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Al. Artificial intelligence

ANN. Artificial neural network

API. Application programming interface
BMP. Windows bitmap
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CPU. Central processing unit

DBN. Deep belief networks

DC. Digital camara

DICOM. Digital Imaging and Communication in Medicine
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DM. Digital microscope
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DP. Digital pathology
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FN. False negative

FP. False positive

GIF. Graphics Interchange Format
H&E. Hematoxylin and eosin

IHC. Immunohistochemistry

JPEG. Joint Photographic Experts Group
LED. Light-emitting diode

MCT. Mast cell tumor

ML. Machine learning
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PNG. Portable network graphics

PNST. Peripheral nerve sheet tumor

RAM. Random access memory
RAW. Raw image format

RM. Robotic microscope

ROI. Region of interest

SCC. Squamous cell carcinoma
TIFF. Tagged Image File Format
TFT. Thin-film transistor (monitor)
TN. True negative

TP. True positive

VM. Virtual microscopy

VMS. Virtual microscopy systems

WSI. Whole slide image
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1. Introduction

1.1 Digital Pathology

1.1.1 Overview and definitions

Histopathology is a subfield of pathology, which studies the diagnosis of diseases through
the visualization and interpretation of tissues in glass slides stained with hematoxylin and
eosin (H&E). It is an essential tool for pathological diagnosis since the 19th century
(Poynter, 1967; Turk, 1993). Because it is an accessible and useful tool, the review of
H&E-stained slides is considered the gold standard for many diseases (Li et al., 2021).
Specifically, in oncology, histopathology is the most important diagnostic tool, as through
it, the observer (pathologist) can determine a definitive diagnosis (in most cases
accurate), evaluate resection margins, identify micro-metastasis and perform tumor
staging. However, to reach an even more precise diagnosis, histopathology relies on
multiple diagnostic tests, mainly molecular (e.g., IHC). This has caused the conventional

use of histopathology to lose its perceived usefulness (Harris & McCormick, 2010).

During the past few decades, the visualization of H&E-stained glass slides has evolved
into a novel concept known as digital pathology (DP), which relies on the production of
digital images via cameras (photographic and video) or scanners for digital visualization.
The initial concept that began to be used in the 1960s was telepathology. Telepathology
was defined at that time as a tool for viewing H&E-stained glass slides shared via
telecommunication mediums to achieve remote transmission of data in the form of images
over long distances. Its advantages were vast as it contributed greatly to education and
research focused on pathology (Farahani & Pantanowitz, 2016). The use of telepathology
depends primarily on the transformation of biological or pathological information captured
by medical experts (pathologists) through imaging devices such as video and
photography, as well as in the use of such information for research, diagnostic or

educational purposes (Weinstein et al., 1987).

Although the introduction of DP was attributed to telepathology, these two terms differ in
some details; for example, DP is distinct from telepathology in that through the captured

images, the pathologist can perform various types of analysis, as well as manage and
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store the data on large servers. In the case of telepathology, this is not possible. In addition
to telepathology, DP was born with the advent of virtual microscopy (VM). VM is the

technique of digitizing whole or partial glass slides for complete visualization and handling.

Ronald S. Weinstein first used the name telepathology in 1986, and he is now considered
the father of telepathology. He was also the first to outline the steps to be followed for the
correct remote visualization of digitized glass slides in diagnostic pathology laboratories
(Weinstein, 1986); therefore, he owns the U.S. patents for telepathology for diagnostic

purposes.

Nordrum and Eide also contributed to the development of DP, as they were the first to
establish a sustainable clinical telepathology service in Norway in 1989 (Nordrum et al.,

1991), which is still in operation.

Currently, telepathology still has numerous clinical applications, such as remote
histopathological diagnosis (Dunn et al., 2009), frozen specimen diagnosis (Evans et al.,
2009), consultation (Graham et al., 2009), diagnosis support to subspecialties like
dermatology (Massone et al., 2008), preclinical toxicology research studies (Siegel et al.,
2018), education (Dee,2009), among others. Telepathology also improves the efficiency
of diagnosis, as in shorttime, histopathological images can be shared to highly specialized
pathologists (e.g. nephropathologist, neuropathologists or dermatopathologists) for
consultations when a rapid diagnosis is required and when the specialist is not physically

available, as happensfrequently in the case of frozen section diagnosis.

Already at the beginning of the first decade of the 21st century, videoconferencing
systems and virtual microscopy software began to be used. This allowed the interactive
visualization of images through a screen (Farahani et al., 2016).Nevertheless, although
these technologies proved to be very practical at that moment, theintroduction of these
technologies had its disadvantages as well, due to the high cost of high-speed data
transmission networks. In Spain, for example, to solve these problems and allow the users
to transmit images in real time, the detail and quality of the images was sacrificed by using
compression system and by sending the images using conventional software for
Microsoft Windows or via webcam (NetMeeting), provoking more source failures and

diagnostic errors compared with current systems (Alfaro- Ferreres, 2001).
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Telepathology currently has several resources of telecommunication systems that allow
real time collection of patient samples over long distances such as static images
(photographs), dynamic virtual samples from the digitalization slides (whole slides images,
WSI) or images transmitted by a robotically controlled light microscope in real time
(Weinstein et al., 2009). Telepathology can also integrate other routine elements in
diagnosis including generation of a written report, instant messaging, quality control of
light microscopy and inter-consultation through videoconferencing. This last is still in

virtual private networks.

Conversely, studies show that diagnostic accuracy rates are higher when using dynamic
pathology rather than static pathology using virtual slides. This is because static
telepathology relies on images sent by the pathologist, who shares selected parts of the
slide for consultation. In contrast, in dynamic telepathology (also known as VM or DP), the
medical experts are able to analyze the whole slide with several magnification levels

options, imitating the routine use of a light microscope (Kaplan et al., 2002).

Another huge advantage of DP is the construction of databases, as well as virtual libraries
that allow the creation of catalogs sorted by, for instance, disease and tissue type. This
also has the potential to increase the quality of diagnosis by allowing the pathologist to
access all cases for comparison and re-evaluation in a short time if it is required, even
when the pathologist is not physically available. In the same way, these virtual libraries
allow the archiving of a large number of cases which are mainly used for research and
educational purposes (e.g., pathology training). In addition, in order to have a successful
DP diagnostic laboratory, it must be ensured that all necessary storage, security and
medical data management procedures are performed and available (Kaplan et al., 2002).
This can be achieved by the creation of metadata (patient information), which canbe
included into the WSI database.

Contemporary currents in the field of training of future pathologist are focused on the
digitalization of their pathology classes with the attempt to replace optical microscopes

with computers or other devices (e.g. smartphones, tablets, etc.), in addition to the
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construction of virtual libraries of slides. A clear example of this are the digital pathology
laboratories created using cloud computing technologies or the University of lowa's

"Virtual SlideBox" image repository (Dee & Fales-Williams, 2005).

Following the development of telepathology and its everyday use in many institutions and
laboratories, the early 1990s saw the emergence of VM in several areas of life science
research (Kumar et al., 2004). VM is defined as a method of transforming histological
images (whole slides or fragments) into digital information with a resolution similar to that
of conventional optical microscopy (Brochhausen et al., 2015). WSI are created with
special scanners; however, digital “slides” can also be formed by attaching together
several photomicrographs through the microscope (patches). Both techniques allow for
the presentation of histological data through computer networks with extraordinary
resolution; however, due to their size, the files usually generate problems during the
storage and sending of information. VM is also used in other branches of medicine like

histology, hematology and biology.

By using computer technology, DP started utilizing VM as its basis. With the practice of
WSI, glass slides are converted into digital images that can be observed, managed,
shared and analyzed on a computer screen regardless of the location of the viewer. In
recent decades, with the advent these new forms of visualization and the growing era of
artificial intelligence (Al), the perception of diagnostic histology has evolved considerably,
regaining its value and accessibility (Bertram & Klopfleisch, 2017; Pantanowitz et al.,
2018; Abels et al., 2019).

In summary, DP is a recent subfield of pathology based on the transformation of glass
slides into digital slides (WSI), with the advantages of manage, visualize, analyze and
share image data in a practical and objective way. WSI can be visualized and analyzed
by pathologists regardless of the location and has been proved that it can considerably

increase diagnosis efficiency by the combination with Al.

