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Abstract: In this study, we implemented a remote sensing-based approach for monitoring abandoned
agricultural land in the Yarmouk River Basin (YRB) in Southern Syria and Northern Jordan during
the Syrian crisis. A time series analysis for the Normalized Difference Vegetation Index (NDVI) and
Normalized Difference Moisture Index (NDMI) was conducted using 1650 multi-temporal images
from Landsat-5 and Landsat-8 between 1986 and 2021. We analyzed the agricultural phenological
profiles and investigated the impact of the Syrian crisis on agricultural activities in YRB. The analysis
was performed using JavaScript commands in Google Earth Engine. The results confirmed the impact
of the Syrian crisis on agricultural land use. The phenological characteristics of NDVI and NDMI
during the crisis (2013-2021) were compared to the phenological profiles for the period before the
crisis (1986-2010). The NDVI and NDMI profiles had smooth, bell-shaped, and single beak NDVI
and NDMI values during the period of crisis in comparison to those irregular phenological profiles
for the period before the crisis or during the de-escalation/reconciliation period in the study area.
The maximum average NDVI and NDMI values was found in March during the crisis, indicating
the progress of natural vegetation and fallow land, while they fluctuated between March and April
before the crisis or during the de-escalation/reconciliation period, indicating regular agricultural and
cultivation practices.

Keywords: Landsat; human conflict; NDVI; Syria; Jordan; GEE

1. Introduction

Abandoned agricultural land is defined as lands without plantation practices or graz-
ing management such as plowing, planting, and intensive grazing for specific growing
seasons [1-3]. It has been reported as one of the most common consequences of environ-
mental changes and human conflicts [3,4]. It affects the vegetation dynamics, agricultural
practices, field productivity, crop production, and perhaps food security in the long run.
Therefore, an accurate characterization of abandoned agricultural land is needed. Con-
sequently, the spatial and temporal patterns of abandoned agricultural land through the
growing seasons and its related environmental factors have attracted increasing attention
during the past several decades [5,6].

Accurate identification and characterization of abandoned agricultural land starts
by firstly defining the growing season phenological metrics such as the start of season
(SOS), end of season (EOS), and length of season (LOS) in the study area. In this context,
researchers have used various methods to define growing season metrics such as in situ
observations, model simulations, and satellite-based vegetation indices (VIs) [7-9]. In this
regard, the last of those is the most used as it offers an opportunity to capture vegetation
phenology across various spatial and temporal scales [10]. The identification of those
metrics can be a good indicator for monitoring agricultural activities and management

Sensors 2022, 22, 3931. https://doi.org/10.3390/522103931

https:/ /www.mdpi.com/journal /sensors


https://doi.org/10.3390/s22103931
https://doi.org/10.3390/s22103931
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2162-7385
https://orcid.org/0000-0002-6503-5525
https://doi.org/10.3390/s22103931
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103931?type=check_update&version=1

Sensors 2022, 22,3931

20f16

practices of agricultural lands. Moreover, they are very important for understanding the
vegetation dynamics and their long-term characteristics which may change due to various
environmental and human impacts on different spatial scales. Among the numerous
VIs, the normalized difference vegetation index (NDVI) is the most used in retrieving the
vegetation phenological metrics [11,12]. Additionally, the analysis of NDVI over continuous
growing seasons in comparison to the long-term measures could be used for abandoned
agricultural land mapping and monitoring. In this context, two approaches can be defined,
namely the statistical and the phenological approaches

The statistical approach relied on analyzing the measures of the maximum, minimum,
and average values of the NDVI spectral index. This approach provides a better under-
standing of the data than using the individual values, particularly when dealing with a
huge number of datasets. Here, abandoned agricultural lands could maintain higher NDVI
values for a longer period during the growing season than active agricultural lands and
managed grasslands [11].

