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Introduction

For evidence-based policy-making, reliable information on socio-economic indicators are es-

sential. Sample surveys have a long tradition of providing cost-efficient information on these

indicators. Mostly, there is a demand for the quantity of interest not only at the level of the

total population, but especially at the level of sub-populations (geographic areas or socio-

demographic groups) called areas or domains. To gain insights into these sub-populations,

disaggregated direct estimators can be used, which are calculated solely on area-specific sur-

vey data. An area is regarded as ’large’ if the sample size is large enough to enable reliable

direct estimates. If the precision of the direct estimates is not sufficient or the sample size is

even zero, the area is considered as ’small’. This is particularly common at high spatial or

socio-demographic resolutions. Small area estimation (SAE) is promising to overcome this

problem without the need for larger and thus more costly surveys (Pfeffermann, 2013; Rao

and Molina, 2015; Tzavidis et al., 2018). The essence of SAE techniques is that they ’borrow

strength’ from other areas to improve their predictions. For this purpose, a model is built on

survey data that links additional auxiliary data and exploits area-specific structures. Suitable

auxiliary data sources are administrative and register data, such as the census. In many coun-

tries, such data are strictly protected by confidentiality agreements and access to population

micro-data is a challenge even for gatekeeper organisations. Thus, users have an increased in-

terest in SAE estimators that do not require population micro-data to serve as auxiliary data. In

this thesis, new methods in the absence of population micro-data are presented and applications

on socio-economic highly relevant indicators are demonstrated.

Since different SAE models impose different data requirements, Part I bundles research

combining unit-level survey data and limited auxiliary data, e.g., aggregated data such as

means, which is a common data situation for users. To account for the unit-level survey in-

formation the use of the well-known nested error regression (NER) model from Battese et al.

(1988) is targeted. This model is a special case of a linear mixed model based on several

assumptions. But how can users proceed if the model assumptions are not fulfilled? In Part

I, this thesis provides two new approaches to deal with this issue. One promising approach

is to transform the response. Since several socio-economically relevant variables, such as in-

come, have a skewed distribution, the log-transformation of the response is an established way

to meet the assumptions (Berg and Chandra, 2014; Molina and Martín, 2018). However, the

data-driven log-shift transformation is even more promising because it extends the log by an

additional parameter and achieves more flexibility (Sugasawa and Kubokawa, 2019; Rojas-

Perilla et al., 2020). Chapter 1 introduces both transformations in the absence of population

micro-data. A particular challenge is the transformation of the small area means back to the
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original scale. Hence, the proposed approach introduces aggregate statistics (means and co-

variances) and kernel density estimation to resolve the issue of lacking population micro-data.

Uncertainty estimation is developed, and all methods are evaluated in design- and model-based

settings. The proposed method is applied to estimate regional income in Germany using the

Socio-Economic Panel (Socio-Economic Panel, 2019) and census data (Statistisches Bunde-

samt, 2015). It achieves a clear improvement in reliability, and thus demonstrates the impor-

tance of the method. To conveniently enable further applications, this new methodology is im-

plemented in the R package saeTrafo (R Core Team, 2022; Würz, 2022). Chapter 2 describes

the various functionalities of the package using publicly available income data. To increase

user-friendliness, established unit-level models under transformations and their uncertainty es-

timations are implemented and the most suitable method is automatically selected. For some

applications, however, it is challenging to find a suitable transformation or, more generally, to

specify a model, particularly in the presence of complex interactions. For this case, machine

learning methods are valuable as a transformation is not necessarily required nor a model needs

to be explicitly specified (Hastie et al., 2009; Varian, 2014). The semi-parametric framework of

mixed effects random forest (MERF) combines the advantages of random forests (robustness

against outliers and implicit model-selection) with the ability to model hierarchical depen-

dencies as present in SAE approaches (Krennmair and Schmid, 2022). Chapter 3 introduces

MERFs in the absence of population micro-data. As existing random forest algorithm require

unit-level auxiliary population data, an alternative strategy is introduced. It adaptively incor-

porates aggregated auxiliary information through calibration-weights to circumvent unit-level

auxiliary data. Applying the proposed method on opportunity costs of care work for Germany

using the Socio-Economic Panel (Socio-Economic Panel, 2019) and census data (Statistisches

Bundesamt, 2015) demonstrates the gain in accuracy in comparison to both direct estimates

and the classical NER model.

In contrast to methods using a unit-level sample survey, Part II focuses on the well-known

class of area-level SAE models (Fay and Herriot, 1979) requiring direct estimates from a sur-

vey while using (once again) only aggregated population auxiliary data. This thesis presents

two particularly relevant applications of this model class. Chapter 4 examines regional con-

sumer price indices (CPIs) in the United Kingdom (UK), contributing to the great interest in

monitoring inflation at the spatial level (Fenwick and O’Donoghue, 2003). The SAE challenge

is to construct model-based expenditure weights to generate the regional basket of goods and

services for the twelve regions of the UK. They are estimated and constructed from the living

cost and food survey (Defra and ONS, 2019). Furthermore, available price data (ONS, 2020)

are linked to the SAE estimated baskets to produce regional CPIs. The resulting CPI series

are closely examined, and smoothing techniques are applied. As a result, the reliability im-

proves, but the CPI series are still too volatile for policy use. However, our research serves as

a valuable framework for the creation of a regional CPI in the future. The second application

also explores the reliability of the disaggregated estimation of a politically and economically

highly relevant indicator, in this case the unemployment rate. The regional target level are

the functional urban areas in the German federal state North Rhine-Westphalia. In Chapter 5,

two types of unemployment rates - the traditional one and an alternative definition taking com-
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muting into account (Grözinger, 2018) - are estimated and compared. Direct estimates from

the labour force survey (Eurostat, 2019b) are linked with SAE methods to passively collected

mobile network data. This alternative data source is real-time available, offers spatial flexi-

ble resolutions, and is dynamic (Toole et al., 2015; Marchetti et al., 2015; Steele et al., 2017;

Schmid et al., 2017). In compliance with data protection rules, we obtain aggregated auxiliary

mobile network information from the data provider. The SAE methods improve the reliability,

and the resulting predictions show that alternative unemployment rates in German city cores

are lower than traditional estimated official unemployment rates indicate.

9
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Chapter 1

Estimating regional income indicators
under transformations and access to
limited population auxiliary
information

This is the peer reviewed version of the following article: Würz, N., Schmid, T., and Tza-

vidis, N. (2022) Estimating regional income indicators under transformations and access to

limited population auxiliary information, Journal of the Royal Statistical Society: Series A

(Statistics in Society), 185(4), pp. 1679-1706, which has been published in final form at

https://doi.org/10.1111/rssa.12913. This article may be used for non-

commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived

Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative

work, without express permission from Wiley or by statutory rights under applicable legisla-

tion. Copyright notices must not be removed, obscured or modified. The article must be linked

to Wiley’s version of record on Wiley Online Library and any embedding, framing or other-

wise making available the article or pages there of by third parties from platforms, services and

websites other than Wiley Online Library must be prohibited.
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Chapter 2

The R package saeTrafo for estimating
unit-level small area models under
transformations

2.1 Introduction

For evidence-based policymaking, reliable knowledge of the spatial distribution of important

variables like income is essential. As sample sizes are small at a high-resolution spatial scale

of interest, direct estimates from surveys at this scale are likely to be unreliable. Small area

estimation (SAE) methods are a promising and widely used approach to overcome this problem

(Pfeffermann, 2013; Rao and Molina, 2015; Tzavidis et al., 2018). One predominant approach -

for estimating the averages in small areas - is the nested error regression (NER) model proposed

by Battese et al. (1988) that borrows strength by using auxiliary information from a census. The

starting point for this model is the availability of survey data at the individual-level. For the

census data, aggregates at the spatial scale of interest are sufficient. As small area models often

rely on linear mixed models, the normality assumption for the error terms has to be satisfied.

However, in a variety of real-world examples, this assumption is hard to meet. Especially

skewed variables, like income and consumption, can often not be adequately described by the

available auxiliary variables and lead to error terms where normality assumptions are rejected.

One promising approach satisfying the assumptions of the NER model is to use fixed logarith-

mic (Molina and Martín, 2018) or data-driven (Sugasawa and Kubokawa, 2019; Rojas-Perilla

et al., 2020) transformations for the dependent variable. When a back-transformation to the

original scale is needed, a general problem is the bias-correction. Berg and Chandra (2014)

suggest an estimator with minimal mean squared error (MSE). For this estimator, Molina and

Martín (2018) develop an analytical MSE estimator. It requires auxiliary information from

population micro-data to correct the bias caused by the back-transformation, which is a strong

limitation for data analysts. Especially in countries with high data confidentiality standards,

access to individual data from the census is usually not possible. For this need, Würz et al.

(2022) proposed methodology for estimating small area means based on the transformed NER

model, if only aggregate population-level auxiliary information is available. Their approach
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presents an appropriate bias-correction that is necessary due to the back-transformation in the

absence of population micro-data. It abstains from any parametric assumptions about the auxil-

iary variables and instead uses aggregate statistics (means and covariances) and kernel density

estimation (KDE) to resolve the issue of not having access to population micro-data. The au-

thors introduce a parametric bootstrap MSE estimator that captures the uncertainty caused by

the use of transformations and KDE. Alternatively, Li et al. (2019) propose another method

relying on the smearing approach of Duan (1983) but without introducing an MSE estimator.

For the second major class of small area models for estimating means - the area-level models

(Fay and Herriot, 1979) - aggregated survey and population data are sufficient to determine

small area means. In addition, considerable research has been done for area-level models on

the application of transformations: Slud and Maiti (2006) present an estimator for small area

means and its analytical MSE estimator under a log transformed Fay-Herriot model. Sugasawa

and Kubokawa (2017) discuss area-level models for the data-driven dual power transforma-

tions. However, this model class only employs aggregates from survey data. If the user has

access to individual survey data, it would be desirable to account for this finer level of survey

information by applying unit-level models.

For the estimation of small area means and indicators, several software packages exist.

In the following, the R software packages (R Core Team, 2022) for estimating unit-level SAE

models are briefly described: the package rsae (Schoch, 2014) focuses on robust estimation for

both unit- and area-level SAE models but do not offer transformations. Both models are also

available in the R package JoSAE (Breidenbach, 2018) or rhnerm (Sugasawa, 2016). They

focus on the estimation under heteroscedasticity. The R package hbsae (Boonstra, 2022) fits

both models by maximum likelihood or hierarchical Bayesian approaches. Like the previously

listed R packages, mcmcsae (Boonstra, 2021) also does not provide the possibility for the use

of transformations. It deals with correlated random effects for both unit- and area-level models

and uses markov chain monte carlo simulations. The R package sae (Molina and Marhuenda,

2015) offers unit-level models together with a variety of area-level models. On the one hand,

it provides the classic NER model (function: eblupBHF). On the other hand, a NER model

with transformations (box-cox and power transformation (Box and Cox, 1964)) is available,

but micro-population auxiliary data is required (function: ebBHF). For both models, bootstrap

MSEs are available. However, it is important to emphasise that ebBHF requires population

micro-data, which is a strict limitation for data analysts. A package providing transformations

for SAE methods is the emdi package (Kreutzmann et al., 2019). It offers the area-level model

and the method of Molina and Rao (2010), which requires individual census data.

The structure of saeTrafo is closely oriented on that of the R package emdi (Kreutzmann

et al., 2019). This means that saeTrafo offers similar input arguments and generic functions.

The main focus of saeTrafo lies on making the new methodology by Würz et al. (2022) pub-

licly available to enable the use of transformations (log transformation and data-driven log-shift

transformation) under limited auxiliary data for unit-level small area models. The relevance

is justified by data confidentiality because in developed countries like Germany, population

micro-data are not publicly available, and access to such data is even challenging within gate-

keeper organizations. Instead, population-level auxiliary data are often only available at some
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aggregate level. Furthermore, the use of transformations is essential to meet the assumptions on

the error terms. Additionally, saeTrafo offers further methodology in a user-friendly way: the

well-known model from Battese et al. (1988) (without transformations), the bias-corrected esti-

mator from Molina and Martín (2018) (which requires population micro-data), and a first-order

bias-corrected estimator in the presence of aggregated population data. Depending on the used

data and transformation saeTrafo automatically selects the appropriate method. Furthermore,

the user benefits from the simple determination of the uncertainty via the main function. Some

uncertainty estimates rely on bootstrap procedures. For that, saeTrafo supplies a paralleliza-

tion option to reduce running time. Moreover, it offers well-known and SAE-specific generic

functions enabling the automatic generation of plots for model diagnostics, the comparison to a

direct estimator via plots, the visualization of the estimates on a map, and the easy export of the

results. As the relevant graphics are generated directly within the package and personalisation

options exist, it simplifies the work flow for the user.

The rest of the paper is structured as follows: Section 2.2 introduces the estimation meth-

ods. In Section 2.3, the Austrian dataset which is used to illustrate the package is described.

The functionalities of saeTrafo are presented in Section 2.4. This section gives a general

overview on the main function NER_Trafo, demonstrate this function on exemplary Aus-

trian data, and presents generic functions for the corresponding S3 object. Section 2.5 outlines

further potential extensions.

2.2 Statistical methods

The package saeTrafo focuses on the NER model of Battese et al. (1988), which uses unit-level

sample data and aggregated population-level auxiliary information. For a general overview on

SAE, we refer to Rao and Molina (2015) or Tzavidis et al. (2018). This section presents the

theoretical background starting from the classical NER model to the methodology from Würz

et al. (2022).

2.2.1 The nested error regression model

Throughout the paper, a finite population U of size N is divided into D areas U1, U2, ..., UD

consisting of N1, N2, ..., ND units. The index i = 1, ..., D indicates the respective area and

j = 1, ..., Ni the corresponding units. The response yij is available for every unit in the sample

s which consists of n units partitioned into sample sizes n1, n2, ..., nD for each area. With si /

si we refer to the in-sample/out-of-sample units in area i. The vector xij = (1, x1, x2, ..., xp)
T

contains the intercept and p explanatory variables for every unit j in the sample. These vectors

are combined within the matrix Xs. The vector ys contains the response of the individuals

within the sample. The NER model of Battese et al. (1988) models the relationship between

xij and yij as follows:

yij = xT
ijβ + ui + eij , ui

iid∼ N (0, σ2
u) and eij

iid∼ N (0, σ2
e), (2.1)
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where β = (β0, β1, β2, ..., βp)
T is the vector of regression coefficients. ui denotes the area-

specific random effect and eij is the unit-level error. They are assumed to be independent and

σ2
u and σ2

e denote their variances. An out-of-sample unit is estimated as best linear unbiased

prediction by µ̂ij = xT
ij β̂ + ûi = xT

ij β̂ + γ̂i

(∑
j∈si

(
yij − xT

ij β̂
))

, where γ̂i =
σ2
u

σ2
u+σ2

e/ni
de-

notes the estimated shrinkage factor. The target parameter is the population mean for each area

i and it is estimated as the empirical best linear unbiased predictor (EBLUP) for the population

area mean (yi) by

Ŷ
BHF

i =
1

Ni

(∑
j∈si

yij +
∑

j∈si
µ̂ij

)
= γ̂i

 1

ni

∑
j∈si

yij +

xi −
1

ni

∑
j∈si

xij

T

β̂

+ (1− γ̂i)x
T
i β̂. (2.2)

The vector xT
i = 1

Ni

∑
j∈Ui

xT
ij contains means for the p covariates within i. saeTrafo uses

the restricted maximum likelihood (REML) theory to estimate fixed effects and the variance

components. As in the package emdi (Kreutzmann et al., 2019), it is implemented based on the

lme function of the package nlme (Pinheiro et al., 2022). Note that the estimator of Battese

et al. (1988) (Ŷ
BHF

i , (2.2)) requires only population-level aggregates and a unit-level survey.

To estimate the uncertainty of Ŷ
BHF

i (2.2), Prasad and Rao (1990) propose an analytical

MSE which saeTrafo supplies. A second possibility for determining the uncertainty are boot-

strap methods offered by R packages such as sae (Molina and Marhuenda, 2015).

2.2.2 Small area estimation under the nested error regression model and trans-
formations

One-to-one transformations of the response h(yij) = y∗ij are a common tool to prevent vio-

lations of the model assumptions. For skewed variables, like income, this problem is typical.

In order to adapt better to the data, data-driven transformations are promising for SAE (Gurka

et al., 2006; Rojas-Perilla et al., 2020). For instance, the log-shift transformation (Yang, 1995)

extends the log transformation by including a transformation parameter λ: y∗ij = h(yij) =

log(yij + λ), which is estimated from the sample. In saeTrafo, the transformation parameter

λ is estimated from the sample data using the REML method as Rojas-Perilla et al. (2020)

proposed.

Using a transformation on the response results in a model on the transformed scale:

h(yij) = y∗ij = xT
ijβ + ui + eij , ui

iid∼ N (0, σ2
u) and eij

iid∼ N (0, σ2
e). (2.3)

The BLUP on the transformed scale for out-of-sample units is µ∗
ij = xT

ijβ + ui. However,

in SAE applications there is interest in prediction, so the aim is to estimate the mean on the

original scale.

Due to Jensen’s inequality, the naive back-transformation of real convex or concave func-

tions h() don’t lead to the same result as the best prediction on the original scale (Jensen et al.,
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1906):

µtrans, naive
ij = h−1

(
µ∗
ij

)︸ ︷︷ ︸
naive back-transformation of the BLUP

̸= E[h−1(y∗ij)|ys,Xs].︸ ︷︷ ︸
best prediction on original scale

For the log and log-shift transformation, the back-transformation h−1() = exp() or h−1() =

exp() − λ is convex and hence µtrans, naive
ij underestimates E[h−1(y∗ij)|ys,Xs]. In order to get

bias-corrected estimates, the best prediction on the original scale is needed.

In the case of a log-transformation, Berg and Chandra (2014) and Molina and Martín (2018)

propose an analytical bias-correction. The best predictor for the out-of-sample units is defined

for general transformations via an integral which can be solved analytically for h() = log() by

using y∗ij |ys,Xs ∼ N
(
µ∗
ij , σ

2
u(1− γi) + σ2

e

)
- with corresponding density fy∗ij |ys,Xs

- which

comes directly from model (2.3),

µtrans, bc
ij = E[h−1(y∗ij)|ys,Xs] =

∫ +∞

−∞
h−1(x)fy∗ij |ys,Xs

(x)dx

h−1()=exp()
= exp

(
µ∗
ij +

σ2
u(1− γi) + σ2

e

2︸ ︷︷ ︸
=αi (bias-correction)

)
.

To the BLUP on the transformed scale (µ∗
ij) a bias-correction (αi) is added before applying

the back-transformation. µtrans, bc
ij can be used to determine the bias-corrected estimator of the

small area mean:

Ŷ
trans, bc

i =
1

Ni

∑
j∈si

yij +
∑
j∈si

µ̂trans, bc
ij

 =
1

Ni

∑
j∈si

yij +
∑
j∈si

exp
(
xT
ij β̂ + ûi + α̂i

) .

(2.4)

Molina and Martín (2018) propose for the MSE of Ŷ
trans, bc

i (2.4) both an analytical and a

parametric bootstrap estimator. The package saeTrafo provides (2.4) and its bootstrap MSE

estimator.

For Ŷ
trans, bc

i (2.4), out-of-sample population micro-data are needed which often causes

problems with data confidentiality. Again, due to the Jensen’s inequality a (second-order)

bias is introduced if we use a naive back-transformation of the synthetic part (i.e., exp
(
xT
i β̂
)

instead of
∑

j∈si exp
(
xT
ij β̂
)

). The estimator with first-order bias-correction (αi) and naive

back-transformation of the population-level aggregates is denoted by

Ŷ
trans, bc-naive-agg

i =
1

Ni

∑
j∈si

yij +
∑
j∈si

exp
(
xT
i β̂ + ûi + α̂i

) . (2.5)

Due to the use of aggregated auxiliary data, this estimator has a second-order bias. To the best

of my knowledge, no MSE estimator exists for Ŷ
trans, bc-naive-agg

i (2.5).

The next subsection presents small area means under the transformed NER model if only

aggregated population-level auxiliary information is available. Therefore, it addresses the prob-

lem of limited data access and simultaneous transformation.
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2.2.3 Small area means under limited auxiliary information

As emphasized in the previous subsection, the estimator Ŷ
trans, bc

i (2.4) requires population-

level auxiliary data, which often leads to confidentiality constraints. In Ŷ
trans, bc-naive-agg

i (2.5), a

second order bias remains because aggregated auxiliary data is used instead of individual data.

In contrast to this, the method of Würz et al. (2022) aims to reduce the second-order bias due

to the back-transformation of the synthetic part. Therefore, it offers a solution to deal with bias

under limited auxiliary information while using log or log-shift transformation. This method

approximates xT
ij β̂ in the absence of population micro-data to reduce the second-order bias and

combines this with the first-order bias-correction (αi) for small area means.

Kernel density estimation for the synthetic part Due to limited auxiliary information, it

is not possible to obtain
(∑

j∈si exp
(
xT
ij β̂
))

necessary for computing Ŷ
trans, bc

i (2.4). Würz

et al. (2022) propose an estimation method for the unknown synthetic part (xT
ij β̂) under limited

auxiliary information. They employ a KDE approach to estimate the distribution of xT
ij β̂. This

approach has two main advantages: firstly, the method of Würz et al. (2022) uses univariate

KDE for the synthetic part
(
xT
ij β̂
)

instead of multivariate KDE to estimate the joint multivari-

ate distribution of the auxiliary variables. Since current implementations of multivariate KDEs

in R are restricted to a maximum number of auxiliary variables (cf. the widely used package

ks (Duong, 2022) only allows for up to 6 covariates), many applications especially those with

categorical data very quickly reach this limit. In contrasts, univariate KDE for the synthetic

part avoids this restriction. Simulation studies in Würz et al. (2022) show that the estimation of

the synthetic part is sufficient to reduce the second-order bias. Secondly, this method does not

impose any parametric assumptions on the covariates and only require aggregated population-

level auxiliary information.