1.1.2 Hardware (scanners and scanning)

The challenges faced by those aiming to develop software solutions for automated tumor-

focused surgical biopsy diagnostics are numerous. From those related to sample
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processing (e.g. standardization of H&E stains, microtome artifacts, staining reagent
variability) or morphological variance/complexity of the tumors, to those related to
hardware (scanning, uneven illumination, focusing) and software validation. These lasts
ones are of vital importance for the proper development of effective and efficient solutions
with a reliable market application. Most scanners in market are standardized; they allow
scanning of complete slides in high resolution and magnification in a short time, with some
variations depending on the scanner type and vendor (Jahn et al, 2020). In the same way,
the accessibility of software for WSI analysis varies according to the needsand budget of
the users. Most of these are focused on traditional H&E and IHC image analysis instead
of creating DL algorithms for specific tasks.

For the successful and advantageous practice of DP, the laboratory must be assured that
the remote pathologist has appropriate access to pertinent diagnostic material. The
process of DP imaging consists of many steps. These operations include some basic
steps such as sample preparation and staining, performed in a histologic laboratory; H&E
staining is the most popular stain to examine tissue sections. Subsequently, the optical
image is transformed into digital information by several digital acquisition options, such as
photographic cameras, video cameras and automatic microscopic slide scanners. Finally,
this information is processed, compressed and transmitted as an image file through
telecommunication networks and to be presented on the health professional's screen
(Kaplan et al., 2002; McCullough et al, 2004).

VM systems (VMS), commonly understood as those capable of fully digitizing histologic
and cytologic slides or WSI are accessible today in multiple formats and commercial
solutions. In 1997, the Department of Computer Science at the University of Maryland and
the Department of Pathology at Johns Hopkins Hospitals (Baltimore, USA) described the
first operational VMS (Afework et al., 1998; Ferreira et al., 1997). Today, it is possible to
digitize all types of histological or cytological slides, from thin (5 um) paraffin-embedded

tissue sections to thick (15 pum) IHC or immunofluorescence sections.

Depending on their purpose, digital imaging solutions can be classified into digital
microscopes (total preparation scanning) and diagnostic support systems. The purpose
of the DM is the creation of digital slides with full viewing capability at high magnification
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(Zarella et al., 2019) and the purpose of the diagnostic aid systems is to aid the localization
of the area of interest in throughout all the slide, as well as to objectively quantify
histological features (e.g. fibrosis). Both systems allow digitizing the entire slide (or a
specific region) and photographing specific fields (depending on the objective of the study

or type of diagnosis).

Based on device components DP hardware are divided into robotic microscopes (RM)

and scanners.

¢ RM. The RM maintain their original functionality and components including oculars,
multiple objectives (motorized revolver), light control, and position and focus control
(Collins et al., 2020), but with a camera assembled to the microscope and an image
viewing and analysis software (discussed in the software subtopic).

e Scanners. A computer in/outside the scanner box controls slides scanners and
scanning. It differs from the RM by the absence of oculars and position or focus

control, as well as the addition of an anti-vibration mechanism (Thrall et al, 2015).

Both devices are capable of generating high-resolution images and both are structurally
composed of an optical microscopy system (similar to that of a conventional light
microscope), a capture system (snapshots and photography) and a visualizer and

controller software.

As the camera integrated inside the device (RM or scanner) is a critical factor in the quality
and speed of image acquisition, it is essential to know its basic characteristics and
functionality. Slide digitizer usually consist of a CCD sensor (charged coupled device),
which generates analog signals (similar to digital cameras, DC) and determinates the
quality and resolution of the image, i.e. it establishes the number of pixels detected. DCs
inside the slide digitizer do not need the utilization of capture cards because they are
connected to the PC through a firewire-port (Kim et al., 2020).

Another important element for correct imaging are high precision and high-speed stages.
Their job is to allow the achievement of optimal movement speed without losing image

quality (Jones-Hall et al., 2021).

Page 11 of 86



In order to correctly visualize the images collected by the scanning systems, DP solutions
use high-resolution monitors that are usually flat TFT with different sizes.

One of the most important factors to determinate the digitization efficiency is the scanning
time; however, their objective evaluation is very difficult, as the following aspects must be
considered:

- Size of the slide or the tissue area to be scanned.

- Magnification (20x or 40x).

- Size of the CCD.

- Time of the focusing and preview phase.

- Number of focus points

- Data capture speed (from camera to computer and from computer to storage),
among others.

The focus map, which counts the number of focused points, can be assigned automatically
and manually on most scanners. In Aperio ScanScope it is possible to manually add focus

points to those that are automatically detected by the visualizing software.

In some cases (e.g. cytology slides or thick histology), it is necessary to digitize multiple
planes of focus, known as the Z-axis. This allows the pathologist to visualize several
planes from top to bottom, similar to the use of the micrometer of the conventional

microscope.

Before the scanning, a previsualization of the slide is necessary. In this step, it can be
decided whether the digitization will be performed on the entire slide or on a specific area
(manually) or if only the areas with relevant material will be automatically selected. Most
of the scanners avoid blank areas (empty spaces) during this step. Previsualization is

usually done in matter of seconds.

Once the number of points to be scanned is determined, the slide is scanned. Digitization
consists of capturing areas of the slide and then stitching the fragments together to create
the virtual image, which can be adjusted manually or automatically (default settings). The
software of each scanner usually supports the scanning process; it is performed from the

upper left corner to the lower edge of the slide, in order to create an image with multiple
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quadrants, like a mosaic. In the case of Aperio ScanScope, the scanning process is linear.
By navigating throughout the WSI, the observers are able to perform similar movements
as on a microscope, such as lateral and vertical (X and Y axis), as well as to modify the

magnification and focus or change the plane of focus (Z axis).

Note: There are no specific publications that analyze and compare all types of scanners
with an objective method, so the reader is advised to look into the individual web sites and

manuals of each scanner company in order to obtain more information.

1.1.3 Software

Once the slide is digitized, the file is created and can be viewed with different types of
specialized software, which usually compresses the images to an optimal size for proper
high-resolution viewing on a screen. Regarding the software, the viewer can also perform
specific tasks on it for digital pathology and image analysis for diagnosis and investigation
purposes. After that, the WSI must be archived but not as a physical slide, but into a
dedicated virtual space such as internet servers or inside the computer, depending on the
vendor. Both options are useful but it depends on the needs of the user and the

accessibility to internet connection and storage capacity.

WSI analysis software is developed with stand-alone and functional Al programs;
however, some of them require the download of plugins (complementary programs that
extend the functions of web applications and desktop programs) to improve their

functionality.
The following is a list of the main free open sourcesoftware most commonly used in DP.

e QuPath. QuPath was first designed to image analysis of WSI (mainly for
biomarkers and IHC), but it is currently used also for neoplasia analysis on H&E.
This software is easy to use and it includes the possibility to create smart
annotations through different types of tools that transform coordinates and pixels
into data in order to develop algorithms and analyze the whole tissue. It has also a

very useful tool that allows the user to create even more precise annotations in the
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slide, making this process more efficient (e.g. automatic delineation tissue types
and delineation of structures). QuPath offers the users several type of algorithms
for solving simple tasks like automatic cell detection or stain estimation (useful for
IHC/fluorescence) and supports developers to implement new applications by
exchanging data with other software options such as ImageJ (Bankhead et al.,
2017).

Image J/Fiji. ImageJ was first designed with an open architecture that provides
extensibility via Java plugins and scriptable macros. This provides the users the
possibility to resolve image problems related to processing and analysis by
comparing multiple system data. It also has an automated hematology system. This
software can display, edit, analyze, process, save, and print 8-bit (256 colors), 16-
bit (thousands of colors), and 32-bit (millions of colors) images. It can read various
image formats including TIFF, PNG, GIF, JPEG, RAW among others. It is possible
to perform tasks on several images in a single window (limited by available
memory) and even in various parallel CPUs at the same time. User often use
ImageJ to calculate areas and pixels of tissue structures with statistical purposes
by measuring exact distances and angles throughout the whole slide and by
creating histograms and profile line plots. ImageJ has tools to manipulate contrast,
detect edges, perform Fourier analysis, as well as geometric transformations of the
slide, such as rotation and flips (Rueden et al., 2017; Schindelin et al., 2012;
Schneider et al., 2012).

CellProfiler. CellProfiler was first designed to aim biologist to analyze and quantify
phenotypes from images in an automatic manner and can read most of the WSI
formats. In this software, there are several types of algorithms for image analysis
like automatic identification, segmentation and measurement of biological
structures, which can be used individually or sequentially in a pipeline. CellProfiler
can collaborate with some scientific libraries for mathematical operations purposes
(Lamprechtet al., 2007).
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llastik. llastik was designed for image classification and segmentation through the
annotation of histological structures and the creation of an automatic classifier.
llastik has module for using classifiers to process images within a CellProfiler

framework (Sommer et al., 2011).