The phenological approach looks into the shapes and patterns of NDVI profiles in the
growing seasons. This provides information about the agricultural activities within the area
of interest. For instance, the phenological profiles of abandoned agricultural land would be
characterized by regular, bell-shaped, and less temporal fluctuations during the growing
season due to the succession of weeds, grasses, and eventually shrubs or trees [12-15].
While the managed agricultural lands would be characterized by more irregular temporal
shapes with one or more narrow peaks within the growing season. Such management
practices (e.g., plowing, mowing, and grazing) lead to abrupt changes in those NDVI
temporal profiles.

Mapping and monitoring of abandoned agricultural land have been conducted using
various satellite systems including the Moderate Resolution Imaging Spectroradiometer
(MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), Satellite Pour I'Observation
de la Terre (SPOT), Sentinel-2, and Landsat [3,11,16-19]. However, the success of any
approach depends on the resolution of remote sensing data and the used algorithms for
characterization of wild vegetation from active crops [20,21]. Among the different satellite
systems, Landsat images are the most used as they provide consistent spatial and temporal
information since 1972 at proper spatial (i.e., 30 m) and temporal (i.e., 16 days) resolu-
tions. This allows for analyzing the terrestrial vegetation dynamic including abandoned
agricultural land at regional and local scales [22]. Researchers have suggested the use of
three Landsat images per year, both pre- and post-abandonment, to achieve abandoned
agricultural land mapping with accuracy of up to 80% if sufficient cloud-free images were
available [3]. Yin et al. [23] employed time-series Landsat images for mapping abandoned
agricultural land in the Czech Republic and linked them to the Russian-Chechen War
hotspots in the Caucasus region. Gbanie et al. [24] performed trajectory analysis of Land-
sat and SPOT images in the Sierra Leone during the war (1976-2000) and after the war
(2003-2011). They found that urban and peri-urban agriculture became a major livelihood
activity for displaced persons for food production. Baumann et al. [25] used a combina-
tion of linear regression models and hierarchy for mapping the spatial determinants in
the post-socialist farmland abandonment in Ukraine using Landsat images from 1986 to
2008. They also found that farmland abandonment was widespread in the study region at
abandonment rates of up to 56%. Witmer [26] investigated the war-induced abandoned
agricultural land in northeast Bosnia using Landsat-5 images and identified abandoned
agricultural land with an overall accuracy of 82.5%. Similar studies have been conducted in
other conflict areas in eastern Europe [27]; South Sudan [28]; Lebanon [29]; and Iraq [30,31].
All previous studies have used either multi-temporal satellite images for detecting phe-
nological dynamics throughout short periods, or single images for mapping vegetation
succession that invades abandoned croplands and fields.

During the Syrian crisis, abandoned agricultural land has been documented in several
parts of Syria with varying negative impacts [32]. The massive insecurity situation along
with the border areas between Syria and Jordan due to the crisis caused degradation in
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water resources, agricultural activities, and exportation of agricultural products [33]. The
area in southern Syria and northern Jordan is the main contributor to rainfed agriculture
and comes in small, fragmented ownership size agricultural lands. This area includes
the Yarmouk River Basin (YRB), which is one of the most important river basins in the
region. This study aims to evaluate the impact of the Syrian crisis on agricultural land
abandonment in the YRB during the period from 2011 to 2021 through evaluating the
phenological characteristics of agricultural land using all the historical Landsat data starting
from 1986.