KDE was first mentioned by Rosenblatt (1956) and Parzen (1962). Formally, KDE esti-

mates the density f of a sample X = {X1, ..., Xn} by

f̂h(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
, (2.6)

where the function k() is the kernel and h is the bandwidth. For more details on KDE, see

for example Scott (2015). saeTrafo employs the Epanechnikov kernel (Epanechnikov, 1969),

which is implemented using the density function of the stats package. Moreover, saeTrafo
uses the method from Sheather and Jones (1991) for bandwidth selection.

As a first step, saeTrafo standardizes the predictions of the synthetic part from the NER

model. For area i and individual j, the standardized predicted values zij are computed by

zij =
xT
ij β̂ − 1

ni

∑
j∈si x

T
ij β̂√

1
ni

∑
j∈si

(
xT
ij β̂ − 1

ni

∑
j∈si x

T
ij β̂
)2 .

This formula employs the mean and the standard deviation from the sample data predictions of

the synthetic part.
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Second, the package adjusts the predictions with the help of aggregated population-

level auxiliary data. It uses the mean xT
i β̂ and the empirical variation

σi,XT β̂ =
√∑p

k=0

∑p
l=0 β̂kβ̂lCov[xik,xil], where Cov[xik,xil] is the known covariance be-

tween the k-th and l-th explanatory variable for area i. This step incorporates the aggregated

information from the census, which adds the SAE component to this method. Typically, in

small area applications, sample sizes differ between areas. The package distinguishes between

large sample sizes - standardized data (zij) from the respective area i (conditional) is used -

and small sample sizes - standardized data (zij) from all areas (unconditional) is employed. In

order to distinguish between large and small sample sizes, a threshold t is defined: for small

sample sizes, i.e. below the threshold (ni < t) - or even for an out-of-sample area - we use the

standardized data from all areas to generate adjusted data for area i. The input values for the

KDE (rim) arise from the standardized values zm. The index m ranges from 1, ..., n for sample

sizes below t (unconditional) and from 1, ..., ni for sample sizes above t (conditional). With

rim = zm σi,XT β̂ + xT
i β̂ for

m ∈ s ni < t

m ∈ si ni ≥ t
(2.7)

we estimate the respective density using the KDE (2.6) for each area i. f̂h,i denotes the resulting

density for area i.

Small area means under limited auxiliary information In order to account for both types

of biases the proposed method relies on the approximated area-specific density f̂h,i of the

synthetic part and the first-order bias-correction αi:

Ŷ
trans, bc

i =
1

Ni

∑
j∈si

yij +
∑
j∈si

exp (µ̂ij + α̂i)

 ≈ 1

Ni

(
Ni∑
j=1

exp
(
xT
ij β̂
)

︸ ︷︷ ︸
Ti

exp (ûi + α̂i)

)
.

µ̂ij = xT
ij β̂ +ûi is defined as in the NER model. As shown above, under limited auxiliary infor-

mation, the problem is reduced to determining the unknown back-transformed total (Ti). Würz

et al. (2022) use numerical integration and the estimated density of the synthetic part f̂h,i to

determine the total T̂i =
∑Ni

j=1 exp
(
xT
ij β̂
)
= NiE[exp(xT

ij β̂)] = Ni

∫ +∞
−∞ exp(x)f̂h,i(x)dx

from sample data and population-level auxiliary information - without using population micro-

data. To achieve this, saeTrafo uses the package sfsmisc (Maechler et al., 2021). The requested

small area estimator of the mean is obtained by inserting the estimated back-transformed area-

specific totals T̂i:

Ŷ
trans, bc-agg

i =
1

Ni
T̂i exp (ûi + α̂i) . (2.8)

For the log-shift transformation, the characteristic shift-parameter λ̂ is added

Ŷ
trans, bc-agg

i =
1

Ni
T̂i exp (ûi + α̂i)− λ̂.
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The R package saeTrafo is the first package providing these estimators to the users.

Uncertainty estimation For the estimator Ŷ
trans, bc-agg

i (2.8) under limited auxiliary data,

Würz et al. (2022) develop a parametric bootstrap MSE that captures the additional uncertainty

due to KDE and the estimation of the adaptive shift parameter in the case of a log-shift trans-

formation. The following enumeration outlines the bootstrap procedure employed in saeTrafo
for the log and log-shift transformation (these transformations are denoted with h).

1. Transform the data: y∗ij = h(yij)

2. Estimate β̂, σ̂2
u, and σ̂2

e from sample data using model (2.3). In the case of the log-shift

transformation, estimate λ̂ as proposed by Rojas-Perilla et al. (2020).

3. For b = 1, ..., B

(a) Generate u
(b)
i ∼ N (0, σ̂2

u) and e
(b)
ij ∼ N (0, σ̂2

e) for all areas i and j ∈ si.

(b) Build bootstrap samples on the transformed scale

y
∗(b)
ij = xT

ij β̂ + u
(b)
i + e

(b)
ij , with j ∈ si

for all areas i and therefore determine the estimator Ŷ
trans, bc-agg, (b)

i (2.8) for all

areas within each bootstrap replication b. Note, that λ is re-estimated within every

replication b in case of the log-shift transformation.

(c) Determine the true mean for each area i in each bootstrap replication b. Due to the

lack of population micro-data for x, an approximation of the true bootstrap mean is

needed. From the available aggregated population-level values, Würz et al. (2022)

construct an area-specific distribution on the transformed scale for each bootstrap

replication b:

y
∗(b)
ij |y(b)

s ,Xs, u
(b)
i ∼ N

(
xT
i β̂ + u

(b)
i , σ2

i,XT β̂
+ σ̂2

e

)
, (2.9)

determine σi,XT β̂ =
√∑p

k=1

∑p
l=1 β̂kβ̂lCov[xik,xil] from known covariances

and estimated regression coefficients, and take σ̂2
e from step 2. To get the true

mean (Y (b)
i ) on the original scale, Würz et al. (2022) combine the distributional

assumptions on the transformed scale (2.9) with the properties of the exponential

back-transformation function h−1() = exp(), respectively h−1() = exp()− λ:

Y
(b)
i

h−1()=exp()
=

1

Ni

∑
j∈Ui

h−1
(
y
∗(b)
ij

)
|y(b)

s ,Xs, u
(b)
i

h−1()=exp()
=

1

Ni

∑
j∈Ui

exp
(
y
∗(b)
ij

)
|y(b)

s ,Xs, u
(b)
i

h−1()=exp()
= exp

(
xT
i β̂ + u

(b)
i + 0.5

(
σ2
i,XT β̂

+ σ̂2
e

))
.
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For data-driven log-shift transformation, the analogue is

Y
(b)
i = exp

(
xT
i β̂ + u

(b)
i + 0.5

(
σ2
i,XT β̂

+ σ̂2
e

))
− λ̂,

where λ̂ is the shift-parameter estimated from step 2.

4. Determine the MSE over the B bootstrap replications:

M̂SEi =
1

B

B∑
b=1

(
Ŷ

trans, bc-agg, (b)

i − Y
(b)
i

)2

.

saeTrafo offers this parametric bootstrap procedure. To increase user-friendliness, it is possible

to run this MSE estimation procedure on several cores. The expected execution times are

displayed to the users.

The next section describes the Austrian data while Section 2.4 presents the core function

NER_Trafo. The function provides the theory from this section in a user-friendly way, and

demonstrates it based on the Austrian data.

2.3 Data sets for illustration

The main idea of SAE is to combine survey and population (census or administrative) data to

increase the accuracy of the estimated indicator of interest. Since the target variable is only

provided in the survey data, additional information from the population is used to support the

prediction of the target variable using linear mixed models (Rao and Molina, 2015; Tzavidis

et al., 2018). The package saeTrafo contains sample and population data to provide the users

with exemplary data. The sample (eusilcA_smp) and population data (eusilcA_pop)

are obtained from the package emdi (Kreutzmann et al., 2019). The authors provide an ex-

tensive description of the data generating processed of the eusilcP dataset coming from the

package simFrame (Alfons et al., 2010). This household-level data set consists of synthetic

Austrian European Union Statistics on Income and Living Conditions (EU-SILC) from 2006.

For the package emdi, a spatially finer regional disaggregation was generated manually using

a random assignment taking into account the different regional income-levels in Austria. The

lowest regional level in this synthetic data set are the 94 Austrian districts. This population

data comprises 25000 households, while there were more than 3.5 million households in Aus-

tria in 2006. The sample data is constructed by stratified random sampling and consists of 1945

households. The sample data includes 70 districts, leaving 24 areas out-of-sample. The equiv-

alized household income (eqIncome) is the target variable and is only available within the

sample. This variable is defined as the ratio of the total household disposable income and the

equivalized household size. It was determined by the Organisation for Economic Co-operation

and Development (OECD) (Hagenaars et al., 1994). In the following examples, 14 covariates

serve as auxiliary data: gender, eqsize, cash, self_empl, unempl_ben, age_ben,

surv_ben, sick_ben, dis_ben, rent, fam_allow, house_allow, cap_inv, and

tax_adj. For detailed information, please refer to Kreutzmann et al. (2019). All 14 covari-

ates are included within the sample and the full and aggregated population data. Furthermore,
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the variable district is available in the data and represents the spatial target level.

The core function NER_Trafo of the package saeTrafo deals with different population

data inputs. Figure 2.1 visualizes, which functions from the theory part (Section 2.2) applies

under which population data input. To provide aggregates in a directly and user-friendly man-

ner, pop_area_size, pop_mean, and pop_cov are available as data sources in the pack-

age. All three data objects are calculated from eusilcA_pop. Their direct availability makes

it more convenient for the user to try out all functionalities of saeTrafo.

2.4 Core functionalities

This section is structured accordingly: Section 2.4.1 gives an overview of the main function

NER_Trafo, Section 2.4.2 shows how NER_Trafo is applied using the exemplary data,

and Section 2.4.3 demonstrates the possibilities of saeTrafo’s generic functions to analyse,

visualize, and export the corresponding S3 object.

2.4.1 Overview NER_Trafo

The NER_Trafo function provides the methodology from Section 2.2. NER_Trafo has 16

input arguments, takes the different data input possibilities into account, and allows for a va-

riety of specifications (cf. Table 2.1). As a minimum input, the sample data (smp_data

and smp_domains), the formula object (fixed), and population data - either the aggre-

gated data (pop_area_size, pop_mean, and optional pop_cov) or the individual data

(pop_data and pop_domains) - must be entered. As saeTrafo uses the S3 object sys-

tem, NER_Trafo returns an object of class saeTrafo and NER (Chambers and Hastie,

1992). The reason for assigning two classes to the object is ability to integrate further SAE

models in future releases. The output object consists of ten components. In this way, the

user can directly access the point estimates (ind), the uncertainty estimates (MSE), trans-

formation parameters (transform_param), information on the underlying linear mixed-

effects model as in the package nlme (Pinheiro et al., 2022) (model), a list describing the

data input (framework), the selected transformation (transformation), the method for

transformation parameter estimation (method), the formula object (fixed), the function

call (call), and number of successful bootstraps for bootstrap MSE estimation procedures

(successful_bootstraps).

Figure 2.1 illustrates which estimation methods for point and MSE estimation are used un-

der different combinations of selected transformation and type of population data. If no trans-

formation is selected, saeTrafo employs the classical model by Battese et al. (1988). Since no

individual data are necessary, potentially used population micro-data are processed into aggre-

gates in a first step. Under the log or log-shift transformation saeTrafo automatically selects

between different methods depending on the data. saeTrafo uses the estimator of Würz et al.

(2022) if population aggregates (means, covariances, and populations area sizes) are supplied

in the presence of transformations. If only means and area sizes under log or log-shift transfor-

mation are present, the NER_Trafo function employs the estimator Ŷ
trans,bc-naive-agg

i (2.5) for

which no MSE estimator exists. This estimator only corrects the first-order bias and neglects
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Table 2.1: Input arguments of function NER_Trafo.

Arguments Short description Default

fixed Formula object with fixed effects and response vari-
able of the NER model

pop_area_size Population sizes per domain NULL
pop_mean Population means for all fixed effects per domain NULL
pop_cov Population covariance matrices between all fixed ef-

fects per domain
NULL

pop_data Census or administrative data containing all fixed
effects

NULL

pop_domains Domain identifier for population data NULL
smp_data Survey data comprising the fixed effects and the re-

sponse variable
smp_domains Domain identifier for sample data
threshold Threshold for using pooled domain data 30
B Number of bootstrap replications for bootstrap MSE

estimation
50

transformation Type of transformation: no, log, log-shift log-shift
interval Interval for estimating the optimal parameter of log-

shift transformation
range of response

MSE MSE estimation FALSE
parallel_mode Mode of parallelization for bootstrap MSE proce-

dure
automatic

cpus Kernels for parallelization for bootstrap MSE pro-
cedure

1

seed Seed for random number generator within bootstrap
MSE procedure

123

Selected
transformation

Population data Mean
estimator

MSE
estimation

no

pop_mean,
pop_area_sizes

pop_data,
pop_domains

pop_mean, pop_cov,
pop_area_sizes

pop_mean,
pop_area_sizes

pop_data,
pop_domains

log or
log.shift

Ŷ
BHF

i (2.2)

Ŷ
trans, bc-agg

i (2.8)

Ŷ
trans,bc-naive-agg

i (2.5)

Ŷ
trans,bc

i (2.4)

Prasad and Rao
(1990)

Bootstrap: Würz
et al. (2022)

Bootstrap: Molina
and Martín (2018)

Figure 2.1: Overview of different estimation methods provided in function NER_Trafo.
These estimation methods are chosen depending on the selected transformation and the type of
provided population data.
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the second bias due to limited data. An alternative method - not implemented in R yet - is

the estimator from Li et al. (2019), for which no MSE estimator exists too. If the log or log-

shift transformation occur with individual population data, saeTrafo uses the estimator Ŷ
trans,bc

i

(2.4) together with its bootstrap MSE. Please note, that in the cases of individual population

data other packages like emdi (Kreutzmann et al., 2019) provide further functionalities: the

estimation of quantiles, inequality indicators, and further transformations (box-cox transfor-

mation (Box and Cox, 1964) and dual transformation (Yang, 2006)). These options become

available in the ebp function of emdi which applies the method of Molina and Rao (2010).

Since the ebp function is based on Monte Carlo replications, the run time is longer than for

NER_Trafo.

2.4.2 Estimation of (transformed) nested error regression models

Synthetic Austrian EUSILC data (cf. Section 2.3) is used to illustrate the functionalities of

saeTrafo and the estimation with NER_Trafo. The example demonstrates the estimation of

the small area means for the equivalized household income (eqIncome) at the disaggregation

level of 94 Austrian districts. The sample, population, and aggregated data are available in

saeTrafo:

R> library(saeTrafo)

R> data("eusilcA_pop")

R> data("eusilcA_smp")

R> data("pop_area_size")

R> data("pop_mean")

R> data("pop_cov")

The data allow for easy testing of the different methods implemented and bundled in

NER_Trafo. For illustration purposes, the example focuses on estimating Ŷ
trans, bc-agg

i (2.8),

therefore it is sufficient to insert only aggregated population data. In addition to the point esti-

mates, MSE estimates are calculated too, so MSE is set to TRUE. Furthermore, the setting for

the threshold for pooled estimation (cf. (2.7)) is set to 50. To prevent long run times for

MSE estimation the default of the number of bootstrap replications is only 50, whereby paral-

lelization is available in the function. To obtain a more precise MSE estimate, B is increased to

250 in the example. The seed is set to 2022 to ensure reproducibility of the results.

R> formula <- eqIncome ~ gender + eqsize + cash + self_empl +

+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben +

+ rent + fam_allow + house_allow + cap_inv + tax_adj

R> NER_model <- NER_Trafo(fixed = formula,

+ pop_area_size = pop_area_size, pop_mean = pop_mean,

+ pop_cov = pop_cov, smp_data = eusilcA_smp,

+ smp_domains = "district", B = 250, threshold = 50,

+ MSE = TRUE, seed = 2022)
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The R object NER_model is of two classes saeTrafo and NER. For this S3 object several

generic functions are provided within saeTrafo and presented in the following section.

2.4.3 Generic functions

The most important generic functions of the R package saeTrafo (summary output, diagnostic

plots, visualisation of estimates, and their export) are shown in detail. All other functionalities

are only briefly introduced.

Summary of a saeTrafo object By applying the summary function on an object of class

saeTrafo, R-user receive basic information and first diagnostic results. In addition to the

call, small area specific characteristics (number of out-of-sample and in-sample domains, in-

formation on sample sizes, and their distribution among domains) are displayed. To assess the

proportion of variance explained by the model, saeTrafo provides both a marginal and con-

ditional R2 following Nakagawa and Schielzeth (2013). The R2s are implemented as in the

emdi-package (Kreutzmann et al., 2019) and use the MuMIn-package from Barton (2018).

Moreover, the output shows information on the residual diagnostics for the unit-level errors

(eij) and the domain-specific random effects (ui). If a transformation is selected, saeTrafo
calculates these diagnostics on the transformed scale and hence help to judge, if the trans-

formation assists to meet the normality assumption of both components. The ICC relates the

variances (σ2
u and σ2

e ) to each other. Finally, the summary function outputs information on the

transformation and the selected parameter λ.

R> summary(NER_model)

Nested Error Regression Model

Call:

NER_Trafo(fixed = eqIncome ~ gender + eqsize + cash +

self_empl + unempl_ben + age_ben + surv_ben + sick_ben +

dis_ben + rent + fam_allow + house_allow + cap_inv +

tax_adj,

pop_area_size = pop_area_size, pop_mean = pop_mean,

pop_cov = pop_cov, smp_data = eusilcA_smp,

smp_domains = "district", threshold = 50, B = 250,

MSE = TRUE, seed = 2022)

Out-of-sample domains: 24

In-sample domains: 70

Sample sizes:

Units in sample: 1945

Units in population: 25000
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Min. 1st Qu. Median Mean 3rd Qu. Max.

Sample_domains 14 17.0 22.5 27.78571 29.00 200

Population_domains 5 126.5 181.5 265.95745 265.75 5857

Explanatory measures:

Marginal_R2 Conditional_R2

0.6233538 0.7054886

Residual diagnostics:

Skewness Kurtosis Shapiro_W Shapiro_p

Error 0.6222910 7.607189 0.9706711 1.705890e-19

Random_effect 0.4788713 2.726898 0.9737695 1.487627e-01

ICC: 0.2180689

Transformation:

Transformation Method Optimal_lambda

log.shift reml 27907.57

The output of the example shows that the synthetic Austrian data consists of 24 out-of-sample

domains and 70 in-sample domains. As the sample sizes over domains are considerably small

(Median: 22.5) this is a classical small area problem. Both the marginal and conditional co-

efficients of determination are high with values above 62%. The normality assumption for

the random effects is not rejected at a significance level of 5%. For the individual errors, this

assumption is rejected with p = 1.705890e-19. The random effects contribute to around 21%

of the model variance. The chosen transformation is the log-shift transformation with REML-

estimated transformation parameter of λ = 27907.57.

Diagnostic plots for the nested error regression model The plot function provides five

plots bundling the most important diagnostic information: Q-Q plots to judge the normality

assumption on the error terms (cf. Figure 2.2a), the deviation of both the density from the

normal distribution for the individual errors (cf. Figure 2.2b) and the random effects (cf. Figure

2.2c), the Cook’s distance to identify outliers (cf. Figure 2.2d) as well as information on the

optimal transformation parameter λ for the log-shift transformation (cf. Figure 2.2e). The

plot function allows customized settings: the input arguments label, color, cooks, and

range enable direct changes to the plots. In addition, with gg_theme there is the possibility

of further personalisation of the plots by using the ggplot2 package (Wickham, 2016).

R> plot(NER_model)

In the Austrian income example, the Q-Q plot (cf. Figure 2.2a) and the density plot (cf. Fig-

ure 2.2c) confirm the normality assumptions of the underlying model for the random effects.

However, for the individual error term, the Q-Q plot (cf. Figure 2.2a) shows several outliers.
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Figure 2.2: Diagnostic plots from generic function plot: Q-Q plots (a) and two density plots
((b) and (c)) to check the normality assumption for both error terms, Cook’s distance plot for
detecting potential outliers (d), and log-likelihood for the optimal shift parameter λ (e).
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The Cooks distance plot highlights three individuals as possible outliers. The last plot (cf. Fig-

ure 2.2e) shows the log-likelihood reaching its maximum at λ = 27907.57. This plot is only

supplied for the log-shift transformation.

Comparing point and optional MSE/CV estimates The generic function compare_plot

is very important for users to evaluate the quality of their model-based estimates. In SAE ap-

plications the comparison of the particular model-based estimator to the respective direct es-

timator is of central importance. Since saeTrafo does not provide a function for determining

direct estimators, other packages must be utilized. Among others the survey package (Lum-

ley, 2004), the laeken package (Alfons and Templ, 2013), and the emdi package (Kreutzmann

et al., 2019) enable the estimation of disaggregated direct estimators and their variances from

a survey. Up to now, the generic function compare_plot works only with direct estima-

tors from the package emdi. The procedure for this is shown in the exemplary code. For

the comparison of point estimates, compare_plot returns two types of plots: a scatter plot

following Brown et al. (2001) and a lineplot with direct and model-based domain-wise esti-

mates. To compare the uncertainty - if MSE or CV is set to TRUE - compare_plot returns a

boxplot and a scatterplot. In addition to a direct adjustment of the visualisation with label,

color, shape, and line_type the argument gg_theme offers the possibility for further

visualisation options using the ggplot2 package (Wickham, 2016).

