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ARTICLE INFO ABSTRACT
Keywords: Background: Data-based approaches promise to use the information in cardiovascular signals to diagnose
Stenosis

cardiovascular diseases. Considerable effort has been undertaken in the field of pulse-wave analysis to harness
this information. However, the inverse problem, inferring arterial properties from waveform measurements, is
not well understood today. Consequently, uncertainties within the estimation hinder the diagnostic application
of such methods.

Method: This work contributes a publicly available data set measured at an in-vitro cardiovascular simulator,
focusing on a set of input conditions (heart rate, waveform) and stenosis locations. Furthermore, a first attempt
is undertaken to perform classification and regression on this data set using standard machine learning methods
on features extracted from four peripheral pressure signals.

Results: The locations of six different stenoses could be distinguished at high accuracy of 93%, where transfer
function-based features outperformed features based solely on signal shape in almost all cases. Furthermore,
regression on the stenosis position could be performed with a root mean square error of 2.4 cm along a 20 cm
section of the arterial system using a shallow neural network. However, the performance difference between
shape and transfer function features was not clear for this task.

Conclusion: The data set contains 800 measurements and allows investigating the influence of different heart
boundary conditions, such as heart rate and waveform shape, on classification and regression tasks. Extracting
features that minimise this influence is a promising way of improving the performance of these tasks.

Machine learning
Inverse problem
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Classification
Regression

1. Introduction

Recently developed data-based approaches allow to tackle hard
problems in many areas of biomedical technology, including analysis of
images, biomarkers and biomedical signal processing [1]. Concerning
biosignal processing, photoplethysmography (PPG) is a data source
that is not fully utilised at the moment. However, recently a lot of
studies have been undertaken, trying to diagnose diseases from these
signals [2]. The form of a PPG-signal is influenced by structural and
elastic properties of the human arterial system. Therefore this signal
source might be a promising candidate for non-invasive determination
of cardiovascular risk factors and diseases in an early stage.

A variety of diseases cause pathological conditions in the arterial
system. Abnormal vascular geometry can manifest in stenosis (reduced
diameter) or aneurysms (increased diameter). In addition to the arterial
geometry, the elasticity of the vessel wall plays an important role in
aneurysms in the presence of hypertension. In clinical practice, geo-
metrical variations can be assessed with common imaging techniques

(e.g. computed tomography, magnetic resonance imaging or ultra-
sound) routinely used to diagnose aortic aneurysms [3]. In contrast,
stenosis or, more specifically, the common peripheral arterial diseases
(PAD), can also be diagnosed by the ankle-brachial-index (ABI) [4].
However, each of these methods has some shortcomings. For example,
there is a large barrier to using imaging techniques, as they are often
expensive and unavailable at the family practitioner level. Stenosis
screening using ABI returns a single value that does not immediately
pinpoint the exact location of the stenosis. Furthermore, ABI cannot be
applied in non-peripheral locations that do not allow for a cuff-based
blood pressure measurement, such as carotid stenosis. Thus, imaging
techniques must be used [5]. A non-invasive and easily applicable
method for the early screening of such diseases is desirable.

Because the structural vessel parameters of diameter, length and
elasticity all influence the shape of the pulse wave, it has been a
long-standing idea to infer these parameters from pulse wave anal-
ysis. Initially, the investigation examined whether properties of the
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arterial tree can be inferred from waveform measurements focused
on the input impedance (relationship between pressure and flow at
the aortic root). This problem was first stated in [6] as a haemo-
dynamic inverse problem, and it was shown that the solutions are
not unique. Multiple measurements at different locations could, how-
ever, provide the possibility of solving a constraint version of this
problem by either classifying the presence of certain geometrical vari-
ations or even estimating related parameters like the diameter or
location. To date, it is not clear how much information from dif-
ferent measurement locations is required to accomplish these tasks
with a certain precision. Recently, the interest in this approach arose
again because data-driven approaches allow tackling the problem us-
ing machine learning techniques. The required data basis is usually
either generated by computer simulations (in-silico), physical simula-
tors (in-vitro) or clinical measurements (in-vivo). While the first two
approaches enable direct access to pressure and flow waveforms, in-
vivo studies try to acquire similar information (mostly) non-invasively
by the measurement of a photoplethysmogramm (PPG).