2. Materials and Methods
2.1. Study Region

The Yarmouk River Basin (YRB) is a transboundary basin shared between Jordan and
Syria (Figure 1). The total area of the basin is 7242 km?. The majority of the basin (i.e.,
5818 km?~80.3%) is located in Syria [34]. The elevation varies from 1858 m a.m.s.l. at
Jabal Al-Arab, then it fluctuates between 500 m and 650 m a.m.s.l. in the plain fields in
the middle area and reaches its lowest point at 212 m a.m.s.l. in its outlet in the Jordan
River. YRB has undergone increasing development in urban, industrial, and agricultural
activities and plays a significant role in the socio-economic development of both countries.
The basin is characterized by a semiarid Mediterranean climate in the west and an arid
climate in the east. The winter season starts in November and ends in early May. The
average annual rainfall varies from the east (~150 mm) to the west (~600 mm). The average
annual minimum and maximum temperature values range between 9 °C and 24 °C in the
east and from 12 °C to 23 °C in the west, respectively. Most of the basin is covered by
agricultural land including rainfed crops such as cereals, olive trees, and vegetables in the
west, while the eastern parts extend to the low rainfall zone where irrigation occurs using
groundwater [35].
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Figure 1. (a) Location map of Yarmouk River Basin (YRB) in Northern Jordan and Southern Syria,
(b) a true Landsat-8 color image for 2021, and (c) land cover Map for YRB (CGLS, 2019).
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2.2. Data Collection
2.2.1. Satellite Data

In this study, time-series surface reflectance images for 35 years (i.e., 1986-2021)
acquired by Landsat-5 and Landsat-8 satellites were used. The dataset was freely ob-
tained from the United States Geological Survey (http://lpdaac.usgs.gov accessed on
15 November 2021) and processed using JavaScript commands in Google Earth Engine
(GEE). As a matter of fact, GEE is indeed a web-based open-source processing platform
that combines a multi-petabyte catalog of satellite imagery and geospatial datasets with
planetary-scale analysis capabilities. It uses Java scripts for downloading satellite data,
detecting landscape changes, classifying land cover types, mapping trends, and quantifying
differences on the Earth’s surface, and has been recently used for various remote sensing
applications [36,37]. The dataset was collected from LANDSAT/LT05/C01/T1_SR and
LANDSAT/LC08/C01/T1_SR for Landsat-5 and Landsat-8, respectively. These datasets
are geometrically registered and processed to orthorectified surface reflectance. They were
atmospherically corrected using the LEDAPS algorithm for Landsat-5 and the LaSRC algo-
rithm for Landsat 8 and include a cloud, shadow, water, and snow mask produced using
CFMASK, as well as a per-pixel saturation mask [38].

We selected the images with less than 10% cloud contamination from the entire image
collection of Landsat-5 from 1986 to 2010 and Landsat-8 from 2013 to 2021. The total
number of processed images was 1155 and 495 for the two image collections, respectively.
All the images were atmospherically corrected and georeferenced to UTM Zone 36 N. We
excluded the years 2011 and 2012 due to the data unavailability.

To define the extent of potentially abandoned agricultural land in the study area, we
firstly used Copernicus Global Land Service (CGLS collection 3) land cover map for the
year 2019 as a background base-map to define the agricultural land within the study area.
The CGLS is a global land cover map of 100 m spatial resolution provided for the period
2015-2019 over the entire globe; it is derived from the PROBA-V 100 m time-series with an
accuracy of 80% at Level 1 for all years [39]. In this study, we focused on agricultural land
types among the other CGLS 23 classes; therefore, we generated a mask to exclude forests,
urban areas, and barren land. Accordingly, all types of agriculture were kept (i.e., rainfed
or irrigated agriculture, grassland, annual crops associated with permanent crops and
complex cultivation patterns, mixed agriculture/natural vegetation, and mixture of natural
vegetation, herbaceous, shrub, and trees). These subclasses were considered to identify
the potential unmanaged areas in the study area which could be active or abandoned
agricultural lands during the study period (see Figure 1).