Orbit. Orbit was first designed for the quantification of large images through
analysis algorithms using ML, as well as segmentation and classification of
histological structures. In addition, a versatile API allows the owners to enhance
Orbit and run their own scripts. Another interesting function of this program is the
calculation of different tissue classes’ proportion, e.g. the percentage of collagen in
a tissue. ML-based tissue quantification allows the pathologist to train the systemon
specific tissue classes and quantify them, likewise, segmenting, overlapping and
calculating objects features in order to achieve a more accurate classification
(Goldberg et al., 2005).

Cytomine. Cytomine was first designed as a web-based tool for large-scale image-
based studies in multidisciplinary teams. It has annotation, analysis and
management possibilities in WSI. It can be used in most of the formats by the
conversion of the images during the loading stage, which are archived into the
cloud, so it provides the option to organize, analyze, explore and share WSI over
the internet for collaborative projects. Cytomine includes algorithms (default), but
the user can develop other types. Another tools allow the visualization of several
images and annotations at the same time, the management of annotations
(reviewing, searching, filtering, sorting) even from different creators, creation of DL

algorithms, size calculation of structures, among others (Marée et al., 2016).

Icy. Icy (colloquially defined as the image analysis “photoshop”) was designed to
visualize, analyze, annotate and quantify features in WSI and other typed bio-
images. In this software, researchers and users can also develop algorithms

according to their needs (De Chaumont et al., 2012).
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Note: There are no specific publications that analyze and compare all types of WSI
softwares with an objective method, so the reader is advised to look into the individual
web sites and specific citations of each software company in order to obtain more

information.

1.2 Artificial intelligence

1.2.1 Overview and definitions

Artificial intelligence (Al) is a computer science field that is defined as the intelligence
expressed by machines through their processors and different types of software. These
in turn perform functions and tasks that would be the equivalents of the human body, brain
and mind in order to behave in a natural way as humans and certain types of animals with

complex brains would (Kaplan et al., 2021).

The origin of Al is considered to date back to man's attempts since ancient times to
enhance his physical and intellectual potential through the creation of devices with
automatisms, emulating the form and abilities of human beings. In computer science, an
ideal "intelligent" machine would be one with flexible abilities that perceive its environment
and, in turn, carry out actions that maximize the chances of success in some purpose or
task (Lopez-Rubio et al., 2015). Andreas Kaplan and Michael Haenlein define artificial
intelligence as "the ability of a system to correctly interpret external data, to learn from that
data, and to use that knowledge to achieve specific tasks and goals through flexible
adaptation” (A. Kaplan & Haenlein, 2019). However, colloquially the term artificial
intelligence is used in cases where a machine successfully reproduces certain cognitive
functions that humans relate to other human minds, such as perception, reasoning,

learning and problem solving (Russell & Norvig, 2002).

Over time, the definition of Al has evolved, as what was once thought to be a task requiring
a certain level of intelligence is now considered a common task, such as optical character
recognition, tasks that are now commonly used in different branches of technology.
Currently, with the development of expert computer systems, the management and control
of robots and processors, Al has become a novel way to address problems through the
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integration and analysis of knowledge shared by the human mind, with certain autonomy
to such an extent that machines develop an intelligent system capable of developing its
own program. An expert system is defined as a programming structure with the capacity
to store and use the complete knowledge about a certain field of study, as well as its

translation into computer language and its automatic learning (Patterson, 1990).

Likewise, with the evolution of new technologies and mathematical calculations, Al is also
ultimately defined as the ability of machines to use algorithms, learn from data. This way
of behavior should mimic to that of a human being. One of the main focuses of artificial
intelligence is machine learning (ML), in such a way that computers or machines have the

ability to learn without being programmed to do so.

In 1956, John McCarthy first coined the expression "artificial intelligence", and defined it
as "the science and ingenuity of making intelligent machines, especially intelligent
computer programs" (McCarthy, 2007). Other definitions and points of view are, for
example, according to Takeyas (Takeyas, 2007), Al is a branch of computational sciences
in charge of studying computational models capable of performing human activities based
on two of their primary characteristics: reasoning and behavior. This current definition
involves not only the way machines reason, but also their ability to perform tasks that
resemble human behavior, as in the case of robotics. There are also other types of
perceptions that can be obtained and produced, respectively, by physical sensors and
mechanical sensors in machines, electrical or optical pulses in computers, as well as by

bit inputs and outputs of software and its software environment.

Several examples are found in the area of system control, automatic planning, the ability
to respond to diagnostics and consumer queries, handwriting recognition, speech
recognition and pattern recognition. Al systems are now part of the routine in fields such
as economics, medicine, engineering, transportation, communications, and the military,
and have been used in a variety of computer programs, strategy games such as computer

chess, and other video games.

Stuart J. Russell and Peter Norvig diversify several types of artificial intelligence (Russell
& Norvig, 2002):
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Systems that think like humans or, more precisely, systems that try to emulate
human thinking, as in the case of artificial neural networks. The automation of
activities that we link to human thought processes includes, for example, decision
making, problem solving and learning (Krogh, 2008).

Systems that attempt to act like humans or mimic human behavior. The most
commonly known example is robotics, defined as the branch of Al that studies how
machines manage to perform tasks that currently human beings do better, like in
in the field of medicine (Dario et al., 1994).

Systems that think logically and that seek to mimic the rational thinking of human
beings; for example, expert systems, the study of the computations that make it
possible to perceive, reason and act (Horvitz et al., 1988).

Systems that act rationally and that try to emulate rationally human behavior; for
example, intelligent agents, which is involved with intelligent behaviors in artifacts
(Poole & Mackworth, 2010).

Al is divided into two lines of reasoning:

On the one hand, conventional or symbolic and deductive Al that is defined as the

proper and statistical analysis of human behavior for solving different types of

problems (Garnelo & Shanahan, 2019). In this type of Al there is (Confalonieri et al.,
2021):

case-based reasoning to support decision making when solving specific problems,
expert systems that conclude a solution through prior knowledge regarding the
context in which it is applied,

bayesian networks that suggest procedures through probabilistic inference,
behavior-based Al that is characterized by being autonomous with the ability to
self-regulate and control itself to achieve significant improvements when solving
tasks

and smart process management, which provide intelligent support during complex

decision making.

These types of solutions suggest solutions to multiple types of problems, equivalent to

specialists in the field of interest (Confalonieri et al., 2021).
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On the other hand, computational Al or subsymbolic-inductive Al involves development or
interactive learning. This type of thinking and learning is based on empirical data. This
type of computational intelligence has two purposes, its scientific goal is to glimpse the
principles that enable intelligent behavior in both natural and artificial systems and its
technological goal is based on the specification of methods to design intelligent systems.
This type of technology is mostly used in environmental sciences, climatology and
financial markets (Siddique & Adeli, 2013).

Since Al is being used in many technological fields and especially in medicine, its
utilization and development is strictly regulated by laws that establish rules and norms of
behavior and usability to ensure social welfare and protect individual rights (Keskinbora,
2019). As in any other scientific field, this is done with the aim of minimizing risks and
promoting the benefit to society. Although there are currently no legal norms that truly
regulate Al, in April 2021, the European Commission externalized a proposal for its
regulation in the European Union (Stdger et al., 2021).

The technologies that have been born through Al today are numerous and are found in
almost all fields of research, because when a problem is solved by Al, the solution is
routinely incorporated into biological and industrial fields (Becker, 2019). In this document
we will focus on the advantages of Al in the medical fields, especially in the pattern

recognition of digital pathological images.

1.2.2 Machine learning

Machine learning (ML) a computer science subfields and a branch of Al that studies the
methods of learning through the use of data (Nichols et al., 2019). Themain goal of ML is
to encourage and develop learning models that have the ability to generate results that
can in turn improve upon their own experience; in other words, whenthe skill was not
present prior to training. In ML, a computer observes and analyzes datawith the aim to
develop a model that is able to hypothesize and design software for problem solving. ML
is also broadly related to pattern recognition to emulate the scientific method with

mathematical techniques.
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Applications of ML are currently numerous and include search engines, medical
diagnostics, financial fraud detection, stock market analysis, DNA sequence classification,
speech and written language recognition, video games and robotics (Kononenko, 2001;
Lee et al., 2018).

There are several automated learning models (geometric, probabilistic and logical), some
of these seek to eliminate the exhaustive need for expert knowledge in data analysis
methods, while others are concerned with the establishment of a collaborative framework
between the expert and the computer, as commonly observed in biomedical fields (Sidey-
Gibbons, 2019).

