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Objectives:  Accurate radiological differentiation of parotid tumors remains challenging 
despite recent technical advances in quantitative medical imaging. Multifrequency magnetic 
resonance elastography (MRE) could provide additional information on viscoelastic proper-
ties of normal and abnormal biological tissues. This study investigates the feasibility of MRE 
of the parotid glands in healthy participants and provides first reference values.
Methods:  20 healthy participants underwent multifrequency MRE of both parotid glands at 
3 Tesla. Shear waves at frequencies of 25, 30, 40, and 50 Hz were introduced into the partici-
pants' heads through the occiput using pressurized-air actuators. Shear wave speed (SWS) and 
loss angle of the shear modulus (φ) were reconstructed by tomoelastography post-processing 
as surrogate parameters for tissue stiffness and viscosity or fluidity. 10 participants underwent 
repeated MRE to determine test–retest reliability based on intraclass correlation coefficients.
Results:  All MRE datasets acquired could be included in the analysis. Mean SWS was 0.97 
± 0.13 m/s, and mean φ was 0.59 ± 0.05 rad, each for both sides combined and without notable 
lateral difference (p = 0.88/0.87). Test–retest reliability was good for SWS (ICC = 0.84 for both 
sides/ICC = 0.77 for the right side/ICC = 0.79 for the left side) and good to excellent for φ(ICC 
= 0.94/0.86/0.90).
Conclusions:  Multifrequency MRE of the parotid glands is feasible and reliable. This tech-
nique, therefore, is a promising method for investigating the viscoelastic properties of salivary 
gland tumors in future studies.
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Introduction

Tumors of the major salivary glands (parotid, subman-
dibular, and sublingual glands) account for about 3% of 
all tumors in the human body.1 Both the likelihood of 
tumor occurrence and the presence of a benign entity 
are positively correlated with salivary gland size. Thus, 
most tumors of the major salivary glands are localized 
in the parotid gland, where benign entities like pleo-
morphic adenoma predominate.2,3 For radiologists, the 
differential diagnoses of these tumors and a certain 
overlap in their imaging appearance pose a challenge in 
clinical routine. However, differentiation between benign 
and malignant entities is essential, as the suspicion of 
malignancy may trigger the indication for superficial or 
lateral parotidectomy and also the need for dedicated 
cervical lymph node staging.1 With its high soft tissue 
contrast, MRI has become the imaging modality of 
choice when a parotid tumor is suspected. Multipara-
metric (MP-)MRI using (semi-)quantitative techniques 
such as dynamic contrast-enhanced MRI (DCE-MRI) 
or diffusion-weighted imaging (DWI) has been eval-
uated for its additional value, and a combination of 
these techniques has been shown to provide features 
that are suggestive of a specific entity.4–7 However, eval-
uation of these imaging features is not possible without 
contrast medium administration. Magnetic resonance 
elastography (MRE) is a quantitative imaging technique 
where externally generated acoustic waves are coupled 
into the body to provide viscoelastic parameter maps 
of the tissue examined. Surrogate parameters for tissue 
stiffness and fluidity can be computed by tomoelastog-
raphy processing and diagrammed as high-resolution 
maps. MRE has already been successfully used to assess 
tumors in other organs such as the brain, the liver, or the 
prostate.8–10 Most recently, a first successful application 
of MRE in the head and neck (HN) region has been 
described.11 Therefore, MRE appears to be a promising 
addition to existing MRI techniques that can contribute 
to the differentiation of normal and abnormal tissues 
in the HN region using contrast based on mechan-
ical properties. The aim of this study was to evaluate 

multifrequency MRE of the parotid glands and to 
provide reference values of organ-specific tissue stiffness 
in a group of healthy participants as a basis for further 
studies to characterize parotid gland tumors in patients.

Methods and materials

Study design and patient selection
This prospective study was approved by the institu-
tional review board (EA1/066/19), and written informed 
consent of all participants was obtained. Pre-existing 
conditions involving the major salivary glands (e.g. 
known tumors, prior surgery), contraindications to 
MRI (e.g. implanted non-MRI-compatible medical 
devices or magnetic foreign bodies) as well as pregnancy 
were defined as exclusion criteria. Orthodontic retainers 
and teeth implants were deliberately not defined as 
exclusion criteria.