2.2.2. War and Internally Displaced Persons (IDPs) Data

The areas of YRB have witnessed armed activities starting from August 2011. Since
then, the security situation in this part of Syria has been precarious. It has been the scene of
intensive armed battles and interchangeable control authorities between the conflict parties,
which were reflected in the forced movement of people. For instance, the governorates of
Dara’a, Quneitra, As-Sweida, and Rural Damascus which consist the Syrian part of YRB
witnessed massive internal movements of people within or between the other regions of
Syria, and external movements to Jordan due to the armed conflict. By 2016, the total
number of registered Syrian refugees in Jordan reached 953,289 persons residing either
in refugee camps or in the cities, towns, and villages. Approximately 47.6% of them
(i.e., 453,486 persons) reside in Irbid and Mafraq governorates which consist the Jordanian
part of YRB [40]. The IDPs have reportedly faced protracted internal displacement since the
closing of border crossings between Syria and Jordan in June 2016, which has prevented
further movement into Jordan. By December 2018, the United Nations Office for the
Coordination of Human Affairs (UN-OCHA) estimated the total number of IDPs in these
four governorates at 997,215 persons. However, during the de-escalation/reconciliation
period (2018-2021) the UN-OCHA documented 903,370 spontaneous IDP returnees in these
governorates, where the major returns occurred between August 2018 and March 2019.
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Figure 2 shows a summary of the total IDP spontaneous returnees in these governorates
during that period [41].
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Figure 2. Summary of the total IDP spontaneous returnees in Dara’a, Quneitra, As-Sweida, and Rural
Damascus governorates which mainly consist the Syrian part of YRB.
2.2.3. Rainfall Data
The monthly average rainfall data (Table 1) between 1986 and 2021 obtained from three
agro-climatic stations (i.e., As-Sweida, Dara’a, and Quneitra) within the Syrian part of YRB
were used for evaluating the potential effects of rainfall on agricultural land extent, crop
yield and, agricultural production during the years of crisis. The agricultural data during
2011-2021 were obtained from the Syrian Ministry of Agriculture. It contains statistics on
the total cultivated area (ha), yield (ton/ha), and production (ton) of the major field crops
(i.e., durum wheat, barley, lentils, peas, and green beans) in Dara’a, Quneitra, As-Sweida,
and Rural Damascus which consist the area of YRB (note that the data for 2021 is not
available). These data were used to analyze the agricultural activities during different
growing seasons before, during, and within the calm years of crisis in YRB.
Table 1. Statistics of the rainfall in three agroclimatic stations in the Syrian part of Yarmouk River
Basin (YRB) during the years of the crisis 2019-2021.
As-Sweida Dara’a Quneitra
2019 2020 2021 “{%’:lzly 2019 2020 2021 M‘Sﬁ‘ly 2019 2020 2021 Mgﬁ‘ly
January 545 94.7 83.1 725 78.5 106.5 73.2 63.5 1227 167.5 160.5 149.2
February 93.5 85.3 74.4 64.7 74.0 64.6 59.5 49.8 1485 1347 140.9 129.6
March 68.5 75.7 58.2 485 51.0 67.7 45.0 35.3 1375 79.7 98.8 87.5
Aprile 39.5 21.4 26.4 16.7 285 21.3 226 12.9 78.0 47.7 39.6 28.3
May 10.1 20.8 15.0 5.6 0.0 9.6 143 46 0.0 14.0 189 7.6
June 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 0.0 0.0 0.0 15
July 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6
August 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
September 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 1.7
October 105 85 20.2 10.6 338 0.6 172 7.5 27.0 27.0 29.2 179
Nov 33.1 29.0 37.7 26.9 24 25 329 232 5.0 8.0 68.8 57.5
December 77.5 57.5 67.7 57.5 73.3 73.6 58.1 48.4 243.0 240.0 1423 131.0
Yearly SUM  387.1 392.9 382.8 3115 346.4 322.8 861.7 838.6 699.0
LTA (1986-2021) is 304.7 mm LTA (1986-2021) is 247.2 mm LTA (1986-2021) is 612.5 mm

* LTA is the long-term average rainfall during 1986-2021 (Source: Syrian Ministry of Agriculture).
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2.3. Mapping Abandoned Agricultural Land in YRB
2.3.1. Defining the Growing Season

In this study, we used the normalized difference vegetation index (NDVI; Equation (1))
and normalized difference moisture index (NDMI; Equation (2)) to identify the growing
season within the study area as they reflect the greenness and wetness conditions of
vegetation and are frequently used in vegetation monitoring [42].

