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Abstract: COVID-19 caused by a SARS-CoV-2 infection was first reported from Wuhan, China, and
later recognized as a pandemic on March 11, 2020, by the World Health Organization (WHO). Gold
standard nucleic acid and molecular-based testing have largely satisfied the requirements of early
diagnosis and management of this infectious disease; however, these techniques are expensive and
not readily available for point-of-care (POC) applications. The COVID-19 pandemic of the 21st
century has emphasized that medicine is in dire need of advanced, rapid, and cheap diagnostic
tools. Herein, we report on molecularly imprinted polymer nanoparticles (MIP-NPs/nanoMIPs)
as plastic antibodies for the specific detection of SARS-CoV-2 by employing a surface plasmon
resonance (SPR) sensor. High-affinity MIP-NPs directed against SARS-CoV-2 were manufactured
using a solid-phase imprinting method. The MIP-NPs were then characterized using dynamic light
scattering (DLS) and atomic force microscopy (AFM) prior to their incorporation into a label-free
portable SPR device. Detection of SARS-CoV-2 was studied within a range of 104–106 PFU mL−1. The
MIP-NPs demonstrated good binding affinity (KD = 0.12 pM) and selectivity toward SARS-CoV-2.
The AFM, cyclic voltammetry, and square-wave voltammetry studies revealed the successful stepwise
preparation of the sensor. A cross-reactivity test confirmed the specificity of the sensor. For the first
time, this study demonstrates the potential of molecular imprinting technology in conjunction with
miniaturized SPR devices for the detection of SARS-CoV-2 particles with high-affinity and specificity.
Such sensors could help monitor and manage the risks related to virus contamination and infections
also beyond the current pandemic.

Keywords: molecular imprinting polymer; surface plasmon resonance; SARS-CoV-2; COVID-19;
point-of-care virus diagnostics

1. Introduction

The polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay
(ELISA) are traditional molecular-based tests for the detection of viruses [1,2]. These
techniques are considered the gold standard, and their reliability and urgency are therefore
undeniable; however, scientists are warning about the frequent occurrence of zoonoses-
infectious diseases that jump from animals to humans. Hence, the risk of a new pandemic
is higher than ever before [3]. Increasing population and high migration rates will aid the
easy spread of infectious diseases. The high processing time (~3–4 h), cost, and limited
availability of conventional diagnostics would delay the tests in a larger population, espe-
cially in developing nations. Clinal accuracy of a diagnostic method is the most important
parameter to define its true sensitivity and specificity. As a consequence, nucleic acid-based
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tests (NATs) have been reported to have ~30% of false-negative results in patients with
COVID-19 [4]. Advanced NAT-based detection methods such as loop-mediated isothermal
amplification (LAMP) which certainly reduces the processing time (~1–2 h) and is 10 times
more sensitive than PCR, but still require skilled personnel, complex laboratory setups,
and are not yet commercialized on a large scale [5]. On the other hand, antibody tests
for serological examinations are successful for symptomatic populations after 5 days after
infection. The accuracy of antibody tests for people infected with COVID-19 varies at
different times since the onset of first symptoms, which is 30% in the first week, increases to
70% after 2 weeks, and more than 90% in 3rd week [6]. This requires a detailed analysis of
real samples at different times and regions to establish the standards for antibody tests. In
an emergent situation such as a global pandemic, such a pathway for the development of
standard diagnostic tools is not feasible, whereas readily available antigen-based tests could
only tell the presence or absence of the infection; however, they cannot quantify the viral
load and hence the progression of the disease. They are also decisive to discriminate against
asymptomatic populations [7]. The production and purification of specific antibodies for
these tests require animals and highly equipped laboratories which increase the overall cost
of diagnostics. In addition, antigen-based tests need to undergo rigorous quality control;
they have higher specificity but cannot detect all active infections and thus have higher
chances of false negatives. However, due to their high specificity and fast result output,
future research on the clinical performance of antigen testing is highly encouraging [8].
Additionally, a requirement for labels in almost all the existing detection methods further
reduces the shelf life.

In the past, researchers have exploited other advanced techniques to address different
drawbacks of NAT- and molecular-based detection methods. These techniques include
electrochemical [9,10], quartz crystal microbalance (QCM) [11,12], surface acoustic waves
(SAW) [13], surface plasmon resonance/imaging (SPR(i)) [14,15], optical fiber [16], and
surface-enhanced Raman spectroscopy (SERS) [17] that have been developed for the de-
tection of viral infections. Table 1 also lists the existing sensor methods for COVID-19
diagnosis. As research efforts are being put to develop cheap and easy-to-operate sensors
yet highly specific and accurate, molecularly imprinted polymers (MIPs) are a promising
replacement for natural recognition elements. The new generation of synthetic receptors
has now been established for high sensitivity, affinity (similar to natural receptors), and
specificity. Given their synthetic nature, MIPs are certainly cost-effective and do not require
animals (or cells), and a sophisticated laboratory environment for their production. Their
synthesis can also be easily scaled up when compared to antibodies [18].