Much of the work in previous studies on aneurysms was based on
simulation data. While most approaches apply machine learning in the
time domain [7-9], there is also recent work where the features are
based on the Fourier series representation [10], resulting in a reduced
parameter space when a limited number of modes is used. However,
the underlying model assumptions often reduce the complexity of the
generated data, including the number and statistical distribution of
parameters that are varied in a virtual patient cohort. The authors
in [11] studied a simple model of an arterial bifurcation varying many
geometrical parameters, resulting in a reduction of accuracy compared
to other studies mentioned in this paragraph. Interestingly, while there
is not much literature using in-vitro or in-vivo data for classification,
parameter estimation is done on a wealth of data sources, sometimes
including all three major data sources listed above (in-silico, in-vitro,
in-vivo). Parameter estimation studies [12-15] have been done for a
variety of parameters like peripheral resistances and arterial wall prop-
erties [16], while [14] established estimates of geometrical properties
in the cerebrovascular system. However, estimates for the diameters
or locations of stenosis in the major arteries are not yet performed.
Detailed investigations on the physical effect of aneurysms on the
waveform were performed on in-vitro data [17]. Finally, there are
some in-vivo studies on stenosis [18-20] and aneurysm detection [21].
In [18] for example, multiple PPG signals were analysed to compute
features depending on the phase shift; [21] used a transfer function
approach as an attempt to exclude dominant boundary conditions.

Within this work, we try to close some gaps in the classification
and regression of stenosis using in-vitro data. There are no publicly
available large in-vitro data sets to validate algorithms for classification
and regression of structural variations within the arterial system. Most
publicly available pulse wave databases are generated by computer
simulations [8,22], which offer flexibility in generating a large amount
of data. The development of new algorithms gives hope for appli-
cations on real-world data, since real-world data is accompanied by
specific challenges that must be tackled and are difficult to infer from
simulation-only data. Measurement uncertainties and simplifications
of the model could hinder the direct transfer of algorithms from in-
silico to in-vivo. On the one hand, this study provides a data set to
improve and test algorithms for stenosis detection and localisation on
physical in-vitro data as an intermediate step. On the other hand,
specific investigations on the performance and accuracy of classifi-
cation and regression for different stenosis locations under different
boundary conditions, such as heart waveforms, heart rates and degrees
of stenosis, are presented.

2. Materials and methods

A well-formed data set should contain variations similar to expected
inter-patient variations. However, the distributions of these parameters
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in the general population are not known. Algorithms that work on a
data set with large variations should also work if the real variations
turn out to be smaller. Thus if two classes are compared, the variations
in these classes should be considered; otherwise, a classification task
is trivial. In this work, different stenosis locations are referred to as
classes, and one possibility of generating variations within each class
is to change the input boundary condition. This setting also allows for
investigating the influence of different heart conditions on the pressure
waves throughout the vascular system for both healthy and diseased
conditions. Severe stenoses cause a significant translesional pressure
drop and are trivial to detect by comparison of absolute pressure
values (as addressed by the ABI). Consequently, we mainly focus on
the detection limit of mild stenosis (which would be helpful for early
diagnosis), but we also compare the accuracy to that of severe stenosis
detection.

The data are acquired and analysed in MATLAB (The MathWorks
Inc., Natick, MA, USA) version 2020b. All source code to generate
the figures starting from the data set is available in a GitLab reposi-
tory [23].

2.1. Data set generation

The data set was acquired using the in-vitro simulator MACSim
(Major Arterial Cardiovascular Simulator), including the major 33 ar-
teries. A detailed description is given in [24]. The general conditions
(vascular geometry, fluid properties, sensor setup, etc.) outlined there
are also applicable to this work. The total arterial compliance and the
total peripheral resistance was C = (2.42 + 0.09) - 10~ m3/Pa and
R, =(1.94+0.02) - 108 Pa/(m*/s), respectively. The density of the fluid
(approx. 40/60 weight % glycerin-water mixture) at room temperature
(0 = 22.4 °C) was p = (1.094 + 0.002) - 103 kg/m3, and the kinematic
viscosity was n = (3.88 £ 0.09) - 1073 Pas.

The data set was acquired by performing a parameter sweep over
the following parameters:

« 16 different stenosis ‘states’
« 5 different heart rates
» 10 different waveforms

In, total the data set contains 800 (= 16 - 5 - 10) independent measure-
ments. While initially acquired to an SQL database, the data were saved
to mat-files publicly available at [25]. In the following, the design of
the data set is described in more detail:

Variation of stenosis degree and location. The stenosis locations were
used to split the data set into two parts, one for classification and
one for regression. Five different locations (see Fig. 1 I-V and Table 1)
with different degrees of stenosis and a measurement series without
stenosis were used to generate the classification data. The regression
locations were generated by separating a 20-cm long arterial segment
into ten equidistant positions, each 2 cm apart. The regression positions
are located on the same arterial segment with similar diameters; thus,
the same stenosis degree is maintained. All stenoses were implemented
using a 3D-printed clamp squeezing the respective arteries. A closer
description is given in [24]. The degrees of stenosis are described in
Table 1.