NIR — Red

NDVI =R T Red M
NIR — SWIR
NDMI =R T swiR @)

where NIR, Red, and SWIR are near infrared, red, and shortwave infrared spectral bands of
Landsat 5 and Landsat 8. Here, we calculated the long-term monthly average NDVI and
NDMI values for the whole study area from 1986 to 2021 by implementing Java scripts on
GEE. We used the average monthly NDVI values to define the growing season metrics,
the start of season (50S), length of season (LOS), and end of season (EOS), taking into
consideration that the NDVI values tend to increase starting from the SOS till they reach a
peak value, then they start to decrease toward the end of the EOS [43]. We calculated the
long-term averaged distribution and spatial trends of these growing season metrics at the
pixel level in the whole study area during 1986-2021.

2.3.2. Identifying Abandoned Agricultural Land Characteristics in the Yarmouk
River Basin

We performed two approaches for identifying the abandoned agricultural lands in
YRB: (i) an analysis of the variation in the maximum and average NDVI and NDMI values
for the growing season (i.e., February to May in our study area) during the period of
observation (i.e., 1986-2021) bearing in mind that these NDVI and NDMI values would
vary between abandoned and active agricultural lands; (ii) an analysis of the long-term phe-
nological profiles of NDVI and NDMI values of the growing seasons between 1986-2020,
taking in consideration that these NDVI and NDMI temporal profiles could provide in-
formation about the agricultural activities within YRB during the period of interest and
especially during the conflict period in Syria.

We also performed a country-specific analysis of YRB in Jordan and Syria. As such,
we divided the basin into two parts (Figure 1) following the main channel of the Yarmouk
River which also represents the political divide boundary between the two countries.
This was done to better understand the effects of the Syrian crisis on agricultural lands
and agricultural activities between both sides of the basin. Accordingly, we used 150 on-
screen digitized sample points within each country-specific basin (i.e., 111 in the Syrian
part and 39 in the Jordanian part) around the towns and villages to characterize the
agricultural land in these areas in relation to the conflict actions, human displacement, and
agricultural activities.

2.3.3. Evaluating the Effects of the Syrian Crisis on Agricultural Land Abandonment
in YRB

The monthly average rainfall data, the data of internally displaced persons (IDPs) and
spontaneous returnees, and the agricultural data were used to evaluate the remote-sensing-
based results of mapping abandoned agricultural land in YRB. For instance, we examined
whether the rainfall and/or the IDPs/returnees had influenced the agricultural activities,
cultivation, yield, and crop production within the YRB, especially in its Syrian part, during
the period of the crisis between 2011 and 2021 or not.
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3. Results
3.1. Defining the Metrics of the Growing Season in the YRB

The analysis of the long-term monthly average NDVI values for the agricultural land-
use type during the period 1986-2021 shows that only one growing season exists in the
study area (Figure 3). The phenological curve of NDVI starts mainly in February (i.e., SOS)
when crops start to germinate, and ends in May (i.e., EOS) when crops reach their maturity.
The highest NDVI values were found in March and April. The length of the growing
season (LOS) was found to be approximately four months. We also calculated the monthly
average NDVI for each year between 1986 and 2021 and found negligible differences in
NDVI values of SOS, peak, and EOS between the growing seasons which might be related
to variations in agricultural practices, seasonal climate conditions, and crop types. Here,
the SOS or EOS were defined as the month of the year at which the left or right edges of the
monthly averaged NDVI profile increase or decrease, respectively, to 20% of the highest
amplitude in the NDVI profile of a growing season, and the LOS is the time in months
between the start and the end of the growing season [11].

0.4 -
0.35 -
0.3 -
L 025 -
2 02 -
£ 0.15 -
S 0.1 -
% 0'0(5) T T T T T T T T T T T 1
12 3 4 5. 6.7 8 9 10 11 12
—— 1986 1087 1988 1989
——1990  ——1991  ——1992  ——1993
—— 1994  ——1995  ——1996  ——1997
—— 1998 1999 2000 2001
2002 2003  ——2004  ——2005
——2006 2007 ——2008  ——2009

Figure 3. The monthly average NDVI profile for the years 19862021 for the agricultural land-use
type in the Yarmouk River Basin (YRB), and the monthly long-term average NDVI between 1986 and
2021 (MLTA).