R> require(emdi)

R> library(emdi)

R> emdi_direct <- direct(y = "eqIncome",

+ smp_data = eusilcA_smp, smp_domains = "district",

+ weights = "weight", var = TRUE,

+ na.rm = TRUE)

R> detach("package:emdi", unload = TRUE)

R> compare_plot(model = NER_model, direct = emdi_direct,

+ CV = TRUE)

Both plots comparing direct and model-based point estimates show that the direct and model-

based estimates are close to each other, as the regression line and the identity line are close to

each other (cf. Figure 2.3a) and the model-based estimates track the direct ones (cf. Figure

2.3b). Furthermore, the CV is assessed in Figure 2.3c and 2.3d. As the boxplots show, the

uncertainty - measured by the CV - is reduced clearly. The scatterplot which orders the domains

by their sample size (from low to high) supports this impression.

Visualization of regional disaggregated estimates on a map The spatial visualisation on

a map is simplified considerably by the map_plot function which generates maps automati-

cally if a SpatialPolygonsDataFrame from package sp (Bivand et al., 2013) is provided

additionally to the S3 object from NER_Trafo. As in emdi (Kreutzmann et al., 2019), the

same polygon data showing Austrian districts is available within saeTrafo, so that it is possible

to visualize the estimates on a map. The load_shapeaustria function loads this map and
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Figure 2.3: Plots for comparison to direct estimates from generic function compare_plot
for the NER model: scatter plot (a), line plots with estimates ordered by domain-specific sample
size (b), boxplots to compare CV for both estimators (c), and scatter plot for CV estimates
ordered by domain-specific sample size (d).
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Figure 2.4: Map with Austrian districts showing their small area means for the equivalized
household income from function map_plot.

the map_plot function offers various options for the users. This function directly supplies

settings for the graphical representation (color, scale_points, and guide), outputs the

processed data (return_data), and enables options to customize the map with the help of

ggplot2 (Wickham, 2016). If the domain IDs within the SpatialPolygonsDataFrame

and the S3 object differ, map_tab enables the entry of a data.frame for the assignment of

the domain IDs.

R> load_shapeaustria()

R> map_plot(NER_model, map_obj = shape_austria_dis,

+ map_dom_id = "PB")

The map in Figure 2.4 shows the mean equivalized household income for all 94 Austrian dis-

tricts produced by the SAE methods explained above. Smaller values are mostly in rural dis-

tricts (like Zell am See with the lowest value of 10469.93e) and higher mean equivalized

household incomes appear in more urban districts.

Exporting the results and most important model information In addition to the evaluation

and visualization of the point estimates (and uncertainty estimates), the package enables the

export to other software. saeTrafo offers direct and user-friendly export of the estimates and

the information from the summary function on the saeTrafo object to the software Excel.

R> write.excel(NER_model, file = "excel_output.xlsx",

+ CV = TRUE)

In addition, the export to OpenDocument format is also supported.

R> write.ods(NER_model, file = "excel_output.xlsx", CV = TRUE)

In both functions it can be specified if the CVs and MSEs should also be exported. If split is

set to TRUE, the point estimators, MSEs and CVs are saved in separate worksheets, respectively

separate documents. The created files are stored in the working directory.

Further generic functions Besides the generic functions already presented in detail, saeTra-
fo offers further generics: the function estimators is convenient to get point, MSE and CV
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estimates. In addition, the widely known functions as.data.frame, as.matrix, head,

print, subset, and tail can be applied to the S3 object created with estimators. The

print function returns the most important model information. To facilitate the comparison

between SAE estimators, the generic function compare_pred exists and creates a data set

with point or MSE estimators of both objects. To also enable comparisons with other SAE

methodology, an emdi object can be entered.

To further increase user-friendliness, well-known, and widely used generic functions from

the stats package can be used with saeTrafo. Thus, the following functions can be applied to

the S3 object of NER_Trafo: coef, confint, family, fitted, formula, logLik,

nobs, predict, residuals, sigma, terms, and vcov.

Since the linear mixed models used are calculated with the nlme package (Pinheiro et al.,

2022), the following generic functions for nlme objects are available for the S3 object of sae-
Trafo: fixef, getData, getGroups, getGroupsFormula, getResponse, get-

VarCov, intervals, and ranef.

2.5 Conclusion

The main focus of saeTrafo is to make the new methodology by Würz et al. (2022) publicly

available. This methodology resolves the problem of not having access to individual popu-

lation data while using transformations in the context of unit-level small area models. This

method and its uncertainty estimation are supplied by the function NER_Trafo. In addition,

the package provides the following methods: the well-known estimator by Battese et al. (1988),

the bias-corrected estimator from Molina and Martín (2018) using population micro-data, and

a first-order bias-corrected estimator using aggregated population data. An advantage of this

function is the appropriate and automatic selection of small area methodology under different

possible data inputs and transformations (none, log, and data-driven log-shift transformation).

saeTrafo guarantees user-friendliness by providing all methods and their respective MSE (in-

cluding parallelization options) within the NER_Trafo function. For this S3 object, a variety

of generic functions are offered. They automate the creation of important plots for model diag-

nostics and the assessment of the estimator’s quality. Furthermore, options for visualizing the

estimates on maps and the export of estimators are provided. Further generic functionalities

increase the user-friendliness.

This last paragraph outlines possible new features of saeTrafo for future releases: The

choice between different methodologies to estimate the MSE will increase user-friendliness.

For the estimator Ŷ
trans,bc

i , Molina and Martín (2018) propose an analytical MSE in addition to

the bootstrap version already supplied in saeTrafo. Further releases would profit by including

this version. Moreover, saeTrafo offers the MSE of Prasad and Rao (1990) for the classical

NER model. Further MSE estimating options are desirable. To have a MSE for the first-order

bias-corrected estimator (trans, bc-naive-agg), theoretical research is first necessary. Including

alternative SAE methods such as the method of Li et al. (2019) will increase the flexibility of

the package. Overall, the saeTrafo software package is written in such a way that this can

be easily extended with other small area model classes. For long-term future versions, this is
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aspired.
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Chapter 3

Analysing opportunity cost of care
work using mixed effects random
forests under aggregated census data

3.1 Introduction

Evidence-based policy requires reliable empirical information on social and economic con-

ditions summarised by appropriate indicators. For questions addressing regional and spatial

aspects of inequality, we need precise and reliable information extending beyond aggregate

levels into highly disaggregated geographical and other domains (e.g., demographic groups).

An apparent trade-off regarding the work with survey data is the inverse relation between high

spatial resolution and decreasing sample sizes on the level of interest. The estimation of indica-

tors under these circumstances can be facilitated using an appropriate model-based methodol-

ogy collectively referred to as Small Area Estimation (SAE) (Rao and Molina, 2015; Tzavidis

et al., 2018).

Models handling unit-level survey data for the estimation of area-level means are predom-

inantly regression-based linear mixed models (LMM), where the hierarchical structure of ob-

servations is captured by random effects. A well-known example is the nested error regression

model (Battese et al., 1988) - further labelled as BHF - which requires access to the survey

and to area-level auxiliary information. A versatile extension of the BHF model is the EBP ap-

proach by Molina and Rao (2010) with which even non-linear indicators can be estimated and,

unlike the BHF, requires access to population-level auxiliary data. The underlying LMM of the

BHF (and the EBP) relies on distributional and structural assumptions that are prone to viola-

tions in SAE applications. Working with social and economic inequality data in LMMs requires

assumptions of linearity and normality of random effects and error terms, which hardly meet

empirical evidence. Jiang and Rao (2020) remind, that optimality results and predictive per-

formance of model-based SAE are inevitably connected to the validity of model assumptions.

Without theoretical and practical considerations regarding violated assumptions, estimates are

potentially biased and mean squared error (MSE) estimates are unreliable.

In SAE, several strategies evolved to prevent model-misspecification: A well-known ex-
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ample is the assurance of normality by transforming the dependent variable (Sugasawa and

Kubokawa, 2017; Tzavidis et al., 2018; Sugasawa and Kubokawa, 2019; Rojas-Perilla et al.,

2020). Furthermore, the use of models under more flexible distributional assumptions is a

fruitful approach (Diallo and Rao, 2018; Graf et al., 2019). From a different perspective, semi-

or non-parametric approaches for the estimation of area-level means are investigated among

others by Opsomer et al. (2008), using penalized spline components within the LMM setting.

A distinct methodological option to avoid the parametric assumptions of LMMs are machine

learning methods. These methods are not limited to parametric models and learn predictive

relations from data, including higher order interactions between covariates, without explicit

model assumptions (Hastie et al., 2009; Varian, 2014). Recently, Krennmair and Schmid (2022)

introduce a framework enabling a coherent use of tree-based machine learning methods in SAE.

They propose a non-linear, data-driven, and semi-parametric alternative for the estimation of

area-level means by using mixed effects random forests (MERF) in the methodological tra-

dition of SAE. In general, random forests (RF) (Breiman, 2001) exhibit excellent predictive

performance in the presence of outliers and implicitly solve problems of model-selection (Biau

and Scornet, 2016). MERFs (Hajjem et al., 2014) combine these advantages with the ability to

model hierarchical dependencies.

All previously mentioned model-based strategies against model-misspecification in SAE

assume access to auxiliary information from population-level micro-data. Due to data security

reasons, the access to unit-level census or register data is limited, which imposes a strong re-

striction for researchers and SAE practitioners. However, aggregated population-level auxiliary

data (e.g., means) are often available at finer spatial resolution.

In this paper, we present a methodology for the estimation of area-level means using

MERFs under limited population-level auxiliary information. We propose a purely data-driven

approach for solving the dual problem (model-misspecification and limited auxiliary data).

Particularly, we introduce a strategy for the adaptive incorporation of auxiliary information

through calibration-weights for the estimation of area-level means. The determination of

weights without explicit distributional assumptions is based on the empirical likelihood (EL)

approach (Chen and Qin, 1993; Qin and Lawless, 1994; Han and Lawless, 2019). For the point

estimation of area-level means, Li et al. (2019) propose the use of EL-based calibration weights

and introduce a bias-corrected transformation approach using aggregated covariate data com-

bined with the smearing approach of Duan (1983). Complementing our proposed method for

point estimates, we introduce a non-parametric bootstrap estimator assessing the uncertainty

of estimated area-level means. To the best of our knowledge, no comparable procedure exists

for uncertainty estimation in the context of non-linear semi-parametric tree-based procedures

under limited data access. We highlight strengths and weaknesses of our approach for point

and uncertainty estimates by comparing it to existing SAE methods under limited auxiliary

information in a model-based simulation.

We demonstrate our methodology using the 2011 Socio-Economic Panel (SOEP) (Socio-

Economic Panel, 2019) combined with aggregate census information from the same year to

estimate the average individual opportunity cost of care work for 96 regional planning regions

(RPRs) in Germany. We refer to care work as unpaid working hours attributed to child- or
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elderly-care reported by the SOEP. Opportunity cost is an economic concept comprising the

time allocation problem, where the time allocated for care work implicitly corresponds to time

not providing paid work (Buchanan, 1991). Informally provided care work has no direct cor-

responding monetary value and the determination of a correct shadow-price for the economic

value is difficult. Classical interpretations of labour supply in economics such as Becker (1965)

imply that an individual’s hourly wage is an acceptable approximation to the unknown oppor-

tunity cost of time for working population. Thus, we measure time cost by multiplying an

individual’s care time by the opportunity cost of the person’s time represented as the reported

hourly wage calculated also from reported income in the SOEP data. We are aware that our

application is at best a first approximation making regional differences in opportunity cost of

care work visible, accountable, and comparable. Unpaid care work mitigates public and pri-

vate expenses on needed health services and infrastructure (Charles and Sevak, 2005). On the

other hand, care-giving has a complex impact on the labour market (Truskinovsky and Maestas,

2018; Stanfors et al., 2019), for instance by affecting workforce individuals through personal

or social burdens (Bauer and Sousa-Poza, 2015). From a macro-perspective, several studies

examine the economic value of care work for countries through the concept of opportunity cost

(Chari et al., 2015; Ochalek et al., 2018; Mudrazija, 2019) and provide empirical evidence for

policy measures.

While the mapping of spatial patterns of income inequality in Germany is of scientific inter-

est (Frick and Goebel, 2008; Kosfeld et al., 2008; Fuchs-Schündeln et al., 2010), to the best of

our knowledge, no study on regional dispersion of opportunity cost of unpaid care work exists.

From a spatial perspective, Oliva-Moreno et al. (2019) provide estimates on the economic value

of time of informal care for two regions in Spain. We maintain that mapping opportunity cost of

care work in Germany is particularly interesting given the German history of Reunification and

the German Federalism, characterized by powerful regional jurisdictions and different laws for

aspects directly affecting care work. The visualization of opportunity cost highlights regional

patterns, adding insights for planning and comparison of social-compensation policies.

The rest of the paper is structured as follows: Section 3.2.1 states a general mixed model

that treats LMMs in SAE as special cases and enables the use of tree-based models. We con-

sider the estimation of area-level means using MERFs, which effectively combine advantages

of non-parametric random forests with the possibility to account for hierarchical dependen-

cies. Section 3.2.2 describes our area-level mean estimator based on MERFs under limited

data access. We scrutinize the use of EL calibration weights and subsequently address method-

ological limitations in Section 3.2.3. As a result, we propose a best practice strategy to ensure

the proper usability of EL calibration weights in the context of SAE. Section 3.3 introduces a

non-parametric bootstrap-scheme for the estimation of the area-level MSE. In Section 3.4, we

use model-based simulations under complex settings to assess the performance of our stated

methods for point and MSE estimates, showing that MERFs are a valid alternative to exist-

ing methods for the estimation of SAE means under limited data access. In Section 3.5, we

estimate the average individual opportunity cost of care work for 96 RPRs in Germany using

the 2011 SOEP data. After the introduction of data sources and direct estimates in Section

3.5.1, we highlight modelling and robustness properties of our proposed methods for point and
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uncertainty estimates compared to direct and other SAE estimates under limited auxiliary data.

In Section 3.6, we conclude and motivate further research.

3.2 Theory and method

This section introduces a general mixed model enabling a simultaneous discussion of tradi-

tional LMM-based models in SAE such as the model of Battese et al. (1988) as well as semi-

parametric interpretations such as the model of Krennmair and Schmid (2022) using MERFs.

Section 3.2.2 provides details on our proposed methodology for MERFs under limited covariate

data access and the determination of area-specific calibration weights based on EL. We close

the section with a discussion on limitations of EL for SAE and state a best practice strategy

ensuring the usability of our proposed point estimator in challenging empirical examples.

3.2.1 Model and estimation of coefficients

We assume a finite population U of size N consisting of D separate domains U1, U2, ..., UD

with N1, N2, ..., ND units, where index i = 1, ..., D indicates respective areas. The con-

tinuous target variable yij for individual observation j in area i is available for every unit

within the sample. Sample s is drawn from U and consists of n units partitioned into sample

sizes n1, n2, ..., nD for all D areas. We denote by si the sub-sample from area i. The vector

xij = (x1, x2, ..., xp)
⊺ includes p explanatory variables and is available for every unit j within

the sample s. The relationship between xij and yij is assumed to follow a general mixed effects

regression model:

yij = f(xij) + ui + eij with ui ∼ N(0, σ2
u) and eij ∼ N(0, σ2

e). (3.1)

Function f(xij) models the conditional mean of yij given xij . The area-specific random effect

ui and the unit-level error eij are assumed to be independent. For instance, defining f(xij) =

x⊺
ijβ with β = (β1, ..., βp)

⊺ coincides with the well-known nested error regression model of

Battese et al. (1988) labelled as BHF. An empirical best linear unbiased predictor for the area-

level mean µi can be expressed as:

µ̂BHF
i = x̄⊺

i β̂ + ûi,

where x̄i =
1
Ni

∑
j∈Ui

xij denotes area-specific population means on p covariates. In a variety

of real-world examples, required assumptions for the BHF model hardly meet empirical evi-

dence. Apart from transformation strategies to meet the required assumptions, non-parametric

approaches can be used alternatively (Jiang and Rao, 2020). Tree-based machine learning

methods such as RFs (Breiman, 2001) are data-driven procedures identifying predictive rela-

tions from data, including higher order interactions between covariates, without explicit model

assumptions (Hastie et al., 2009; Varian, 2014). RFs inherently perform model-selection and

properly handle the presence of outliers (Biau and Scornet, 2016). However, an implicit as-

sumption of tree-based models is the required independence of unit-level observations.

Defining f in Model (3.1) to be a RF results in a semi-parametric framework, combining
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advantages of RFs with the ability to model hierarchical structures of survey data using random

effects. Krennmair and Schmid (2022) estimate area-level means with RFs (Breiman, 2001)

introducing a method that enables the estimation of model-components f̂ , û, σ̂2
u, and σ̂2

e in the

context of SAE. The so-called mixed effects random forest (MERF) uses a procedure reminis-

cent of the EM-algorithm (Hajjem et al., 2014). For fitting Model (3.1) (where f is a RF) on

survey data, the MERF algorithm subsequently estimates a) the forest function, assuming the

random effects term to be correct and b) estimates the random effects part, assuming the Out-

of-Bag-predictions (OOB-predictions) from the forest to be correct. OOB-predictions utilize

the unused observations from the construction of each forest’s sub-tree (Breiman, 2001; Biau

and Scornet, 2016). The estimation of variance components σ̂2
ϵ and σ̂2

u is obtained implicitly

by taking the expectation of ML estimators given the data. For further methodological details,

we refer to Krennmair and Schmid (2022). The resulting estimator for the area-level mean for

MERFs is summarized as:

µ̂MERF
i =

¯̂
fi(xij) + ûi =

¯̂
fi(xij) +

σ̂2
u

σ̂2
u + σ̂2

e/ni

 1

ni

∑
j∈si

(yij − f̂(xij))

 , (3.2)

where ¯̂
fi(xij) =

1

Ni

∑
j∈Ui

f̂(xij).

3.2.2 MERFs under aggregated data

Estimates for the area-level mean µi using MERFs from Equation (3.2) require unit-level aux-

iliary census data as input for f . In contrast to the linear BHF model by Battese et al. (1988),

aggregated covariate data cannot directly be used for non-linear or non-parametric procedures

such as RFs, as in general f(x̄i) ̸= f̄i(xij). Although the access to auxiliary population micro-

data for the covariates imposes a limitation for practitioners, not many methods in SAE cope

with the dual problem of providing robustness against model-failure, while simultaneously

working under limited auxiliary data (Jiang and Rao, 2020). We propose a solution over-

coming this issue by calibrating model-based estimates from MERFs in Equation (3.2) with

weights that are based only on aggregated census-level covariates (means). The general idea

originates from the bias-corrected transformed nested error regression estimator using aggre-

gated covariate data (TNER2) by Li et al. (2019). We build on their idea of using calibration

weights for SAE based on EL (Owen, 1990; Qin and Lawless, 1994; Owen, 2001) and transfer

it to MERFs. As a result, our proposed method offers benefits of RFs such as robustness and

implicit model-selection, while simultaneously working in cases of limited access to auxiliary

covariate data. In short, our estimator for the area-level mean can be written as:

µ̂
MERFagg
i =

ni∑
j=1

ŵij

[
f̂(xij) + ûi

]
. (3.3)

Note that optimal estimates for required model-components f̂ and ûi are obtained similar to

Equation (3.2) from survey data using the MERF algorithm as described by Krennmair and

Schmid (2022). We incorporate aggregate census-level covariate information through the cali-
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bration weights wij , which balance unit-level predictions to achieve consistency with the area-

wise covariate means from census data. Following Owen (1990) and Qin and Lawless (1994)

the technical conditions for wij are to maximize the profile EL function
∏ni

j=1wij under the

following three constraints:

•
∑ni

j=1wij(xij − x̄pop,i) = 0, monitoring the area-wise sum of distances between survey

data and the population-level mean, denoted as x̄pop,i, for auxiliary covariates;

• wij ≥ 0, ensuring the non-negativity of weights;

•
∑ni

j=1wij = 1, to normalize weights.

Optimal weights ŵij , maximizing the profile EL under the given constraints, are found by the

Lagrange multiplier method:

ŵij =
1

ni

1

1 + λ̂⊺
i (xij − x̄pop,i)

, (3.4)

where λ̂i solves
ni∑
j=1

xij − x̄pop,i

1 + λ̂⊺
i (xij − x̄pop,i)

= 0.

3.2.3 Limitation of empirical likelihood and a best practice advice for SAE

The existence of an optimum solution to the maximization problem for the calibration weights

ŵij is not necessarily guaranteed for applications in SAE. A necessary and sufficient condition

ensuring the existence of a solution for λ̂i is the existence of the zero vector as an interior

point in the convex hull of constraint matrix xij − x̄pop,i. Especially for small sample sizes

ni this condition requires scrutiny (Emerson and Owen, 2009). If sample means of xij for

area i strongly differ from x̄pop,i, for instance, due to a strong imbalance of individual sample

values xij around the area-specific mean from population data x̄pop,i, no optimal solution for

λ̂i and subsequently ŵij can be obtained. The dimensionality of existing covariates p relative

to the sample size ni exacerbates the problem. As a result, the constraints in matrix xij− x̄pop,i

are infeasible for finding a global optimum in Equation (3.4). Concrete empirical examples

are different largely unbalanced categorical covariates in xij , leading to column-wise multi-

collinearity in the ni × p matrix of constraints xij − x̄pop,i.

