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ABSTRACT

The investigation of dynamical processes on networks has been one focus for the study of contagion processes. It has been demonstrated that
contagions can be used to obtain information about the embedding of nodes in a Euclidean space. Specifically, one can use the activation
times of threshold contagions to construct contagion maps as a manifold-learning approach. One drawback of contagion maps is their high
computational cost. Here, we demonstrate that a truncation of the threshold contagions may considerably speed up the construction of
contagion maps. Finally, we show that contagion maps may be used to find an insightful low-dimensional embedding for single-cell RNA-
sequencing data in the form of cell-similarity networks and so reveal biological manifolds. Overall, our work makes the use of contagion maps
as manifold-learning approaches on empirical network data more viable.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0090114

It is known that the analysis of spreading processes on net-
works may reveal their hidden geometric structures. These tech-
niques, called contagion maps, are computationally expensive,
which raises the question of whether they can be methodolog-
ically improved. Here, we demonstrate that a truncation (i.e.,
early stoppage) of the spreading processes leads to a substantial
speedup in the computation of contagion maps. For synthetic
networks, we find that a carefully chosen truncation may also
improve the recovery of hidden geometric structures. We quan-
tify this improvement by comparing the topological properties
of the original network with the constructed contagion maps
by computing their persistent homology. Finally, we explore the
embedding of single-cell transcriptomics data and show that con-
tagion maps can help us to distinguish different cell types.

I. INTRODUCTION

The study of spreading processes has a rich tradition in
epidemiology,1–3 the social sciences,4–9 and applied mathematics.10–12

Due to improved availability of interaction data, the description of

contagion processes on networks has been a focus in recent years.13

It is known that spreading phenomena are influenced by the geom-
etry of a networks’ underlying embedding,14 for example, for the
spread of pandemics15 and the adaption of technologies.16 By con-
structing diffusion maps, the interplay between dynamical processes
and underlying geometry can be used to detect the manifold struc-
ture in high-dimensional data.17–20 More recently, contagion maps
have been proposed as a technique to detect the manifold struc-
ture in networks.21 Contagion maps may reliably detect the manifold
structure in noisy data, even if standard approaches, such as ISOMAP

fail.22 Generalization of these approaches, for example, to conta-
gions on simplicial complexes23 and Kleinberg-like networks,24 is an
active field of research. The construction of contagion maps, how-
ever, is computationally expensive, which makes the exploration
of strategies for their speed-up a pressing issue. In the context of
random walks on networks, it has been established that stopping a
dynamical process and restarting it may improve the performance
of machine-learning algorithms,25–27 raising the question whether
similar approaches might be able to enhance contagion maps.

In this work, we introduce the generalization of contagion
maps that we call truncated contagion maps (see Fig. 1). The core
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FIG. 1. Truncated contagion maps can improve recovery of topological features of a networks’ underlying manifold while having reduced computational cost. (a) We show
a schematic representation of the analysis pipeline in this paper. With contagion maps, we can compute a node embedding for a network. With persistent homology, we
compute barcode diagrams to quantify the recovery of topological features in the learned embeddings. This approach is used for the full contagion map and the newly
introduced truncated contagion map. (b) We compare the topological recovery of full contagion maps with that of truncated contagion maps. For appropriate parameter
choices, truncated contagion maps show higher performance than full contagion maps while taking considerably less time to compute (numbers for a noisy ring lattice with
N = 1000 nodes).

idea is that an early stoppage of the contagion processes that are
used to detect the manifold may drastically reduce the computa-
tional cost of the embedding algorithm. In particular, our numerical
observations indicate a quadratic scaling in the problem size for full
contagion maps and a sub-quadratic scaling for truncated conta-
gion maps. Furthermore, as we will show, the activations in the early
stages of a contagion often follow the underlying manifold of the
networks more clearly than the later stages. Omitting these late-stage
dynamics results in improved manifold detection, which we verify
with techniques from topological data analysis.

Topological data analysis is a field that aims to develop tools
that allow the extraction of qualitative features in data that are hid-
den to standard approaches. A wide range of tools and methods
for the topological analysis of data have been developed28–30 and
applied to problems in biology,31,32 social sciences,33–35 and many
other fields.36–38 Persistent homology39,40 in particular is a topological
data analysis method that received a lot of interest from practitioners
because it enables the extraction of topological features in high-
dimensional point-cloud data. In particular, topological data anal-
ysis is considering higher-order interactions between data points by
constructing simplicial complexes.