Variation of the heart rate. The heart rate was varied in the range
between HR = 50.70 bpm using an increment of AHR = 5 bpm.
For each increment, the maximum ventricle pressure was increased to
mimic a similar ejection volume of the ventricular assist device (VAD)
used to mimic the heart. The pressure amplitudes, p,, were varied from
220 mmHg at 50 bpm to 250 mmHg at 70 bpm in 7.5-mmHg steps.
Note that this is not the maximum pressure because there is an offset
of pp = —100 mmHg.
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Fig. 1. Overview of the arterial network in the simulator, including the stenosis
locations investigated in this work. Locations I-V refer to the measurement scenarios
described in Table 1. In the following, node numbers Ref. [24, Figure 14]). Location
I is located approx. 32 cm downstream to the aortic arch (between Node 9 and 10).
Location II is approx. 7 cm upstream from the renal arteries (Node 28), and Location
III is approx. 5 cm downstream from the renal arteries (between Node 34 and Node
35). Locations IV/V are approx. 6 cm downstream from the aortic bifurcation (between
Nodes 55 and 59). Finally, the Reg. location is approx. 34 cm to 52 cm downstream
from the aortic bifurcation (between Nodes 44 and 45). pgg,pgp.prs and p, denote
peripheral pressure sensors corresponding to the anatomical locations (radials sinistra,
radialis dextra, tibialis sinistra and tibialis dextra). Note: the full data set contains
additional signals from 17 pressure sensors and one flow sensor.

Table 1

Description of the locations shown in Fig. 1.

No. Anatomical location 8 Ay /A,
1 Brachialis dextra 12.5% 23.4%
I Aorta abdominalis suprarenal 42.2% 66.7%
111 Aorta abdominalis infrarenal 29.0% 49.6%
v Iliaca communis sinistra I 25.0% 44.1%
\4 Iliaca communis sinistra II 3.1% 6.2%
Reg. (Popliteal dextra) 11.7% 21.9%

It is assumed that the application of the clamp creates a cross-sectional rectangular
shape with two half circles attached. 6 is the fraction of the distance of the clamp jaws
(minus two times the wall thickness) to the initial inner diameter of the artery segment
with a circular cross-section. The fraction of cross-sectional inner area A,/A, for this
geometry is given by A,/A, =25 — §>. A more detailed derivation of this relationship
is given in [24].

Variation of heart waveform. A trapezoidal function was chosen as the
heart waveform due to the significant change in the waveform shape
by adapting the curves’ ascending/descending slopes (see Fig. 2). For
technical reasons, the waveform was first generated on a normalised
timescale 7 = /T, where T is the time period of the heart rate, and then
rescaled to the real period. This gives the benefit that the parameters
that determine the shape can be chosen largely independent of the heart
rate. The trapezoidal function at normalised time 7 is given by:

Po 0<7<iy,
a1 - -
Po + "a.z_"a,l Pa Ia,l <t< ta,2
Pin0) =4Po + Pa Tap ST<1Iy, 1
= . -
Po+Pa~ ;o5 Pa Tag ST<Iyp
Po fjp<i<1

A linear ascent is created between 7, and 7,, followed by a plateau
and a descent between 7,, and 7,,. The parameters for p, and p,
are already described above. 7,; is always chosen to be 0.1, while
i,, € [0.15,0.55], 7, € [0.45,0.85] and 7,, € [0.5,0.9] all start at the
beginning of their intervals and are shifted by 0.4/9 ~ 0.044 s for each
consecutive waveform. Finally, the curve is smoothed with MATLAB’s
smoothdata function with a window of 0.1 before temporal rescaling.
The trapezoidal function and the resulting aortic pressure curves in
the ascending aorta are shown in Fig. 2. Approaching waveform 10,
the peaks become flatter as the pressure valve can completely follow
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Fig. 2. Exemplary pressure curves for a pulse of 50 bpm (~ 0.83 Hz). Waveforms from
left to right (black to blue) for each plot are waveforms 1-10. The measured pressure
from the aorta is filtered with a sharp 30 Hz lowpass filter and averaged over 40
periods starting from the fifth period.

the curve. While this shape is not ‘natural’, the alteration of the shape
can still serve as a basis to investigate the influence of a variation in
input conditions. The measurement process was partially automated by
scripting the parameter variation of the heart boundary condition and
placing the stenosis clamp in the correct position.

2.2. Preprocessing, feature extraction and data augmentation

To stay as close as possible to clinically measurable quantities, only
the pressure curves on four peripheral locations shown in Fig. 1 are
used. While it is clear that the pressure curves do not resemble the
PPG at these locations, they are the easiest signal to acquire on this
hardware simulator. The data are processed in the following steps:

For each of the four pressure curves shown in Fig. 1, (prs(t), prp(®),
Prs(®), prp(®), which we will denote as py (1):

1. Cut the data py(r) from 5 s to 57.5 s to obtain py (1)

2. Split the remaining part px .(#) in five 10.5-s intervals py ;(r) with
i=1.5

3. Fit a Fourier series to each py ;(r) with n = 1..5 modes to obtain
the coefficients ay ;. by ;, (we discard ay ;)

4. Create complex coefficients cy;, = ay;, — iby,;, and normalise
the coefficients by the amplitude of the first harmonic éy;, =

CX,i.n/”cX,i,l [l
Then either:

5a. Shift the coefficients of each separate signal based on the phase
of the first harmonic of that signal. Combine the real and imag-
inary parts of all signals in a feature array.