ML models can also be classified into grouping models (division of instances with respect
to groups or classes) and gradient models for differentiation between instances or classes.
Both generate an algorithm with respect to their own deductions. Some types of algorithm

training are:

e Supervised learning. In supervised learning, a function is deduced from training
data. The data for this type of training is made up of pairs of vectors (objects),
where one part of the pair is the input data and the other is the output data (desired
results). The output of the algorithmic function can be presented in numerical
values (regression problems) or in a classification label. The objective of this type
of learning is to develop a function with the ability to predict the appropriate value
for the input object after visualization and analysis of a series of training data. For
this type of learning to work properly and to be used as a reliable tool, it has to be
exposed to a series of data presented to previously unseen situations. Experts in
the field usually achieve this through training (Ang et al., 2015).An example of this
type of algorithm is the one described in this thesis, where tumorclassification in WSI
was intended. In broad terms, the learning model deals with classifying a series of
vectors with respect to various categories (classes) or labelexamples. This type of
learning has proven to be very useful in biological and medical research, being the

basis of bioinformatics bioinformatics (Larranaga et al., 2006).
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Unsupervised learning. In this type of learning, the model is adjusted to the
observations and the whole process is carried out with a set of examples formed
only by inputs to the system, i.e., it is not fed with information about the classes. In
addition, the system has as its principal job the automated recognition and
classification of patterns to label new inputs. The training does not require experts
for its development, so there is no pre-existing knowledge and it has the ability to
self-organize. The network automatically discovers different features, regularities,
correlations and categories in the input data. In a broad sense, unsupervised
learning usually uses the input objects as a set of random variables to build a
density model and a dataset. Another form of unsupervised learning is clustering,
which can neglect probability methods. One of the advantages of this type of
learning is that it requires less training time than supervised learning (Ang et al.,
2015; Donalek, 2011).

Semi-supervised learning. This is the mixture of the previous two and uses labeled
and unlabeled data to classify them (Ang et al., 2015).

Reinforcement learning. In this case, the algorithm learns with respect to the
observation of the external environment, i.e., the information it uses to generate an
algorithm is composed of the feedback it acquires from the outside world (trial-and-
error principle). Since it does not require complete supervision, the autonomous
training of the model only requires positive or negative reinforcement (punishment)
that are derived from the good or bad performance of the model. The goal of this
type of training is to enhance the algorithm's ability to understand the environment

and make appropriate decisions to solve or understand problems (Sutton, 1992).

Not surprisingly, these types of learning resemble the way we humans learn. For us, this
process is so automatic and simple that sometimes we fail to notice it; however, in ML,
the learning method must be defined from the beginning and the rest will just be a

reproduction of a repetitive sequence.

After learning, regardless of the model, the creation of the algorithms is generated with

the following classification techniques:
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Decision trees. In this type of learning, the creation of a decision tree is necessary
for the resolution of a problem. Its main objective is the generation of a prediction
model based on logic for the correct representation and categorization of
successive instances. Decision trees can be said to generate diagrams of
sequential decisions with their probable outcomes, as is often used in economics
where the option that avoids a loss or produces an extra profit has a value. The
ability to create an option, therefore, has a value that can be bought or sold
(Navada et al., 2011).

Association rules. These algorithms are characterized by the creation of relevant
relationships between different variables to determine the instances that occur
within a data set. This type of algorithm is used to find relationships between
variables within very large data sets. Among the best-known methods are the a
priori algorithm, the Eclat algorithm and the Frequent Pattern algorithm (Chen et
al., 2006).

Genetic algorithms. The process of natural selection within evolutionary algorithms
inspires this type of algorithm, i.e., it relies on genetic bases such as mutation and
crossover to create new classification groups (Grefenstette, 1993).

Artificial neural networks (ANN). The biological behavior of neuronal connections
in animals inspired ANNSs, i.e., they designed to solve problems in a similar way
than the complex brain would do. It is made up of an extensive network of links with
different numerical weights that work together to develop an output stimulus
(Krogh, 2008). These connections contain thousands to millions of neuronal units
and have the ability to adapt with respect to their individual experience and share
information with each other. Each artificial neuron is interconnected with many
others through links in order to receive and analyze information to generate an
output. With previous weight multiplication of its value, this output will then be
shared to the next neuron, to create a reaction of inhibition or activation, depending
on the data. The output can also modify or limit the result that will be transmitted to
the next link or neuron (Zou et al., 2008). ANNs are the basis of deep learning(DL)
(Schmidhuber, 2015) and have been shown to perform successfully in
accomplishing a large number of tasks such as computer vision (Zhou & Chellappa,
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2012) and speech recognition (Lim et al., 2000), which are difficultto solve using
previous algorithms.

Support vector machines (SVM). These algorithms are defined as a series of
methods related to supervised learning for classification and regression. In this type
of algorithms, training is based on a first training phase, where multiple examples
are fed in the form of pairs with their respective solutions, as well as a second
phase of use for problem solving. Here, a "black box" is created to eject an answer
to a certain type of problem and to predict the categorization of new examples
(Meyer & Wien, 2015).

Clustering algorithms. This kind of algorithms include an unsupervised learning
method that has been commonly used in statistical analysis. The analysis is based
on grouping observations (vectors) into subgroups (clusters) so that the
observations in each group resemble each other according to criteria established
by the algorithm's creator. Practically, they look for similarities within groups and
separation of those that do not have similar characteristics (Fung, 2001).
Bayesian networks. This one allows the creation of probability models represented
in a series of random variables and their independencies through a directed acyclic
graph. It combines observed evidence with "common sense" to determine the
probability of presentation of occurrences with elements that are not necessarily
linked to each other. An example is the creation of algorithms for determining the
relationship of general symptoms to specific diseases. The results are generated
graphically with the probability and conditions under which an instance would occur
(Kotsiantis et al., 2007).

1.2.3 Deep learning

Finally, the subspecialty of Al within ML with which the most efficient software solutions

have been developed in the medical field is deep learning (DL) (Suzuki, 2017). This is

defined as a collection of ML algorithms that shape abstractions of large amounts of data

using computational architectures that perform multiple nonlinear and iterative

transformations of data expressed in a matrix form (Lee et al., 2017). DL is part of a
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broader group of ML methods based on resembling data representations. For example,
an image that can be called an "observation" is represented in different forms, usually in
a vector of pixels (depending on the type of data it is fed with) that enter into a network of

analysis and classifications with respect to previously assigned examples or labels.

DL includes three types of architectures for algorithm creation (Shrestha & Mahmood,
2019):

e Deep neural networks (DNN),
e Deep convolutional neural networks (CNN) and

e Deep belief networks (DBN).

Although there is no single definition of a concrete DL algorithms, there is one point that
all types of networks share. This point is centralized in the use of a cascade of layers with
nonlinear processing units with the objective of extracting and transforming multiple
variables. Each layer uses the output of the previous layer as input (in both, supervised
learning or unsupervised learning) to finally model data and recognize patterns. Another
feature shared by all types of artificial networks is learning based on multiple levels of
features or data representations. Higher-level features are derived from lower-level
features to form a hierarchical representation. This involves different levels of abstraction

to generate a hierarchy of concepts and features at each layer.

There is no clear definition about the number of layers (transformations) that makes an
algorithm to be considered as deep, but most researchers in the field consider DL to
involve more than two intermediate transformations (Shrestha & Mahmood, 2019), which

distinguishes it from the shallow learning.

1.2.4 Image recognition

Recognition is responsible for identifying and classifying objects in an image. Possibly one
of its most common applications today is automatic image labeling, used for web content
management and organization, but it is also useful for pattern recognition in a medical
image. Thanks to a class of models known as CNN, image recognition has experienced

formidable advances. Biological processes that take place in the visual cortex, where
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neurons recognize stimuli in a restricted area of the visual field and classify them with
respect to stored information, inspire these models. This area partially overlaps with that
of nearby neurons, collectively covering the entire visual field. As a result, CNN learn to
respond to different image features (edges, shapes, etc.), such as the filter banks used in
traditional and manually defined algorithms. In fact, the ability to learn such filters is one
of the characteristic advantages of CNN, which in turn eliminates the manual effort

required in feature design (Liu et al., 2017).

The learning algorithm of this type of network allows the extraction of the characteristics
of each class from a previously classified training data set. To do so, it modifies the
weights of the neurons that form the network and their values are iteratively calculated

using the backpropagation method of supervised learning (Wu & Chen, 2015).
This backpropagation algorithm consists of two main stages:

For each element of the training set, the class to which it belongs is calculated according
to the values that the network weights have at that moment (Leonard & Kramer, 1990). In
this way, the algorithm can determine how good the classification is through an error
function, as well as by comparing the classification with respect to the class to which the
object actually belongs. Once the error made has been obtained, the algorithm
propagates backwards the neurons with weights that contribute enough to the
classification of the input. With this iterative process, the weights are updated for
optimization using gradient descent algorithms (Kishore & Kaur, 2012). Subsequently, this
method updates the weights of the network in the opposite direction of the gradient of the

error function.