Overcoming mentioned technical requirements, Li et al. (2019) propose the use of the

adjusted empirical likelihood (AEL) approach by Chen et al. (2008), which forces the exis-

tence of a solution to Equation (3.4). Essentially, the introduced adjustment is an additional

pseudo-observation within each domain i, increasing area-specific sample sizes to ni+1. This

pseudo-observation is jointly calculated from respective area-specific survey and census means

of covariates (Chen et al., 2008). Although the added adjustment-observation reduces risks of

numerical instabilities, it simultaneously imposes difficulties from an applied perspective of

SAE. Emerson and Owen (2009) scrutinize the application of AEL in the context of multi-

variate population means, maintaining that the added pseudo-observation distorts the true like-

lihood configuration even for moderate dimensions of p in cases of low area-specific sample

sizes ni. Chen et al. (2008, p. 430) note, that the problem is mitigated if the semi-parametric

model is correctly specified and if the initial estimates for x̄smp,i are not too far away from
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the true population mean. Nevertheless, we observe that the influence of the bound-correction

of Chen et al. (2008) used by Li et al. (2019) has drawbacks, which we will discuss in the

model-based simulation in Section 3.4.

Dealing with empirical examples characterized by low domain-specific sample sizes, we

abstain from the approaches of adding synthetic pseudo-observations to each domain. We

maintain that in the context of non-linear semi-parametric approaches (such as RFs) there is

a risk of including implausible individual predictions from f based on the pseudo-covariates,

i.e. ŷpseudo,i. In this sense, pseudo-observations manipulate the estimation of area-level means

under limited auxiliary information in two ways: indirectly through their effect on the determi-

nation of all weights ŵij and directly through the predicted pseudo-value that is added to the

survey sample.

We postulate a stepwise approach to ensure a solution to Equation (3.4) for each area i un-

der a reduced risk of distortions driven by improper pseudo-values through optimization bound-

corrections. This approach can be interpreted as a best-practice strategy on the incorporation of

maximal auxiliary covariate information through calibration weights in Equation (3.4) for the

estimation of area-level means with MERFs. In detail, we first check for each area i whether

perfect column-wise-dependence in the p× ni matrix of constraints (xij − x̄pop,i)j=1,...,ni ex-

ists. If so, we remove perfectly collinear columns and rerun the optimization. Subsequently,

we proceed along two dimensions: a) increasing the sample size of i-th area and b) decreasing

the number of auxiliary covariates p to calculate ŵij for area i. For a) we advise to sample a

moderate number of observations (e.g., 10) randomly with replacement from an area which is

“closest” to area i. We refer to areas as “closest”, if they have the smallest Euclidean distance

in census-level information x̄pop,i. This additionally allows to handle out-of-sample areas. For

b) we propose a backward selection of covariate information based on the variable importance.

Variable importance are RF-specific metrics that enable the ranking of covariates reflecting

their influence on the predictive model. As we are primarily concerned about the order of

influence of covariates, we rank based on the mean decrease in impurity importance, which

measures the total decrease in node-specific variance of the response variable from splitting,

averaged over all trees (Biau and Scornet, 2016). Overall, our strategy to handle potential fail-

ure in the solutions for weights and out-of-sample domains is summarized in the following

algorithmic strategy:

1. Use MERF to obtain estimates f̂ , û, σ̂2
u, and σ̂2

e from available unit-level survey data and

estimate the indicator µ̂MERFagg
i (3.3) including weights ŵij following Equation (3.4).

2. If the calculation of weights fails due to infeasibility of constraints in the optimization

problem for area i:

(a) Check the feasibility of constraints used in the optimization and remove perfectly

co-linear columns in (xij − x̄pop,i)j=1,...,ni . Retry the optimization in Equation

(3.4).

(b) If the calculation of weights fails again, optionally enhance the domain-specific

sample size of area i by sampling randomly with replacement from the most “sim-
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ilar” domain according to the minimal row-wise Euclidean distance between area-

specific aggregated covariate vectors x̄pop,i. Retry the calculation of weights ŵij .

(c) If it fails again, reduce the number of covariates used for the calculation of weights

for area i. Starting with the least influential covariate based on variable importance

from f̂ , reduce the number of covariates in each step and retry the calculation of

weights after each step.

(d) If the calculation of weights was not possible in step (c), set ŵij to 1/ni. These

weights are non-informative for incorporating auxiliary information, however, the

model-based estimates f̂(xij)+ ûi still comprise information from other in-sample

areas.

3. Calculate the indicator for the i-th area as proposed by Equation (3.3).

The general performance is illustrated by the results of the model-based simulation in Sec-

tion 3.4. Furthermore, the proposed best-practice strategy will be demonstrated in the applica-

tion in Section 3.5.

3.3 Uncertainty estimation

The area-wise MSE is a conventional measure for SAE to assess the uncertainty of provided

point estimates. While the quantification of uncertainty is essential for determining the quality

of area-level estimates, its calculation remains a challenging task. For instance, even for the

BHF model with block diagonal covariance matrices, the exact MSE cannot be analytically

derived with estimated variance components (Prasad and Rao, 1990; Datta and Lahiri, 2000;

González-Manteiga et al., 2008; Rao and Molina, 2015). Thus, the estimation of uncertainty

by elaborate bootstrap-schemes is an established alternative (Hall and Maiti, 2006; González-

Manteiga et al., 2008; Chambers and Chandra, 2013).

General statistical results concerning the inference of area-level indicators from MERFs in

SAE are rare, especially in comparison to the existing theory of inference using LMMs. Al-

though the theoretical background for predictions from RFs grows (Sexton and Laake, 2009;

Wager et al., 2014; Wager and Athey, 2018; Athey et al., 2019; Zhang et al., 2019), existing

research mainly aims to quantify the uncertainty of individual predictions. From a survey per-

spective, Dagdoug et al. (2022) recently analyse theoretical properties of RF in the context of

complex survey data. The extension of these results for partly-analytical uncertainty measures

in the context of dependent data structures and towards area-level indicators is non trivial and

a conducive topic for theoretical SAE.

In this paper, we propose a non-parametric bootstrap for finite populations estimating the

MSE of the introduced area-level estimator under limited aggregate information defined by

Equation (3.3). Essentially, we aim to find a solution to two problems simultaneously: Firstly,

we need to flexibly capture the dependence-structure of the data and uncertainty introduced

by the estimation of Model (3.1). Secondly, we face problems in simulating a full bootstrap

population in the presence of aggregated census-level data.
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Our proposed solution to this dual problem is the effective combination of two existing

bootstrap schemes introduced by Chambers and Chandra (2013) and González-Manteiga et al.

(2008). Addressing the problem of non-parametric generation of random components, we

rely on the approach introduced by Chambers and Chandra (2013). One key-advantage is

its leniency to potential specification errors of the covariance structure, as the extraction of

the empirical residuals only depends on the correct specification of the mean behaviour func-

tion f of the model. Solving the problem of missing unit-level population covariate data, we

base the general procedure on the methodological principles of the parametric bootstrap for

finite populations introduced by González-Manteiga et al. (2008) adapted to the estimation

of domain-level means. This allows us to find (pseudo-)true values by generating only error

components instead of simulating full bootstrap populations. An important step concerning

the handling and resampling of empirical error components is centring and scaling them by a

bias-adjusted residual variance proposed by Mendez and Lohr (2011). In short, the estimator

of the residual variance under the MERF from Equation (3.2), σ̂2
ϵ is positively biased, as it

includes excess uncertainty concerning the estimation of function f̂ . Further methodological

details on the modification of the approach by Chambers and Chandra (2013) for MERFs for

area-level means under unit-level models are found in Krennmair and Schmid (2022). Note

that our proposed non-parametric MSE-bootstrap algorithm works for in- and out-of sample

areas. The steps of the proposed bootstrap are as follows:

1. Use estimates f̂ , σ̂e, σ̂u, and respective weights ŵij from the application of the proposed

method as summarized in Equation (3.3) on survey data with metric target variable yij .

2. Calculate marginal residuals r̂ij = yij−f̂(xij) and use them to compute level-2 residuals

for each area by r̄i =
1
ni

∑ni
j=1 r̂ij for i = 1, ...D.

3. To replicate the hierarchical structure we use the marginal residuals and obtain the vector

of level-1 residuals by rij = r̂ij−r̄i. Level-1 residuals rij are scaled to the bias-corrected

variance σ̂2
bc,ϵ (Mendez and Lohr, 2011) and centred, denoted by rcij . Level-2 residuals

r̄i are also scaled to the estimated variance σ̂2
v and centred, denoted by r̄c.

4. For b = 1, ..., B:

(a) Simple random sampling with replacement (srswr) for each area i from the em-

pirical distribution of scaled and centred level-1 (sample 1 value for each area i)

and level-2 (sample ni value for each area i) residuals to obtain the following three

random components:

r
∗(b)
ij = srswr(rcij , ni) , ē

∗(b)
i = srswr(rcij

σ̂bc,ϵ√
Ni − ni

, 1), and

u
∗(b)
i = srswr(r̄c, 1).

(b) Compute (pseudo-)true values for the population based on the fixed effects from
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area-wise mean estimates µ̂MERFagg
i , as:

ȳ
(b)
i =

ni∑
j=1

ŵij f̂(xij) + u
∗(b)
i + Ē

(b)
i , where

Ē
(b)
i =

ni

Ni
r̄
∗(b)
ij +

Ni − ni

Ni
ē
∗(b)
i .

(c) Use the known sample covariates xij to generate the bootstrap sample response

values in the following way:

y
(b)
ij = f̂OOB(xij) + u

∗(b)
i + r

∗(b)
ij .

We use OOB-predictions from f̂ to imitate variations of xij covariates through

predictions from unused observations within each tree in the fitting process that

vary throughout the bootstrap replications.

(d) Estimate µ̂
MERFagg(b)
i with the proposed method from Equation (3.3) on bootstrap

sample values y
(b)
ij . Note that weights ŵij remain constant over B replications

because the original survey covariates xij and population-level covariates x̄pop,i

remain unchanged over B.

5. Finally, calculate the estimated MSE for the area-level mean for areas i = 1, ..., D

M̂SEi =
1

B

B∑
b=1

[(
µ̂

MERFagg(b)
i − ȳ

(b)
i

)2]
.

3.4 Model-based simulation

The model-based simulation allows for a controlled empirical assessment of our proposed

methods for point and uncertainty estimates. Overall, we aim to show, that the proposed

methodology from Section 3.2 and Section 3.3 performs as well as traditional SAE methods

and has advantages in terms of robustness against model-failure. In particular, we study the

performance of the proposed MERFs under limited data access (MERFagg, (3.3)) to the direct

estimator, the TNER2 estimator proposed by Li et al. (2019), the BHF estimator (Battese et al.,

1988) as well as the MERF assuming access to unit-level census data (MERFind, (3.2)) by

Krennmair and Schmid (2022). The direct estimator only uses sampled data to estimate the

mean, which implies a strong dependence between the area-specific sample size and the qual-

ity of estimates. The BHF model serves as an established baseline model for the estimation of

area-level means under limited auxiliary data. The TNER2 aims to provide an alternative to the

BHF, introducing aspects of transformations under limited data access. General differences

in the performance of the direct, BHF, and TNER2 estimator to the two MERF candidates

(MERFagg, MERFind) indicate advantages of semi-parametric and non-linear modelling in the

given data scenarios. The additional inclusion of the MERFind enables a direct comparison

regarding the effect of access to aggregated auxiliary data (MERFagg) and existing unit-level

auxiliary data (MERFind).
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Table 3.1: Model-based simulation scenarios

Scenario Model x1 x2 µi v ϵ

Normal y = 5000− 500x1 − 500x2 + v + ϵ N(µi, 3
2) N(µi, 3

2) unif(−1, 1) N(0, 5002) N(0, 10002)
Pareto y = 5000− 500x1 − 500x2 + v + ϵ N(µi, 3

2) N(µi, 3
2) unif(−1, 1) N(0, 5002) Par(3, 800)

Interaction y = 1000 + 100x1x2 + 75x2 + v + ϵ N(µi, 2
2) N(µi, 1) unif(−7, 7) N(0, 5002) N(0, 10002)

Logscale y = exp(7.5− 0.25x1 − 0.25x2 + v + ϵ) N(µi, 1) N(µi, 1) unif(−3, 3) N(0, 0.152) N(0, 0.252)

We consider four scenarios denoted as Normal, Pareto, Interaction, and Logscale and re-

peat each scenario independently M = 500 times. All four scenarios assume a finite population

U of size N = 50000 with D = 50 disjunct areas U1, ..., UD of equal size Ni = 1000. We

generate samples under stratified random sampling, utilizing the 50 small areas as stratas, re-

sulting in a sample size of n =
∑D

i=1 ni = 1229. The area-specific sample sizes range from 5

to 50 sampled units with a median of 21 and a mean of 25. The sample sizes are comparable

to area-level sample sizes in the application in Section 3.5 and can thus be considered to be

realistic.

The choice of the simulation scenarios is motivated by our aim to evaluate the performance

of the competing methods for economic and social inequality data. This includes skewed data,

deviations from normality of error terms, or the presence of unknown non-linear interactions

between covariates, that might trigger model-misspecifications in traditional SAE approaches

based on LMMs. The data generating processes for the used scenarios are provided in Table

3.1. Scenario Normal provides a baseline under a LMM with normally distributed random ef-

fects and unit-level errors. As the model assumptions for LMMs are fully met, we aim to show

that the MERFagg performs similarly well compared to linear competitors. Scenario Pareto

is based on the same linear additive structure as scenario Normal, but has Pareto distributed

unit-level errors. This leads to a skewed target variable, comparable to empirical cases of mon-

etary data. The data generating process of scenario Interaction likewise results in a skewed

target variable yij , although it shares its structure of random components with Normal. The

Interaction scenario portrays advantages of semi-parametric and non-linear modelling meth-

ods protecting against model-failure arising from models with unknown interactions. Scenario

Logscale introduces an additional example resulting in a skewed target variable. Log-normal

distributed variables mimic realistic income scenarios and constitute a showcase for SAE trans-

formation approaches. We want to show the ability of MERFs and particularly of MERFagg

to handle such scenarios as well by identifying the non-linear relation introduced trough the

transformation on the linear additive terms.

We evaluate point estimates for the area-level mean over M replications by the empirical

root MSE (RMSE), the relative bias (RB), and the relative root mean squared error (RRMSE).

As quality-criteria for the evaluation of the MSE estimates, we choose the relative bias of

RMSE (RB-RMSE) and the relative root mean squared error of the RMSE (RRMSE-RMSE):

RMSEi =

√√√√ 1

M

M∑
m=1

(µ̂
(m)
i − µ

(m)
i )2,

RBi =
1

M

M∑
m=1

(
µ̂
(m)
i − µ

(m)
i

µ
(m)
i

)
,
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RRMSEi =

√√√√ 1

M

M∑
m=1

(
µ̂
(m)
i − µ

(m)
i

µ
(m)
i

)2

,

RB-RMSEi =

√
1
M

∑M
m=1MSE

(m)
est,i −RMSEi

RMSEi
,

RRMSE-RMSEi =

√
1
M

∑M
m=1

(√
MSE

(m)
est,i −RMSEi

)2

RMSEi
,

where µ̂
(m)
i is the estimated mean in area i based on any of the methods mentioned above and

µ
(m)
i defines the true mean for area i in replication m. MSE

(m)
est,i is estimated by the proposed

bootstrap from Section 3.3.

For the computational realization of the model-based simulation, we use R (R Core Team,

2022). The BHF estimates are realized from the sae-package (Molina and Marhuenda, 2015).

For the estimates of the TNER2, we used code provided by Li et al. (2019). For estimates

based on the MERF approach, we use the packages ranger (Wright and Ziegler, 2017) and

lme4 (Bates et al., 2015) to implement our method (MERFagg) and the MERFind estimator

(Krennmair and Schmid, 2022). For RFs, we set the number of split-candidates to 1, keeping

the default of 500 trees for each forest.

3.4.1 Performance of point estimators of the small area means

We start with a focus on the performance of point estimates. Figure 3.1 reports the empiri-

cal RMSE of each point estimation method under the four scenarios. As expected, the direct

estimates perform poorest due to the low sample sizes and the complexity of the data gen-

erating process. In these specific settings, the TNER2 estimator outperforms direct estimates

but performs worse compared to the BHF. In the Pareto and Logscale scenario, benefits of

transformations might be suppressed by the influence of pseudo-observations due to the AEL

approach, as discussed throughout the methodological Section 3.2.3 of this paper.

In the Normal scenario, the BHF performs best as it replicates the data generating process.

The MERFind and the MERFagg perform on a comparable level, underlining the quality of

our proposed calibration approach to incorporate aggregated census-level information through

the weights. MERFagg shows a better performance in median values, however the range of

area-specific RMSE values is larger compared to MERF estimates based on unit-level census

information. One area with particularly low sample size has a relatively high level of RMSE,

which is explainable by the dependence of the optimum function for the weights in Equation

(3.4) on ni.

We observe similar patterns in the Pareto scenario. The BHF has one outlier for an area

with low sample size. As anticipated, the performance of both MERF candidates is comparable

to the Normal scenario, confirming robust behaviour under skewed data and violations of the

normal distribution of errors. Since MERFagg behaves comparably, the robustness also holds

for the calculation of calibration weights.

In the Interaction scenario, the point estimates of the proposed MERFagg outperform tra-
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Figure 3.1: Empirical RMSE comparison of point estimates for area-level averages under four
scenarios

ditional SAE approaches under limited auxiliary information. Apparently the LMM-based

methods cannot sufficiently capture the underlying predictive relation between the covariates,

while the MERFs detect the non-linear term. Regarding the impact of restricted covariate data

access, we observe relatively low values of mean and median RMSE compared to the hypo-

thetical case of existing unit-level data in MERFind. Four outliers in areas with low sample

sizes for MERFagg become apparent, although the median RMSE is lowest. We maintain, that

this phenomenon can be mitigated if we increase the size of “close” observations from other

areas to a higher level, especially in cases of complex interactions of effects in covariates such

as Interaction.

The last scenario Logscale shows that the MERFagg outperforms the direct and LMM-

based competitors. Similar to the Interaction and Pareto scenario, the effect of covariate data

access - comparing MERFagg and MERFind - is not severe for an average area.

Overall, the results from Figure 3.1 indicate that the MERF performs comparably well

to LMMs in simple scenarios, and outperforms traditional SAE models in the presence of

complex data generating processes, such as unknown non-linear relations between covariates

or non-linear functions. Additionally, the robustness against model-misspecification of MERFs

and their calibration weights ŵij holds if distributional assumptions for LMMs are not met, i.e.

in the presence of non-normally distributed errors and skewed data. The influence of unit-level

versus aggregated covariate information appears to be marginal in all of our four scenarios. We

observe a moderate dependence between sample sizes and the quality of area-specific means

for MERFagg, which is mainly explained by the way the calibration weights rely on the quality

of survey data for a respective area i as discussed in Section 3.2.2.

71



CHAPTER 3. ANALYSING OPPORTUNITY COST OF CARE WORK USING MERFS

Table 3.2: Mean and Median of RB and RRMSE over areas for point estimates in four scenarios

Normal Pareto Interaction Logscale
Median Mean Median Mean Median Mean Median Mean

RB

Direct 0.0000 0.0002 0.0001 0.0004 -0.0005 0.0076 0.0003 0.0010
TNER2 0.0002 -0.0001 -0.0003 -0.0008 0.0010 0.0187 -0.0014 -0.0020

BHF 0.0009 0.0013 0.0019 0.0022 0.0031 0.0233 -0.0188 -0.0225
MERFind 0.0014 0.0019 0.0033 0.0038 0.0071 0.0061 0.0076 0.0082
MERFagg 0.0001 0.0005 0.0011 0.0016 0.0034 0.0138 0.0004 0.0002

RRMSE

Direct 0.0984 0.1080 0.0994 0.1100 0.1570 1.1500 0.0978 0.1030
TNER2 0.0838 0.0886 0.0876 0.0915 0.1550 1.2900 0.0866 0.0879

BHF 0.0392 0.0418 0.0368 0.0418 0.1590 1.2900 0.1670 0.1760
MERFind 0.0417 0.0450 0.0398 0.0441 0.1370 1.5900 0.0620 0.0636
MERFagg 0.0409 0.0451 0.0409 0.0446 0.1330 1.2900 0.0610 0.0634

Table 3.2 reports the corresponding values of RB and RRMSE for the discussed point

estimates. The RB and the RRMSE from the MERFagg attest a competitively low level under

all scenarios. All model-based MERF estimators have a lower mean and median RRMSE

compared to the direct estimator in all scenarios. Despite a few outliers for RMSE and RB

(cf. Figure 3.1), the median and mean values of MERFagg are remarkably low emphasizing

the quality of estimates given the the substantial reduction in required covariate information.

3.4.2 Performance of the bootstrap MSE estimator

We scrutinize the performance of our proposed MSE estimator on the four scenarios, examin-

ing whether the proposed procedure for uncertainty estimates performs equally well in terms

of robustness against model-misspecification and in cases of limited access to auxiliary infor-

mation.

For each scenario and each simulation round, we choose B = 200 bootstrap replications.

From the comparison of RB-RMSE among the four scenarios provided in Table 3.3, we infer,

that the proposed non-parametric bootstrap-procedure effectively handles all four scenarios.

This is demonstrated by relatively low mean values of positive RB-RMSE over the 50 areas

after M replications. From an applied perspective, we prefer over- to underestimation for

the MSE as it serves as an upper bound. We mainly use the area-level MSE for the further

assessment in terms of CVs and consequently overestimation of area-level MSEs leads to an

increased CVs. If our CVs are still below the thresholds, the estimates are definitely acceptable.

The difference in RB-RMSE between Normal and Pareto is marginal, indicating that the non-

parametric bootstrap effectively handles non-Gaussian error terms.

