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Abbreviations 
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ANN. Artificial neural network 

API. Application programming interface 
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CPU. Central processing unit 
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JPEG. Joint Photographic Experts Group 
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ML. Machine learning 
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PNG. Portable network graphics 

PNST. Peripheral nerve sheet tumor 
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RAW. Raw image format 

RM. Robotic microscope 

ROI. Region of interest 

SCC. Squamous cell carcinoma 

TIFF. Tagged Image File Format 

TFT. Thin-film transistor (monitor) 

TN. True negative 

TP. True positive 

VM. Virtual microscopy 

VMS. Virtual microscopy systems 

WSI. Whole slide image 
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1. Introduction 

1.1 Digital Pathology 
 

1.1.1 Overview and definitions 

 
 
Histopathology is a subfield of pathology, which studies the diagnosis of diseases through 

the visualization and interpretation of tissues in glass slides stained with hematoxylin and 

eosin (H&E). It is an essential tool for pathological diagnosis since the 19th century 

(Poynter, 1967; Turk, 1993). Because it is an accessible and useful tool, the review of 

H&E-stained slides is considered the gold standard for many diseases (Li et al., 2021). 

Specifically, in oncology, histopathology is the most important diagnostic tool, as through 

it, the observer (pathologist) can determine a definitive diagnosis (in most cases 

accurate), evaluate resection margins, identify micro-metastasis and perform tumor 

staging. However, to reach an even more precise diagnosis, histopathology relies on 

multiple diagnostic tests, mainly molecular (e.g., IHC). This has caused the conventional 

use of histopathology to lose its perceived usefulness (Harris & McCormick, 2010). 

During the past few decades, the visualization of H&E-stained glass slides has evolved 

into a novel concept known as digital pathology (DP), which relies on the production of 

digital images via cameras (photographic and video) or scanners for digital visualization. 

The initial concept that began to be used in the 1960s was telepathology. Telepathology 

was defined at that time as a tool for viewing H&E-stained glass slides shared via 

telecommunication mediums to achieve remote transmission of data in the form of images 

over long distances. Its advantages were vast as it contributed greatly to education and 

research focused on pathology (Farahani & Pantanowitz, 2016). The use of telepathology 

depends primarily on the transformation of biological or pathological information captured 

by medical experts (pathologists) through imaging devices such as video and 

photography, as well as in the use of such information for research, diagnostic or 

educational purposes (Weinstein et al., 1987). 

Although the introduction of DP was attributed to telepathology, these two terms differ in 

some details; for example, DP is distinct from telepathology in that through the captured 

images, the pathologist can perform various types of analysis, as well as manage and 
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store the data on large servers. In the case of telepathology, this is not possible. In addition 

to telepathology, DP was born with the advent of virtual microscopy (VM). VM is the 

technique of digitizing whole or partial glass slides for complete visualization and handling. 

Ronald S. Weinstein first used the name telepathology in 1986, and he is now considered 

the father of telepathology. He was also the first to outline the steps to be followed for the 

correct remote visualization of digitized glass slides in diagnostic pathology laboratories 

(Weinstein, 1986); therefore, he owns the U.S. patents for telepathology for diagnostic 

purposes. 

Nordrum and Eide also contributed to the development of DP, as they were the first to 

establish a sustainable clinical telepathology service in Norway in 1989 (Nordrum et al., 

1991), which is still in operation. 

Currently, telepathology still has numerous clinical applications, such as remote 

histopathological diagnosis (Dunn et al., 2009), frozen specimen diagnosis (Evans et al., 

2009), consultation (Graham et al., 2009), diagnosis support to subspecialties like 

dermatology (Massone et al., 2008), preclinical toxicology research studies (Siegel et al., 

2018), education (Dee, 2009), among others. Telepathology also improves the efficiency 

of diagnosis, as in short time, histopathological images can be shared to highly specialized 

pathologists (e.g. nephropathologist, neuropathologists or dermatopathologists) for 

consultations when a rapid diagnosis is required and when the specialist is not physically 

available, as happens frequently in the case of frozen section diagnosis. 

Already at the beginning of the first decade of the 21st century, videoconferencing 

systems and virtual microscopy software began to be used. This allowed the interactive 

visualization of images through a screen (Farahani et al., 2016). Nevertheless, although 

these technologies proved to be very practical at that moment, the introduction of these 

technologies had its disadvantages as well, due to the high cost of high-speed data 

transmission networks. In Spain, for example, to solve these problems and allow the users 

to transmit images in real time, the detail and quality of the images was sacrificed by using 

compression system and by sending the images using conventional software for 

Microsoft Windows or via webcam (NetMeeting), provoking more source failures and 

diagnostic errors compared with current systems (Alfaro- Ferreres, 2001). 
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Telepathology currently has several resources of telecommunication systems that allow 

real time collection of patient samples over long distances such as static images 

(photographs), dynamic virtual samples from the digitalization slides (whole slides images, 

WSI) or images transmitted by a robotically controlled light microscope in real time 

(Weinstein et al., 2009). Telepathology can also integrate other routine elements in 

diagnosis including generation of a written report, instant messaging, quality control of 

light microscopy and inter-consultation through videoconferencing. This last is still in 

virtual private networks. 

Conversely, studies show that diagnostic accuracy rates are higher when using dynamic 

pathology rather than static pathology using virtual slides. This is because static 

telepathology relies on images sent by the pathologist, who shares selected parts of the 

slide for consultation. In contrast, in dynamic telepathology (also known as VM or DP), the 

medical experts are able to analyze the whole slide with several magnification levels 

options, imitating the routine use of a light microscope (Kaplan et al., 2002). 

Another huge advantage of DP is the construction of databases, as well as virtual libraries 

that allow the creation of catalogs sorted by, for instance, disease and tissue type. This 

also has the potential to increase the quality of diagnosis by allowing the pathologist to 

access all cases for comparison and re-evaluation in a short time if it is required, even 

when the pathologist is not physically available. In the same way, these virtual libraries 

allow the archiving of a large number of cases which are mainly used for research and 

educational purposes (e.g., pathology training). In addition, in order to have a successful 

DP diagnostic laboratory, it must be ensured that all necessary storage, security and 

medical data management procedures are performed and available (Kaplan et al., 2002). 

This can be achieved by the creation of metadata (patient information), which can be 

included into the WSI database. 

Contemporary currents in the field of training of future pathologist are focused on the 

digitalization of their pathology classes with the attempt to replace optical microscopes 

with computers or other devices (e.g. smartphones, tablets, etc.), in addition to the 
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construction of virtual libraries of slides. A clear example of this are the digital pathology 

laboratories created using cloud computing technologies or the University of Iowa's 

"Virtual SlideBox" image repository (Dee & Fales-Williams, 2005). 

Following the development of telepathology and its everyday use in many institutions and 

laboratories, the early 1990s saw the emergence of VM in several areas of life science 

research (Kumar et al., 2004). VM is defined as a method of transforming histological 

images (whole slides or fragments) into digital information with a resolution similar to that 

of conventional optical microscopy (Brochhausen et al., 2015). WSI are created with 

special scanners; however, digital “slides” can also be formed by attaching together 

several photomicrographs through the microscope (patches). Both techniques allow for 

the presentation of histological data through computer networks with extraordinary 

resolution; however, due to their size, the files usually generate problems during the 

storage and sending of information. VM is also used in other branches of medicine like 

histology, hematology and biology. 

By using computer technology, DP started utilizing VM as its basis. With the practice of 

WSI, glass slides are converted into digital images that can be observed, managed, 

shared and analyzed on a computer screen regardless of the location of the viewer. In 

recent decades, with the advent these new forms of visualization and the growing era of 

artificial intelligence (AI), the perception of diagnostic histology has evolved considerably, 

regaining its value and accessibility (Bertram & Klopfleisch, 2017; Pantanowitz et al., 

2018; Abels et al., 2019). 

In summary, DP is a recent subfield of pathology based on the transformation of glass 

slides into digital slides (WSI), with the advantages of manage, visualize, analyze and 

share image data in a practical and objective way. WSI can be visualized and analyzed 

by pathologists regardless of the location and has been proved that it can considerably 

increase diagnosis efficiency by the combination with AI. 

 

1.1.2 Hardware (scanners and scanning) 

 

The challenges faced by those aiming to develop software solutions for automated tumor- 

focused surgical biopsy diagnostics are numerous. From those related to sample



Page 10 of 86 
 

processing (e.g. standardization of H&E stains, microtome artifacts, staining reagent 

variability) or morphological variance/complexity of the tumors, to those related to 

hardware (scanning, uneven illumination, focusing) and software validation. These lasts 

ones are of vital importance for the proper development of effective and efficient solutions 

with a reliable market application. Most scanners in market are standardized; they allow 

scanning of complete slides in high resolution and magnification in a short time, with some 

variations depending on the scanner type and vendor (Jahn et al, 2020). In the same way, 

the accessibility of software for WSI analysis varies according to the needs and budget of 

the users. Most of these are focused on traditional H&E and IHC image analysis instead 

of creating DL algorithms for specific tasks. 

For the successful and advantageous practice of DP, the laboratory must be assured that 

the remote pathologist has appropriate access to pertinent diagnostic material. The 

process of DP imaging consists of many steps. These operations include some basic 

steps such as sample preparation and staining, performed in a histologic laboratory; H&E 

staining is the most popular stain to examine tissue sections. Subsequently, the optical 

image is transformed into digital information by several digital acquisition options, such as 

photographic cameras, video cameras and automatic microscopic slide scanners. Finally, 

this information is processed, compressed and transmitted as an image file through 

telecommunication networks and to be presented on the health professional's screen 

(Kaplan et al., 2002; McCullough et al, 2004). 

 

VM systems (VMS), commonly understood as those capable of fully digitizing histologic 

and cytologic slides or WSI are accessible today in multiple formats and commercial 

solutions. In 1997, the Department of Computer Science at the University of Maryland and 

the Department of Pathology at Johns Hopkins Hospitals (Baltimore, USA) described the 

first operational VMS (Afework et al., 1998; Ferreira et al., 1997). Today, it is possible to 

digitize all types of histological or cytological slides, from thin (5 µm) paraffin-embedded 

tissue sections to thick (15 µm) IHC or immunofluorescence sections. 

Depending on their purpose, digital imaging solutions can be classified into digital 

microscopes (total preparation scanning) and diagnostic support systems. The purpose 

of the DM is the creation of digital slides with full viewing capability at high magnification 
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(Zarella et al., 2019) and the purpose of the diagnostic aid systems is to aid the localization 

of the area of interest in throughout all the slide, as well as to objectively quantify 

histological features (e.g. fibrosis). Both systems allow digitizing the entire slide (or a 

specific region) and photographing specific fields (depending on the objective of the study 

or type of diagnosis). 

Based on device components DP hardware are divided into robotic microscopes (RM) 

and scanners. 

• RM. The RM maintain their original functionality and components including oculars, 

multiple objectives (motorized revolver), light control, and position and focus control 

(Collins et al., 2020), but with a camera assembled to the microscope and an image 

viewing and analysis software (discussed in the software subtopic). 

• Scanners. A computer in/outside the scanner box controls slides scanners and 

scanning. It differs from the RM by the absence of oculars and position or focus 

control, as well as the addition of an anti-vibration mechanism (Thrall et al, 2015). 

Both devices are capable of generating high-resolution images and both are structurally 

composed of an optical microscopy system (similar to that of a conventional light 

microscope), a capture system (snapshots and photography) and a visualizer and 

controller software. 

As the camera integrated inside the device (RM or scanner) is a critical factor in the quality 

and speed of image acquisition, it is essential to know its basic characteristics and 

functionality. Slide digitizer usually consist of a CCD sensor (charged coupled device), 

which generates analog signals (similar to digital cameras, DC) and determinates the 

quality and resolution of the image, i.e. it establishes the number of pixels detected. DCs 

inside the slide digitizer do not need the utilization of capture cards because they are 

connected to the PC through a firewire-port (Kim et al., 2020). 

Another important element for correct imaging are high precision and high-speed stages. 

Their job is to allow the achievement of optimal movement speed without losing image 

quality (Jones-Hall et al., 2021). 
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In order to correctly visualize the images collected by the scanning systems, DP solutions 

use high-resolution monitors that are usually flat TFT with different sizes. 

One of the most important factors to determinate the digitization efficiency is the scanning 

time; however, their objective evaluation is very difficult, as the following aspects must be 

considered: 

- Size of the slide or the tissue area to be scanned. 

- Magnification (20x or 40x). 

- Size of the CCD. 

- Time of the focusing and preview phase. 

- Number of focus points 

- Data capture speed (from camera to computer and from computer to storage), 

among others. 

The focus map, which counts the number of focused points, can be assigned automatically 

and manually on most scanners. In Aperio ScanScope it is possible to manually add focus 

points to those that are automatically detected by the visualizing software. 

In some cases (e.g. cytology slides or thick histology), it is necessary to digitize multiple 

planes of focus, known as the Z-axis. This allows the pathologist to visualize several 

planes from top to bottom, similar to the use of the micrometer of the conventional 

microscope. 

Before the scanning, a previsualization of the slide is necessary. In this step, it can be 

decided whether the digitization will be performed on the entire slide or on a specific area 

(manually) or if only the areas with relevant material will be automatically selected. Most 

of the scanners avoid blank areas (empty spaces) during this step. Previsualization is 

usually done in matter of seconds. 

Once the number of points to be scanned is determined, the slide is scanned. Digitization 

consists of capturing areas of the slide and then stitching the fragments together to create 

the virtual image, which can be adjusted manually or automatically (default settings). The 

software of each scanner usually supports the scanning process; it is performed from the 

upper left corner to the lower edge of the slide, in order to create an image with multiple 
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quadrants, like a mosaic. In the case of Aperio ScanScope, the scanning process is linear. 

By navigating throughout the WSI, the observers are able to perform similar movements 

as on a microscope, such as lateral and vertical (X and Y axis), as well as to modify the 

magnification and focus or change the plane of focus (Z axis). 

Note: There are no specific publications that analyze and compare all types of scanners 

with an objective method, so the reader is advised to look into the individual web sites and 

manuals of each scanner company in order to obtain more information. 