For a correct training of the CNN, it is necessary to specify a set of training data to define
them. This requires a large number of labeled images of the object categories to be
classified within a complete image. From these images, the CNN manages to obtain and
collect specific characteristics of each class to learn to differentiate them from each other;
the greater the number of training images, the better the results in the classification of new
objects (Xin & Wang, 2019).

In either case, a set of labeled images must be chosen in which we have as many classes

as different objects we want to classify. An additional class is also necessary for objects
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that do not fit into any of the training data (background). In this category, we must have
as much data as possible and it works better the more diverse they are. This will allow the
algorithm to avoid misclassifications and false positives in the detection of an object. In

an image, the network as ‘background’ should classify everything that is not an object.

1.2.5 Evaluating the algorithm: confusion matrix

The evaluation of the algorithm performance is performed through a confusion matrix
(CM). This method allows the visualization and analysis of the accuracy during the
classification of objects even with a large amount of data. This type of matrices is usually

used in supervised learning types.

Ting defined CM as a table that contains information about actual and predicted
classifications done by a classification system. Performance of such systems is commonly

evaluated using the data in the matrix (Ting, 2010).

Each column of the matrix represents the number of predictions in each class, while each
row represents the instances in the actual class. One of the benefits of confusion matrices

is that they make it easy to see if the system is confusing two classes (table 1).

The following table shows the CM for a two-class classifier taken from (Kulkarni, Chong,
& Batarseh, 2020):

Prediction

Negative Positive

Ground Negative
truth (original
label)

Positive

CM: Confusion matrix.

The entries in the CM have the following meaning:

- TN is the number of correct predictions that an instance is negative,
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- FPis the number of incorrect predictions that an instance is positive,
- FN s the number of incorrect of predictions that an instance negative, and

- TP is the number of correct predictions that an instance is positive.

With these terms, accuracy, recall and precision can be calculated. The terms will be
pointed in the next paragraph (Kulkarni et al., 2020; Provost & Kohavi, 1998; Ting, 2010).

- The precision also known as positive predictive value is defined as the proportion
of the total number of predictions instances that were correct classified.

- The recall, also known as true positive rate or sensitivity is the quantity of positive
cases that were correctly classified.

- The FP rate is the amount of negatives instances that were incorrectly identified as
positive.

- The TN rate also known as specificity is defined as the quantity of negatives cases
that were appropriately classified.

- The FN rate is the amount of positives instances that were incorrectly identified as
negative.

- F1 Score is the measure of accuracy that has an artificial recognition model and is
used in the determination of a single weighted value of accuracy and recall.

1.3 Computer-aided diagnosis

1.3.1 Overview and definitions

Computer-aided diagnosis (CAD) are medical procedures that support medical doctors in
the interpretation of multimedia content obtained from tests that the patient has been
subjected to, e.g., medical images (Giger & Suzuki, 2008). The idea of CAD is not to give
a complete diagnosis from the original source, but to help the clinician who is writing the

diagnosis to achieve an optimum diagnosis.

With this technology, the clinician is able to interpret all the visible information, since the
machines process the whole picture and do not ignore any minor information that would
otherwise escape the human eye. In this way, by highlighting the relevant information,

they help the specialist not to overlook any detail.
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CAD systems are an interdisciplinary technology, which is still very new at present,
combining artificial intelligence, digital image processing and other subfields of medicine
such as radiology, tomography or pathology. Image processing with the aid of complex
pattern recognition systems makes it possible for the medical doctor, usually a radiologist,
to interpret the information contained in the medical image with much lower difficulty (Do,
2007).

CAD systems employ algorithms to analyze and recognize patterns in patient data that
suggest possible anomalies. In a similar manner that a clinician is trained to identify
anomalies by studying cases, CAD algorithms are taught to recognize patterns from an
initial finite database with and without anomalies. This database is known as the "training
set" (Chan et al., 2020).

Once the CAD system has been trained, it is then ready to be used on new patients to
detect matching or discarding patterns of diseases or lesions. The pattern classifications
in CAD devices are intended to be sufficiently reliable and efficient to support the specialist
in identifying and diagnosing them. In general, device reliability is estimated using a

different database known as a "test set" (Chan et al., 2020).

The methodology of CAD systems is very similar to that of a standard pattern recognition

system:

- Preprocessing. In this step, all image imperfections such as noise are corrected
and the image is harmonized in case of differences in exposure levels at different
points.

- Segmentation. With the help of a database, matches are searched to detect
important structures in the image and define them as regions to be analyzed
individually.

- Structuring. Each of the previously defined regions is analyzed to extract important
information from each of them regarding, for example shape, size, location, and so

on.

At the end, defined regions that could be interesting for our diagnosis are left. The different
regions that were previously identified as relevant are analyzed by means of several

techniques. Each of these procedures has a limit that the region in matter must surpass
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to be considered relevant, if it is, the same procedure highlights it so that it does not go
ignored by the specialist. It is the specialist who will finally decide what is relevant for the

diagnosis and what is not, removing the latter for future consultations.

CAD systems are currently unable to detect 100% of pathological alterations. Thereliability
(guess/hit rate) of these systems can reach up to 90% depending on the systemand the
application (Xing et al., 2021). An incorrect guess, understanding as incorrect guess all
those points that the system has marked as important without necessarily being so, are
called false positives (FPs), so that the fewer FP we have, the more specific our procedure

will be.
As with all technologies, CAD systems also have their own limitations (Fujita, 2020):

- Guarantee. There is no guarantee of a solution, it means, contrary to general
thinking, that if the procedure works perfectly, it should not guarantee a diagnosis.
All it guarantees is an image with areas for the relevant algorithm that the specialist
will then have to consider.

- Annotations. Requires fine grained expert annotations.

- Database maintenance. The biggest problem with this technology is database
maintenance. The algorithms that must detect the regions of interest need to
consult some databases where the relationships between different cases are
entered, a fact that causes the computational cost of the process to grow
exponentially to prohibitive limits.

- High cost. As in most new technologies, the economic cost of CAD systems is still
very high nowadays.

1.3.2 Computational pathology

The integration of Al and its subfields (e.g. ML) in medicine has accelerated the growth of
different areas of medicine, mainly in imaging (Doi, 2007) and is now one of the central
research subjects in digital pathology and toxicology (Turner et al., 2020). Conversely,
due to the scarcity of accessible WSI databases, functional and standardized software,

burden of annotations and validation of algorithms, the point of full and efficient
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development of automated diagnostics in oncology has not been reached yet (Chenet al.,
2021).

The integration of DP and Al has opened the door to a completely new world ofpossibilities
in diagnostic histology and research, into what we know as computer-aided pathology
(CAP), or more specifically as computational pathology (CPATH). The expertsof the
Digital Pathology Association (DPA) define CAPTH as a branch of pathology that involves
computational diagnostic systems or set of methodologies that use computer programs to
interpret pathological images (WSI), extract patterns and analyze patient specimens for
the study of disease (Abels et al., 2019; Nam et al., 2020).

1.3.3 Previous work in human pathology

Al is already positioned as a fundamental tool for optimizing and automating mechanical
tasks that require the prior analysis of a large amount of data in various sectors.
Specifically, in the field of pathology it is already being used successfully to develop new
therapeutic alternatives, accelerate molecular diagnostics or collaborate in clinical
decision-making. Furthermore, in different diagnostic centers and research institutions, Al
is already routinely helping medical professionals to diagnose diseases, plan personalized
treatments or even design drugs for specific applications (Litjens et al., 2016).

The successes achieved so far point to a not-too-distant future in which medical doctors,
Al and robots will work together in a coordinated way every day to apply a more precise
and efficient medicine, thanks to overcoming human limitations in processing huge
amounts of data. In that sense, Al does not need to be perfect to be useful in medical

practice, it just needs to be better and faster than medical doctors in providing a diagnosis.

Al could help as well, to reduce the misdiagnosis rate in several types of diseases for

example:

- Automated analysis and detection of prostate cancer in H&E slides (Bulten et al.,
2018; Tolkach et al., 2020).
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- Identification of breast cancer metastases in sentinel lymph nodes (Steiner et al.,
2018; Wang et al., 2016).

- Automated grading of gliomas and astrocytomas (Ertosun & Rubin, 2015; Kolles
et al., 1995).

