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1 Introduction

Cosmology describes the dynamics of the Universe as a whole. These dynamics can only be
understood in terms of the theory of general relativity which was established by Albert Einstein in
1915 [19]-[20]. This theory is mathematically complicated enough to have given rise to a research
�eld on its own, the area of Mathematical General Relativity.

One of the di�culties is the occurrence of singularities. Since the singularity theorems of
Penrose and Hawking [37],[40],[69] we know that singularities can form under very general circum-
stances. To prove global existence is thus a fundamental question. It has been shown that the
Einstein equations can be seen as an initial value problem [14], [27]. However the fundamental
question of predictability is still open and requires a deep mathematical understanding of the
problem.

Nevertheless one can look at simpli�ed models and hope to learn something to be able in the
future to understand more realistic ones. In some cases it is also physically reasonable to assume
symmetries due to the physical situation one is modelling. One of the applications of the theory
of general relativity is cosmology. With the observations and their interpretation Edwin Hubble
[51] realized that there were strong arguments that the Universe is not static and now it is part
of the standard model of cosmology that we live in a homogeneous and isotropic universe with a
cosmological constant which was introduced by Einstein [21] but with a di�erent purpose. There
are strong indications that the cosmological constant exists. However there are serious problems
for the physical interpretation of this entity which has led scientists to modify the standard model
of cosmology. There are also suggestions that a cosmological constant is not needed if one would
understand the dynamics of inhomogeneous models. The nature of the cosmological constant or
whether this term is really constant is still very controversial. For instance Calogero has recently
proposed that this term comes from velocity di�usion [10].

A starting point to understand general models are the homogeneous models. There are a lot
of results concerning this subject and in particular two books [91], [102] which are an excellent
introduction and a great summary of many of the results obtained. See also [43] for a critical
discussion of the results obtained until now.

In general the focus has been on the �uid model since it appears (theoretically) relatively
natural when dealing with isotropic universes and from observations we also know that the Universe
is almost isotropic. However to have a deeper understanding of the dynamics one should go beyond
the study of isotropic universes. General statements may vary then depending on the choice of the
matter model. It is also important to note as is pointed out in [25] that a quasi-isotropic epoch
is compatible with all Bianchi models and thus it is interesting to study the dynamics of all the
di�erent types.

We will deal with the future asymptotics of some homogeneous cosmological models within the
so called Bianchi class A and the matter is described via an ensemble of free falling particles also
called collisionless matter. For all the models treated here the fundamental questions are on a
�rm ground, i.e. future geodesic completeness has been shown for these models [71], [72].

Concerning the late time behaviour of the Universe one believes in the cosmic no hair conjecture
[34], [39]. This conjecture states roughly speaking that all expanding cosmological models with
a positive cosmological constant approach asymptotically the de Sitter solution (empty and �at
universe with a positive cosmological constant).

Let us review some results which go in this direction. In [104] it was shown that all non-type
IX Bianchi cosmologies which are initially expanding will eventually be locally indistinguishable
from the de Sitter solution. It is remarkable that in this paper only the strong and the dominant
energy condition are assumed for the matter model. However it has turned out that to obtain a
more detailed analysis in general one has to deal with a concrete matter model. For the case with
a positive cosmological constant global future stability in the class of solutions without symmetry
could be shown for the vacuum [30], for Einstein-Maxwell, Einstein-Yang-Mills [31] and for the
FLRW case with a perfect �uid if the �uid obeys a linear equation of state P = (γ − 1)ρ with
1 < γ < 4

3 [89],[94] where P and ρ are the pressure and energy density of the �uid respectively.
This last result could be extended recently to the case γ = 4

3 [62]. For the Einstein-Vlasov system

1



isotropization could be shown for all non-type IX Bianchi cosmologies [56]. For recent results on
the quantum version of the cosmic no hair conjecture we refer to [49] and references therein.

In absence of a cosmological constant there are also di�erent results concerning the future.
For the Einstein-non-linear scalar �eld system future non-linear stability has been shown for a
variety of scalar �elds. For recent work on this subject we refer to [83], [84], [2] and [17]. The
late-time behaviour of Bianchi spacetimes with a non-tilted �uid is well understood [101], [48]. In
particular all non-tilted perfect �uid orthogonal Bianchi models except IX with a linear equation
of state where 0 < γ < 2

3 are future asymptotic to the �at FL model [47]. Note the restriction
on γ here. One cannot expect isotropization for most of the Bianchi models. However there are
two important characteristics of the future asymptotics of some of the Bianchi models which have
been the 'conjectures' of the present work:

1. The spacetimes considered tend to special (self-similar) solutions

2. For expanding models the dispersion of the velocities of the particles decays

This second 'conjecture' means that asymptotically there is a dust-like behaviour for collision-
less matter which is the matter model we will use. This has been achieved already for locally
rotationally symmetric (LRS) models in the cases of Bianchi I, II, III and IX [78],[79],[74],[11] and
for re�ection symmetric models in the case of Bianchi I [73]. These results have been obtained
using dynamical systems theory.

The Einstein-Vlasov system remains a system of partial di�erential equations (PDE's) even if
one assumes spatial homogeneity. The reason is that although the distribution function written
in a suitable frame will not depend on the spatial point, the dependence with respect to the
momenta remains (since the Vlasov equation is de�ned on the mass shell). However in the results
mentioned a reduction to a system of ordinary di�erential equations was possible due to the
additional symmetry assumptions. This is no longer possible if one drops some of these additional
symmetries (see [63]-[64] for the reasons). Thus if one wants to generalize these results the theory
of �nite dimensional dynamical systems is not enough.

Most of the results obtained until now rely on the theory of dynamical systems. Thus one
might be tempted to use techniques coming from the theory of in�nite-dimensional dynamical
systems. The �rst important di�culty would be to choose the suitable (weighted) norm. Another
one is that important theorems which have been used for the �nite-dimensional case cannot be
used here. All this may work, but this is not the approach taken here.

Here the main tool used is a bootstrap argument which is often used in non-linear PDE's. We
will present results concerning the late-time behaviour of some expanding Bianchi A spacetimes
with collisionless matter where we have assumed small data. This assumption will be speci�ed
later, but roughly it means that the universe is close to the special self-similar solution mentioned
earlier and that the velocity dispersion of the particles is small.

The results obtained are as follows. In the case of Bianchi I we could generalize to the non-
diagonal case and thus generalize the results of [73] concerning the expanding direction. We have
already published this result before ([67]; note that F and H are de�ned di�erently there). Here
we present a simpler proof due to a compactness argument. For re�ection symmetric Bianchi II
and re�ection symmetric Bianchi VI0 we have been able to show that their late-time behaviour
remains the same if the LRS condition is dropped. We will show that these spacetimes, re�ection
symmetric Bianchi II and re�ection symmetric Bianchi VI0, will tend to solutions which are even
more symmetric. In the case of Bianchi II we will show that it will become LRS, a Bianchi
model whose isometry group of the spatial metric is four-dimensional. In this case there exists
a one-dimensional isotropy group and one can show that a spacetime of Bianchi class A admits
a four-dimensional isometry group, if and only if two structure constants are equal and if the
corresponding metric components are equal as well. Bianchi VI0 cannot be LRS, however it is
compatible with an additional discrete symmetry (Appendix B.1 of [12]). The analysis of the
asymptotics shows that the Bianchi VI0 spacetimes tend to this special class. Note that for
VI0 there is no corresponding LRS/previous result. Finally we were able to drop the re�ection
symmetry for Bianchi II.
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All the results show that the dust model usually assumed in observational cosmology in the
'matter-dominated' Era is robust. Another way of saying the same is that asymptotically colli-
sionless matter is well approximated by the dust system.

The thesis is organized as follows. In the following chapter we will present the general basic
equations, namely the Einstein-Vlasov system. In chapters three and four we explain the symmetry
assumptions and deduce the corresponding equations of the Einstein-Vlasov system which are then
summarized in chapter �ve. Afterwards we present some special solutions and their linear stability
as a pre-stage of our main argument in chapter eight: the bootstrap argument. This argument is
re�ned in chapter nine and leads to our main results. In chapter ten we treat the non-diagonal
case for Bianchi II. In our last chapter we have a discussion about our results and present some
possible future directions.

2 Relativistic kinetic theory

We will consider as matter model collisionless matter. Before introducing it more formally we want
to motivate �rst this restriction to that kind of matter instead of considering the full Boltzmann
equation.

First of all it is of course an enormous simplifying assumption. In particular it is di�cult to
prove global existence and uniqueness for spatially homogeneous solutions even to the classical
Boltzmann equation (see comments below proposition 4.3 of [72]). Nevertheless there are already
some results concerning these questions [65] and concerning the future asymptotics. A dust-like
behaviour is shown for Einstein-Boltzmann in the case of FLRW with a cosmological constant
(theorem 3.2 of [98]). One assumes by modelling a galaxy as a particle that in a cosmological
context the internal structure of the galaxy is irrelevant.

An important physical argument in favour of considering the collisionless model is that collisions
between galaxies are not common and even if galaxies �y through each other not so many collisions
between stars happen as one might expect. Also in stellar dynamics collisionless matter is often
used since collisions between stars are very unlikely. Actually this led Eddington to state:

�The apparent analogy with the kinetic theory of gases is rejected altogether, and it
is taken as a fundamental principle that the stars describe paths under the general
attraction of the stellar system without interfering with one another �(p. 254 of [18];
italics from Eddington)

Two pages later he continues:

�A regular progression may be traced through rigid dynamics, hydrodynamics, gas-
dynamics to stellar dynamics. In the �rst all the particles move in a connected manner;
in the second there is continuity between the motions of contiguous particles ; in the
third the adjacent particles act on one another by collision, so that, although there
is no mathematical continuity, a kind of physical continuity remains; in the last the
adjacent particles are entirely independent.�(p. 256 of [18])

Later Jeans in the study of stellar dynamics referring to the collisionless Boltzmann equation
writes:

�This is the di�erential equation which must be satis�ed by the distribution function
f in every problem of stellar dynamics.�(p. 230 of [52])

and on the same page as a footnote:

�The student of the Kinetic Theory will recognise that it is simply Boltzmann's well-
known equation with the collisions left out.�

However this equation is usually named after Vlasov [100] in particular in the context of mathe-
matical cosmology. Vlasov discovered in the context of plasma physics that pair collision terms
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do not describe correctly the plasma dynamics and also that these terms are not formally appli-
cable since kinetic terms diverge. His point of view was that only the collective behaviour, i.e.
the electromagnetic �eld created by the charged particles explains the dynamics of the individual
particles.

Maybe the emphasis on the di�erence of taking one or the other point of view has been the
reason that the Vlasov equation is named after him not only in the context of plasma physics (see
[44] for a di�erent point of view). Another maybe that although Boltzmann himself assumed that
the particles interact only through:

• very long range forces which can be approximated by mean �elds

• or very short range forces such as hard core interactions whose e�ect can be approximated
by instantaneous collisions;

in practice the long range forces were often neglected since the gravitational force for instance is
very weak.

Another fact which has attracted attention to the collisionless matter case is the discovery that
analyzing the initial singularity of the Einstein-dust equations there arose singularities which are
unphysical and not related to gravity but to the chosen matter model. One has seen that these
problems do not occur when using collisionless matter as the matter model. For recent progress
in this direction see [80]. Finally the Vlasov equation is used in astrophysics also to model dark
matter where the particles are now elementary particles (see for instance [1] where these particles
are conjectured to be 'sterile' neutrinos).

2.1 The Einstein-Vlasov system

A cosmological model represents a universe at a certain averaging scale. It is described via a
Lorentzian metric gαβ (we will use signature � + + +) on a manifoldM and a family of fundamental
observers. The metric is assumed to be time-orientable, which means that at each point of M the
two halves of the light cone can be labelled past and future in a way which varies continuously
from point to point. This enables to distinguish between future-pointing and past-pointing timelike
vectors. This is a physically reasonable assumption from both a macroscopic point of view e.g. the
increase of entropy and also from a microscopic point of view e.g. the kaon decay. As we already
mentioned in the introduction one has also to specify the matter model and this we will do in the
next section. The interaction between the geometry and the matter is described by the Einstein
�eld equations (we use geometrized units, i.e. the gravitational constant G and the speed of light
in vacuum c are set equal to one):

Gαβ = 8πTαβ

where Gαβ is the Einstein tensor and Tαβ is the energy-momentum tensor. The Einstein tensor
satis�es:

∇αGαβ = 0.

Thus the energy-momentum tensor has to satisfy the same equation, which expresses the conser-
vation of energy. For the matter model we will take the point of view of kinetic theory [95]. The
sign conventions of [76] are used. Also the Einstein summation convention that repeated indices
are to be summed over is used. Latin indices run from one to three and Greek ones from zero to
three.