Advances in single-cell transcriptomics enable the measure-
ment and analysis of gene expression at a single-cell resolution.41

One challenge in the analysis of single-cell transcriptomics data is

that experimental advances lead to an explosion in dataset sizes.42

As complex organisms have thousands to ten thousands of genes,
their gene-expression space is high-dimensional, making single-
cell transcriptomics data notoriously hard to visualize. Yet, the
vast majority of this space is empty and cells follow a few low-
dimensional manifolds that represent, for example, cell types or
differentiation trajectories. The presence of low-dimensional struc-
tures embedded in high-dimensional gene-expression spaces makes
single-cell transcriptomics a promising field for the application of
manifold-learning approaches.43 In this work, we apply truncated
contagion maps to single-cell transcriptomics data and show that
the constructed embeddings are fruitful in representing the complex
biological structure, which represents cell types and developmental
trajectories.

The remainder of this article is organized as follows. In Sec. II,
we summarize the existing methods and introduce truncated conta-
gion maps. In Sec. III, we investigate the temporal development of
the contagion processes. In Sec. IV, we demonstrate that truncated
contagion maps may improve the recovery of topological features in
contagion maps. In Sec. V, we discuss the improved computational
complexity of truncated contagion maps vs full contagion maps. In
Sec. VI, we apply truncated contagion maps to single-cell transcrip-
tomics data of developing mouse oocytes. In Sec. VII, we discuss our
findings.
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II. METHODS

A. Noisy geometric networks

Noisy geometric networks21 are geometric networks44 to which
“noisy” non-geometric edges have been added. They are defined
as follows. Consider a manifold M that is embedded in an ambi-
ent space A such that M ⊂ A . First, we construct nodes V that
are embedded in the manifold M such that w(i) ∈ M for nodes
i ∈ V. Second, we construct edges which are of one of the two types,
either geometric or non-geometric. The geometric edges E(G) follow
the manifold such that i, j ∈ E(G) if the distance along the mani-
fold between nodes i and j is below some distance threshold. The
non-geometric edges E(NG) are constructed in a random process
that does not consider the manifold. We obtain the noisy geometric
network as G = (V, E(G) ∪ E(NG)). Noisy geometric networks are a
type of small-world network13 that consists of long-range and short-
range connections. The interplay of these two types of interactions
has been discussed in the context of many types of networks, for
example, social networks45 and traffic networks.14

In this paper, we focus on noisy ring lattices NRL(N, d(G), d(NG))

as prototypical examples of noisy geometric networks. Their param-
eters are the number N of nodes, the geometric degree d(G),
and the non-geometric degree d(NG). The NRL networks are
defined as follows. First, we place N nodes uniformly spaced
along the unit circle M = {(a, b)|a2 + b2 = 1} ⊂ R

2 such that
w(i) = (cos(2π i/N), sin(2π i/N)) is the location of node i. Second,
we construct geometric edges such that each node is connected
to its d(G) nearest-neighbor nodes. Third, we construct N × d(NG)

non-geometric edges uniformly at random such that each node has
exactly d(NG) non-geometric edges. In practice, the non-geometric
edges are constructed with stub-matching: We create a list of stubs
that contains each node exactly d(NG) times. Then, we construct
edges iteratively by drawing without replacement uniformly at ran-
dom from this list while rejecting self-edges or parallel edges. In rare

cases, this procedure might fail to terminate (e.g., if only stubs of
the same node are remaining), but this problem can be overcome by
restarting the procedure. The ratio α = d(NG)/d(G) of non-geometric
to geometric edges quantifies the “noisiness” of a noisy ring lattice
with α = 0, indicating that there are exclusively geometric edges and
α = 1 indicating that there are as many non-geometric edges as geo-
metric edges. In Fig. 2, we show two example noisy geometric lattices
with α = 0 and α = 1, respectively.

B. Watts threshold model

The Watts threshold model (WTM) is a well-established deter-
ministic binary-state discrete-time model of social contagions on
networks46 and is a modification of Mark Granovetter’s threshold
model.7 The WTM is defined as follows. Each node is in one of the
two states, either active or inactive. At time t = 0, all nodes but a set
of seed nodes S is inactive. All nodes have the same activation thresh-
old T ∈ [0, 1] (homogenous threshold), which determines how eas-
ily a node adapts to their neighbors’ activation. An active node stays
active but an inactive node is activated if more than a threshold
fraction T of its d neighbors are active. We update all node states syn-
chronously at each time point and stop the contagion once a steady
state is reached (for a discussion of synchronous vs asynchronous
update procedures, see Ref. 47).