 

1.1.3 Software 

 
 
Once the slide is digitized, the file is created and can be viewed with different types of 

specialized software, which usually compresses the images to an optimal size for proper 

high-resolution viewing on a screen. Regarding the software, the viewer can also perform 

specific tasks on it for digital pathology and image analysis for diagnosis and investigation 

purposes. After that, the WSI must be archived but not as a physical slide, but into a 

dedicated virtual space such as internet servers or inside the computer, depending on the 

vendor. Both options are useful but it depends on the needs of the user and the 

accessibility to internet connection and storage capacity. 

 

WSI analysis software is developed with stand-alone and functional AI programs; 

however, some of them require the download of plugins (complementary programs that 

extend the functions of web applications and desktop programs) to improve their 

functionality. 

The following is a list of the main free open sourcesoftware most commonly used in DP. 
 

• QuPath. QuPath was first designed to image analysis of WSI (mainly for 

biomarkers and IHC), but it is currently used also for neoplasia analysis on H&E. 

This software is easy to use and it includes the possibility to create smart 

annotations through different types of tools that transform coordinates and pixels 

into data in order to develop algorithms and analyze the whole tissue. It has also a 

very useful tool that allows the user to create even more precise annotations in the 
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slide, making this process more efficient (e.g. automatic delineation tissue types 

and delineation of structures). QuPath offers the users several type of algorithms 

for solving simple tasks like automatic cell detection or stain estimation (useful for 

IHC/fluorescence) and supports developers to implement new applications by 

exchanging data with other software options such as ImageJ (Bankhead et al., 

2017). 

 
• Image J/Fiji. ImageJ was first designed with an open architecture that provides 

extensibility via Java plugins and scriptable macros. This provides the users the 

possibility to resolve image problems related to processing and analysis by 

comparing multiple system data. It also has an automated hematology system. This 

software can display, edit, analyze, process, save, and print 8-bit (256 colors), 16- 

bit (thousands of colors), and 32-bit (millions of colors) images. It can read various 

image formats including TIFF, PNG, GIF, JPEG, RAW among others. It is possible 

to perform tasks on several images in a single window (limited by available 

memory) and even in various parallel CPUs at the same time. User often use 

ImageJ to calculate areas and pixels of tissue structures with statistical purposes 

by measuring exact distances and angles throughout the whole slide and by 

creating histograms and profile line plots. ImageJ has tools to manipulate contrast, 

detect edges, perform Fourier analysis, as well as geometric transformations of the 

slide, such as rotation and flips (Rueden et al., 2017; Schindelin et al., 2012; 

Schneider et al., 2012). 

 
• CellProfiler. CellProfiler was first designed to aim biologist to analyze and quantify 

phenotypes from images in an automatic manner and can read most of the WSI 

formats. In this software, there are several types of algorithms for image analysis 

like automatic identification, segmentation and measurement of biological 

structures, which can be used individually or sequentially in a pipeline. CellProfiler 

can collaborate with some scientific libraries for mathematical operations purposes 

(Lamprechtet al., 2007). 
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• Ilastik. Ilastik was designed for image classification and segmentation through the 

annotation of histological structures and the creation of an automatic classifier. 

Ilastik has module for using classifiers to process images within a CellProfiler 

framework (Sommer et al., 2011). 

 
• Orbit. Orbit was first designed for the quantification of large images through 

analysis algorithms using ML, as well as segmentation and classification of 

histological structures. In addition, a versatile API allows the owners to enhance 

Orbit and run their own scripts. Another interesting function of this program is the 

calculation of different tissue classes’ proportion, e.g. the percentage of collagen in 

a tissue. ML-based tissue quantification allows the pathologist to train the system on 

specific tissue classes and quantify them, likewise, segmenting, overlapping and 

calculating objects features in order to achieve a more accurate classification 

(Goldberg et al., 2005). 

 
• Cytomine. Cytomine was first designed as a web-based tool for large-scale image- 

based studies in multidisciplinary teams. It has annotation, analysis and 

management possibilities in WSI. It can be used in most of the formats by the 

conversion of the images during the loading stage, which are archived into the 

cloud, so it provides the option to organize, analyze, explore and share WSI over 

the internet for collaborative projects. Cytomine includes algorithms (default), but 

the user can develop other types. Another tools allow the visualization of several 

images and annotations at the same time, the management of annotations 

(reviewing, searching, filtering, sorting) even from different creators, creation of DL 

algorithms, size calculation of structures, among others (Marée et al., 2016). 

 
• Icy. Icy (colloquially defined as the image analysis “photoshop”) was designed to 

visualize, analyze, annotate and quantify features in WSI and other typed bio- 

images. In this software, researchers and users can also develop algorithms 

according to their needs (De Chaumont et al., 2012). 
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Note: There are no specific publications that analyze and compare all types of WSI 

softwares with an objective method, so the reader is advised to look into the individual 

web sites and specific citations of each software company in order to obtain more 

information. 

 

1.2 Artificial intelligence 
 

1.2.1 Overview and definitions 

 
 
Artificial intelligence (AI) is a computer science field that is defined as the intelligence 

expressed by machines through their processors and different types of software. These 

in turn perform functions and tasks that would be the equivalents of the human body, brain 

and mind in order to behave in a natural way as humans and certain types of animals with 

complex brains would (Kaplan et al., 2021). 

The origin of AI is considered to date back to man's attempts since ancient times to 

enhance his physical and intellectual potential through the creation of devices with 

automatisms, emulating the form and abilities of human beings. In computer science, an 

ideal "intelligent" machine would be one with flexible abilities that perceive its environment 

and, in turn, carry out actions that maximize the chances of success in some purpose or 

task (Lopez-Rubio et al., 2015). Andreas Kaplan and Michael Haenlein define artificial 

intelligence as "the ability of a system to correctly interpret external data, to learn from that 

data, and to use that knowledge to achieve specific tasks and goals through flexible 

adaptation" (A. Kaplan & Haenlein, 2019). However, colloquially the term artificial 

intelligence is used in cases where a machine successfully reproduces certain cognitive 

functions that humans relate to other human minds, such as perception, reasoning, 

learning and problem solving (Russell & Norvig, 2002). 

Over time, the definition of AI has evolved, as what was once thought to be a task requiring 

a certain level of intelligence is now considered a common task, such as optical character 

recognition, tasks that are now commonly used in different branches of technology. 

Currently, with the development of expert computer systems, the management and control 

of robots and processors, AI has become a novel way to address problems through the 
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integration and analysis of knowledge shared by the human mind, with certain autonomy 

to such an extent that machines develop an intelligent system capable of developing its 

own program. An expert system is defined as a programming structure with the capacity 

to store and use the complete knowledge about a certain field of study, as well as its 

translation into computer language and its automatic learning (Patterson, 1990). 

Likewise, with the evolution of new technologies and mathematical calculations, AI is also 

ultimately defined as the ability of machines to use algorithms, learn from data. This way 

of behavior should mimic to that of a human being. One of the main focuses of artificial 

intelligence is machine learning (ML), in such a way that computers or machines have the 

ability to learn without being programmed to do so. 

In 1956, John McCarthy first coined the expression "artificial intelligence", and defined it 

as "the science and ingenuity of making intelligent machines, especially intelligent 

computer programs" (McCarthy, 2007). Other definitions and points of view are, for 

example, according to Takeyas (Takeyas, 2007), AI is a branch of computational sciences 

in charge of studying computational models capable of performing human activities based 

on two of their primary characteristics: reasoning and behavior. This current definition 

involves not only the way machines reason, but also their ability to perform tasks that 

resemble human behavior, as in the case of robotics. There are also other types of 

perceptions that can be obtained and produced, respectively, by physical sensors and 

mechanical sensors in machines, electrical or optical pulses in computers, as well as by 

bit inputs and outputs of software and its software environment. 

Several examples are found in the area of system control, automatic planning, the ability 

to respond to diagnostics and consumer queries, handwriting recognition, speech 

recognition and pattern recognition. AI systems are now part of the routine in fields such 

as economics, medicine, engineering, transportation, communications, and the military, 

and have been used in a variety of computer programs, strategy games such as computer 

chess, and other video games. 

Stuart J. Russell and Peter Norvig diversify several types of artificial intelligence (Russell 

& Norvig, 2002): 
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• Systems that think like humans or, more precisely, systems that try to emulate 

human thinking, as in the case of artificial neural networks. The automation of 

activities that we link to human thought processes includes, for example, decision 

making, problem solving and learning (Krogh, 2008). 

• Systems that attempt to act like humans or mimic human behavior. The most 

commonly known example is robotics, defined as the branch of AI that studies how 

machines manage to perform tasks that currently human beings do better, like in 

in the field of medicine (Dario et al., 1994). 

• Systems that think logically and that seek to mimic the rational thinking of human 

beings; for example, expert systems, the study of the computations that make it 

possible to perceive, reason and act (Horvitz et al., 1988). 

• Systems that act rationally and that try to emulate rationally human behavior; for 

example, intelligent agents, which is involved with intelligent behaviors in artifacts 

(Poole & Mackworth, 2010). 

AI is divided into two lines of reasoning: 
 

On the one hand, conventional or symbolic and deductive AI that is defined as the 

proper and statistical analysis of human behavior for solving different types of 

problems (Garnelo & Shanahan, 2019). In this type of AI there is (Confalonieri et al., 

2021): 

• case-based reasoning to support decision making when solving specific problems, 

• expert systems that conclude a solution through prior knowledge regarding the 

context in which it is applied, 

• bayesian networks that suggest procedures through probabilistic inference, 

• behavior-based AI that is characterized by being autonomous with the ability to 

self-regulate and control itself to achieve significant improvements when solving 

tasks 

• and smart process management, which provide intelligent support during complex 

decision making. 

These types of solutions suggest solutions to multiple types of problems, equivalent to 

specialists in the field of interest (Confalonieri et al., 2021). 
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On the other hand, computational AI or subsymbolic-inductive AI involves development or 

interactive learning. This type of thinking and learning is based on empirical data. This 

type of computational intelligence has two purposes, its scientific goal is to glimpse the 

principles that enable intelligent behavior in both natural and artificial systems and its 

technological goal is based on the specification of methods to design intelligent systems. 

This type of technology is mostly used in environmental sciences, climatology and 

financial markets (Siddique & Adeli, 2013). 

Since AI is being used in many technological fields and especially in medicine, its 

utilization and development is strictly regulated by laws that establish rules and norms of 

behavior and usability to ensure social welfare and protect individual rights (Keskinbora, 

2019). As in any other scientific field, this is done with the aim of minimizing risks and 

promoting the benefit to society. Although there are currently no legal norms that truly 

regulate AI, in April 2021, the European Commission externalized a proposal for its 

regulation in the European Union (Stöger et al., 2021). 

The technologies that have been born through AI today are numerous and are found in 

almost all fields of research, because when a problem is solved by AI, the solution is 

routinely incorporated into biological and industrial fields (Becker, 2019). In this document 

we will focus on the advantages of AI in the medical fields, especially in the pattern 

recognition of digital pathological images. 

 

1.2.2 Machine learning 

 
 
Machine learning (ML) a computer science subfields and a branch of AI that studies the 

methods of learning through the use of data (Nichols et al., 2019). The main goal of ML is 

to encourage and develop learning models that have the ability to generate results that 

can in turn improve upon their own experience; in other words, when the skill was not 

present prior to training. In ML, a computer observes and analyzes data with the aim to 

develop a model that is able to hypothesize and design software for problem solving. ML 

is also broadly related to pattern recognition to emulate the scientific method with 

mathematical techniques. 
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Applications of ML are currently numerous and include search engines, medical 

diagnostics, financial fraud detection, stock market analysis, DNA sequence classification, 

speech and written language recognition, video games and robotics (Kononenko, 2001; 

Lee et al., 2018). 
 

There are several automated learning models (geometric, probabilistic and logical), some 

of these seek to eliminate the exhaustive need for expert knowledge in data analysis 

methods, while others are concerned with the establishment of a collaborative framework 

between the expert and the computer, as commonly observed in biomedical fields (Sidey- 

Gibbons, 2019). 

ML models can also be classified into grouping models (division of instances with respect 

to groups or classes) and gradient models for differentiation between instances or classes. 

Both generate an algorithm with respect to their own deductions. Some types of algorithm 

training are: 

• Supervised learning. In supervised learning, a function is deduced from training 

data. The data for this type of training is made up of pairs of vectors (objects), 

where one part of the pair is the input data and the other is the output data (desired 

results). The output of the algorithmic function can be presented in numerical 

values (regression problems) or in a classification label. The objective of this type 

of learning is to develop a function with the ability to predict the appropriate value 

for the input object after visualization and analysis of a series of training data. For 

this type of learning to work properly and to be used as a reliable tool, it has to be 

exposed to a series of data presented to previously unseen situations. Experts in 

the field usually achieve this through training (Ang et al., 2015). An example of this 

type of algorithm is the one described in this thesis, where tumor classification in WSI 

was intended. In broad terms, the learning model deals with classifying a series of 

vectors with respect to various categories (classes) or label examples. This type of 

learning has proven to be very useful in biological and medical research, being the 

basis of bioinformatics bioinformatics (Larranaga et al., 2006). 
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• Unsupervised learning. In this type of learning, the model is adjusted to the 

observations and the whole process is carried out with a set of examples formed 

only by inputs to the system, i.e., it is not fed with information about the classes. In 

addition, the system has as its principal job the automated recognition and 

classification of patterns to label new inputs. The training does not require experts 

for its development, so there is no pre-existing knowledge and it has the ability to 

self-organize. The network automatically discovers different features, regularities, 

correlations and categories in the input data. In a broad sense, unsupervised 

learning usually uses the input objects as a set of random variables to build a 

density model and a dataset. Another form of unsupervised learning is clustering, 

which can neglect probability methods. One of the advantages of this type of 

learning is that it requires less training time than supervised learning (Ang et al., 

2015; Donalek, 2011). 

• Semi-supervised learning. This is the mixture of the previous two and uses labeled 

and unlabeled data to classify them (Ang et al., 2015). 

