholz 15377 Buckow BBHAS 52.563835 14.015252 RB 19.33 14.11 
DEBB065 BB Luette (Belzig) Die hohe Heide/Feldstr. BBLUE 52.194225 12.561389 RB 15.03 12.01  

Fig. 2. Incremental Lenschow approach for observed data. For each UBA sub- 
category, the corresponding mean was calculated over the associated stations. 
Annual mean PM concentrations and increments (μg/m3) between the rural 
background (RB, light grey), urban background (UB, dark grey) and urban 
traffic (UT, black) concentrations. For each year (2016, left; 2017, centre; 2018, 
right), a further subdivision into the three shares PM10 (left), PM2.5 (centre) and 
the coarse mode fraction (PM10-PM2.5, right) was made. 

Fig. 3. PM10 and PM2.5 mass concentration for the urban background (UB) stations (DEBE010, DEBE034, DEBE068) for 2016 to 2018. Observations (gravimetric) are 
shown as daily mean values with missing values are considered as no data available. 
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running mean of 7 days was applied. The observed increments are 
shown in solid lines, while those for the simulations are dashed (colours 
for each year: 2016: black; 2017: red; 2018: blue). For PM2.5 (upper 
panel) the observed urban increment shows a clear seasonality with 
increased variability from autumn to spring with values often ranging 
between 5 and 10 μg/m3. During summertime typical values are below 
5 μg/m3 and the time series shows rather limited fluctuations. Only a 
few periods show a negative urban increment implying that concen
trations in the rural background were higher than in the urban back
ground. A pronounced and prolonged enhancement of the urban 
increment was observed from mid-January to mid-February 2017 when 
Berlin was hit by a PM episode during stagnant easterly flow which will 
be further discussed below. The modelled urban increment shows lower 
variability than the observed and with only few exceptions un
derestimates the observed increment throughout the investigation 
period. While the model does capture the seasonal variation with higher 

amplitudes from autumn to spring the model underestimation is most 
distinct during summertime when the modelled urban increment is 
almost non-existent. 

For the coarse mode (Fig. 7, lower panel) the seasonal signal of the 
observed urban increment is less pronounced than those of PM2.5. The 
variability between the years is large, indicating that the variability is 
mainly driven by synoptic meteorological variability. An increase in 
variability and amplitude can be found during springtime and early 
autumn. Furthermore, negative urban increments of the coarse mode are 
more frequently observed compared to PM2.5, illustrating sources of 
course material in the rural surrounding of Berlin. During the PM 
episode in early 2017 the coarse mode shows a negative urban incre
ment. As expected from the large bias for the coarse mode, the modelled 
urban increment is almost non-existent throughout the seasons for all 
years which reveals a distinct discrepancy between modelled and 
observed increment. A potential reason for this underestimation is dust 

Fig. 4. Observed mass concentration for PM10 of the urban background (UB) station Berlin (DEBE034, Nansenstr.) for daily data (gravimetric) and wind mea
surement data from the wind gauge mast of the FU-Berlin for 2016 to 2018. The breaks for PM10 concentrations are not equally distributed, missing values are 
considered (this causes the sum of all contributions to be below 100% for some cases because of the missing values). 

Fig. 5. Time series of the PM2.5 mass concentration for Berlin (UB station DEBE034) for 2016 to 2018. Observations are shown in grey and modelled sector (A) and 
regional (B) contributions are colour coded. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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resuspension, which will be discussed below. 

3.3. Source attribution for particulate matter in Berlin 

Although the model systematically underestimates the observed 
PM2.5 (and PM10) levels, in this section we present a sectoral and 
regional source attribution for PM2.5 and PM10 of the Berlin agglomer
ation area. Since the episodes with the highest particulate matter con
centrations occur during the fine mode dominated cold season and the 
model performance is best for PM2.5, our main focus is on the source 
attribution of PM2.5. The sectoral/regional source attribution provides 
insights to the most important source sectors/regions contributing to 
Berlin’s PM mass concentration. 