20 participants (6 female, 14 male) with a mean age of 
32 years (range 28–38 years) were included in this study.

Three of the participants examined had fixed ortho-
dontic retainers consisting of a wire and composite on 
the lingual and palatal surface of the upper and lower 
front teeth (11–13, 21–23, 31–33, 41–43), and one partic-
ipant had an implant for tooth 27.

MRE setup and examination protocol
Participants were examined in a 3-Tesla scanner 
(Magnetom Skyra, Siemens Healthineers, Erlangen, 
Germany) with a combined head/neck coil. First, axial 
fat-saturated T2 weighted images and axial T1 weighted 
images were acquired for anatomical evaluation of the 
parotid glands. Second, MRE was conducted. Shear 
waves were introduced into the parotid glands by two 
pressurized-air drivers identical to those detailed else-
where.11 The two drivers were mounted under a slightly 
concavely curved plate serving as occipital contact 
surface as shown in Figure  1. Mechanical vibration 
frequencies were 25, 30, 40, and 50 Hz, which were 

Figure 1  (a, b) Schematic drawing of the MRE setup. The participants’ head was positioned in a combined head/neck coil (a) and pressurized-air 
drivers mounted under a curved plate were used to couple mechanical vibrations into the occiput (b). MRE, magnetic resonance elastography.
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consecutively acquired with three wave field compo-
nents over 8 wave dynamics in 48 imaging slices of 
primary axial orientation and 2 mm slice thickness 
without a slice gap using a single-shot spin-echo echop-
lanar imaging MRE sequence.12 The following imaging 
parameters were used: matrix size = 128 x 128 cm, field 
of view (FOV) = 1280 x 1280 cm2, repetition time (TR) 
= 3280 ms, time to echo (TE) = 69 ms, and total scan 
time = 5:30 min.

MRE data processing
Tomoelastography data processing was applied to 
the complex-valued multifrequency MRE datasets. 
Wave-number-based multifrequency dual elastovisco 
(k-MDEV) inversion was used for the reconstruction 
of shear wave speed (SWS) (in m/s) maps to serve as a 
surrogate parameter of tissue stiffness. Laplacian-based 
MDEV inversion was used for reconstruction of the 
loss angle of the shear modulus (ϕ in rad) as a surrogate 
parameter of tissue viscosity or fluidity (ranging from 0 
– purely solid properties to 2π – purely fluid properties). 
Both the k-MDEV and MDEV processing pipeline can 
be publicly accessed via https://​bioqic-​apps.​charite.​de.

MRE image analysis
Two radiologists subspecialized in HN imaging (6 and 
7 years of experience) analyzed MRE data sets. First, 
the primary wave images were assessed for the presence 
of waves propagating through the tissues originating 
from the occipital coupling. Second, SWS and φ maps 
were analyzed after importing them into the PACS 
viewer Visage Client v. 7.1.15 (Visage Imaging GmbH, 
Berlin, Germany). This was accomplished by identifying 
the parotid glands in the axially oriented magnitude 
map and drawing polygonal two-dimensional regions 
of interest (ROIs) along their borders, avoiding obvious 
artifacts. Those ROIs were then automatically trans-
ferred to the SWS and ϕ maps. The values measured 
in each participant were averaged for both sides taken 
together and each side separately. An example of MRE 
dataset analysis is presented in Figure 2.

