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Abstract: Disinfection is a key strategy to reduce the burden of infections. The contact of bacteria
to biocides—the active substances of disinfectants—has been linked to bacterial adaptation and the
development of antimicrobial resistance. Currently, there is no scientific consensus on whether the
excessive use of biocides contributes to the emergence and spread of multidrug resistant bacteria. The
comprehensive analysis of available data remains a challenge because neither uniform test procedures
nor standardized interpretive criteria nor harmonized terms are available to describe altered bacterial
susceptibility to biocides. In our review, we investigated the variety of criteria and the diversity
of terms applied to interpret findings in original studies performing biocide susceptibility testing
(BST) of field isolates. An additional analysis of reviews summarizing the knowledge of individual
studies on altered biocide susceptibility provided insights into currently available broader concepts
for data interpretation. Both approaches pointed out the urgent need for standardization. We,
therefore, propose that the well-established and approved concepts for interpretation of antimicrobial
susceptibility testing data should serve as a role model to evaluate biocide resistance mechanisms on
a single cell level. Furthermore, we emphasize the adaptations necessary to acknowledge the specific
needs for the evaluation of BST data. Our approach might help to increase scientific awareness
and acceptance.

Keywords: biocide susceptibility testing; biocide resistance; antimicrobial resistance; biocide tolerance

1. Introduction

Bacterial antimicrobial resistance (AMR) is a major global threat to food safety and
animal and public health. It is caused by the bacterial mechanisms rendering the drugs
used to treat infections less effective. About 4.95 million deaths were estimated to be
associated with bacterial AMR in 2019, including 1.27 million deaths clearly attributable to
AMR [1]. Infection prevention and control through effective hygiene measures is one key
strategy to reduce the emergence and spread of multidrug-resistant bacteria [2]. For this
purpose, biocides have been used as disinfectants and antiseptics in human and veterinary
medicine for decades. Disinfectants are not only applied in the healthcare sector, but also
in different industries, for example along the food chain, to ensure product safety [3]. The
putative risks associated with the extensive use of biocides, such as bacterial adaptation or
the development and spread of AMR, have raised awareness in the scientific community [3].
Nosocomial outbreaks caused by pathogens resistant to the applied disinfectants have been
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described [4]. To reveal the bacterial adaptation to biocides in laboratory or epidemiological
studies, susceptibility testing of bacteria to substances of interest is a prerequisite. The
comparison of the study results, however, remains a challenge since neither standardized
test procedures nor uniform evaluation criteria are available. In addition, there is no
scientific consensus on the use of terminology to report changes in biocide susceptibility.
Currently, most original studies investigate the minimal inhibitory concentration (MIC)
of biocides as a marker for the susceptibility of bacteria. This approach neglects the
fact that biocides are usually used at concentrations far exceeding the MIC. Considering
that the minimal bactericidal concentration (MBC) provides information on the lethal
effect of a biocide (reviewed in [5]), this value might be more appropriate to identify
alterations in bacterial susceptibility. However, not every biocide is applied at lethal
concentrations. Instead, concentrations are chosen to inhibit microbial growth. In these
cases, MIC determination is suitable. Furthermore, biocides are widely used in formulations
containing various ingredients, which may influence product efficacy. Therefore, the
susceptibility data of pure substances will not necessarily allow for drawing conclusions
on actual product efficacy. Despite these numerous limitations, biocide susceptibility
data are indispensable to monitor changes in the susceptibility of bacteria to biocidal
substances, including data that are needed to identify bacterial adaptation at an early
stage. In addition to the implementation and uniform use of standardized test procedures,
interpretive criteria and the terms applied to describe altered bacterial susceptibility to
biocides need to be standardized in order to allow for the interpretation and comparison of
available study results.

