
Growth of Replacements

Vuong Bui∗

Institut für Informatik
Freie Universität Berlin

Berlin, Germany

bui.vuong@yandex.ru

Submitted: Dec 1, 2021; Accepted: Sep 27, 2022; Published: Oct 21, 2022

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

The following game in a similar formulation to Petri nets and chip-firing games
is studied: Given a finite collection of baskets, each has an infinite number of balls
of the same value. Initially, a ball from some basket is chosen to put on the table.
Subsequently, in each step a ball from the table is chosen to be replaced by some
2 balls from some baskets. Which baskets to take depend only on the ball to be
replaced and they are decided in advance. Given some n, the object of the game is
to find the maximum possible sum of values g(n) for a table of n balls.

In this article, the sequence g(n)/n for n = 1, 2, . . . will be shown to converge
to a growth rate λ. Furthermore, this value λ is also the rate of a structure called
pseudo-loop and the solution of a rather simple linear program. The structure and
the linear program are closely related, e.g. a solution of the linear program gives a
pseudo-loop with the rate λ in linear time of the number of baskets, and vice versa
with the pseudo-loop giving a solution to the dual linear program. A method to test
in quadratic time whether a given λ0 is smaller than λ is provided to approximate
λ. When the values of the balls are all rational, we can compute the precise value of
λ in cubic time, using the quadratic time rate test algorithm and the binary search
with a special condition to stop. Four proofs of the limit λ are given: one just uses
the relation between the baskets, one uses pseudo-loops, one uses the linear program
and one uses Fekete’s lemma (the latest proof assumes a condition on the rule of
replacements).

Mathematics Subject Classifications: 91A50, 05C57

∗The author is supported by the Deutsche Forschungsgemeinschaft (DFG) Graduiertenkolleg “Facets
of Complexity” (GRK 2434).

the electronic journal of combinatorics 29(4) (2022), #P4.15 https://doi.org/10.37236/10896

https://doi.org/10.37236/10896

1 Introduction

Suppose we have a finite number of baskets, each basket contains infinitely many balls of
the same value. We start with choosing a ball from some basket to put on a table. At
each subsequent step, we replace one ball on the table by two balls from some baskets
with respect to a given set of rules that only involves the baskets where the balls are from.
When there are n balls on the table for a given n, we stop and evaluate the sum (and the
average) of the values of all the n balls. Our aim is to achieve the highest possible sum
(and average) for a given n by choosing appropriately the basket of the first ball to put
on the table and the ball to replace at each subsequent step. An asymptotic behavior is
that when n tends to infinite, this best average converges to a constant λ, which is called
the growth rate of the system.

Figure 1 gives an example of the setting. There are four baskets with balls of values
1, 2, 3, 4. The replacements are done in a rotating manner.

1

1

1

1

1

1

2
2

22

2

3
3

33

3

3

4
4

4

4

1

2 3

2

3 4

3

4 1

4

1 2

Figure 1: A simple example

Let us state the problem in an equivalent but more formal way, which will be used
throughout the text. The formulation starts with a collection V of functions v : N+ → R.
Denote cv = v(1) for each function v ∈ V , which will be called the starting values later.
Assume we have an assignment of a pair of functions M(v) = (u, w) to each v (u, v, w ∈ V
not necessarily different) such that v(n) for n ! 2 is given by

v(n) = max
1!m!n−1

u(n−m) + w(m). (1)

Let g(n) denote the maximum of the values of the functions at n, that is

g(n) = max
v∈V

v(n).

In this text, we show that the sequence {g(n)/n}∞n=1 converges to the so-called growth
rate λ of the system:

λ = lim
n→∞

g(n)

n
.

The equivalence between the formulations is not so hard to see. Each function v
corresponds to a basket with cv as the value of a ball in the basket. The value of v(n) is the

the electronic journal of combinatorics 29(4) (2022), #P4.15 2

maximum sum obtained from n balls if we start with a ball from the basket corresponding
to v. The value of g(n) is then the maximum sum when we do not restrict which ball to
start with.

The following table provides some beginning values of g(n) for the introductory ex-
ample. It suggests that the growth rate is some number that starts with 1.6. In fact, the
growth rate is 11/3 = 1.6666 . . . , by the mechanism in Figure 2.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
g(n) 4 7 10 14 18 21 25 29 32 36 40 43 47 51 54 58 62 65

Related notions

The readers who are familiar with Petri nets [1] and chip-firing games [2] may recognize
that the problem is somewhat like both of them in the setting but different in the object.
We can formulate the problem as a Petri net: There is a place corresponding to each
basket. For each rule of replacing a ball from basket A by 2 balls from baskets B and C,
we establish a transition that takes the place of A as the input and the places of B,C as the
outputs. An initial place is chosen to put a token into, and we start firing the transitions.
We can also formulate the problem as a variant of the chip-firing game: Consider a
directed graph with loops and multiple edges allowed and the outdegree of every vertex
is 2. We start the game by putting a chip on some vertex. In each subsequent step, we
choose a chip at some vertex v, remove it from the graph and add a chip in each of the
two vertices that can be reached from v by a directed edge. (In the original chip-firing
game, we need to remove 2 chips from vertex v in each step, which is the outdegree.) In
either formulation, the value of a token (a chip) depends only on the place (the vertex) it
lies on. The object is to find a way to obtain precisely n tokens (n chips) for a given n so
that the sum of the values is maximum. The asymptotic behavior of the maximum sum
with respect to n is to be investigated. The problem is more similar to Petri net in the
way tokens are transited in each firing and is more similar to the chip-firing game in the
number of inputs for each firing. However, we fix the number of outgoing edges in both
formulations as the convergence may not hold otherwise. For example: Suppose there is
a graph of two vertices A,B with two loops around A and three loops around B. If the
value of a chip in A,B is respectively 5, 10, then the maximum sum is 10n for n odd and
5n for n even, a divergence. Also, there may be no way to obtain n chips for certain n in
some other settings. Note that if we study the growth of the sum of values with respect
to the number of steps (instead of the number of balls), the growth rate, which is 20, is
well defined in the example.