An overview of the annual mean contributions of source sectors and 
regions for Berlin and the rural background is also presented in Table 4. 
For Berlin the (3 year-) mean modelled urban background PM2.5 con
centrations for the 2016 to 2018 (10.4 μg/m3) are explained by house
holds (3.2 μg/m3), industry & energy (2.0 μg/m3), boundary (1.4 μg/ 
m3), agriculture (1.3 μg/m3), traffic (1.3 μg/m3), rest (0.7 μg/m3) and 
natural (0.5 μg/m3). The modelled annual mean urban increment for 

PM2.5 is mainly composed of households (1.6 μg/m3) and traffic (0.5 μg/ 
m3). During the whole period the most important contribution to PMCO 
comes from (semi-)natural sources, i.e., sea salt and dust. In the rural 
background natural sources contribute 1.6 μg/m3 on average to PMCO. 
Agriculture provides a secondary contribution in the rural background, 
whereas in the urban background the traffic contribution (0.8 μg/m3) is 
the second largest source sector. The modelled traffic contribution in the 
city is largely due to urban traffic as the modelled traffic increment is 
0.55 μg/m3. The remaining sectors only show small modelled in
crements ( ± 0.1 μg/m3) for PMCO. As PM2.5 is a large fraction of PM10, 
the PM10 source attribution looks similar to PM2.5 throughout the year 
with respect to the relative shares, but with enhanced natural contri
bution derived from the coarse mode. The sectors contributing to rural 
background PM10 during winter show on average a fairly even distri
bution over the sectors industry & energy (2.9 μg/m3), household (2.7 
μg/m3), agriculture (2.1 μg/m3) and natural (2.0 μg/m3) and slightly 
lower contributions from traffic (1.4 μg/m3). Remaining sources play a 
minor role. The PM10 urban increment combines the PM2.5 and coarse 
mode contributions from households (winter: 2.5 μg/m3) and traffic 
(winter: 1.0 μg/m3). 

Fig. 6. Scatterplots with linear regression for 2016 to 2018 of the PM2.5 mass concentration at rural (A) and urban (B) sites and the coarse mode fraction at rural (C) 
and urban (D) sites. 

Table 3 
Model performance statistics for all monitoring stations and the three-year period of 2016–2018. Shown are the concentrations for PM10, PM2.5 and the coarse mode 
fraction (PMCO) for observed and modelled data: the mean values, the correlation (Pearson), the normalized RMSE (root mean squared error), the normalized BIAS 
(deviation of the mean). The normalization was done by dividing by the respective observational mean.  

Station Mean PM10 Mean PM2.5 Mean PMCO Correlation Normalized RMSE Normalized BIAS 

No. site OBS SIM OBS SIM OBS SIM PM10 PM2.5 PMCO PM10 PM2.5 PMCO PM10 PM2.5 PMCO 

DEBB053 RB 17.54 11.68 13.32 8.75 4.23 2.93 0.58 0.80 0.08 0.62 0.58 1.30 − 0.33 − 0.34 − 0.31 
DEBB065 RB 14.85 11.52 11.42 8.57 3.42 2.96 0.68 0.81 0.12 0.52 0.52 0.92 − 0.22 − 0.25 − 0.13 
DEBE010 UB 20.73 13.07 14.95 9.52 5.91 3.55 0.69 0.78 0.13 0.3 0.69 0.93 − 0.37 − 0.44 − 0.40 
DEBE034 UB 22.89 14.18 16.10 10.60 6.91 3.58 0.61 0.75 0.15 0.55 0.54 1.00 − 0.38 − 0.33 − 0.48 
DEBE068 UB 22.03 14.96 15.47 11.01 6.69 3.95 0.59 0.72 0.17 0.53 0.52 0.96 − 0.32 − 0.28 − 0.41  
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From a geographical perspective the main source area for the PM2.5 
in Berlin is Germany (5.1 μg/m3) itself, followed by the contributions 
from transboundary transport (3.4 μg/m3). The German contributions 
can be separated into Berlin (2.6 μg/m3), Brandenburg (0.7 μg/m3) and 
remaining states of Germany (1.8 μg/m3), which reveals that on average 
the city contribution slightly exceeds the contribution of the remaining 
German sources. The modelled contribution from foreign countries to 
the urban background is about as large as that of Berlin and Branden
burg combined. On average, the transboundary contribution exceeds 
those of domestic contribution in air masses advected to Berlin. Note 
that Berlin also contributes to the average rural background (~0.4 μg/ 
m3). About one third of foreign shares can be attributed to Germany’s 
neighbouring countries Poland (1 μg/m3) and Czech Republic (0.3 μg/ 
m3). The remaining foreign contribution (2.2 μg/m3) strongly correlate 
to the contributions of Poland and Czech Republic, highlighting the 
importance of transport of PM from further (south-)east. Throughout the 
year the geographic origin remains similar in terms of relative 
contributions. 