In our review, we investigated the diversity of terms used to describe the observed
changes in bacterial susceptibility to biocidal substances and the variety of criteria applied
to interpret findings. For this purpose, we reviewed the current literature in a four-stage
process. First, we analyzed original studies performing biocide susceptibility testing (BST)
of field isolates from different environments to assess methods of data interpretation. Sec-
ond, we screened reviews summarizing the knowledge of individual studies on altered
biocide susceptibility for a better understanding of currently available broader concepts
for data interpretation. Third, we propose interpretive criteria and terms which should
be used to categorize biocide susceptibility testing data. Finally, we point out the rele-
vance of biofilm formation for the evaluation of bacterial susceptibility to biocides applied
on surfaces.

2. Interpretive Criteria and Terms Used to Assess Biocide Susceptibility Data

To conduct an overview of the diversity of interpretive criteria and terms currently
applied to assess bacterial susceptibility to biocides, we investigated original studies pro-
viding biocide susceptibility data of field isolates from various environments in planktonic
form. For reasons of consistency, we restricted our comparative analysis to studies reporting
on bacterial MIC values of pure substances. Currently, MIC testing represents the lowest
common denominator to evaluate bacterial susceptibility to biocides. To identify as many
suitable studies as possible, we conducted a PubMed query with the combined search terms
“biocide toleran*”[tiab] OR “biocide resist*”[tiab] OR “biocide suscept*”[tiab] OR “biocide
adapt*”[tiab] OR “disinfectant toleran*”[tiab] OR “disinfectant resist*”[tiab] OR “disin-
fectant suscept*”[tiab] OR “disinfectant adapt*”[tiab] OR “microbicide toleran*”[tiab] OR
“microbicide resist*”[tiab] OR “microbicide suscept*”[tiab] OR “microbicide adapt*”[tiab]
AND bact* on 1 April 2022. In total, our literature search resulted in 412 publications,
including 48 reviews. Screening of titles and abstracts of the 364 original studies revealed
156 publications within the scope of our review. Subsequently, the methods section of each
publication was evaluated to identify reports on MIC data to pure biocidal substances
(Table S1). Finally, 84 studies were analyzed for the interpretive criteria and terms used to
describe bacteria with increased MICs.

Table 1 summarizes the variety of classification schemes available for biocide suscep-
tibility data and gives an overview of the terminology in the field. In addition, Table S1
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provides the terms and interpretive criteria published in the original studies. The inter-
pretive criteria applied for the classification of MIC data varied considerably. Overall, a
comparative analysis of own datasets (n = 25), a consideration of previously published
thresholds (n = 16), and a comparison with reference strains (n = 7) or thresholds derived
from biocide concentrations in products (in-use concentrations, n = 8) served as bench-
marks.

Table 1. A summary of the interpretive criteria and terms applied for the classification of biocide
susceptibility data in original studies.

Interpretive Criteria for Classification
(Number of Publications)

Terms Number of
Publications

In-Use
Concentrations Own Dataset Published

Thresholds
Reference

Strain Unclear

MIC description 16 [6–21]
resistance 28 [22–49] 7 7 7 1 6
tolerance 23 [50–72] 1 10 6 2 4

reduced susceptibility 8 [73–80] 4 1 3
wildtype/non-wildtype 4 [81–84] 3 1

nonsusceptibility 1 [85] 1
tolerance and resistance 4 [86–89] 1 1 2

Each of the abovementioned interpretive criteria was used in several original studies.
However, the study results were described by using different terms. Twenty-five studies,
for example, compared MIC data of different groups of bacteria within their own datasets
to identify isolates with increased values. Depending on the study, such isolates were
called resistant, tolerant, reduced susceptible, non-susceptible, or were designated as non-
wildtype isolates. In sixteen studies, MIC changes were described without final assessment.
The included studies provided an insight into the variability of terms and their inconsistent
use, which hampers the comparison and interpretation of results.