The problem we are studying is in some sense of the same type as Fekete’s lemma [3],
which states that for a superadditive function f : N+ → R, that is f(n + m) ! f(n) +
f(m) for any n,m ! 1, we have limn→∞ f(n)/n exists. Our setting differs from Fekete’s
lemma in two points: (i) instead of the equivalent inequality f(n) ! max1!m!n−1 f(n −
m) + f(m), we use the equality as in Equation (1), and (ii) instead of one function, a
collection of functions are involved. Note that if the equality in Equation (1) is replaced
by the inequality, then the limit we are studying does not necessarily exist. For example,

the electronic journal of combinatorics 29(4) (2022), #P4.15 3

consider the functions v0, v1 so that v0(n) ! max1!m!n−1 v0(n−m) + v0(m) and v1(n) !
max1!m!n−1 v0(n − m) + v0(m). If the two functions are v0(n) = n for every n and
v1(n) = n for odd n and v1(n) = 2n for even n, then the maximum average changes
between 1 and 2 as n increases. However, if the dependency graph, which will be defined
later, is connected, then the limit still exists, by the proof in Section 7. The readers can
check for themselves that the techniques there also work for the case of inequalities.

One can also formulate this problem in terms of context free grammar (in Chomsky
normal form). Let us consider the following language: There is a nonterminal symbol V
associated to each function v, the production rule V → UW corresponds to the assignment
of u, w to each v, and there is also a production V → v for each nonterminal symbol V ,
where v is a terminal symbol for which we assign the weight v(1). We define the weight
of a word to be the sum of all the symbols in that word. The function v(n) is then the
maximum weight of a word of length n if we start with the symbol V . Every other term
is mapped accordingly.

In fact, the original motivation is that the problem is a special case of a problem
posed by Rote in [4]: Given a bilinear map ∗ : Rd × Rd → Rd and a vector v ∈ Rd (the
coefficients of ∗ and the entries of v are all nonnegative), we consider all the possible ways
to combine n instances of v using n− 1 instances of ∗. For a given n, we are interested in
the largest entry of a resulting vector one can achieve, and the question is whether this
follows a growth rate, and how does it follow if so? In that paper, the maximum number
of minimal dominating sets in a tree of n leaves is studied in this way. Many applications
to other quantities of trees are presented in [5, Section 5]. However, our instance in this
paper is not general enough to cover the applications there. (Note that in order to see our
formulation as a special case to the general setting, one needs to apply logarithms, which
turn products into sums.) The limit presenting the exponential growth in the general
setting is proved to be valid for the case of positive vectors v in [6] by a special structure
called linear pattern. It means that the growth rate for our problem is also valid. However,
in this work we give different proofs to our problem since it is somewhat simpler. In fact,
we will use a structure called pseudo-loop, which is very similar to linear pattern. When
v is only nonnegative, the limit may not exist. Checking if the limit superior is a given
number is shown to be undecidable in [7]. Meanwhile, the growth rate in our setting can
be computed precisely, and quite efficiently in certain cases.

Growth rate under different perspectives

Four proofs for the validity of the limit λ will be given. The first one uses only the
dependency graph (defined later) as in Theorem 1 below. The second one as in Theorem
2 relates the growth rate to the rates of pseudo-loops. The third one as in Theorem 4
relates the growth rate to the solution of a linear program. The fourth one, which assumes
the connectedness of the dependency graph, is given in Section 7. Although the latest
proof does not work without the condition, it demonstrates a nice application of Fekete’s
lemma. Among the proofs, the proof that removes inner pseudo-loops in Section 3 is
perhaps the simplest and shortest one.

the electronic journal of combinatorics 29(4) (2022), #P4.15 4

We will regard not only the growth rate of the system but also the growth rate of an
individual function λv = limn→∞ v(n)/n sometimes. It turns out that both the growth
rate of the system and the growth rate of each individual function are valid due to the
following theorem, whose proof is given in Section 2.

Theorem 1. Both λ = limn→∞ g(n)/n and λv = limn→∞ v(n)/n for every v exist.

The proof of Theorem 1 and further study rely on the following definitions: the de-
pendency graph and composition trees.

The dependency graph is the graph whose set of vertices is V and there is a directed
edge from v to u if and only if one of the two functions in M(v) is u (loops are allowed).
As the dependency graph is directed, it can be partitioned into strongly connected com-
ponents. A component is said to be a single component if it contains only one vertex and
there is no loop for that vertex. In other words, the only vertex v in a single component
has the outgoing edges vu and vw for u, w both different from v. One can see that be-
ing single for a component is identical to acyclicity (by definition, a component of one
vertex that has a loop is not a single component). Let us consider the condensation of
the dependency graph, which is the acyclic graph with each vertex corresponding to a
strongly connected component and there is a directed edge UV if and only if there is an
edge uv with u ∈ U and v ∈ V in the dependency graph. The condensation defines a
partial order between components where a directed edge UV means U ! V . A minimal
component, which is not greater than any other component, cannot be a single compo-
nent since otherwise the minimality implies the only function depending on itself, which
in turn contradicts its membership in the single component.