C. Contagion maps

As introduced by Taylor et al., we use the WTM to con-
struct deterministic embeddings for networks. These embeddings
are based on the nodes’ activation times under different initial con-
ditions. Specifically, we define a contagion map as V → {x(i)}i∈V,

where x(i) = [x(i)
1 , x(i)

2 , . . . , x(i)
j ] with x(i)

j indicating the activation
time of node i for contagion j. For the initial conditions, we use clus-
ter seeding such that the neighborhood N (j) of node j is active at

FIG. 2. Noisy geometric networks contain geometric edges that follow the underlying manifold and non-geometric edges that ignore the underlying manifold. Here, we show
noisy geometric lattices of size N = 50, whose underlying manifold M is the unit circle {(a, b)|a2 + b2 = 1} with ambient space A ⊂ R

2. The geometric lattice contains
exclusively geometric edges and has d(G) = 2. After adding d(NG) = 2 non-geometric edges per node, we obtain a noisy geometric lattice with α = 1.

Chaos 32, 073108 (2022); doi: 10.1063/5.0090114 32, 073108-3

© Author(s) 2022

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

ALGORITHM 1. Computing (truncated) contagion maps

T = 0. After a steady state of the WTM is reached, some nodes might
still be inactive. The infinite activation time of these inactive nodes
is set to 2N � ∞ because 2N is much larger than the largest possi-
ble activation time of N − 1 (An activation time of N − 1 would be
reached by a single node if in each time step exactly one additional
node is activated, for example, along a line graph.).

The obtained matrix X of activation times is not necessar-
ily symmetric. To study an embedding that defines a semimetric,
we investigate the symmetric contagion map Xsymmetric = X + X>.
See Algorithms 1 and 2 for pseudocode of contagion maps and
contagion dynamics, respectively.

For clarity, we will refer to the contagion maps as defined by
Taylor et al. as “full contagion maps” in contrast to the “truncated
contagion maps,” which we will introduce now.

D. Truncated contagion maps

In this work, we introduce truncated contagion maps as a gen-
eralization of full contagion maps. Intuitively, they represent full
contagion maps in which contagions are not run until a steady state
is reached. Rather, we stop the contagion after s ∈ N>0 steps. Specif-
ically, we define a truncated contagion map as V → {x(i)}i∈V, where

x(i) = [x(i)
1 , x(i)

2 , . . . , x(i)
j ] with

x(i)
j =

{

a(i)
j for a(i)

j ≤ s,

2s else,
(1)

where a(i)
j indicates the activation time of node i for contagion j. For

the initial conditions, we use cluster seeding such that the neighbor-
hood N (j) of node j is active at T = 0. We set the activation time
of unactivated nodes to 2s such that full contagion maps are a spe-
cial case of truncated contagion maps for s = N but other choices
for the handling of infinite activation times are possible. In practice,
however, we anticipate approximately similar behavior of truncated
and full contagion maps for s � N because most contagions reach
a steady state after a small number s of steps (in comparison to the
network size N). As for full contagion maps, we study exclusively the

ALGORITHM 2. Compute (truncated) contagion dynamics

symmetric contagion maps Xsymmetric = X + X> such that we obtain
a semimetric.

E. Topological data analysis

Persistent homology is a widely adopted method from topo-
logical data analysis. It aims to identify stable (i.e., persistent) topo-
logical features of point-cloud data across a range of resolutions.
To obtain these topological features, we must construct simpli-
cial complexes from the point-cloud data. Specifically, we employ
Vietoris–Rips simplicial filtration, which is a sequence of simplicial
complexes that constructs a topological structure based on the data.
Given a dataset X, a metric d : Y × Z → R, and a scale parameter
α ∈ R, we can construct a Vietoris–Rips complex as

{VR(X, d, α) := {σ ⊂ X : d(p, q) ≤ α ∀ p, q ∈ σ }. (2)

Computing the Vietoris–Rips complex for a selection of scale
parameters α1 ≤ α2 ≤ · · · ≤ αa, then yields Vietoris–Rips simplicial
filtration

∅ ⊆ VR(X, d, α1) ⊆ VR(X, d, α2) ⊆ · · · ⊆ VR(X, d, αa) , (3)

which is a sequence of embedded simplicial complexes. This fil-
tration can be thought of as a dynamical process on a simplicial
complex in which faces are added stepwise. The most common way
to visualize the persistence of topological features across a filtration
is a barcode, which indicates in which filtration step a topologi-
cal feature is born and in which step it ceases to exist. We use the
RIPSER implementation48 for the computation of Vietoris–Rips per-
sistence barcodes and use the Euclidean norm. To summarize the
1D persistence barcodes (i.e., the presence of loops in the data), we
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compute ring stability as 1 = l1 − l2, where l1 and l2 are the per-
sistence of the longest and second longest lifetime of loops in the
data. This procedure has previously been used to identify whether
contagions are predominantly spreading by wavefront propaga-
tion vs new cluster appearance.21 In Fig. 1, we show two exam-
ple Vietoris–Rips persistence barcodes constructed from contagion
maps.