Consider a particle with non-zero rest mass which moves under the in�uence of the gravitational
�eld. The mean �eld we mentioned in the introduction will be described now by the metric and the
components of the metric connection. The wordline xα of a particle is a timelike curve in spacetime.
The unit future-pointing tangent vector to this curve is the 4-velocity vα and pα = mvα is the
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p0

p1

p2

Figure 1. Sketch of the mass shell (hyperboloid p0 =
p

(p1)2 + (p2)2) inside the forward light cone

4-momentum of the particle. Let Tx be the tangent space at a point xα in the spacetime M , then
we de�ne the phase space for particles of arbitrary rest masses P to be the following set:

P = {(xα, pα) : xα ∈M, pα ∈ Tx, pαpα ≤ 0, p0 > 0}

which is a subset of the tangent bundle TM = {(xα, pα) : xα ∈M, pα ∈ Tx}. For particles of the
same type and with the same rest mass m which is given by the mass shell relation:

pαp
α = −m2

we have the phase space Pm for particles of mass m:

Pm = {(xα, pα) : xα ∈M, pα ∈ Tx, pαpα = −m2, p0 > 0}

We will consider from now on that all the particles have equal mass m. For how this relates to the
general case of di�erent masses see [11]. We will choose units such that m = 1 which means that
a distinction between velocities and momenta is not necessary. We have then that the possible
values for the 4-momenta are all future pointing unit timelike vectors. These values form the
hypersurface:

P1 = {(xα, pα) : xα ∈M, pα ∈ Tx, pαpα = −1, p0 > 0}

which we will call the mass shell. The collection of particles (galaxies or clusters of galaxies)
will be described (statistically) by a non-negative real valued distribution function f(xα, pα) on
P1. This function represents the density of particles at a given spacetime point with given four-
momentum. A free particle travels along a geodesic. Consider now a future-directed timelike
geodesic parametrized by proper time s. The tangent vector is then at any time future-pointing
unit timelike. Thus the geodesic has a natural lift to a curve on P1 by taking its position and
tangent vector. The equations of motion thus de�ne a �ow on P1 which is generated by a vector
�eld L which is called geodesic spray or Liouville operator. The geodesic equations are:

dxα

ds
= pα;

dpα

ds
= −Γαβγp

βpγ

5



Figure 2. A 3-dimensional representation of the 7-dimensional phase space. A slice with t = C which is
cut by the worldlines corresponds to the classical 6-dim phase space

where the components of the metric connection, i.e. Γαβγ = g(eα,∇γeβ) = gαδΓδβγ can be ex-
pressed in the vector basis eα as [(1.10.3) of [96]]:

Γαβγ =
1
2

(eβ(gαγ) + eγ(gβα) + eα(gγβ) + ηδγβgαδ + ηδαγgβδ − ηδβαgγδ) (1)

The commutator of the vectors eα can be expressed with the following formula:

[eα, eβ ] = ηγαβeγ

where ηγαβ are called commutation functions. The restriction of the Liouville operator to the mass
shell is de�ned as:

L =
dxα

ds

∂

∂xα
+
dpa

ds

∂

∂pa
.

Using the geodesic equations it has the following form

L = pα
∂

∂xα
− Γaβγp

βpγ
∂

∂pa
.

This operator is sometimes also called geodesic spray. If we denote now the phase space density
of collisions by C(f), then the Boltzmann equation [9] in curved spacetime in our notation looks
as follows:

L(f) = C(f)

describes the evolution of the distribution function. Between collisions the particles follow geodesics.
We will consider the collisionless case which is described via the Vlasov equation:

L(f) = 0

2.2 Energy momentum tensor and characteristics

The unknowns of our system are a 4-manifold M , a Lorentz metric gαβ on this manifold and the
distribution function f on the mass shell P1 de�ned by the metric. We have the Vlasov equation
de�ned by the metric for the distribution function and the Einstein equations. It remains to de�ne
the energy-momentum tensor Tαβ in terms of the distribution and the metric. Before that we need
a Lorentz invariant volume element on the mass shell. A point of a the tangent space has the
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Figure 3. Schematic Space-time picture of a relativistic gas ('broken discrete complex' [97]). Between
collisions the particles follow geodesics

volume element |g(4)| 12 dp0dp1dp2dp3 (g(4) is the determinant of the spacetime metric) which is
Lorentz invariant. Now considering p0 as a dependent variable the induced (Riemannian) volume
of the mass shell considered as a hypersurface in the tangent space at that point is

$ = 2H(pα)δ(pαpα +m2)|g(4)| 12 dp0dp1dp2dp3

where δ is the Dirac distribution function and H(pα) is de�ned to be one if pα is future directed
and zero otherwise. We can write this explicitly as:

$ = |p0|−1|g(4)| 12 dp1dp2dp3

Now we de�ne the energy momentum tensor as follows:

Tαβ =
∫
f(xα, pa)pαpβ$

One can show that Tαβ is divergence-free and thus it is compatible with the Einstein equations. For
collisionless matter all the energy conditions hold. In particular the dominant energy condition is
equivalent to the statement that in any orthonormal basis the energy density dominates the other
components of Tαβ , i.e. Tαβ ≤ T00 for each α, β (P. 91 of [38]). Using the mass shell relation one
can see that this holds for collisionless matter. The non-negative sum pressures condition is in our
case equivalent to gabT

ab ≥ 0.
The Vlasov equation in a �xed spacetime can be solved by the method of characteristics (see

chapter 3.2 of [26]):

dXa

ds
= P a;

dP a

ds
= −ΓaβγP

βP γ

Let Xa(s, xα, pa), P a(s, xα, pa) be the unique solution of that equation with initial conditions
Xa(t, xα, pa) = xa and P a(t, xα, pa) = pa. Then the solution of the Vlasov equation can be
written as:

f(xα, pa) = f0(Xa(0, xα, pa), P a(0, xα, pa))

where f0 is the restriction of f to the hypersurface t = 0. It follows that if f0 is bounded the same
is true for f . We will assume that f has compact support in momentum space for each �xed t
(note that it is not possible in the Boltzmann case). This property holds if the initial datum f0
has compact support and if each hypersurface t = t0 is a Cauchy hypersurface [75].
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2.3 The initial value problem

Before coming to our symmetry assumption we want to brie�y introduce the initial value problem
for the Einstein-Vlasov system. For a general introduction to the initial value problem in general
relativity we refer to [85] and for the Einstein-Vlasov system in particular we refer to [75]. In
general the initial data for the Einstein-matter equations consist of a metric gab on the initial
hypersurface, the second fundamental form kab on that hypersurface and some matter data. Thus
we have a Riemannian metric gab, a symmetric tensor kab and some matter �elds de�ned on an
abstract 3-dimensional manifold S.

Solving the initial value problem means embedding S into a 4-dimensional M on which are
de�ned a Lorentzian metric gαβ and matter �elds such that gab and kab are the pullbacks to S of
the induced metric and second fundamental form of the image of the embedding of S while f is
the pullback of the matter �elds. Finally gαβ and f have to satisfy the Einstein-matter equations.

For the Einstein-Vlasov system it has been shown [13] that given an initial data set there exists
a corresponding solution of the Einstein-Vlasov system and that this solution is locally unique up
to di�eomorphism (see also theorem 1.1 of [75]). The extension to a global theorem has not been
achieved yet. However if one assumes that the initial data have certain symmetry, this symmetry
is inherited by the corresponding solutions (see 5.6 of [32] for a discussion). In particular for the
case we will deal with, i.e. expanding Bianchi models (except type IX) coupled to dust or to
collisionless matter the spacetime is future complete (theorem 2.1 of [72]).

3 Bianchi spacetimes

We start with a citation of the �rst article of Einstein about cosmology [21]:

�Der metrische Charakter (Kr�ummung) des vierdimensionalen raumzeitlichen Kon-
tinuums wird nach der allgemeinen Relativit�atstheorie in jedem Punkte durch die
daselbst be�ndliche Materie und deren Zustand bestimmt. Die metrische Struktur
dieses Kontinuums muss daher wegen der Ungleichm�assigkeit der Verteilung der Ma-
terie notwendig eine �ausserst verwickelte sein. Wenn es uns aber nur auf die Struk-
tur im grossen ankommt, d�urfen wir uns die Materie als �uber ungeheure R�aume
gleichm�assig ausgebreitet vorstellen, so dass deren Verteilungsdichte eine ungeheuer
langsam ver�anderliche Funktion wird. Wir gehen damit �ahnlich vor wie etwa die
Geod�aten, welche die im �ausserst kompliziert gestaltete Erdober��ache durch ein Ellip-
soid approximieren (...) Der Skalar ρ der (mittleren) Verteilungsdichte kann a priori
eine Funktion der r�aumlichen Koordinaten sein. Wenn wir aber die Welt als r�aumlich
in sich geschlossen annehmen, so liegt die Hypothese nahe, dass ρ unabh�angig vom
Orte sei (...) Aus unserer Annahme �uber die Gleichm�assigkeit der Verteilung der das
Feld erzeugende Massen folgt, dass auch die Kr�ummung des gesuchten Messraumes
eine konstante sein muss.�

We see here the assumption of homogeneity (and isotropy) as a simplifying assumption. We
also see that Einstein has assumed a closed universe. He does this because he encounters serious
di�culties to impose boundary conditions in an analogous way as one does with the Poisson
equation. Today in mathematical cosmology it is standard to assume spatial compactness and
thus one considers spacetimes possessing a compact Cauchy hypersurface which is a simplifying
assumption.

3.1 Homogeneous spacetimes, isotropic spacetimes

We start with the de�nition of homogeneity and isotropy of spacetimes taken from chapter 5.1 of
[105]. In that chapter it is also shown that isotropy implies homogeneity.

De�nition 1 A spacetime (M, gαβ) is said to be (spatially) homogeneous if there exists a
one-parameter family of spacelike hypersurfaces St foliating the spacetime such that for each t

8



Figure 4. A spacetime is spatially homogeneous if it admits an isometry group whose orbits are spacelike
hypersurfaces that foliate M

and for any points P,Q ∈ St there exists an isometry of the spacetime metric, gαβ , which takes P
into Q.

De�nition 2 A spacetime is said to be (spatially) isotropic at each point if there exists a
congruence of timelike curves, with tangents denoted uα �lling the spacetime and satisfying the
following property: Given any point P and any two unit �spatial� tangent vectors sα1 , s

α
2 ∈ VP

(i.e., vectors at P orthogonal to uα), there exists an isometry of gαβ which leaves P and uα at P
�xed but rotates sα1 into sα2 .

3.2 Left and right translations

It turns out that the group of isometries always yields a Lie group G of dimension m (see chapter
7.2 of [105] for details), i.e. a group which is also an m-dimensional manifold such that the inverse
map i(g) = g−1 and the multiplication map f(g1, g2) = g1g2 are smooth. It follows that for each
h ∈ G the map

ψh(g) = hg

called left translation by h is a di�eomorphism. This map ψh induces another map ψ∗h on tensors.
If a vector �eld vα satis�es

ψ∗hv
α = vα

for all h ∈ G it is called left invariant. The left invariant vector �elds on G form an m-dimensional
vector space. If vα and wα are left invariant vector �elds on a Lie group, the commutator is

[v, w]α = Cαβγv
βwγ

where Cαβγ is called the structure constant tensor of the Lie group. From the de�nition it follows
that Cαβγ = −Cαγβ . The Jacobi identity for commutators gives rise to another relation. A �nite
dimensional vector space with a structure tensor satisfying these two relations is called a Lie
algebra. Analogously the map

Ξh(g) = gh

is called a right translation by h and is also a di�eomorphism. Right invariant vector �elds are
in�nitesimal generators of left translations. The commutator of right invariant vector �elds satis�es

[x, y]α = −Cαβγxβyγ

i.e. the same relation as in the left invariant case, but with a minus sign.
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Homogeneous spacetimes

Bianchi spacetimes

Bianchi A spacetimes Bianchi B spacetimes

Kantowski-Sachs spacetimes

Figure 5. Subclasses of homogeneous spacetimes

3.3 De�nition of Bianchi spacetimes

The basis for the classi�cation of homogeneous spacetimes is the work of Bianchi [8] which was
introduced to cosmology by Taub [99]. Here we will use the modern terminology and we de�ne
Bianchi spacetimes as follows:

De�nition 3 A Bianchi spacetime is de�ned to be a spatially homogeneous spacetime whose
isometry group possesses a three-dimensional subgroup G that acts simply transitively on the
spacelike orbits.

Not all homogeneous spacetimes are Bianchi spacetimes. But the only case where G does not
act simply transitively or does not possess a subgroup with simply transitive action are the so
called Kantowski-Sachs models. The Bianchi models can be subclassi�ed into two classes [23]:
class A and B. Later we will only deal with Bianchi class A, however all the equations in this
chapter are valid for Bianchi spacetimes in general.

3.4 Locally homogeneous spacetimes

The only Bianchi spacetimes which admit a compact Cauchy hypersurface are Bianchi I and IX.
In order to be not that restrictive we will consider locally spatially homogeneous spacetimes. They
are de�ned as follows. Consider an initial data set on a three-dimensional manifold S. Then this
initial data set is called locally spatially homogeneous if the naturally associated data set on the
universal covering S̃ is homogeneous. For Bianchi models the universal covering space S̃ can be
identi�ed with its Lie group G (see [71], [72] for details). As we said in the beginning of this
chapter in mathematical cosmology it is standard to assume spatial compactness. It turns out
that this assumption is problematic within the Bianchi class B. See [4],[33],[54] for details about
these questions and relations to the Thurston classi�cation and the Hamiltonian formulation.

3.5 Description of Bianchi spacetimes via the metric approach

A Bianchi spacetime admits a Lie algebra of Killing vector �elds with basis k1, k2, k3 and structure
constants Ccab, such that:

[ka,kb] = −Ccabkc.

The Killing vector �elds ka are tangent to the group orbits which are called surfaces of homogeneity.
If one chooses a unit vector �eld n normal to the group orbits we have a natural choice for the time
coordinate t such that the group orbits are given by a constant t. This unit normal is invariant
under the group, i.e:

[n,ka] = 0

One can now choose a triad of spacelike vectors ea that are tangent to the group orbits:

g(n, ea) = 0
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and that commute with the Killing vector �elds:

[ea,kb] = 0

A frame {n, ea} chosen in this way is called a left invariant frame and it is generated by the right
invariant Killing vector �elds. Since n is hypersurface orthogonal the vector �elds ea generate a
Lie algebra with structure constants ηcab. It can be shown that this Lie algebra is in fact equivalent
to the Lie algebra of the Killing vector �elds. Thus one can classify the Bianchi spacetimes using
either the structure constants or the spatial commutation functions of the basis vectors. The
remaining freedom in the choice of the frame is a time-dependent linear transformation, which can
be used to introduce a set of time-independent spatial vectors Ea:

[Ea,n] = 0.

The corresponding commutation functions are then constant in time and one can make them equal
to the structure constants:

[Ea,Eb] = CcabEc

This is our choice which is sometimes called the metric approach [24]. Often the orthonormal
frame approach is used (see e.g. [102] and [85]). If Wa denote the 1-forms dual to the frame
vectors Ea the metric of a Bianchi spacetime takes the form:

4g = −dt2 + gab(t)WaWb (2)

where gab (and all other tensors) on G will be described in terms of the frame components of the
left invariant frame which has been introduced. A dot above a letter will denote a derivative with
respect to the cosmological time t.