To conduct an overview on the various concepts to classify bacterial susceptibility to
biocides, we investigated reviews and opinions regarding their use of terms and the applied
interpretive criteria. These summary publications usually interpret the data of original
studies in a broader context, outlining their relevance with regard to bacterial adaptation
to biocides as well as the development and spread of antimicrobial resistant bacteria due
to the application of biocides as disinfectants or antiseptics. For this purpose, authors
initially need to introduce a common basis for the interpretation of study results. We
considered all reviews and opinions of our PubMed query and included those publications
that summarized and/or discussed findings on phenotypic biocide susceptibility data of
bacteria in planktonic form. In addition, the reference list of each manuscript was screened
for further relevant documents. In total, we included 48 reviews and opinions. Indeed,
several authors pointed out the inconsistent use of the terms biocide resistance and/or biocide
tolerance and discussed the problems that may arise due to the lack of interpretive criteria,
such as labeling bacterial isolates with only minor changes in their susceptibility to biocides
as biocide resistant [5,90–94]. In this context, most reviews provided definitions for the terms
used. Compared to the original studies, the interpretive criteria are less diverse. There are
mainly three approaches to categorize bacteria according to their biocide resistance:

1. Comparison to in-use concentrations: biocide resistance is strictly defined as the failure
of bacterial killing or growth inhibition by the use of biocide concentrations attained
in practice [3,93,95–104];

2. Comparative data analysis on the population level: biocide resistance refers to isolates
that are neither killed nor inhibited by a concentration at which the majority of isolates
of the respective species are killed or inhibited [3,97,102,105–108];
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3. Comparative data analysis on the bacterial cell level: biocide resistance refers to bacterial
cells of an individual isolate that are neither killed nor inhibited by a concentration
effective against the majority of cells of this isolate [3,5,102].

Interestingly, some reviews provide up to three different definitions for the term biocide
resistance, a fact pointing towards the lack of scientific consensus on this topic [3,5,97,102]. The
term reduced susceptibility is frequently used to describe increased MIC and/or MBC below
in-use concentrations [5,96,98,100,109–112]. The term biocide tolerance commonly describes
decreased susceptibility to a biocide, which has evolved by adaptation [95,99,105,106,113–115].
In some publications, biocide tolerance describes the development of increased MIC values
below in-use concentrations (synonymous to reduced susceptibility) [3,94,116]. In several
reviews, authors distinguish low-level resistance (biocide MIC below in-use concentrations)
from (high-level) resistance (biocide MIC above in-use concentrations) [117–120]. Other
publications introduce the terms nonsusceptibility or insusceptibility to describe increased
MIC values [99,120–124]. Some authors restrict insusceptibility to the intrinsic properties of
the organism [3,93,105]. Interestingly, the reviews sometimes did not introduce a definition
of the applied terms [110,111,113,125–135]. Overall, our literature analysis clearly shows
the variability of concepts for the interpretation and categorization of biocide susceptibility
data from multiple original studies. Even though the applied interpretive criteria and
introduced terms are less diverse in reviews compared to original studies, the inconsistency
observed reflects the uncertainty of the scientific community and emphasizes the need for
unambiguous definitions.

3. Antimicrobial Susceptibility Testing: A Blueprint for Biocide
Susceptibility Terminology?

The use of standardized test procedures and the definition of interpretive criteria
are important prerequisites to identify and classify changes in bacterial susceptibility to
antimicrobial agents. While these requirements are missing for BST, for antimicrobial
susceptibility testing (AST) they are met. The AST procedures mainly follow the well-
established standards of the Clinical and Laboratory Standards Institute (CLSI) and the
European Committee on Antimicrobial Susceptibility Testing (EUCAST). These standards
define the essential requirements for the methods, materials, and practices that have to be
applied in a non-modified form [136]. AST may be performed by using various methods,
such as agar disk diffusion, E-test, broth microdilution, and broth macrodilution or agar
dilution in addition to automated systems. The obtained results allow the classification
of the bacteria tested into different categories, which, however, depend on the applied
interpretive criteria. There are two main types of interpretive criteria: clinical breakpoints
(CBPs) and epidemiological cut-off values (ECOFFs or ECVs).