- Ki67 Scoring (Narayanan et al., 2018).

- Genetic Mutation Prediction (Schaumberg et al., 2017).

- Differentiation between benign and malignant tumors, e.g., carcinoma vs. non-
carcinoma (Bejnordi et al., 2017; Babak Ehteshami Bejnordi et al., 2018; Yahui
Jiang et al., 2020).

- Colon cancer classification (Awan et al., 2017; Kainz et al., 2017).

- Gastric cancer classification (Shujun Wang et al., 2019).

- Tumor subtyping (Yun Jiang et al., 2019).

- Mitotic count (Veta et al., 2015).

- Evaluation of biomarkers (Khameneh et al., 2019; Vandenbergheet al., 2017).

- Lung cancer classification/subtyping (Coudray et al., 2018; Gertych et al., 2019;
Teramoto et al., 2017).

- Count of immunologic cells (Aprupe et al., 2019).

- Prognosis prediction (Shidan Wang et al., 2018).

- Classification of melanocytic lesions (Norgan et al., 2018; Wang et al., 2020).

- Classification for bone marrow aspirate differential counts (Chandradevan et al.,
2020).

...and the list goes on. However, there are not that many studies using Al, specifically DL

in veterinary pathology.

Some of the most relevant studies are mentioned below.

1.3.4 Previous work in veterinary pathology

As mentioned above, there are not many publications that focus on the development of

algorithms for routine diagnosis in veterinary medicine. However, the development of
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some complementary tools for the diagnosis of animal diseases, mainly in surgical and

toxicological diagnosis, has been described (Zuraw & Aeffner, 2022).
Some highly relevant advances are mentioned below.

- Mitosis detection in dogs (Bertram et al., 2021; Bertram et al., 2020).

- Pigment gquantification within cells in horses (cytologic slides) (Marzahl et al.,
2020).

- Differentiation of round cell tumors in dogs (Salvi et al., 2021).

- Classification of mammary tumors in dogs (A. Kumar et al., 2020).

- Retinal evaluation in mice (De Vera Mudry et al., 2021).

- Lung fibrosis and inflammation characterization in mice (Heinemann et al.,
2018).

- Automatic glomerular identification and quantification in mice (Sheehan &
Korstanje, 2018).

1.4 Algorithm development in pathology: establishment of ground truth

Regardless of the type of hardware and software chosen by the user, the implementation
of algorithms based on supervised ML has great advantages in the clinical and
histopathological diagnostic workflow, as once they are properly developed and validated
by computer engineering and pathology experts, they can improve the accuracy, speed
and efficiency of diagnosis. This allows pathologists and researchers to analyze features
on slides that are not easily identified with conventional optical evaluation; in addition, it
also allows them to make a more complete evaluation of the slide in a short time, as well
as detect and classify structures of interest and gather objective data (Abels et al., 2019;
Aeffner et al., 2017). However, to enjoy these benefits, accurate and extensive

convolutional neural network (CNN) training is required.

The first step to achieve the development of a reliable algorithm in supervised DL (besides
the raw image sets) is the establishment of a ground truth. Since this process is the basis
of all DL training, it is also the most time-consuming and challenging (Irshad et al., 2015).

The establishment of a ground truth is based on the labeling of specific features within a
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slide. This can be done on previously selected patches or on the entire digitized slide
(Dimitriou et al., 2019). Naturally, training neural networks on a completeslide with high
resolution requires a great amount of time, effort and expertise. Since it isa supervised
training, the medical expert (pathologist in this case) carries out the labelingof each
structure manually, practically it is a matter of transforming the visual experienceand skill
into computational data with coordinates and pixels that will later enter the CNN.
Depending on the type of algorithm to be developed, the labeling of structures can be
carried out with different tools (depending on the software used); for example, specific
zones contained in geometric figures (circles, squares, rectangles), zones surrounded by
lines (polygons), or even automatic delimitations that follow the lines between tissue or

cellular structures (magic wand) (Aubreville et al., 2018).

Obtaining adequate datasets for DL can become a difficult task for the expert pathologist
due to the tedious nature of the task (Dimitriou et al., 2019; Irshad et al., 2015). Once the
ground truth is defined and correctly annotated by the expert pathologist, the data can
enter to the convolutional neural network to train the final algorithm. Currently, it is difficult
to establish quality control at this step; however, the most successful way to achieve this
is to divide the database (slides) into 3 sets: training set, validation set and test set (Abels
et al., 2019). Once the method is validated, the algorithm is applied to the test set and
compared with the ground truth, or pathologists’ diagnosis. The definition of a gold
standard for the ground truth is controversial, as the results often fall into the "gold
standard" paradox (Aeffner et al., 2017), where the algorithm data ends up being more
reproducible than the human ones. One of the ideal methods to avoid this and evaluate
the algorithm more accurately would be to compare the algorithm results again with new
expert opinions and even use other immunomolecular tests such as IHC; however, this is
not often accomplished. Finally, after evaluation of the accuracy of the algorithm and its
validation, the reproduction and implementation are ready to be passed on.

Page 33 of 86



2. Basic consideration and working hypothesis

The use of ML in DP has proven to have useful applications, such as in mammary
carcinoma diagnosis and metastasis detection (Araujo et al., 2017; B. Ehteshami Bejnordi
et al., 2017; Sudharshan et al., 2019), automated mitosis detection (Bertram et al., 2021;
Bertram et al., 2020; Roux et al., 2013), melanocytic skin tumor classification (Norgan et
al., 2018), quantitative evaluation of immunostaining (J. X. Liu et al., 2019), round cell
tumor differentiation (Salvi et al., 2021) and so on. However, to date no algorithm has
been developed that determines or discriminates tumors of completely different tissue
origins in H&E-stained WSI.

Because the skin is one of the most common anatomical sites of neoplasia in dogs and
canine skin tumors represent the largest number of cases in veterinary pathology
diagnostic centers (Dorn, 1967; Dorn et al., 1968; Gamlem et al., 2008; Merlo et al., 2008),
we decided to conduct a study focused on creating an algorithm that would be able to
automatically classify and identifyseven of the most important and common canine tumors
(Graf et al., 2018; Kok et al., 2019).

We hypothesis that the training of an artificial neuronal network using an appropriate
number of well annotated digital images of canine cutaneous tumors will lead to a software
solution, which identifies and differentiates common canine cutaneous tumor types with a

similar sensitivity and specificity as a trained pathologist.
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3. Material and methods

3.1 Case selection and scanning

Surgical biopsies of seven of the most frequent tumors in dogs were retrospectively
selected from the histopathology archive of the Institute of Veterinary Pathology of the
Free University of Berlin. The tumor types were trichoblastoma, squamous cell carcinoma
(SCC), melanoma, peripheral nerve sheath tumor (PNST), mast cell tumor (MCT),
plasmacytoma and histiocytoma. First, 50 cases per tumor were chosen with respect to
typical histological features, state of preservation, sufficient histological perceptibility of
cellular details and staining quality (H&E, total n=350 cases/slides). All glass slides were
digitalized to generate WSIs using a linear scanner (ScanScope CS2, Leica) in 1 focal
plane by default settings and they were scanned at a magnification of 400x (image

resolution: 0.25 pym/pixel). These WSI entered to our first dataset.

Additionally, in a similar fashion, we chose another 20 slides per tumor type, which were
previously diagnosed and reviewed with typical features of each tumor (n=140

cases/slides) to scan with the same method. These WSI entered to the second dataset.

3.2 Dataset

The first 350 slides were included in Dataset 1, with the aim of including them in training,
validation and testing (method described below) (Wilm et al., 2022). The following 140
slides (dataset 2) were included only as a test set for the algorithm and for the “human vs

machine challenge”.

3.3 Annotations of tissue area and tumors

Annotations were performed in SlideRunner (Aubreville et al., 2018), a software for
massive annotations in WSI. This software was developed by working group at the FU
Berlin together with IT-specialists of the Friedrich-Alexander-Universitaet (FAU) Erlangen.
We completed annotations in the WSiIs of the first database (350 WSI/50 per tumor type).

Annotations were made using the polygon tool, surrounding each area of interest with a
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thin line, from point to point until it is completely delimited as precisely as possible (Figure
1). The corresponding class was assigned to each surrounded area by the points of the
polygon tool. The annotation classes were: epidermis, dermis, subcutis, trichoblastoma,
melanoma, PNST, SCC, MCT, histiocytoma, plasmacytoma, inflammation/necrosis, bone,
cartilage. All the tissue structures of the slide were annotated with the aim of trainingthe
algorithm as accurate as possible.