Statistical analysis
Statistical analysis of all MRE data was performed 
using R (via RStudio v. 1.3.1093, PBC, Boston, MA) 
and its “plotrix” and “irr” packages. All SWS and φ 
data acquired by ROI measurement were interpreted 
for both sides taken together and for the right and left 
side separately. Data from all 20 participants were tested 
for normal distribution using the Shapiro–Wilk test, 
and mean, range, median, standard deviation, standard 
error of the mean, and 95% confidence interval were 
computed. Both parameters were tested for significant 
differences in means between sides of the parotid gland 
by applying a paired t-test, and statistical significance 
was assumed for p values < 0.05. Absolute differences 
in means, ranges of absolute differences in means, and 
intraclass correlation coefficient (ICC) were calculated 
for SWS and φ data of all 10 participants who under-
went repeat examination.13 ICC values were interpreted 
as suggested by Koo and Li14:

•	 < 0.5: “poor”
•	 0.5–0.75: “moderate”
•	 0.75–0.9: “good”
•	 0.9–1: “excellent”

Additionally, separate Bland–Altman plots for SWS and 
ϕ were created using the “BlandAltmanLeh” package 
(Figure 3).

Results

Sufficient wave propagation was observed in all 30 wave 
imaging data sets acquired in the study participants 
and all datasets could be included in the analysis. The 
Shapiro–Wilk test revealed a normal distribution of 
SWS and φ data for both sides taken together and for 
the right and left side separately.

Mean SWS was 0.97 ± 0.13 m/s for both sides 
combined without a notable lateral difference (right 
side: 0.97 ± 0.13 m/s, left side: 0.97 ± 0.13 m/s, p = 0.88). 
Similarly, no laterality was seen in ϕ with a mean of 0.59 

Figure 2  (a–e) Example case of a 30-year-old male participant showing acquired axial anatomic T1 weighted (a) and T2 weighted (b) images as 
well as MRE dataset analysis using polygonal ROIs drawn around the borders in three consecutive slices of the axial MRE-magnitude map (c) 
and then transferred to the SWS map (d) and ϕ map (e). Despite artifacts (white stars) resulting from orthodontic retainers (indicated by white 
arrows and stars), the parotid glands were adequately depicted in the parameter maps. MRE, magnetic resonance elastography; ROI, region of 
interest; SWS, shear wave speed.
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± 0.05 rad for both sides combined (right side: 0.59 ± 
0.06 rad, left side: 0.58 ± 0.06, p = 0.87). All results of 
the first examination of all 20 participants are summa-
rized in Table 1.

Test–retest reliability determined by performing a 
second examination in ten participants was good for 
SWS (ICC = 0.84 for both sides/ICC = 0.77 for the right 
side/ICC = 0.79 for the left side) and good to excellent 
for φ (ICC = 0.94/ICC=0.86/ICC=0.90). Mean abso-
lute differences in mean SWS and mean φ between the 
first and second examinations were 0.05 m/s for both 
sides combined, 0.05 m/s for the right side, and 0.05 m/s 
for the left side, and 0.02 rad, 0.04 rad, and 0.05 rad, 
respectively. All results regarding test–retest reliability 
are summarized in Table  2. Bland–Altman plots 
presented in Figure 3 show the agreement between both 
examinations.

Discussion

To the best of our knowledge, this is the first study 
reporting tissue stiffness and fluidity estimates for the 
parotid glands obtained by using multifrequency MRE.

Our study found an average SWS of 0.97 m/s and an 
average φ of  0.59 rad for parotid gland tissue.

The same MRE setup has already been used in a 
patient with mandibular ameloblastoma and published 
as a case report.11 In this case, MRE revealed not only 
abnormal stiffness and fluidity of the primary tumor 
compared with the healthy opposite side but also 
abnormal stiffness of a local level Ib lymph node smaller 
than 1 cm, which was later confirmed to be metastatic 
by histopathology. This first case report suggests that 
MRE has the potential to even detect smaller tumors 
in the parotid gland provided they differ in stiffness and 

Figure 3  Bland–Altman plots of agreement between both examinations for SWS and ϕ. Single red bold dashed line = mean difference; paired 
blue bold dashed lines = 95% limits of agreement (paired dark thin red and blue dashed lines = lower and upper bounds of 95% confidence 
interval).