Table 1. The list of existing sensor methods for COVID-19 diagnosis.

Sensor Type SARS-CoV-2
Biomarker

Detection
Method

Concentration
Range LOD Sample

Volume
Detection

Time Ref

CRISPR/Cas12a and
aptamers as receptor

Nucleocapsid
protein (Np) Fluorescence 0.19–2.98 fM of Np 0.17 fM

(~2 copies µL−1) 1 µL 20 min [19]

LAMP-based
Electrochemical sensor

Np and
ORF1ab gene SWV 0.001–10,000 × 10−3

ng µL−1 38 × 10−6 ng µL−1 50 µL 30 min [20]

Nanoenzyme-linked Im-
munochromatographic

sensor
Np Colorimetric

0.01563–8 ng mL−1

(linear range:
0.05–1.6 ng mL−1)

0.026 ng mL−1 100 µL 10 min [21]

MIP-based
Electrochemical sensor

Spike protein
subunit S1
(ncovS1)

SWV 26.7–194 fM

15 fM in PBS and
64 fM in

nasopharyngeal
samples

- 15 min [22]

AuNano-cyc/ACE2 on
cotton swab (COLOR) Spike protein Colorimetric 10−12–10−6 g mL−1 0.154 pg mL−1 - 5 min [23]

Zwitterionic
peptide-assisted AuNP

aggregation
Protease Colorimetric 3.2–55.3 µM 33.4 nM 120 µL 10 min [24]
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Table 1. Cont.

Sensor Type SARS-CoV-2
Biomarker

Detection
Method

Concentration
Range LOD Sample

Volume
Detection

Time Ref

Plasmonic Fiberoptic
Absorbance Biosensors

(P-FABs)
Np Absorbance

0.1–10,000 ng mL−1

(linear range:
0.1–100 ng mL−1)

2.5 ng mL−1 25 µL 10 min [25]

Plasmonic (No-core
Fiber-based optical

transducer)
Spike protein Spectral

interrogation 100–104 ng mL−1 8.49 ng mL−1 100 µL 5 min [26]

Graphene-based
Electrochemical sensor

Spike protein
(S1) SWV 260,520 and 1040 nM 260 nM

(20 µg mL−1) 10 µL 45 min [27]

Magnetic bar-embedded
droplet microfluidic

sensor
Np SERS 0–10,000 PFU mL−1 0.22 PFU mL−1 30 µL 10 min [28]

Magneto-assay based on
disposable

Electrochemical sensor
Spike proteins DPV 0.0009–360 fg mL−1 0.35 ag mL−1 30 µL 60 min [29]

Abbreviations: Loop-mediated isothermal amplification (LAMP), Molecularly imprinted polymer (MIP), Surface-
enhanced Raman spectroscopy (SERS), Plaque forming unit (PFU), Square-wave voltammetry (SWV), Differential
pulse voltammetry (DPV), Limit of detection (LOD).

The process of molecular imprinting involves the embossing of a template (target to
be detected) by the polymer matrix, which is a mixture of functional monomers used to
self-assemble and polymerize around the template in the presence of an initiator and a
cross-linker. Once the polymerization is completed, the template is removed and left with
a 3D spatial conformation of the polymer matrix with cavities which are complementary,
not only in terms of shape and size of the target but it also provides corresponding specific
interactions for the further rebinding of the target molecules. These interactions can be
covalent or non-covalent depending upon the type of monomers opted for and the mode
of synthesis used [30]. The long shelf life and lesser stringent conditions of storage offer
high stability [31]. Very recently, two research groups have used MIP technology for the
detection of SARS-CoV-2 [32,33]; however, no one has studied the detection of the whole
virus, to the best of our knowledge. Nonetheless, replacing natural binding receptors with
MIPs is not new [34,35] and our research group have already explored imprinting whole
viruses with high binding affinity and reasonable specificity [14,36].

In this work, we studied the potential of synthetic antibodies for the detection of the
whole SARS-CoV-2 virus using a label-free miniaturized SPR-based sensor for the first
time. The MIPs were produced by an adapted chemical method [37] using glass beads as a
solid support. Since glass is inherently an inert material, it can withstand harsh chemicals
used in the synthesis of nanoMIPs. Additionally, the conjugation of biomolecules onto a
glass surface is very well-established [38]. Dynamic light scattering (DLS), atomic force
microscopy (AFM), and electrochemical techniques were used for the characterization of
nanoMIPs in the solution environment as well as on the sensor surface. The nanoMIP
immobilized sensor allowed for the detection of the SARS-CoV-2 virus with high sensitivity,
specificity, and affinity.