3.6 3+1 Decomposition of the Einstein equations

We will use the 3+1 decomposition of the Einstein equations as made in [76]. Comparing our
metric (2) with (2.28) of [76] we have that α = 1 and βa = 0 which means that the lapse function
is the identity and the shift vector vanishes. There the abstract index notation is used. We can
interpret the quantities as being frame components. For details we refer to chapter 2.3 of [76].
There are di�erent projections of the energy momentum tensor which are important

ρ = T 00

ja = T 0
a

Sab = Tab

where ρ is the energy density and ja is the matter current.
The second fundamental form kab can be expressed as:

ġab = −2kab. (3)

The Einstein equations:

k̇ab = Rab + k kab − 2kackcb − 8π(Sab −
1
2
gabS)− 4πρgab (4)

where we have used the notations S = gabSab, k = gabkab, and Rab is the Ricci tensor of the three-
dimensional metric. The evolution equation for the mixed version of the second fundamental form
is (2.35) of [76]:

k̇ab = Rab + k kab − 8πSab + 4πδab (S − ρ) (5)
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From the constraint equations since k only depends on the time variable we have that:

R− kabkab + k2 = 16πρ (6)

∇akab = 8πjb (7)

where R is the Ricci scalar curvature.
Another useful relation concerns the determinant g of the induced metric ((2.30) of [76]):

d

dt
(log g) = −2k (8)

Taking the trace of (5):

k̇ = R+ k2 + 4πS − 12πρ (9)

With (6) one can eliminate the energy density and (9) reads:

k̇ =
1
4

(k2 +R+ 3kabkab) + 4πS (10)

Finally if one substitutes for the Ricci scalar with (6):

k̇ = kabk
ab + 4π(S + ρ) (11)

3.7 Time origin choice and new variables

Now with the 3+1 formulation our initial data are (gij(t0), kij(t0), f(t0)), i.e. a Riemannian metric,
a second fundamental form and the distribution function of the Vlasov equation, respectively, on
a three-dimensional manifold S(t0). This is the initial data set at t = t0 for the Einstein-Vlasov
system.

We assume that k < 0 for all time following [71] (see comments below lemma 2.2 of [71]). This
enables us to set without loss of generality t0 = −2/k(t0). The reason for this choice will become
clear later and is of technical nature.

We will now introduce several new variables in order to use the ones which are common in
Bianchi cosmologies (e.g.[101]) and to be able to compare results. We can decompose the second
fundamental form introducing σab as the trace-free part:

kab = σab −Hgab (12)

kabk
ab = σabσ

ab + 3H2 (13)

Using the Hubble parameter:

H = −1
3
k

we de�ne:

Σba =
σba
H

(14)

and

Σ+ = −1
2

(Σ2
2 + Σ3

3) (15)

Σ− = − 1
2
√

3
(Σ2

2 − Σ3
3) (16)
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Thus

Σba =

2Σ+ Σ1
2 Σ1

3

Σ2
1 −Σ+ −

√
3Σ− Σ2

3

Σ3
1 Σ3

2 −Σ+ +
√

3Σ−


The reason for using the variables Σ+ and Σ− is that the diagonal case has been very important
to understand the non-diagonal case. De�ne also:

Ω = 8πρ/3H2 (17)

q = −1− Ḣ

H2
(18)

dτ

dt
= H (19)

The time variable τ is dimensionless and sometimes very useful. From (6) we obtain the constraint
equation:

1
6H2

(R− σabσab) = Ω− 1

and from (10) the evolution equation for the Hubble variable:

∂t(H−1) =
3
2

+
1
12

(
R

H2
+

3
H2

σabσ
ab) +

4πS
3H2

(20)

Combining the last two equations with (5) we obtain the evolution equations for Σ− and Σ+:

Σ̇+ = H[
2R− 3(R2

2 +R3
3)

6H2
− Σ+(3 +

Ḣ

H2
) +

4π
3H2

(3S2
2 + 3S3

3 − 2S)] (21)

Σ̇− = H[
R3

3 −R2
2

2
√

3H2
− (3 +

Ḣ

H2
)Σ− +

4π(S2
2 − S3

3)√
3H2

] (22)

3.8 Vlasov equation with Bianchi symmetry

Since we use a left-invariant frame f will not depend on xa and the Vlasov equation takes the
form:

p0 ∂f

∂t
− Γaβγp

βpγ
∂f

∂pa
= 0

It turns out that the equation simpli�es if we express f in terms of pi instead of pi what we can
do due to the mass shell relation:

p0 ∂f

∂t
− Γaβγpβpγ

∂f

∂pa
= 0

Because of our special choice of frame the metric has the simple form (2). This has the consequence
that only the spatial components of the metric connection remain and that the �rst three terms
of (1) vanish. Due to the fact that we are contracting and the antisymmetry of the structure
constant we �nally arrive at:

∂f

∂t
+ (p0)−1Cdbap

bpd
∂f

∂pa
= 0 (23)

From (23) it is also possible to de�ne the characteristic curve Va:

dVa
dt

= (V 0)−1CdbaV
bVd (24)
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Type ν1 ν2 ν3

I 0 0 0
II 1 0 0
VI0 0 1 -1
VII0 0 1 1
VIII -1 1 1
IX 1 1 1

Table 1. Classi�cation of Bianchi types class A

for each Vi(t̄) = v̄i given t̄. Note that if we de�ne:

V = gijViVj (25)

due to the antisymmetry of the structure constants we have with (24):

dV

dt
=

d

dt
(gij)ViVj (26)

Let us also write down the components of the energy momentum tensor in our frame:

T00 =
∫
f(t, pa)p0√gdp1dp2dp3 (27)

T0j = −
∫
f(t, pa)pj

√
gdp1dp2dp3 (28)

Tij =
∫
f(t, pa)pipj(p0)−1√gdp1dp2dp3 (29)

4 Bianchi A spacetimes

4.1 De�nition and classi�cation of Bianchi A spacetimes

In the last chapter we have presented the Einstein-Vlasov system with Bianchi symmetry. However
our results concern only a special class of the Bianchi spacetimes, namely that of class A.

De�nition 4 A Bianchi A spacetime is a Bianchi spacetime whose three-dimensional Lie
algebra has traceless structure constants, i.e. Caba = 0.

In that case there is a unique symmetric matrix, called commutator matrix with components
νij such that the structure constants can be written as follows (lemma 19.3 of [85]):

Cabc = εbcdν
da (30)

The transformation rule of the commutator matrix under a change of basis of the Lie algebra can
be used to classify the Bianchi class A Lie algebras. It is possible to diagonalize ν and the diagonal
elements ν1, ν2 and ν3 can be used to classify the di�erent Bianchi types of class A (for details
see chapter 19.1 of [85]).

We will study Bianchi I, II and VI0. The importance of these Bianchi types is that they play
a fundamental role for higher Bianchi types. See [81] for an example concerning the direction
of the singularity. In the following �gure the relations between the di�erent types are shown
schematically.

4.2 The sign of the Ricci scalar and some consequences

Before coming to particular Bianchi types we want to obtain some interesting inequalities which are
valid for all Bianchi A spacetimes except Bianchi type IX. The reason is that for those spacetimes
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B(I)

B(II)

B(VII0)B(VI0)

B(IX)B(VIII)

Figure 6. Specialization diagram for the Bianchi invariant sets [101]

the Ricci scalar is non-positive (see corollary 19.12 of [85] for a proof). From this fact we can
obtain an estimate for H. Since ρ ≥ S due to the energy condition we can conclude from (9) that

3H2 ≥ −Ḣ (31)

For all Bianchi spacetimes we can conclude from (11) and (13) that

−Ḣ ≥ H2 (32)

Integrating (31) and (32) we arrive at the estimate for H:

(3(t− t0) +H−1(t0))−1 ≤ H ≤ (t− t0 +H−1(t0))−1

Another useful inequality which follows from the fact that the Ricci scalar is non-positive is an
upper bound of the energy density in terms of the Hubble variable. If follows from (6) using the
trace-free part of the second fundamental form that:

16πρ = 6H2 +R− σabσab

Thus we obtain:

16πρ ≤ 6H2 (33)

4.3 Lie groups and structure constants for Bianchi I, II and VI0

Bianchi I has as the Lie group R3. Bianchi II has as Lie Group the Heisenberg group (chapter
23.4 of [85]): the subgroup of GL(3,R) given by the matrices of the form:1 x y

0 1 z
0 0 1


Finally Bianchi VI0 has as the Lie group Sol (chapter 23.3 of [85]) where the underlying manifold
is R3, but the group structure is given byx1

y1
z1

x2

y2
z2

 =

 x1 + x2

y1 + ex1y2
z1 + e−x1z2


From (30) we see that the structure constants vanish for Bianchi I. For Bianchi II the only non-
vanishing structure constants are:

C1
23 = 1 = −C1

32 (34)

and in the case of Bianchi VI0 these are:

C2
31 = 1 = −C2

13, C3
21 = 1 = −C3

12 (35)
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4.4 Re�ection symmetry and vanishing tilt

In the case of Bianchi I we will treat the non-diagonal case and for this case the momentum
constraint is automatically satis�ed if the matter current vanishes. However for Bianchi II and
VI0 we will assume at some point an additional symmetry namely the re�ection symmetry to
ensure this. This will be a restriction to the diagonal case. The re�ection symmetry has been
de�ned in (2.10) of [73] for the case of Bianchi I, but one can de�ne this for other Bianchi types
as well with the di�erence that the distribution function now will depend in general on the time
variable:

f(t, p1, p2, p3) = f(t,−p1,−p2, p3) = f(t, p1,−p2,−p3)

One can easily see from (28)-(29) that the energy-momentum tensor is then diagonal. Thus from
(3) and (4) we can see that if the metric and the second fundamental form are diagonal initially
they will remain diagonal in the re�ection symmetric case. This symmetry implies in particular
that there is no matter current, which means that there is no 'tilt'. For Bianchi A in general the
constraint equation (7) simpli�es to:

8πT0j = Cljik
i
l

For Bianchi II we obtain thus

8πT02 = k3
1

8πT03 = −k2
1

and for Bianchi VI0:

8πT01 = −k2
3 − k3

2

8πT02 = k1
3

8πT03 = k1
2

4.5 Some formulas for the diagonal case

Now we will introduce formulas which are valid in the diagonal case. There (ijk) denotes a
cyclic permutation of (123) and the Einstein summation convention is suspended for the �rst two
formulas. Let us de�ne:

ni = νi

√
gii

gjjgkk

The Ricci tensor is given by (11a) of [12]:

Rii =
1
2

[n2
i − (nj − nk)2]

We de�ne:

Ni =
ni
H

In the diagonal case we have:

Σ2
+ + Σ2

− =
1
6
σabσ

ab

H2

from which follows that the constraint equation can be written in the following way:

Σ2
+ + Σ2

− = Ω− 1− 1
6H2

R (36)

Now we proceed to use them for the cases of Bianchi II and VI0.
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4.5.1 Expressions for diagonal Bianchi II

For Bianchi II we have then:

R1
1 = −R2

2 = −R3
3 = −R =

1
2
n2

1

From the constraint equation (36) we obtain:

Σ2
+ + Σ2

− = 1− Ω− 1
12
N2

1

and from (20) we obtain the equation for the evolution of H:

∂t(H−1) =
3
2
− N2

1

24
+

3
2

(Σ2
+ + Σ2

−) +
4πS
3H2

From the de�nition (3) for the second fundamental form the evolution equation for n2
1 follows:

d

dt
(n2

1) = 2(−4σ+ −H)n2
1

In terms of N2
1 :

d

dt
(N2

1 ) = −2N2
1H(4Σ+ + 1 +

Ḣ

H2
)

or

Ṅ1 = −N1H(4Σ+ + 1 +
Ḣ

H2
)

4.5.2 Expressions for diagonal Bianchi VI0

For Bianchi VI0 we have then:

R1
1 = R = −1

2
(n2 − n3)2

R2
2 = −R3

3 =
1
2

(n2
2 − n2

3)

The constraint equation (36) is:

Σ2
+ + Σ2

− = 1− Ω− 1
12

(N2 −N3)2

∂t(H−1) =
3
2
− 1

24
(N2 −N3)2 +

3
2

(Σ2
+ + Σ2

−) +
4πS
3H2

As in the Bianchi II case, using the equation (3) we arrive at:

Ṅ2 = −N2H(−2Σ+ − 2
√

3Σ− + 1 +
Ḣ

H2
)

Ṅ3 = −N3H(−2Σ+ + 2
√

3Σ− + 1 +
Ḣ

H2
)

5 Central equations

In this section we present or collect the main equations just to have them together.
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5.1 Bianchi I

From (20) since R = 0 we have:

∂t(H−1) =
3
2

+
1

4H2
σabσ

ab +
4πS
3H2

De�ning F = 1
4H2σabσ

ab, the evolution equation is

Ḟ = −3H[F (1− 2
3
F − 8πS

9H2
)− 4π

3H3
Sabσ

ab] (37)

and the constraint equation:

F =
3
2

(1− Ω)

The Vlasov equation in the chosen frame is trivial since the structure constants vanish

∂f

∂t
= 0

5.2 Re�ection symmetric Bianchi II

The evolution equations are:

∂t(H−1) =
3
2
− N2

1

24
+

3
2

(Σ2
+ + Σ2

−) +
4πS
3H2

(38)

Σ̇+ = H[
1
3
N2

1 − (3 +
Ḣ

H2
)Σ+ +

4π
3H2

(S2
2 + S3

3 − 2S1
1)] (39)

Σ̇− = H[−(3 +
Ḣ

H2
)Σ− +

4π√
3H2

(S2
2 − S3

3)] (40)

Ṅ1 = −N1H(4Σ+ + 1 +
Ḣ

H2
) (41)

and the constraint equation:

Σ2
+ + Σ2

− = 1− Ω− 1
12
N2

1

The Vlasov equation in this case using (34) is:

∂f

∂t
+ (p0)−1p1(p2 ∂f

∂p3
− p3 ∂f

∂p2
) = 0

Let us write the equations (39)-(41) with τ and q:

Σ′+ =
1
3
N2

1 − (2− q)Σ+ +
4π

3H2
(S2

2 + S3
3 − 2S1

1) (42)

Σ′− = −(2− q)Σ− +
4π√
3H2

(S2
2 − S3

3) (43)

N ′1 = N1(q − 4Σ+) (44)

Note that these equations are the same as (6.21) of [101] with γ = 1 if one sets S = 0 in
(42)-(44).
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5.3 Re�ection symmetric Bianchi VI0

For Bianchi VI0 the evolution equations are:

∂t(H−1) =
3
2
− 1

24
(N2 −N3)2 +

3
2

(Σ2
+ + Σ2

−) +
4πS
3H2

Σ̇+ = H[−1
6

(N2 −N3)2 − Σ+(3 +
Ḣ

H2
) +

4π
3H2

(S2
2 + S3

3 − 2S1
1)]

Σ̇− = H[
N2

3 −N2
2

2
√

3
− (3 +

Ḣ

H2
)Σ− +

4π(S2
2 − S3

3)√
3H2

]

Ṅ2 = −N2H(−2Σ+ − 2
√

3Σ− + 1 +
Ḣ

H2
)

Ṅ3 = −N3H(−2Σ+ + 2
√

3Σ− + 1 +
Ḣ

H2
)

and the constraint equation:

Σ2
+ + Σ2

− = 1− Ω− 1
12

(N2 −N3)2

For the Vlasov equation we obtain with (35)

∂f

∂t
+ (p0)−1[p2(p3 ∂f

∂p1
− p1 ∂f

∂p3
) + p3(p2 ∂f

∂p1
− p1 ∂f

∂p2
)] = 0

In analogy to Bianchi II these equations can be compared to (6.9)-(6.10) of [101] setting N1 to
zero and using the de�nition of q (18).