Figure 3.2 provides additional intuition on the quality of our proposed non-parametric

MSE-bootstrap estimator. Given the area-wise tracking properties in all four scenarios, we

conclude that our MSE estimates strongly correspond to the empirical RMSE. We infer that

the overestimation in Table 3.3 is mainly driven by overestimation in areas with low sample

sizes. Thus, our non-parametric MSE estimator provides an upper bound for the uncertainty of
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Table 3.3: Performance of MSE estimator in model-based simulation: mean and median of
RB-RMSE and RRMSE-RMSE over areas

Normal Pareto Interaction Logscale
Median Mean Median Mean Median Mean Median Mean

RB-RMSE 0.0525 0.0591 0.0596 0.0643 0.0192 0.0205 -0.0117 0.0054
RRMSE-RMSE 12.7000 15.6000 30.6000 34.3000 9.9000 12.4000 22.9000 25.3000

Interaction Logscale
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Figure 3.2: Estimated and empirical area-level RMSEs for four scenarios

particular difficult point estimates due to low sample sizes. Apart from this characteristic, we

observe no further systematic differences between the estimated and empirical MSE estimates

regarding their performance throughout our model-based simulation.

3.5 Application

This section starts with a description of data sources and outlines our empirical analysis. We

describe the survey data SOEP (Socio-Economic Panel) and discuss primary direct estimates

on spatial differences of average individual opportunity cost of care work for German RPRs.

Moreover, we propose the use of model-based SAE, which incorporates auxiliary variables

from the 2011 German census. Demonstrating our proposed method of MERFs with aggre-

gated data for point and uncertainty estimates, we show advantages to existing model-based

SAE methods. Finally, we discuss our empirical findings concerning the cost of care work in

Germany. We conduct the analysis with R (R Core Team, 2022).
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3.5.1 Data sources and direct estimates of spatial opportunity cost of care work

The SOEP was established in 1984 by the German Institute of Economic Research (DIW) and

evolved into an imperative survey for Germany regarding multidisciplinary social information

on private households (Goebel et al., 2019). Statistical considerations regarding sampling de-

signs and representativeness of the longitudinal data set, justify its relevance for governmental

institutions, policy makers, and researchers alike. For our primary calculation of opportunity

cost of care work, we need information on individual income as well as hours worked on the job

and for care work. This information is only provided in the SOEP, in contrast to the German

Microcensus (Statistisches Bundesamt, 2015), where income is only available as an interval

censored variable.

We construct the target variable of individual monthly opportunity cost of care work from

the SOEP in 2011 (Socio-Economic Panel, 2019) and use the available refreshment samples.

We choose the year 2011 because the last census was in this year and therefore census and

survey data have no time inconsistencies. The underlying sampling design is a multi-stage

stratified sampling procedure: Initially, stratification is carried out into federal states, govern-

mental regions, and municipalities. Subsequently, addresses are sampled using the random

walk methodology within each primary sampling unit (Kroh et al., 2018). Our analysis focuses

on the working age population aged between 15 to 64, as defined by international standards

(OECD, 2020). In detail, we calculate the individual opportunity cost in Euro per month for

2011 as follows: first, we compute opportunity cost as hourly wage by taking the mean gross

individual income divided by hours of paid work. Then, we multiply the hours of monthly

unpaid work due to child- or elderly-care by the hourly cost of opportunity. The resulting

metric target variable yij for Germany is highly skewed, ranging from 0e to 2413.79e (mean:

100.96e and median: 176.93e ). A histogram is provided in Figure 3.3.

In total we have 3939 sample survey observations. National averages do not serve for

monitoring efficacy of regional developments and policy measures. Our major interest is a finer

spatial resolution to map regional patterns of opportunity cost of care work across Germany.

We analyse 96 respective RPRs in Germany, resulting in area-specific sample sizes from 4 to

158 with a mean of 35 and median of 41. First results of direct estimates can be seen in the map

in Figure (3.3). Estimates of the mean monthly opportunity cost of individual care work range

from 64.31e (Oberpfalz-Nord) to 409.38e (Neckar-Alb). In general, we observe no major

difference between former East and West Germany. Additionally, levels of opportunity cost

are higher in metropolitan areas surrounding cities than in the cities itself and compared to

rural areas.

Small sample sizes lead to unreliable estimates accompanied by high variances. Further-

more, we are not allowed to report direct estimates from regions with sample size below 10

due to confidentiality agreements with the data provider. This is the case for 7 RPRs. To ob-

tain variances and subsequently determining the coefficients of variation (CV) for the direct

estimates, we use the calibrated bootstrap by Alfons and Templ (2013) implemented in the R-

package emdi by Kreutzmann et al. (2019). Eurostat (2019a) postulates that estimates with a

CV of less than 20% can be considered as reliable. As reported by Figure 3.3, more than half

of the regions (47 out-of reaming 89) exceed this threshold.
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Figure 3.3: Overview of direct estimates, corresponding CVs and the distribution of opportu-
nity cost of care work in Germany.

The direct estimation results suffer from differences in quality due to low area-level sample

sizes and specifically high variability. Model-based SAE methods help to improve the estima-

tion accuracy of results. As SOEP auxiliary variables are measured in the same way as in the

Germans census (Statistisches Bundesamt, 2015), census covariate data can serve as auxiliary

information needed in SAE models. However, the German census provides information only

at aggregated RPR-levels. Overall, we have 19 covariates on personal and socio-economic

background within our sample for which we additionally received corresponding means from

the German Statistical Office calculated from the German 2011 census. Details on available

covariates and their variable importance is provided within the Appendix in Table B.1.

3.5.2 Model-based estimates

This section illustrates the application of our proposed method for MERFs with aggregate

covariate data for the estimation of area-level means. We map the estimated monthly mean

opportunity cost of unpaid care work for 96 RPRs in Germany for the year 2011. Moreover,

we assess the quality of our estimates by providing CVs based on our proposed non-parametric

MSE-bootstrap procedure discussed in Section 3.3 and juxtapose our results to the previously

discussed direct estimates and the well-established BHF model by Battese et al. (1988). A full

comparison to the TNER2 estimates (Li et al., 2019) is not possible because Li et al. (2019) do

not provide uncertainty estimators required for a qualitative comparison in terms of CVs.

As reported by Figure 3.3, our target variable of individual opportunity cost is highly

skewed, indicating that traditional LMMs (such as the BHF) run the risk of model-misspe-

cification. In contrast, our proposed procedure shows robustness against model-failure due to

75



CHAPTER 3. ANALYSING OPPORTUNITY COST OF CARE WORK USING MERFS

100

200

300

400

MERFagg estimates of 
average monthly 
opportunity cost of 
care work [€]

Figure 3.4: Spatial representation of area-level mean estimates from MERFagg (3.3) for mean
monthly opportunity cost of care work [e ].

outliers or complex data structures. Apart from specifying separate regions being modelled as

random intercepts, the proposed MERFagg approach can be seen as purely data-driven: We

train a predictive model on the survey set and incorporate as much auxiliary information for

the determination of area-specific calibrations weights as possible based on the variable impor-

tance obtained from the fitted RF object f̂ . For this example we set the tuning parameter of the

RF to 500 sub-trees. Repeated 5-fold cross-validation supports the choice of proposing 5 ran-

domly drawn split candidates at each split for the forest. Regarding our best-practice strategy,

we chose that we want to calculate the weights based on a minimum of the 3 most influential

variables. An overview of the number of covariates included can be found in the appendix

(Figure B.1). For the non-parametric MSE bootstrap-procedure, we use B = 200.

The results from the application of MERFagg are reported in Figure 3.6. We primarily focus

on a discussion of technical details of estimates from our proposed approach and postpone the

contextual discussion of results to the end of this section. Overall we observe a dominance

of covariates of age, size of the household, households with a child, gender and whether the

person is employed in the public sector (cf. Table B.1 in the Appendix). Throughout all

96 areas, we incorporate auxiliary information from 3 up to 15 covariates from census-level

aggregates through optimal calibration-weights ŵij . A detailed map on the number of included

census-level covariates is provided in the Appendix within Figure B.1. Unfortunately this

attempt failed for 5 regions, which were left with uninformative weights ŵij = 1/ni. Although

these estimates do not incorporate auxiliary information, recall from Equation (3.3) that the

corresponding estimates are reduced to f̂(xij) + ûi and thus still rely on the model-based

estimates comprising information from other in-sample areas.

A comparison between the maps from direct estimates in Figure 3.3 and estimates based
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Figure 3.5: Detailed comparison of area-level mean estimates for monthly opportunity cost of
care work [e]. The 96 German RPRs are sorted by increasing sample size. We compare results
based on methods direct, BHF, and MERFagg.

on MERFagg from Figure 3.4 indicates that results form MERFagg appear to be more balanced

and overall no major differences regarding changes in regional patterns of opportunity cost of

care work are observable. Figure 3.5 sorts areas by increasing survey sample sizes and thus

allows for a more precise discussion on peculiarities of point estimates for area-level means

of monthly opportunity cost for the 96 RPRs. Estimates from the BHF method are produced

form the R-package sae (Molina and Marhuenda, 2015). Although, the raw comparison of

point estimates only allows for limited findings regarding the quality of methods, we report

the mitigation of two outlier-driven direct estimates. Compared to the direct estimates, as well

as the estimates from the BHF, the MERFagg produces relatively lower values although the

estimates track patterns of high- and low levels with increasing survey sampling size.

As already discussed, direct estimates suffer from relatively low accuracy measured by

their respective CVs. Figure 3.6 juxtaposes CVs for direct estimates, the BHF, and our pro-

posed method of MERFagg to contextualize the performance of point estimates from Figure

3.5. We observe that CVs for MERFagg are on average smaller compared to CVs from direct

estimates as well as the BHF. According to the boxplots in Figure 3.6, model-based estimates

produce more accurate results indicated by lower CVs than direct estimates. MERFagg shows

the lowest CVs compared to the other methods in mean and median-terms. Two areas can be

considered as outliers reporting CVs over 0.3. For one of these two regions, the calculation of

weights failed. The MERFagg estimates improve the direct estimates: Only 15 areas from 96

do not meet the required threshold of 20%. As expected, especially for areas that are unreliable

due to low sample sizes, model-based estimates improve the accuracy. In turn, we observe
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Figure 3.6: Left: Comparison of area-specific CVs ordered from low to high sample sizes.
Right: Comparison of CVs over 96 respective areas between direct, BHFand MERFagg. The
red line marks the 20%-criterion for defining reliable estimates by Eurostat (2019a).

that the direct estimates are relatively accurate for areas with high sample sizes. Compared to

other model-based SAE methods, survey weights are not directly used in the model-fitting for

MERFagg. Although it is generally possible to incorporate survey weights in the importance

sampling within a forest, we maintain that the efficient use of survey weights with MERFs for

the estimation of area-level indicators requires further research which would exceed the scope

of this paper.

Overall, all RPRs throughout Germany report comparable levels of average individual

monthly opportunity cost of care work. Nevertheless, a detailed inspection of Figure 3.4 re-

veals a small cluster of lower values in the North-East of Germany. From a causal perspective,

the explanation of such patterns appears to be difficult and not effective. Wage and individual

opportunity cost directly relate while time spent for care work negatively affects opportunity

cost. Thus, it is not observable whether the effect is driven by differences in average income

or increased time-allocation for care work or both. On the other hand, the concept allows us to

uncover and map the value of unpaid care work on a sub-regional-level in Germany.

3.6 Conclusion

In this paper, we provide a coherent framework enabling the use of RFs for SAE under limited

auxiliary data. Our approach meets modern requirements of SAE, including the robustness

against model-failure and aspects of data-driven model-selection within the existing method-

ological framework of SAE. We introduce a semi-parametric unit-level mixed model, treating

78



CHAPTER 3. ANALYSING OPPORTUNITY COST OF CARE WORK USING MERFS

LMM-based SAE methods, such as the BHF and the EBP, as special cases. Furthermore, we

discuss the MERF procedure (Hajjem et al., 2014) and its application to SAE as introduced

by Krennmair and Schmid (2022). We address the challenging task of incorporating aggre-

gated census-level auxiliary information for MERFs and propose the use of calibration weights

based on a profile EL optimization problem. We deal with potential issues of numerical in-

stabilities of the EL approach and propose a best practice strategy for the application of our

proposed estimator MERFagg for SAE. The proposed point estimator for area-level means is

complemented by a non-parametric MSE-bootstrap-scheme. We evaluate the performance of

point and MSE estimates compared to traditional SAE methods by a model-based simulation

that reflects properties of real data (e.g., skewness). From these results, we conclude that our

approach outperforms traditional methods in the existence of non-linear interactions between

covariates and demonstrates robustness against distributional violations of normality for the

random effects and for the unit-level error terms. Moreover, we observe that the inclusion of

aggregated information through calibration weights based on EL works reliably. Regarding the

performance of our MSE-bootstrap scheme, we observe moderate levels of overestimation and

report authentic tracking behaviour between estimated and empirical MSEs. We focus on a

distinctive SAE example, where we study the average individual opportunity cost of care work

for Germany RPRs. Overall, we provide an illustrative example on how to use our data-driven

best practice strategy on MERFs in the context of limited auxiliary data. Comparing direct to

model-based results, we show that differences between German RPRs are small and balanced.

Nevertheless, we allocate a small cluster of lower levels of average individual opportunity cost

of care work in the North-Eastern part of Germany.

From an empirical perspective, we face limitations that directly motivate further research.

Firstly, we only calculate the opportunity cost of the working population and neglect care work

done by people who already left the labour market due to care work issues. Despite its long

tradition in economics, the basic concept of opportunity cost (treating the shadow value of

care work equivalently to hourly wage from labour) faces drawbacks. Different models from a

health and labour economic perspective (e.g., Oliva-Moreno et al. (2019)) can be integrated into

our approach. Nevertheless, given the data and our initial aim to provide a general methodology

for regional mapping of care work specific regional differences, we consider the hourly wage

as a first reasonable approximation to the unobservable “real” shadow price.

We motivate two major dimensions for further research, including theoretical work and

aspects of generalizations. From a theoretical perspective, further research is needed to inves-

tigate the construction of a partial-analytical MSE for area-level means or the construction of

an asymptotic MSE estimator. From a statistical perspective, an in-depth analysis regarding

the effects of incorporating survey weights into RFs and particularly MERFs under aggregated

covariate data is needed for point and uncertainty estimates, as this would clearly exceed the

scope of the present paper. Our approach shares the EL-calibration-argument with Li et al.

(2019), however, saves on the computationally intensive procedure of a smearing step (Duan,

1983) without drawbacks on the predictive performance, because no transformations and cor-

responding bias exists. Nevertheless, we maintain that pairing our approach with a smearing

argument allows for a more general methodology and subsequently for the estimation of in-
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dicators such as quantiles (Chambers and Dunstan, 1986). Although, we will leave a detailed

discussion of this idea to further research, a short outline of the argument can be found in the

Appendix B.2. Apart from generalizations to quantiles, the approach of this paper is generaliz-

able to model (complex) spatial correlations. Additionally, a generalization towards binary or

count data is possible and left to further research. The semi-parametric composite formulation

of Model (3.1) allows for f to adapt any functional form regarding the estimation of the condi-

tional mean of yij given xij and technically transfers to other machine learning methods, such

as gradient-boosted trees or support vector machines.
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Appendix B

B.1 Additional information on the application (Section 3.5)

Table B.1: Auxiliary variables on personal and socio-economic background and their variable
importance based on the trained RF f̂ .

Covariates Variable importance

Age in years 30715147.623
Number of persons living in household 17109846.300
Position in Household: Child 7519805.884
Sex 4031803.086
Employment status: civil servants 3704520.439
Employment status: employed without 3078656.890

national insurance (e.g. mini-jobber)
Tenant or owner 2632970.858
Position in Household: single parent 2500261.812
Migration background: direct 2453187.125
Position in Household: living alone 1380917.681
Position in Household: marriage-like 1341933.482
Migration background: indirect 1207604.491
Grouped nationality: European Union (excluding Germany) 697919.972
Grouped nationality: remaining European countries 468653.092
Grouped nationality: Asia 367207.174
Grouped nationality: North America 224042.331
Grouped nationality: Australia 45084.788
Grouped nationality: Africa 10109.844
Grouped nationality: South America 5150.957
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B.2 Extension towards the estimation of quantiles

Smearing approach and estimation of means: The smearing argument form Duan (1983)

could be optionally inserted in Equation (3.3) to estimate mean values

µ̂
MERFagg Smearing
i =

ni∑
j=1

[
ŵij

1

R

R∑
r=1

(f(xij) + ûi + e∗ir)

]
, (B.1)

where R is a suitably large number of smearing residuals and e∗ir are OOB model residuals:

e∗ij = yij − f(xij)
OOB − ûi.

Note that the formulation of Equation (B.1) coincidences with the estimator of Li et al. (2019),

if we choose f = x⊺
ijβ and draw e∗r from N(0, σ̂2

e). Additionally, they apply a data-driven

transformation on f(xij) + ûi + e∗ir.

Extension towards quantile estimation: The combination of a smearing argument (Duan,

1983) with a model of a finite-population CDF of y enables the estimation of area-specific

CDFs for yi. Chambers and Dunstan (1986) develop a model-consistent estimator for a finite-

population CDF from survey data and provide asymptotic results under LMMs. Tzavidis et al.

(2010) propose the use of the CDF method within a general unit-level SAE framework to

produce estimates of means and quantiles using robust methods. In the case of RF, it holds

that the predicted value of a non-sampled individual observation in area i is given by µ̂ij =

f̂(xij) + ûi, which expresses its expected value conditional on area i. We propose to obtain an

estimator of the area-level CDF F̂ ∗
i (t) using existing survey information modifying the CDF

method, by substituting µ̂ij = f̂(xij) + ûi and incorporating census-level information for

unsampled predictions via weights ŵij . The respective estimator for the area-level CDF F̂ ∗
i (t)

is summarized as:

F̂ ∗
i (t) = N−1

i

∑
j∈si

I(yij ≤ t) +R−1
∑
j∈si

R∑
r=1

niŵijI
(
f̂(xij) + ûi + e∗ir ≤ t

) , (B.2)

where e∗ij = yij − f(xij)
OOB − ûi. The area-level quantile q(i, ϕ) of ϕ ∈ [0, 1] can straight

forwardly be calculated by:

q̂i(ϕ) = F̂ ∗−1
i (ϕ).
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Chapter 5

Estimating regional unemployment
with mobile network data for
functional urban areas in Germany

5.1 Introduction

Since jobs are predominantly located in cities, more people move to the cities. For example, the

continuous growth of cities is creating shortages on the German housing and real estate markets

(Möbert, 2018). Most large cities have higher population growth rates than the national average

(see e.g., an interactive map of the Federal Institute for Research on Building, Urban Affairs

and Spatial Development (BBSR, 2017)). Due to urban labour migration, the number of people

living in cities is steadily increasing nationwide. As Buch et al. (2014), smaller cities recorded

less net immigration than large cities, which is caused by the attractiveness of larger cities

and the advantages of living in them. These are better infrastructure, more education and job

opportunities, an extensive cultural infrastructure, and other location-specific amenities (Buch

et al., 2014; Gans, 2017).

In contrast to this trend, unemployment rates in Germany are higher in the cities compared

to its surroundings. The unemployment rate is one of the most important economic indica-

tors. Unemployment has far-reaching indirect effects on the respective region: It favours the

decline of wage levels, educational activities within companies, population mobility, life and

health satisfaction, intelligence, and school performance, as well as rising right-wing extrem-

ism (Grözinger, 2009). The persistence of spatial disparities in unemployment in an economy

is also shown by Elhorst (2003). He points out that regional unemployment is influenced by

labour supply (affected by changes in the labour force, such as migration and commuting),

labour demand, and wage-setting factors. Kosfeld and Dreger (2006) conduct a spatial analysis

of the German regional labour market, showing that strong spatial dependencies can distort the

relationship between employment and unemployment. Also Patuelli et al. (2011) include spa-

tial linkages to effectively predict regional economic variables and to uncover spatial patterns.

Particularly, there are strong relationships of dependence between cities and their surrounding

areas. Identifying the cities as job magnets and finding high unemployment rates at the same
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time seems contradictory. According to Grözinger (2018), this phenomenon is a ’false’ effect

and can be explained by the common definition of unemployment. Traditional unemployment

rates are defined by the International Labour Organization (ILO) as the number of unemployed

persons counted at their place of residence divided by the total number of persons in the labour

force who are resident in the target area. This definition includes only the place of residence as

a focal point for calculating these rates. In contrast to traditional unemployment rates, an al-

ternative definition using the workplace as a focal point enables other insightful interpretation

possibilities. Following Grözinger (2018), this alternative definition puts the resident unem-

ployed of an area in relation to the labour force of the same area counted at the workplace.

The alternative unemployment rate include commuters at their workplace and thus reflect the

difference in the supply of jobs. This definition provides valuable information on missing

workplaces in regional areas and support policy decisions in urban planning. Thereby, policy-

makers can identify regions where it might be useful to promote the settlement of companies

to lower their unemployment rate and shorten commuter movements. For cities, lower alterna-

tive unemployment rates are assumed compared to the traditional definition. Low alternative

unemployment rates contribute to the attractiveness of cities and the moving and commuting

behaviour towards urban areas. Grözinger (2018) investigates this difference, among others,

for regional areas in the German federal states Bavaria and Schleswig-Holstein. Furthermore,

the comparison of both rates also provides valuable information on commuting behaviour in

regional areas.

For analysing unemployment rates in the context of commuter behaviour, we look at the

regional level of Functional Urban Areas (FUAs). For member countries of the Organisation

for Economic Co-operation and Development (OECD), FUAs have been created as harmonised

geometries describing urban areas (Dijkstra and Poelman, 2011). These regional areas are

composed of city cores and their commuting zones. In this application, we use the FUAs

in particular to include commuters and commuter areas to a greater extent. Hence, we are

interested in considering only the city core and commuter zone separately, which is a spatial

level underneath the FUA. We refer to our regional target level in the following as the FUA

sublevel. This spatial level is particularly suitable for comparing the two unemployment rates

described above, which differ in the spatial reference of the working population. Since this

regional level is available for all OECD countries, our comparison of unemployment rates is

transferable to other OECD countries and does not represent a purely German phenomenon.