2. Materials and Methods
2.1. Reagents and Chemicals

N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC),
11-mercaptoundecanoic acid (MUDA), phosphate buffered saline (PBS), N-tert-butylacrylamine
(TBAm), N-isopropylacrylamide (NIPAm), N,N’ methylenebisacrylamide (BIS), N-(3-
aminopropyl) methacrylamide (APM), acrylic acid (AAc), N’- tetramethylethylenediamine
(TEMED), 3-aminopropyltrimethyloxysilane (APTMS), ammonium persulphate (APS), glu-
taraldehyde (GA), TWEEN 20 (polyoxyethylenesorbitan monolaurate), sodium acetate,
ethanolamine, ethanol, acetone, anhydrous toluene, and isopropanol (IPA) were purchased
from Sigma Aldrich (Steinheim, Germany). Double-distilled water produced by a Millipore
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Direct-Q 3 UV (Millipore, Taufkirchen, Germany) was used for the synthesis of the nanoMIPs
and buffer preparation. Glass beads (∅100 µm) were bought from Carl Roth (Karlsruhe,
Germany). Syringe filters (Rotilabo PTFE, 0.45 µm and 0.22 µm) were obtained from Carl
Roth (Karlsruhe, Germany). All chemicals and solvents were of analytical or HPLC grade and
were used without further purification. A phosphate-buffered saline +0.05% Tween (PBST)
buffer was prepared and filtered with a 0.22 µm syringe filter.

2.2. Apparatus and Equipment

A miniaturized angular SPR device (CORGI IIF, Plasmetrix) was used to carry out
virus-sensing assays. The device consisted of two flow channels of height: length: width of
250 µm:5 mm:1 mm, respectively. A peristaltic pump and microtubing arrangement were
additionally installed. The flow channels were pressure sealed with the help of a gasket
with a transparent window. Briefly, an incident wavelength of 650 nm was collimated and
passed through a polarizer to obtain transverse magnetic (TM) polarization. The polarized
light was then focused using a lens and coupled through a prism for the excitation of
surface plasmon on the sensing surface (50 nm gold). A detailed description of the optical
arrangement can be found elsewhere [39].

Gold-coated sensor chips (12.4 × 7 × 0.7 mm) of 50 nm thickness were obtained from
Plasmetrix (Montreal, QC, Canada) and used for SPR assays, as well as AFM studies. Elec-
trochemical surface characterization on gold wires was performed using a PalmSens4 com-
pact electrochemical interface with a three-electrode system. Further, the AFM NanoWizard
II (JPK Instruments AG., Berlin, Germany) was used to study the surface topography of
different steps in the biosensor fabrication process. Size and Zeta potential were measured
with a LitesizerTM 500 (Anton Paar, Baden-Württemberg, Germany).

2.3. Preparation of the Virus Culture

SARS-CoV-2 particles were prepared from passage 3 of an early 2020 SARS-CoV-2
B.1 outbreak isolate (BetaCoV/Germany/BavPat1/2020) propagated on Vero E6 cells. An
appropriate BSL-3 facility was used to handle SARS-CoV-2. Briefly, VeroE6 (ATCC CRL-
1586) cells were cultured in the minimal essential medium (MEM; PAN Biotech, Aidenbach,
Germany) which was supplemented with 10% fetal bovine serum (PAN Biotech, Aidenbach,
Germany), 100 IU mL−1 penicillin G, and 100 µg mL−1 streptomycin (Carl Roth, Karlsruhe,
Germany). After 48 h of infecting the Vero E6 cells, virus particles were harvested. To this
end, two infected T-175 cell culture flasks were frozen at−80 ◦C and thawed to obtain a total
volume of 50 mL crude lysate. This lysate was centrifuged for 10 min at 4 ◦C to remove
any cellular debris, and then the virus particles in the supernatant were subsequently
inactivated by a 24 h incubation period in 4% formaldehyde at room temperature and
exported from the BSL-3 lab for further purification.

Further plaque forming units (pfu) were determined by growing Vero E6 cells in
12-well plates infected with 100 µL of serial 10-fold virus dilutions. The viral inoculum
was removed after 1 h of incubation, and cells were overlaid with EMEM 2X containing
1.5% microcrystalline cellulose (Vivapur MCG, JRS Pharma, Patterson, NY, USA). Post
48 h of infection, the cells were fixed with 4% formalin. A 0.75% methylenblue solution
was used to stain the wells and then they were washed with PBS to remove the residual
stain. Plaques were then counted in an appropriate dilution to calculate virus titers in
the inoculum.