3.2. Analysis of the NDVI Phenological Profiles in the YRB

The spatiotemporal phenological profile of agricultural land-use type is shown in
Figure 4. It represents the monthly average NDVI and NDMI values of the growing seasons
(i.e., February to May) for 35 years from 1986 to 2021 using Landsat-5 and Landsat-8 data.
Taking in consideration the definition of abandoned agricultural land and the characteristics
of monthly average NDVI and NDMI profiles, three main features can be distinguished in
Figure 4: (i) phenological profiles that have irregular values that fluctuated with various
peaks between 1986 and 2010, where the maximum average NDVI and NDMI values often
altered substantially between March and April; (ii) phenological profiles with smooth,
bell-shaped, and single-peak NDVI and NDMI values between 2013 and 2018, where the
maximum average NDVI and NDMI values occurred mainly in March, indicating the
progress of natural vegetation and fallow land; and (iii) a second cycle of irregular NDVI
and NDMI profiles during 2019-2021 with noticeable higher NDVI and NDMI values
which might be related to the recultivation process and agricultural activities within the
study area during that calm period of the crisis as the conflict parties signed a matter of
de-escalation/reconciliation with no military actions in late 2018 in this part of Syria.
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Figure 4. The spatiotemporal phenological profile of the agricultural land-use type using monthly average NDVI and NDMI values of the growing seasons
(i.e., February to May) for the period 19862021 as extracted from Landsat-5 and Landsat-8 data in the Yarmouk River Basin (YRB).
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The analysis of NDVI and NDMI profiles at the country-specific parts of the YRB
is shown in Figure 5. Figure 5a shows the NDVI and NDMI phenological profiles in
the Jordanian part of YRB. It shows that the NDVI and NDMI phenological profiles had
irregular fluctuated shapes and values in all growing seasons between 1986 and 2021. This
can be connected to the active agricultural practices in the Jordanian part of the basin
during that period, including the period of crisis between 2012 and 2021. In the Syrian side
of the basin, the spatiotemporal NDVI and NDMI phenological profiles showed smooth,
bell-shaped, and single-peak NDVI and NDMI values between 2013 and 2018 with an
exception in the year 2015 (Figure 5b). Some other discrete growing seasons (i.e., 1987, 1990,
1993, and 1995) showed similar profile characteristics which might be due to other factors
such as climatic and cultivation practices. The peak values of NDVI and NDMI in both
parts of the basin were approximately close as they almost have similar climate conditions.
However, the maximum average NDVI and NDMI values in the Jordanian part of YRB
altered substantially between March and April in all growing seasons between 1986 and
2021 (Figure 6a). Hence, during the crisis period, many Syrian farmers, especially from the
study area, moved to Jordan and contributed to the agricultural activities and production
in the Jordanian part of the basin [32]. In the Syrian part of YRB, the maximum average
NDVI and NDMI values were mainly found in March during the crisis years except for
2019, 2020, and almost 2021 (Figure 6b). This could confirm the existence of abandoned
agriculture during the crisis years 2013-2018 due to the war activities when compared
to the maximum NDVI and NDMI profiles before the crisis (1986-2010) and during the
de-escalation/reconciliation period between 2019 and 2021.

3.3. Analysis of Agricultural Activities in YRB during the Syrian Crisis in Relation to Rainfall and
IDPs/Spontaneous Returnees

The analysis of rainfall data showed that the rainfall was within its normal annual
range during the study period, including the active, abandoned, and recultivated periods.
The long-term average rainfall amount during the period 1986-2021 was 304.7 mm in
As-Sweida, 247.2 mm in Dara’a, and 612.5 mm in Quneitra. The monthly rainfall in these
stations in the years of the crisis 2011-2021 was found within its normal levels where there
were no extremely high or low rainfall records during the crisis’s calm years in 2019, 2020,
and 2021, as shown in Figure 7.