A CBP is specific for a combination of an antimicrobial agent, bacterial species, site of
infection, and human or animal species and depends on the dosage of the antimicrobial
agent applied. The AST results based on CBPs provide guidance to medical doctors and
veterinary practitioners in their choice for the most efficacious antimicrobial agent, dosage,
route of administration (orally or per injection), and administration scheme, i.e., intermittent
versus prolonged or continuous infusion. The categories for clinical breakpoints according
to CLSI are: susceptible (S), susceptible-dose dependent (SDD), intermediate (I), resistant
(R), and nonsusceptible (NS) [137]. Susceptible isolates are inhibited by the concentrations
of an antimicrobial agent usually achievable at the site of infection when the dosage
recommended for treatment is administered. In the category SDD, susceptibility of an
isolate depends on the dosing regimen that is used in the patient. To achieve clinical efficacy,
a dosage that results in a higher drug exposure than that recommended to treat susceptible
isolates is necessary. The category SDD is currently limited to applications in human
medicine. Isolates in the category intermediate (I) may have lower response rates than the
susceptible isolates. Resistant isolates are not inhibited by the concentrations of the agent
usually achievable with regular dosage schedules and/or AST data fall in a range in which
specific microbial resistance mechanisms are likely, and clinical efficacy of the antimicrobial
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agent against the isolates has not been reliably shown in treatment studies. The category
nonsusceptible (NS) is used for isolates for which only a susceptible breakpoint is defined
because of the absence or rare occurrence of resistant isolates. Isolates for which AST
data are outside the range indicated for the susceptible breakpoint should be reported as
nonsusceptible. In contrast to CLSI, EUCAST proposes only three categories for clinical
breakpoints: S—susceptible, standard dosing regimen; I—susceptible, increased exposure;
and R—resistant (https://www.eucast.org/newsiandr/, last accessed: 31 October 2022).

The AST results based on ECOFF values provide an insight into the changes of MIC
distributions and may help to detect variations in the bacterial population, such as newly
emerging resistance properties. When applying ECOFF values, the categories are wildtype
and non-wildtype. The wildtype subpopulation includes the majority of the bacteria in
a tested population. Considering that these bacteria do not possess acquired resistance
mechanisms, they show lower MICs or larger zone diameters. In contrast, the bacteria of the
non-wildtype subpopulation harbor acquired resistance mechanisms and, as a consequence,
show higher MIC values and smaller zone diameters. An ECOFF value is specific for the
combination of an antimicrobial agent and a bacterium. ECOFF values are defined by
means of aggregated datasets fulfilling criteria outlined in the EUCAST standard operating
procedure (SOP) 10.1 [138].

It is important to consider the application fields and limitations of both interpretive
criteria. CBPs are established in consideration of in vivo (pharmacokinetics, pharmacody-
namics, and clinical outcome data) and in vitro data (MIC distributions/zone diameter
distributions) to provide guidance for systemic antimicrobial medication [139]. They are
not suitable for topical applications. ECOFFs are exclusively based on phenotypic data
(MICs or zone diameters) to identify non-wildtype subpopulations harboring horizontally
acquired or mutational resistance mechanisms. In contrast to CBPs, ECOFFs have not been
investigated for their clinical relevance. Both interpretive criteria from AST, CBPs, and
ECOFFs, are frequently used for the interpretation of biocide susceptibility data in a modi-
fied form. In contrast to AST, data are not limited to MIC values and zone diameters. MBC
values, which consider the lethal effect of bactericidal biocides, are additionally evaluated.
The evaluation of susceptibility to pure biocidal substances based on comparison to in-use
concentrations resembles the interpretive criterion of CBPs in AST.