III. TEMPORAL DEVELOPMENT OF CONTAGIONS

REVEALS SUITABLE TRUNCATION VALUES

In this section, we will describe the spread of WTM contagions
on noisy ring lattices. In particular, we will demonstrate that in cer-
tain parameter regimes, the initial spread is mainly occurring along
the manifold (called “wave front propagation,” WFP) and at later
stages of the contagion, the spread is less restricted to the manifold
and leads to new contagion clusters at distant parts of the manifold
(“appearance of new clusters,” ANCs).

Taylor et al.21 proved two critical thresholds for noisy ring
lattices of noisiness α,

T(WFP) = 1/(2 + 2α) and (4)

T(ANC) = α/(1 + α), (5)

which indicate the thresholds above which no WFP and no ANC,
respectively, occur. We show these critical thresholds, which inter-
sect at (α, T) = (1/2, 1/3), in Fig. 3 and observe four qualitatively

FIG. 3. Bifurcation diagram of WTM on noisy ring lattices matches well with the
observed ring stability of truncated contagion maps. We plot the critical thresh-
olds of WFP [solid line, Eq. (4)] and ANC [dashed line, Eq. (5)] vs the noisiness α.
These curves divide the (T ,α) parameter space into four qualitatively different
contagion regimes: exclusively WFP, exclusively ANC, WFP and ANC, and nei-
ther. We compare the theoretical bifurcation diagramwith the empirically observed
ring stability 1 in truncated contagion maps with s = 20 of noisy ring lattices
of size N = 400 with geometric degree d(G) = 40 and varying non-geometric
degrees d(NG) ∈ [0, 40] such that their noisiness α ∈ [0, 1]. We find that only
in the parameter regime of exclusive WFP, the ring stability 1 is high, indicat-
ing a good recovery of the underlying manifold’s topology. We highlight the four
parameter choices that we show in Figs. 4 and 5 with crosses.

different contagion regimes: exclusively WFP, exclusively ANC,
WFP and ANC, and neither. As we will show, these regimes gen-
eralize from full contagion maps to truncated contagion maps. In
the following, we investigate four parameter choices in more detail.
Specifically, we summarize the Watts threshold model contagions
for thresholds T ∈ {0.05, 0.2, 0.3, 0.45} on a noisy ring lattice with
N = 400 nodes and noisiness of α = d(NG)/d(G) = 2/6 = 1/3 (see
Fig. 4).

In Fig. 4(a), we show the size q(t) of the contagion over time
(i.e., the number of nodes that are active). First, we note that for
T ∈ {0.05, 0.2, 0.3}, a global cascade is triggered as q(t) → 1, whereas
for T = 0.45, the contagion size remains constant. Second, a smaller
threshold T results in a quicker contagion spread which, in turn,
yields a smaller time until a global cascade is reached. By comparing
the chosen thresholds with the critical thresholds of WFP [Eq. (4)]
and ANC [Eq. (5)], we observe that T = 0.05 and T = 0.2 fall in the
regime in which WFP and ANC occur, T = 0.3 falls in the regime in
which exclusively WFP occurs, and T = 0.45 results in no contagion
(see colored crossed in Fig. 3).

To study whether the contagion spreads along the manifold
or independent of it, we investigate along which type of edges the
contagion spreads predominantly. In Fig. 4(b), we show the num-
ber E(t) of activating edges (i.e., edges incident to a node that
is active at t and a node that becomes active at t + 1). We dis-
tinguish between geometric edges (solid lines) and non-geometric
edges (dashed lines). We observe that for thresholds T ∈ {0.05, 0.2},
the contagion spreads quickly and to a similar extent along geomet-
ric and non-geometric edges. For a threshold of T = 0.3 in contrast,
we find a slow contagion process. We also find that initially the
contagion process is strongly dominated by contagion along geo-
metric edges (see inlay). After time t ≈ 20, however, the influence
of non-geometric edges increases. Our observation indicates that
for slow contagion processes, the contagion initially spreads along
the manifold as WFP. Yet, a spreading along non-geometric edges
becomes more important over time. This highlights that the derived
critical thresholds [Eqs. (4) and (5)] are strictly valid only for the
early contagion steps and become less appropriate the longer the
contagion progresses. These observations indicate that a truncation
choice that removes these late-stage contagion steps might improve
the contagion map. In this case, for example, a truncation parameter
s ∈ [20, 60] might be appropriate. As a simple, heuristic choice,
we suggest s∗ = N/10 = 40, which we will explore in more detail
in Sec. IV. As we will show in Sec. IV, such truncations allow
us to improve the recovery of topological features with truncated
contagion maps in comparison with full contagion maps.