• Reinforcement learning. In this case, the algorithm learns with respect to the 

observation of the external environment, i.e., the information it uses to generate an 

algorithm is composed of the feedback it acquires from the outside world (trial-and- 

error principle). Since it does not require complete supervision, the autonomous 

training of the model only requires positive or negative reinforcement (punishment) 

that are derived from the good or bad performance of the model. The goal of this 

type of training is to enhance the algorithm's ability to understand the environment 

and make appropriate decisions to solve or understand problems (Sutton, 1992). 

Not surprisingly, these types of learning resemble the way we humans learn. For us, this 

process is so automatic and simple that sometimes we fail to notice it; however, in ML, 

the learning method must be defined from the beginning and the rest will just be a 

reproduction of a repetitive sequence. 

After learning, regardless of the model, the creation of the algorithms is generated with 

the following classification techniques: 
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• Decision trees. In this type of learning, the creation of a decision tree is necessary 

for the resolution of a problem. Its main objective is the generation of a prediction 

model based on logic for the correct representation and categorization of 

successive instances. Decision trees can be said to generate diagrams of 

sequential decisions with their probable outcomes, as is often used in economics 

where the option that avoids a loss or produces an extra profit has a value. The 

ability to create an option, therefore, has a value that can be bought or sold 

(Navada et al., 2011). 

• Association rules. These algorithms are characterized by the creation of relevant 

relationships between different variables to determine the instances that occur 

within a data set. This type of algorithm is used to find relationships between 

variables within very large data sets. Among the best-known methods are the a 

priori algorithm, the Eclat algorithm and the Frequent Pattern algorithm (Chen et 

al., 2006). 

• Genetic algorithms. The process of natural selection within evolutionary algorithms 

inspires this type of algorithm, i.e., it relies on genetic bases such as mutation and 

crossover to create new classification groups (Grefenstette, 1993). 

• Artificial neural networks (ANN). The biological behavior of neuronal connections 

in animals inspired ANNs, i.e., they designed to solve problems in a similar way 

than the complex brain would do. It is made up of an extensive network of links with 

different numerical weights that work together to develop an output stimulus 

(Krogh, 2008). These connections contain thousands to millions of neuronal units 

and have the ability to adapt with respect to their individual experience and share 

information with each other. Each artificial neuron is interconnected with many 

others through links in order to receive and analyze information to generate an 

output. With previous weight multiplication of its value, this output will then be 

shared to the next neuron, to create a reaction of inhibition or activation, depending 

on the data. The output can also modify or limit the result that will be transmitted to 

the next link or neuron (Zou et al., 2008). ANNs are the basis of deep learning (DL) 

(Schmidhuber, 2015) and have been shown to perform successfully in 

accomplishing a large number of tasks such as computer vision (Zhou & Chellappa, 
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2012) and speech recognition (Lim et al., 2000), which are difficult to solve using 

previous algorithms. 

• Support vector machines (SVM). These algorithms are defined as a series of 

methods related to supervised learning for classification and regression. In this type 

of algorithms, training is based on a first training phase, where multiple examples 

are fed in the form of pairs with their respective solutions, as well as a second 

phase of use for problem solving. Here, a "black box" is created to eject an answer 

to a certain type of problem and to predict the categorization of new examples 

(Meyer & Wien, 2015). 

• Clustering algorithms. This kind of algorithms include an unsupervised learning 

method that has been commonly used in statistical analysis. The analysis is based 

on grouping observations (vectors) into subgroups (clusters) so that the 

observations in each group resemble each other according to criteria established 

by the algorithm's creator. Practically, they look for similarities within groups and 

separation of those that do not have similar characteristics (Fung, 2001). 

• Bayesian networks. This one allows the creation of probability models represented 

in a series of random variables and their independencies through a directed acyclic 

graph. It combines observed evidence with "common sense" to determine the 

probability of presentation of occurrences with elements that are not necessarily 

linked to each other. An example is the creation of algorithms for determining the 

relationship of general symptoms to specific diseases. The results are generated 

graphically with the probability and conditions under which an instance would occur 

(Kotsiantis et al., 2007). 

 

1.2.3 Deep learning 

 
 
Finally, the subspecialty of AI within ML with which the most efficient software solutions 

have been developed in the medical field is deep learning (DL) (Suzuki, 2017). This is 

defined as a collection of ML algorithms that shape abstractions of large amounts of data 

using computational architectures that perform multiple nonlinear and iterative 

transformations of data expressed in a matrix form (Lee et al., 2017). DL is part of a
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broader group of ML methods based on resembling data representations. For example, 

an image that can be called an "observation" is represented in different forms, usually in 

a vector of pixels (depending on the type of data it is fed with) that enter into a network of 

analysis and classifications with respect to previously assigned examples or labels. 

DL includes three types of architectures for algorithm creation (Shrestha & Mahmood, 

2019): 

• Deep neural networks (DNN), 

• Deep convolutional neural networks (CNN) and 

• Deep belief networks (DBN). 
 

Although there is no single definition of a concrete DL algorithms, there is one point that 

all types of networks share. This point is centralized in the use of a cascade of layers with 

nonlinear processing units with the objective of extracting and transforming multiple 

variables. Each layer uses the output of the previous layer as input (in both, supervised 

learning or unsupervised learning) to finally model data and recognize patterns. Another 

feature shared by all types of artificial networks is learning based on multiple levels of 

features or data representations. Higher-level features are derived from lower-level 

features to form a hierarchical representation. This involves different levels of abstraction 

to generate a hierarchy of concepts and features at each layer. 

There is no clear definition about the number of layers (transformations) that makes an 

algorithm to be considered as deep, but most researchers in the field consider DL to 

involve more than two intermediate transformations (Shrestha & Mahmood, 2019), which 

distinguishes it from the shallow learning. 

 

1.2.4 Image recognition 

 
 

Recognition is responsible for identifying and classifying objects in an image. Possibly one 

of its most common applications today is automatic image labeling, used for web content 

management and organization, but it is also useful for pattern recognition in a medical 

image. Thanks to a class of models known as CNN, image recognition has experienced 

formidable advances. Biological processes that take place in the visual cortex, where 
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neurons recognize stimuli in a restricted area of the visual field and classify them with 

respect to stored information, inspire these models. This area partially overlaps with that 

of nearby neurons, collectively covering the entire visual field. As a result, CNN learn to 

respond to different image features (edges, shapes, etc.), such as the filter banks used in 

traditional and manually defined algorithms. In fact, the ability to learn such filters is one 

of the characteristic advantages of CNN, which in turn eliminates the manual effort 

required in feature design (Liu et al., 2017). 

The learning algorithm of this type of network allows the extraction of the characteristics 

of each class from a previously classified training data set. To do so, it modifies the 

weights of the neurons that form the network and their values are iteratively calculated 

using the backpropagation method of supervised learning (Wu & Chen, 2015). 

This backpropagation algorithm consists of two main stages: 
 

For each element of the training set, the class to which it belongs is calculated according 

to the values that the network weights have at that moment (Leonard & Kramer, 1990). In 

this way, the algorithm can determine how good the classification is through an error 

function, as well as by comparing the classification with respect to the class to which the 

object actually belongs. Once the error made has been obtained, the algorithm 

propagates backwards the neurons with weights that contribute enough to the 

classification of the input. With this iterative process, the weights are updated for 

optimization using gradient descent algorithms (Kishore & Kaur, 2012). Subsequently, this 

method updates the weights of the network in the opposite direction of the gradient of the 

error function. 

For a correct training of the CNN, it is necessary to specify a set of training data to define 

them. This requires a large number of labeled images of the object categories to be 

classified within a complete image. From these images, the CNN manages to obtain and 

collect specific characteristics of each class to learn to differentiate them from each other; 

the greater the number of training images, the better the results in the classification of new 

objects (Xin & Wang, 2019). 

In either case, a set of labeled images must be chosen in which we have as many classes 

as different objects we want to classify. An additional class is also necessary for objects 
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that do not fit into any of the training data (background). In this category, we must have 

as much data as possible and it works better the more diverse they are. This will allow the 

algorithm to avoid misclassifications and false positives in the detection of an object. In 

an image, the network as ‘background’ should classify everything that is not an object. 

 

1.2.5 Evaluating the algorithm: confusion matrix 

 
 

The evaluation of the algorithm performance is performed through a confusion matrix 

(CM). This method allows the visualization and analysis of the accuracy during the 

classification of objects even with a large amount of data. This type of matrices is usually 

used in supervised learning types. 

Ting defined CM as a table that contains information about actual and predicted 

classifications done by a classification system. Performance of such systems is commonly 

evaluated using the data in the matrix (Ting, 2010). 

Each column of the matrix represents the number of predictions in each class, while each 

row represents the instances in the actual class. One of the benefits of confusion matrices 

is that they make it easy to see if the system is confusing two classes (table 1). 

The following table shows the CM for a two-class classifier taken from (Kulkarni, Chong, 

& Batarseh, 2020): 

 

Prediction 

 
Ground 

truth (original 

label) 

 Negative Positive 

Negative True 

negative 

(TN) 

False 

positive 

(FP) 

Positive False 

negative 

(FN) 

True 

positive 

(TP) 

CM: Confusion matrix. 
 

The entries in the CM have the following meaning: 
 

- TN is the number of correct predictions that an instance is negative, 
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- FP is the number of incorrect predictions that an instance is positive, 

- FN is the number of incorrect of predictions that an instance negative, and 

- TP is the number of correct predictions that an instance is positive. 

With these terms, accuracy, recall and precision can be calculated. The terms will be 

pointed in the next paragraph (Kulkarni et al., 2020; Provost & Kohavi, 1998; Ting, 2010). 

- The precision also known as positive predictive value is defined as the proportion 

of the total number of predictions instances that were correct classified. 

- The recall, also known as true positive rate or sensitivity is the quantity of positive 

cases that were correctly classified. 

- The FP rate is the amount of negatives instances that were incorrectly identified as 

positive. 

- The TN rate also known as specificity is defined as the quantity of negatives cases 

that were appropriately classified. 

- The FN rate is the amount of positives instances that were incorrectly identified as 

negative. 

- F1 Score is the measure of accuracy that has an artificial recognition model and is 

used in the determination of a single weighted value of accuracy and recall. 

 

1.3 Computer-aided diagnosis 
 

1.3.1 Overview and definitions 

 
 
Computer-aided diagnosis (CAD) are medical procedures that support medical doctors in 

the interpretation of multimedia content obtained from tests that the patient has been 

subjected to, e.g., medical images (Giger & Suzuki, 2008). The idea of CAD is not to give 

a complete diagnosis from the original source, but to help the clinician who is writing the 

diagnosis to achieve an optimum diagnosis. 

With this technology, the clinician is able to interpret all the visible information, since the 

machines process the whole picture and do not ignore any minor information that would 

otherwise escape the human eye. In this way, by highlighting the relevant information, 

they help the specialist not to overlook any detail. 
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CAD systems are an interdisciplinary technology, which is still very new at present, 

combining artificial intelligence, digital image processing and other subfields of medicine 

such as radiology, tomography or pathology. Image processing with the aid of complex 

pattern recognition systems makes it possible for the medical doctor, usually a radiologist, 

to interpret the information contained in the medical image with much lower difficulty (Doi, 

2007). 

CAD systems employ algorithms to analyze and recognize patterns in patient data that 

suggest possible anomalies. In a similar manner that a clinician is trained to identify 

anomalies by studying cases, CAD algorithms are taught to recognize patterns from an 

initial finite database with and without anomalies. This database is known as the "training 

set" (Chan et al., 2020). 

Once the CAD system has been trained, it is then ready to be used on new patients to 

detect matching or discarding patterns of diseases or lesions. The pattern classifications 

in CAD devices are intended to be sufficiently reliable and efficient to support the specialist 

in identifying and diagnosing them. In general, device reliability is estimated using a 

different database known as a "test set" (Chan et al., 2020). 

The methodology of CAD systems is very similar to that of a standard pattern recognition 

system: 

- Preprocessing. In this step, all image imperfections such as noise are corrected 

and the image is harmonized in case of differences in exposure levels at different 

points. 

- Segmentation. With the help of a database, matches are searched to detect 

important structures in the image and define them as regions to be analyzed 

individually. 

- Structuring. Each of the previously defined regions is analyzed to extract important 

information from each of them regarding, for example shape, size, location, and so 

on. 

At the end, defined regions that could be interesting for our diagnosis are left. The different 

regions that were previously identified as relevant are analyzed by means of several 

techniques. Each of these procedures has a limit that the region in matter must surpass 
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to be considered relevant, if it is, the same procedure highlights it so that it does not go 

ignored by the specialist. It is the specialist who will finally decide what is relevant for the 

diagnosis and what is not, removing the latter for future consultations. 

CAD systems are currently unable to detect 100% of pathological alterations. The reliability 

(guess/hit rate) of these systems can reach up to 90% depending on the system and the 

application (Xing et al., 2021). An incorrect guess, understanding as incorrect guess all 

those points that the system has marked as important without necessarily being so, are 

called false positives (FPs), so that the fewer FP we have, the more specific our procedure 

will be. 

As with all technologies, CAD systems also have their own limitations (Fujita, 2020): 
 

- Guarantee. There is no guarantee of a solution, it means, contrary to general 

thinking, that if the procedure works perfectly, it should not guarantee a diagnosis. 

All it guarantees is an image with areas for the relevant algorithm that the specialist 

will then have to consider. 

- Annotations. Requires fine grained expert annotations. 

- Database maintenance. The biggest problem with this technology is database 

maintenance. The algorithms that must detect the regions of interest need to 

consult some databases where the relationships between different cases are 

entered, a fact that causes the computational cost of the process to grow 

exponentially to prohibitive limits. 

- High cost. As in most new technologies, the economic cost of CAD systems is still 

very high nowadays. 

 

1.3.2 Computational pathology 

 
 
The integration of AI and its subfields (e.g. ML) in medicine has accelerated the growth of 

different areas of medicine, mainly in imaging (Doi, 2007) and is now one of the central 

research subjects in digital pathology and toxicology (Turner et al., 2020). Conversely, 

due to the scarcity of accessible WSI databases, functional and standardized software, 

burden of annotations and validation of algorithms, the point of full and efficient 
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development of automated diagnostics in oncology has not been reached yet (Chen et al., 

2021). 