However, such a categorization does not provide information on the efficacy of dis-
infectants or antiseptics containing the substance of interest. Additional factors such as
application specifications (e.g., exposure time and dosage) and bacterial lifestyle (planktonic
vs. sessile) need to be considered. This fact contrasts sharply with the available concept for
the interpretation of AST data, which provide guidance for the choice of the antimicrobial
agent that is the most efficacious in systemic treatment. It is further essential to consider the
consequences arising from the choice of in-use concentrations as an interpretive criterion
for biocide resistance. As active ingredients of disinfectants and antiseptics, biocides are
predominantly applied in concentrations exceeding the bacterial MIC and MBC by far.
Thus, the identification of isolates with MICs and MBCs above in-use concentrations should
be currently regarded as a rare phenomenon, as recently reported for the combination of
Pseudomonas aeruginosa and benzalkonium chloride [30].

Some publications introduce (tentative) ECOFF values for various combinations of
biocides and bacterial species [28,66,84]. Compared to AST, these cut-off values have to be
considered as preliminary because they do not fulfill the essential criteria that are outlined
in the EUCAST SOP 10.1 [138], such as use of a standardized method and aggregated
datasets to cope with inter-laboratory variability. Considering that the AST SOP is already
available, it could help to define the necessary specifications for the identification of ECOFF
values for various combinations of bacterial species and biocides.

4. Introduction of a Glossary

Antimicrobial agents and biocides reveal bacteriostatic and/or bactericidal activities.
Consequently, similar terminology defined by similar interpretive criteria are desirable

https://www.eucast.org/newsiandr/
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wherever possible, to avoid confusion in the scientific community and among end users,
such as physicians, hygienists, veterinarians, and farmers.

In addition, bacterial susceptibility to biocides is frequently evaluated along with
susceptibility to antimicrobial agents, for example to investigate the relevance of co- and
cross-resistance for both substance groups. In this context, the use of different interpretive
criteria and terminology hampers the discussion. Nonetheless, the differences in the
application of biocides prohibit the direct transfer of concepts available for identification
and interpretation of bacterial susceptibility to antimicrobial agents. In addition to MIC
determination—the central method to evaluate susceptibility to antimicrobial agents—the
MBC provides additional valuable information for biocidal substances used as the active
ingredients of disinfectants and antiseptics, because this value considers the lethal effect
of a biocide. Thus, the terminology and interpretive criteria applied to evaluate bacterial
susceptibility to biocidal substances need to be suitable for MIC and MBC data. Table 2
provides an overview of the available interpretive criteria and terms used for the evaluation
of AST data and the proposed interpretive criteria and terms for BST.

Table 2. The interpretive criteria and terms used for the evaluation of AST data and the proposed
interpretive criteria and terms for biocide susceptibility testing of planktonic cells.

Antimicrobial Susceptibility Testing Biocide Susceptibility Testing

Definitions Interpretive
Criteria Proposed Definitions Interpretive

Criteria

Clinical resistance
Isolates are not inhibited by

the concentrations of the
agent usually achievable with
normal dosage schedules at
the site of infection and/or

test results fall into the range
in which specific microbial
resistance mechanisms are

likely, and clinical efficacy of
the agent has not been

reliably shown.

Clinical
breakpoints

Resistance
(application-related)

Isolates are
neither killed nor inhibited by

a biocide concentration
attained in practice.

In-use
concentrations

Wildtype/Non-wildtype
Bacterial populations are

separated into those without
and with acquired resistance

mechanisms
based on their phenotypes.

Epidemiological cutoff values

Wildtype/Non-wildtype
A non-wildtype isolate is

neither killed nor inhibited by
a biocide concentration at

which the majority of isolates
of the same species are killed

or inhibited.