IV. TOPOLOGICAL DATA ANALYSIS OF TRUNCATED

CONTAGION MAPS

In this section, we analyze the topological properties of conta-
gion maps on noisy ring lattices. This allows us to identify parameter
regimes in which the contagion processes follow the underlying
manifold. In particular, we compare the behavior of truncated
contagion maps with that of full contagion maps.

In Fig. 6, we study contagion maps for noisy ring lattices with
N = 400 nodes and noisiness of α = d(NG)/d(G) = 2/6 = 1/3. Each
column represents a distinct threshold T ∈ {0.05, 0.2, 0.3, 0.45},
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FIG. 4. The temporal development of the contagion is strongly dependent on the threshold T . (a) The size q(t) of the contagion is growing over time for thresholds
T ∈ {0.05, 0.2, 0.3} and reaches q(t) = 1, which indicates a global contagion (i.e., all nodes are active). The size q(t) of the contagion remains constant for T = 0.45,
indicating that no cascade is triggered. (b) We show the number E(t) of edges involved in the activation process and distinguish between geometric edges (solid lines) and
non-geometric edges (dashed lines). The inlay shows a zoom onto the contagion with threshold T = 0.3 in which we observe that for the early (i.e., t < 20) contagion steps
almost no non-geometric edges are involved.

which corresponds to the example thresholds in Fig. 4 and distinct
regimes in the bifurcation analysis of the critical thresholds [Eqs. (4)
and (5)]. In the top row, we show the noisy ring lattice with nodes
placed at their locations w(i) = (cos(2π i/N), sin(2π i/N). The color
of each node indicates the node’s activation time during one realiza-
tion of the WTM in which the green nodes are the seed nodes. For
all other nodes, the color map ranges from blue (small activation
time) to yellow (large activation time). Gray nodes never adopt the
contagion. As expected, we observe that for two smallest thresholds
T ∈ {0.05, 0.2}, the contagion quickly spreads to the whole network
and that for the largest threshold T = 0.45, no contagion beyond the
seed nodes occurs. For intermediary threshold T = 0.3, however, we
observe that the contagion spreads approximately along the circular
manifold.

In the remaining rows of Fig. 6, we show the point clouds
x(i) obtained from contagion maps. Specifically, rows two, three,
and four show truncated contagion maps for s = 10 steps, s = 40
steps, and s = 60 steps, respectively, and the last row shows the
full contagion map, which is equivalent to s = N. To visualize the
N-dimensional point clouds, we use a two-dimensional projection
through principal component analysis (PCA). Similar to the net-
works in the top row, we color each point with the activation time
under one realization of the WTM. Yet, as we truncate the conta-
gion after s steps a node might be gray (i.e., never activated) either
because a steady state is reached or because the contagion stopped
earlier. Therefore, the number of gray (i.e., never activated) nodes
varies with the number s of considered contagion steps, although
the seed nodes were identical.

In general, we find that the contagion maps x(i) for threshold
T = 0.3, which is in a regime in which there is exclusively WFP

predicted, most closely resemble the two-dimensional ring topology
of the original network (up to rotation). Furthermore, in this regime,
the truncation parameter s has a strong influence on the obtained
embedding. For a small number s = 10 of contagion steps, the ring
structure is perturbed and appears folded. Increasing the number of
contagion steps to s = 20 makes the ring structure more clearly vis-
ible. Increasing the number s of contagion steps further, however,
results in a “broadening” of the circular point clouds. Our observa-
tion suggests that for the threshold T = 0.3, a truncated contagion
map might better recover the underlying circular manifold than the
full contagion map.