Inactivated virus stock was further centrifuged at 1000× g for 10 min to remove
residual cell debris and the obtained supernatant was filtered through a 0.45 µm syringe
filter. The density centrifugation method was used to purify the virus particles. Briefly,
20% w/w sucrose in sterile PBS was injected into inactivated virus stock, ensuring the
sucrose settled at the bottom of the falcon tube. After proper balancing, the stock was
centrifuged at 133.900 rcf (SW 32 Ti, Beckman Coulter, Brea, CA, USA) for 2 h at 4 ◦C to
obtain virus particles cushioned with sucrose at the bottom of the falcon tube. Further, for
solvent exchange, a semi-permeable membrane of MWCO-6–8 kDa (Maxi-dialysis tube,
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Sigma, Steinheim, Germany) was used against sterile PBS at 4 ◦C for 3–4 days (replaced
with fresh PBS each day) under constant stirring. The obtained stock in the PBS was used
for nanoMIP synthesis and sensing assays.

2.4. Synthesis of the NanoMIPs
2.4.1. Derivatization of Glass Beads

The salinization of glass beads for solid-phase synthesis was performed in order to
covalently attach virus particles on their surface. Firstly, 60 g of glass beads were activated
by boiling (~130 ◦C) in 40 mL of 2 M NaOH for 15 min. The beads were then washed
six times with an excess of double-distilled water to bring the pH to 7.5 before completely
drying them with nitrogen. The glass beads were salinized using 24 mL of 2% v/v solution
of APTMS in anhydrous toluene overnight under a nitrogen atmosphere. After the beads
were washed eight times with 30 mL of acetone under vacuum and dried, they were
activated with a 7% v/v glutaraldehyde solution in PBS (pH 7.4, filtered using 0.22 µm
syringe filter) for 2 h.

Further, the beads were rinsed with double-distilled water and incubated for the
conjugation of the template (SARS-CoV-2) overnight at 4 ◦C, where 4 mL of the template
was used in 25 mL of the PBS. The beads were taken out for rinsing and drying the
following day under a vacuum. To prevent non-specific interactions and self-coupling of
unconjugated (or free) reactive glutaraldehyde, the beads were incubated in 50 mL of 0.1 M
ethanolamine in PBS for 15 min. Afterward, the beads were washed and rinsed for the final
time and stored in the fridge for nanoMIP synthesis.

2.4.2. NanoMIP Synthesis and Yield Calculation

The synthesis procedure of SARS-CoV-2-specific MIP receptors (Figure 1) was adapted
from the article by Altintas et al. [14]. SARS-CoV-2 conjugated glass beads were used
for the formation of a specific polymer matrix. Briefly, 39 mg NIPAm, 2 mg BIS, 54 mg
N-(3-aminopropyl) methylacrlamide hydrochloride, and 2.2 µL acrylic acid were added
in 98 mL of double-distilled water in a double-neck flask. Subsequently, 33 mg of N-tert-
butylacrylamide and methacryloxyethyl thiol carbamoyl rhodamine B were separately
dissolved in 1 mL of absolute ethanol prior to the addition of the above mixture. This
concoction was sonicated for 30 min to ensure uniform mixing. Nitrogen purging was
performed for 30 min to maintain an inert atmosphere and prevent possible environmental
contamination. The polymerization was then initiated by injecting APS (initially dissolved
in 800 µL doubled-distilled water) and 24 µL TEMED for 2 h at room temperature. The
mixture was decanted, and beads were washed five times with double-distilled water at
15 ◦C to remove the partially or wholly unpolymerized mixture. Specific MIP nanoparticles
were eluted by passing six fractions of double-distilled water through the column with frit
at 70 ◦C. The harvested MIP receptors were freeze-dried for 2 days. The obtained yield was
quantified by first accurately measuring a clean glass vial three times. An amount of 5 mL
of the MIP dispersion in ultra-pure water (MilliQ, 50 nm filtered) was transferred into the
vial and left to freeze dry again. Once the water was completely sublimated, the vial was
weighed again to finally subtract from the weight of the empty vial measured prior. The
obtained yield was set to a concentration of 1 mg mL−1 with ultra-pure water, which was
sonicated for 30 min and filtered using a 0.45 µm syringe filter for further characterization
and virus sensing assays.

2.5. Characterization of NanoMIPs

The hydrodynamic radius of nanoMIPs was determined by DLS using LitesizerTM 500
(Anton Paar, Baden-Württemberg, Germany). The stability of the nanoparticles in water
was established by analyzing the zeta potential using the same instrument.
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Figure 1. Detailed schematic of solid-phase synthesis of nanoMIPs for SARS-CoV-2 virus.

The nanoMIPs were also visualized on the sensor chip surface by employing AFM
under tapping mode (intermediate contact). The stock solution of nanoMIPs in ultra-pure
water was diluted, and 10 µL of the solution was drop cast on a cleaned silicon wafer.
The drop was left to air-dry and observed under AFM NanoWizard II (JPK Instruments
AG., Berlin, Germany) at different scales. The nanoMIP sensor fabrication steps were also
characterized using the AFM to visualize changes in the surface topography from bare chip
surface to virus binding.

In addition, two primary electrochemical techniques (CV and SWV) were employed
to confirm the successful construction of the nanoMIP sensor. For this, the gold substrate
was used as a working electrode in the electrochemical measurement setup [40].