The integration of DP and AI has opened the door to a completely new world of possibilities 

in diagnostic histology and research, into what we know as computer-aided pathology 

(CAP), or more specifically as computational pathology (CPATH). The experts of the 

Digital Pathology Association (DPA) define CAPTH as a branch of pathology that involves 

computational diagnostic systems or set of methodologies that use computer programs to 

interpret pathological images (WSI), extract patterns and analyze patient specimens for 

the study of disease (Abels et al., 2019; Nam et al., 2020). 

 

1.3.3 Previous work in human pathology 

 
 
AI is already positioned as a fundamental tool for optimizing and automating mechanical 

tasks that require the prior analysis of a large amount of data in various sectors. 

Specifically, in the field of pathology it is already being used successfully to develop new 

therapeutic alternatives, accelerate molecular diagnostics or collaborate in clinical 

decision-making. Furthermore, in different diagnostic centers and research institutions, AI 

is already routinely helping medical professionals to diagnose diseases, plan personalized 

treatments or even design drugs for specific applications (Litjens et al., 2016). 

The successes achieved so far point to a not-too-distant future in which medical doctors, 

AI and robots will work together in a coordinated way every day to apply a more precise 

and efficient medicine, thanks to overcoming human limitations in processing huge 

amounts of data. In that sense, AI does not need to be perfect to be useful in medical 

practice, it just needs to be better and faster than medical doctors in providing a diagnosis. 

AI could help as well, to reduce the misdiagnosis rate in several types of diseases for 

example: 

- Automated analysis and detection of prostate cancer in H&E slides (Bulten et al., 

2018; Tolkach et al., 2020). 
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- Identification of breast cancer metastases in sentinel lymph nodes (Steiner et al., 

2018; Wang et al., 2016). 

- Automated grading of gliomas and astrocytomas (Ertosun & Rubin, 2015; Kolles 

et al., 1995). 

- Ki67 Scoring (Narayanan et al., 2018). 

- Genetic Mutation Prediction (Schaumberg et al., 2017). 

- Differentiation between benign and malignant tumors, e.g., carcinoma vs. non- 

carcinoma (Bejnordi et al., 2017; Babak Ehteshami Bejnordi et al., 2018; Yahui 

Jiang et al., 2020). 

- Colon cancer classification (Awan et al., 2017; Kainz et al., 2017). 

- Gastric cancer classification (Shujun Wang et al., 2019). 

- Tumor subtyping (Yun Jiang et al., 2019). 

- Mitotic count (Veta et al., 2015). 

- Evaluation of biomarkers (Khameneh et al., 2019; Vandenberghe et al., 2017). 

- Lung cancer classification/subtyping (Coudray et al., 2018; Gertych et al., 2019; 

Teramoto et al., 2017). 

- Count of immunologic cells (Aprupe et al., 2019). 

- Prognosis prediction (Shidan Wang et al., 2018). 

- Classification of melanocytic lesions (Norgan et al., 2018; Wang et al., 2020). 

- Classification for bone marrow aspirate differential counts (Chandradevan et al., 

2020). 

...and the list goes on. However, there are not that many studies using AI, specifically DL 

in veterinary pathology. 

Some of the most relevant studies are mentioned below. 

 
1.3.4 Previous work in veterinary pathology 

 
 
As mentioned above, there are not many publications that focus on the development of 

algorithms for routine diagnosis in veterinary medicine. However, the development of 
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some complementary tools for the diagnosis of animal diseases, mainly in surgical and 

toxicological diagnosis, has been described (Zuraw & Aeffner, 2022). 

Some highly relevant advances are mentioned below. 
 

- Mitosis detection in dogs (Bertram et al., 2021; Bertram et al., 2020). 

- Pigment quantification within cells in horses (cytologic slides) (Marzahl et al., 

2020). 

- Differentiation of round cell tumors in dogs (Salvi et al., 2021). 

- Classification of mammary tumors in dogs (A. Kumar et al., 2020). 

- Retinal evaluation in mice (De Vera Mudry et al., 2021). 

- Lung fibrosis and inflammation characterization in mice (Heinemann et al., 

2018). 

- Automatic glomerular identification and quantification in mice (Sheehan & 

Korstanje, 2018). 

 

1.4 Algorithm development in pathology: establishment of ground truth 

 

Regardless of the type of hardware and software chosen by the user, the implementation 

of algorithms based on supervised ML has great advantages in the clinical and 

histopathological diagnostic workflow, as once they are properly developed and validated 

by computer engineering and pathology experts, they can improve the accuracy, speed 

and efficiency of diagnosis. This allows pathologists and researchers to analyze features 

on slides that are not easily identified with conventional optical evaluation; in addition, it 

also allows them to make a more complete evaluation of the slide in a short time, as well 

as detect and classify structures of interest and gather objective data (Abels et al., 2019; 

Aeffner et al., 2017). However, to enjoy these benefits, accurate and extensive 

convolutional neural network (CNN) training is required. 

The first step to achieve the development of a reliable algorithm in supervised DL (besides 

the raw image sets) is the establishment of a ground truth. Since this process is the basis 

of all DL training, it is also the most time-consuming and challenging (Irshad et al., 2015). 

The establishment of a ground truth is based on the labeling of specific features within a 
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slide. This can be done on previously selected patches or on the entire digitized slide 

(Dimitriou et al., 2019). Naturally, training neural networks on a complete slide with high 

resolution requires a great amount of time, effort and expertise. Since it is a supervised 

training, the medical expert (pathologist in this case) carries out the labeling of each 

structure manually, practically it is a matter of transforming the visual experience and skill 

into computational data with coordinates and pixels that will later enter the CNN. 

Depending on the type of algorithm to be developed, the labeling of structures can be 

carried out with different tools (depending on the software used); for example, specific 

zones contained in geometric figures (circles, squares, rectangles), zones surrounded by 

lines (polygons), or even automatic delimitations that follow the lines between tissue or 

cellular structures (magic wand) (Aubreville et al., 2018). 

Obtaining adequate datasets for DL can become a difficult task for the expert pathologist 

due to the tedious nature of the task (Dimitriou et al., 2019; Irshad et al., 2015). Once the 

ground truth is defined and correctly annotated by the expert pathologist, the data can 

enter to the convolutional neural network to train the final algorithm. Currently, it is difficult 

to establish quality control at this step; however, the most successful way to achieve this 

is to divide the database (slides) into 3 sets: training set, validation set and test set (Abels 

et al., 2019). Once the method is validated, the algorithm is applied to the test set and 

compared with the ground truth, or pathologists' diagnosis. The definition of a gold 

standard for the ground truth is controversial, as the results often fall into the "gold 

standard" paradox (Aeffner et al., 2017), where the algorithm data ends up being more 

reproducible than the human ones. One of the ideal methods to avoid this and evaluate 

the algorithm more accurately would be to compare the algorithm results again with new 

expert opinions and even use other immunomolecular tests such as IHC; however, this is 

not often accomplished. Finally, after evaluation of the accuracy of the algorithm and its 

validation, the reproduction and implementation are ready to be passed on. 
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2. Basic consideration and working hypothesis 

 
The use of ML in DP has proven to have useful applications, such as in mammary 

carcinoma diagnosis and metastasis detection (Araujo et al., 2017; B. Ehteshami Bejnordi 

et al., 2017; Sudharshan et al., 2019), automated mitosis detection (Bertram et al., 2021; 

Bertram et al., 2020; Roux et al., 2013), melanocytic skin tumor classification (Norgan et 

al., 2018), quantitative evaluation of immunostaining (J. X. Liu et al., 2019), round cell 

tumor differentiation (Salvi et al., 2021) and so on. However, to date no algorithm has 

been developed that determines or discriminates tumors of completely different tissue 

origins in H&E-stained WSI. 

Because the skin is one of the most common anatomical sites of neoplasia in dogs and 

canine skin tumors represent the largest number of cases in veterinary pathology 

diagnostic centers (Dorn, 1967; Dorn et al., 1968; Gamlem et al., 2008; Merlo et al., 2008), 

we decided to conduct a study focused on creating an algorithm that would be able to 

automatically classify and identify seven of the most important and common canine tumors 

(Graf et al., 2018; Kok et al., 2019). 

We hypothesis that the training of an artificial neuronal network using an appropriate 

number of well annotated digital images of canine cutaneous tumors will lead to a software 

solution, which identifies and differentiates common canine cutaneous tumor types with a 

similar sensitivity and specificity as a trained pathologist. 
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3. Material and methods 

3.1 Case selection and scanning 

 

Surgical biopsies of seven of the most frequent tumors in dogs were retrospectively 

selected from the histopathology archive of the Institute of Veterinary Pathology of the 

Free University of Berlin. The tumor types were trichoblastoma, squamous cell carcinoma 

(SCC), melanoma, peripheral nerve sheath tumor (PNST), mast cell tumor (MCT), 

plasmacytoma and histiocytoma. First, 50 cases per tumor were chosen with respect to 

typical histological features, state of preservation, sufficient histological perceptibility of 

cellular details and staining quality (H&E, total n=350 cases/slides). All glass slides were 

digitalized to generate WSIs using a linear scanner (ScanScope CS2, Leica) in 1 focal 

plane by default settings and they were scanned at a magnification of 400× (image 

resolution: 0.25 μm/pixel). These WSI entered to our first dataset. 

Additionally, in a similar fashion, we chose another 20 slides per tumor type, which were 

previously diagnosed and reviewed with typical features of each tumor (n=140 

cases/slides) to scan with the same method. These WSI entered to the second dataset. 

 

3.2 Dataset 

 

The first 350 slides were included in Dataset 1, with the aim of including them in training, 

validation and testing (method described below) (Wilm et al., 2022). The following 140 

slides (dataset 2) were included only as a test set for the algorithm and for the “human vs 

machine challenge”. 

 

3.3 Annotations of tissue area and tumors 

 

Annotations were performed in SlideRunner (Aubreville et al., 2018), a software for 

massive annotations in WSI. This software was developed by working group at the FU 

Berlin together with IT-specialists of the Friedrich-Alexander-Universitaet (FAU) Erlangen. 

We completed annotations in the WSIs of the first database (350 WSI/50 per tumor type). 

Annotations were made using the polygon tool, surrounding each area of interest with a 
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thin line, from point to point until it is completely delimited as precisely as possible (Figure 

1). The corresponding class was assigned to each surrounded area by the points of the 

polygon tool. The annotation classes were: epidermis, dermis, subcutis, trichoblastoma, 

melanoma, PNST, SCC, MCT, histiocytoma, plasmacytoma, inflammation/necrosis, bone, 

cartilage. All the tissue structures of the slide were annotated with the aim of training the 

algorithm as accurate as possible. 

A total of thirteen classes were created, focusing on the main histological structures of the 

skin (epidermis, dermis, subcutis), as well as the seven tumor types. In addition, special 

annotations were made for miscellaneous tissues that were not necessarily relevant to 

this study but were found in some cases such as inflammation, necrosis, bone and 

cartilage. Table 1 shows the total number of annotations per class, as well as the total 

surface area in mm2 annotated per class on SlideRunner. 

No annotations were performed in WSI of the second dataset. 
 
Table 1. Total number of annotations created in SlideRunner and the total annotation area for 

each of the classes in mm2. SCC: squamous cell carcinoma; PNST: peripheral nerve sheath 

tumor. 
 

Annotated class Annotations Annotation area (mm2) 

Epidermis 3188 2244.57 

Dermis 3423 16616.21 

Subcutis 2850 7369.88 

Trichoblastoma 423 9072.1 

SCC 337 3542.28 

Melanoma 379 6836.93 

Plasmacytoma 377 4750.34 

Mast Cell Tumor 161 9330.1 

PNST 131 11108.78 

Histiocytoma 369 2947.59 

Bone 51 216.86 

Cartilage 16 32.15 

Inflammation/Necrosis 719 2050.16 

Total of annotations 12424 76118.05 

MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous cell carcinoma. 
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Figure 1. Annotations performed in WSI in SlideRunner with the polygon tool. 

A. Melanoma, skin. Annotations completed in WSI with the polygon tool. Colored lines surround 

the desired structures. 

B. Magnification of the superficial region of the tumor, the division of the epidermis and the tumor 

is observed. 
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C. Magnification of the area between the tumor and subacute inflammation. In the middle of these 

two is the dermis with a normal follicle and collagen. Green: epidermis; yellow: dermis; red: 

inflammation/necrosis; white: melanoma. WSI, HE. 

D. Trichoblastoma, skin. Annotations completed in WSI. The edges of the tumor are delineated 

by a blue line. 

E. Magnification of the region showing annotations made with clear demarcation between the 

tumor and the dermis. 

F. Magnification of the subcutaneous region during annotation of the subcutaneous tissue. Note 

the collagen of the dermis surrounded by a yellow line and the black line shows the unfinished 

annotation process. 

G. Melanoma, skin. Completed annotations in WSI show the tumor surrounded by a black line and 

a central area of necrosis surrounded by a red line. Four additional random regions of necrosis 

within the tumor were also annotated. 

H. Magnification of an annotated necrosis zone next to a tumor region. Note the poor demarcation 

between both tissue types. 

I. Magnification of the superficial zone of the tumor where the difficulty in delineating the dermis 

of the tumor and the epidermis can be observed. The annotations were made as precise as 

possible. 

J. Squamous cell carcinoma (SCC), skin of the paw. Annotations completed in WSI. The tumor is 

shown delineated by an orange line and at the bottom-center of the tumor, a region composed of 

bone, delineated by an olive green line. 

K. Magnification of the transition zone between the epidermis (green line), the SCC and the dermis 

(yellow line). Note the difficulty of this task in attempting to define borders between these three 

histologic structures. 

L. Magnification of the region composed of bone surrounded by the olive green line and its poorly 

demarcated vicinity with the SCC (orange line). 

 

 
3.4 Development of the algorithm, training and testing 

 

Technical method development was conducted at the pattern recognition laboratory of the 

Friedrich-Alexander-University Erlangen-Nürnberg in close collaboration with the medical 

experts at the Freie Universität Berlin (Wilm et al., 2022). 