After the bifurcation analysis in Sec. III and the qualitative
investigation in Fig. 5, we now quantify the recovery of the mani-
fold’s topological features with persistent homology. In particular,
we know that the underlying manifold M of a noisy ring lattice
is the unit circle. By comparing how closely the persistent homol-
ogy of the contagion maps resembles the topological properties of
the unit circle, we can quantify the recovery of its topological prop-
erties. A unit circle has one circular hole and thus its first Betti
number is b1 = 1. Therefore, we compute the ring stability 1 as a
quantification of how “ring-like” a contagion map is. In Fig. 6(a),
we show the ring stability 1 of contagion maps on noisy ring lat-
tices of size N = 400 and noisiness α = 1/3. We vary the threshold
T ∈ [0, 0.6] and highlight the critical thresholds T(ANC) = 0.25 and
T(WFP) = 0.375 [Eqs. (4) and (5)] as vertical dotted lines. All conta-
gion maps have their largest ring stability 1 in the regime between
these thresholds (i.e., when only WFP is possible). Furthermore, the
truncated contagion maps with s = 10 and s = 20 have a higher ring
stability 1 than the full contagion map, which matches our observa-
tions in Fig. 5 that an appropriate truncation of the contagion map
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FIG. 5. Truncated contagion maps applied to noisy ring lattices can recover the ring manifold for appropriate thresholds T . We applied contagion maps to noisy ring lattices
with N = 400 nodes degrees = (d(G), d(NG)) = (6, 2). In each column, we show the results for one of the four thresholds T ∈ {0.05, 0.2, 0.3, 0.45}. (top row) The network
with nodes embedded on the ring manifold. Each node’s color indicates the activation time from small (blue) to large (yellow) in one realization of the WTM. Green nodes
are seed nodes and gray nodes are inactive at the steady state (other rows). We show two-dimensional projections of the N-dimensional contagion maps. A node’s color
indicates its activation time as in the top row. The rows represent truncated contagion maps with s = 10, s = 40, and s = 60, and a full contagion map, respectively. We
observe that with threshold T = 0.3, the contagion maps most closely resemble the circular embedding manifold. In this regime, intermediate step numbers s = 40 lead to
the best recovery of the circular manifold (up to rotation).
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FIG. 6. Truncated contagion maps enable an improved recovery of topological features, in comparison with a full contagion map. We quantify the recovery of the topological
features by computing the ring stability 1 of contagion maps on noisy ring lattices with N = 400. (a) For all contagion maps, the ring stability is the largest in the threshold
regime α

1+α
< T < 1

2+2α
in which WFP dominates the spreading process. The truncated contagion maps with s = 10 (red line) and s = 20 (blue line) have larger ring

stability 1 than the full truncation map (dashed black line). (b) The ring stability 1 varies with the number s of included contagion steps. For small number s of contagion
steps, the truncated contagion map results in improved ring stability 1 in comparison to the full contagion map (dashed black line). For s > 60, when ANC occurs, the
ring stability 1 diminishes. As expected the performance of the full contagion map matches the truncated contagion map for large s. Results for the threshold T = 0.3 (c)
We investigate the truncation parameter s∗ that yields the best recovery of the ring manifold for noisy ring lattice networks of sizes N ∈ [50, 550]. We find that the optimal
truncation increases approximately linearly with network size N, which suggests a simple heuristic choice of s∗ = N/10 (dashed line).

may improve the recovery of the ring-like topology. In other thresh-
old regimes, the ring stability 1 is almost indistinguishable between
truncated and full contagion maps.

In Fig. 6(b), we investigate the influence of the number s of con-
tagion steps on the ring stability 1 of contagion maps with a thresh-
old of T = 0.3. We find that for a large number s → N of steps,
the ring stability is the same as for the full contagion map (dashed
line), which matches our theoretical expectation (see Sec. II D).
For a small number s < 60 of steps, the truncated contagion map
has larger ring stability 1 than the full contagion map, whereas
for s > 60 steps, the full contagion map outperforms the truncated
contagion map. We explain this behavior as a trade-off between
data quality and data quantity. The early-stage contagions more
closely follow the underlying manifold, yielding better embeddings
for the truncated contagion maps. Yet, full contagions have more
data as less entries in the contagion map have infinite activation
times.

The dependence of the ring stability 1 on the truncation
parameter s raises the question whether the optimal choice varies
with the network size N. In Sec. III, we suggested s∗ = N/10 as a
simple, heuristic choice because, in this regime, the contagion is pre-
dominantly spreading along then manifold. In Fig. 6(c), we compare
this heuristic with the actual optimal s∗ for noisy ring-lattice net-
works of sizes N ∈ [50, 550]. We find that the optimal truncation
parameter s∗ is increasing with the network size N and is in a decent
agreement with the suggested heuristic.