A total of thirteen classes were created, focusing on the main histological structures of the
skin (epidermis, dermis, subcutis), as well as the seven tumor types. In addition, special
annotations were made for miscellaneous tissues that were not necessarily relevant to
this study but were found in some cases such as inflammation, necrosis, bone and
cartilage. Table 1 shows the total number of annotations per class, as well as the total

surface area in mm? annotated per class on SlideRunner.
No annotations were performed in WSI of the second dataset.

Table 1. Total number of annotations created in SlideRunner and the total annotation area for
each of the classes in mm2. SCC: squamous cell carcinoma; PNST: peripheral nerve sheath
tumor.

Annotated class Annotations Annotation area (mm?)
Epidermis 3188 224457
Dermis 3423 16616.21
Subcutis 2850 7369.88
Trichoblastoma 423 9072.1
SCC 337 3542.28
Melanoma 379 6836.93
Plasmacytoma 377 4750.34
Mast Cell Tumor 161 9330.1
PNST 131 11108.78
Histiocytoma 369 2947.59
Bone 51 216.86
Cartilage 16 32.15
Inflammation/Necrosis 719 2050.16
Total of annotations 12424 76118.05

MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous cell carcinoma.
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Figure 1. Annotations performed in WSI in SlideRunner with the polygon tool.

A. Melanoma, skin. Annotations completed in WSI with the polygon tool. Colored lines surround
the desired structures.

B. Magnification of the superficial region of the tumor, the division of the epidermis and the tumor
is observed.
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C. Magnification of the area between the tumor and subacute inflammation. In the middle of these
two is the dermis with a normal follicle and collagen. Green: epidermis; yellow: dermis; red:
inflammation/necrosis; white: melanoma. WSI, HE.

D. Trichoblastoma, skin. Annotations completed in WSI. The edges of the tumor are delineated
by a blue line.

E. Magnification of the region showing annotations made with clear demarcation between the
tumor and the dermis.

F. Magnification of the subcutaneous region during annotation of the subcutaneous tissue. Note
the collagen of the dermis surrounded by a yellow line and the black line shows the unfinished
annotation process.

G. Melanoma, skin. Completed annotations in WSI show the tumor surrounded by a black line and
a central area of necrosis surrounded by a red line. Four additional random regions of necrosis
within the tumor were also annotated.

H. Magnification of an annotated necrosis zone next to a tumor region. Note the poor demarcation
between both tissue types.

I. Magnification of the superficial zone of the tumor where the difficulty in delineating the dermis
of the tumor and the epidermis can be observed. The annotations were made as precise as
possible.

J. Squamous cell carcinoma (SCC), skin of the paw. Annotations completed in WSI. The tumor is
shown delineated by an orange line and at the bottom-center of the tumor, a region composed of
bone, delineated by an olive green line.

K. Magnification of the transition zone between the epidermis (green line), the SCC and the dermis
(yellow line). Note the difficulty of this task in attempting to define borders between these three
histologic structures.

L. Magnification of the region composed of bone surrounded by the olive green line and its poorly
demarcated vicinity with the SCC (orange line).

3.4 Development of the algorithm, training and testing

Technical method development was conducted at the pattern recognition laboratory of the
Friedrich-Alexander-University Erlangen-Nurnberg in close collaboration with the medical

experts at the Freie Universitat Berlin (Wilm et al., 2022).

From the first dataset, the 50 images of each tumor type were divided into 35 training, five
validation, and 10 test images. For the total dataset, this resulted in 245 training, 35

validation, and 70 test WSIs. We trained a neural network for the segmentation into six
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classes: background, tumor, epidermis, dermis, subcutis, and inflammation combined with
necrosis. For this, we chose a UNet (Ronneberger et al.,, 2015) architecture with a
ResNet18 (He et al., 2016) backbone pre-trained on ImageNet (Russakovsky et al., 2015).

We trained the network with image patches sized 512 x 512 pixels and a resolution of 4.0
pm/pixel. Due to high class-imbalances, we followed an adaptive sampling strategy.
Initially, ten patches per slide were sampled uniformly across all annotation classes,
resulting in 2,450 training patches. These were used to train the network for one epoch.
Then, the network performance was evaluated on 350 validation patches (10 per WSI)
sampled in the same fashion. Afterwards, the probability of sampling patches from a class
with a low validation performance was increased, whilst high-performing classes were
under-sampled. By using this adaptive sampling scheme, we explicitly trained the model
on difficult classes, aiming for faster convergence of the model training. We trained the
model for 100 epochs with a maximal learning rate of 10 and a batch size of four. As loss

function, we used a combination of cross-entropy and dice loss.

Additionally, we trained a tumor type classification network to distinguish between the
seven tumors. We used the same dataset split as used for training the segmentation
network, resulting in 35 training images per subtype. Due to the high morphological
resemblance of round-cell tumors, which might only be distinguishable at a high image
resolution, we decided to train the classification network on patches at the original
resolution of 0.25 pm/pixel. To cover as much context as possible, we increased the patch size
to 1024 x 1024 pixels. We used an EfficientNet-B5 (Tan & Le, 2019) architecture pre-
trained on ImageNet (Russakovsky et al., 2015). For each epoch we sampled 10 patches
per slide, ensuring a uniform sampling across all tumor types. We additionally trained the
network on a “non-neoplastic’ class which was trained on patches from all remaining
annotation classes (epidermis, dermis, subcutis, and inflammation combined with
necrosis). A patch was only used for training the classification network if at least 90 % of
the pixels were annotated as the sampled class. We used a batch size of four and a
maximal learning rate of 103 and trained the network for 100 epochs until convergence.

For optimization, we used the cross-entropy loss and the Adam optimizer.
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Figure 2 visualizes the WSI inference pipeline. A slide was first segmented into six classes
using the segmentation network. Afterwards, regions segmented as tumor were classified
into one of the seven tumor types. For this, we upscaled the predicted tumor region from
the segmentation resolution of 4 um/pixel to the classification resolution of 0.25 pm/pixel.
Then, we divided the tumor region into patches sized 1024 x 1024 pixels, which were only
passed on to the classification network if they were completely segmented as tumor. Each
patch then obtained a classification label and all patches classified as non-neoplastic
tissue were excluded. All remaining patch classifications were combined to a slide

classification label using majority voting (Wilm et al., 2022).

In the same way, the algorithm was run on the second dataset, which did not contain

annotations, only hidden diagnostic labels for each WSI.

Segmentation Patch P "
Input WSI 512 512 (4 Bm) UNet Patch Prediction WSI Segmentation

!

!

i

Slide Label: MCT «——

MCT

I . = Classification Patch
WSI Classification  Patch Prediction EfficientNet 1024 x 1024 (0.25 %n;\)

Figure 2: Cutaneous tumor segmentation and classification pipeline.
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3.5 Human vs machine challenge

In order to compare the results of the algorithm with human intelligence, a challenge was
carried out, which consisted of providing the second dataset containing 140 WSI (20 per
tumor type) to 6 experienced board-certified pathologists for their evaluation. Since this is
a comparative experiment, each participating pathologist was asked to assign each slide
a main diagnosis and two differential diagnoses. The only condition was that it was not
possible to assign a percentage less than 1% or greater than 98% to each diagnosis and
that in total they should result in 100%. The percentage assigned by the pathologists to
each response or diagnosis was defined as confidence (certainty/sureness).

In addition, in order to perform a uniform statistical analysis for this experiment, we took
into account the final classification of the algorithm and from the total patch count, only
those first three options. Finally, we transformed the count of only the first 3 options into
100% of the patches. The accuracy of the pathologists and the algorithm were similarly
evaluated.

We first defined accuracy as the final diagnosis that was chosen by both the pathologists
and the algorithm for each slide qualitatively, i.e. regarding the algorithm, the tumor type
with the highest number of classified patches on a slide was considered as the main
diagnosis and regarding the pathologists' answers, the tumor type for which the majority

of pathologists voted was considered as main diagnosis.

Subsequently, precision (positive predictive value) was defined as the total number of true
positive percentages assigned over the total of the remaining percentages of their
differential diagnoses. In the case of the algorithm, it was defined as the total number of

patches correctly classified over the total number of patches collected.

Recall (sensitivity) of the pathologist’s answers was defined as the total percentage of
correctly diagnosed cases over the fraction of true positives and false negatives. In the
case of the algorithm, it was defined as the total number of patches correctly classified

over the total number of true positives and false negatives.