2.6. SARS-CoV-2 Virus Detection Assay

The gold sensor chips were initially sonicated in IPA followed by sonication in double-
distilled water for 10 min each and then dried with a gentle blow of nitrogen. The chips
were covered with piranha solution (3:1 H2SO4:H2O2) in a glass petri dish for 15 min
under the fume hood. After that, the reaction was stopped with excess double-distilled
water, and chips were rinsed thoroughly. Sensor chips were dried with nitrogen prior
to further use. Once the chip cleaning and preparation processes were completed, they
were equilibrated with absolute ethanol for 15 min and transferred to a 20 mM solution of
1-mercaptoundecanoic acid (MUDA) in absolute ethanol overnight to form a self-assembled
monolayer (SAM) on the surface. The dish was sealed with parafilm to prevent interference
from air and dust. After incubation, the chips were washed with excess absolute ethanol,
followed by rinsing with double-distilled water and dried with nitrogen gas. The MUDA-
coated chips could be stored at 4 ◦C for up to a week. All the buffers for SPR experiments
were prepared using double-distilled water, filtered with a 0.22 µm syringe filter, and
degassed before use. The flow rate was maintained at 5 µL min−1 using a peristaltic
pump (Ismatec Reglo ICC Digital pump, 2-channel, Cole-Parmer GmbH). The buffers
were switched manually using reservoirs from Elveflow (Paris, France). To immobilize
nanoMIPs, MUDA-coated chips were activated with a 6 min injection of a freshly prepared
EDC/NHS solution (0.4 M EDC, 0.1 M NHS) for amine coupling with nanoMIPs. Before
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the injection of nanoMIPs, NHS ester was stabilized using sodium acetate buffer (10 mM,
pH 4.5) for 2 min. After the nanoMIPs immobilization, any available remaining binding
sites were blocked with a 4 min injection of 1 M ethanolamine. Figure 2 shows the major
steps involved in sensor fabrication and virus detection. Virus samples were prepared
in PBST to facilitate the flow through micro tubing and sensor channels and prevent
air from becoming trapped inside the microfluidics. The association time was kept for
12 min and dissociation was maintained for 4 min. Cross-reactivity assays were conducted
using human adenovirus (HAdV), which is quite similar to SARS-CoV-2 in terms of size
and shape.
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3. Results and Discussion
3.1. Size and Stability of NanoMIPs

The nanoMIPs obtained after synthesis were characterized using the DLS method to
check the uniformity, quality, and size of the MIPs. This technique measures the Brownian
motion and relates this to the hydrodynamic size of the particle. The size of the nanoMIPs
was measured in ultra-pure MilliQ water and at constant room temperature (25 ◦C). The
backscattered mode was used to carry out 60 runs for each recording. The average hydro-
dynamic radius of the SARS-CoV-2 nanoMIPs was found to be 94.64 ± 2.34 nm with the
polydispersity index (PDI) of 0.257, indicating highly monodisperse and uniform polymer
particles in the solution (Figure 3a,b). Zeta potential was also measured in ultrapure water
(Omega cuvette Z Mat. No. 189417) to determine the stability of the colloidal solution.
The average zeta potential of the nanoparticles was determined as −24.79 ± 1.23 mV with
0.21 mS/cm conductivity (Figure 3c).