One can relate the evaluation of a function v(n) to composition trees whose definition
is given as follows. For any binary tree of n leaves, we start with labeling the root of the
tree with v and suppose M(v) = (u, w), we label the left child of the root with u and the
right child with w. We subsequently label all the vertices of the subtrees with the same
method. Suppose the labels of the leaves are v1, . . . , vn, then the tree would be evaluated
as

!
i cvi . Such a labeled tree with this way of evaluation is called a composition tree. One

can see that the value of v(n) is the largest evaluation over all the composition trees of n
leaves. Note that the label for a vertex in a composition tree is actually a vertex of the
dependency graph. Unless stated otherwise, all the trees will be regarded as composition
trees.

Let us consider a simple pattern for composition trees. Let T be a tree with some
label for the root and a specially marked leaf that has the same label as the root. Let the
sequence of trees {T n}∞n=1 be defined so that T 1 = T and T n for n ! 2 is obtained from
T n−1 by replacing the marked leaf of T n−1 by T . The marked leaf of T n is defined to be
the marked leaf of the instance of T . A tree T defined in this way is called a pseudo-loop.
The path from the root to the marked leaf is called the main path. The value of a pseudo-
loop is defined to be the sum of all leaves excluding the leaf at the main path. It is not
hard to see that the evaluation of the trees {T n}n follows a rate, which is the average of
the values of all the leaves excluding the marked one. This rate will be called the rate of
the pseudo-loop.

the electronic journal of combinatorics 29(4) (2022), #P4.15 5

For the pseudo-loop in Figure 2, the marked leaf and the root both have label 2. The
value of the pseudo-loop is 4 + 4 + 3 = 11, which means the rate of the pseudo-loop is
11/3.

The following definitions on pseudo-loops will be also used later. For a subtree with
the root a having some label and one of its descendants b having the same label as a, a
pseudo-loop obtained from the subtree by removing every further descendant of b is called
an inner pseudo-loop. By removing an inner pseudo-loop we mean contracting the whole
inner pseudo-loop into a vertex. If removing an inner pseudo-loop from a pseudo-loop still
gives a valid pseudo-loop, then the inner pseudo-loop is said to be removable. Note that
removability is considered only in the context of a pseudo-loop while an inner pseudo-loop
can be a subgraph of either a tree or a pseudo-loop.

The relation between the growth rate λ and the notion of pseudo-loop is given in the
following theorem.

Theorem 2. The growth rate exists and it is the supremum of the rates of all pseudo-
loops.

Furthermore, we can find the best rate in a finite set of pseudo-loops. That is to say
the supremum is always attainable.

Theorem 3. There exists a pseudo-loop with the same rate as the growth rate of the
system. It can be found among pseudo-loops that do not contain any removable inner
pseudo-loop. In particular, such a pseudo-loop has at most |V |2|V |−1 leaves after excluding
the marked one.

The proofs of the two above theorems can be found in Section 3. A pseudo-loop that
attains the growth rate 11/3 of the introductory example is given in Figure 2. Note that
the space of the pseudo-loops in Theorem 3 is so large that finding a solution for a large
|V | is impractical when using only the brute force search.

2

3 4

4 1

2 3

Figure 2: A pseudo-loop attaining the growth rate

The readers may relate pseudo-loops to linear patterns in the work [6], where a similar
result to Theorem 2 is given. However, the growth rate in [6] is not always the rate of a
linear pattern as in the specific case of this paper.

the electronic journal of combinatorics 29(4) (2022), #P4.15 6

In order to make another equivalence to the growth rate than the maximum rate over
all pseudo-loops, we study the following system 1 of 2|V | inequalities: For every function
v,

zv ! cv − θ
zv ! zu + zw

(2)

where {zv : v ∈ V } and θ are variables, cv is v(1) as already defined, and M(v) = (u, w).
The set of the solutions is nonempty, e.g. zv = 0 for all v and θ is the maximum of all

cv.
Consider the linear program minimizing θ subjecting to System (2), we have the

following representation of the growth rate.

Theorem 4. The growth rate exists and it is the solution of θ to the linear program.

A proof is given in Section 4. The linear program has |V | + 1 variables and 2|V |
inequalities but it is still rather simple and actually quite resembles the setting of the
problem. In fact, given a solution of all variables, one can construct a pseudo-loop with
the growth rate λ in linear time of the number of functions (variables) by a method
provided during the course of the proof. A more precise order of g(n) is also shown there:
The difference g(n)− nλ is bounded. A corollary of this fact is a small interval bounding
λ provided the value of g(n) for an n large enough.

Also in Section 4, we consider the dual linear program. An interesting point is that
given a pseudo-loop of the rate λ, we can give a solution to the dual program in linear
time of the variables. Moreover, the construction is more straightforward than the other
direction with the original program.

We now consider some computational aspects of the growth rate.

Theorem 5. Given any proposal λ0, one can decide if λ0 < λ in quadratic time of the
number of functions.

Theorem 5 immediately gives a reasonable algorithm of approximating λ with the time
complexity O(−|V |2 log ε) for a given precision ε. In the proof in Section 5, the readers
will find that λ0 ! λ is equivalent to whether each function v has a maximum value of
v(n) over all n when the considered system uses the value cu−λ0 instead of cu for every u.
Such maximum values are also computed as a by-product. When λ0 = λ, these maximum
values turn out to be a solution of the linear program for θ = λ. It means the value of λ
alone can give a solution (of other variables) to the linear program, which in turn gives a
pseudo-loop of the same rate.

Theorem 6. When the starting values are all rational, we can compute the growth rate
precisely in cubic time of the number of functions.

Theorem 6 is a combination of the results in Theorem 3 and Theorem 5. The idea is
that the growth rate is a fraction with the denominator not too big, therefore, one can

1This system was suggested by Günter Rote (private communication). The readers may relate it to
[4, Proposition 5.1].

the electronic journal of combinatorics 29(4) (2022), #P4.15 7

stop the binary search when the interval is small enough. Details are given in Section 6.
How to compute the growth rate efficiently in case the starting values are not necessarily
rational, such as π, e, . . . , is still open. Note that the straight algorithm by Theorem 3
may take double exponential time.