Furthermore, due to data availability, we only consider Germany and particularly the federal

state of North Rhine-Westphalia (NRW) which is the federal state with the highest number of

commuters in Germany (Bundesagentur für Arbeit, 2022b).

To estimate unemployment rates, our primary data source is the European Union Labour

Force Survey (LFS). The LFS enables the estimation of both unemployment rates. The survey

is designed on the governmental regions level, which is a higher regional level than the FUA

sublevel (Eurostat, 2019b). According to the Nomenclature of Territorial Units for Statistics

(NUTS) of the European Union, the German governmental region correspond to the NUTS 2-

level and the districts to the NUTS 3-level. The FUA sublevel can be composed from the NUTS

3-level. Estimates on the spatial fine FUA sublevel that are only based on survey data (direct
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estimates) are likely to have large variances due to relatively small sample sizes. To increase the

accuracy of the direct estimates on lower spatial levels, small area estimation (SAE) methods

can be used (see e.g., Rao and Molina, 2015; Tzavidis et al., 2018). SAE methods generally

combine survey data with other data sources. For example, Costa et al. (2006), Pereira et al.

(2011), and Martini and Loriga (2017) estimate unemployment rates using SAE methods by

using administrative data as auxiliary information. Molina and Strzalkowska-Kominiak (2020)

discuss different types of SAE estimators to calculate the percentage of people in the labour

force for Swiss communes out of the LFS. They use administrative data that are provided at

unit-level as auxiliary information. Similarly, Marino et al. (2019) propose semi-parametric

empirical best prediction for unemployment rates that requires unit-level information. For

many research questions, appropriate register or administrative data is not available. In partic-

ular, unit-level data is strictly protected. Furthermore, aggregated data is often not available at

spatial finer resolutions, so that information at the target level is missing. One possibility is to

use alternative data sources as covariates. Toole et al. (2015) and Steele et al. (2017) propose the

usage of passively collected mobile phone data as auxiliary information, as they have a finer

spatial resolution, high timeliness, and are available in real time. Basically, mobile network

data can serve as a basis for producing statistics with a very high level of spatial, temporal and

population coverage. For example, Steele et al. (2017) use Call Detail Records (CDRs) from

the mobile network and remote sensing data for estimating poverty indices in developing coun-

tries. Toole et al. (2015) estimate changes in unemployment rates after shocks in the economy

in case of mass layoffs at a plant by using mobile phone data. Moreover, Marchetti et al. (2015)

have investigated solutions for a broad range of applications in using new digital data. They

suggest three ways to use new digital data together with SAE techniques and show the potential

of these data sources to mirror aspects of well-being and other socio-economic phenomena.

Our analyses are based on dynamic mobile network data, which is more widely available

and has more information content than mobile phone data. This data source validly reflects

actual commuting behaviour as well as time of day and residential population, which is im-

portant for providing auxiliary information. Since commuters and daytime population affect

unemployment rates, the usefulness of these covariates for estimating the traditional and alter-

native unemployment rates becomes apparent. Our application combines mobile network data

with data from the LFS to improve the estimation of both unemployment rates on the FUA sub-

level. The aim is to compare both definitions of unemployment rates at the level of interest, thus

highlighting the influence of commuters. As sample sizes are small at the FUA sublevel SAE

methods are needed. From a methodological perspective, we consider the Fay-Herriot (FH)

model (Fay and Herriot, 1979) using mobile network data as auxiliary information. The inverse

sine transformation of the dependent variable is used frequently in literature to estimate propor-

tions when applying the FH model (Casas-Cordero et al., 2016; Burgard et al., 2016; Schmid

et al., 2017). The transformation offers the advantage of stabilization of the sampling variances

and helps to approximate better the normality assumptions of the model. Casas-Cordero et al.

(2016), Burgard et al. (2016), and Schmid et al. (2017) apply a naive back-transformation to

obtain FH estimates and their confidence intervals on the original scale. In contrast, we use a

bias corrected back-transformation following Sugasawa and Kubokawa (2017) while using as
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well the inverse sine transformation. To measure the uncertainty of these specific FH estimates,

we propose a parametric bootstrap procedure orientated on González-Manteiga et al. (2008) to

receive not only confidence intervals but also estimates for the mean squared error (MSE). The

methodology is validated with official rates based on the Urban Audit. In a model-based simu-

lation study, we show the benefit of a bias corrected back-transformation compared to a naive

one.

The paper is structured as follows: Section 5.2 defines both types of unemployment rates

and explains how they deal differently with commuters. Subsequently, this section introduces

the data sources for constructing these indicators. Section 5.3 describes the statistical method-

ology. The SAE methods and the corresponding MSE estimation is applied in Section 5.4 to

estimate both unemployment rates for the German federal state NRW on FUA sublevel. Section

5.5 investigates the methodology on German data for estimating the traditional unemployment

rates and compares the results with official data. Furthermore, in Section 5.6, we conduct

a model-based simulation study to assess the quality of the proposed estimator. Section 5.7

discusses further research potential.

5.2 Data sources and definitions for regional unemployment rates

In this section, we first introduce the two definitions of unemployment rates each dealing dif-

ferently with commuters as well as our regional target level: the FUA sublevel (Section 5.2.1).

Subsequently, our two data sources are described: the LFS survey data (Section 5.2.2) and

mobile network data (Section 5.2.3).

5.2.1 Traditional and alternative definition of unemployment rates

The unemployment rate according to the definition of the ILO provides an international compa-

rable indicator (ILO, 2018). Following the ILO-definition, the traditional unemployment rate

θUR1,i for regional area i is given by

θUR1,i =
Ni,unempl. (residence)

Ni,unempl. (residence) + Ni,empl. (residence)
. (5.1)

This unemployment rate is defined by the number of unemployed persons living in area i

(Ni,unempl. (residence)) divided by the labour force of area i. The labour force is composed

of the number of unemployed and employed persons living in area i (Ni,unempl. (residence) +

Ni,empl. (residence)). For traditional unemployment rates, the focal point for counting employed

and unemployed persons is their place of residence, where persons aged 15 to 74 are considered

in the ILO-definition (ILO, 2018; Eurostat, 2018a). Please note that for reasons of comparabil-

ity with German official statistics, we use the age range of 15-64 years throughout the analysis.

In contrast to the traditional definition, the second definition proposed by Grözinger (2018)

uses the workplace as a focal point and thus counts employed persons at the area i where their

workplace is located. Since unemployed persons have no place of work, they count at area i
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where they live. The definition changes to

θUR2,i =
Ni,unempl. (residence)

Ni,unempl. (residence) + Ni,empl. (workplace)
. (5.2)

We refer to θUR2,i as alternative unemployment rate for area i. It is composed by the num-

ber of unemployed persons (Ni,unempl. (residence)) divided by the labour force aged 15 to 64

(Ni,unempl. (residence) + Ni,empl. (workplace)). Comparing alternative unemployment rates to tradi-

tional ones, the denominator changes as employed persons count in the area i where they work.

Overall, both unemployment rates treat commuters differently. If commuting is not exactly

balanced, the two unemployment rates differ, and this difference reveals the influence of com-

muters. If the traditional unemployment rate in area i ( θUR1,i) is higher than the alternative

one (θUR2,i), there is a stronger commuter movement from other areas to area i than the other

way around which is assumed for larger cities.

We focus on the alternative definition of unemployment rates as defined in Equation 5.2.

However, there are, other alternative definitions such as those of the Federal Labour Office

in Germany (Bundesagentur für Arbeit, 2022a) or the U.S. Bureau of Labor Statistics (U.S.

Bureau of Labor Statistics, 2021), which take into account a more socio-political perspective

and the relative underutilisation of the labour supply. In contrast to the alternative definition

according to Grözinger (2018) used here, the labour force remains the same as in the traditional

unemployment rate, while the numerator changes.

In this study, the geographical target level for investigating unemployment rates is the FUA

sublevel which is particularly suitable to illustrate the difference in both definitions of unem-

ployment rates caused by commuter flows. To the best of our knowledge, the FUA sublevel

is the only OECD harmonised geometry that allows a distinction between city cores and their

commuter zones. City cores are urban centres with at least 50 000 inhabitants. The commuting

zone contains the surrounding travel-to-work areas of the city core where at least 15% of their

employed residents are working in the respective city core (Eurostat, 2018b). Please note that

the FUA sublevel as well as the FUA do not cover the whole territory of a country. Germany

has in total 208 units, which are relevant for determining FUAs. These are composed of 125

city cores and 83 commuting zones. Since some commuting zones can be assigned to several

city cores, there are fewer commuting zones than city cores.

5.2.2 Labour Force Survey

The LFS (Eurostat, 2019b) enables the estimation of the traditional and alternative unemploy-

ment rates introduced in Section 5.2.1. It is a household survey conducted in 35 countries in-

cluding all 27 EU member states and the United Kingdom, which provides information about

the labour market participation. In Germany, the LFS is part of the German Microcensus,

which is a one-percent sample of the population and collected annually. All inhabitants who

have their main or secondary residence in Germany and live in private or collective house-

holds are included. The sampling design corresponds to a stratified single-stage cluster sample,

where neighbouring buildings are sampled and all households and persons within this cluster

are surveyed. The sample districts are stratified according to region and size of the buildings
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(Eurostat, 2019c). In the used LFS data, regional disaggregation is carried out using the EU-

harmonised NUTS classification (Eurostat, 2018c). In Germany, the NUTS 1-level corresponds

to the 16 federal states, the NUTS 2-level to 38 governmental regions, and the NUTS 3-level

to the 401 administrative districts (European Parliament and Council, 2003). Traditional un-

employment rates using LFS data are published on the 38 governmental regions level (NUTS

2-level). However, our target level is the smaller FUA sublevel which can be composed from

the NUTS 3-level in Germany. As all LFS observations contain information about the NUTS

3-level and even finer, we can use the individual information of the LFS participants to match

a) the place of residence and b) the place of work to the corresponding FUA sublevel.

In addition to the FUA sublevel, there are other possible spatial levels that are suitable to

examine unemployment rates. The so-called Labour Market Areas (LMAs) are functional spa-

tial areas that capture regional labour market structures based on commuting flows (Franconi

et al., 2017). In principle, both territorial structures pursue the same goal. Nevertheless, there

are practical reasons and advantages to prefer the FUA sublevel in the context of this work:

First, the LMAs are compiled from commuter statistics using a specially developed algorithm.

In contrast, FUAs are based on territorial structure, are already harmonised, and comparable

across countries. Second, the separation of the city cores and commuter zones is an advantage

of FUAs versus LMAs, which is fundamental for our analysis. Third, Germany provides indi-

cators for the Urban Audit, which is an official statistic and publishes labour market indicators,

including traditional unemployment rates, at the level of the entire FUA (one level above our

target level) which we can use for external validation. All in all, the FUAs are more suitable

for our analyses than the LMAs, since they fit better to the research question and are easier to

handle.

In this work, we consider the year 2016 with an overall sample size of 369 986 observations

in the LFS. Since the FUA sublevel does not cover the whole territory, the sample size decreases

to 271 587 observations. Due to known gender differences in employment, the following anal-

yses are carried out separately by sex. Men work more often full-time, while the proportion

of women employed part-time has increased in recent years, so that overall fewer women than

men are unemployed (Klammer and Menke, 2020; Statistisches Bundesamt, 2021). Due to the

still existing classical gender role model, women commute fewer and shorter distances than

men. These differences in behaviour justify why it is meaningful to examine unemployment

separately by sex (Augustijn, 2018). Table 5.1 represents the sample sizes in the LFS based

on the published NUTS 2-level and on the FUA sublevel by sex. It can be seen that the sam-

ple sizes are smaller in case of the FUA sublevel. On average, the sample sizes decrease by

a factor of 7.3. Since the LFS was designed to produce reliable estimates on NUTS 2-level,

the challenge of this work is to estimate reliable unemployment rates on the smaller FUA sub-

level. Even if the sample sizes for FUA sublevel appear to be rather high, with a median of

368 and 421 for men and women, respectively, results in Section 5.4 show that the coefficient

of variation (CV) of the direct estimates often exceeds the threshold of 20% which specifies

reliable estimates at Eurostat (Eurostat, 2019a). SAE methods are discussed to obtain more

reliable model-based estimates on the FUA sublevel. Since SAE methods take advantage of

auxiliary variables from other data sources the auxiliary information used here is described in
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Table 5.1: Distribution of sample sizes in the LFS on NUTS 2-level and FUA sublevel in
Germany by sex.

Sex Min. 1st Qu. Median Mean 3rd Qu. Max.

NUTS 2-level Female 1 162 2 916 4 104 4 623 5 521 10 684
Male 1 318 3 304 4 565 5 114 6 108 11 675

FUA sublevel Female 100 216 368 635 646 7 973
Male 97 244 421 702 749 8 559

more detail in the next Section 5.2.3.

5.2.3 Mobile network data

To estimate unemployment rates on FUA sublevel using SAE methods, we take advantage of

suitable auxiliary information. Many SAE applications are based on register data as a second

data source. These data sources are not timely or are aggregated to higher (regional) levels. Al-

ternative data sources have the potential to overcome these disadvantages. For example, Toole

et al. (2015) or Steele et al. (2017) have used mobile phone data for SAE. Mobile network data

are explored to estimate daytime population, commuter patterns or tourism behaviour (see e.g.,

De Meersman et al., 2016; Galiana et al., 2018). Mobile network data represent mobile activ-

ities or signals from the mobile network of the respective mobile network operator. A mobile

activity is defined as an event caused by a length of stay in a specific geometry without move-

ment (also known as dwell time). Signalling data are produced automatically, regularly and

only register the location of the cell tower to which a mobile device is connected at a specific

time. Therefore, they are collected as a by-product and tend to be less costly compared to offi-

cial survey data. The major advantage of these data sources are their real-time availability, high

temporal actuality, nationwide availability, and their finer spatial resolution. Mobile activities

can be obtained at the spatial resolution of cities, communities or grid cells, so that a simple

assignment to other spatial levels such as the FUA sublevel is possible. This spatial flexibility

and high resolution are not feasible with register or administrative data. In many countries,

like Germany, register data are strictly protected and thus not available at high resolution or on

specific regional levels. In addition, mobile network data are dynamic, so that the movement

of activities can be observed over the course of the day as well as daily, during a week or a

month. Previous analyses in Germany have shown that mobile network data correlate strong

with register-based census data like population figures and with the population mobility, more

precisely commuter movements (Hadam, 2018, 2021). This is, among other things, due to the

high penetration rate of mobile devices in the German population (Statistisches Bundesamt,

2022). Accordingly, mobile network data provide a reliable picture of the real physical loca-

tions of the German daytime and night-time population or with other words the resident and

working population compared to official statistics with a fixed reporting date. Since our aim is

to estimate an alternative unemployment rate accounting for commuters mobile network data

reflecting resident and working population are especially suitable auxiliary information (cf.

Hadam (2021)).

In Germany, there are three mobile network operators: Deutsche Telekom, Vodafone, and
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Telefónica Deutschland, with a respective market share of one-third each. The data records

available to Destatis and used for this work contain mobile activities of Deutsche Telekom

customers. In compliance with data protection rules, the mobile activities are anonymised and

aggregated. Regionally fluctuating market shares of each mobile network operator are adjusted

regionally as part of the extrapolation procedure at the respective operator. Thus, the estimated

local market shares of each operator are used as weights to adjust the mobile network data.

The data records include contract, prepaid, and further customers. In addition, mobile network

data contain information on socio-demographic characteristics of mobile device users, such

as age group, sex, and nationality of the SIM card owner. However, the characteristics are

only available for contract customers. Furthermore, the following assumptions were made in

the data provider’s data generation process: Since the number of mobile activities depends on

the dwell time of mobile devices, long mobile device activities are counted and included in

the data record according to the length of the dwell time, while short mobile activities are not

considered. The dwell time in the data record available is two hours to filter out short mobile

device activities (for example, quick movements between the grid cells). Finally, only values

based on a minimum number of 30 activities per geometry were provided due to data protection

reasons.

Our aim is to analyse the effect of commuters on the two proposed unemployment rates.

Since we use a model-based method, suitable covariates are crucial. We only use mobile net-

work data for this purpose and no further covariates. As we will show in Section 4.1, our

models with only mobile network covariates lead to high coefficients of determination, so mo-

bile network data are sufficient as SAE covariates in our case.

We define from the mobile network data 27 auxiliary variables. Between 7 to 16 auxiliary

variables are chosen by model selection procedure (cf. Section 5.4.1). The data contains mo-

bile activities for a statistical week that consists of 24-hour days. These were selected from the

months April, May, and September in 2017 without school or public holidays to avoid distor-

tions in the representation of commuters. The mobile activities comprise the average activities

on the selected weekdays. The weekdays are categorised according to five types of days, with

the days from Tuesday to Thursday being grouped together. Since the counted activities of

mobile devices alone are not meaningful enough, further covariates are constructed from the

available mobile network data at the FUA sublevel. The aim in creating the covariate is to

highlight the differences between the daily and resident population and thus the commuters

themselves. This is particularly reflected in the changes in the intensities of mobile activities.

Based on this, covariates are calculated in the form of ratios, shares, and change values which

reflect exactly these differences. Since it is assumed that the unemployed persons are more

likely to stay at home during the day and the employed are more likely to stay at the place

of work, the rate and change of activities in the morning and evening hours are calculated.

This means, that the change from place of work to the place of residence and vice versa is

modelled. This includes the change in mobile activities of working hours and hours spent at

home as well as the change in activities of potential commuters. In addition, the change in

activities during the day is calculated and the differences in core times or peaks in mobile ac-

tivities are determined. The core times are based on the usual working times in Germany (7 am
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to 4 pm). Furthermore, differences in mobile network activities among to socio-demographic

characteristics such as age, nationalities (summarised by continent), and sex can also be con-

sidered. These characteristics also have an influence on commuting behaviour. An overview

of the selected mobile network covariates can be found in the supplementary material in Table

C.1.

5.3 Small area method

In this section, the statistical methodology for estimating unemployment rates on FUA sublevel

is described. As the LFS is designed for higher regional levels, a model-based approach en-

riched by auxiliary variables from mobile network data is used. We use the FH model (Fay and

Herriot, 1979), an area-level model that links direct estimates to area level covariates. The FH

model is especially useful in countries with strict data protection requirements like Germany, as

the auxiliary variables and the direct estimates only need to be available on an aggregated level.

As in Casas-Cordero et al. (2016), Burgard et al. (2016), and Schmid et al. (2017) we use the

inverse sine transformation on the dependent variable to estimate proportions using area-level

models. Following Sugasawa and Kubokawa (2017), we derive the inverse sine transformed

FH model including a bias correction for the back-transformation. A parametric bootstrap,

which incorporates the bias correction, is proposed.

5.3.1 Fay-Herriot estimates

In the following, we assume a finite population of size N , which is divided into d areas. The

present sample consists of areas with different sample sizes n1, ..., nd drawn by a complex

design from the population. To refer to the actual area, we use the subscript i. The population

size and sample size of this area is indicated with Ni and ni, respectively. The FH model is

a special case of a linear mixed model. Please note that typical linear mixed models use two

indices to identify individuals within specific groups while the FH model has only one index.

The FH model links a vector with p area-specific covariates xi to the direct estimate (θ̂direct
i )

using an area-specific random effect ui for each area i ∈ 1, ..., d:

θ̂direct
i = xT

i β + ui + ei, ui
iid∼ N (0, σ2

u) and ei
ind∼ N (0, σ2

ei).

The model assumes that the random effects ui are identically independently normally dis-

tributed and the sampling errors ei are independently normally distributed. θ̂direct
i is the direct

estimate for the unemployment rates for a certain area i and σ̂2
ei its variance estimate that are

estimated with the survey package from R (Lumley, 2004; R Core Team, 2022) considering

the sampling design of the LFS and the survey weights. The regression parameters β̂ can be

estimated as best linear unbiased estimator of β and the random effect ûi as empirical best

linear unbiased predictor of ui (Rao and Molina, 2015). For the estimation of the variance

of the random effects σ2
u, several approaches are available: The FH method of moments, the

maximum likelihood method (ML), and the restricted maximum likelihood method (REML)

among others (Rao and Molina, 2015). For our analysis, we use the REML method.
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Through this combination, we obtain the resulting FH estimator, which is an empirical best

linear unbiased predictor of θi. It is as a weighted combination of the direct estimator θ̂direct
i

and the synthetic estimator xT
i β̂ for each area i:

θ̂FH
i = xT

i β̂ + ûi (5.3)

= γ̂iθ̂
direct
i + (1− γ̂i)x

T
i β̂,

where the shrinkage factor γ̂i = σ̂2
u

σ̂2
u+σ2

ei

defines the weight on both parts for each area i.

Whenever the variance of the sampling errors is relatively small for a specific area i, more

weight is assigned on its direct estimator.

5.3.2 Back-transformed Fay-Herriot estimates

As unemployment rates are a percentage, we transform the dependent variable to profit from

the variance stabilization of the sampling variance. Thus, we use the inverse sine transforma-

tion h(x) = sin−1(
√
x) as in Casas-Cordero et al. (2016), Burgard et al. (2016), and Schmid

et al. (2017). Note that Schmid et al. (2017) compared in a design-based simulation study the

inverse sine transformation with alternative modelling options, for instance an estimator based

on a normal-logistic distribution. Both estimators lead to very similar results regarding MSE

and bias. Raghunathan et al. (2007) defends the choice of the inverse sine transformation for

estimating cancer risk factors rates against generalized linear models with their higher com-

plex design features and computational tasks. While they all use a naive back-transformation

h−1(x) = sin2(x), we transform the FH estimator back to the original level with consider-

ation to the back-transformation bias. Burgard et al. (2016) mentioned the methodology for

a bias corrected back-transformation. We derive the back-transformation following Sugasawa

and Kubokawa (2017), who introduce the FH model for general transformations on the depen-

dent variable. Following Jiang et al. (2001), we approximate the sampling variances of the

transformed direct estimates by σ̃2
ei = 1/4ñi, where ñi denotes the effective sample size. The

design effects and thus the effective sample size can also be estimated with the survey package

(Lumley, 2004; R Core Team, 2022). For the model on the transformed scale, we consider the

assumptions of the FH model

sin−1

(√
θ̂direct
i

)
= xT

i β + ui + ei, ui
iid∼ N (0, σ2

u) and ei
ind∼ N (0, σ̃2

ei). (5.4)

Out of the FH model on transformed scale in Equation 5.4, β̂ and ûi can be estimated, as

described in the previous Section 5.3.1. Replacing the model parameters with their estimates

leads to the FH estimator on the transformed level:

θ̂FH∗
i = γ̂i sin

−1

(√
θ̂direct
i

)
+ (1− γ̂i)x

T
i β̂.