3.2. SARS-CoV-2 Virus Assay

High affinity and sensitivity are the main effect factors for the nanoMIP-based SPR
sensors. The ideal assay type in an SPR sensor is direct assay, where the surface receptor can
efficiently capture the analyte without any signal amplification agents or labels; however,
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this heavily depends on enough affinity between a MIP receptor and its analyte. The size
of the analyte also matters a lot when it comes to SPR sensors. It is hard to detect small
analytes with high sensitivity using a direct-assay strategy. The selection of a suitable
surface chemistry, as well as the quality of the gold layer on the sensor chip surface, is
also critical matters to consider for avoiding chip-to-chip variation in sensor signal. In the
current work, the affinity of the MIPs was found to be high towards the virus of interest
and the size of the analyte is large enough to achieve good sensitivity using a direct assay.
Ionic concentration and pH of several buffers used during each step of immobilization
are also important factors to ensure uniform and high-density coverage of the nanoMIPs
which also influence the level of non-specific bindings or fouling of the SPR sensor surface.
Therefore, a careful screening of the immobilization buffers and the use of appropriate
surface chemistry were achieved in this work, and SARS-CoV-2-specific nanoMIP receptors
were then immobilized onto an SPR-based biosensor to investigate the binding affinity,
sensitivity, and specificity. Amine coupling chemistry was utilized on carboxylic-terminated
alkane-thiol. First, MUDA was allowed to form an Au-S covalent bond on the SPR gold
chip. The mixture of EDC/NHS was then used to activate and form intermediate NHS-ester
to couple with primary amine groups strategically made available to nanoMIP receptors
during synthesis [14]. An amount of 100 µg mL−1 of nanoMIPs were allowed to immobilize
for 10 min at a slow flow rate to ensure full coverage of the sensor chip surface.
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Figure 3. (a) Hydrodynamic size distribution of nanoMIPs specific for SARS-CoV-2 (n = 3). (b) Quality
of DLS measurement (correlation fit). (c). Average zeta potential measurement centered at−24.79 mV
(n = 3).
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A change of 10−4 SPR refractive index units (RIUs) was observed after the nanoMIP
immobilization (Figure 4a). The units were consistent over three different gold chips,
indicating good reproducibility of the immobilization protocol. Further, the virus samples
were prepared in the PBST in a linear range (0.25–1.75 × 106 particles mL−1). An amount
of 100 µL of each concentration was injected into the analyte channel at a flow rate of
5 µL min−1. The total detection time for screening one virus sample was less than 20 min.
A sensogram of the cumulative binding assay with association and dissociation times of
12 min and 4 min, respectively, are shown in Figure 4b. A calibration curve with the linear
fit was plotted from the normalized SPR response after each PBST wash (Figure 4c) to
obtain the limit of detection. Considering the variable noise level of the SPR signal from
Figure 4c, the limit of detection is estimated (noise divided by sensitivity (slope)) to be in
the range depending on the concentration range: LOD = (0.1−3.61) × 105 particles in 1 mL,
and therefore the LOQ is equal to (0.33−1.0) × 106 particles in 1 mL.
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Figure 4. (a) Real-time nanoMIP immobilization onto the SPR chip surface. (b) Real-time SPR
sensorgram of cumulative SARS-CoV-2 detection assay. (c) Overall results of concentration-dependent
virus binding assays using the nanoMIP-SPR sensor (n = 3). The error bars are determined by
the standard deviation of several measurements taken on separate sensor chips at each particular
concentration. (d) Virus detection on three individual sensor chips.

According to Figure 4c, the sensor is linear within the range of concentrations until
nearly 2 million particles per mL, however, it is not saturating, and so it is most likely
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the dynamic range is even much higher. Due to the fact that the required amount of
microfluidics can be as low as 1 µL, one should be able to detect the minimum number of a
few hundreds of particles. Since the virus assay was performed in a cumulative binding
format, a saturation of bulk-refractive index changes and slowdown of the association rate
could be observed at high concentrations of the virus at the current immobilization density
of nanoMIPs (Figure 4b).

Of note, the slightly high relative standard deviation of overall sensor data in Figure 4c
must be attributed to the batch-to-batch variation in sensor chip production that in turn
affects the limiting penetration depth offered by the gold sensor (~200 nm). The results
of the bioassays obtained on individual sensor chip surfaces confirm this fact (Figure 4d);
however, with further optimization of the sensor chip production for such a portable device,
this concern could be fully addressed. On the other hand, it is worth mentioning that the
variations obtained are at higher concentrations and are far away from the detection limit
of the sensor. Therefore, this case would not hinder the measurement capability of the
sensor for real cases.

Since 1000–100,000 RNA copies mL−1 are required to cause the SARS-CoV-2 infection,
where 1 RNA copy is assumed to be equivalent to 1 virion particle, the LOD of the current
sensor lies in the range of concentration and thus causing the infection. Additionally,
according to a report, only 43% of PCR-confirmed positive SARS-CoV-2 cases could be
detected by rapid antigen lateral flow devices (LFDs) [41]. Congruently, our sensor can
perform better than LFDs for the viral loads above ~104 virion particles and can better
deal with false negatives. The important features of portable/miniaturized sensors for a
COVID-19 diagnosis reported in the literature are listed in Table 2. The methods mainly
include electrochemical and field-effect transistor-based detection techniques for the de-
termination of certain parts of SARS-CoV-2 viruses (e.g., spike and nucleocapsid proteins
and genes, and genomic RNA). Of note, the current work brings a portable sensor and
molecular imprinting technology together for the detection of the whole virus detection for
the first time (Table 2). Moreover, it is also reporting on a novel SPR method that allows for
efficient sensing performance with high affinity, sensitivity, and specificity.

SPR-based sensors are highly sensitive (10−7 RIU), meaning that even a small local
fluctuation in temperature can misread the change in the refractive index. Additionally,
it is also very responsive to flow rates and bulk refractive index changes, which usually
introduce noise in the measurements. Both limitations can be addressed by incorporating ef-
fective heat sinks during instrumentation and by developing smart algorithms, respectively.
Presently, we have not investigated the interference caused by miscellaneous non-specific
binders such as cells, proteins, sugars, and other biomolecules likely to be present in a
real sample. A diligent sample preparation may overcome the possible interference from
non-specific binders in the future. In addition, the establishment of a suitable regeneration
protocol would be useful for future applications to make the sensor even more user-friendly
and cost-effective.