Thus far, we fixed the noisiness α of the networks. In Fig. 3, we
compare the analytically predicted bifurcation diagram with the ring
stability 1 of truncated contagion maps with s = 20 steps for various
thresholds T ∈ [0, 0.6] for noisy ring lattices with N = 400 and vari-
ous noisiness values α ∈ [0, 1]. Parameter combinations (α, T) with
large ring stability 1 closely match the regime in which the bifurca-
tion analysis predicts exclusively WFP. This indicates that in regimes
that are dominated by WFP, the truncated contagion map consis-
tently recovers the underlying topology of the unit circle, whereas in
other parameter regimes this is not possible.

V. COMPUTATIONAL COMPLEXITY OF (TRUNCATED)

CONTAGION MAPS

Taylor et al.21 established that the typical computational cost of
full contagion maps is O(N2d), where N is the number of nodes in
the input network and d the average degree of its nodes. As truncated
contagion maps omit some activation steps, we anticipate that less
computational time is needed than for the full contagion map.

We empirically verify the reduction of computational cost for
contagion maps with thresholds T = 0.3 on noisy ring lattices with
noisiness α = 1/3 and consider s = 20 steps in the truncated con-
tagion maps, which is a parameter combination that yields a good
recovery of the ring manifold (see Sec. IV). We vary the network

sizes N ∈ {32, . . . , 104} to identify the computational complexity
[see Fig. 7(a)]. We find that for small network sizes N ≤ 100, the
computation time δt of truncated and full contagion maps are indis-
tinguishable because a steady state is reached before a truncation
after s = 20 influences the contagions. Yet, for networks of sizes
N > 100, the truncated contagion map is quicker to compute than
the full contagion map. Furthermore, we identify that the gap
between computational costs widens with increasing network size
N. To obtain estimates of the computational complexity of the
form δt = ζNγ , we fit its linearized form log(δt(log(N))) = log ζ

+ γ log(N) to the logarithm of the data. We find that the
computational time of the full contagion map and the trun-

cated contagion map scale superquadratic (δt ∝ N2.24) and sub-
quadratic (δt ∝ N1.79) with the problem size N, respectively, yield-

ing an improved scaling of almost
√

N for the truncated conta-
gion maps. The reduced computational complexity of the trun-
cated contagion maps can be understood by investigating the
time until a steady state is reached. If comparing networks of
the same class (i.e., similar characteristics, such as characteris-
tic path length and mean degree), in larger networks the time
until a global cascade has been reached tends to be longer than
in smaller networks. Thus, a restriction to a fixed number s of
steps by the truncated contagion maps omits a larger number of
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FIG. 7. Truncated contagion maps have a smaller computational complexity than full contagion maps. (a) We show the computation time δt for contagion maps of noisy
ring lattices of various sizes N ∈ {32, 104}, noisiness α = d(NG)/d(G) = 6/2, threshold T = 0.3. The truncated contagion map (red disks; s = 20 steps considered) is
for small network sizes N < 100 of similar computational cost as the full contagion map (blue squares) but is considerably faster for large networks. We estimate the
computational complexity with least-squares fits of a linear equation to the logarithm of the computation time. The computation time δt for full and truncated contagion maps
scale super-quadratic (γ ≈ 2.24) and sub-quadratic (γ ≈ 1.79) with the network size N, respectively. (b) We show the computation time δt for contagion maps of noisy
ring lattices of size N = 10 000, noisiness α = d(NG)/d(G) = 6/2, and threshold T = 0.3. We vary the number s of steps and identify an approximately γ ≈ 0.58, with
truncated contagion maps approaching the computational time of full contagion maps for s → N.

steps for larger networks. This increasing omission reduces the
computational time for larger networks, leading to a substan-
tial reduction of the computation time for truncated contagion
maps.

We further investigate the influence of the number s of steps on
the computational time δt in Fig. 7(b). Empirically, we find that the
computational time grows sublinear with s such that δt ∝ s0.58. As
expected, for large number s of steps, the computational time of the
truncated contagion maps approaches the computational time of the

full contagion maps, highlighting the need for truncation to reduce
the computational complexity.

VI. CONTAGION MAPS OF SINGLE-CELL

TRANSCRIPTOMICS DATA

In this section, we investigate a single-cell transcriptomics
dataset of growing mouse oocytes,49,50 in which the oocyte undergo
several key stages to generate mature oocytes. Specifically, Gu et al.