5b. Combine the coefficients in pairwise transfer functions and ap-
pend the real and imaginary parts of these transfer functions to
a feature array.

This is similar to the procedure used in [21] on clinical PPG signals but
differs on some key points. Each step is described in more detail below.

Step 1. The data are cut before 5 s because the system needs some time
to equilibrate, whereas the cut after 57.5 s is made because the signal
length differed in the original recording (between 60 s and 70 s).

Step 2. Splitting the intervals serves two purposes. First, it is a form of
data augmentation that can be beneficial for the consecutive training
of machine learning algorithms. Second, one can, in principle, discard
non-valid intervals by removing outliers. For example, this can happen
for in-vivo data if there are extrasystoles. The period of 10.5 s is
chosen because it does not have an exact match to any frequency of the
parameter sweep; exact matches can lead to problems when extracting
an estimation of the fundamental frequency in the next step.
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Step 3. Features are extracted by fitting a Fourier series of degree
N =5 to the measurement data. Thus the data are approximated by:

N
Px,i(t) Xay;o+ Z(aX,i,n cos(2rx font)+ )
n=1
by i n Sin2x fynt))

where f is the fundamental frequency of the signal. This procedure
contains multiple substeps. First, an approximation of the fundamental
frequency is extracted by finding the first real maximum of the circular
autocorrelation. Then the normal equation is used to obtain a first
estimation of the Fourier coefficients given the estimated frequency.
As a last step, MATLAB’s fit function is used to perform a nonlinear
fit (including f;). In contrast to [21], we do not perform any lowpass
filtering or baseline correction on the data. Lowpass filtering does not
change the results of the Fourier series fit significantly, and baseline
filtering does more harm than good in this case because the data should
not exhibit significant baseline drift.

Step 4. Casting the features to the complex representation makes it
easier to perform the normalisation and consecutive steps. The informa-
tion about the absolute amplitude is deliberately taken out of the signal
because it is not accessible by non-invasive methods like the PPG.

Step 5a. Because all coefficients have a different phase based on how
the signal is cut, we must shift them to make them comparable. A global
time shift Ar is converted to a phase shift for different harmonics by
A, = 2x fyndt. The operation performed in the complex space by

& in = Cxinl €y Nexiall” 3
automatically takes this relationship into account, creating a time shift
such that the phase ¢, of the first harmonic é;(’,.’n is always zero. The
last multiplication, preserving the amplitude of the complex coefficient,
could be omitted because ||¢;;|| is already normalised to 1 in Step
4. After shifting the signals for all four locations in this manner, we
append their complex and imaginary values to one line, including also
the estimated frequency f, as the frequency could bear important

information because the response of the system strongly depends on
it.

N A N N
(675,00 6150 Crs.i Cr,i» Jol Q)

The third index n being omitted in this case means that each entry
represents all modes. As the first mode n = 1 does not contain any
information, these entries are removed. These adjustments yield a total
of 33 real numbers used as features for this approach.

Step 5b. Instead of looking at the signal shape directly, we compute
features hy, x,;, which are labelled as a transfer function in this
work, by dividing the complex coefficients for each harmonic (same
frequency) for two locations labelled as (X, X,). The relative informa-
tion between the two signals is captured in this way. Strictly, this is
a ‘transfer function’ between two outputs and not an input/output, for
which this terminology is used more widely.

hx, Xyin = Cx,inl €xypim )

This is done four times for the pairs (X, X,) being (RS,TS), (RD,TD),
(RS,RD) and (TS,TD). The real and imaginary parts of all modes n of
the transfer functions are then appended to a single line and used as
features, including the estimated frequency.

[hrsTs.ishrRDT D> PRSRD,1s AT 5T D10 f0] (6)

As above, omitting n means that real and imaginary parts of all modes
are stacked in the array side by side. Although the first mode is also
normalised, it still contains phase information in this case; thus, these
coefficients are not removed. Overall, 41 real numbers are used as
features here.
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The comparison between 5a and 5b allows us to investigate the
different importance of the signal shape and the relative changes to the
signal because the transfer function features contain information about
a time delay and amplitude ratio for each mode between the different
measurement positions. In principle, it would be possible to include
all information in a feature set, for example, by shifting the signals of
different locations by the phase of the signal from one location. This
would most likely need a more complex classifier/regression algorithm
to make use of the available information. In this article, we want to
focus on comparing the signal shape and transfer function features.

2.3. Classification

The subset of data used for classification comprises the locations I-
V and a measurement series without stenosis, thus 300 (= 6 - 5 - 10)
measurements. We use the augmented data for all our classification
problems, effectively having 1500 data points. Cross-validation is not
random but chosen in a way that allows us to judge the interpolation
and extrapolation abilities with regard to heart rate and heart wave-
form. For one, we look at a cross-validation of different heart rates
where the data for one heart rate are always in the validation set,
and the data for the remaining four heart rates are in the training set.
Second, we make a split across the waveforms, keeping two consecutive
waveforms in the validation set (e.g. waveforms 1 and 2, or waveforms
3 and 4) and the rest in the training set. Thus 80% of the data is used
for training and 20% for validation. The way the cross-validation splits
are created (non-randomly) already guarantees that data points from
the same measurement are either fully in the training set or fully in
the validation set. Because the focus of this investigation is specifically
on the performance of these splits and not on the overall performance,
no separate test data set is used.