As for some final remarks on possible extensions, inspired by the context free gram-
mar, one may extend the setting to allow nondeterministic replacements in the sense that
one may choose among several rules to apply to a ball. The readers can check that the
approach still works in the new setting. Although as pointed out before that the replace-
ment by more than two balls may result in divergence, we can still obtain convergence if
we consider n as the number of steps instead of the number of balls, by the same approach.
However, the approach may not work in the case of an infinite V . This direction opens a
large room for further research.

2 Growth rate in terms of the functions

To prove the growth rate λ and λv for every function v exist, we give first the following
lemma, which is kind of in the same spirit as Fekete’s lemma, and should be of its own
interest.

For convenience, in the statement of the lemma and in the proof, all the integers that
are supposed to be used for indexing functions u, v will be treated as elements in Z/kZ.
In particular, it is the case of the indices i, i∗, j.

Lemma 7. Given 2k (k ! 1) functions v0, . . . , vk−1, u0, . . . , uk−1 : N+ → R such that for
every 0 " i " k − 1 and every n ! 2,

vi(n) = max
1!m!n−1

vi+1(n−m) + ui+1(m).

Then for every i,

lim
n→∞

vi(n)

n
= sup

m0"1,...,mk−1"1

!k−1
j=0 uj(mj)
!k−1

j=0 mj

.

Proof. Denote by R the value of the supremum (note that it can be infinite). To prove
the theorem, it suffices to verify the following two points for every i:

(i) lim infn→∞ vi(n)/n ! R.
By the definition of R, for any R′ < R, there are m0, . . . ,mk−1 such that

!k−1
j=0 uj(mj)
!k−1

j=0 mj

> R′.

Let m = m0 + · · ·+mk−1. For every n, if n = mt+ p for some integer t and 1 " p " m,
we have the lower bound v′i(n) " vi(n) with

v′i(n) = vi(p) + t

"
k−1#

j=0

uj(mi)

$
.

the electronic journal of combinatorics 29(4) (2022), #P4.15 8

Since vi(p) is bounded, the sequence {v′i(n)/n}n tends to
%!k−1

j=0 uj(mj)
&
/
%!k−1

j=0 mj

&
,

which is greater than R′. It follows that lim infn→∞ vi(n)/n > R′ for any R′ < R, which
implies lim infn→∞ vi(n)/n ! R.

(ii) lim supn→∞ vi(n)/n " R (we assume R ∕= ∞ otherwise it is trivial).
Assume lim supn→∞ vi(n)/n = R′ > R, we will show a contradiction by giving m0 !

1, . . . ,mk−1 ! 1 so that !k−1
j=0 uj(mj)
!k−1

j=0 mj

> R.

For each i and n, due to the evaluation of vi(n), there exist a number t and tk numbers

m
(s)
j for 0 " j " k − 1, 1 " s " t such that:

!
j,s m

(s)
j = n − 1, all of them are nonzero

except possibly m
(t)
i∗ ,m

(t)
i∗+1, . . . ,m

(t)
i for some i∗ (if there is no zero, we let i∗ = i+1), and

vi(n) = vi∗−1(1) +
t#

s=1

k−1#

j=0

uj(m
(s)
j),

where uj(0) is assumed to be zero for every j. (The number t can be understood as the
number of rounds.)

Let m′(s)
j = m

(s)
j , but we set m′(t)

i∗ = m′(t)
i∗+1 = · · · = m′(t)

i = 1 if there are corresponding

zeros in {m(s)
j }, we have

t#

s=1

k−1#

j=0

uj(m
′(s)
j) = vi(n)− vi∗−1(1) +

i#

j=i∗

uj(1). (3)

By the definition of R′, for every ε > 0, there is an arbitrarily large n such that

vi(n)

n
> R′ − ε.

Note that the right hand side of Equation (3) is the sum of vi(n) and a bounded sum,

and the difference between the sum of all m′(s)
j and the sum of all m

(s)
j is also bounded.

It means that for every ε′ > 0, we can choose a small enough ε and a large enough n such
that

t#

s=1

k−1#

j=0

uj(m
′(s)
j) > (R′ − ε′)

"
t#

s=1

k−1#

j=0

m′(s)
j

$
.

This is followed by the existence of some s∗ such that

!k−1
j=0 uj(m

′(s∗)
j)

!k−1
j=0 m

′(s∗)
j

> R′ − ε′.

Since ε′ can be arbitrarily small, R′ − ε′ > R for some ε′, and since all m′(s∗)
j ! 1, we

have a contradiction with the supremum R.
By (i) and (ii), the conclusion follows.

the electronic journal of combinatorics 29(4) (2022), #P4.15 9

Now we can prove Theorem 1.
Consider the partial order between the strongly connected components of the depen-

dency graph, as already pointed out in Section 1, the minimal component cannot be a
single component. Therefore, each function in a minimal component should be in a cycle
and the existence of its growth rate is confirmed by Lemma 7. Consider a non-minimal
component with the assumption that we already have growth rates for the functions in all
smaller components. If the considered component is not single, then every function has a
growth rate as already reasoned. In the other case, the only function v in the component
has M(v) = (u, w) with u, w from smaller components, hence they already have growth
rates by induction hypothesis. Since v(n) = maxm u(n−m) + w(m), the larger rate of u
and w is the growth rate of v. By induction, all functions have growth rates. It follows
from g(n) = maxv v(n) that g(n) also has a growth rate, which is the largest rate over all
the functions v.

Remark 8. Although Lemma 7 also covers the case the limit is infinite, the limits in our
application are obviously finite since the value v(n)/n for any function v ∈ V is always
contained in the range of the minimum and maximum starting values.