FIG. 8. Truncated contagion map uncovers differentiation trajectory in single-cell transcriptomics data of mouse oocytes. (a) We show a truncated contagion map x(i) with
threshold T = 0.3 and truncation s = 10 for a cell-similarity network obtained from single-cell transcriptomics data.49 The UPGMA method with Euclidean distance was
used for the hierarchical clustering. (b) A two-dimensional embedding of the truncated contagion map reveals the oocyte developmental trajectory from primordial oocytes
over primary, secondary, and tertiary oocytes to antral oocytes (color indicates cell identity). (c) The cell-group separation C is the highest for a truncation parameter s = 15
and outperforms a full contagion map (dashed, horizontal line). As expected, for large number s of steps, the performance of the truncated contagion map approaches the
performance of the full contagion map.
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measure gene expression in five successive stages: primordial folli-
cle, primary oocytes, secondary oocytes, tertiary oocytes, and antral
oocytes. The raw gene-expression matrix Count ∈ N

(c×g) in which
entry Counti,j indicates the strength of expression of gene i in cell j is
available from GEO under GSE114822. For further analysis, we use
SCANPY51 and follow current best practices.52 For example, we filter
out 5937 genes that are detected in less than 3 cells (for details, see
online material). We construct a cell-similarity graph as a k-nearest-
neighbor graph G = (V, E) in which the N = 223 nodes represent
the cells V ∈ {1, . . . , c} and each node is connected to its k = 20
nearest neighbors in gene-expression space.

Then, we construct a truncated contagion map with threshold
T = 0.3 and truncation s = 15 from the cell-similarity graph (see
Fig. 8). The contagion map x(i) in Fig. 8(a) has a block-diagonal
structure in which the non-growing oocytes (i.e., primordial) are
clearly separated from the growing oocyte (primary, secondary, and
tertiary) and the fully-grown oocyte (antral). A two-dimensional
PCA projection of the contagion map x(i) in Fig. 8(b) reveals the
oocyte development trajectory in gene-expression space. The pri-
mary oocytes are developing into secondary and tertiary oocytes
and, finally, into antral oocytes. The separation of the developmen-
tal stages is not sharp but rather a continuum, yet a pseudo-temporal
ordering that matches the cell identities is observable.

To investigate the performance of the truncated contagion
maps in separating the different cell types, we compute the cell-group
separation C, as the ratio of the median distance between cells of dif-
ferent cell types to the median distance between cells of the same
cell type. We investigate this ratio C in dependence on the number s
of steps in Fig. 8(c). We find that for most truncation parameters s,
the cell-group separation C is improved for the truncated contagion
maps vs the full contagion map (dashed line). The maximum separa-
tion (i.e., best performance) is reached for s = 15. We note that this
optimal choice is close to the heuristic choice of s∗ = N/10 ≈ 22.

Our study on the single-cell transcriptomics data shows
that contagion maps can reveal a manifold structure in a high-
dimensional gene-expression space by constructing a cell-similarity
graph. In particular, we observe that primordial oocytes are clearly
separated from developing oocytes and within the developing
oocytes, we observe an ordering in gene-expression space.

VII. CONCLUSION

In this work, we introduced truncated contagion maps, an
extension of contagion maps that has improved computational com-
plexity and are thus computationally less expensive. This is achieved
by truncating (i.e., stopping) the contagion processes before they
reach a steady state, a technique that is well-established in the
context of random walks.25 Furthermore, we demonstrate by quan-
tifying the persistent homology that, for appropriate parameter
choices, truncated contagion maps might improve the recovery of
the embedding manifold of noisy geometric networks. We explain
this behavior with the dominance of spreading along the mani-
fold in early steps of a contagion, whereas at later steps, the spread
along non-geometric edges increases. Finally, we demonstrated that
contagion maps are a manifold-learning technique that can reveal
low-dimensional structures in a cell-similarity network constructed
from single-cell transcriptomics data.

Our findings suggest various avenues for further studies. For
example, it is an open question whether these truncation approaches
can also be extended to the simplicial complex variant of the con-
tagion maps,23 which is particularly relevant as higher-order inter-
actions are important in cellular interactions.53,54 Furthermore, we
hypothesize that a subsampling approach with selected seeding, as
used in the k-means++ clustering algorithm,55 or landmark selec-
tion, as used in L-Isomap,56 might further reduce the computational
complexity of contagion maps. The establishment of more sophis-
ticated heuristics for the choice of the truncation parameter s will
be fruitful, as its optimal choice is likely to depend on the structure
of the analyzed network in a complex, non-linear way, which is not
reflected in the simple heuristic we proposed in this paper.
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