Little is known about the structure of the feature space for this
problem. Therefore, we compare the most commonly used classifier
that we hope can reveal something about this structure. Many other
powerful machine learning methods are available, including deep learn-
ing; however, only a few easy-to-understand methods were chosen for
this first investigation.

K-nearest neighbour (KNN). The KNN classifier works by computing
the distance feature space and choosing the k-nearest data points [26,
Chapter 13.3]. The label is then decided by a majority decision. We use
the Euclidean distance with equal weights (no dimension is prioritised),
no weighing by distance and K = 10 neighbours. This is a standard
choice in MATLAB using fitcknn and fits well with the dimensions of
our data. Based on the results of these classifiers, it is possible to tell
if the extracted features of the same stenosis location are close to each
other in the feature space.

Support vector machine (SVM). A linear support vector machine is
used as a second classifier. SVMs are binary classifiers [26, Chapter
12]; thus, a special method is needed to distinguish the six classes
in our case. MATLAB’s function fitcecoc implements by default a one
vs one approach training 15 classifiers for the six classes in our case.
Each classifier is trained to distinguish two classes from each other.
Afterwards, the results of all classifications are evaluated in a unified
loss function [27] to determine the predicted class. The results of
this classifier can give an indication of whether the data are linearly
separable by a hyperplane.

Neural network. Feed-Forward Neural Networks (see e.g. [26, Chapter
11]) are known for their properties as universal approximators and
thus can in theory represent any function describing even a complex
feature space. However, this is only true for either an arbitrary width
of a network with one hidden layer [28], or an arbitrary depth for a
network with hidden layers of width greater than the input dimension
plus one [29]. In this work, only a shallow network, with one hidden
layer and 20 nodes, is used to see how the performance compares to the
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Fig. 3. Example of a raw signal, a filtered version (15 Hz sharp lowpass, see the code for further details [23]) and the Fourier series fit with N = 5. The fit process also averages
the results as can be seen in the first and third periods; the signal can sometimes either dip below or above the average curve form. Filtering is only used for this figure but
nowhere else in the results. High-frequency oscillations are most likely caused by mechanical vibrations in the experimental setup.
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Fig. 4. Comparison of the signal shape obtained by transforming the pre-extraction Fourier coefficients ¢, , back to the time domain. For comparison, this transformation always
happens with the same number of samples, disregarding the different frequencies. Thus, the signal phase is used as an x-axis instead of a physical time axis. The base point for
this comparison is the measurement with no stenosis, at heart rate 50, waveform 1 measured at the arteria tibialis anterior sinistra. All four panels then compare the signal shape
along the dimension mentioned in the title. Because the coefficients are extracted over five intervals in the data augmentations steps, five independent time series (i = 1..5) can be
extracted. Plots show the mean curves +/— the pointwise standard deviations (shaded). Note that the relative phase between signals cannot be seen in this figure, as we removed

it deliberately during the feature extraction.

other methods. We hope this yields a more general approach than the
KNN or SVM, even given the limitations that there are no theorems to
date about trainability, and we can, of course, not choose an arbitrary
size or number of layers. In Section 2.2, we have outlined the different
number of features (41/33) for each feature extraction approach. Thus
the transfer function features with layers of size 41/20/6 use more
weights than the shape features with layers of size 33/20/6. MATLAB’s
function patternnet is used for all calculations.

2.4. Regression

Regression is performed for the stenosis locations labelled as Reg. in
Fig. 1. The position was chosen after the only flow sensor in the system
(which is not depicted in the figure but included in the public data set).
First, the stenosis was placed directly after the flow sensor (see the red

square in Fig. 1; a more detailed location can be seen in [24, (Node
45)]. Afterwards, the sensor was moved downstream in 2-cm steps. The
distance d was, however, measured from the change of tube diameter
to the right of the rectangle in Fig. 1; thus, positions 1-10 correspond to
distances 22,20, ...,2 in our predictions. A total of 500 measurements
are in this part of the data set. With data augmentation, this gives a
size of 2500.

Similar to Section 2.3, the cross-validation is chosen to investigate
heart rate and waveform dependency, using the identical logic.

Linear regression. Linear regression aims to find a simple relationship
between the features x; and the target y with a proportionality coeffi-
cient §; and an offset §, [26, Chapter 3.2]. In our case, x;s are the real
and imaginary parts of the Fourier coefficients and the fundamental
frequency described in Section 2.2, and y the above-described distance
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For a given set of N, data points, this problem is solved with least
square optimisation yielding the coefficients §, and g;, which gives
a total of 34 coefficients for the shape features and 42 coefficients
for the transfer function features. MATLAB’s fitlm is used with default
parameters to fit the model.