6 Special solutions

In this section we present some special solutions which will be important, since we will show that
the late time asymptotics of the Bianchi types considered behave like them in a sense which will be
speci�ed later. We start with the Kasner solution which is the general Bianchi I vacuum solution
to motivate also the concept of generalized Kasner exponents.

6.1 The Kasner solution and generalized Kasner exponents

The Kasner solution [53] is the general Bianchi I vacuum solution, thus all components of the
energy-momentum tensor and the scalar curvature R vanish. From the constraint equation one
obtains:

Σ2
+ + Σ2

− = 1

which is known as the Kasner circle. The metric components are:

gij = diag(t2p1 , t2p2 , t2p3)

where p1, p2 and p3 satisfy:

p1 + p2 + p3 = 1
p2
1 + p2

2 + p2
3 = 1

One can easily compute that the Hubble variable is H = 1
3 t
−1.

For more general spacetimes let λi be the eigenvalues of kij with respect to gij , i.e., the solutions
of:

det(kij − λδij) = 0 (45)
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We de�ne

pi =
λi
k

as the generalized Kasner exponents. They satisfy the �rst but in general not the second Kasner
relation.

6.2 Friedman-Lema��tre-Robertson-Walker Universes

The possible homogeneous and isotropic universes are called Friedman-Lema��tre-Robertson-Walker
(FLRW) universes ([28]- [29], [57]-[58], [86]-[88], [106]). Depending on the curvature the metric
takes the form:

g = a2(t)


dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)
dx2 + dy2 + dz2

dψ2 + sinh2 ψ(dθ2 + sin2 θdφ2)

which can be written as:

g = a2(t)[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)]

where a is positive (it cannot change the sign, if it does we have a singularity) and
k = 1, r = sinψ
k = 0, r = ψ

k = −1, r = sinhψ

for the 3-sphere (closed, special case of Bianchi IX), �at space (special case of Bianchi I and Bianchi
VII0) and for the hyperboloid (open, special case of Bianchi V and VIIh with h 6= 0) respectively.
For the Friedman solution with a �at geometry it is easy to calculate that Σ+ = Σ− = 0 which
tells us that the solution is isotropic. For a = t

2
3 we have the Einstein-de Sitter solution [22] which

corresponds to the dust case. The energy density in this case is ρES = 1
6π t
−2.

6.3 The Collins-Stewart solution

Another special solution which will play an important role is the Collins-Stewart solution ([15], p.
430) with dust (γ = 1) which has Bianchi II symmetry:

gCS = diag(2t, (2t)3/2, (2t)3/2)

The Hubble parameter is H = 2
3 t
−1 and the energy density 8πρCS = 5

4 t
−2. The values of the

variables which have been introduced previously are:

Σ+ =
1
8

; Σ− = 0; Ω =
15
16

; N1 =
3
4

6.4 The Ellis-MacCallum solution

In the case of Bianchi VI0 there is a dust solution with diagonal metric discovered by Ellis and
MacCallum ([23], pp. 124-125):

gEM = diag(t2, t1, t1)

The Hubble parameter is H = 2
3 t
−1 as in the Collins-Stewart solution, but the energy density

8πρEM = t−2 is di�erent. Here the values of the introduced variables are:

Σ+ = −1
4

; Σ− = 0; N1 = 0; N2 = −N3 =
3
4

; Ω =
3
4
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The generalization of this solution to di�erent values of γ is called Collins solution.

Σ+

Σ−

F

Kasner circle

1

1

C.-S.E.-M.

Figure 7. The di�erent solutions projected to the Σ+Σ−-plane

7 Einstein-dust with small data

7.1 Einstein-dust system

Let us present brie�y the Einstein-Euler system. We will consider the isentropic case where the
matter �elds are the energy density ρ and the four-velocity uα which is a unit timelike vector. The
equation of state P = f(ρ) relates the pressure P with the energy density. The energy-momentum
tensor is:

Tαβ = (ρ+ P )uαuβ + Pgαβ

and the equations of motion are equivalent to the condition that the energy-momentum tensor is
divergence-free. The Einstein-dust system is then obtained via the condition P = 0. It can be seen
as a very singular solution of the Einstein-Vlasov system. Formally the system can be obtained
from the Einstein-Vlasov system choosing f to be of the form:

f(t, xa, pa) = |u0||g(4)|− 1
2 ρ(t, xa)δ(pa − ua)

where u0 is obtained via the mass shell relation. The relation of the Einstein-dust system to the
Einstein-Vlasov system is in general subtle and we refer to [70] for more information on that. Here
we will look at the special solutions of the corresponding Einstein-dust systems in order to obtain
some intuition about the Einstein-Vlasov system. It is easy to see that the special solutions are
equilibrium points. The stability of these equilibrium points has already been studied (see for
instance [101]). For the case of Bianchi I there even exist a general expression [(11-1.12) of [41]],
where one can see that isotropization occurs. Actually for all the Bianchi cases we study here,
Liapunov functions have been found, such that besides the stability also the global behaviour is
known.

7.2 Bianchi I with small data

In this section we will start dealing with estimates. C will denote an arbitrary constant and ε a
small and strictly positive constant. They both may appear several times in di�erent equations
or inequalities without being the same constant.

Setting in (37) Sab to zero we arrive at:

Ḟ = −3H[F (1− 2
3
F )] (46)
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Assuming now that F ≤ ε, it follows from the fact that 0 ≤ F ≤ 3
2 and (46) that

∂t(H−1) ≤ 3
2

+ ε

Integration (with t0 = 2
3H
−1(t0)) leads to:

H ≥ (
2
3
− ε)t−1 (47)

Using this inequality in (46) we obtain:

F = O(t−2+ε) (48)

Integrating (20)

H(t) =
1

3
2 t+ I

=
2
3
t−1 1

1 + 2
3It
−1

with

I =
∫ t

t0

F (s)ds

Using (47) and (48) we obtain

H =
2
3
t−1(1 +O(t−1))

which used again in (46) leads to

F = O(t−2)

We expect that in the Vlasov case F will have a similar decay which is an indication for isotropiza-
tion. However the estimate of F will turn out to be not su�cient. In addition to assume that we
are close to the isotropic case, we will have to assume that we are close to the dust case. This
is done via a momentum bound. We have a number (di�erent from zero) of particles at possibly
di�erent momenta and we de�ne P as the supremum of the absolute value of these momenta at a
given time t:

P (t) = sup{|p| = (gabpapb)
1
2 |f(t, p) 6= 0}

A bound on that quantity can be used for estimates on S/H2 as we show now. Consider an
orthonormal frame and denote the components of the spatial part of the energy-momentum tensor
in this frame by Ŝab. The components can be bounded by

Ŝab ≤ P 2(t)ρ

so we have that

Ŝ

ρ
≤ 3P 2

from which follows with (33) that:

4πS
3H2

≤ 3
2
P 2.

Now if our idea of the asymptotics is correct we approach in a sense to be discussed the Einstein-de
Sitter solution. Since in the Bianchi I case the structure constants vanish, the Va are constant (see

(24)). Putting these facts together, the expected decay of V is O(t−
4
3 ) and for P :

P = O(t−
2
3 )

22



7.3 Linearization of Einstein-dust around Collins-Stewart

Let us look at the stability of the Collins-Stewart solution with dust. For the Collins-Stewart
solution we have (Σ+ = 1

8 ,Σ− = 0, N1 = 3
4 ) which is an equilibrium point of the system (42)-(44)

with S = 0. Let us translate the equilibrium point to the origin by introducing the variables:

Σ̃+ = Σ+ −
1
8

Σ̃− = Σ−

Ñ1 = N1 −
3
4

The linearization is: Σ̃+

Σ̃−
Ñ1

′ =

− 93
64 0 63

128
0 − 3

2 0
− 87

32 0 − 3
64

Σ̃+

Σ̃−
Ñ1


The variable Σ− decouples and we obtain:

Σ− = Σ−(τ0)e−
3
2 (τ−τ0)

The rest of the system: (
Σ̃+

Ñ1

)′
=
(
−93/64 63/128
−87/32 −3/64

)(
Σ̃+

Ñ1

)
has eigenvalues

λ1/2 = −3
4

(1∓ i
√

3
2

)

The matrix of eigenvectors and its inverse:

MII =

(
0 1

32
21

√
3
2

10
7

)
; M−1

II =

(
− 5

16

√
6 21

32

√
2
3

1 0

)
which leads to:(

Σ̃+

Ñ1

)
= e−

3
4 τ

− 5
16

√
6 sinωτ + cosωτ 21

32

√
2
3 sinωτ

− 29
24

√
6 sinωτ cosωτ + 15

16

√
2
3 sinωτ

(Σ̃+(0)
Ñ1(0)

)

with ω = 3
4

√
3
2 .

Translated to our time variable means that the expected estimates for the Vlasov case are:

Σ+ −
1
8

= O(t−
1
2 )

N1 −
3
4

= O(t−
1
2 )

Σ− = O(t−1)

Whether this is true we do not know at this point. We will start proving estimates in the next
chapter. Here we have obtained these estimates just in order to get a hint about the non-linear
behaviour. For instance it could be the case that the variable Σ− has the same decay as the other
variables. For V due to (25) and introducing the Collins-Stewart solution we have:

V̇ = −t−1g11V 2
1 −

3
2
t−1(g22V 2

2 + g33V 2
3 )

We see that V̇ ≤ −t−1V which implies that the following holds:

P = O(t−
1
2 )
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7.4 Linearization of Einstein-dust around Ellis-MacCallum

For S = 0 we have:

Σ′+ = −1
6

(N2 −N3)2 − Σ+(2− q) (49)

Σ′− =
N2

3 −N2
2

2
√

3
− (2− q)Σ− (50)

N ′2 = N2(2Σ+ + 2
√

3Σ− + q) (51)

N ′3 = N3(2Σ+ − 2
√

3Σ− + q) (52)

with q = 1
2 −

1
24 (N2 −N3)2 + 3

2 (Σ2
+ + Σ2

−).
For the Ellis-MacCallum solution we have (Σ+ = − 1

4 ,Σ− = 0, N2 = −N3 = 3
4 ) which is an

equilibrium point of the system (49)-(52). Introducing

Σ̃+ = Σ+ +
1
4

Σ̃− = Σ−

Ñ2 = N2 −
3
4

Ñ3 = N3 +
3
4

The linearization is: 
Σ̃+

Σ̃−
Ñ2

Ñ3


′

=


− 21

16 0 − 15
32

15
32

0 − 3
2 −

√
3

4 −
√

3
4

15
16

3
2

√
3 − 3

32
3
32

− 15
16

3
2

√
3 3

32 − 3
32




Σ̃+

Σ̃−
Ñ2

Ñ3


The eigenvalues are:

λ1/2 = −3
4

(1± i
√

3)

λ3/4 = −3
4

(1± i)

and

MVI0 =


0 0 3

5 − 4
5

− 1
6

√
3 1

2 0 0
1 0 −1 0
1 0 1 0



M−1
VI0

=


0 0 1

2
1
2

0 2 1
6

√
3 1

6

√
3

0 0 − 1
2

1
2

− 5
4 0 − 3

8
3
8


are the matrix of the eigenvectors and its inverse. Translated to our time variable the expected
estimates for the Vlasov case are:

Σ+ +
1
4

= O(t−
1
2 )

Σ− = O(t−
1
2 )

N2 −
3
4

= O(t−
1
2 )

N3 +
3
4

= O(t−
1
2 )

24



With the same procedure as in the Bianchi II case, using now the Ellis-MacCallum solution we
arrive at:

P = O(t−
1
2 )

8 The bootstrap argument

The argument which will lead us to our main conclusions is a bootstrap argument, a kind of
continuous induction argument. The argument will work as follows (see 10.3 of [76] for a detailed
discussion). One has a solution of the evolution equations and assumes that the norm of that
function depends continuously on the time variable. Assuming that one has small data initially at
t0, i.e. the norm of our function is small, one has to improve the decay rate of the norm such that
the assumption that [t0, T ) is the maximal interval with T <∞ would lead to a contradiction. This
is a way to obtain global existence for small data. In our case global existence is already clear but
if the argument works we also obtain information about how the solution behaves asymptotically
which is our goal. The interval we look at is [t0, t1) and we will present the estimates assumed
in the following for the di�erent cases. All prefactors on the right hand side are positive and as
small as we want.

8.1 Bootstrap assumptions

A �rst task is to �nd the suitable bootstrap assumptions. We choose a slightly slower decay for the
anisotropy and the curvature variables than in the linearized cases with the hope that using the
central equations, we are able to obtain the same decay as in the linearized case. For the estimate
of P we start with a slower decay than the ones obtained in section 7 as well. The assumption
of small data here is in the sense that our solutions are not �far away� from our special solutions.
In general to improve an estimate the corresponding evolution equation will be integrated. The
assumptions made for the di�erent Bianchi cases exclude the vacuum case, since the values of Ω
due to the constraint equation are near the corresponding values of Ω of the special solutions, thus
far from being zero.