3 Growth rate as the maximum rate over all the pseudo-loops

Growth rate as the supremum rate

We prove Theorem 2 in different ways, one removes inner pseudo-loops while the other
extends a tree to a pseudo-loop.

At first, it is obvious that lim infn→∞ g(n)/n ! supT λT , where λT is the rate of a
pseudo-loop T . Indeed, consider a pseudo-loop T and let q be the number of leaves of T
excluding the marked one. For every n, let n be expressed as n = pq + r for an integer p
and 1 " r " q, it can be seen that g(n) ! pqλT + O(1) by considering the tree obtained
from T p by replacing the marked leaf of T p by any tree of r leaves. The corresponding
lower bound of g(n)/n converges to λT , the conclusion follows.

Let λ̄ = lim supn→∞ g(n)/n and λ∗ = supT λT , it remains to prove that

λ̄ " λ∗.

Proof of Theorem 2 that removes inner pseudo-loops. Assume the contrary that λ̄ > λ∗,
we give a contradiction by the existence of a pseudo-loop with a higher rate than λ∗.

An inner-pseudo-loop-free tree has a bounded number of leaves. In other words, any
tree of many enough leaves has an inner pseudo-loop. Subsequently removing all inner
pseudo-loops results in an inner-pseudo-loop-free tree. The value of the original tree is
the sum of the values of all removed inner pseudo-loops and the new tree.

By the definition of λ̄, for every ε > 0 and any N0, there exists some N > N0 so that
g(N)/N > λ̄− ε.

Choose some ε small enough and consider such a large N . As the tree has the value
at least N(λ̄− ε), we have the sum of the values of all the removed inner pseudo-loops is
N(λ̄− ε)−O(1), where O(1) is the value of the new tree.

the electronic journal of combinatorics 29(4) (2022), #P4.15 10

Since the total number of leaves of the pseudo-loops is N − O(1), there must be a
pseudo-loop of rate at least the average

N(λ̄− ε)−O(1)

N −O(1)
.

When N is large enough and ε is small enough, the above average is arbitrarily close
to λ̄, hence greater than λ∗, contradiction.

The other proof is a bit sketchy as follows.

Proof of Theorem 2 that extends a tree to a pseudo-loop. If there is a path from u to v
then there is a composition tree T (u, v) of a bounded number of leaves (and value) so
that the root is labeled u and one of the leaves is labeled v.

If g(N) > N(λ̄ − ε) corresponds to a tree of N leaves with the root labeled v and a
leaf labeled u so that u, v are in the same component, then replacing the leaf by T (u, v),
we obtain a pseudo-loop with the rate at least

N(λ̄− ε) +O(1)

N +O(1)
, (4)

which is greater than λ∗ when N is large enough and ε is small enough.
If no leaf has the label in the same component as the label v of the root, we consider

a subtree T ′ of T such that |T |/3 " |T ′| " 2|T |/3, where |T | is the number of leaves of
T . The value of T ′ is at most |T ′|(λ̄ + ε) when we choose N large enough. If the root
of T ′ has the label in the same component as v, then we have the same situation as in
(4). Indeed, the value of the tree T0 obtained from T by contracting T ′ into a single leaf
would have the value at least

N(λ̄− ε)− |T ′|(λ̄+ ε) +O(1).

If the label of the root of T ′ is in a lower component than the component of v, then we
have the same problem for T ′ with the labels of the vertices being in one less components
than T and the value of T ′ at least

N(λ̄− ε)− |T0|(λ̄+ ε) +O(1),

since the value of T0 is at most |T0|(λ̄+ ε).
Recursively treating smaller problems with N large enough and ε small enough would

give a situation where there is a leaf having the label in the same component as the label
of the root.

In the latter proof, there is another way to treat the situation where there is no leaf
having the label in the same component as the root. It is done by the following lemma.

Lemma 9. Let G be the dependency graph and A any composition tree. Then there exist
a bounded number of disjoint subtrees of A such that they cover all leaves of A and in each
subtree the label of the root is in the same component as the label of a leaf. In particular,
a tight bound is 2c where c is the number of single components in G.

the electronic journal of combinatorics 29(4) (2022), #P4.15 11

Proof. Consider any subtree with the label of the root not in a single component of G.
One of the two children must have the label in the same component as the root. If
this child is a leaf, then the subtree has the root and one leaf having the labels in the
same component. Otherwise, we still have the same situation by recursively following this
vertex and its children until we see a leaf having the label in the component. The process
will eventually finish due to the finiteness and acyclicity of the tree.

The above consideration of the root is indeed the case when c = 0, and one subtree
is sufficient to cover as reasoned above. If c > 0, it maybe the case that the label of the
root is in a single component of G, then the number of subtrees required is the sum of
those numbers in the left branch and the right branch of the root. Since the label in a
single component of G cannot be revisited, each branch can have vertices of the labels
from the remaining c − 1 single components only (beside other nonsingle components).
By recursively following them, we need at most 2c subtrees to cover.

Although we just need this number to be bounded for later usage, this bound is
actually tight. For example, let G have k + 1 vertices v0, v1, . . . , vk with the edges vivi+1

for 0 " i " k − 1 and the loop vkvk. The number of single components in G is k. Let A
be the perfect binary tree of height k + 1 and the root (say, at depth 0) is labeled v0. It
follows that the vertices at depth i for 0 " i " k are labeled vi and the vertices at depth
k + 1, which are all leaves, are labeled vk. One can see that 2k subtrees are needed to
cover all the leaves of A.