For PMCO the importance of long-range transport is lower. The 
modelled contribution of German sources exceeds those of the trans
boundary contribution, which is explained by the shorter lifetime of the 
coarse mode. The coarse mode fraction in the RB has largest contribu
tions from natural (1.6 μg/m3) and the rest of Germany (0.5 μg/m3), 

while the shares of the remaining regions are forming additional 0.9 μg/ 
m3. The geographic origin contributions for PM10 are very similar to that 
of PM2.5 with the same observations regarding natural contributions as 
discussed above. 

The urban increment (PM2.5, annual mean: 1.7 μg/m3) is composed 
of two terms: 1) a positive increment induced by emissions in Berlin 
(+2.3 μg/m3), and 2) a negative increment from remaining areas (− 0.6 
μg/m3). The negative increments mean that the absolute contribution in 
the rural background is larger than in the city. This can be explained by 
a) the deposition of PM transported into the city from outside and b) the 
further dilution of nearby rural emissions when entering the city. Be
sides the positive increments explained by households and traffic 
emissions there is a small increment labelled natural (~0.1 μg/m3 

annual mean), which is mainly associated with sea salt in 2016 and 
2017, while in 2018 it additionally contains continental dust. This 
natural labelled increment results rather from the configuration of the 
measurement locations than from an urban source since the urban sta
tions are slightly closer to the coast. 

Figs. 8 and 9 provide a graphical overview of the source apportioned 
rural background concentration and urban increments. The figure is 
separated into two panels: the upper one highlights the winter period, 
the lower one the summer season. The figure is split into several sub
figures. In Fig. 8A and B the observational data for PM10, PM2.5 and the 

Fig. 7. Timeseries of the PM2.5 (upper panel) and coarse mode (lower panel) urban increments for 2016–2018. The observed and modelled data were smoothed by 
using a 7-day running mean. 

Table 4 
Mean labelled concentrations for sectors and regions for PM2.5 and PMCO for RB, UB and the urban increment.  

Source Label UB (μg/m3) RB (μg/m3) Urban Increment (μg/m3) 

PM2.5 PMCO PM2.5 PMCO PM2.5 PMCO 

Sector Traffic 1.25 0.77 0.90 0.22 0.35 0.55 
Housholds 3.21 0.05 1.67 0.02 1.54 0.04 
Industry &En. 2.01 0.31 2.05 0.29 − 0.03 0.02 
Agriculture 1.25 0.38 1.38 0.45 − 0.14 − 0.07 
Rest 0.74 0.20 0.70 0.12 0.04 0.08 
Natural 0.54 1.68 0.56 1.56 − 0.02 0.11 
Boundary 1.38 0.30 1.40 0.28 − 0.02 0.02 
Sum: 10.38 3.69 8.66 2.95 1.72 0.75 