8.1.1 Bootstrap assumptions for Bianchi I

F ≤ AI(1 + t)−
3
2

P ≤ Am(1 + t)−
7
12

8.1.2 Bootstrap assumptions for Bianchi II

|Σ+ −
1
8
| ≤ A+(1 + t)−

3
8

|Σ−| ≤ A−(1 + t)−
3
4

|N1 −
3
4
| ≤ Ac(1 + t)−

3
8

P ≤ Am(1 + t)−
1
3

25



8.1.3 Bootstrap assumptions for Bianchi VI0

|Σ+ +
1
4
| ≤ A+(1 + t)−

3
8

|Σ−| ≤ A−(1 + t)−
3
8

|N2 −
3
4
| ≤ Ac1(1 + t)−

3
8

|N3 +
3
4
| ≤ Ac2(1 + t)−

3
8

P ≤ Am(1 + t)−
1
3

8.2 Estimate of the mean curvature

The �rst variable we estimate is the trace of the second fundamental form or equivalently the
Hubble variable. Let us rewrite (20):

∂t(H−1) =
3
2

+D (53)

with

D =
1
12

(
R

H2
+

3
H2

σabσ
ab) +

4πS
3H2

Integrating (20) and since t0 = 2
3H
−1(t0) (this choice was made in section (3.7)):

H(t) =
1

3
2 t+ I

=
2
3
t−1 1

1 + 2
3It
−1

with

I =
∫ t

t0

D(s)ds

Now for Bianchi I we have:

DI = F +
4πS
3H2

for Bianchi II:

DII =
3
2

(Σ2
+ + Σ2

−) +
4πS
3H2

− N2
1

24

and for Bianchi VI0:

DV I0 =
3
2

(Σ2
+ + Σ2

−) +
4πS
3H2

− 1
24

(N2 −N3)2

It turns out that in all cases D is small, in particular from the di�erent bootstrap assumptions we
obtain for Bianchi I:

DI ≤ ε1(1 + t)−
7
6

where ε1 = C(AI +A2
m) and for Bianchi II and VI0 respectively:
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|D| ≤ ε2/3(1 + t)−
3
8 (54)

with

ε2 = C(A+ +A2
− +Ac +A2

m)
ε3 = C(A+ +A2

− +Ac1 +Ac2 +A2
m)

For Bianchi I we use the fact that I is bounded by ε1 and for the other two cases we arrive at:

2
3
t−1I = O(ε2/3t−

3
8 )

The results for the Hubble variable in the case of Bianchi I:

H =
2
3
t−1(1 +O(ε1t−1)) (55)

and in the other cases:

H =
2
3
t−1(1 +O(ε2/3t−

3
8 )) (56)

For all cases we also obtain an estimate for the determinant using the estimate of H and
integrating (8) in both directions.

C(t0)t4−ε ≤ g(t) ≤ C(t0)t4+ε (57)

8.3 Estimate of the metric

8.3.1 Matrix norms and related inequalities

For a matrix A its norm can be de�ned as:

‖A‖ = sup{|Ax|/|x| : x 6= 0}

Let B and C be n × n symmetric matrices with C positive de�nite. It is possible to de�ne a
relative norm by:

‖B‖C = sup{|Bx|/|Cx| : x 6= 0}

Clearly:

‖B‖ ≤ ‖B‖C‖C‖

It also true that:

‖B‖C ≤
√

tr(C−1BC−1B) (58)

This can be shown as follows. Consider the common eigenbasis bi of B and C. Then there exist
αi such that Bbi = αiCbi for each i. Then (58) is equivalent to the statement that the maximum
modulus of any αi is smaller than Σiα2

i . Using (58) we obtain in the sense of quadratic forms:

σab ≤ (σcdσcd)
1
2 gab (59)
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8.3.2 Estimate of the metric in the sense of quadratic forms for Bianchi I

De�ne:

ḡab = t
p
q gab

Then

d

dt
(t−γ ḡab) = t−γ−1ḡab(−γ +

p

q
) + 2t−γ+

p
q (σab −Hgab)

where we have introduced for technical reasons a small positive parameter γ. Using now the
inequality (59)

d

dt
(t−γ ḡab) ≤ t−γ−1ḡab[−γ +

p

q
+ 2tH((H−2σcdσ

cd)
1
2 − 1)] (60)

Introducing the estimate of H obtained for Bianchi I:

d

dt
(t−γ ḡab) ≤ t−γ−1ḡab[−γ +

p

q
+

4
3

(1 +O(εt−1))((H−2σcdσ
cd)

1
2 − 1)]

Choosing the constants ε smaller than γ and p
q = 4

3 we will have that

d

dt
(t−γ ḡab) ≤ −ηt−γ−1ḡab

with η > 0. From this it follows:

d

dt
(t−γ ḡab) ≤ 0

8.3.3 Estimate of the metric in the sense of components for Bianchi II and VI0

For these cases consider the following equation in the sense of components:

ḡab = t
p
q gab

In particular we will consider the components g22 and g33, which means that for Bianchi II pq = 3
2

and for Bianchi VI0
p
q = 1. We will show that:

d

dt
(t−γ ḡab) = t−γ−1ḡab(−γ +

p

q
+
ġab

gab
t) ≤ −ηt−γ−1ḡab

with η positive with the help of the bootstrap assumptions and choosing γ in a suitable way. This
means then that:

d

dt
(t−γ ḡab) ≤ 0

which implies what we wanted to show:

gab(t) ≤ t−γ+
p
q

0 gab(t0)t−
p
q+γ . (61)

For the covariant components one can do the same by de�ning ḡab = t−
p
q gab. One obtains:
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d

dt
(tγ ḡab) = tγ−1ḡab(γ −

p

q
+
ġab
gab

t) ≥ ηtγ−1ḡab

For the last step one can actually use the same γ as for the contravariant components since
ġabg

ab = −gabġab. In other words once (61) is shown, we also have:

gab(t) ≤ t
γ− pq
0 gab(t0)t

p
q−γ

From the de�nitions made one can obtain:

ġ11 = 2g11H(−1 + 2Σ+) (62)

ġ22 = 2g22H(−1− Σ+ −
√

3Σ−) (63)

ġ33 = 2g33H(−1− Σ+ +
√

3Σ−) (64)

Then we have with (56) for the components g22 and g33:

η = γ + 2Ht(1 + Σ+ ±
√

3Σ−)− p

q

= γ +
4
3

(1 +O(ε2/3t−
3
8 ))(1 + Σ+ ±

√
3Σ−)− p

q

In both Bianchi II and VI0:

4
3

(1 + Σ+)− p

q
= O(A+(1 + t)−

3
8 )

which enables us to choose γ in such a way that η is positive. Di�erent values of Σ+ correspond to
di�erent exponents in the components of the metric. Using the estimates of g22 and g33 we obtain
then the estimate for the other component of the metric g11 via the estimate of the determinant.
We could also proceed directly from (62).

Summarizing this means that asymptotically up to a positive constant which depends only
on t0 the components (and their inverses) of the metrics gII for Bianchi II and gV I0 for Bianchi
VI0 have the same decay up to an ε as the corresponding components of the Collins-Stewart and
Ellis-MacCallum solution respectively:

C(t0)t−ε ≤ gII
gCS

≤ C(t0)t+ε

C(t0)t−ε ≤ gV I0
gEM

≤ C(t0)t+ε

8.4 Estimate of P

8.4.1 Bianchi I

For Bianchi I the characteristics are trivial, pa is constant along the geodesics and we can conclude:

P (t) ≤ t0−
ε
2+ 2

3P (t0)t
ε
2−

2
3

Now since we can choose P (t0) and Am independently as small as we want, let us choose P (t0)
such that t0

− ε2+ 2
3P (t0) ≤ Am. Then

P (t) ≤ Amt
ε
2−

2
3
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In order to improve the bootstrap assumption ε has to be smaller then 1
6 . Using the notation

ζ = ε
2 the last inequality can be expressed as:

P (t) ≤ Amt−
2
3+ζ

where ζ < 1
12 .

8.4.2 Bianchi II and VI0

We can express the derivative of the metric as follows:

ġbf = 2H(Σba − δba)gaf

It follows from (24) and using (26):

V̇ = ġbfVbVf = 2H(Σba − δba)gafVbVf = 2H(Σ1
1g

11V 2
1 + Σ2

2g
22V 2

2 + Σ3
3g

33V 2
3 )− 2HV

The maximum of Σ1
1, Σ2

2 and Σ3
3 is for Bianchi II and VI0 equal to 1

4 +O(t−
3
8 ). Thus:

V̇ ≤ 2HV (−3
4

+ εt−
3
8 )

Using now the estimate of H and integrating :

V ≤ V (t0)(t/t0)−1+ε

from which follows:

P ≤ P (t0)(t/t0)−
1
2+ε

Choosing P (t0) ≤ Amt
1
2−ε
0 we arrive at:

P ≤ Amt−
1
2+ε

which is an improvement of the bootstrap assumption and which has the consequence that:

S

H2
≤ Ct−1+ε (65)

8.5 Closing Bianchi I

Until now we have estimates for H and for P in the interval [t0, t1). We need to improve the other
variables. Although Bianchi II and Bianchi VI0 are more complicated, the main argument will
be the same as in Bianchi I. It is a kind of contradiction argument where one assumes that up to
an ε the desired estimate is wrong and then one comes to a contradiction. For Bianchi I we have
to improve the estimate for F coming from the bootstrap assumption. The desired estimate is
F (t1) ≤ AI(1 + t1)−2+ε. If this is the case (case I) the bootstrap argument will work and there is
nothing more to do. Let us suppose now the opposite, that F (t1) > AI(1 + t1)−2+ε. Then de�ne
t2 as the smallest number not smaller than t0 with the property that F (t1) ≥ AI(1 + t1)−2+ε. In
this case, we have to distinguish between the case that t2 = t0 (Case IIa) and t2 > t0 (Case IIb).
Let us look now at the evolution equation of F (37), in particular at the terms in square brackets.
By using the bootstrap assumption for F :

F ≤ CAI(1 + t)−
3
2 ≤ CAI(1 + t0)−

3
2 ≤ δ

2
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where δ is a positive small constant. Using the constraint equation and the bootstrap assumption
of P :

Ŝ

H2
≤ CP 2 ≤ CA2

m(1 + t)−
7
6 ≤ CA2

m(1 + t0)−
7
6 ≤ δ

4

With the Cauchy-Schwarz inequality, the constraint equation again and supposing that F >
AI(1 + t)−2+ε in the interval [t2, t1]:

|CσabŜ
ab

H3
| ≤ F 1

2
(ŜabŜab)

1
2

ρ
≤ CFF− 1

2P 2 ≤ CA−
1
2

I A2
m(1 + t)−

1
6−

ε
2F ≤ δ

4
F

Note that although A
− 1

2
I may be a big quantity, since AI and Am are independent we can make

Am smaller to �correct� this. Using the estimate of H and the last three inequalities in (37) leads
to:

Ḟ ≤ (−2 + ε)(1− δ)Ft−1

where ε = C(AI +A2
m)t−1

0 . Now setting ξ = ε+ 2δ − εδ we end up with:

Ḟ ≤ (−2 + ξ)Ft−1

which means that:

F (t1) ≤ F (t2)t22−ξt1
−2+ξ (66)

t
t0 t1

F

Bootstrap assumption

Desired estimate

Figure 8. Schematic depiction of case I

8.5.1 Case IIa

In this case t2 = t0, so (66) means:

F (t1) ≤ F (t0)t02−ξt1
−2+ξ ≤ AIt1−2+ξ

since we can choose F (t0) as small as we want. So it follows that in this case:

AIt1
−2+ε ≤ F (t1) ≤ AIt1−2+ξ.
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t
t0 = t2 t1

F

Bootstrap assumption

Desired estimate

Obtained Estimate

Figure 9. Schematic depiction of case IIa

8.5.2 Case IIb

In this case we can use the fact that by continuity F (t2) ≤ AI(1 + t2)−2+ε holds and then:

F (t1) ≤ AI(1 + t2)−2+εt2
2−ξt1

−2+ξ ≤ AI(1 + t2)ε−ξt1−2+ξ

The ε here is also a quantity which we can choose as small as we want and then it follows that in
this case:

F (t1) ≤ AI(1 + t0)ε−ξt1−2+ξ

We can choose ε to be smaller than ξ and we obtain:

F (t1) ≤ AIt1−2+ξ

t
t0 t2 t1

F

Bootstrap assumption

Desired estimate

Obtained Estimate

Figure 10. Schematic depiction of case IIb

8.6 Closing Bianchi II

8.6.1 Estimate for Σ−

We will use the same argument as in the previous section for Bianchi I. If |Σ−| ≤ A−(1 + t)−1+ε

holds there nothing more to do, since this is a better estimate then the one assumed. Assume
now Σ− > A−(1 + t)−1+ε. De�ne again t2 as the smallest number not smaller than t0 with the
property Σ− ≥ A−(1 + t)−1+ε. Since we are assuming that Σ− > 0 we can divide (40) by Σ−:

Σ̇−
Σ−

= H[−(3 + Ḣ
H2 ) + Σ−1

−
8π

2
√

3H2 (S2
2 − S3

3)]
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With (54),(56), the fact that S2
2 − S3

3 ≤ S, (65) and our assumption:

Σ̇−
Σ−
≤ −t−1(1− ξ) (67)

where ξ is as small as we want. This variable ξ contains a term of type A−1
− A2

m, but A− and Am
can be chosen independently as small as needed. Also the ε coming from S has to be chosen bigger
than the ε coming from Σ−. Note that it becomes clear here why we had to improve P to arrive
at (65). Integrating (67) between t1 and t2:

Σ−(t1) ≤ Σ−(t2)t1−ξ2 t−1+ξ
1

Assume t2 = t0 then:

Σ−(t1) ≤ Σ−(t0)t1−ξ0 t−1+ξ
1 ≤ A−t−1+ξ

1

since Σ−(t0) can be chosen in such a way that the last inequality holds. If t2 > t0 then by
continuity Σ−(t2) ≤ A−(1 + t)−1+ε which means that:

Σ−(t1) ≤ A−(1 + t)ε−ξt−1+ξ
1 ≤ A−t−1+ξ

1

if ε is chosen to be smaller than ξ. The argument for the case that Σ− is negative is the same,
just de�ne Σ̄− = −Σ− and use S3