However, the goal is to get the FH estimator on the original scale
(
θ̂FH, trans
i

)
. For this reason,

θ̂FH∗
i must be back-transformed. According to the Jensen-inequality (Jensen et al., 1906), a

naive back-transformation
(
sin2

(
θ̂FH∗
i

))
leads to biased results due to the non-linearity of the
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transformation. To avoid this bias, the following formula using the known distribution of the

FH estimator on the transformed level θ̂FH∗
i ∼ N

(
θ̂FH∗
i ,

σ̂2
uσ̃

2
ei

σ̂2
u+σ̃2

ei

)
is used

θ̂FH, trans
i = E

{
sin2

(
θ̂FH∗
i

)}
=

∫ ∞

−∞
sin2(t)fθ̂FH∗

i
(t)dt

=

∫ ∞

−∞
sin2(t)

1

2π
σ̂2
uσ̃

2
ei

σ̂2
u+σ̃2

ei

exp

−

(
t− θ̂FH∗

i

)2
2

σ̂2
uσ

2
ei

σ̂2
u+σ̃2

ei

 dt, (5.5)

where θ̂FH, trans
i denotes the transformed FH estimator. To solve this integral, numerical integra-

tion techniques are applied. In Section 5.6, the proposed bias corrected FH estimator (θ̂FH, trans
i )

is evaluated in a close to reality model-based simulation study.

5.3.3 Uncertainty estimation

As a measurement of uncertainty for θ̂FH, trans
i , a parametric bootstrap MSE as well as paramet-

ric bootstrap confidence intervals are constructed. When using a FH model without transforma-

tions or with a log transformation, analytical solutions to estimate the MSE are known (Prasad

and Rao, 1990; Datta and Lahiri, 2000; Slud and Maiti, 2006). Up to our knowledge, no analyt-

ical solution is available in the case of the inverse sine transformation. Bootstrap methods are

very promising to estimate the MSE. Casas-Cordero et al. (2016) construct confidence inter-

vals using a parametric bootstrap procedure, in which confidence interval limits are built on the

transformed scale with subsequent naive back-transformation for each bootstrap replication.

In contrast to this methodology, our goal is to construct confidence intervals and a MSE for

FH estimates from a model using the inverse sine transformation. Another difference is that,

instead of the naive back-transformed FH estimates, the bias corrected back-transformed FH

estimates are included within the bootstrap procedure. Our parametric bootstrap is orientated

on the bootstrap procedure of González-Manteiga et al. (2008). In the following, the steps of

the used bootstrap method to construct both measurements of uncertainty are shown:

• From the model on the transformed scale (Equation 5.4), take σ̃2
ei and estimate σ̂2

u and β̂

using the sample data.

• For b = 1, ..., B

– Generate area specific random effects u∗i ∼ N (0, σ̂2
u) and sampling errors e∗i ∼

N (0, σ̃2
ei).

– Bootstrap samples:

* Use u∗i and e∗i to construct the bootstrap sample on the transformed scale

sin−1
(√

θ̂direct
i,(b)

)
= xT

i β + u∗i + e∗i .

* Use the bootstrap sample to estimate the FH estimator on the transformed scale(
θ̂FH∗

i,(b)

)
as described in Section 5.3.2.
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* Determine the FH estimates on the original scale
(
θ̂FH, trans
i,(b)

)
using (Equation

5.5) to account for the bias correction.

– Bootstrap population:

* Use u∗i to construct the bootstrap population on the transformed scale

sin−1
(√

θ̂direct
i,(b)

)
= xT

i β + u∗i .

* For each bootstrap population, calculate the population mean on the original

scale

θtrans
i,(b) = sin2

(
xT
i β + u∗i

)
.

• Predict the MSE and the 95% confidence intervals

MSE(θ̂FH, trans
i ) =

1

B

B∑
b=1

(
θ̂FH, trans
i,(b) − θtrans

i,(b)

)2
(5.6)

CI(θ̂FH, trans
i ) =

[
θ̂FH, trans
i + q0.025

(
θ̂FH, trans
i,(b) − θtrans

i,(b)

)
;

θ̂FH, trans
i + q0.975

(
θ̂FH, trans
i,(b) − θtrans

i,(b)

)]
, (5.7)

where q0.025 is the 2.5% quantile over the bootstrap replications and q0.975 respectively

the 97.5 % quantile.

The methodology presented above for constructing uncertainty measurements for the back-

transformed FH estimates is also evaluated within a simulation study (cf. Section 5.6).

5.4 Alternative unemployment rates including commuters in North
Rhine-Westphalia

In this section, we determine and discuss traditional and alternative unemployment rates that

deal differently with commuters. For this purpose, we use the LFS data from Section 5.2.2 and

the mobile network data from Section 5.2.3. Traditional and alternative unemployment rates

have been introduced in Section 5.2.1. The members of the labour force are counted for the two

rates at different reference points: At the place of residence (traditional unemployment rates)

or at the place of work (alternative unemployment rates). In particular, they assign commuters

to different small areas. When using traditional unemployment rates, the contradiction of high

unemployment rates in the city cores results from the exclusion of commuting. Alternative

unemployment rates are expected to exceed traditional ones in commuter zones and to be lower

in city cores. We confirm this empirically. The rates are estimated separately by sex and at the

target level of the FUA sublevel.

5.4.1 Model selection and validation

Four models need to be created and validated. Following Schmid et al. (2017), the Bayesian

information criterion for a simple linear regression model is used for the model selection. As

117



CHAPTER 5. REGIONAL UNEMPLOYMENT WITH MOBILE NETWORK DATA

Table 5.2: Measurements to validate the FH models for traditional (UR1) and alternative unem-
ployment rates (UR2) separated by sex: This table shows the estimated variance of the random
effects (σ̂2

u), the Shapiro-Wilks (S.-W.) p-value for level 1 and level 2 error terms as well as the
modified R2.

Men Women
UR1 UR2 UR1 UR2

σ̂2
u 0.000320 0.000361 0.000716 0.000880

S.-W. p-value: level 1 0.308668 0.495064 0.809323 0.866098
S.-W. p-value: level 2 0.695112 0.549476 0.861257 0.901708
modified R2 0.772521 0.908642 0.632059 0.575550

dependent variable, we use the inverse sine transformed direct estimates from LFS and the

auxiliary information is mobile network data (cf. Section 5.2.3). In total, 6 to 16 of 27 po-

tential mobile network covariates are selected depending on the model. The covariates of all

four models are listed in Table C.1 within the Appendix C.1. Since the models are built on the

transformed scale, the coefficients have no natural interpretation in terms of expected values

at the original level, but their direction is directly interpretable. The chosen covariates reflect

most likely relationships between working and non-working hours and the changes in mobile

activities due to commuting during the day and evening. The latter is represented less strongly

in the females model, which is in line with lower commuting patterns of women. An increase

of covariates that proxy possible commuter movements generally leads to a decrease of al-

ternative unemployment rates (UR2). The reverse is the case for traditional ones (UR1). All

models include changes from night to day activities of other nationalities, most likely tourists,

which have a positive impact on regional employment. As expected, negative values have been

observed for these coefficients.

To investigate the explanatory power of the models, we use the modified R2 from Lahiri

and Suntornchost (2015) and obtain values of at least 57% as shown in Table 5.2. Furthermore,

we check whether meaningful results are obtained for estimating the variance of the random

effects using REML estimation. As Table 5.2 shows, positive values were estimated in all

cases. Thus, the potential problem of negatively estimated variances does not occur. For each

FH model on the transformed scale, the assumptions on the error terms (level 1 and 2) are

checked. The normality assumptions of the random effects (level 2) as well as of the residuals

(level 1) - obtained from fitting the model (Equation 5.4) - are tested. The p-values of the

Shapiro-Wilks test in Table 5.2 confirm that in all cases the normality assumption for both

error terms cannot be rejected. Overall, all four models could be validated and are suitable for

subsequent analyses.

5.4.2 Gain in accuracy

To assess the gain in the reliability of the estimators, we compare the CVs. Figure 5.1 visualises

this measurement for the different methods and definitions of unemployment rates. Eurostat

considers estimators with a CV below 20% to be reliable (Eurostat, 2019a). If we use direct

estimation 53.7% (men; UR1), 29.3% (women; UR1), 53.7% (men; UR2), and 31.7% (women;
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Figure 5.1: Reduction of the coefficient of variation by using the transformed FH model instead
of direct estimation for estimating unemployment rates in NRW.

UR2) of the CVs are below 20%. The use of the transformed FH model achieves a distinct

increase of CVs below this threshold. As a result, 85.4% (men; UR1), 73.2% (women; UR1),

82.9% (men; UR2), and 78.0% (women; UR2) of the CVs are below 20%. This illustrates that

the use of dynamic mobile network data in combination with SAE methodology is a powerful

tool to increase the precision of both estimated unemployment rates for NRW on FUA sublevel.

If we compare the direct estimates to the estimates from the proposed transformed FH model,

both are often close to each other. For regions with smaller samples sizes like Witten and

Paderborn, these values can deviate clearly from each other. Due to the higher uncertainty of

the direct estimates for regions with lower sample sizes, the synthetic part within Equation 5.3

is weighted higher and bigger differences to the direct estimates appear.

5.4.3 Discussion of the estimated unemployment rates for NRW

Figure 5.2 illustrates the differences between the alternative and traditional unemployment

rates. If the traditional unemployment rates are the same as alternative one, the commuter

behaviour is balanced and the calculated difference would be zero. Please note, that the FUA

sublevels do not cover the entire federal territory in NRW, these areas are white in Figure 5.2.

The bluish colors indicate areas where the alternative unemployment rate is higher than the

traditional one. Those are mainly the commuter zones in both models, i.e., the commuter flow

is directed out of this area. With one exception in the female model, all commuting zones

are coloured blue. This means that these areas are the place of residence of many employed

people who commute from those areas to their workplace. The reddish areas, however, im-

ply that the alternative unemployment rate is lower than the traditional unemployment rate.

This is mainly the case for the city cores of the FUAs. This observation is consistent with
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 Figure 5.2: Difference of unemployment rates due to including commuters for men (above)
and women (below). The spatial assignment of city names to the FUA sublevels is shown in
the Appendix C.2.

Grözinger (2018) motivation for creating an alternative unemployment rate. Nevertheless, a

negative value (blue colouring) was detected for a few city cores. This is the case for nine city

cores simultaneously in both models. These are the city cores Recklinghausen, Bottrop, Moers,

Oberhausen, Duisburg, and Mühlheim an der Ruhr. These six are located in the Ruhr region,

which includes the large city cores Essen and Dortmund, to which many people commute from

the Ruhr region. Furthermore, this trend was found for the two small city cores (Solingen and

Sankt Augustin) and Aachen, which is located directly on the Belgian border. Since most city

cores are job engines, many employed people living in the surrounding travel-to-work areas,

which is their place of residence, commute into the city cores to work. In the males model, the

differences are higher than in the females model, which leads to the conclusion that women are

not commuting as often or as far as men (IT.NRW, 2019). Possible reasons for this could be

the conservative role model of women, the spatial closeness to the family that is guaranteed by

the woman (to the school/kindergarten of the children, etc.) or, for example, a work in small,

nearby companies/enterprises (Bauer-Hailer, 2019).
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5.5 Validity of the proposed method

In the following, we evaluate the methodology used in Section 5.4 to estimate unemployment

rates at the FUA sublevel through official data. For Germany, the database Urban Audit pro-

vided by Eurostat in cooperation with Destatis and Kommunales Statistisches Information-

ssystem (KOSIS) is the only source for German unemployment rates at the FUA level (KOSIS-

Gemeinschaft Urban Audit, 2013; Eurostat, 2017, 2019d). This official data source provides

traditional unemployment rates, but no alternative unemployment rates for all German FUAs.

Thus, the Urban Audit enables a comparison of traditional unemployment rates estimated by

using the transformed FH estimator (Equation 5.4) with mobile network data as auxiliary in-

formation with the officially published values. As mentioned in Section 5.2.1, we have used

the 15-64 age range for the definitions of unemployment rates to ensure comparability with the

Urban Audit. Please note, the comparison in this section is made on the entire FUA level and

not on the FUA sublevel as in the application in Section 5.4.

For the German federal state NRW, we have an extensive mobile network data record avail-

able as auxiliary information. However, we have only limited access to mobile network data

and accordingly a data set with less information for the rest of the country. Thus, less covariates

are available for the validation. In contrast to Section 5.4, where we use dynamic signalling

data, we only have static mobile network activities of a typical Sunday evening for the whole of

Germany. We focus on the time period from 8 to 11 pm of the average of eight Sundays of the

months April, June, and July in 2018 without school or public holidays. For Sunday evenings,

a high correlation has been identified between population figures from the 2011 census and the

mobile network activities on the weekend and especially on Sunday evening (Hadam, 2018).

As traditional unemployment rates are based on the place of residence, it is reasonable to as-

sume that mobile network data of a Sunday evening is suitable as auxiliary variables. In the

following, we validate the proposed transformed FH model by comparing the FH estimates

with official unemployment rates of the Urban Audit. We use the SAE method and model

selection as applied in Section 5.4 with the difference that a) the regional focus is now FUAs

across Germany and b) we can only use mobile network data from Sunday evening. In the

males model, the selected mobile network covariates explain around 47% of the variance in

terms of the modified R2 following Lahiri and Suntornchost (2015) and in the females model

around 37%.

For the validation of the proposed method, Figure 5.3 shows the estimated unemployment

rates using mobile network covariates (FH Trans), the direct, and the published official esti-

mates from Urban Audit by sex. First, it can be seen that we get similar rates compared to

the Urban Audit by using the transformed FH model. Comparing the direct estimator from the

LFS with the FH Trans estimator, the FH Trans estimator corrects the direct estimator in such

a way that the resulting value is closer to the Urban Audit. This trend is quantified in Table 5.3.

It reports the distribution of the absolute difference of the females and males unemployment

rates obtained by the two estimation methods for all FUAs in Germany compared to the Urban

Audit. For almost all distribution values, we get a higher absolute difference for the direct esti-

mates compared to the FH Trans estimates. Only in the males model the 25% quantile for the

absolute difference is slightly higher for the FH Trans estimates. As expected, it can be noted
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Figure 5.3: Comparison of traditional unemployment rates (UR1) published in Urban Audit
(black), estimated with the transformed FH model (dark blue) and the direct estimates from the
LFS (light blue) for men (left) and women (right) for all German FUAs.

Table 5.3: Distribution of the absolute difference to the Urban Audit estimates of the females
and males traditional unemployment rates over all German FUAs and in particular over FUAs
with small sample sizes below 600.

Areas Sex Estimator Min. 1st Qu. Median Mean 3rd Qu. Max.

All Female Direct 0.017 0.246 0.459 0.638 0.800 5.078
FH Trans 0.005 0.173 0.415 0.512 0.748 1.959

Male Direct 0.009 0.202 0.625 0.713 0.998 2.440
FH Trans 0.008 0.221 0.428 0.573 0.824 1.690

Sample Female Direct 0.030 0.416 0.628 0.930 1.120 5.078
size <600 FH Trans 0.015 0.281 0.516 0.627 0.896 1.959

Male Direct 0.068 0.697 1.095 1.129 1.764 2.073
FH Trans 0.038 0.373 0.676 0.704 1.027 1.690

that for FUAs with sample size under 600 estimated unemployment rates of both estimation

methods show higher values for the absolute difference.

5.6 Model-based simulation

In the previous two sections, we use the proposed transformed FH model to estimate alternative

unemployment rates and subsequently evaluate the suggested methodology with official statis-

tics obtained from Urban Audit. This model-based simulation study is used to investigate how

much we benefit from the more complicated transformed FH model with a bias corrected back-

transformation compared to the naive back-transformation. According to the Jensen-inequality

(cf. Section 5.3.2), the naive back-transformation is biased under the inverse sine transfor-

mation. Furthermore, we want to show, that the proposed MSE and confidence intervals lead

to reasonable results. We investigate these aims in a close to reality environment. The input

values of the model-based setting are based on the real data.

The simulation study is implemented with R = 1 000 Monte-Carlo replications. Within

each replication, we generate the covariates (xi) initially from a lognormal distribution with

parameters (−0.5, 0.04). The number of areas is fixed to the number of the FUA sublevels
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Table 5.4: Distribution of important parameters in the simulation setting: The sampling error
variation σei and the resulting shrinkage factor γi coincide with the male model for Germany
on FUA sublevel. The direct estimates

(
θ̂direct
i

)
of the simulation study are close to the values

for the FUA sublevel.

Min. 1st Qu. Median Mean 3rd Qu. Max.

σei 0.0063 0.0202 0.0275 0.0288 0.0366 0.0785
γi 0.1199 0.3848 0.5265 0.5355 0.6730 0.9548
θ̂direct
i sim. 0.0000 0.0340 0.0495 0.0538 0.0688 0.2826

FUA sublevel 0.0054 0.0328 0.0484 0.0508 0.0647 0.1134

in Germany (d = 208). We draw the random effect and the sampling errors from normal

distributions: ui ∼ N (0, σ2
u) and ei ∼ N (0, σ2

ei). According to the males model for Germany

on FUA sublevel, σu ≈ 0.029 is defined analogously. In addition, we adopt the variation of the

sampling errors σei and keep them constant over the replications. The regression coefficients

are set to β0 = 0.01 and β1 = 0.35. As data generating process, we consider θ̂direct
i =

sin2
(
β0 + xT

i β1 + ui + ei
)

to get synthetic direct estimates. The true small area means are

ȳi = sin2
(
β0 + xT

i β1 + ui
)
. Table 5.4 shows the distribution of the variation of the sampling

errors and the resulting shrinkage factor as well as the distribution of the direct estimates for

the simulation (over all replications) and the actual direct estimated unemployment rates for

males in Germany. The distributions are close to each other.

For each replication, we estimate small area means from the transformed FH model: With

respect to the back-transformation bias
(
θ̂FH,trans
i , cf. Equation 5.5

)
and with naive back-trans-

formation
(
θ̂FH,naive
i

)
. To assess the quality of the estimates, we obtain for R = 1 000 Monte

Carlo replications the absolute Bias (aB) and the root mean squared error (RMSE) of the esti-

mates, defined as

aBi =

∣∣∣∣∣ 1R
R∑

r=1

(
θ̂

FH,(r)
i − ȳ

(r)
i

)∣∣∣∣∣ ∗ 100
and RMSEi =

√√√√ 1

R

R∑
r=1

(
θ̂

FH,(r)
i − ȳ

(r)
i

)2
∗ 100,

where θ̂
FH,(r)
i is the estimated respective FH value and ȳ

(r)
i the true value within replication r.

Figure 5.4 shows the reduction of aB. For instance, the median of the aB using a naive back-

transformation is 1.86 times higher than with a bias corrected back-transformation. At the same

time, we observe nearly the same RMSE (cf. Figure 5.4) when we use a bias corrected back-

transformation instead of a naive back-transformation. In summary, there is a clear reduction

in bias at the cost of a slightly higher RMSE.

We next investigate the properties of the proposed MSE and the confidence intervals. Please

note that we compare the bootstrap estimated RMSE (Equation 5.6) to the empirical RMSE,

which we treat as the true one. For calculating these uncertainty measurements, we use 1 000

bootstrap replications within each Monte Carlo run. As quality measurements, we calculate the

relative bias of the uncertainty estimation (rB RMSE) and the relative RMSE of the uncertainty
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Figure 5.4: Distribution of the aB and the RMSE for the transformed FH estimator with bias
corrected and naive back-transformation.

Table 5.5: Distribution of the quality measurements for the estimated RMSE and the corre-
sponding confidence intervals using the bootstrap procedure as described in Section 5.3.3

Min. 1st Qu. Median Mean 3rd Qu. Max.

rB RMSE -9.34 -2.12 -0.62 -0.55 1.11 7.13
rRMSE RMSE 17.04 18.03 18.53 18.74 18.99 44.97
Coverage 86.70 93.90 94.40 94.34 94.90 96.00

estimation (rRMSE RMSE). They are defined as

rB RMSEi =


√

1
R

∑R
r=1 MSE(r)

est,i − RMSEtrue,i

RMSEtrue,i

 ∗ 100

and rRMSE RMSEi =

√
1
R

∑R
r=1

(
RMSE(r)

est,i − RMSEtrue,i

)2
RMSEtrue,i

∗ 100,

where RMSE(r)
est,i is the estimated RMSE out of the bootstrap procedure (cf. Section 5.3.3) for

each Monte Carlo replication r and RMSEtrue,i is the empirical RMSE over the Monte Carlo

replications. The relative bias is close to zero as Table 5.5 shows. On average, we get an

underestimation of 0.55% over all areas. The interquartile range goes from -2.12% to 1.11%.