From the first dataset, the 50 images of each tumor type were divided into 35 training, five 

validation, and 10 test images. For the total dataset, this resulted in 245 training, 35 

validation, and 70 test WSIs. We trained a neural network for the segmentation into six 
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classes: background, tumor, epidermis, dermis, subcutis, and inflammation combined with 

necrosis. For this, we chose a UNet (Ronneberger et al., 2015) architecture with a 

ResNet18 (He et al., 2016) backbone pre-trained on ImageNet (Russakovsky et al., 2015). 

We trained the network with image patches sized 512 x 512 pixels and a resolution of 4.0 

μm/pixel. Due to high class-imbalances, we followed an adaptive sampling strategy. 

Initially, ten patches per slide were sampled uniformly across all annotation classes, 

resulting in 2,450 training patches. These were used to train the network for one epoch. 

Then, the network performance was evaluated on 350 validation patches (10 per WSI) 

sampled in the same fashion. Afterwards, the probability of sampling patches from a class 

with a low validation performance was increased, whilst high-performing classes were 

under-sampled. By using this adaptive sampling scheme, we explicitly trained the model 

on difficult classes, aiming for faster convergence of the model training. We trained the 

model for 100 epochs with a maximal learning rate of 10-4 and a batch size of four. As loss 

function, we used a combination of cross-entropy and dice loss. 

Additionally, we trained a tumor type classification network to distinguish between the 

seven tumors. We used the same dataset split as used for training the segmentation 

network, resulting in 35 training images per subtype. Due to the high morphological 

resemblance of round-cell tumors, which might only be distinguishable at a high image 

resolution, we decided to train the classification network on patches at the original 

resolution of 0.25 μm/pixel. To cover as much context as possible, we increased the patch size 

to 1024 x 1024 pixels. We used an EfficientNet-B5 (Tan & Le, 2019) architecture pre- 

trained on ImageNet (Russakovsky et al., 2015). For each epoch we sampled 10 patches 

per slide, ensuring a uniform sampling across all tumor types. We additionally trained the 

network on a “non-neoplastic” class which was trained on patches from all remaining 

annotation classes (epidermis, dermis, subcutis, and inflammation combined with 

necrosis). A patch was only used for training the classification network if at least 90 % of 

the pixels were annotated as the sampled class. We used a batch size of four and a 

maximal learning rate of 10-3 and trained the network for 100 epochs until convergence. 

For optimization, we used the cross-entropy loss and the Adam optimizer. 
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Figure 2 visualizes the WSI inference pipeline. A slide was first segmented into six classes 

using the segmentation network. Afterwards, regions segmented as tumor were classified 

into one of the seven tumor types. For this, we upscaled the predicted tumor region from 

the segmentation resolution of 4 μm/pixel to the classification resolution of 0.25 μm/pixel. 

Then, we divided the tumor region into patches sized 1024 x 1024 pixels, which were only 

passed on to the classification network if they were completely segmented as tumor. Each 

patch then obtained a classification label and all patches classified as non-neoplastic 

tissue were excluded. All remaining patch classifications were combined to a slide 

classification label using majority voting (Wilm et al., 2022). 

In the same way, the algorithm was run on the second dataset, which did not contain 

annotations, only hidden diagnostic labels for each WSI. 

 
 

 

Figure 2: Cutaneous tumor segmentation and classification pipeline. 



Page 41 of 86 
 

3.5 Human vs machine challenge 

 

In order to compare the results of the algorithm with human intelligence, a challenge was 

carried out, which consisted of providing the second dataset containing 140 WSI (20 per 

tumor type) to 6 experienced board-certified pathologists for their evaluation. Since this is 

a comparative experiment, each participating pathologist was asked to assign each slide 

a main diagnosis and two differential diagnoses. The only condition was that it was not 

possible to assign a percentage less than 1% or greater than 98% to each diagnosis and 

that in total they should result in 100%. The percentage assigned by the pathologists to 

each response or diagnosis was defined as confidence (certainty/sureness). 

In addition, in order to perform a uniform statistical analysis for this experiment, we took 

into account the final classification of the algorithm and from the total patch count, only 

those first three options. Finally, we transformed the count of only the first 3 options into 

100% of the patches. The accuracy of the pathologists and the algorithm were similarly 

evaluated. 

We first defined accuracy as the final diagnosis that was chosen by both the pathologists 

and the algorithm for each slide qualitatively, i.e. regarding the algorithm, the tumor type 

with the highest number of classified patches on a slide was considered as the main 

diagnosis and regarding the pathologists' answers, the tumor type for which the majority 

of pathologists voted was considered as main diagnosis. 

Subsequently, precision (positive predictive value) was defined as the total number of true 

positive percentages assigned over the total of the remaining percentages of their 

differential diagnoses. In the case of the algorithm, it was defined as the total number of 

patches correctly classified over the total number of patches collected. 

Recall (sensitivity) of the pathologist’s answers was defined as the total percentage of 

correctly diagnosed cases over the fraction of true positives and false negatives. In the 

case of the algorithm, it was defined as the total number of patches correctly classified 

over the total number of true positives and false negatives. 

In addition, the average of the percentages assigned by the pathologists for these 

calculations and the average of pathologists who agreed on the diagnoses were collected. 
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The responses of the six pathologists for each slide were averaged and displayed as 

whole numbers or decimals (depending on the result). For example, if on one slide 4/6 

pathologists chose one tumor type and 2/6 chose another type, the final number of 

accuracy would be 4/6; if on the next slide of the same tumor type 5 pathologists chose 

one tumor type and 1 pathologist chose another, the average correct answer would be 

4.5 (sum of 4 + 5 / 2), and so on until completing the 20 slides per tumor type (140 WSI). 
 

Statistical comparison of this section was conducted at the Institute of Veterinary 

Epidemiology and Biometry at the Freie Universität Berlin. 

 

3.6 Immunohistochemistry 

 
In order to reconfirm the most confounding cases in our database (second dataset) and 

determine their individual ground truth, a conventional IHC analysis was performed. The 

following antibodies were used: Melan-A (A103) monoclonal mouse for melanoma (de Wit 

et al., 2004; Ohsie et al., 2008; Ramos-Vara & Miller, 2011) in a 1:300 dilution. CD79acy 

monoclonal mouse anti-human for plasmacytoma (Baer et al., 1989; Ramos-Vara et al., 

2007), in a 1:60 dilution. CK10 (EP1607IHCY) monoclonal rabbit for SCC 

(Assawawongkasem, et al., 2020) in a 1:1000 dilution. E-Cadherin (EP913 (2) y) 

monoclonal rabbit for histiocytoma (Baines et al., 2008) in a 1:1000 dilution. 
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4. Results 

4.1 Dataset 

 

From the first dataset, a total of 350 slides were scanned and fully annotated. In total, 

12,424 annotations were made, with an annotation surface of 76,118.05 mm2 (Table 1, 

Figure 1). Bone and cartilage annotations were excluded in the training due to their low 

diagnostic relevance and their low number of annotations and annotated area in our 

database. Once the model was trained and validated, we first tested it on the test split of 

dataset 1 and evaluated the segmentation output against our ground truth annotations. 

Subsequently, we applied the algorithm to the second dataset (140 WSIs) and compared 

the tumor-type classification performance to the six pathologists. 

 

4.2 Algorithm performance: tissue segmentation 

 

In the first model run in the first dataset, the performance of the algorithm in segmenting 

tumor vs. non-tumor classes was evaluated. Within the non-tumor classes, we only 

considered dermis, epidermis, subcutis and inflammation/necrosis. As mentioned above, 

we excluded bone and cartilage classes in our model because of their negligible 

annotation count and low diagnostic relevance in cutaneous oncologic pathology. The 

precision of the segmentation model was 78%; however, the precision regarding tumor 

segmentation and exclusion of those patches that did not contain tumor (i.e., tumor vs. 

non-tumor) was 95%. Excluding tumor segments, the class with the best accuracy was 

subcutis with 85%, followed by dermis with 84% and epidermis with 79%. The class with 

the lowest precision was inflammation/necrosis, with 46%. The confusion of this last class 

was mainly with the tumor class, which was incorrectly segmented in 26% of the patches. 

False positives were also confused with dermis in 15%, subcutis in 11% and epidermis in 

2%. Similarly, the tumor class was the one with the highest number of false negatives, 

mainly confused with inflammation/necrosis (26%). Confusion between tumor and dermis 

and epidermis was 10% and 12%, respectively. The summary of the segmentation 

confusion matrix is shown in Table 2. The total number of patches that were considered 

as tumor (which had a precision of 95% and recall of 66%, F1-score 78%) entered the 
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classification model. Figure 3 shows some performance examples of the algorithm for the 

segmentation of dataset 1 WSIs. The performance of the algorithm for tumor classification 

is described below. 

 

Table 2. Segmentation confusion matrix.  
 

Prediction 

 
 
 
 
 

Class 

 Dermis Epidermis Subcutis I/N Tumor 

Dermis 0,844 0,080 0,126 0,150 0,033 

Epidermis 0,009 0,789 0,001 0,022 0,001 

Subcutis 0,042 0,005 0,854 0,111 0,006 

I/N 0,004 0,008 0,004 0,456 0,008 

Tumor 0,102 0,117 0,015 0,261 0,952 

Segmentation Precision 0,844 0,789 0,854 0,456 0,952 

Segmentation Recall 0,684 0,960 0,839 0,948 0,658 

F1 Score 0,756 0,866 0,846 0,616 0,778 

I/N: Inflammation and necrosis. 
 
 

 

4.3 Algorithm performance: tumor classification 

 

In our second dataset, we used 140 WSI (20 per tumor type) to test the algorithm only 

regarding its performance by classifying tumor types. The slide-level accuracy (i.e., the 

final class/tumor type that was ranked highest with respect to the total number of patches 

on each WSI) was 95%, i.e. out of 140 slides, 133 slides were correctly classified. The 

patch-level precision (i.e., the correct ranking of the algorithm with respect to the individual 

patches and their summation over all WSIs) of the model was 85%. Table 3a shows an 

accuracy summary of our model at slide level (qualitative and definitive classification per 

WSI). 
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Figure 3. Comparison of the annotations completed in SlideRunner (left side) and the 

performance of the segmentation algorithm on dataset 1 (right side). 

A. Melanoma. Note the area of necrosis (pink) that was automatically segmented by the algorithm. 

Some parts of the dermis were segmented as part of the tumor (orange) due to its unclear division. 

B. Histiocytoma. The algorithm ignored the annotated areas of ulceration. Also, note the efficiency 

in detecting fat within the dermis and its inclusion in the "subcutaneous" class (in red). 

C. MCT with a central area of necrosis. Note the precision of the model in segmenting the zone 

of necrosis almost as the original annotation. Random areas segmented as dermis within the 

tumor are shown (blue). 

D. Trichoblastoma. Excellent segmentation performance, with only some regions within the tumor 

segmented as dermis (blue). 

E. Histiocytoma. Excellent segmentation performance, respecting the areas of ulceration and 

segmented within the "inflammation/necrosis" class (pink). 

F. Squamous cell carcinoma (SCC). Note the difficulty in the demarcation of the tumor and its 

differentiation with the dermis. Regions of dermis within the tumor were segmented randomly; 

however, the tumor was delineated with very favorable performance. 

Orange: tumor; light green: epidermis; blue: dermis; red: subcutaneous; pink: 

inflammation/necrosis. WSI, H&E, panoramic view. 

 

 
Trichoblastoma and PNST were properly classified in all the slides (20/20; slide accuracy 

100%), with a patch-level precision of 94% and 91%, respectively. Melanoma was properly 

classified in 19 slides (95% accuracy) with a precision of 91% and one was misclassified 

as PNST. MCT was properly classified in 19 slides (95% accuracy) with a precision of 

95% and one slide was misclassified as SCC. Histiocytoma was properly classified in 19 

slides (95% accuracy) with 80% of precision and misclassified as plasmacytoma in one 

slide. SCC was properly classified in 18 slides (90% accuracy) with a precision of 70% and 

misclassified as plasmacytoma in 2 slides. Plasmacytoma was properly classified in 18 

slides (90% accuracy), with 75% of precision and misclassified in one slide as melanoma 

and in one slide as SCC. Table 4 shows the confusion matrix of our model. 

Some illustrations of the automatic classification of our model, with their respective normal 

histologic images, can be seen in Figures 4-8. 
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Table 3. Accuracy of the algorithm at the slide level of the 20 WSI/tumor type of our model (a) and 

the consensus of the 6 pathologists (b). MCT: mast cell tumor; PNST: peripheral nerve sheath 

tumor; SCC: squamous cell carcinoma. 

A Prediction 
 
 
 
 

 
Label 

 
 
 
 
 
 
 

Slide-Level Accuracy: 0.95 

B Pathologists consensus 
 
 
 
 

 
Label 

 
 
 
 
 
 
 

Slide-Level Accuracy: 0.98 
 

 

Table 4. Confusion matrix of our model run on the second dataset of 140 WSI at a patch 
level. MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous cell 
carcinoma. 