Figure 8 show the results of analyzing the statistics of agricultural data. Figure 8a
shows that the total cultivated area was approximately equal in 2011 and 2012; then
it started to reduce starting from 2013 until 2018. After that, the cultivated area was
occasionally increased to reach in total an area greater than that in 2011 (i.e., before the war).
Similar findings were observed in the crop yield (Figure 8b) and production (Figure 8c).
These figures ensured the relationship between these three agricultural measurements,
such as an increase in the total cultivated area and yield would reflect an increase in the
total production. However, this was not the case in 2016, which showed a lower production
value compared to the other years; hence, this might be related to a statistical mistake or
missing data in that year.
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Figure 5. Spatiotemporal phenological profiles of the monthly average NDVI and NDMI values in (a) Jordanian and (b) Syrian parts of YRB during all growing
seasons between 1986 and 2021.
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Figure 6. Spatiotemporal phenological profiles of the maximum NDVI and NDMI values in March and April during all growing seasons between 1986 and 2021 in

(a) Jordanian and (b) Syrian parts of YRB.
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Dara’a, Quneitra, As-Sweida, Quneitra, and Rural Damascus governorates in the Syrian part of YRB

(Data Source: Syrian Ministry of Agriculture).
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4. Discussion

In this study, we provided the first consistent spatiotemporal analysis of abandoned
agricultural land across the YRB in Syria and Jordan in relation to the Syrian crisis. The
implementation of Landsat-based NDVI and NDMI data for identifying vegetation phe-
nology successfully identified the phenological characteristics of the growing season in
YRB. The statistics of NDVI and NDMI and their spatiotemporal profiles were generated
using Landsat-5 TM and Landsat-8 OLI data for the study area. The NDVI and NDMI
values were higher in the case of Landsat-8 data in all growing seasons. However, this
might be related to the configuration variations between the two satellite sensors in terms
of their spectral bandwidth and radiometric resolutions; similar findings were reported in
previous work in different studies [44,45]. On the other hand, the spatiotemporal profiles
of NDVI and NDMI showed similar patterns during the phenological cycle between the
two satellite sensors. This might be related to the combined effect of leaf pigments, leaf
structure, and leaf water content that gives all healthy green vegetation canopies their
common reflectance properties such as low reflectance in red and SWIR spectral bands
and high reflectance in NIR. The shape of the temporal profile of NDVI and NDMI from
the TM and OLI sensors was used to successfully identify active/abandoned agriculture
in the study area as they showed similar shapes and properties. Similar findings were
observed using various satellite sensors in different studies and regions [14,23,26-31,43].
In identifying whether an abandonment case exists or does not, we investigated both the
shapes and the values of the NDVI and NDMI phonological profiles for more than two
successive growing seasons rather than looking at single-year comparisons. Factors such
as weather conditions would be other factors affecting the agricultural status in a single
growing season. For example, the growing season of 1995 had similar phonological shapes
and values to that of 2014; however, it was followed by a normal NDVI and NDMI status
in the following growing season. The growing season of 2014—for instance—was located
within a successive period of more than two years that had similar phonological NDVI and
NDMI profiles and values.

The implemented method in this study provided the information about the timing of
land abandonment/recultivation occurrences which would be an indicator of the status of
agricultural land management practices in the study area during the years of crisis. For
instance, the recultivation process would be identified by investigating that in comparison
to the cultivated area, yield, and production values. Those results could be valuable for land
cover mapping and for assessing the land cover trajectories and identifying the agricultural
abandonment years, as well as the periods when lands were recultivated. In addition, our
analysis was suitable for assessing land abandonment at the regional /watershed level in
relation to human conflicts. The analysis of the rainfall data confirmed that the climate
conditions did not trigger the agricultural or the abandonment/recultivation activities
in the study area during 2019-2021 as the total rainfall was within its long-term normal
average. Thus, the possible effect of rainfall conditions on increasing the agricultural
activities and perhaps the NDVI values and its temporal profiles in those years might
be negligible.