Table 1  Findings for MRE surrogate parameters of tissue stiffness (SWS) and fluidity (φ) in the initial examination of all 20 participants

SWS (m/s) ϕ (rad)

Both Right Left Both Right Left

Mean 0.97 0.97 0.98 0.59 0.59 0.58

 � Range 0.72–1.19 0.73–1.21 0.72–1.20 0.51–0.69 0.47–0.69 0.46–0.69

 � Median 0.98 0.97 1.00 0.59 0.59 0.58

SD 0.13 0.13 0.13 0.05 0.06 0.06

SEM 0.03 0.03 0.03 0.01 0.01 0.01

CI 0.92–1.03 0.91–1.03 0.92–1.04 0.56–0.61 0.56–0.62 0.56–0.61

MRE, magnetic resonance elastography; SD, Standard deviation; SEM, Standard error of the mean;SWS, shear wave speed.
95% confidence interval (lower bound - upper bound).
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fluidity from the reference values obtained in this pilot 
study.

While we here report the first application of MRE in 
the major salivary glands, ultrasound shear wave elas-
tography of these organs has been addressed in several 
studies before. Most frequently, as in the study of Bhatia 
et al, overlaps were observed between different benign 
as well as benign and malignant entities, which at least 
limits the clinical usefulness of the method.15 However, 
studies investigating applications of the technique for 
assessing diffuse parenchymal changes of the major 
salivary glands have also been reported. A recently 
published study by Arslan et al16 concludes ultrasound 
SWE to be an effective technique for predicting inter-
stitial fibrosis and the degree of histological damage in 
patients with primary Sjögren’s syndrome.

In a previously published study investigating the 
MRE of abdominal organs in healthy subjects, pancre-
atic tissue stiffness values of 1.20 ± 0.12 m/s were 
found.17 Thus, together with our results, we can assume 
a similar tissue stiffness of the pancreas and parotid 
gland (0.97 ± 0.13 m/s). This is not surprising given that 
the parotid and the exocrine portion of the pancreas are 
purely serous glands and thus have similar histologic 
structures.18 On the other hand, the robustness of the 
fluidity surrogate parameter, φ, observed in our study 
may be of particular importance in the diagnostic eval-
uation of parotid gland tumors using MRE in future 
studies. Previous publications have already underlined 
the importance of the higher fluidity of tumors for their 
ability to infiltrate surrounding tissue.10,19

The combination of different morphological and 
functional MRI techniques to improve the differen-
tiation of tumor entities affecting the parotid gland 
has been postulated by several investigators.4,20,21 In 
this sense, MRE could contribute a useful quantita-
tive component for tumor characterization, and could 
furthermore be useful in diffuse parenchymal disease.

The uncompromised evaluability of images from 
participants with metallic orthodontic retainers 
(Figure 2) and dental implants was particularly encour-
aging as such materials are likely to be encountered in 
presumably older patient populations that should be 
investigated in future clinical studies.

While test–retest reliability was good for SWS, it was 
good to even excellent for φ. Three factors should be 
considered concerning reproducibility. First, the well-
known sensitivity of EPI sequences to susceptibilities 

– which is a severe problem especially in the HN region – 
might cause artifacts depending on how participants are 
positioned for the examination.22,23 Second, physiolog-
ical differences such as between pre- and post-prandial 
states or different levels of hydration could play a role. 
Such effects have already been reported for the liver, 
the spleen, the pancreas, and the kidneys.17 Third, the 
small number of participants must be considered inde-
pendently of possible influences as just outlined. In addi-
tion to expected inter- individual variability, the size and 
constitution of intraparotid lymph nodes and vessels 
may have had an excessive effect on our statistical results 
due to the relatively small number of participants.

This study has some limitations. First, only a small 
sample of participants was studied, but this is accept-
able as we performed a hypothesis-generating study. 
Second, the altogether young study participants were 
highly compliant during the MRE examination. How 
the feasibility and evaluability of parotid MRE will be 
affected when actual patients, who are likely to be older 
and presumably more morbid, are examined remains to 
be seen.

Conclusion

Multifrequency MRE of the parotid glands is feasible 
and reliable. This technique, therefore, is a promising 
candidate for investigating the viscoelastic properties of 
salivary gland tumors in future studies.
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