Region Berlin 2.62 0.78 0.31 0.06 2.31 0.72 
Brandenburg 0.68 0.13 0.92 0.16 − 0.25 − 0.03 
Rest Ger. 1.80 0.41 2.03 0.52 − 0.23 − 0.11 
Poland 0.95 0.08 0.96 0.07 − 0.01 0.01 
Czech Rep. 0.25 0.02 0.25 0.02 0.00 0.00 
Others 2.15 0.29 2.22 0.27 − 0.07 0.02 
Natural 0.54 1.68 0.56 1.56 − 0.02 0.11 
Boundary 1.38 0.30 1.40 0.28 − 0.02 0.02 
Sum: 10.38 3.69 8.66 2.95 1.72 0.75  
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coarse mode is provided (grey for RB and dark grey for UB locations), 
while the modelled urban increment with an offset relative to the 
observed is shown (green, hatched). In front of the observed RB, the 
modelled RB (colour-shaded) is shown. Since the urban increment is the 
difference between the urban and rural background, subfigures Aa/Ba 
(PM2.5), Ab/Bb (for PM10) and Ac/Bc (coarse mode) contain the in
crements for the absolute sector contributions. Negative contributions in 
the urban increment can appear (e.g., agriculture) due to larger 
modelled concentration outside the city than (attributed to the same 
sector) inside the city. The absolute contributions of the source sectors 
households and industry & energy show the largest variation in time. 
The contribution from households in the urban background dominates 
during the cold season (October–March) with mass concentrations of 
5.2 μg/m3, followed by industry & energy (2.7 μg/m3), traffic (1.6 μg/ 
m3) and agriculture (1.4 μg/m3). During the warm season (April–Sep
tember) the order of importance shifts with larger relative contributions 

for e.g., industry & energy (1.5 μg/m3). During the warm season, the 
absolute contribution of the remaining source sectors is roughly halved, 
except for households showing a fifth of their winter contributions. 
Hence, in summer the largest contributions for UB PM2.5 derive from 
industry & energy (1.4 μg/m3), households (1.2 μg/m3), agriculture 
(0.9 μg/m3), and traffic (0.8 μg/m3). 

The modelled timeseries allows to address the source attribution on a 
daily basis. Fig. 5 includes the contributions simulated by the LOTOS- 
EUROS CTM for source sectors (Fig. 5A) and source regions (Fig. 5B) 
at station BENAN representing the urban background of Berlin. The 
sectoral contributions contain traffic (light blue), households (purple), 
industry/energy (dark pink), agriculture (orange), rest (green), natural 
(blue) and boundary (dark blue). For the regional contributions, the 
labels are defined as: Berlin (light green), Brandenburg (light blue), rest 
of Germany (purple), Poland (dark pink), Czech Republic (orange), 
others (green), natural (blue) and boundary (dark blue). From day-to- 

Fig. 8. Overview of observed and modelled concentrations and the increments for PM10, PM2.5 and PMCO (coarse mode fraction). The observed rural background 
levels provided in light grey. The urban increment is provided in dark grey. As the modelled increments underestimate the observations we provide the modelled 
urban increment as the green hatched in this bar. The modelled RB sectors contributions are indicated in the coloured bar. The modelled urban increment is detailed 
per sector in the separate graphs on the right side of the figure (Aa/Ba for PM2.5, Ab/Bb for PM10 and Ac/Bc for the coarse mode, A for winter and B for summer). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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day and for individual periods/episodes the (relative) source contribu
tions and dominant sectors may differ largely from the mean. For 
example, during certain peaks in January 2018 the Berlin share rises up 
to 80%. More frequently, Poland contributes an important fraction of 
total PM2.5 mass during wintertime high-concentration episodes, with 
contributions up to 1/3rd of the total modelled mass (e.g., January 
2016, January/February 2017, or March 2018). Zooming into the situ
ation at the beginning of 2017, the variability induced by meteorological 
conditions is nicely illustrated. At the beginning of the episode the 
model estimates high Berlin contributions for PM2.5 (with about 34 μg/ 
m3) during the stagnant conditions until the weather regime changed to 
more diluting conditions (increased wind speeds and planetary bound
ary layer height). Afterwards a continental high-pressure system domi
nated the weather situation causing easterly flows towards Berlin. 
During this period the contributions from Poland, Czech Republic and 
remaining foreign countries (= others) take over the dominating share 
with a combined contribution of 2/3rd of the simulated mass. During 
this phase the energy/industry contribution is relatively enlarged as 
well, although households remain the most important sector. The 
episode lasted until mid-February when a trough took over control of the 

weather causing the transport of maritime air from the north Atlantic 
towards Berlin. As a result, the contributions from Poland, Czech Re
public and others diminished and contributions from German sources 
dominated the picture again. 