 

Prediction 
 
 
 
 

 
Label 

 
 
 
 
 

 
Tumor 

Precision 
0,913 0,748 0,954 0,908 0,703 0,936 0,800 

Tumor Recall 0,898 0,791 0,799 0,861 0,846 0,942 0,829 

F1 Score 0,906 0,769 0,870 0,884 0,768 0,939 0,814 

Patch-Level Precision 0.85 

Tumor Melanoma Plasmacytoma MCT PNST SCC Trichoblastoma Histiocytoma 

Melanoma 19 0 0 1 0 0 0 

Plasmacytoma 1 18 0 0 1 0 0 

MCT 0 0 19 0 1 0 0 

PNST 0 0 0 20 0 0 0 

SCC 0 2 0 0 18 0 0 

Trichoblastoma 0 0 0 0 0 20 0 

Histiocytoma 0 1 0 0 0 0 19 

 

Tumor Melanoma Plasmacytoma MCT PNST SCC Trichoblastoma Histiocytoma 

Melanoma 18 0 0 1 1 0 0 

Plasmacytoma 0 19 1 0 0 0 0 

MCT 0 0 20 0 0 0 0 

PNST 0 0 0 20 0 0 0 

SCC 0 0 0 0 20 0 0 

Trichoblastoma 0 0 0 0 0 20 0 

Histiocytoma 0 0 0 0 0 0 20 

 

Tumor Melanoma Plasmacytoma MCT PNST SCC Trichoblastoma Histiocytoma 

Melanoma 0,913 0,019 0,003 0,020 0,037 0,017 0,008 

Plasmacytoma 0,049 0,748 0,013 0,011 0,058 0,013 0,053 

MCT 0,016 0,032 0,954 0,019 0,087 0,002 0,085 

PNST 0,003 0,039 0,010 0,908 0,071 0,006 0,017 

SCC 0,015 0,025 0,009 0,032 0,703 0,020 0,027 

Trichoblastoma 0,003 0,023 0,003 0,005 0,014 0,936 0,010 

Histiocytoma 0,002 0,115 0,007 0,005 0,031 0,005 0,800 
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4.4 Human vs machine challenge 

 

The same slides used in the test set (n=140 slides, 20 per tumor type) were used in human 

vs machine challenge. Qualitatively, the slide level accuracy of the pathologists was 98% 

(137/140), with an average of 5.8/6 correct answers (i.e. average agreement of six 

pathologist on each of the 140 WSIs, table 3b). These results were obtained qualitatively, 

counting only the majority of votes received by the different diagnoses (similar to the final 

decision of the algorithm) and ignoring the rest, regardless of their vote count (1-0). 

However, in order to understand the behavior and compare it with the predictions of the 

algorithm, the accuracy, precision and recall calculations were carried out, as well as the 

F1 score with respect to the percentages given by the pathologists (quantitatively). 

Summary results of the precision (positive predictive value) and recall (sensitivity) of the 

pathologists' answers and of our model's classification are shown in Table 5. The 

comparison of both classifications (diagnostic) with the balanced values (F1 score) is 

shown in Table 6. 

Statistical analysis of this section was conducted at the Institute of Veterinary 

Epidemiology and Biometry at the Freie Universität Berlin. 

Trichoblastoma, PNST, SCC, MCT and histiocytoma were properly diagnosed in all slides 

with an accuracy of 99%, 100% 100%, 98% and 90%, respectively. Melanoma was 

misdiagnosed in 2 cases, in the slide number 98 as PNST with an average of 4/6 votes in 

favor of this tumor on all slides of this group and in the slide number 119 as SCC again 

with an average of 4/6 votes in favor of this tumor on all slides of this group. IHC test of 

the slides number 98 against Melan-A was strongly positive (Figure 6c); in the 119 was 

slightly positive, but the IHC against CK10 was negative. Plasmacytoma was 

misdiagnosed as MCT in the slide 35 with 3/6 votes for this tumor type of this group. This 

case had a strong positivity in IHC for antibodies against CD79. 
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4.4 Results by tumor type 

 

The results of the algorithm and the pathologists grouped by tumor type are described 

below: 

 

4.4.1 Trichoblastoma 

 
 
All slides were successfully classified as trichoblastoma (100% accuracy), with a precision 

and recall of 94% each. Algorithm confusion occurred mostly with SCC and melanoma, 

with 2% and 1.7% respectively (false positives recovered). The model ignored false 

negatives that mainly classified as plasmacytoma in 2.3% of the patches and again with 

SCC in 1.4% (false negatives). 

The six pathologists (6/6) primarily diagnosed all slides as trichoblastoma with a 

confidence of 97% (considering that this number was the maximum they could reach, as 

if it was 100% confidence). This shows the most homogenous results. As the second 

(differential) diagnosis, SCC was the most voted in all slides, with an average of 4/6 votes, 

with a confidence of 1%. Melanoma was the third diagnosis assigned by the majority of 

pathologists in the slides, with an average of 3.5/6 votes and a confidence of 1%. This 

means that from the options provided to the 6 pathologists, the majority considered the 

most likely differential diagnosis of trichoblastoma to be SCC and Melanoma as third 

option. 

 

4.4.2 PNST 

 
 
All slides were correctly classified as PNST (100% accuracy), with a precision of 91% and 

a recall of 86% (F1=88%). Confusion of predicted patches occurred in 3.2% with SCC and 

2.0% with melanoma (false positives). Patches ignored by the algorithm that were 

classified as (false) negative, were classified as SCC (7%) and plasmacytoma (4%). 

The six pathologists primarily diagnosed all slides as PNST, with a confidence of 96%. 

This shows the second most homogenous results. As the second diagnosis (differential), 

melanoma was the most frequently mentioned by pathologists (5.3/6 votes in average), 

with a confidence of 2%. As the third diagnosis, SCC was the most voted diagnosis in the 
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majority of slides (16/20), with an average of votes of 3.2/6. Trichoblastoma was the most 

voted in the remaining slides (4/20), with an average of 2.5/6 votes and a confidence of 

1%. This means that from the options provided to pathologists, the most likely differential 

diagnosis of PNST is melanoma and SCC as a third differential diagnosis. 

 

4.4.3 Melanoma 

 
 
The model appropriately classified 95% of the slides (19/20) and one of them was 

misclassified as PNST. The precision of this group was 91% with a recall of 90% 

(F1=91%), as it falsely recognized 5% of the patches as plasmacytoma, 2% as MCT and 

1.5% as SCC. Likewise, the remaining patches were ignored as melanoma and identified 

as SCC in 4% and as PNST, plasmacytoma and trichoblastoma in 2% (false negatives). 

The six pathologists diagnosed 18/20 slides as melanoma, with a confidence of 96%. In 

one slide, 4/6 votes of the pathologists was PNST as the primary diagnosis, with a 

confidence of 97%. The IHC of this case was positive for antibodies against Melan-A (A- 

103, figure 7C), so the confirmatory diagnosis is melanoma. Furthermore, from this slide 

4/6 votes were for melanoma as the second diagnosis. In one slide, 4/6 votes were for 

SCC as the primary diagnosis, with a confidence of 91%. The IHC of this case was slightly 

positive for Melan-A and negative for CK10, so the confirmatory diagnosis is Melanoma. 

From this slide, the most voted second diagnosis was plasmacytoma. From this group, 

the most voted secondary (differential) diagnosis was PNST (4.4/6 votes) with a 

confidence average of 2% and the most voted third diagnosis was trichoblastoma (3.6/6 

votes), with a confidence of 1%. This means that from the options provided, 4.4/6 votes 

of the pathologists agreed that the most likely differential diagnosis of melanoma is PNST, 

and 3.6/6 votes of the pathologists agreed that the third is trichoblastoma. 

 

4.4.4 MCT 

 
 

Similar to the previous one, 95% of the slides were correctly classified as MCT (19/20) 

and the remaining slide was incorrectly classified as SCC. The precision of this group of 

slides with respect to the total count of the recovered patches was 95%, resulting in a 

recall of 80% (F1=87%). False positives of 2% of the patches were equivocal for 
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plasmacytoma and PNST (1% each). Patches ignored as MCT were reported as SCC and 

histiocytoma (9% each), followed by plasmacytoma (3%). 

All slides were primarily diagnosed as MCT by (5.85/6 votes by the pathologists), with a 

confidence of 93%. Regarding this group, the second differential diagnosis was 

histiocytoma in 11/20 slides, with an average of 4.5/6 of votes and with a confidence of 

5%. The third differential diagnosis was plasmacytoma on 11/20 slides, with a votes 

average of 4.5/6 and a confidence of 1%. This means that of the options provided, 4.5/6 

votes agreed that the most likely differential diagnosis of MCT is histiocytoma and the third 

is plasmacytoma. 

 

4.4.5 Histiocytoma 

 
 
Out of the 20 slides, 19 were successfully classified (95% accuracy) and one was 

incorrectly classified as plasmacytoma. The precision was 80% with a recall of 81% 

(F1=81%). Confusion of the total number of patches that were erroneously classified as 

histiocytoma occurred mainly within MCT (8%) and plasmacytoma (5%) and among the 

ignored histiocytoma patches mainly within plasmacytoma (12%) and SCC (3%). The 

residual false negatives were less than 1% per remaining tumor. 

All slides were primarily diagnosed as histiocytoma with 5.3/6 votes in average and with 

a confidence of 87%. From this group, the second diagnosis assigned by the pathologists 

(4.4/6 votes) was MCT, with a confidence of 1%; the second most voted was 

plasmacytoma for this category. The third diagnosis mentioned by pathologists (4.2/6 

votes) was plasmacytoma, with a confidence of 2%; the second most voted in this 

category was MCT. This means that from the options provided, 4.4/6 votes agreed that 

the most likely differential diagnosis of histiocytoma is MCT and the third is plasmacytoma. 

 

 
4.4.6 SCC 

 
 

Within the 20 slides labeled as SCC, 18 were correctly classified (90% accuracy) and 2 

slides (10%) were misclassified as plasmacytoma. The precision was 70% and recall was 
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85% (F1=77%). Matrix confusion shows that false positives were mainly classified within 

MCT (9%), PNST (7%) and plasmacytoma (6%), and that patches ignored as SCC were 

classified as PNST and histiocytoma in 3%, respectively. Confusion of patches that were 

ignored as SCC and classified as plasmacytoma was slightly more than 2%. 

The six pathologists primarily diagnosed all slides as SCC (6/6), with a confidence of 95%. 

This shows the third most homogenous results. Trichoblastoma was the most voted 

secondary diagnosis in 19 of 20 slides, with an average of 5/6 of votes and a confidence 

of 3%. Melanoma was the most voted tertiary diagnosis in 19/20 slides, with an average 

of 4.3/6 votes and a confidence of 1%. This means that, from the options provided to 

pathologists, trichoblastoma is the main differential diagnosis of SCC and melanoma the 

third differential diagnosis. 

 

4.4.7 Plasmacytoma 

 
 
As in the previous case, 18 slides were correctly classified as plasmacytoma (90% 

accuracy). Of the remainder, one slide was incorrectly classified as melanoma and the 

other as SCC. This tumor type obtained a precision of 75% with respect to the total number 

of classified patches, with a recall of 80% (F1=77%). Of the remaining patches incorrectly 

classified as plasmacytoma (false positives), there was confusion mainly with 

histiocytoma in more than 10% of the patches, as well as PNST (4%) and MCT (3%). Of 

the retrieved patches that were ignored as plasmacytoma (false negatives), they were 

mainly classified as SCC (6%), histiocytoma and melanoma (5% each). 

All pathologists correctly diagnosed 19/20 slides as plasmacytoma (5.7/6 votes in 

average), with a confidence of 82%. In one slide, 3/6 votes were for MCT as the primary 

diagnosis, with a confidence of 83%. From this slide, 3/6 votes were for plasmacytoma as 

second diagnosis, with a confidence of 26%. As differential (secondary) diagnosis, 

histiocytoma was the most voted tumor in 13 slides (3.6/5 votes of the pathologists in 

average, confidence of 15%), followed by MCT in 6 slides (3/6 votes in average, 

confidence of 21%). Finally, as a tertiary diagnosis, the most voted tumor was MCT on 15 

slides (3.7/6 votes in average, confidence of 5%). From this group it can be said that from 

the choices given to the pathologists, the majority agree that the differential (secondary) 
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diagnosis of plasmacytoma is histiocytoma, followed by MCT in the third differential 

diagnosis. 

Table 5. Recall (sensitivity) and precision (positive predictive value) of pathologists' diagnoses and 

algorithm classification in dataset 2. 
 

 
 

Tumor 

Recall 
Pathologist consensus 

Recall 
Algorithm 

Median Min Max Estimate 

Histiocytoma 0.925 0.750 1.000 0.800 

MCT 0.975 0.950 1.000 0.900 

Melanoma 0.950 0.900 0.950 0.950 

Plasmacytoma 0.775 0.700 0.950 0.950 

PNST 1.000 1.000 1.000 1.000 

SCC 1.000 1.000 1.000 0.950 

Trichoblastoma 1.000 0.950 1.000 1.000 

 
 

Tumor 

Precision 
Pathologist consensus 

Precision 
Algorithm 

Median Min Max Estimate 

Histiocytoma 0.848 0.800 0.900 1.000 

MCT 0.930 0.864 0.952 1.000 

Melanoma 1.000 0.900 1.000 1.000 

Plasmacytoma 0.944 0.762 1.000 0.760 

PNST 0.952 0.952 1.000 0.952 

SCC 0.952 0.952 1.000 0.950 

Trichoblastoma 1.000 1.000 1.000 0.952 

MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous cell carcinoma. 

 

 
Table 6. Comparison of the combination of recall and precision (F1 score) with respect to the individual 

pathologists' diagnosis (first column), the pathologists' consensus (column two) and the algorithm 

classification (column 3). 
 

 
Tumor 

Pathologists single 

median (min- max) 

Algorithm 

Histiocytoma 0.897 (0.789-0.976) 0.889 
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MCT 0.950 (0.905-0.976) 0.947 

Melanoma 0.974 (0.900-0.974) 0.974 

Plasmacytoma 0.828 (0.780-0.950) 0.844 

PNST 0.976 (0.976-1.000) 0.975 

SCC 0.976 (0.976-1.000) 0.950 

Trichoblastoma 1.000 (0.974-1.000) 0.975 
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5. Discussion 

5.1 Algorithm performance 

 

A reliable automated diagnostic work-up for seven of the most important/common canine 

skin tumors is shown in this study. This algorithm was developed with complete annotations 

on 350 WSI. Although we focused our annotations on all seven tumor types, we also created 

annotations for normal skin structures (Table 1). The major sub- compartments annotated 

in the skin were dermis, epidermis and subcutis (subcutaneous fatty tissue and muscle). 

Likewise, we created classes for tissue types that are not part of the skin per se, but were 

present in some cases such as ear cartilage, bone in the paws (mainly melanoma and 

SCC) (Marinoet al., 1995) or inflammation and necrosis as a secondary response to tumor 

growth. Artifacts were ignored and excluded in all slides. 