3 − S2
2 ≤ S. This means that we could improve our bootstrap

assumption to:

|Σ−(t1)| ≤ A−t−1+ξ
1

8.6.2 Bootstrap assumptions for the other time variable

We have found that for the estimates in the following section it was useful, although not essential,
to use the other time variable τ . Using the estimate of the Hubble variable (56) in the de�nition
of τ (19) we have:

τ − τ0 =
∫ t

t0

2
3
t−1(1 +O(εt−

3
8 ))dt

After integrating and observing that τ0 and t0 are constants we arrive at:

t−
2
3 = t

− 2
3

0 e−τ+τ0+ξ

where ξ is small: ξ = O(ε(t−
3
8 + t

− 3
8

0 )). So the bootstrap assumptions can be translated to the
time variable τ . We obtain:

|Σ̃+| < CA+e
− 9

16 τ

|Σ̃−| < CA−e
− 9

8 τ

|Ñ1| < CAce
− 9

16 τ

P < CAme
− 1

2 τ

Since we have an estimate of H in both directions one can go also back from an estimate in terms
of τ to an estimate of t just by a multiplication by a constant which will not be relevant.
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8.6.3 Estimate for Σ+ and N1

De�ne (
Σ̂+

N̂1

)
= M−1

II

(
Σ̃+

Ñ1

)
Then we have: (

Σ̂+

N̂1

)′
= −3

4

 1
√

3
2

−
√

3
2 1

(Σ̂+

N̂1

)
+O(A2

me
−τ )

(
1
1

)

since O(Σ̃2
+ + Ñ2

1 + Σ̃2
− + P 2) = O(A2

me
−τ ). Multiplying the �rst equation by Σ̂+ and the second

by N̂1 and adding both we obtain:

d

dt
(Σ̂2

+ + N̂2
1 ) = −3

2
(Σ̂2

+ + N̂2
1 ) + (Σ̃+ + Ñ1)O(A2

me
−τ )

d

dt
[log(Σ̂2

+ + N̂2
1 )] = −3

2
+ (Σ̃+ + Ñ1)(Σ̂2

+ + N̂2
1 )−1O(A2

me
−τ )

Let us assume now that:

Σ̃2
+ + Ñ2

1 > (A2
+ +A2

c)e
(− 3

2+ξ)τ

This implies:

Σ̂2
+ + N̂2

1 > C(A2
+ +A2

c)e
(− 3

2+ξ)τ

d

dτ
[log(Σ̂2

+ + N̂2
1 )] ≤ −3

2
+ εe(−

1
16−ξ)τ

From which follows that:

Σ̂2
+ + N̂2

1 ≤ (Σ̂2
+(τ0) + N̂2

1 (τ0))e(−
3
2+ε)(τ−τ0)

≤ C(Σ̂2
+(t0) + N̂2

1 (t0))(
t

t0
)−1+ε

or:

Σ̃2
+ + Ñ2

1 ≤ C(Σ̃2
+(t0) + Ñ2

1 (t0))(
t

t0
)−1+ε

Making now the same argument as in the end of the estimate of Σ− we arrive at improved estimates
for Σ̃+ and Ñ1:

|Σ̃+| ≤ Σ̃+(t0)t−
1
2+ε

|Ñ1| ≤ Ñ1(t0)t−
1
2+ε

i.e. for Σ+ and N1:

|Σ+ −
1
8
| ≤ A+(1 + t)−

1
2+ε

|N1 −
3
4
| ≤ Ac(1 + t)−

1
2+ε

We have closed now the bootstrap argument. Note that for this last improvement of the estimates
Σ+ and N1 we did not use the improved estimates for Σ− and P .

34



8.7 Closing Bianchi VI0

This case is analogous to Bianchi II. The bootstrap assumptions with the variable τ read:

|Σ̃+| < CA+e
− 9

16 τ

|Σ̃−| < CA−e
− 9

16 τ

|Ñ2| < CAc1e
− 9

16 τ

|Ñ3| < CAc2e
− 9

16 τ

P < CAme
− 1

2 τ

In this case what remains are the estimates for Σ+, Σ−, N2 and N3. In terms of the transformed
linearization 

Σ̂+

Σ̂−
N̂2

N̂3

 = M−1
VI0


Σ̃+

Σ̃−
Ñ2

Ñ3


we have: 

Σ̂+

Σ̂−
N̂2

N̂3


′

= −3
4


1 −

√
3 0 0√

3 1 0 0
0 0 1 −1
0 0 1 1




Σ̂+

Σ̂−
N̂2

N̂3

+O(A2
me
−τ )


1
1
1
1


since O(Σ̃2

+ + Ñ2
2 + Ñ2

3 + Σ̃2
− + P 2) = O(A2

me
−τ ). As in the Bianchi II case, we arrive with the

same procedure at

d

dt
[log(Σ̂2

+ + Σ̂2
−)] = −3

2
+ (Σ̃+ + Σ̃−)(Σ̂2

+ + Σ̂2
−)−1O(A2

me
−τ )

d

dt
[log(N̂2

2 + N̂2
3 )] = −3

2
+ (Ñ2 + Ñ3)(N̂2

2 + N̂2
3 )−1O(A2

me
−τ )

and this means that:

d

dτ
[log(Σ̂2

+ + Σ̂2
−)] ≤ −3

2
+ εe(−

1
16−ξ)τ

and a similar expression for N2 and N3 such that in the end we arrive at the estimates we wanted
to obtain. In this case as well it was not necessary to use the improved estimate of P .

8.8 Results of the bootstrap argument

Let us summarize the results obtained in this chapter in the following three propositions:

Proposition 1. Consider any C∞ solution of the Einstein-Vlasov system with Bianchi I-symmetry
and with C∞ initial data. Assume that F (t0) and P (t0) are su�ciently small. Then at late times
the following estimates hold:

H(t) =
2
3
t−1(1 +O(t−1))

F (t) = O(t−2+ε)

P (t) = O(t−
2
3+ε)
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Proposition 2. Consider any C∞ solution of the Einstein-Vlasov system with re�ection and
Bianchi II symmetry and with C∞ initial data. Assume that |Σ+(t0)− 1

8 |, |Σ−(t0)|, |N1(t0)− 3
4 |

and P (t0) are su�ciently small. Then at late times the following estimates hold:

H(t) =
2
3
t−1(1 +O(t−

1
2+ε))

Σ+ −
1
8

= O(t−
1
2+ε)

Σ− = O(t−1+ε)

N1 −
3
4

= O(t−
1
2+ε)

P (t) = O(t−
1
2+ε)

Proposition 3. Consider any C∞ solution of the Einstein-Vlasov system with re�ection Bianchi
VI0 symmetry and with C

∞ initial data. Assume that |Σ+(t0)+ 1
4 |, |Σ−(t0)|, |N2(t0)− 3

4 |, |N3(t0)+
3
4 | and P (t0) are su�ciently small. Then at late times the following estimates hold:

H(t) =
2
3
t−1(1 +O(t−

1
2+ε))

Σ+ +
1
4

= O(t−
1
2+ε)

Σ− = O(t−
1
2+ε)

N2 −
3
4

= O(t−
1
2+ε)

N3 +
3
4

= O(t−
1
2+ε)

P (t) = O(t−
1
2+ε)

Proof: Consider the Bianchi I case. Let [t0, T ∗), where T ∗ may be in�nite, be the maximal
interval on which a solution corresponding to the prescribed initial data exists and satis�es F (t) ≤
AI(1+ t)−

3
2 and P (t) ≤ Am(1+ t)−

7
12 . If the data are small initially, then F (t) and P (t) are small

and by continuity T ∗ is well-de�ned. Suppose that T ∗ <∞. Since F (t) and P (t) are bounded the
solution can be extended to a longer time interval [t0, T ∗ + ε) for some ε > 0. Since the data are

su�ciently small we have shown in this chapter that in fact F (t) ≤ AI(1+t)−2+ε < AI(1+t)−
3
2 and

P (t) ≤ Am(1 + t)−
2
3+ε < Am(1 + t)−

7
12 on [t0, T∗). Now by continuity F (t) and P (t) remain less

than AI(1+t)−
3
2 and Am(1+t)−

7
12 respectively for a short time after T ∗, but this is a contradiction.

Thus T ∗ = ∞. The estimates obtained, i.e. F ≤ AI(1 + t)−2+ε and P (t) ≤ Am(1 + t)−
2
3+ε thus

hold globally. The estimate of H follows introducing the other estimates in (53). The same
argument can be done analogously for Bianchi II and VI0.

In the next chapter we will improve the estimates such that we can get rid of the ε. However
the results stated here in this section represent in fact the core of our results.

9 Main results

Until now we have obtained estimates which show that the decay rates of the di�erent variables
are up to an ε the decay rates one obtains from the linearization. The treatment of Bianchi I and
the other two cases will be di�erent since for the latter we already know that the components of
the metric and the second fundamental form are bounded. Let us start with Bianchi I.
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9.1 Bianchi I

We want to improve the estimate of F . For this reason we need an inequality in the other direction.
From (37) we have:

Ḟ ≥ −3H(F +
√

3F
1
2P 2)

Implementing now the estimates of F and P coming from the results of the bootstrap argument:

Ḟ ≥ −3HF − 3HC(t0)A2
mt
− 7

3+ε

Using now the estimate of H:

Ḟ ≥ −2t−1F − C(t0)A2
mt
− 10

3 +ε

from which we obtain:

t2F (t) ≥ t20F (t0)−
∫ t

t0

C(t0)A2
ms
− 4

3+εds

and

F (t) ≥ t−2(F (t0)t20 −A2
mC(t0)t0−

1
3+ε + C(t0)A2

mt
− 1

3+ε) ≥ t−2(F (t0)t20 −A2
mC(t0)t0−

1
3+ε)

Choosing now Am small enough we have the following estimate:

F (t) ≥ C(t0)t−2 (68)

Putting the last term of (37) with the help of (68) in the following manner:

|σabŜ
ab

H3
| ≤ CF (F−

1
2P 2) = FO(t−

1
3+γ)

we can improve the estimate on F implementing the estimates in (37) with the result:

F = O(t−2)

For Bianchi I we want to prove that |gabt−
4
3 | ≤ C. Recall that:

ḡab = t−
4
3 gab

ḡab = t+
4
3 gab.

We have also that:

˙̄gab = −2
3

(2t−1 + k)ḡab − 2t−
4
3σab

Doing similar computations as in [56] we arrive at:

‖ḡab(t)‖ ≤ ‖ḡab(t0)‖+
∫ t

t0

[
2
3
|2s−1 + k(s)|+ 2(σabσab(s))

1
2 ]‖ḡab(s)‖ds

and with Gronwall's inequality we obtain:

‖ḡab(t)‖ ≤ ‖ḡab(t0)‖ exp{
∫ t

t0

[
2
3
|2s−1 + k(s)|+ 2(σabσab(s))

1
2 ]ds} ≤ C

Therefore ḡab is bounded for all t ≥ t0. The same holds for ḡab by similar computations. Thus:

|t− 4
3 gab| ≤ C

|t+ 4
3 gab| ≤ C
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From this we can conclude that:

‖σab‖ ≤ Ct−
2
3

or

σab = O(t−
2
3 )

Looking again at the derivative of ḡab and putting the facts which have been obtained together,
we see that:

˙̄gab = O(t−2)

This is enough to conclude that:

Theorem 1. Consider any C∞ solution of the Einstein-Vlasov system with Bianchi I-symmetry
and with C∞ initial data. Assume that F (t0) and P (t0) are su�ciently small. Then:

gab = t+
4
3 [Gab +O(t−2)]

gab = t−
4
3 [Gab +O(t−2)]

where Gab and Gab are independent of t.

Now putting together the estimates obtained:

Theorem 2. Consider the same assumptions as in the previous theorem. Then at late times the
following estimates hold:

H(t) =
2
3
t−1(1 +O(t−1))

F (t) = O(t−2)

P (t) = O(t−
2
3 )

9.2 Arzela Ascoli

In the case of Bianchi I we are almost �nished. Nevertheless we will include this case in the
following for completeness and because it shows another way of obtaing the optimal estimate for
F . We want to use the Arzela-Ascoli theorem. We will show the boundedness of the relevant
variables and their derivatives. The variables F , Σ−, Σ+, N1, N2 and N3 corresponding to the
di�erent Bianchi cases are bounded uniformly due to the constraint equation. In particular:

0 ≤ F ≤ 3
2

Σ2
+ + Σ2

− ≤ 1
N2

1 ≤ 12
(N2 −N3)2 ≤ 12

Note that N3 is negative. The Hubble variable H is bounded for all Bianchi A types except IX and
its derivative as well, since 3H2 ≥ −Ḣ ≥ H2 as we saw in section (4.2). We have also obtained
with the bootstrap argument that P , which is non-negative, decays which means that S/H2 is
bounded. From the estimates obtained it is clear that gab and its derivative are bounded. Now
having a look at the central equations we see that the derivatives of F , Σ−, Σ+, N1, N2 and N3

are also bounded uniformly. If we can bound the derivative of S also the second derivatives of
F , Σ−, Σ+, N1, N2, N3 and H are bounded. For this purpose it is convenient to express the
components of the energy momentum tensor in terms of integrals of the covariant momenta:

38



Sabg
ab =

∫
f(t, p)papbgab(1 + gcdpcpd)−

1
2 g−

1
2 dp1dp2dp3

=
∫
f(t, p)V (1 + V )−

1
2 g−

1
2 dp1dp2dp3

The only term of the time derivative of S which could cause problems is the time derivative of the
distribution function, since V̇ and ġab can be bounded by V and gab respectively and we know that
S itself is bounded since S/H2 is. The term with the time derivative of the distribution function
can be handled with the Vlasov equation:∫

ḟ(t, p)V (1 + V )−
1
2 g−

1
2 dp1dp2dp3

= −
∫

(p0)−1Cdbap
bpd

∂f

∂pa
V (1 + V )−

1
2 g−

1
2 dp1dp2dp3

Integrating by parts we obtain a term which can be bounded by S. Note that the momenta grow
in the worst case with tγ and that p0 is also bounded from below since the particles are assumed to
have mass. Now all the relevant quantities are bounded. Let {tn} be a sequence tending to in�nity
and let Fn(t) = F (t+ tn), (Σ−)n(t) = Σ−(t+ tn), (Σ+)n(t) = Σ+(t+ tn), (N1)n(t) = N1(t+ tn),
(N2)n(t) = N2(t + tn), (N3)n(t) = N3(t + tn), Hn(t) = H(t + tn) and Sn(t) = S(t + tn). Using
the bounds already listed, the Arzela-Ascoli theorem [90] can be applied. This implies that, after
passing to a subsequence, Fn, (Σ−)n, (Σ+)n (N1)n, (N2)n, (N3)n, Hn and Sn converge uniformly
on compact sets to a limit F∞, (Σ−)∞, (Σ+)∞ (N1)∞, (N2)∞, (N3)∞, H∞ and S∞ respectively.
The �rst derivative of these variables converges to the corresponding derivative of the limits since
we have been able to bound the derivative of S in the last section. Going to this limit it is easy
to see that the variable D∞ of section (4.2) is zero and consequently:

H∞ =
2
3
t−1

for all Bianchi types we are considering. From (62)-(64) we see that for Bianchi II and VI0 we
obtain the optimal decay rates for the metric and for its derivative. For Bianchi I we have the
optimal decay of the metric as well. This implies that we obtain the optimal decay rates for P .
Since S/H2 is zero asymptotically we obtain the same estimates for F , Σ−, Σ+, N1, N2 and N3 as
in the Einstein-dust case. Introducing this estimates in (53), we also obtain the optimal estimate
for H. Let us summarize the estimates.