By the lemma, the leaves of T are covered by some k disjoint subtrees T1, . . . , Tk for
a bounded k so that a leaf in each subtree has the label in the same component as the
root. The value of T is the sum of the values of those trees. For each tree Ti with the
root labeled vi and the leaf labeled ui, we transform it to T ′

i by replacing the leaf labeled
ui by the tree T (ui, vi). The new tree T ′

i can be seen as a pseudo-loop, whose value is
denoted by f(T ′

i). Note that the difference in value and in number of leaves between Ti

and T ′
i is bounded. That is

f(T ′
1) + · · ·+ f(T ′

k) ! N(λ̄− ε) +O(1),

where the quantity O(1) is due to the boundedness of k. As the number of leaves (exclud-
ing the marked ones) in the pseudo-loops T ′

i is (|T ′
1| − 1) + · · · + (|T ′

k| − 1) = N + O(1),
there is an i so that

f(T ′
i)

|T ′
i |− 1

! N(λ̄− ε) +O(1)

N +O(1)
.

Note that the left hand side is the rate of T ′
i . When ε is small enough and N is large

enough, the right hand side is greater than λ∗, contradiction.

Growth rate as the maximum rate

Although the space of all pseudo-loops is infinite and the supremum of the rates may not
belong to any particular pseudo-loop, we show that the latter is not the case by the fact
that we just need to look into the set of pseudo-loops that do not contain any removable

the electronic journal of combinatorics 29(4) (2022), #P4.15 12

inner pseudo-loop to find one with the best rate. In other words, we prove Theorem 3, as
follows.

Proof of Theorem 3. In order to prove the theorem, it suffices to show that any pseudo-
loop containing a removable inner pseudo-loop does not need to be considered in the sense
that there exists a pseudo-loop of fewer leaves with at least that rate. In other words, the
space of pseudo-loops to be considered is finite.

Indeed, if the inner pseudo-loop has a lower or equal rate to the original one, then
removing the former does not reduce the rate of the latter. If the inner one has a higher
rate, then that inner one itself is a pseudo-loop with a higher rate. In both cases, we can
ignore the original pseudo-loop.

It remains to show that a pseudo-loop without any removable inner pseudo-loop has at
most |V |2|V |−1 leaves after excluding the marked one. On the main path from the root to
the marked leaf, the subpath from the vertex following the root to the marked leaf should
not have two vertices of the same label, otherwise we have a removable inner pseudo-loop.
That is we have at most |V | vertices on the main path after excluding the marked leaf.
For each vertex p on the main path other than the leaf, the subtree whose root is the
other child of p than the child on the main path is inner pseudo-loop free. Such a subtree
has the depth at most |V |− 1 and therefore has at most 2|V |−1 leaves. In total, we have
at most |V |2|V |−1 leaves after excluding the marked one.

Remark 10. The bound |V |2|V |−1 may not be a tight bound but we can come up with an
example where a pseudo-loop of the rate λ must have at least 2m+1 leaves after excluding
the marked leaf for a set of m+3 functions a, b, v0, v1, . . . , vm where M(a) = (a, b),M(b) =
(a, v0),M(v0) = (v1, v1),M(v1) = (v2, v2), . . . ,M(vm−1) = (vm, vm),M(vm) = (a, a) with
ca = cb = cv0 = · · · = cvm−1 = 0 and cvm = 1. The verification is left to the readers as an
exercise. (Hint: The growth rate is 2m/(2m + 1).)

4 Growth rate as the solution of a linear program

Relation to the original program

We prove Theorem 4.
Let θ and {zv}v be a solution to the linear program. We prove the following two

claims.

Claim 11. g(n) " nθ +maxv zv.

Proof. For each n, consider the composition tree corresponding to g(n) and let the label
of the root be v∗. Let L be the multiset of the labels of the leaves in the composition tree.
Since zv ! cv − θ and zv ! zu + zw for any v and M(v) = (u, w), we have

zv∗ !
#

u∈L

(cu − θ) = g(n)− nθ =⇒ g(n) " zv∗ + nθ,

which confirms the claim.

the electronic journal of combinatorics 29(4) (2022), #P4.15 13

Claim 12. g(n) ! nθ +O(1).

Proof. We say a function v is decomposable if either (i) zv = cv − θ, or (ii) zv = zu + zw
(for M(v) = (u, w)) and both u, w are decomposable.

Let G be the decomposition graph, which is a directed graph with the vertices being
the functions and there is an edge from v to u (resp. w) if and only if zv = zu + zw (for
M(v) = (u, w)) and w (resp. u) is decomposable. (Note that the condition for a vertex
to have an outward edge is weaker than the condition for a vertex to be decomposable.)

We will show that G contains a cycle. Assume otherwise, that is we have a partial
order between the vertices in G with u " v if there is an edge vu. Consider θ′ = θ − ε
for a small enough ε, we show that there is a solution with θ′ (which contradicts with the
minimality of θ). We first start with all decomposable functions v with zv = cv − θ and
increase it to z′v = cv − θ′ and gradually increase zv for decomposable functions v with
zv = zu + zw to z′v = z′u + z′w. Finally, for those v with an edge vu in G whose z′v is not
established yet, we increase zv to z′v = zu + z′w with zv for smaller v in the partial order
updated first. Note that we do not need to update zv twice for any v. For the remaining
functions v we keep z′v = zv and obtain a solution {z′v}v for θ′.

Now G contains a cycle, say v0 → v1 → · · · → vk → v0 with zvi = zvi+1
+ zwi+1

for

M(vi) = (vi+1, wi+1) (and zvk = zv0+zw0). Since zv0 =
%!k

i=0 zwi

&
+zv0 , the sum

!k
i=0 zwi

is zero.
As each wi is decomposable, we can construct a composition tree so that the root is

labeled wi and zwi
is the sum of cv − θ over all the labels v of the leaves.