The maps of IDP spontaneous returnees also supported the results of the remote-
sensing-based NDVI and NDMI profiles. For instance, the study area contains major
cities, towns, and villages where agriculture is the main economic activity for residents.
These areas witnessed intensive airstrikes and ground armed battles between the conflict
parties. Meanwhile, they witnessed different changeable control authorities between the
government, the opposition, and other local armed groups during 2011-2021. UNOCH [37]
reported that before August 2018 the subsequent shifts in the security situation generated
multiple repeated displacements as the internally displaced persons (IDPs) left their place
of displacement to return home or fled again when hostilities resumed, or kept moving
onwards as hostilities unfolded. After that, due to the apparent ceasing of armed conflict
and the reconciliations with local tribes in southern and southwestern Syria, in addition
to the stable authority of the Syrian government, many people tended to return to their
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towns and villages. This situation leads to efforts by the people to recultivate their lands,
which was obviously reflected in the NDVI and NDMI phenological profiles in 2019-2021
and gave them the irregular fluctuating shapes and various peak NDVI and NDMI values.
This would be an obvious indicator of agricultural activities and management practices
within the agricultural land in the study area during that period. Such fluctuations would
correspond to the natural variation of the crop types, phenology, irrigation, soil conditions,
agricultural and grazing practices and management, and climate conditions, including
precipitation and temperature. The analysis of the agricultural statistics also confirmed
our findings regarding the agricultural land abandonment/recultivation during the war
years. The variation between the total cultivated area, yield, and production before and
during the crisis years within the governorates of Dara’a, Quneitra, As-Sweida, and Rural
Damascus coincided with the movement of people within these areas. These measurements
increased or decreased consequently with the extent of the war and armed activities or the
relatively calmer times which witnessed the return of the IDPs to their origin towns and
villages within the study area.

5. Conclusions

Remote sensing data and techniques provide key information needed to support agri-
cultural land monitoring, including agricultural land abandonment. The analysis focused
on agricultural land in the Yarmouk River Basin in northern Jordan and southern Syria dur-
ing 1986-2021. The operative and efficient acquisition of information from remote sensing
often helps in these studies as such data are acquired at regular time intervals and various
geographic scales, which makes it possible to monitor the development of agricultural land
in deferent land sizes. Here, we tested and proved that Landsat-5 and Landsat-8 time series
data are well suited for monitoring abandoned agricultural land during the conflict period
in Syria using NDVI- and NDMI-based phenological analysis. The analysis confirmed the
common belief about agricultural land abandonment in areas under conflict. The results
pointed to multiple trajectories regarding agricultural land cultivation in the study area:
(i) active agricultural period between 1986 and 2010, (ii) agricultural land abandonment
in the conflict period between 2011 and 2019; and (iii) recultivation and active agricul-
ture in the period 2020-2021. Our study highlighted the need to understand the diverse
conflict-related changes to agricultural land for the purpose of agricultural management
and rehabilitation in YRB. The results were evaluated against information from the Syrian
Ministry of Agriculture for Dara’a, Quneitra, As-Sweida, and Rural Damascus governorates
which consist the Syrian part of YRB. These included (i) the monthly historical rainfall data
between 1986 and 2021, (ii) the total cultivated area, yield, and production of field crops
during 2011-2020, and (iii) the internally displaced person (IDP) spontaneous returnees
from 2018 to 2021. This evaluation confirmed the remote-sensing-based results. However,
it is worthwhile to consider the other factors that may affect the agricultural land abandon-
ment when implementing the proposed method in other study areas and environments.
Meanwhile, the implementation of the method would be valuable for monitoring and
evaluating the changes in agricultural crop types and cultivation patterns in the study area,
which would be considerable for further investigation in the near future.
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