It is also worth mentioning the application scenarios of the nanoMIP assay for the
SARS-CoV-2 virus. NanoMIP-based assays can withstand fluctuating temperatures due
to high thermal stability of nanoMIPs in comparison to other bio-recognition receptors
such as antibodies and synthetically designed aptamers. Therefore, such a sensing assay
is very suitable for real-life sensors. To further enhance the performance of this assay for
SARS-CoV-2 detection, the functional groups of nanoMIPs can be easily modified and
they can be adopted in a variety of sensors, for example, lateral flow assays (LFA), and
screen-printed electrodes for electrochemical-based sensing. The developed assay can also
be easily combined with different nanomaterials (such as graphene, metal nanoparticles,
and quantum dots) to enhance the sensor sensitivity towards SARS-CoV-2.
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Table 2. The list of various portable sensors of SARS-CoV-2 reported in the literature as well as the
current work.

Portable Device SARS-CoV-2
Biomarker

Concentration
Range

Limit of Detection
(LOD)

Sample
Volume

Detection
Time Ref

MIP-based miniaturized
angular SPR Whole virus 0.25–1.75 × 106

particles mL−1
3.15 × 104 virus

particles
100 µL 20 min This

work

Screen printed
electrochemical sensor

using smartphone
RNA 10−17–10−12 M

3 aM
(200 copies mL−1

in real samples)
10 µL <10 s [42]

Portable electrochemical
sensor (SenSARS) Spike protein 1–50 fg mL−1 1.065 fg mL−1 0.3 µL 10 min [43]

Electrical-double-layer
gated field-effect
transistor-based

Np 0.4–400
ng mL−1

0.34 ng mL−1

(7.44 pM) in PBS
and 0.14 ng mL−1

(2.96 pM)

500 nL 30 min [44]

CRISPR-Cas-assisted
droplet magnetofluidic

device
RNA

1 and 100
genome

100 µL−1
1 genome µL−1 100 µL <30 min [45]

LAMP-based rapid
detection using handheld

POC device
Np gene 101–09 RNA

copies µL−1 10 RNA copies
4 µL

(extracted
RNA)

20 min [46]

Gox-modified
interdigitated capacitive

(DIDC) sensing
Spike protein S1 1.0 mg mL−1

−1.0 fg mL−1 1 fg mL−1 4 µL 3 s [47]

Wireless aptamer-based
graphene field-effect

transistor

Spike (S) and
nucleocapsid
(Np) protein

0–200 nM of S
and 0–100 nM
for N protein

1.28 PFU mL−1 for
S and 1.45 PFU
mL−1 for Np

protein

- 20 min [48]

3.3. AFM Characterization of NanoMIP Sensor

Highly diluted nanoMIPs were drop casted on a cleaned silicon wafer. The observed
nanoparticles were uniform and monodispersed and thus in good agreement with the
DLS results (Figure 5). The 2D height image of the nanoMIPs with a 200 nm scale bar has
uncovered the uniform size of particles slightly less than 100 nm (Figure 5b). Moreover,
the surface topography and root-mean-square (RMS) roughness were investigated for
sequential steps involved in nanoMIP immobilization and SARS-CoV-2 binding. Small
pieces of the SPR gold chip were prepared in equal sizes and nanoMIPs were immobilized
on cleaned chips using the same protocol mentioned in Section 2.5, under static conditions.
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and (c) 3 µm × 3 µm scales.



Chemosensors 2022, 10, 459 12 of 18

Figure 6a shows the homogenous binding of uniformly distributed nanoMIPs on a
nearly smooth MUDA surface. Upon the binding of SARS-CoV-2, the local roughness of
each nanoparticle increased, as shown in the zoomed section of the SARS-CoV-2 binding.
Additionally, the AFM phase profiles were also retrieved as shown in Figure 6b. It is evident
from the phase images that the texture of the surface varied considerably upon nanoMIP
immobilization onto the activated self-assembled monolayer surface. A clear distinction of
structural edges could be further comprehended after the binding of SARS-CoV-2 onto the
nanoMIP-SPR sensor.
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Figure 6. (a) Surface topography (height images) and (b) phase analysis of different steps involved in
nanoMIPs immobilization and SARS-CoV-2 binding.