We now obtain a pseudo-loop whose main path is the same as the cycle in G and the
other branches are the above decomposition trees. This pseudo-loop has rate θ as the
sum of zwi

is zero.
Let the number of leaves excluding the marked leaf be m, then for any n = mp + r

(1 " r " m), the claim follows from the boundedness of r and

g(n) ! mpθ +O(1).

Theorem 4 follows from the two claims.

Remark 13. Given a solution of the program, it is possible to construct a pseudo-loop of
the growth rate in linear time as in the process of the second claim. The least trivial part
is to check if the functions are decomposable. We leave it as an exercise for the readers.

Relation to the dual program

We relate the dual program to pseudo-loops of the growth rate. The dual program has
2|V | variables {xv, yv : v ∈ V } so that for each v we have

xv + yv =
#

u,w: M(u)=(v,w)

yu +
#

u,w: M(u)=(w,v)

yu,

xv ! 0,

yv ! 0,

the electronic journal of combinatorics 29(4) (2022), #P4.15 14

and the sum of all xv is #

v

xv = 1.

The object of the program is to maximize
#

v

cvxv.

The maximum value is the same solution as in the original program, which is the
growth rate λ. We show that a pseudo-loop of the rate λ can give a solution to the
dual program in linear time of the number of variables. In fact, the transform is more
straightforward than the other direction with the original program.

Consider a pseudo-loop with the rate λ. We let x′
v be the number of leaves labeled v

in the tree, and let y′v be the number of non-leaf vertices labeled v. If v is the label of the
root, we reduce x′

v by 1 (not counting the marked leaf). All the variables x′
v, y

′
v that have

not been assigned any value will be assumed to be zero.
By the structure of the tree, we have

x′
v + y′v =

#

u,w: M(u)=(v,w)

y′u +
#

u,w: M(u)=(w,v)

y′u.

Let m =
!

v x
′
v, we set xv = x′

v/m and yv = y′v/m for each v. We have
!

v xv = 1,
and the object

!
v cvxv is the rate of the pseudo-loop, which is λ. Such a solution gives

the maximum value to the object.

5 Rate test in quadratic time

We show that it is possible to test whether a proposed rate λ0 is smaller than the actual
rate λ in quadratic time of the number of functions, which in turn immediately gives
an algorithm to find an approximation to the growth rate in O(−|V |2 log ε) for a given
precision ε. In other words, we settle Theorem 5 as follows.

At first, if we reduce each starting value by λ0, then the growth rate is reduced by
λ0. Therefore, to check λ0 < λ we just need an algorithm to check if the growth rate of
a system is positive. In other words, the question is whether there exists a pseudo-loop
of positive rate. We show that it is in turn equivalent to the existence of a function v
not having a tree rooted by label v of maximum value zv (regardless of the number of
leaves). This equivalence will be verified after presenting the following algorithm, which
gives maximum values zv in case there are such values.

Algorithm: For each v, initiate zv = cv. We repeat the following process as
long as there is a variable v still having the initial value and zv < zu + zw for
M(v) = (u, w):

• Update zv by the new better value zu + zw and mark zv as a variable
depending on zu, zw in the sense that any further improvement on zu or
zw will be directly followed by an improvement on zv.

the electronic journal of combinatorics 29(4) (2022), #P4.15 15

• Make a consequence of improvements on variables that directly or in-
directly depend on zv. If zv is itself a variable among those variables
depending on zv, then we stop the iteration and conclude λ > 0 right
away.

If we finish without concluding λ > 0, then we conclude otherwise λ " 0.

The process can be done in O(|V |2) time since the second step in each iteration is a
finite process of O(|V |) time, as in the verification of the algorithm below.

We show that each zv from our algorithm gives the largest possible value over all the
compositions trees rooted by v without any inner pseudo-loop. We reason by induction
on the height of trees. Consider a tree T ∗

v rooted by v with the maximum value over the
trees without any inner pseudo-loop. It means no other occurrence of v other than the
root. Note that this tree may be different from the tree Tv produced by our algorithm
(due to the order we consider the functions). If T ∗

v is only a single vertex v, then its value
is cv. Our algorithm gives this value in the first place and the value of Tv will never be
decreased during the course. Suppose all other functions v′ in the tree T ∗

v than the root
v have their trees Tv′ produced by the algorithm attaining their maximum values. Since
Tv is the tree of two subtrees Tu, Tw, whose values are maximum due to the induction
hypothesis, the value of Tv is also the maximum value for v.

It means if there is no pseudo-loop of positive rate, the values produced by the algo-
rithm are also the maximum values of the trees rooted by the functions.

On the other hand, if there is any pseudo-loop of positive rate, our algorithm also
detects a pseudo-loop of positive rate. In this case, g(n) is unbounded. Consider a minimal
composition tree giving a value larger than any zv given by our algorithm (minimality in
the sense that no subtree has such a property). Each branch of the root should give the
value at most the value given by our algorithm due to the minimality of the composition
tree. Suppose the algorithm stops without recognizing any pseudo-loop. Let v be the
label of the root. If v is already marked as being dependent on any improvement of u, w
(M(v) = (u, w)), then we have a contradiction as zv < zu+ zw. If the dependency has not
been established, then our algorithm has not finished yet, as we still have zv < zu + zw
and another iteration should be proceeded. In either case, we have a contradiction.

As a matter of time complexity, we show that for the terminating condition in each
iteration, we only need to check for zv but not any other zu whether that variable depends
the improvement of zv for the turn zv is updated. Initially, there is no pseudo-loop in
the composition trees corresponding to all zv. Suppose the same situation before a given
iteration. The reason for that lack is due to a missing edge of dependence. Therefore,
if there is a pseudo-loop after updating zv, it must be a pseudo-loop involving v when
only two new dependencies v → u and v → w are introduced as the missing edges. Also,
before reaching again v in case of a pseudo-loop, we do not have to check for other pseudo-
loops when updating variables depending on v as they do not exist. The second step of
the iteration can be done easily with a queue in O(|V |) time. It follows that the whole
algorithm takes O(|V |2) time since the outmost loop is iterated at most |V | times.

the electronic journal of combinatorics 29(4) (2022), #P4.15 16

We have verified the validity of the algorithm by showing that the algorithm either
stops in the middle and concludes the existence of a pseudo-loop of a positive rate (λ > 0),
or finishes and gives the trees of the maximal values (λ " 0).