Epidemiological cutoff values

In line with the application-dependent interpretive criterion CBP for AST, we propose
that in-use concentrations should serve as the basis for the identification of bacterial
resistance to biocidal substances. Accordingly, biocide resistance refers to isolates that
are neither killed nor inhibited by concentrations attained in practice. The interpretive
criterion should include the categories resistant and susceptible. Resistant isolates exhibit
MIC and/or MBC values exceeding the concentrations attained in practice, while MICs
and/or MBCs of susceptible isolates are below the concentrations attained in practice.
According to this definition, biocide resistance should be considered a rare phenomenon to
date. As already outlined in the previous section, the identification of bacterial resistance to
a specific substance does not allow conclusions to be drawn on disinfectant efficacy [30,31].
Nonetheless, the BST results may influence the product choice, for example in the case that
the observed susceptibility is close to the concentration attained in practice.

With most isolates being susceptible to biocidal substances when the application-
dependent criterion is used, an additional concept is needed for the evaluation of altered
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biocide susceptibility below in-use concentrations. Epidemiological cut-off values have
the power to separate bacterial species into isolates with and without acquired resistance
based on their phenotype [140], and they are highly suitable for surveillance of spatial
and temporal shifts of MIC and/or MBC values to substances of interest. Hence, we
propose epidemiological cut-off values as a further interpretive criterion for the evaluation
of biocide susceptibility data. In accordance with the concept for AST, this interpretive
criterion allows a distinction between wildtype and non-wildtype. However, for BST,
epidemiological cut-off values of both MICs and MBCs should be defined. Wildtype and
non-wildtype subpopulations usually show bimodal distributions of biocide MICs or MBCs.
The isolates in the non-wildtype category exhibit higher MICs or MBCs than the ones in
the wildtype category. We consider the use of epidemiological cut-off values most suitable
for the surveillance of development and spread of isolates with elevated MICs/MBCs to
biocidal substances.

A prerequisite prior to the implementation of both proposed interpretive criteria
will be the successful establishment of standardized test procedures. Frequently, original
studies perform MIC testing for biocides following CLSI and EUCAST standards with
minor modifications. However, even minor modifications may influence test results,
impeding the comparative analysis of datasets [141]. The use of a standard in a non-
modified form will help to create comparable MIC datasets, fostering the definition of
ECOFFs for specific combinations of bacterial species and substances. The EUCAST SOP
10.1 [138] and the EUCAST ECOFF finder are also useful tools to establish MIC ECOFFs as
interpretive criteria for BST. Even with validated laboratory procedures for MIC testing
in place (such as [142–144]), quality controls are urgently needed in order to verify test
results. Only recently, QC ranges for various combinations of ATCC reference strains and
selected substances have been determined in an interlaboratory trial [144]. As previously
mentioned, MBC values provide additional important information to evaluate bacterial
susceptibility to bactericidal biocides. Therefore, standard procedures for MBC testing
need to be established as well. Different MBC detection methods are available [145,146].
However, in contrast to MIC testing the direct transfer from methods with widespread use,
which are based on years of experience, is not possible.

5. Biofilm Formation: A Crucial Component for the Evaluation of Bacterial
Susceptibility to Biocides

The BST of planktonic bacteria is mandatory to gain insights into acquired resistance
mechanisms on a single cell level. However, evaluating the efficacy of biocides, espe-
cially surface disinfectants, should additionally be based on their activity against bacterial
biofilms. Biofilms are microbial communities consisting of aggregated bacteria surrounded
by a polymeric matrix, which can form upon contact with abiotic or biotic surfaces [147].
Bacterial biofilm contaminations are commonly found on medical instruments and on
surfaces in clinical or industrial settings. The efficacy of biocides active against planktonic
bacteria is diminished by e.g., biofilm diffusion barriers depending on the degree of matrix
maturation and biofilm volume-to-surface ratio, or phenotypic adaptations of inner biofilm
cells as a result of arising sublethal concentrations of disinfectants [148,149]. This effect is
described as biofilm-mediated tolerance or phenotypic resistance, in contrast to inherited
resistance mechanisms on a single cell level due to genetic alterations [150]. An inference
of BST results from planktonic to biofilm-embedded cells is, therefore, not possible.