9.3 Optimal estimates

Theorem 3. Consider any C∞ solution of the Einstein-Vlasov system with re�ection and Bianchi
II symmetry and with C∞ initial data. Assume that |Σ+(t0)− 1

8 |, |Σ−(t0)|, |N1(t0)− 3
4 | and P (t0)

are su�ciently small. Then at late times the following estimates hold:

H(t) =
2
3
t−1(1 +O(t−

1
2 ))

Σ+ −
1
8

= O(t−
1
2 )

Σ− = O(t−1)

N1 −
3
4

= O(t−
1
2 )

P (t) = O(t−
1
2 )
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Theorem 4. Consider any C∞ solution of the Einstein-Vlasov system with re�ection Bianchi VI0
symmetry and with C∞ initial data. Assume that |Σ+(t0)+ 1

4 |, |Σ−(t0)|, |N2(t0)− 3
4 |, |N3(t0)+ 3

4 |
and P (t0) are su�ciently small. Then at late times the following estimates hold:

H(t) =
2
3
t−1(1 +O(t−

1
2 ))

Σ+ +
1
4

= O(t−
1
2 )

Σ− = O(t−
1
2 )

N2 −
3
4

= O(t−
1
2 )

N3 +
3
4

= O(t−
1
2 )

P (t) = O(t−
1
2 )

For the cases Bianchi II and VI0 we are also able to obtain the optimal estimate for the metrics:

Corollary 1. Consider the same assumptions as in the previous theorem concerning Bianchi II
and VI0 respectively. Then

gII = tdiag(K1, t
1/2K2, t

1/2K3)
gV I0 = tdiag(tK4,K5,K6)

with Kn = Cn + O(t−
1
2 ) and where C1-C6 are independent of time. The corresponding result for

the inverse metric also holds.

We see that the error in the metrics comes from the error in Σ+.

9.4 Kasner exponents

From (12) we see that the eigenvalues (45) of the second fundamental form with respect to the
induced metric are also the solutions of:

det(σij − [λ− 1
3
k]δij) = 0

Let us de�ne the eigenvalues of σij with respect to gij by λ̂i, we have that:

λ̂i = λi −
1
3
k

Note that Σi(λ̂i)2 = σabσ
ab. For Bianchi I we know that σabσ

ab = O(t−4), thus we see that the
spacetime isotropizes at late times, in the sense that:

pi =
1
3

+O(t−1)

where pi are the generalized Kasner exponents. In the cases Bianchi II and VI0 since everything
is diagonal the Kasner exponents are easy to calculate. Using the optimal estimates for Σ+, Σ−
and H and the fact that the sum of the generalized Kasner exponents is equal to one, we �nally
arrive at the generalized Kasner exponents for Bianchi II which are ( 1

4 ,
3
8 ,

3
8 ) and for Bianchi VI0

( 1
2 ,

1
4 ,

1
4 ) in both cases up to an error of order O(t−

1
2 ). Let us summarize these results:

Corollary 2. Consider the same assumptions as in the previous theorem concerning Bianchi I.
Then

pi =
1
3

+O(t−1)
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Corollary 3. Consider the same assumptions as in the previous theorem concerning Bianchi II
and VI0 respectively. Then:

pII = pCS +O(t−
1
2 )

pV I0 = pEM +O(t−
1
2 )

We see that the error in the Kasner exponents comes from the error in H.

9.5 Estimates of the energy momentum tensor

Before coming to the estimates of the energy momentum tensor we show that for Bianchi II V2 and
V3 become constants, something similar can be done for Bianchi VI0. De�ne E = g22V 2

2 + g33V 2
3 ,

then:

Ė = ġ22V 2
2 + ġ33V 2

3 ≤ 2H(−1− Σ+ +
√

3|Σ−|)E

Integrating

log[E/E(t0)] = −3
2

log t/t0 +O(ε(t−
1
2 + t

− 1
2

0 ))

We have the following inequality for E:

E ≤ Ct− 3
2

Since the components of the metric g22 and g33 tend to the corresponding components of the
Collins-Stewart solution we see that V2 and V3 become constant asymptotically. The same is true
in the case of the Ellis-MacCallum solution. Now since f(t0, p) has compact support on p, we
obtain that there exists a constant C such that:

f(t, p) = 0 |pi| ≥ C

Let us denote by p̂ the momenta in an orthonormal frame. Since f(t, p̂) is constant along the
characteristics we have:

|f(t, p̂)| ≤ ‖f0‖ = sup{|f(t0, p̂)|}

Putting these facts together we arrive at the estimates which we summarize in the following:

Corollary 4. Consider the same assumptions as in the previous theorem concerning Bianchi I.
Then

ρ = ρES(1 +O(t−1))

Sij ≤ C|f0|t−
10
3

Corollary 5. Consider the same assumptions as in the previous theorem concerning Bianchi II.
Then

ρ = ρCS(1 +O(t−
1
2 ))

Sij ≤ C|f0|t−3

Corollary 6. Consider the same assumptions as in the previous theorem concerning Bianchi VI0
respectively. Then

ρ = ρEM (1 +O(t−
1
2 ))

Sij ≤ C|f0|t−3

The error in the energy density comes from the error in H.
Remark From the corollaries one can estimate the quotient Sij/ρ which is O(t−

4
3 ) for Bianchi I

and O(t−1) for the other cases. That this quotient vanishes asymptotically means that the matter
behaves as dust asymptotically as expected.
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10 Non-diagonal Bianchi II

Before coming to the non-diagonal case we have a look at the tilted �uid models, since they are
non-diagonal as well and they may help us to understand the non-diagonal case with collisionless
matter. For the tilted Bianchi II we use the corresponding equations of [46] with γ = 1. We will
not go into the details of the interpretation of the new variables which appear here, for this we
refer to the mentioned work.

10.1 Tilted Bianchi II

The system in the tilted Bianchi II case is the following:

Σ′+ = −(2− q)Σ+ − 3Σ2
3 +

1
3
N2

1 +
1

2
√

3
Σ3N1v3

Σ′− = −(2− q)Σ− + 2
√

3Σ2
1 −
√

3Σ2
3 −

1
2

Σ3N1v3

Σ′1 = −(2− q + 2
√

3Σ−)Σ1

Σ′3 = −(2− q − 3Σ+ −
√

3Σ−)Σ3

N ′1 = (q − 4Σ+)N1

v′3 = v3(1− v2
3)(−1− Σ+ +

√
3Σ−)

with

q = 2(1− 1
12
N2

1 )− 1
2

(1− Σ2 − 1
12
N2

1 )(3− v2
3)

Let us have a look at the linearization around the Collins-Stewart solution which is an equilibrium
point of the tilted system as well and which corresponds to Σ+ = 1

8 , N1 = 3
4 and Σ− = Σ1 =

Σ3 = v3 = 0: 

Σ̃+

Σ̃−
Σ̃1

Σ̃3

Ñ1

ṽ3



′

=


− 93

64 0 0 0 63
128 0

0 − 3
2 0 0 0 0

0 0 − 3
2 0 0 0

0 0 0 − 9
8 0 0

− 87
32 0 0 0 − 3

64 0
0 0 0 0 0 − 9

8





Σ̃+

Σ̃−
Σ̃1

Σ̃3

Ñ1

ṽ3


We see that the variables which did not appear in the diagonal case have decay rates which are
between the ones considered previously. This is a good sign.

10.2 Equations of the non-diagonal case

Using (14) we arrive with (5) for a 6= b to:

Σ̇ba = H[
Rba
H2
− Σba(3 +

Ḣ

H2
)− 8πSba

H2
]; a 6= b

which together with (21)-(22), i.e.

Σ̇+ = H[
2R− 3(R2

2 +R3
3)

6H2
− Σ+(3 +

Ḣ

H2
) +

4π
3H2

(3S2
2 + 3S3

3 − 2S)]

Σ̇− = H[
R3

3 −R2
2

2
√

3H2
− (3 +

Ḣ

H2
)Σ− +

4π(S2
2 − S3

3)√
3H2

]

describe the evolution of Σab . With the formula (2c) of [12] for the Ricci tensor:

Rij = −1
2
Clki(C

k
lj + glmg

knCmnj)−
1
4
CmnkC

p
qlgjmgipg

kqgln (69)
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and

Rji = Ribg
bj = −1

2
Clkig

bj(Cklb + glmg
knCmnb)−

1
4
CjnkC

p
qlgipg

kqgln (70)

We will now derive some expression concerning the derivative of (69):

Ṙij = ClkiC
m
nj(klmg

kn − glmkkn) +
1
2
CmnkC

p
ql(kjmgipg

kqgln + gjmkipg
kqgln − gjmgipkkqgln − gjmgipgkqkln)

Thus:

gjrṘij = gjrClkiC
m
nj(klmg

kn − glmkkn) +
1
2
Cpql[C

m
nkk

r
mgipg

kqgln + Crnk(kipgkqgln − gip(kkqgln + gkqkln))]

For r = i and relabelling the m with i for the terms with the prefactor 1
2 :

gjiṘij = gjiClkiC
m
nj(klmg

kn − glmkkn) +
1
2
CpqlC

i
nk[2kipgkqgln − gip(kkqgln + gkqkln))]

Rearranging terms:

gjiṘij = ClkiC
m
nj(klmg

kngji − glmkkngji) + CpqlC
i
nk[kipgkqgln − gipkkqgln].

We see that the �rst with the third and the second with the fourth term cancel each other, hence:

gjiṘij = 0 (71)

The evolution equation for the Ricci scalar due to (71) is:

Ṙ = 2Rijk
j
i = 2H(−R+RijΣ

j
i )

De�ne

N j
i =

Rji
H2

The derivative of this expression is:

Ṅ j
i =

gpjṘpi
H2

+ 2H(Np
i Σjp − (1 +

Ḣ

H2
)N j

i )

Consider the quantity N = R/H2. Its evolution equation is:

Ṅ = 2H[qN +N i
jΣ

j
i ]

10.3 Curvature expressions for Bianchi II

For bookkeeping reasons we de�ne the following quantity

A = g22g33 − (g23)2 =
g11
g

Using (70) for Bianchi II:

Rji =
1
2
g11[C1

2i(g
23g2j − g22g3j) + C1

i3(g23g3j − g33g2j)] +
1
2
gi1C

j
23A
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We obtain:

R = −1
2
g11A = −1

2
(g11)2

g

and as in the diagonal case:

R1
1 = −R = −R2

2 = −R3
3

R2
1 = R3

1 = R3
2 = R2

3 = 0

However in the non-diagonal case we have:

R1
2 = −2

g12
g11

R

R1
3 = −2

g13
g11

R

Thus

Ṅ = −2H[(1 +
Ḣ

H2
+ 4Σ+)N −WII ]

where WII = N1
2 Σ2

1 + N1
3 Σ3

1. In order to calculate the derivative of N1
2 we need the following

expression:

R
d

dt
(−2

g12
g11

) = 2H[2Σ1
2R+ (3Σ+ +

√
3Σ−)R1

2 −
1

2R
((R1

2)2Σ2
1 +R1

3R
1
2Σ3

1)]

Hence:

Ṅ1
2 = H[4NΣ1

2 − 2(Σ+ + 1−
√

3Σ− +
Ḣ

H2
)N1

2 +W 1
2 ]

Ṅ1
3 = H[4NΣ1

3 − 2(Σ+ + 1 +
√

3Σ− +
Ḣ

H2
)N1

3 +W 1
3 ]

where

W 1
2 = −2Σ3

2N
1
3 +N1

2N
−1(Σ2

1N
1
2 + Σ3

1N
1
3 )

W 1
3 = −2Σ2

3N
1
2 +N1

3N
−1(Σ2

1N
1
2 + Σ3

1N
1
3 )

10.4 The non-diagonal asymptotics of Bianchi II

We will now discuss the asymptotics of the non-diagonal case for Bianchi II. The structure of the
analysis is very similar to the diagonal case. We start with a bootstrap argument and end with
applying Arzela-Ascoli.
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10.4.1 Bootstrap assumptions

Next we will collect the bootstrap assumptions. The prefactors denoted by A and some index are
small constants.

|Σ+ −
1
8
| ≤ A+(1 + t)−

3
8

|N +
9
32
| ≤ Ac(1 + t)−

3
8

|Σ1
2| ≤ A12

|Σ1
3| ≤ A13

|N1
2 | ≤ Ac12

|N1
3 | ≤ Ac13

P ≤ Am(1 + t)−
1
3

|Σ−| ≤ A−(1 + t)−
3
4

|Σ2
3| ≤ A23(1 + t)−

3
4

|Σ3
2| ≤ A32(1 + t)−

3
4

|Σ2
1| ≤ A21(1 + t)−

3
4

|Σ3
1| ≤ A31(1 + t)−

3
4

10.4.2 Mean curvature

Concerning the estimate of H there is no di�erence with respect to the diagonal case. The reason
is that the estimate of D

D =
1
12

(N +
3
H2

σabσ
ab) +

4πS
3H2

is the same. Thus as in the diagonal case it follows from (20) that

∂t(H−1) =
3
2

+O(εt−
3
8 )

and following the steps made for the diagonal case we arrive at:

H =
2
3
t−1(1 +O(εt−

3
8 ))

will hold.