4. Discussion and conclusion 

In this paper we conducted an air pollution simulation with the 
LOTOS-EUROS CTM, to address the source attribution of particulate 
matter (PM) for the Berlin agglomeration area as a first step towards 
defining the relevant brute force calculations for the determination of 
effectivity. The modelled timeseries allows to address the source attri
bution on a daily basis. The (relative) source contributions and domi
nant source sectors vary strongly between episodes. On average, the 
households and industry & power contribute the largest share to the 
modelled PM2.5 levels in Berlin. Domestic contributions on average 
exceed those of transboundary transport, of which the city contribution 
slightly exceeds the contribution of the remaining German sources. 
During wintertime episodes the importance of source regions in Poland 
and further east was highlighted. The source attribution for PM10 looks 

Fig. 9. Same as in Fig. 8, but for regional contributions.  
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similar with respect to the relative shares, except that the natural 
contribution is enhanced compared to that in PM2.5. 

The evaluation of the model against UBA measurements has shown 
an overall underestimation for PM. Overall, the fine mode is better 
reproduced by the model than the coarse mode. The systematic under
estimation of modelled PM is a feature that has been pointed out in 
earlier studies using LOTOS-EUROS (Weijers et al., 2010; Hendriks 
et al., 2013; Manders et al., 2017) and that is shared by many other 
chemistry transport models (Marécal et al., 2015; Bessagnet et al., 2016; 
Potier et al., 2019; Belis et al., 2020; Pommier et al., 2020). In previous 
studies the missing mass modelling PM2.5 with LOTOS-EUROS was 
related to a missing share of organic carbon (OC) (Hendriks et al., 2013; 
Timmermans et al., 2013). This is largely solved by the inclusion of 
condensable material (Denier Van Der Gon et al., 2015). For a general 
discussion on the fine mode, we refer to abovementioned publications. 
Below, we mainly focus on the coarse mode and the urban increment. 

The modelled coarse mode urban increment is underestimated by a 
factor of 4. Traffic resuspension is a well-known source of coarse mode 
particles in the urban atmosphere (Amato et al., 2009). A study by van 
Pinxteren et al. (2019) found that the combined traffic exhaust and 
resuspension source profile contributed 17% to urban background PM10 
in Berlin, whereas the contribution was around 9% in the rural back
ground. Applying these percentages to the observed 3-year mean con
centrations of this study an indication of the typical urban increment 
(2.5 μg/m3) for this source profile can be obtained. As the profile is 
dominated by crustal material and the total coarse mode increment for 
Berlin is about 3 μg/m3, the traffic crustal factor obtained by van 
Pinxteren et al. (2019) explains the coarse mode increment to a large 
part. In the receptor modelling contributions from highly correlated 
sources may appear in the same profile (Chan et al., 1999). Hence, other 
urban sources may still be included into the estimate. Nevertheless, we 
conclude that the modelled traffic increment (0.8 μg/m3), being much 
lower than deduced from the observations, explains a large part of the 
underestimation of the coarse mode increment. 

Although there is a large body of work on modeling desert dust, little 
attention has been given to the modelling of crustal material from other 
sources in chemistry transport models. Emission inventories do not 
contain estimates of resuspension of e.g., traffic and land preparation, 
although they can be important sources (Belis et al., 2020; Denby et al., 
2013; Maffia et al., 2020; Thouron et al., 2018). Most model systems do 
not include resuspension parameterizations for emissions from traffic 
and land management activities. Earlier work from Pay et al. (2011) and 
Schaap et al. (2009) showed that implementing a simple resuspension 
scheme reduced the BIAS and error in PM10 predictions. In our model 
set-up emission factors are applied to the mileage driven in each 
grid-cell for urban, rural and highway traffic. Implicitly, it is therefore 
assumed that the dust reservoir remains constant over time. Only in case 
of precipitation, the resuspension emission flux is set to zero. The spatial 
variability of the emission factors is calculated based on annual average 
soil water content (Schaap et al., 2009). Hence, seasonal variability as 
well as the impact of droughts are not included. Given the range of a 
factor of four in reported emission factors between regions (Gehrig et al., 
2004), an impact of seasonality and especially drought periods are to be 
expected. In a follow-up study we plan to investigate different ap
proaches to improve this parameterization. 