Moreover, the average RMS roughness of line sections taken from 10 different locations
increased significantly with each step (Figure 7), which confirms the adsorption of the
material.
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3.4. Electrochemical Characterization of NanoMIP Sensor

Cyclic voltammetry (CV) and square-wave voltammetry (SWV) are versatile and
well-established electrochemical analytical tools used to study surface modification at a
working electrode (Au). The three-electrode system of the counter electrode (CE), reference
electrode (RE), and the working electrode (WE) of Pt, Ag/AgCl, and Au, respectively, were
utilized for the electrochemical characterization of the nanoMIP-SPR sensor [49]. The sensor
preparation steps, from bare gold surface to nanoMIP immobilization, were characterized
using CV and SWV by immersing the gold electrode in a redox marker solution (10 mM
K3Fe (CN6) in 0.1 M KCl). The current output correlates with the degree of surface coating
and nanoMIPs immobilized on the gold surface, where a bare electrode surface can freely
involve itself in the electron exchange process, depicted as the maximum positive peak,
and reduce it, illustrated by the maximum negative peak, whereas a fully covered surface
cannot produce current due to the lack of free electrons on the surface. However, Figure 8a
showed a shift in redox peaks with an increase in current upon the binding of nanoMIPs.
This was further confirmed with SWV measurements, where an increase in current was
seen after achieving ~96% suppression from the MUDA self-assembly (Figure 8b). A shift
and the presence of two peaks in SWV suggested that the current is originating from
different electro-active species. Since nanoMIPs are negatively charged, as indicated by
zeta potential (Figure 3c), their participation in electrochemical-assisted electron exchange
may confirm their binding.
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Figure 8. (a) CV and (b) square-wave voltammograms recorded for immobilization of SARS-CoV-2
nanoMIPs on MUDA-coated gold wires. All measurements were taken with 10 mM K3(Fe(CN)6)
in 0.1 M KCl at room temperature. Each voltammogram represents the average results of three
measurements.
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3.5. Kinetic Data Analysis

The investigation of the dissociation constant (KD) is fundamental for the analysis of
binding kinetics for a ligand–receptor pair. Adsorption isotherms (Langmuir, Freundlich,
and Langmuir–Freundlich) were used to determine the extent of affinity of SARS-CoV-2
towards its specific nanoMIP. In principle, Langmuir and Freundlich binding models un-
dertake homogeneity (1:1 or one-to-one binding of receptor and ligand) and heterogeneity
(one-to-many), respectively [50,51]. The Langmuir–Freundlich model is the combination
of two adsorption isotherms which assumes the surface is homogeneous, however the
biosorption event is a cooperative process, which is described by the following equation.

N = NmKCn/(1 + KCn) (1)

where K, n are isotherm constant and homogeneity index, respectively. This model lies
between the concentrations where it reduces to Freundlich model for lower concentrations
and at a high concentration level it leans towards Langmuir fitting [52]. The number
of virion particles per mL was first converted into molar concentration by calculating
the number of moles against each number of viruses in the sample (particles) and thus
converting it into molarity. Further, different models were fitted to the experimental results
by adjusting parameters Nt, a, m where a is the Freundlich parameter related to binding
affinity and m is the index of heterogeneity of the sorbent (nanoMIP receptor). The value of
m lies between 0 and 1, defining m = 1 as a perfectly homogeneous system. Langmuir and
Freundlich isotherms were fitted using rectangular hyperbola and allometric1 (classical
Freundlich) functions using Origin Pro8.1, respectively. Whereas, for Langmuir–Freundlich
isotherm, a user defined function was input based on Equation (1). The mean association
constant K0 is the function of a and m (Equation (2)) whose inverse gives the value of the
dissociation constant, KD (Equation (3)). Upon calculation, the best fit was achieved with the
Langmuir–Freundlich model with an R2 = 0.9901 resulting in the binding affinity of 0.12 pM.
(Figure 9a). This heterogeneity is expected since the binding of the whole virus is a complex
process due to the fact that various glycoproteins, lipid moieties, and sugars are available
on the virus surface and take part in the recognition and binding events with specific
nanoMIPs. Figure 9b shows the details of fitting parameters of adsorption isotherms.

K0 = a
1
m (2)

KD =
1

K0
(3)

3.6. Cross-Reactivity Test

To confirm the specificity of the binding interaction between the nanoMIP and its target
(SARS-CoV-2), a control virus (human adenovirus, HAdV) was also tested at two different
concentrations (105 and 106 particles mL−1) (Figure 10a). The non-specific binding of HdAV
was found to be in the range of 5–10%, indicating an excellent specificity of the nanoMIPs
towards SARS-CoV-2, despite the high similarity between two human pathogenic viruses
(Figure 10b–d).
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4. Conclusions

In this work, a nanoMIP-based SPR sensor was developed for the rapid and cost-
efficient diagnosis of SARS-CoV-2 using a portable microfluidic device. The label-free sensor
allowed for the detection of SARS-CoV-2 in the concentration range of 0.25–1.75 × 106

particles mL−1 with a LOD of 104 particles. The nanoMIPs showed an excellent binding
affinity towards the target virus with a KD of 0.12 pM. The sensor fabrication steps were
successfully confirmed by AFM, CV, and SWV methods. Cross-reactivity studies with a
structurally similar human pathogenic virus (HAdV) revealed that the developed sensor has
shown only 5–10% non-specific binding. The sensor is an excellent candidate for further devel-
opments for the point-of-care diagnosis of infectious diseases caused by pathogenic viruses.
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