In many cases, the stroma was present in high amounts (e.g. PNST or trichoblastoma), so 

the stroma was annotated as part of the tumor. In tumors where it was difficult to distinguish 

the exact borders (e.g. in round cell tumors or SCC), the borders were defined as the region 

where normal tissue began/ended (Figure 1J-L). In order to obtain accurate results, the 

annotations were systematically made with the polygon tool (Figure 1) (Aubreville et al., 

2018). We performed the skin annotations starting from the external surface (epidermis) 

towards the deep surface (subcutaneous), usually from left to right (Figure 1F), similar to 

the system described by Lindman et al. (Lindman et al., 2019) The delineation between the 

epidermis and the rest of the tissues was the simplest but still time-consuming, due to de 

great amount of it in most of the slides (Table 1, Figure 1D-E). The separation of the tumor 

and dermis was the most laborious and time-consuming because all tumors had at least a 

small dermal involvement and because we wanted to avoid overlapping annotations on the 

entire slide. In those slides where the tumors were easier to delineate, we annotated the 

dermis after epidermis; in those where there was no clear division between dermis-tumor-

subcutis, we annotated the tumor after the epidermis and the rest after. No annotation was 

overlapped. 
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Specifically, in SCC, tumor delineation was complicated by the high frequency of 

inflammation (Figure 1J-L), desmoplasia and necrosis. Inflammation in SCC is one of the 

most notorious and common features observed although the role of its presence is 

controversial (Cerezo-Echevarria et al., 2020; Santana et al 2016). Santana et al 

demonstrated that the presence of inflammation in SCC, regardless of the degree of 

differentiation, is common and is usually characterized by macrophages, lymphocytes and 

plasma cells (Santana et al., 2016). For this reason, and due to its high difficulty during 

tumor delineation, we decided to include subacute-chronic inflammation secondary to the 

tumor in most cases. Acute inflammation (mostly necrotic and neutrophilic) was annotated 

as part of the inflammation/necrosis class only in those cases where there was ulceration or 

external inflammation; when the inflammation involved inner tumoral structures, it was 

annotated as part of the tumor (Figures 1A-C, 1G-L). Our results showed that within the 

CNN during testing, the algorithm was able to correctly diagnose 90% of the SCC slides; 

however, confusion with plasmacytoma resulted in 10% of the slides labeled as SCC 

(Figure 5). Likewise, in the slides labeled as MCT and plasmacytoma, the reverse occurred, 

as 5% of the slides of these tumors were incorrectly classified as SCC (Figure 7). We 

speculate that the confusion of patches within our database in this group was a 

consequence of the complexity of the tumor (high frequency of subacute-chronic 

inflammation among neoplastic groups of cells), as well as the objectivity of the algorithm. 

The evaluated patches demonstrate that the algorithm had the greatest difficulty of 

classification in those areas with the highest number of inflammatory cells (Figure 5) and 

classified them with respect to most of the cells present (plasma cells, histiocytes or 

lymphocytes). It could be that in some patches, the differentiation between round cells 

caused conflicts because although no or only few mast cells were observed as part of the 

inflammation, the algorithm decided to classify some patches as MCT. In the case that was 

misclassified as plasmacytoma, there was a large amount of inflammation and little 

squamous cell tumor density. We believe this is justified during the annotation process. 

Nevertheless, our data are of high relevance since to date, no algorithm has been 

developed that has achieved this using H&E-stained WSI in cutaneous SCC. 
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Following the issue of inflammation and necrosis, as mentioned above, in addition to the 

normal skin structures and the seven tumor types, we decided to create an annotation class 

for inflammation and necrosis in order to achieve a more adequate segmentation during 

the testing of the algorithm. In total, 719 inflammation/necrosis annotations were achieved, 

with an area of 2050.16 mm2 (Table 1) and successful segmentation (Figure 3). Although it 

was not our goal to determine and quantify necrosis within tumors, this is an important 

finding in the diagnostic and prognostic understanding of specific situations. The importance 

of necrosis within tumors has been proven (Hanahan & Weinberg, 2011), as determining 

its presence and extent can provide useful information for the diagnosis and prognosis of 

some tumors such as soft tissue sarcomas, like PNST (Kuntz et al., 1997) and melanoma 

(Smith et al., 2002). In these two tumors in our database, the delineation of necrosis was 

laborious because it was randomly distributed inside and outside the tumor (Figure 1A-C, 

1G-H); however, segmentation was successfully achieved and the necrotic regions were 

excluded before classifying the tumor  type by the algorithm (Table 2, Figure 3). A good 

performance of ML and DL in DP has been reported during the evaluation of tumor-related 

necrosis mainly in osteosarcoma (Arunachalam et al., 2019; Fu et al., 2020; Ho et al., 

2020), due to its great usefulness during patient assessment in human chemotherapy 

(Kang et al., 2017). Likewise, Arunachalam et al. (Arunachalam et al., 2019) described a 

reliable model for identification and quantification of necrosis within osteosarcoma with 

potential for use in other tumor types. In the same way, we believe that our method and 

model could be implemented in veterinary pathology in tumors of dogs and most probably 

other species. 

Our model classified all trichoblastoma slides correctly, with excellent performance as its 

precision and recall were 94% each (F1=94%). These results are the highest and most 

homogeneous of the seven tumors we included in our database, training and testing. As 

mentioned above, the annotations of this tumor were the most easily made because of its 

clear demarcation from the rest of the normal histologic structures of the skin and because it 

does not tend to be contiguous with the epidermis (Figure 1D-E). We suspect that these 

characteristics, in addition to the tissue morphology of this neoplasm, were fundamental 

factors for the excellent performance of our model. Trichoblastoma is the most common 

cutaneous follicular tumor in dogs (Abramo et al., 1999; Goldschmidt et al., 2018; 
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Goldschmidt, 1998) and its histologic features differentiate it from most cutaneous tumors 

and tumor-like lesions (Abramo et al., 1999; Goldschmidt et al., 2018; Goldschmidt, 1998; 

Wiener, 2021). Despite its different histologic subtypes (ribbon, medusoid, trabecular, 

granular, and fusiform), its histologic features are unique in our database. This probably 

also explains the efficiency of our model. It would be interesting in future research to test 

whether a differentiation between trichoblastoma and its differential diagnoses 

(trichoepithelioma, tricholemmoma, basal cell carcinoma, etc.) can be created through ML 

and DL in WSI. Following the previous line of discussion, within the confusion matrix it can 

be determined that the algorithm had a slight difficulty in differentiating it with SCC, as 2% 

of the evaluated patches of this group were classified as such (Table 4). This finding is 

interesting as it means that the algorithm was able to identify similarities between tumors 

of follicular origin. This is the first study in veterinary medicine to include trichoblastoma 

within a CNN training in WSI of canine tumors. 

All slides labeled as PNST were correctly classified (100% accuracy), with a precision of 

91% and a recall of 86% (F1=88%). Of the total number of patches recovered during the 

test in this group of tumors, 3% were classified as SCC and 2% as melanoma; likewise, 

the tumor with the highest number of false negatives was SCC (Table 4). Previously we 

discussed one of the main characteristics of SCC that caused confusion in our model, such 

as inflammation and necrosis; however, within its histological features, the high 

desmoplastic activity is well known (Goldschmidt et al., 2018; Goldschmidt, 1998; Zainab 

et al., 2019) which, as in inflammation, the relevance of its presentation is not yet fully 

elucidated and is still under discussion (Zainab et al., 2019). 

Likewise, one of the main components of PNST (and soft tissue sarcomas) in dogs is the 

presence of variable amounts of fibrovascular stroma (Dennis et al., 2011; Hendrick, 1998), 

very similar to that present in SCC. In reviewing the patches, we found that our model had 

difficulty differentiating between the two tumor types in a few of them. Since stroma is a 

secondary reaction to the presence of both tumors, we determined that it is very important 

to include any type of stroma within the annotations of tumors with such ability, because at 

the end of the day, the difficulties in its classification were not relevant for the correct 

classification and excellent performance of our algorithm. Our method of annotation and 

training resembles that of Foersch et al, who developed an algorithm for the identification 
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and differentiation of soft tissue sarcomas in humans with a high accuracy, similar to ours 

(Foersch et al., 2021). Although we did not replicate the previously mentioned method, we 

can conclude that in the same way, our model can assist pathologists, shorten diagnostic 

intervals and increase their accuracy and confidence, regardless of the degree of expertise. 

Although there are studies of AI in soft tissue sarcomas in dogs (mainly in diagnostic imaging 

such as tomography) (Ye et al., 2021), at present date its application in WSI has been 

scarcely investigated. This is one of the first studies to include and investigate the 

performance of AI in a type of soft tissue sarcoma in dogs with complete annotation in WSI. 

The cellular characteristics and their relevance within ML and DL in WSI will be addressed 

in the next paragraph. 

The performance of our model during the classification of the slides labeled as melanoma 

reached 95% accuracy (19/20), with a precision of 91% and a recall of 90% (F1=90%). In 

fact, this number is surprising since it was hypothesized that this tumor would cause 

problems during testing due to its complexity and variability in pigmentation and histological 

patterns and cell forms (pleomorphism), to such an extent that even for pathologists its 

correct diagnosis can be challenging without using special tests (for example IHC) 

(Goldschmidt, 1998; Smedley et al., 2011). Most likely, we believe the amount of pigment 

greatly facilitated its classification, since from the slides we chose, 45% were heavily 

pigmented melanomas, 35% had less than 50% pigment and 20% were amelanotic 

melanomas. One of these slides was incorrectly classified as PNST (Figure 6). This case 

is very particular and interesting within our database, since very similar results occurred in 

the human vs. machine challenge. The aforementioned slide corresponds to a melanoma 

whose histological characteristics contained a large number of spindle cells and little 

melanin pigment (amelanotic spindle cell melanoma). As expected, the algorithm had great 

difficulty classifying this case and the performance was not as precise as it determined that 

44% of the patches corresponded to PNST, 35% to trichoblastoma, and only 13% to 

melanoma. Spindle melanomas are among the different subtypes that have been 

recognized (along with epithelioid melanoma), with absent or present pigment (Smedley et 

al., 2011). These melanomas are arranged in streams and interweaving bundles, very 

similar to soft tissue sarcomas (PNST or fibrosarcoma) but with nuclear pleomorphism and 

karyomegaly, so those amelanotic spindle melanomas are often a diagnostic challenge 
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without the utilization of specific tests such as IHC (Goldschmidt, 1998; Ramos-Vara & 

Miller, 2011; Smedley et al., 2011). Outside this specific case, our algorithm had an 

accuracy similar to that of the 6 pathologists who evaluated the same cases, so once again 

the model we developed has great diagnostic utility and could even be established as an 

additional tool to software-assisted decision making in diagnostic and research laboratories 

in veterinary pathology. It is worth mentioning that the usefulness of the development of 

CNN in DP for the diagnosis of melanoma has already been proven on several occasions 

(Norgan et al., 2018; Wang et al., 2020); however, in veterinary pathology it is still a little 

explored area. 

It would be worthwhile to investigate in depth its vast possibilities and future applications. 

 
5.2 Algorithm performance: round cell tumors 

 

For the round cell tumors included in our database, histiocytoma and MCT had a very 

good classification accuracy of 95% (19/20) each and plasmacytoma 90% (18/20). 

Although MCT and histiocytoma had the same number of correctly classified slides, the 

precision of the individual patches was different, with MCT having an excellent precision 

(95%) and histiocytoma a good precision (80%). However, the recall of both and 

plasmacytoma was similar (MCT=80%, histiocytoma=83%, plasmacytoma=80%). 

Likewise, the recall of these three tumors was the lowest in our results (less than 85%). 

This means that out of the seven tumors, our model showed greater difficulties in 

collecting the positive patches compared to the rest of the tumors, which obtained a recall 

rate equal to or greater than 85%. We acknowledge that there is considerable discussion 

among researchers concerning the facility for a pathologist to differentiate round cell 

tumors from each other, which in addition to those we investigated, cutaneous lymphoma, 

amelanotic melanoma, neuroendocrine tumors and transmissible venereal tumor (TVT) 

are mentioned (Cangul, 2001; Meuten, 2016). It is also well known that due to their similar 

cellular appearance and tissue arrangement, it is a great challenge for pathologists to 

differentiate them without the utilization of special stains or complementary tests such as 

IHC, especially in poorly differentiated tumors (Sandusky et al., 1987). 

Among these three tumors, plasmacytoma has a special complexity. In most of the 
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plasmocytomas, regardless of the degree of differentiation, it is common to observe 

atypical morphologic configurations like binucleations, multinucleations, variable amount 

of amyloid, nuclear atypia and cellular pleomorphism (Baer et al., 1989; Banerjee et al., 

2004). Likewise, the cellular arrangement, which is usually sheet-like, atypical 

presentations in the form of pseudoglandules have been reported (McHale et al., 2018). 

We believe that the previously mentioned features mainly influenced the results of our 

model, as this was the tumor with the lowest precision and recall (F1=77%). Although this 

tumor typically offers no diagnostic challenge for the pathologist, some subsets of it might 

cause difficulties in differentiating it from other neoplasms such as amelanotic melanoma. 

Although little research has been done on DL and CP with a focus on round cell tumors in 

canines, Salvi et al. developed an algorithm very similar to the one we describe with 

images collected from WSI (Salvi et al., 2021). However, comparing their results with ours, 

and since they were very similar, we can conclude that our algorithm may be reproducible 

and of high benefit in decreasing error rates during round cell diagnosis, not only in dogs 

but also in other species. Likewise, although our intention was not to stage MCT in their 

grades of malignancy as Salvi et al. did, we do not exclude the possibility that in future 

research, an algorithm for the automated diagnosis of canine cutaneous tumors can be 

created that can also achieve a correct staging of malignancy. Our findings are of vital 

importance, since a correct diagnosis of round cell tumors in dogs is important to 

determine the prognosis and treatment of patients and this model could potentially be 

implemented as a diagnostic support tool for the daily workflow in pathology laboratories 

with equally efficient results but in less time and with lower cost than immunomolecular 

tests. 

Salvi et al. encountered similar difficulties in developing an algorithm for automated 

detection of round cell tumors. They concluded that the amount of inflammatory cells 

present in certain tumors (e.g. histiocytoma or SCC) might influence the decisions made 

by the algorithm (Salvi et al., 2021). In the same way, our results can be compared with 

those mentioned above, as with respect to our results, we believe that it is indispensable 

to take these features into account in future attempts to improve the automated 

classification of round cell tumors in dogs. 