10.4.3 Estimate of the metric and P

Using the equation (60) and the estimate of H

d

dt
(t−γ ḡab) ≤ t−γ−1ḡab[−γ +

p

q
+

4
3

(1 +O(εt−
3
8 ))((H−2σcdσ

cd)
1
2 − 1)]

We obtain decay for the metric (in the sense of quadratic forms) provided that (H−2σcdσ
cd)

1
2 ≤ 1.

This holds for Bianchi II with for instance p
q = 0.4. Thus we have

gab ≤ t−
p
q t

p
q

0 g
ab(t0)

This implies that the components of the metric are also bounded by some constant C(t0) which
depends on the terms of gab(t0). Consider now

ġbf = 2H(Σba − δba)gaf
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Since the metric components are bounded the non-diagonal terms will contribute only with an ε.
Thus we have for every component gij (no summation over the indices in the following equation):

ġij = 2H(Σii − 1 + ε)gij ≤ 2H(max(Σii)− 1 + ε)gij = 2H(−3
4

+ ε)gij

Using now the estimate of H

ġij ≤ t−1(−1 + ε)gij (72)

One can conclude that

‖g−1‖ ≤ O(t−1+ε)

From (72)

V̇ = ġbfVbVf ≤ t−1(−1 + ε)V

which means that

V = O(t−1+ε)

which gives us the same decay for P as in the diagonal case:

P = O(t−
1
2+ε)

10.4.4 Closing the bootstrap argument for Bianchi II

It follows immediately by the same arguments as in the diagonal case:

Σ− = O(t−1+ε)
Σ2

1 = O(t−1+ε)
Σ3

1 = O(t−1+ε)
Σ3

2 = O(t−1+ε)
Σ2

3 = O(t−1+ε)

De�ning (N1)2 = −2N we arrive at:

Σ̇+ = H[
(N1)2

3
− Σ+(3 +

Ḣ

H2
) +

4π
3H2

(3S2
2 + 3S3

3 − 2S)]

Σ̇− = H[−(3 +
Ḣ

H2
)Σ− +

4π(S2
2 − S3

3)√
3H2

]

Ṅ1 = H[(1 +
Ḣ

H2
+ 4Σ+)N1 + 2

WII

N1
]

Since 2WII

N1
decays like t−1+ε we see that we can apply the same arguments as in the diagonal case

to obtain an improvement of the bootstrap assumptions:

Σ+ −
1
8

= O(t−
1
2+ε)

Σ− = O(t−
1
2+ε)

N1 −
3
4

= O(t−
1
2+ε)
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The system which remains using the time variable τ is the following:

(Σ1
2)′ = Σ1

2(q − 2) +N1
2 −

8πS1
2

H2

(Σ1
3)′ = Σ1

3(q − 2) +N1
3 −

8πS1
3

H2

(N1
2 )′ = −2(N1)2Σ1

2 − 2(Σ+ − q −
√

3Σ−)N1
2 +W 1

2

(N1
3 )′ = −2(N1)2Σ1

3 − 2(Σ+ − q +
√

3Σ−)N1
3 +W 1

3

Let us focus on the Σ1
2 −N1

2 -system. Using the estimates obtained we arrive at:(
Σ1

2

N1
2

)′
=
(
− 3

2 1
− 9

8
3
4

)(
Σ1

2

N1
2

)
+O(εe(−

3
4+ε)τ )

(
1
1

)
Let us go to the basis of eigenvectors of the linear system via the linear transformation(

Σ̌1
2

Ň1
2

)
=
(

3
2 −1
− 3

2 2

)(
Σ1

2

N1
2

)
Thus we arrive at (

Σ̌1
2

Ň1
2

)′
=
(
− 3

4 0
0 0

)(
Σ̌1

2

Ň1
2

)
+O(εe(−

3
4+ε)τ )

(
1
1

)
Integrating and using the usual contradiction argument we obtain

|Σ̌1
2| = Σ̌1

2(τ0)e(−
3
4+ε)τ

|Ň1
2 | = Ň1

2 (τ0) +O(εe(−
3
4+ε)τ )

Going back to the variables Σ1
2 and N1

2 via(
Σ1

2

N1
2

)
=

1
3

(
4 2
3 3

)(
Σ̌1

2

Ň1
2

)

Σ1
2(τ) = [2Σ1

2(τ0)− 4
3
N1

2 (τ0)]e(−
3
4+ε)τ +

4
3
N1

2 (τ0)− Σ1
2(τ0) +O(εe(−

3
4+ε)τ )

N1
2 (τ) = [

3
2

Σ1
2(τ0)−N1

2 (τ0)]e(−
3
4+ε)τ + 2N1

2 (τ0)− 3
2

Σ1
2(τ0) +O(εe(−

3
4+ε)τ )

Changing back to the time variable t:

Σ1
2(t) = C(t0)[2Σ1

2(t0)− 4
3
N1

2 (t0)]t−
1
2+ε +

4
3
N1

2 (t0)− Σ1
2(t0) +O(ε)

N1
2 (t) = C(t0)[

3
2

Σ1
2(t0)−N1

2 (t0)]t−
1
2+ε + 2N1

2 (t0)− 3
2

Σ1
2(t0) +O(ε)

where C is a constant, in particular C(t0) = t
1
2
0 e
− 3

4 τ0 . The only term which could prevent us from
improving the estimates is the ε coming from the bootstrap assumptions of Σ1

2, but note that it
comes in combination with Σ2

1 as a product of both, thus the last term O(ε) on the right hand
side of the last two equations does not prevent us from improving our estimates. Thus if we wait
long time enough and choose N1

2 (t0) and Σ1
2(t0) small enough we will have an improvement for

N1
2 and Σ1

2. There is no di�erence in the procedure for N1
3 and Σ1

3.
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10.4.5 Arzela-Ascoli for Bianchi II

Since all estimates have been improved we can apply Arzela-Ascoli and we arrive for Σ1
2 and N1

2

to:

Σ1
2(t =∞) =

4
3
N1

2 (t0)− Σ1
2(t0)

N1
2 (t =∞) = 2N1

2 (t0)− 3
2

Σ1
2(t0)

Consider now the following transformation of the basis vector

ẽ1 = e1

ẽ2 = e2 + ae1

ẽ3 = e3 + be1

It preserves the Lie-algebra, i.e. the Bianchi type. The following relation holds between the
variables Σ1

2 and Σ1
3 in the di�erent basis:Σ̃1

1 Σ̃2
1 Σ̃3

1

Σ̃1
2 Σ̃2

2 Σ̃3
2

Σ̃1
3 Σ̃2

3 Σ̃3
3

 =

1 0 0
a 1 0
b 0 1

Σ1
1 0 0

Σ1
2 Σ2

2 0
Σ1

3 0 Σ3
3

 1 0 0
−a 1 0
−b 0 1

 =

 Σ1
1 0 0

Σ1
2 + a(Σ1

1 − Σ2
2) Σ2

2 0
Σ1

3 + b(Σ1
1 − Σ3

3) 0 Σ3
3


=

 Σ1
1 0 0

Σ1
2 + a(3Σ+ +

√
3Σ−) Σ2

2 0
Σ1

3 + b(3Σ+ −
√

3Σ−) 0 Σ3
3


We see that choosing a = − 8

3Σ1
2(∞) and b = − 8

3Σ1
3(∞) the transformed variables Σ̃1

2, Σ̃1
3 are

zero asymptotically. By direct calculation one can see that the same is true for the transformed
variables Ñ1

2 and Ñ1
3 . Thus we obtain the same asymptotics as in the diagonal case and we can

conclude:

Theorem 5. Consider any C∞ solution of the Einstein-Vlasov system with Bianchi II symmetry
and with C∞ initial data. Assume that |Σ+(t0)− 1

8 |, |Σ−(t0)|, |Σ1
2(t0)|, |Σ1

3(t0)|, |Σ2
3(t0)|, |Σ3

2(t0)|,
|Σ2

1(t0)|, |Σ3
1(t0)|, |N1(t0) − 3

4 |, |N
1
2 (t0)|, |N1

3 (t0)| and P (t0) are su�ciently small. Then at late
times, after possibly a basis change, the following estimates hold:

H(t) =
2
3
t−1(1 +O(t−

1
2 ))

Σ+ −
1
8

= O(t−
1
2 )

Σ− = O(t−1)

Σ1
2 = O(t−

1
2 )

Σ1
3 = O(t−

1
2 )

Σ2
3 = O(t−1)

Σ3
2 = O(t−1)

Σ2
1 = O(t−1)

Σ3
1 = O(t−1)

N1 −
3
4

= O(t−
1
2 )

N1
2 = O(t−

1
2 )

N1
3 = O(t−

1
2 )

P (t) = O(t−
1
2 )
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11 Conclusions and Outlook

Our theorem concerning Bianchi I can be seen as a generalization of theorem 5.4 of [73] since we
obtain the same the result, but a) we also obtain how fast the expressions converge b) we obtain an
asymptotic expression for the spatial metric c) we do not assume any of the additional symmetries
mentioned. However we used a di�erent kind of restriction namely the small data assumptions.

The situation of several (tilted) �uids leads naturally to the non-diagonal case. The Bianchi
I-symmetry implies the absence of a matter current such that a single tilted �uid is not compatible
with this assumption. However there can be several tilted �uids such that the total current
vanishes. In [93] and [92] this has been considered in the case of two �uids. What was found is
that isotropization occurs if at least one of the two �uids has a speed of sound which is less or
equal 1

3 the speed of light. It is shown in particular for the case of two pressure free �uids in [92],
which can be seen as a singular solution of the Einstein-Vlasov system.

The results concerning Bianchi II generalize the results obtained in [79]. For Bianchi VI0 even
for the re�ection symmetric case there is no analogous previous result. The reason is that it is not
compatible with the LRS-symmetry. Thus our result concerning Bianchi VI0 shows clearly that
the methods developed are powerful in the sense that one can obtain results which where out of
reach with the techniques developed until now. Actually in our case one can see that there is no
big di�erence between Bianchi II and VI0. Maybe it is related to the fact, that the solutions which
play the role of the attractors are self-similar. It would be interesting to investigate whether the
work on homogeneous Ricci solitons [36] can help to understand the similarities between Bianchi
II and VI0 (in Thurstons classi�cation Nil and Sol).

Another question is whether it is possible to remove the small data assumptions. Maybe it is
possible to use the Liapunov functions discovered for the �uid model in a clever way. In the case
of Bianchi II the future asymptotics are known globally even in the tilted case [45].

Of course there are many other ways of generalizing results which have been obtained for
(single) perfect �uids. See for instance [55] and references therein for the inclusion of a Maxwell
�eld in the Bianchi I case. In presence of a cosmological constant the results of [56] have been
generalized even to the Einstein-Vlasov-Maxwell case [66].

In our argument we have used the Arzela-Ascoli theorem, but only at the end. Thus there
exist a lot of estimates where one has control over the constants involved. Maybe this could help
for a numerical analysis of the Einstein-Vlasov equation which is quite di�cult.

We have discussed the future asymptotics of some Bianchi models, what about the higher types?
First of all we believe that the non-diagonal case of Bianchi VI0 can be done in a similar way to
Bianchi II. We encountered some problems which we believe are of only technical nature. However
the case of Bianchi VII0 will probably be quite di�erent. For instance in [103] it was discovered
that the Bianchi VII0 spacetimes with a non-tilted �uid are not asymptotically self-similar in the
future and that some oscillations take place. It is shown that dynamics are dominated by the
Weyl curvature. However for dust a bifurcation of the Weyl curvature takes place (theorem 2.4
of [103] and comments below). For this reason it is likely to expect di�culties when applying our
techniques to this case. Something similar, but even more complicated happens in the case of
Bianchi VIII spacetimes with a non-tilted �uid [50].

What about inhomogeneous models? Some direction to generalize our results could be to
analyze the Gowdy model which is the simplest inhomogeneous case. In [77] di�erent links between
Bianchi and (twisted) Gowdy spacetimes are considered, in particular for Bianchi I, II, VI0 and
VII0. For vacuum geodesic completeness was already shown [82]. The analysis of perturbations
is another interesting approach towards the understanding of inhomogeneous models. See [3] for
recent developments.

Another path of generalizing our results could be the extension to higher dimensions. For the
vacuum case geodesic completeness was shown for some homogeneous models in higher dimensions
[35]. The work on homogeneous spacetimes in higher dimensions may also shed some light on the
inhomogeneous case in four spacetime dimensions.

We have been dealing with the expanding direction. To analyze the initial singularity is much
more di�cult. The singularity theorems were a very important breakthrough, however they do not
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tell us what happens dynamically at the singularity. The work of BKL [7]-[6] is an important step
in this direction. See [5] and [59] for recent progress and [60],[61] for some surprising discoveries.
As a �rst step one could analyze the Bianchi I case. In [42] the possible dynamical behavior
towards the past has been determined assuming only the re�ection symmetry and already there
surprising new features like the existence of heteroclinic networks arose. Thus one can expect that
the analysis towards the direction of the singularity will be a challenge. An interesting approach to
understand the initial singularity is also to compare �geometric potential walls� with those which
come from certain matter model (see for instance [68]).

Finally at some point one would like to compare with observations and for this purpose it
will be necessary to combine di�erent matter models, to use a multi-�uid etc. See [16] for recent
developments.
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Wir haben gezeigt unter der Annahme, dass die Raumzeit in der N�ahe von speziellen L�osungen
ist, die die Rolle eines ω-limes gespielt haben und unter der Annahme, dass die maximale Geschwindigkeit
der Teilchen klein ist: f�ur Bianchi II und re�ektionssymmetrische Bianchi VI0 Raumzeiten mit
stossfreier Materie kann das Langzeitverhalten durch Staub approximiert werden.
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