Remark 14. The best value obtained by the algorithm for the system whose starting values
are reduced by λ0 is also a solution of zv with a fixed θ = λ0 to System (2). Of course, a
solution only exists when λ0 ! λ.

6 A cubic time algorithm to find the precise value of the growth
rate

This section combines the results of Theorem 3 and Theorem 5 to give a cubic time algo-
rithm computing the growth rate precisely provided that the starting values are rational.
In other words, we settle Theorem 6 as follows.

At first, we can assume that the starting values are not just rational but all integers,
otherwise we can scale the starting values by an appropriate factor. By Theorem 3, the
growth rate of a system is the rate of a pseudo-loop without any removable inner pseudo-
loop, which is of the form a/b where b is an integer at most |V |2|V |−1. By the assumption
that the starting values are integers, the numerator a is also an integer and the rates
a1/b1 and a2/b2 of two pseudo-loops without any removable inner pseudo-loop are either
equal or at least 1/B2 apart where B = |V |2|V |−1. It means we can stop the binary
search with the quadratic time rate test algorithm in Theorem 5 whenever the interval is
small enough, in particular less than 1/B2. This interval contains only one fraction whose
denominator is at most B, which is the growth rate. Given the interval, we can find this
precise value of the growth rate using the Farey sequence in linear time of |V |, which is
dominated by the time finding the interval, which is O(|V |2 log(B2)) = O(|V |3). In fact,
instead of taking the middle value in each iteration of the binary search, one can take the
mediant as in the process of the Farey sequence and avoid applying the Farey sequence in
the end. However, it does not change the cubic time of the algorithm. The algorithm can
be seen as a nice combination of the binary search, the Farey sequence and some insights
of the problem.

Remark 15. The approach does not apply when the nature of the starting values is more
complicated than rational numbers, e.g. transcendental numbers e, π, One can ap-
proximate these numbers by rationals and then recover the coefficients (the number of
leaves with the corresponding label over the total number of leaves) from the estimated
growth rate, however, it may take an exponential time for the recovery. The problem in
this case seems to ask for a more direct solution than finding the value by the binary
search.

the electronic journal of combinatorics 29(4) (2022), #P4.15 17

7 A proof of the limit using Fekete’s lemma provided the de-
pendency graph is connected

Suppose the dependency graph is connected, this section provides a simple proof of the
limit λ. It is interesting to apply Fekete’s lemma here, as our problem itself can be seen
as a variant of Fekete’s lemma.

If there is an edge vu with M(v) = (u, w), then

v(n) ! u(n− 1) + cw.

It follows that if the distance from v to u is dv,u, then

v(n) ! u(n− dv,u) + αv,u,

for some constant αv,u.
Consider a function v with M(v) = (u, w). For any m,n large enough, we have

v(m+ n) ! u(m) + w(n) ! v(m− du,v) + αu,v + v(n− dw,v) + αw,v,

where the constants du,v, dw,v are valid because the dependency graph is connected.
Adding to both sides αu,v + αw,v and shifting the sequence by du,v + dw,v steps back,

we have

v(m+ n− du,v − dw,v) + αu,v + αw,v ! v(m− du,v − dw,v) + αu,v + αw,v

+ v(n− du,v − dw,v) + αu,v + αw,v.

Let v′(n) = v(n − du,v − dw,v) + αu,v + αw,v, we can see that v′(n) is a superadditive
sequence. By Fekete’s lemma, v′(n)/n converges. It follows that v(n)/n converges to the
same limit. The convergence of g(n)/n follows. (Note that it is still possible to apply
Fekete’s lemma to a sequence whose some beginning elements are not defined, e.g. by
simply assigning small enough values to those elements.)

Remark 16. The approach still works when we replace the equality in Equation (1) in the
introduction by the inequality

v(n) ! max
1!m!n−1

u(n−m) + w(m).

However, the limit does not necessarily hold when the dependency graph is not connected,
as pointed out in the introduction.

Acknowledgement

The author would like to thank Günter Rote for his suggestion to the linear program, the
relation to Petri nets/pebble games and other helpful comments on this paper, and the
anonymous reviewer for suggesting that the dual program may be also interesting.

the electronic journal of combinatorics 29(4) (2022), #P4.15 18

References

[1] James L Peterson. Petri nets. ACM Computing Surveys (CSUR), 9(3):223–252, 1977.

[2] Anders Björner and László Lovász. Chip-firing games on directed graphs. Journal
of algebraic combinatorics, 1(4):305–328, 1992.

[3] Michael Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gle-
ichungen mit ganzzahligen Koeffizienten. Mathematische Zeitschrift, 17(1):228–249,
1923.

[4] Günter Rote. The maximum number of minimal dominating sets in a tree. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1201–1214. SIAM, 2019.

[5] Matthieu Rosenfeld. The growth rate over trees of any family of sets defined by a
monadic second order formula is semi-computable. In Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 776–795. SIAM, 2021.

[6] Vuong Bui. Growth of bilinear maps. Linear Algebra and its Applications, 624:198–
213, 2021.

[7] Matthieu Rosenfeld. It is undecidable whether the growth rate of a given bilinear
system is 1. Linear Algebra and its Applications, 651:131–143, 2022.

the electronic journal of combinatorics 29(4) (2022), #P4.15 19