A well-illustrated example of the distribution of patches in a WSI during the algorithm 
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classification is shown in Figure 8, where the histiocytoma was incorrectly classified as a 

plasmacytoma. Another interesting finding in our model is the automatic identification of 

the epidermal reaction secondary to tumor growth in some patches and its classification 

as SCC (Figure 4). 

 
 

Figure 4. Histiocytoma. Automatic classification algorithm in WSI (normal histology on the 

lower left). Note that most of the patches chosen by the algorithm that were correctly 

classified as histiocytoma are situated in the central and lower region of the tumor (blue 

patches) and in the upper region, close to the epidermis, most of the patches were 

classified as SCC (red patches). Of the total number of patches in this WSI (n=495), 66% 

were correctly classified as histiocytoma and 22% as SCC. Additionally, 7% of the patches 

were classified as plasmacytoma, also distributed on the superficial surface of the tumor. 

On the upper right is a magnification of a region that was classified as SCC; the epidermis 

is identified with an irregular, pseudocarcinomatous acanthosis, subacute inflammation 

and neoplastic cells. 

WSI, H&E. MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous 

cell carcinoma. 



Page 63 of 86 
 

 

Figure 5. SCC misclassified as plasmacytoma. Out of the total number of patches 

recovered during segmentation (n=204), 51% were classified as plasmacytoma (green 

patches) and 21% as SCC (red patches). In the left magnification, a transition zone is 

observed; note that the neoplastic epithelial cell clusters (red) are properly classified and 

the patches from that region arranged in the periphery correspond to subacute 

inflammation which was classified as plasmacytoma (green) and histiocytoma (blue). In the 

same way, in the magnification on the right side, the neoplastic groups in red (SCC) and in 

the area with predominant inflammation classified as plasmacytoma and 1 patch as 

histiocytoma. 

WSI, H&E. MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous 

cell carcinoma. 

 
 

5.3 Comparison of algorithm performance against human performance 

 

In order to validate the results of the algorithm and compare its results with the expertise 

of the pathologists, a human vs. machine challenge was performed in which 6 experienced 

and board-certified pathologists were provided with the same 140 slides used in the test 

set of the algorithm. The qualitatively accuracy of the pathologists by diagnosing the slides 

was 98%, i.e. of the total number of slides (n=140), 137 were correctly diagnosed. The 

group of slides where misclassification or mismatch was observed was in the slides 

labeled as melanoma (2/20) and plasmacytoma (1/20). 
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Regarding slide 98, whose diagnosis corresponds to melanoma, in the same way as the 

algorithm, 4/6 pathologists diagnosed it as PNST and 2/6 correctly as melanoma. This 

case was previously discussed. However, it is very interesting that the algorithm behaved 

similarly to the majority of pathologists (Table 6). It is worth remembering that in this 

experiment, the pathologists were provided only with WSIs without the possibility of 

performing special stains or complementary tests (e.g., IHC), so they had to depend on 

their first guess (visual skills). In addition, the difficulty that can arise when diagnosing 

melanomas with H&E alone, especially in poorly pigmented tumors, has been described 

on numerous occasions (de Wit et al., 2004; Jungbluth, 2008; Koenig et al., 2001; Ohsie 

et al., 2008), and therefore other tools are usually necessary. As already mentioned, this 

case represented a melanoma with a predominance of spindle cells and scarce amount of 

pigment with strong positivity in IHC against Melan-A antibodies (Figure 6). With respect to 

the majority vote and the algorithm decision, we could conclude that our results serve as a 

basis for determining the inclusion of AI to support pathologists in the routine workflow. 

This provides a good starting point for discussion and further research. We believe that 

future research should be devoted to the development of algorithms that can reach the 

value of a molecular complementary test. 

The other case in the melanoma group that was incorrectly diagnosed by the majority of 

pathologists (4/6, precision 91%) was diagnosed as SCC. Two of the six pathologists 

correctly diagnosed this case. This case corresponds to an amelanotic melanoma 

composed of mostly epithelioid cells and with clustered and nested arrangement, as 

described in the literature (Goldschmidt, 1985; Smith et al., 2002). The behavior of the 

algorithm was distinctive, since out of the 100% of the patches evaluated by the algorithm, 

50% of them were correctly classified as melanoma, obtaining the majority of the votes, 

followed by trichoblastoma (26%) and SCC (18%). Although the algorithm classified it 

correctly, the tumors in our database with which it found the most confusion were 

trichoblastoma and SCC, similar to the pathologists. This can only be explained by taking 

into account that the pathologists performed the diagnosis at a slide level, while the 

algorithm performed it at a patch level, so the pathologists' diagnostic confidence, without 

complementary diagnosis techniques has to be arbitrary while the algorithm's decision- 

making is more accountable (honest?) (Graphic 1). 
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Graph 1. A. Distribution of algorithm classification regarding the tumor type. B. Distribution 

of pathologists' consensus with respect to definitive diagnosis. Each point represents a 

WSI that was grouped into a class with its precision of occurrence. n=140. SCC: squamous 

cell carcinoma; MCT: mast cell tumor; PNST: peripheral nerve sheath tumor. 

 

 
Another explanation is that diagnosis among different pathologists may become 

subjective and subject to considerable inter-observer variability (Bueno-de-Mesquita et 

al., 2010; Orlando et al., 2016; Schnitt, 2001). However, in recent studies, Bertram et al. 

developed an algorithm to support the detection of mitoses in WSIs of canine MCT by 

comparing it with the visual identification of board certified pathologists, demonstrating 

that the assistance of algorithms in routine diagnosis is of high utility when there is high 

inter-observer variability (Bertram et al., 2021; Bertram et al., 2020). Likewise, we propose 

that our model can be implemented as part of a tool to support pathologists in daily 

workflow, especially in dermatologic oncology. 

In the last slide where there was an incorrect diagnosis, which was a plasmacytoma 

(CD79 positive) (Ramos-Vara et al., 2007), 3/6 pathologists diagnosed it as MCT. 

However, the average confidence with which the diagnosis was made was 83% and as a 

differential diagnosis 3/6 pathologists considered plasmacytoma with an average 

confidence rate of 26%. Alike, our model misclassified this case, as of the total number of 

patches recovered, 44% were recognized as SCC, 17% as melanoma and 12% as 
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histiocytoma. Plasmacytoma obtained only 8% precision (Figure 7). We previously 

discussed the frequent difficulty encountered during the diagnosis of round cells, 

especially when the degree of differentiation is very low. By comparing the results of Salvi 

et al. and their algorithm for the automated detection of round cell tumors (Salvi et al., 

2021), we consider that in the same way our model could increase the efficiency of 

pathological diagnosis, as well as serve as a second opinion tool for pathologists. 

Furthermore, this study is a milestone for automated classification of round cell tumors in 

WSIs using CNN. 

Tables 5-6 show a summary comparison of the combination of pathologists' precision, 

recall and F1 score with respect to those of our model and in the graphic 2 an visual 

overview of recall, precision and F1 score of both, the algorithm and the pathologists 

consensus. It is important to note that the behavior of our model is very similar to that of 

the pathologists only when individual values are considered; we believe this is due to 

frequent inter-observer variability. However, when compared to the pathologists' 

consensus, the precision and recall clearly increases. The graphic 1, nevertheless, shows 

the simplicity with which each pathologist diagnosed the 140 slides compared to the 

different possibilities that the algorithm defined for each slide (slide level vs patch level). 

This is clearly a consequence of the fashion of human reasoning versus the prediction of 

an AI algorithm, since it can be said that the pathologists determined their diagnosis at a 

slide level, considering general and particular, tissue and cellular features as a whole to 

determine the ultimate decision, with respect to their expertise. On the other hand, the 

algorithm segmented the slide, determined the tumor area and divided it into hundreds of 

patches, analyzing it in detail one by one and determining an absolute decision for each 

of them (Graphic 1). Let us remember that in the end, the class (type of tumor) that is 

counted with the highest number determines the final decision of the algorithm. Since the 

sensitivity and positive predictive value behaved similarly to that of the six pathologists, 

we can conclude that our model could function as a diagnostic support tool in a similar 

way to that which could support other types of tests, molecular for example.  

Nevertheless, this assumption might be addressed in future studies. 
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Figure 6. Amelanotic melanoma incorrectly classified as PNST. A. Out of the total number of patches 

(n=1976), 44% were classified as PNST (blue), 35% as trichoblastoma (purple) and a mere 13% as 

melanoma (orange). B. Magnification of a transitional region between patches classified as melanoma (right 

side) with a predominance of subepidermic epithelioid cell nests and patches classified as PNST (left side) 

with a predominance of spindle cells. WSI, H&E. C. Melan-A IHC with strong cytoplasmic positivity. MCT: 

mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous cell carcinoma. 

 

 

Figure 7. Plasmacytoma misclassified as SCC. A. Out of the total number of patches recovered during 

segmentation, 44% were classified as SCC (red), 12% as histiocytoma and only 8% as plasmacytoma. B. 

Magnification of a region classified as plasmacytoma (green) with a predominance of neoplastic plasma 

cells. C. Patch classified as SCC with low density of neoplastic cells and high density of stroma. WSI, H&E. 

MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous cell carcinoma. 
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Figure 8. Histiocytoma misclassified as plasmacytoma. A. Out of the total number of patches retrieved 

during segmentation (n=897), 64% were classified as plasmacytoma (green) and 32% as histiocytoma. Note the 

distribution of correctly classified patches in the center and at the bottom margin of the tumor. B. 

Magnification to an area completely classified as plasmacytoma.C. Transition zone between plasmacytoma 

(left) and histiocytoma (right). WSI, H&E. MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: 

squamous cell carcinoma. 

 

 

Graph 2. Overview of recall (sensitivity), precision (positive predictive value) and the combination (F1 score) 

of the individual diagnoses of the pathologists, consensus and algorithm. KI. Algorithm. 
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6. Conclusions / Summary 

 
✓ Anatomic pathology is a medical specialty with a basic doctrinal body that makes 

it, on the one hand, an autonomous academic discipline and, on the other hand, a 

functional unit in medical care as a diagnostic tool. The visualization and 

interpretation of H&E-stained slides remains the basis of pathological analysis and 

diagnostic medicine for more than a century. 

 
✓ DP is an emerging technology in pathology, in which a scanner converts glass 

slides into WSI that can be viewed, analyzed and managed on a screen with the 

help of visualization software, after which they are stored digitally. 

 
✓ It can facilitate faster and more efficient diagnoses and prognoses, more flexible 

collaboration and high-quality case documentation. Online storage of digital slides 

also opens the door to DL and AI applications. 

 
✓ The pathologist requires extensive and constant training, usually based on 

following algorithmic decision trees that bring together a large amount of 

information and its association with respect to cellular and tissue structures (visual 

skills) in order to describe lesions and determine an appropriate diagnosis. 

However, image interpretation is not always consistent among pathologists. 

Emerging AI technologies, specifically ML and DL are now a state-of-the-art tool 

that is routinely used in human pathology and in many veterinary pathological 

diagnostic institutions. They have also proven to be very useful in reducing 

disagreements between observers during H&E slide interpretation. 

 

 
✓ Our results highlight the similarities that artificial intelligence and human 

intelligence share with respect to histopathologic diagnosis; however, this is more 

evident in certain types of tumors, mainly round cell tumors. For example, our 

model presented greater difficulty in differentiating round cell tumors from SCC and 
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the pathologists' consensus presented greater difficulty in differentiating round cell 

tumors from each other. 

 
✓ Our results also highlight the feasibility of including artificial intelligence as a 

support tool in diagnostic and research oncologic pathology with future applications 

in other species and other tumor types. 
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7. Zusammenfassung 

 
„Automatisierte Diagnose von sieben wichtigen Hauttumoren bei Hunden mit 

einem neuronalen Faltungs-Netzwerk (CNN) auf H&E-gefärbten 

Ganzpräparatbildern (WSI)" 

 

Die mikroskopische Untersuchung von HE-gefärbten Objektträgern ist der Goldstandard 

für eine Vielzahl von Krankheiten. Speziell in der Onkologie ist sie nicht nur für eine 

präzise Diagnose, sondern auch für das Staging von Tumoren und die Evaluierung ihrer 

Grenzen entscheidend. In den letzten Jahrzehnten, mit dem Aufkommen der Digitalen 

Pathologie (DP) und der Whole Slide Images (WSIs), steht die Image-Analyse und die 

Entwicklung von Algorithmen zur Durchführung spezifischer Aufgaben auf WSIs an 

vorderster Front der Forschung in der Pathologie, mit überwältigenden Ergebnissen. In 

dieser Studie beschreiben wir einen funktionellen Algorithmus zur automatischen 

Erkennung von sieben großen Hauttumoren bei Hunden: Trichoblastom, 

Plattenepithelkarzinom (SCC), peripherer Nervenscheidentumor (PNST), Melanom, 

Histiozytom, Mastzelltumor (MCT) und Plasmozytom. Wir haben 350 H&E-gefärbte 

Objektträger (70 pro Tumorart) ausgewählt, digitalisiert und mit Anmerkungen versehen, 

um eine Datenbank zu erstellen, die in Trainings- (n=245 WSIs), Validierungs- (n=35 

WSIs) und Testdaten (n=70 WSIs) unterteilt ist. Anschließend wurde ein neuronales 

Faltungsnetzwerk (CNN) entwickelt und die Effizienz des Algorithmus an 140 neuen WSIs 

(20 pro Tumorart) getestet. Die Klassifizierungsgenauigkeit auf Objektträgerebene 

erreichte 95 % (133/140 WSIs), die Präzision auf Patch-Ebene lag bei 85 %. Dieselben 

140 WSIs wurden sechs zertifizierten Pathologen zur Diagnose vorgelegt, die eine 

ähnliche Genauigkeit auf Objektträgerebene von 98 % erreichten (137/140 WSIs). Unsere 

Ergebnisse zeigen, dass der Einsatz von künstlicher Intelligenz als Hilfsmittel in der 

diagnostischen und forschenden onkologischen Pathologie machbar ist und in Zukunft 

auch bei anderen Spezies und anderen Tumorarten angewendet werden kann. 
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