However, neither standardized test procedures nor uniform evaluation criteria for
AST and BST of biofilms are currently available, impeding the comparison of study results.
As an analogy to MIC and MBC, the two endpoint parameters minimal biofilm inhibitory
concentration (MBIC) and minimal biofilm eradication concentration (MBEC) have been
proposed by researchers to guide the treatment of biofilm-associated infections [151].
While MBIC describes the lowest concentration of an antimicrobial substance inhibiting
the time-dependent increase in the mean number of viable cells in a biofilm, the MBEC
refers to the lowest concentration capable to partly reduce (3 log10 reduction in CFU/mL)



Pathogens 2022, 11, 1455 8 of 15

or completely eradicate the viable cells of the biofilm. However, these definitions are
differentially perceived, used, and interpreted by the scientific community, mainly due
to the lack of linked SOPs defining: i) the method and duration for biofilm growth, ii)
the antimicrobial exposure time, iii) the analysis method, and iv) the untreated reference
biofilm to determine the effect size, i.e., the biofilm inhibiting (MBIC) or reducing (MBEC)
effects [152]. Implementing the standardized testing procedures for biofilm susceptibility
testing is extremely challenging due to the strong dependency of biofilm composition
and structure on the environment, resulting in a high heterogeneity of primarily similar
bacterial biofilms. The profound differences between in vitro and in vivo biofilms have
led to a poor clinical validity of current biofilm susceptibility tests, which is why neither
the EUCAST nor CLSI has established SOPs for MBEC and MBIC determination and the
respective interpretive criteria [153].

This heterogeneity is also reflected in the BST of biofilms. The very same biocide
compound showed different levels of efficacy in isolate-identical biofilms depending on
the hydration status of the biofilm and the chosen biofilm model, i.e., a dynamic flow
reactor system or a static microtiter plate model [154]. Both model systems have been
suggested for the standardization of BST [155–158], raising the question of which model is
representative for the “real-world” biocide efficacy. In addition to an appropriate biofilm
model, a representative evaluation method, e.g., a colony forming unit determination,
the staining of biofilm biomass or the measurement of metabolic activity, needs to be
standardized [159–161].

Provided standardized and reproducible SOPs for the determination of MBEC and
MBIC values of individual biocide–bacterial biofilm combinations have been established,
these values, as for planktonic bacteria, could be compared to the in-use concentrations of
biocides to categorize the isolates’ biofilm as tolerant or susceptible to the respective biocide.
It remains arguable whether the term “tolerant” (to strictly stick to the biofilm terminology)
or “resistant” (in analogy to BST of planktonic bacteria) should be used. Nevertheless,
strongly enhanced MBIC/MBEC values, compared to the MIC/MBC values, are expected,
possibly near or even above biocide in-use concentrations. To measure the discrepancy in
biocide susceptibility between planktonic and biofilm cells, the coefficients “Rc” and “Rt”
have been applied, presenting the ratio of the concentrations or time required to achieve
the same reduction in the planktonic and the biofilm population [149].

6. Conclusions

The unambiguous classification of bacterial susceptibility to biocides is a prerequisite
for clear and comparable presentation of study results and the interpretation of available
data. For this purpose, a harmonized terminology and methodological standards are
indispensable. To evaluate resistance mechanisms on a single cell level, the well-established
and approved concepts of AST should be the role model in order to increase scientific
acceptance. Of course, adaptations are necessary to acknowledge specific needs for the
evaluation of BST data. MBCs provide additional important information for assessing
bacterial susceptibility to biocides and should be reported along with MICs. The main
future tasks include the implementation of MIC and MBC ECOFFs to interpret the BST data
for planktonic cells. Despite the difficulties in the standardization of the BST of biofilms
and the lack of an AST blueprint, the BST of biofilms in addition to the BST of planktonic
cells is essential to adequately evaluate disinfectant efficacy.
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