Linear regression + interaction. While linear regression provides an easy
model, it fails to account for possible relationships between the vari-
ables. As a further approximation, one can thus consider combinations

of the feature by multiplying them [26, Chapter 3.2]. The complete
regression is described by:

Ny Ny

y ﬂ0+zﬂ1x+z zﬁlj (8)

i=1 j=i+1

Matlab’s fitlm is used with the interactions option. The number of
coefficients in this case grows quadratically with the number of data
points Ny to 1+ Ny + N (N; - 1)/2.

Neural network. As mentioned in the classification section, neural net-
works are universal approximators and can thus, in principle, represent
any real valued function when the input and target space are bounded.
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Fig. 6. Scatter plot of features in selected dimensions. Shape features are shown in the middle plot compared to transfer function features in the right plot. To remove noise, an

average is shown in this plot. Therefore ¢/,

and hgprp;, are averaged over the features extracted from five consecutive intervals of the same signal (i = 1..5). Circles show

these averaged points; lines connect features with the same waveform. One can see that transfer function features are more concentrated in a single spot. The points in the right
plot are also connected by lines that are not visible because they collapse in this representation. Note that these features come from different sides of the body.

These properties suggest using neural networks to see whether it is, in
principle, possible to fit the data for the regression problem. In this
work, MATLAB'’s fitnet function is used with a hidden layer of size 20.

3. Results
3.1. Data set generation

The recorded signals have a signal-to-noise-ratio, computed with
MATLAB’s snr function, of (17.22 + 1.62) dB (we always use the mean
+ standard deviation in the following). Fitting a Fourier series to the
signal as depicted in Fig. 3 works sufficiently well. In all cases, the
correct frequency is reached in the non-linear fitting process with an
average deviation of (0.05 + 0.04)%. To show the difference between
the filtered signal and the Fourier series approximation, a sharp lowpass
filter was designed with MATLAB’s designfilt function at 15 Hz and
applied with MATLAB’s filtfilt function to avoid phase shifting (details
can be found in the code [23]). Filtering the signal with a lowpass
filter before the fitting process only leads to negligible changes in the
resulting Fourier coefficients, so this process was omitted for the final
results. Hence lowpass filtering is only used once, for illustration in
Fig. 3, but not in the rest of the paper. One can see that there is
higher frequency noise (15-30 Hz), possibly due to vibrations in the
experimental setup. These oscillations also lead to a relatively high
pointwise fitting error of on average (3.95 + 0.47) mmHg. However,
much of this noise can be removed or is irrelevant due to the implicit
averaging process when fitting the Fourier series.

The final effect of this averaging process can be seen in Fig. 4,
where the features are transformed back to the time domain. Note that
in this process, information about the absolute phase, amplitude and
frequency is removed from the signals. Differences in the shape of the
waveform are continuous if the underlying parameter is continuous.
For example, in the waveform comparison at pi/8, waveform 1 has
the highest value, then waveform 2, and so forth until waveform 10
has the lowest value. Waveforms created with an initial rise are spread
more widely at this location and have a broader initial peak (a double
peak with a dicrotic notch). The location at the arteria tibialis sinistra
was chosen to show the significant difference in the signal shape for
iliaca communis sinistra II, the most severe stenosis we applied in
our measurements. The difference between the other stenosis locations
can barely be seen in the time domain, especially when the standard
deviations are included. The signals will be shown to be more separable
in the feature space in Section 3.2. Comparing the values across the
heart rate dimension shows a large standard deviation for a heart rate
of 60. This could be due to oscillations in the experimental setup that
align with this frequency.

To illustrate the distribution of the extracted Fourier coefficients,
histograms of amplitude and phase are depicted in Fig. 5 for the shape
features. The distributions include the Fourier coefficients of the signal
shape in the arms and the legs. This creates a bimodal distribution that
is only visible for mode 4 and mode 5 in the phase histogram. Higher
modes seem to be more spread out, consistent with, for example, linear
windkessel theories. In these theories, the elasticity of the arteries is
modelled as a capacitance, and the influence of such a capacitance
scales with the frequency.

3.2. Classification

Visually, it seems that the distribution of different classes in the
feature space cannot be described by simple rules. An exemplary scatter
plot is shown in Fig. 6. As mentioned, these plots do not originate from
the same side of the body. The transfer function-based features hg gy,
related to the location of the iliaca communis inistra II, are so far away
from the other features that the difference between the other classes
could not be observed well in this representation. Using the transfer
function for feature extraction collapses most of the variation associated
with different waveforms in this dimension, and thus, we would expect
a better classification result. Note that this is not necessarily the case
for higher dimensions, as shown later for regression in Fig. 10. The
shape features form a grid in this 2D projection. At first glance, it
would be very hard to separate the elements that make up this grid.
However, because many classifiers are able to consider much higher
dimensional relationships, we cannot judge which features are better
suited for classification from these plots. Heart rate and waveform seem
to create changes largely orthogonal in this dimension.