In addition, the relative RMSE of the estimated RMSE is important to assess its quality. We get

a mean relative RMSE of 18.74% for the estimated RMSE. The low bias and the RMSE show

that the proposed MSE estimator yields good results. In addition to the MSE, we can also get

bootstrap confidence intervals (cf. Section 5.3.3). The coverage is defined as the proportion

of the time that the estimated confidence interval contains the true value. For the proposed

confidence intervals (Equation 5.7), we get in mean a coverage of 94.34%. We can recognize

a slight underestimation of the coverage, but the values are close to the target value of 95%.

These three measures show that the proposed bootstrap-estimated MSE works.

Overall, our close to reality simulation study shows the reduction of bias while using the

transformed FH estimator with bias corrected back-transformation instead of a naive back-

transformation. Furthermore it demonstrate the good performance of the newly proposed MSE
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estimator and confidence intervals for the transformed FH estimator with bias corrected back-

transformation.

5.7 Concluding remarks

The traditional unemployment rate is based on the place of residence of the labour force. Due

to the high level of commuting, this may give a distorted impression of regional labour markets.

For Germany, traditional unemployment rates show higher rates in city cores compared to its

surroundings. For analysing unemployment rates in the context of commuter behaviour, the re-

gional target area are city cores and their commuting zones, which can be extracted from FUAs.

In this work, we estimate an alternative unemployment rate, where the focal point of the labour

force is their workplace. It adjusts the traditional definition by including commuters. Since the

LFS is not designed to produce indicators on smaller areas than NUTS 2-level, a FH approach

is used to estimate alternative and traditional unemployment rates on the FUA sublevel. From

a methodological point of view we use a bias corrected back-transformed FH estimator and

propose a MSE estimator to measure its uncertainty. As the FH approach relies on a model-

based method, suitable covariates are required. We select covariates constructed from dynamic

mobile network data and validate the selected models. The benefit of dynamic mobile network

data is that they represent the changes of the counted aggregated mobile devices during the day

and in space. This information can be used to derive the commuting behaviour of the popula-

tion. The resulting differences between the traditional and the alternative unemployment rates

show that the rates in city cores are mainly lower than officially indicated. The assumption that

unemployment rates in city cores are lower can be confirmed and thus contributes to the expla-

nation why so many people move to city cores due to more job opportunities. Furthermore, the

alternative definition of the unemployment rate removes the static picture of the population, es-

pecially of the labour force. The labour force does not necessarily live in the same place where

they work. This dynamic cannot be achieved with traditional survey methods and with tradi-

tional data. However, exactly this knowledge is necessary to make better decisions regarding

urban planning. Moreover, these alternative rates provide potential employers with additional

information about the current regional labour market and on missing workplaces. This will

help to identify regions for which it might be useful to promote business settlement in order

to reduce unemployment rates and shorten commuting distances, as new details of potentially

available local workforce are available. The increasing number of commuters should be taken

into account in official statistics in the future. Although the application in this paper refers to

NRW, the model is also applicable to countries that perform the LFS and have implemented

an FUA structure. Thus, this analysis is transferable to at least all European countries. In

Germany, we are facing some limitations in mobile network data. We do not have access to

individual signalling data or CDRs. No individual activity movements or changes in individual

social behaviour can be used for the estimation. For instance, Toole et al. (2015) have shown

that unemployed persons have different mobile phone usage profiles than employed ones. This

information may increase the explanatory power in estimating unemployment rates compared

to the used distribution of mobile activities over time.
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From a methodological point of view, we leave the uncertainty of the difference between

the two unemployment rates as further research. So far, we propose an MSE and confidence in-

tervals for each unemployment rate separately. To obtain these two measures for the difference,

it is necessary to calculate the covariance between both unemployment rates. For the special

case of the difference between a design-based estimator and a FH estimator from the same

repeated survey at different points in time, van den Brakel et al. (2016) derives the covariance.

It is assumed that the design-based estimator is unbiased and that the covariates for the FH

estimator come from the same survey as the design-based estimator. Since these assumptions

are not applicable to our case, further research is needed to apply these results to the present

case.

In addition, the following research opportunities remain open from an applied perspective.

Steele et al. (2017) uses a combination of satellite and mobile phone data to gain more explana-

tory power in the estimation of poverty indicators. Satellite data include valuable information

on a small regional level of building intensities and heights of buildings to differentiate between

socially impoverished people, who live in socially weak urban districts, and wealthy people,

who are living more likely in less densely populated areas, which could also be suitable for our

question. Furthermore, it is of interest to which extend the same differences in unemployment

rates also apply to other countries or whether it is a national phenomenon.
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Appendix C

C.1 Mobile network covariates

Table C.1: Mobile network covariates: The last four columns refer to the four different models
on unemployment rates at the FUA sublevel. The covariates are based on mobile network data
of Deutsche Telekom for the years 2017 and 2018 and represent a statistical week. For each
selected variable, the regression coefficient is shown.

Definition of variables UR1 male UR2 male UR1 fem. UR2 fem.

Intercept 118.5287 14.8136 0.5674 −14.3924
Proportion of mobile activities of specific subgroup at defined time
Central European 7 am to 4 pm -2.6305 -2.7364 -2.2433
Central European 5 pm to 11 pm 3.1693 4.0103
Proportion of mobile activities of specific subgroup at defined time on Sunday
under 50s 8 pm to 11 pm -0.1478 -0.6384
20 to 30 year olds 8 pm to 11 pm 0.8168
Change of mobile activities by nationality from night-time (5 pm to 11 pm)
to day-time (7 am to 4 pm)
African 0.0012 0.0013 −0.0034 −0.0024
Australia Oceania −0.0001 −0.0001
Eastern Europe −0.0680 −0.0836
North American −0.0245 −0.0695 −0.0273 −0.0446
Northern Europe −0.0176 −0.0449
Southeast Europe −0.1070 −0.1654 −0.1145 −0.1165
Southern Europe 0.1158 0.1021
Asia 0.0135
Central Europe −5.2348
Relative change of mobile activities between two specific times:
(time point 1 − time point 2) / time point 2
10 am 9 pm −3.2224 4.7858 2.4082
8 pm to 10 pm 9 am to 11 am 3.2963 −3.7265
4 pm 10 am −1.2954 −1.1901
9 am to 11 am 3 am to 5 am 2.4185
Ratio of mobile activities between two specific times: time point 1 / time point 2
7 am to 4 pm 5 pm to 11 pm 3.0494 5.2589
5 pm to 5 am whole day −119.1781 −28.0838
9 am to 11 am 8 pm to 10 pm −3.9171 −3.5458 −5.5749
6 am to 4 pm whole day −111.7206 30.2304
12 pm to 6 am 7 am to 4 pm 2.7691
3 am to 5 am 9 am to 11 am 2.0348
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C.2 Map of FUA city cores and commuter zones in NRW
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1 Cologne
2 Essen
3 Dortmund
4 Düsseldorf
5 Bochum
6 Bielefeld
7 Mülheim a.d.Ruhr
8 Moers

9 Bonn
10 Mönchengladbach
11 Iserlohn
12 Sankt Augustin
13 Duisburg
14 Gelsenkirchen
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16 Aachen
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23 Leverkusen
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Figure C.1: Assignment of city names to FUA city cores and geographical location of the
commuter zones for NRW.
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Abstracts in English

Abstract: Estimating regional income indicators under transformations and ac-
cess to limited population auxiliary information

Spatially disaggregated income indicators are typically estimated by using model-based meth-

ods that assume access to auxiliary information from population micro-data. In many countries

like Germany and the UK population micro-data are not publicly available. In this work we

propose small area methodology when only aggregate population-level auxiliary information is

available. We use data-driven transformations of the response to satisfy the parametric assump-

tions of the used models. In the absence of population micro-data, appropriate bias-corrections

for small area prediction are needed. Under the approach we propose in this paper, aggregate

statistics (means and covariances) and kernel density estimation are used to resolve the issue

of not having access to population micro-data. We further explore the estimation of the mean

squared error using the parametric bootstrap. Extensive model-based and design-based simu-

lations are used to compare the proposed method to alternative methods. Finally, the proposed

methodology is applied to the 2011 Socio-Economic Panel and aggregate census information

from the same year to estimate the average income for 96 regional planning regions in Ger-

many.

Keywords: Census, density estimation, official statistics, unit-level models, small area estima-

tion

Abstract: The R package saeTrafo for estimating unit-level small area models
under transformations

The R package saeTrafo provides new statistical methodology for the estimation of small

area means using unit-level models under transformations. The method of Würz et al. (2022)

enables the use of unit-level models dealing with both limited auxiliary data (often the only

source of data due to confidentiality agreements) and skewed distributed dependent variables

like income (by using transformations such as the log or data-driven log-shift). In addition to

the implementation of the new methodology, saeTrafo provides established methods for unit-

level models under transformations, allowing further applications and comparisons. It is of

advantage that the most suitable method is automatically selected and uncertainty estimates

are easily offered. In addition, tools for creating plots (model validation and estimator evalu-

ation), visualisation on maps and exporting to Excel and OpenDocument Spreadsheets
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are provided. The functionalities of the package are demonstrated with exemplary data based

on Austrian income and living conditions.

Keywords: Official statistics, survey statistics, small area estimation, nested error regression

model, transformations

Abstract: Analysing opportunity cost of care work using mixed effects random
forests under aggregated census data

Reliable estimators of the spatial distribution of socio-economic indicators are essential for

evidence-based policy-making. As sample sizes are small for highly disaggregated domains,

the accuracy of the direct estimates is reduced. To overcome this problem small area estimation

approaches are promising. In this work we propose a small area methodology using machine

learning methods. The semi-parametric framework of mixed effects random forest combines

the advantages of random forests (robustness against outliers and implicit model-selection)

with the ability to model hierarchical dependencies. Existing random forest-based methods

require access to auxiliary information on population-level. We present a methodology that

deals with the lack of population micro-data. Our strategy adaptively incorporates aggregated

auxiliary information through calibration-weights - based on empirical likelihood - for the es-

timation of area-level means. In addition to our point estimator, we provide a non-parametric

bootstrap estimator measuring its uncertainty. The performance of the proposed point estima-

tor and its uncertainty measure is studied in model-based simulations. Finally, the proposed

methodology is applied to the 2011 Socio-Economic Panel and aggregate census information

from the same year to estimate the average opportunity cost of care work for 96 regional plan-

ning regions in Germany.

Keywords: Official statistics, small area estimation, mean squared error, tree-based methods

Abstract: Experimental UK regional consumer price inflation with model-
based expenditure weights

Like many other countries, the United Kingdom (UK) produces a national consumer price in-

dex (CPI) to measure inflation. Presently, CPI measures are not produced for regions within the

UK. It is believed that, using only available data sources, a regional CPI would not be precise

or reliable enough as an official statistic, primarily because the regional partitioning of the data

makes sample sizes too small. We investigate this claim by producing experimental regional

CPIs using publicly available price data, and deriving expenditure weights from the Living

Costs and Food survey. We detail the methods and challenges of developing a regional CPI and

evaluate its reliability. We then assess whether model-based methods such as smoothing and

small area estimation significantly improve the measures. We find that a regional CPI can be

produced with available data sources, however it appears to be excessively volatile over time,

mainly due to the weights. Smoothing and small area estimation improve the reliability of the

regional CPI series to some extent but they remain too volatile for regional policy use. This

research provides a valuable framework for the development of a more viable regional CPI

measure for the UK in the future.
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Keywords: CPI conceptual framework, basket of goods and services, small area estimation,

Fay-Herriot models

Abstract: Estimating regional unemployment with mobile network data for func-
tional urban areas in Germany

The ongoing growth of cities due to better job opportunities is leading to increased labour-

related commuter flows in several countries. On the one hand, an increasing number of people

commute and move to the cities, but on the other hand, the labour market indicates higher un-

employment rates in urban areas than in the surrounding areas. We investigate this phenomenon

on regional level by an alternative definition of unemployment rates in which commuting be-

haviour is integrated. We combine data from the Labour Force Survey with dynamic mobile

network data by small area models for the federal state North Rhine-Westphalia in Germany.

From a methodical perspective, we use a transformed Fay-Herriot model with bias correction

for the estimation of unemployment rates and propose a parametric bootstrap for the mean

squared error estimation that includes the bias correction. The performance of the proposed

methodology is evaluated in a case study based on official data and in model-based simula-

tions. The results in the application show that unemployment rates (adjusted by commuters) in

German cities are lower than traditional official unemployment rates indicate.

Keywords: Bias correction, Fay-Herriot model, mean squared error, small area estimation,

unemployment rates

Kurzzusammenfassungen auf Deutsch

Zusammenfassung: Schätzung regionaler Einkommensindikatoren unter Trans-
formationen und limitiertem Zugang zu Hilfsinformationen aus der Population

Kleinräumige Einkommensindikatoren werden meist mit modellbasierten Methoden geschätzt,

die Hilfsinformationen über die Population auf Mikrodaten-Ebene benötigen. In zahlreichen

Ländern, wie Deutschland und dem Vereinigten Königreich, sind Populations-Mikrodaten

jedoch nicht öffentlich zugänglich. In dieser Arbeit werden Small-Area-Methoden vorgeschla-

gen, die bei ausschließlicher Verfügbarkeit von aggregierten Populations-Hilfsinformationen

verwendet werden können. Um die parametrischen Modellannahmen zu erfüllen, wird die

abhängige Variable mittels datengetriebener Transformation angepasst. Hierbei werden

geeignete Verzerrungs-Korrekturen für die Small-Area-Vorhersagen benötigt. Der vorgeschla-

gene Ansatz kombiniert aggregierte Statistiken (Mittelwerte und Kovarianzen) und Kerndichte-

Schätzungen, um das Problem des fehlenden Zugangs zu Populations-Mikrodaten zu adressie-

ren. Zudem wird die Schätzung des mittleren quadratischen Fehlers mittels parametrischem

Bootstrap-Verfahren vorgestellt. Ausführliche modellbasierte und designbasierte Simulationen

werden verwendet, um die vorgeschlagene Methode mit alternativen Methoden zu vergleichen.

Abschließend wird die Methode auf das Sozioökonomische Panel von 2011 unter Verwendung

von aggregierten Zensusdaten aus demselben Jahr angewandt, um das durchschnittliche Ein-

kommen für die 96 deutschen Raumordnungsregionen zu schätzen.
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Schlüssewörter: Zensus, Dichteschätzung, Amtliche Statistik, Unit-Level-Modelle, Small-

Area-Schätzung

Zusammenfassung: Das R Paket saeTrafo zur Schätzung von Unit-Level Small-
Area-Modellen unter Transformationen

Das R-Paket saeTrafo stellt eine neue statistische Methode zur Schätzung von Small-Area-

Mittelwerten unter Verwendung von Unit-Level-Modellen mit Transformationen zur Verfü-

gung. Die Methode von Würz et al. (2022) ermöglicht die Anwendung von Unit-Level-

Modellen unter limitierten Hilfsinformationen (aufgrund von Datenschutzverpflichtungen oft

die einzige Datenquelle) für schief verteilte abhängige Variablen wie zum Beispiel Einkom-

men (mittels Log- oder datengetriebener Log-Shift-Transformation). Zusätzlich zur Implemen-

tation der neuen Methode stellt saeTrafo etablierte Methoden für Unit-Level-Modelle unter

Transformationen bereit, sodass weitere Anwendungen und Vergleiche ermöglicht werden.

Dabei profitiert der Nutzer von der automatischen Auswahl der geeigneten Methode und der

direkten Bereitstellung von Unsicherheitsschätzern. Zusätzlich werden die Erstellung von Plots

(Modellvalidierung und Bewertung der Schätzer), die Visualisierung auf Karten und der Ex-

port nach Excel- und OpenDocument-Spreadsheets ermöglicht. Die Funktionalitäten

des Paketes werden anhand von beispielhaften Daten zu österreichischen Einkommens- und

Lebensbedingungen demonstriert.

Schlüsselwörter: Amtliche Statistik, Survey-Statistik, Small-Area-Schätzung, verschachteltes

Fehlerregressionsmodell, Transformationen

Zusammenfassung: Analyse der Opportunitätskosten von Pflegearbeit mit
Mixed-Effects-Random-Forests unter Verwendung aggregierter Zensusdaten

Für evidenzbasierte politische Entscheidungsfindungen sind zuverlässige Schätzungen der

räumlichen Verteilung sozioökonomischer Indikatoren unerlässlich. Da höhere räumliche

Auflösungen mit kleineren Stichprobengrößen einhergehen, ist die Genauigkeit der direkten

Schätzer reduziert. Um dieses Problem zu lösen, sind Small-Area-Verfahren vielversprechend.

Diese Arbeit schlägt eine Small-Area-Methode vor, die Machine-Learning-Verfahren verwen-

det. Das semiparametrische Konzept von Mixed-Effects-Random-Forests kombiniert die

Vorteile von Random-Forests (Robustheit gegenüber Ausreißern und implizite Modellauswahl)

mit der Fähigkeit hierarchische Abhängigkeiten zu modellieren. Allerdings benötigen Random-

Forest-Methoden Zugang zu Hilfsinformationen auf Populations-Ebene. Daher wird eine

Methode vorgestellt, die mit fehlenden Populations-Mikrodaten umgehen kann. Die Strategie

beruht auf dem adaptiven Einbezug - basierend auf der empirischen Likelihood - von aggre-

gierten Hilfsinformationen in die Kalibrierungsgewichte für die Schätzung von Mittelwerten

auf Gebietsebene. Zusätzlich zu dem Punktschätzer wird ein nicht-parametrischer Bootstrap-

Schätzer als Unsicherheitsmaß bereitgestellt. Die Qualität des vorgeschlagenen Punktschät-

zers sowie dessen Unsicherheitsmaß wird in modellbasierten Simulationen untersucht. Ab-

schließend wird die vorgeschlagene Methode auf das Sozioökonomische Panel von 2011 unter

Verwendung von aggregierten Zensusdaten aus demselben Jahr angewandt, um die durch-

schnittlichen Opportunitätskosten für Pflegearbeit in den 96 deutschen Raumordnungsregionen
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zu schätzen.

Schlüsselwörter: Amtliche Statistik, Small-Area-Schätzung, mittlere quadratische Abweich-

ung, baumbasierte Verfahren

Zusammenfassung: Experimentelle regionale Verbraucherpreisinflation für UK
mittels modellbasierten Ausgabenanteilen

Wie eine Vielzahl von Ländern bestimmt das Vereinigte Königreich (UK) einen nationalen

Verbraucherpreisindex (VPI) zur Messung der Inflation. Allerdings werden gegenwärtig keine

VPI-Berechnungen auf Ebene der Regionen bereitgestellt. Es wird angenommen, dass ein

regionaler VPI aus den verfügbaren Datenquellen nicht genau bzw. zuverlässig genug für eine

amtliche Statistik ist, da insbesondere die Stichprobengrößen durch die regionale Unterglie-

derung zu klein werden. Diese Annahme wird durch die Konstruktion experimenteller regio-

naler VPIs unter Verwendung öffentlich zugänglicher Preisdaten und der Bestimmung von

Ausgabenanteilen aus der Einkommens- und Verbrauchsstichprobe untersucht. Es wird auf

die Methoden und Herausforderungen beim Erstellen regionaler VPIs eingegangen sowie ihre

Zuverlässigkeit bewertet. Anschließend wird untersucht, ob modellbasierte Methoden (Glät-

tung und Small-Area-Schätzungen) die Messwerte verbessern. Es zeigt sich, dass ein regiona-

ler VPI mit den verfügbaren Datenquellen erstellt werden kann, jedoch scheint er im Zeitver-

lauf übermäßig volatil zu sein, was hauptsächlich auf die Ausgabenanteile zurückzuführen ist.

Glättung und Small-Area-Schätzung verbessern die Zuverlässigkeit der regionalen VPI-Reihen

bis zu einem gewissen Grad, aber sie bleiben dennoch zu unbeständig für die Verwendung in

der Regionalpolitik. Demnach bietet diese Untersuchung einen wertvollen Startpunkt für die

zukünftige Entwicklung eines tragfähigeren regionalen VPIs für UK.

Schlüsselwörter: Konzeptueller Rahmen des VPIs, Warenkorb, Small-Area-Schätzung, Fay-

Herriot-Modelle

Zusammenfassung: Schätzung von regionaler Erwerbslosigkeit mittels Mobilfunk-
daten für funktionale Stadtgebiete in Deutschland

In mehreren Ländern führt das anhaltende Wachstum der Städte mit ihren besseren Beschäf-

tigungsmöglichkeiten zu verstärkten arbeitsbedingten Pendlerströmen. Obwohl immer mehr

Menschen in die Städte pendeln und ziehen, weist der Arbeitsmarkt in städtischen Gebieten

höhere Erwerbslosenquoten auf als das Umland. Dieses Phänomen wird auf regionaler Ebene

untersucht, und dabei eine alternative Definition der Erwerbslosenquote verwendet, die das

Pendlerverhalten einbezieht. Für das deutsche Bundesland Nordrhein-Westfalen werden Daten

aus der Arbeitskräfteerhebung mit dynamischen Mobilfunkdaten unter Verwendung von Small-

Area-Modellen kombiniert. Aus methodischer Sicht wird ein transformiertes Fay-Herriot-

Modell mit Verzerrungs-Korrektur zur Schätzung der Erwerbslosenquoten angewandt. Unter

Einbezug der Verzerrungs-Korrektur wird die mittlere quadratische Abweichung mit einem

parametrischen Bootstrap-Verfahren geschätzt. Die Leistungsfähigkeit der vorgeschlagenen

Methode wird in einer Fallstudie unter Verwendung von amtlichen Daten sowie in modellba-

sierten Simulationen untersucht. Die Ergebnisse der Anwendung zeigen, dass die (um Pendler

bereinigten) Erwerbslosenquoten deutscher Städte niedriger sind als traditionell ermittelte amt-
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liche Erwerbslosenquoten indizieren.

Schlüsselwörter: Verzerrungs-Korrektur, Fay-Herriot-Modell, mittlere quadratische Abwei-

chung, Small-Area-Schätzung, Erwerbslosenquoten
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