Another issue that contributes to the overall underestimation of PM 
concentrations is the reduced capability of CTMs to model PM during 
stagnant weather conditions. A comparison between different CTMs 
showed that the models treat the vertical mixing very differently (Stern 
et al., 2008). A recent study connecting LOTOS-EUROS to an ensemble 
of COSMO-CLM simulations with different parameterizations for 
boundary layer meteorology, however, did not show a systematic effect 
of different schemes (Thürkow et al., 2021). Currently, the 
LOTOS-EUROS team is assessing the possibility to move away from the 
mixed-boundary layer concept to a set-up with a significantly larger 
number of layers, which has shown to give improved temporal behavior 

of the major air pollutants including PM (Escudero et al., 2019; Thürkow 
et al., 2021). 

The use of national scale emission inventories may also lead to 
problems due to the use of proxy data, such as population density. For 
instance, using population density to spatially distribute emissions ne
glects that urban populations are much more energy efficient than rural 
populations (Lobo et al., 2009; Timmermans et al., 2013). Such as
sumptions may lead to systematic over and underestimations of urban 
emissions in downscaled emission inventories, as for example shown for 
residential heating emissions in Paris (Timmermans et al., 2013). In this 
study for Berlin, we also used a national scale emission inventory, and 
clearly underestimate the urban increment. For NOx Kuik et al. (2018) 
have shown that the emission totals of the national scale and local in
ventory for Berlin were only a few percent apart. In their study, Kuik 
et al. (2018) concluded that the large systematic BIAS between 
WRF-CHEM modelled and observed NO2 levels was connected to a 
general underestimation of NOx emissions from traffic. Hence, primary 
emissions of transport need future attention. To improve the temporal 
and spatial variability of emissions from the residential heating sector 
we have applied temperature dependent emissions as this leads to 
improved modelled pollutant concentrations (Mues et al., 2014). Simi
larly, dynamic approaches should also be included for other sectors like 
e.g., road transport, which also shows considerable variability due to 
ambient temperature (Matzer et al., 2017). In a follow up study, we plan 
to assess if these recent findings significantly affect the modelled urban 
increments for NO2 and PM. 

Evaluating the gradients between source regions and background 
levels may provide important information to get to the reason of the 
underestimation. We have used the traditional approach of Lenschow in 
this paper (Lenschow et al., 2001). Recently, using this approach to 
calculate the impact of a city was criticized because the rural back
ground concentrations partly include the urban signal (Thunis, 2018). 
Hence the urban increment would underestimate the urban contribu
tion. In our study the gradients between urban and rural sites were 
calculated in the same way for the modelled and observed results. The 
modelled urban contribution to the UB PM2.5 concentration is 2.62 
μg/m3 whereas the modelled increment is 1.72 μg/m3. Thunis (2018) 
used a BF approach to quantify the impact of the urban emissions on the 
(rural) background concentrations as function of the distance to the city 
for London, Paris, Berlin and Brussels using the CHIMERE model for 
2010. Although the size of the urban contribution depends on the choice 
and configuration of the rural and urban observation sites as well as the 
model system used, our study confirms that the urban increment from 
the Lenschow approach is a lower estimate for the urban contribution in 
the city. 

In order to reveal further shortcomings of the model system we 
recommend a comparison of LOTOS-EUROS results to those of receptor 
model results. Furthermore, a dynamic model evaluation as in Banzhaf 
et al. (2015) but including source attribution would help to further 
analyse the source attribution of the model and reveal its weaknesses. 
For the near future we propose the enhancement of resuspension 
schemes in CTMs and an improvement of the emission variability in 
space and time. 
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