As an example, Fig. 7 shows the confusion matrix of only one
classification method for the waveform split. One can see that severe
stenosis (brachialis dextra and iliaca communis sinistra II) can be
separated very well from the other states. Troubles arise only for weak
stenosis (compare with Table 1). Unsurprisingly, the aorta abdominalis
suprarenal and infrarenal states are often mistaken for each other.
However, they are also sometimes classified as no stenosis or mistaken
for the weak stenosis on iliaca communis sinistra I.

More detailed accuracies of the waveform split for different features
and methods are shown in Fig. 8. Accuracy is computed by the number
of correctly classified instances divided by the total number of instances
in the test set. The baseline accuracy for this six-class problem is 100/6,
or roughly 17%. One can see a clear dip on the borders that suggests
that extrapolation is harder for this case than interpolation. Transfer
function features perform better than the extracted shape features for
all classifiers. The linear SVM classifier reaches the highest accuracy to-
gether with the shallow neural network, both with an average accuracy



A. Mair et al. Computers in Biology and Medicine 151 (2022) 106224
No Stenosis 11.6%
Stenosis Aorta Abdominalis Infrarenal 13.2%
@ Stenosis Aorta Abdominalis Suprarenal 8.0%
o
]
= Stenosis Brachialis Dextra 100.0%
Stenosis lliaca Communis Sinistra | 9.6%
Stenosis lliaca Communis Sinistra Il

Predicted Class

Fig. 7. Confusion matrix using the waveforms as a cross-validation split and a linear SVM classifier on the transfer function features.
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Fig. 8. Accuracy across different folds of the cross-validations. The waveforms listed in the label are used as the validation set, while all other waveforms are used for training.

of around 93%. There is a significant difference between the transfer
and the waveform features of around 10% for the linear SVM. This is
somewhat intuitive given the separation shown in Fig. 6. The neural
network, in contrast, does not make such a substantial distinction
between the shape and transfer function features, indicating that the
information is present in both sets but is not as easily separable as the
SVM on shape features. The KNN performs well on the transfer function
features but not so well on the shape features. This is also expected from
Fig. 6; for the waveform split, many neighbours are always present in
the blobs for each heart rate, but the distances seem less important for
the shape features.

Finally, the heart rate split shown in Fig. 9 shows an even stronger
dip on the borders than the waveform split. This makes sense for the
transfer function features because the distances in the feature space are

much larger between different waveforms than between different heart
rates. This also explains why the KNN performs significantly worse on
that split even for the transfer function features. There is an additional
dip in the middle of the curve at 60 bpm. As indicated in Section 3.1
and Fig. 4, there seem to be more disturbances for this heart rate,
possibly due to resonance frequencies causing stronger vibrations in the
experimental setup. This also affects the accuracy of the classification
in this case.

3.3. Regression

Scatterplots in Fig. 10 show a more or less continuous trajectory in
the feature space, especially for the transfer function features. However,
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while all other data are used for training.
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while the influence of the waveform can be taken out for the second
mode (n = 2), it is less evident if this is still the case for higher
modes. The spread could be due to higher measurement deviations for
these modes, or the transfer function approach might not remove the
waveform effect as reliably. Note that the data of the first mode of
the transfer function still contains information but is not shown in this

figure because it is spread on a circle with a radius of 1 and cannot be
distinguished well.

The best regression prediction result was reached with linear inter-
action regression on shape features at an average root mean square er-
ror (RMSE) of 2.15 cm. The RMSE is computed by RMSE

\/ % Z,]i i = $:)?, where N is the number of data points in the test



A. Mair et al.

Computers in Biology and Medicine 151 (2022) 106224

0.4r
2
%
Boz2f
[
o
0 I I I I L L L
2 4 6 8 10 12 14 16 18 20 22 24
041
2
%
T2k
<)
o
O L L L L L —_— %
2 4 6 8 10 12 14 16 18 20 22 24
04r
2
T‘Q
Soa2f
[
o
0 I I L [ «r/_/ e S
2 4 6 8 10 12 14 16 18 20 22 24
041
2
T—%
g2k
<)
o 4"‘/
0 L L L 4 I}
2 4 6 8 10 12 14 16 18 20 22 24
0.4r
2
%
Sozf
[
o /
0 Il Il Il o~ I B R— |
2 4 6 8 10 12 14 16 18 20 22 24
0.4
2
%
g2k
<)
a / \7\
0 L T L L | — I}
2 4 6 8 10 12 14 16 18 20 22 24
0.4r
2
T‘Q
So2f
[
o ¥\
0 4——/1/ - I I ]
2 4 6 8 10 12 14 16 18 20 22 24
0.4
2
T—%
g2k
<)
o \\
0 L L L P—. I}
2 4 6 8 10 12 14 16 18 20 22 24
0.4r-
2
T‘Eu
Soa2f
[
o
0/ | S I I I |
2 4 6 8 10 12 14 16 18 20 22 24
04—
2
T_%
To2-
<)
£ \N
O Il L L 1 L L I}
2 4 6 8 10 12 14 16 18 20 22 24

Position in cm

Fig. 11. Distribution of predictions for each regression location. Curves are generated by fitting a probability density function (PDF) (kernel distribution) to the data. Each
distribution contains 250 (five heart rates, 10 waveforms, five splits) data points. This figure is based on the waveform cross-validation and uses a shallow neural network for

regression on the transfer function features.

set, y; the real position of the stenosis, and j; the regression result. The
results of a shallow neural network on transfer function features are
illustrated in Fig. 11 and reach an average RMSE of 2.38 cm. Distribu-
tions are unimodal but have rather long tails. Because the distributions
are composed of all parts of the cross-validations discussed below, the
tails are likely caused by validation sets for which extrapolation would
be necessary, which generally have poorer performance.

A comparison across the waveform cross-validation is shown in
Fig. 12. The performance for the classification tasks does not dif-
fer greatly for neural net regression. Linear regression is remarkably

10

stable everywhere, even for the validation sets that require extrapola-
tion. There is no significant difference between the transfer and shape
features in this case. Finally, the linear interaction method only outper-
forms linear regression for the validation sets that require interpolation
(three points in the middle of Fig. 12) but is unstable on the edges.
Cross-validation with different heart rates gives much worse results
than waveform cross-validation. As shown in Fig. 13, there are even
more significant jumps at the outer folds of the cross-validation (note
that the y-axis scale is different in this figure). Surprisingly in this case,
the shape features with linear regression give the best performance
with an average RMSE of 3.65 cm. Meanwhile, in the middle of the
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split, the transfer function features are only worse by ~ 1 cm, and
the edges are much more stable for the shape features. The neural
network’s performance for transfer function features is comparable to
linear regression but not acceptable for the shape features. This effect
could be due to the training not converging properly. Linear interaction
performs poorly on this cross-validation. Values are comparable to
linear regression in the interpolation part, but the jumps at the border
are extraordinarily high.

4. Discussion

The created data set shows a reasonable distribution of features
and all properties required to investigate the influence of the heart
boundary condition for the classification and regression tasks. Features
could be extracted reproducibly and with adequate precision, as shown
in Fig. 4. It was also shown that the influence of our artificially
constructed boundary conditions and heart rate on the waveform shape
exceeds the influence of mild changes in arterial geometry. Apart from
the most severe stenosis (iliaca communis sinistra II), the waveforms
cannot be distinguished visually in the time domain by their shape.
However, a closer look at the Fourier coefficients suggests the possibil-
ity of distinguishing the stenosis locations. This is further supported
by the best classification result achieving 93% accuracy on the six-
label classification problem. The substantial separation of features for
different heart rates indicates a clear need to include the heart rate
as a feature for both classification and regression problems. However,
the maximum pressure was raised in conjunction with the heart rate;
thus, it is not clear if the significant changes can be attributed to the
frequency change only.

Transfer function features can also reduce the influence of the
boundary conditions, more precisely the heart waveform, in an ex-
perimental setup. The scatter plots in Figs. 6 and 10 show that one
dimension can be collapsed, even though this seems to not work as well
for the higher Fourier modes. This effect pays off for the classification
problem where transfer function features perform in general better than
shape features. However, we could not find a clear effect in the case of
the regression problem, where, for different methods, either shape or
regression features performed better. We have also tried classification
and regression on features where relative and shape information was
contained using only one signal as a reference to shift the shape
features. Because the performance of this feature was not significantly
better or worse than the other two methods, the results were not
included in this work for clarity of presentation.

Classical machine learning methods like SVM or linear regression
work well on both problems. However, the consistently competitive
performance of shallow neural networks for both feature types gives an
indication that methods that can map more complex boundaries in the
features space (e.g. deep learning-based methods) could be preferable
in the long run. This is especially the case because, in our data set,
there is no significant variation of geometrical parameters except the
included stenosis. Including such variation would most likely require a
better understanding of the feature space or methods powerful enough
to map these complexities. Pre-training on large amounts of in-silico
data and later transfer to an in-vitro data set like the one presented
here could be a promising path in the future. Further, methods that
accurately quantify uncertainties already in the measurement could be
investigated on such experimental data sets.

5. Conclusion

The created data set with 800 measurements allows us to investigate
the influence of heart rate and waveform on the classification and
regression of stenosis. With the Fourier series coefficients as features,
the different input conditions create a wider spread in the feature
space than mild stenosis. Both classification and regression could be
performed with good results but have room for improvement. Transfer
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functions seem to have an advantage over shape-based features in
classification tasks by collapsing one dimension of the input variation
but do not perform better for the investigated regression task. The
importance of selecting appropriate features to minimise the effect of
patient variations in heart conditions is highlighted.
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