In addition, the average of the percentages assigned by the pathologists for these
calculations and the average of pathologists who agreed on the diagnoses were collected.
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The responses of the six pathologists for each slide were averaged and displayed as
whole numbers or decimals (depending on the result). For example, if on one slide 4/6
pathologists chose one tumor type and 2/6 chose another type, the final number of
accuracy would be 4/6; if on the next slide of the same tumor type 5 pathologists chose
one tumor type and 1 pathologist chose another, the average correct answer would be
4.5 (sum of 4 + 5/ 2), and so on until completing the 20 slides per tumor type (140 WSI).

Statistical comparison of this section was conducted at the Institute of Veterinary

Epidemiology and Biometry at the Freie Universitat Berlin.

3.6 Immunohistochemistry

In order to reconfirm the most confounding cases in our database (second dataset) and
determine their individual ground truth, a conventional IHC analysis was performed. The
following antibodies were used: Melan-A (A103) monoclonal mouse for melanoma (de Wit
et al., 2004; Ohsie et al., 2008; Ramos-Vara & Miller, 2011) in a 1:300 dilution. CD79acy
monoclonal mouse anti-human for plasmacytoma (Baer et al., 1989; Ramos-Vara et al.,
2007), in a 1:60 dilution. CK10 (EP1607IHCY) monoclonal rabbit for SCC
(Assawawongkasem, et al., 2020) in a 1:1000 dilution. E-Cadherin (EP913 (2) vy)

monoclonal rabbit for histiocytoma (Baines et al., 2008) in a 1:1000 dilution.
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4. Results

4.1 Dataset

From the first dataset, a total of 350 slides were scanned and fully annotated. In total,
12,424 annotations were made, with an annotation surface of 76,118.05 mm? (Table 1,
Figure 1). Bone and cartilage annotations were excluded in the training due to their low
diagnostic relevance and their low number of annotations and annotated area in our
database. Once the model was trained and validated, we first tested it on the test split of
dataset 1 and evaluated the segmentation output against our ground truth annotations.
Subsequently, we applied the algorithm to the second dataset (140 WSIs) and compared

the tumor-type classification performance to the six pathologists.

4.2 Algorithm performance: tissue segmentation

In the first model run in the first dataset, the performance of the algorithm in segmenting
tumor vs. non-tumor classes was evaluated. Within the non-tumor classes, we only
considered dermis, epidermis, subcutis and inflammation/necrosis. As mentioned above,
we excluded bone and cartilage classes in our model because of their negligible
annotation count and low diagnostic relevance in cutaneous oncologic pathology. The
precision of the segmentation model was 78%; however, the precision regarding tumor
segmentation and exclusion of those patches that did not contain tumor (i.e., tumor vs.
non-tumor) was 95%. Excluding tumor segments, the class with the best accuracy was
subcutis with 85%, followed by dermis with 84% and epidermis with 79%. The class with
the lowest precision was inflammation/necrosis, with 46%. The confusion of this last class
was mainly with the tumor class, which was incorrectly segmented in 26% of the patches.
False positives were also confused with dermis in 15%, subcutis in 11% and epidermis in
2%. Similarly, the tumor class was the one with the highest number of false negatives,
mainly confused with inflammation/necrosis (26%). Confusion between tumor and dermis
and epidermis was 10% and 12%, respectively. The summary of the segmentation
confusion matrix is shown in Table 2. The total number of patches that were considered

as tumor (which had a precision of 95% and recall of 66%, F1-score 78%) entered the
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classification model. Figure 3 shows some performance examples of the algorithm for the

segmentation of dataset 1 WSIs. The performance of the algorithm for tumor classification

is described below.

Table 2. Segmentation confusion matrix.

Prediction
Dermis Epidermis | Subcutis I/N Tumor
Dermis 0,844 0,080 0,126 0,150 0,033
Epidermis 0,009 0,789 0,001 0,022 0,001
Subcutis 0,042 0,005 0,854 0,111 0,006
I/N 0,004 0,008 0,004 0,456 0,008
Class Tumor 0,102 0,117 0,015 0,261 0,952
Segmentation Precision 0,844 0,789 0,854 0,456 0,952
Segmentation Recall 0,684 0,960 0,839 0,948 0,658
F1 Score 0,756 0,866 0,846 0,616 0,778

I/N: Inflammation and necrosis.

4.3 Algorithm performance: tumor classification

In our second dataset, we used 140 WSI (20 per tumor type) to test the algorithm only

regarding its performance by classifying tumor types. The slide-level accuracy (i.e., the

final class/tumor type that was ranked highest with respect to the total number of patches

on each WSI) was 95%, i.e. out of 140 slides, 133 slides were correctly classified. The

patch-level precision (i.e., the correct ranking of the algorithm with respect to the individual

patches and their summation over all WSIs) of the model was 85%. Table 3a shows an

accuracy summary of our model at slide level (qualitative and definitive classification per

WSI).
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Figure 3. Comparison of the annotations completed in SlideRunner (left side) and the
performance of the segmentation algorithm on dataset 1 (right side).

A. Melanoma. Note the area of necrosis (pink) that was automatically segmented by the algorithm.
Some parts of the dermis were segmented as part of the tumor (orange) due to its unclear division.

B. Histiocytoma. The algorithm ignored the annotated areas of ulceration. Also, note the efficiency
in detecting fat within the dermis and its inclusion in the "subcutaneous"” class (in red).

C. MCT with a central area of necrosis. Note the precision of the model in segmenting the zone
of necrosis almost as the original annotation. Random areas segmented as dermis within the
tumor are shown (blue).

D. Trichoblastoma. Excellent segmentation performance, with only some regions within the tumor
segmented as dermis (blue).

E. Histiocytoma. Excellent segmentation performance, respecting the areas of ulceration and
segmented within the "inflammation/necrosis" class (pink).

F. Squamous cell carcinoma (SCC). Note the difficulty in the demarcation of the tumor and its
differentiation with the dermis. Regions of dermis within the tumor were segmented randomly;
however, the tumor was delineated with very favorable performance.

Orange: tumor; light green: epidermis; blue: dermis; red: subcutaneous; pink:
inflammation/necrosis. WSI, H&E, panoramic view.

Trichoblastoma and PNST were properly classified in all the slides (20/20; slide accuracy
100%), with a patch-level precision of 94% and 91%, respectively. Melanoma wasproperly
classified in 19 slides (95% accuracy) with a precision of 91% and one was misclassified
as PNST. MCT was properly classified in 19 slides (95% accuracy) with a precision of
95% and one slide was misclassified as SCC. Histiocytoma was properly classified in 19
slides (95% accuracy) with 80% of precision and misclassified as plasmacytoma in one
slide. SCC was properly classified in 18 slides (90% accuracy) witha precision of 70% and
misclassified as plasmacytoma in 2 slides. Plasmacytoma was properly classified in 18
slides (90% accuracy), with 75% of precision and misclassified inone slide as melanoma
and in one slide as SCC. Table 4 shows the confusion matrix of our model.

Some illustrations of the automatic classification of our model, with their respective normal

histologic images, can be seen in Figures 4-8.
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Table 3. Accuracy of the algorithm at the slide level of the 20 WSI/tumor type of our model (a) and
the consensus of the 6 pathologists (b). MCT: mast cell tumor; PNST: peripheral nerve sheath
tumor; SCC: squamous cell carcinoma.

Label

Label

Prediction
Tumor Melanoma Plasmacytoma MCT PNST scc Trichoblastoma Histiocytoma
Melanoma 0 0 1 0 0 0
Plasmacytoma 1 0 0 1 0 0
MmcT 0 0 0 1 0 0
PNST 0 0 0 0 0 0
SCC 0 2 0 0 0 0
Trichoblastoma 0 0 0 0 0 0
Histiocytoma 0 1 0 0 0 0
Slide-Level Accuracy: 0.95
Pathologists consensus
Tumor Melanoma Plasmacytoma MCT PNST scc Trichoblastoma Histiocytoma
Melanoma 0 0 1 1 0 0
Plasmacytoma 0 1 0 0 0 0
MCT 0 0 0 0 0 0
PNST 0 0 0 0 0 0
SCC 0 0 0 0 0 0
Trichoblastoma 0 0 0 0 0 0
Histiocytoma 0 0 0 0 0 0

A

B

Slide-Level Accuracy: 0.98

Table 4. Confusion matrix of our model run on the second dataset of 140 WSI at a patch
level. MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous cell

carcinoma.
Prediction
Tumor Melanoma Plasmacytoma MCT PNST SCC Trichoblastoma Histiocytoma
Melanoma 0,019 0,003 0,020 0,037 0,017 0,008
Plasmacytoma 0,049 0,013 0,011 0,058 0,013 0,053
Label MCT 0,016 0,032 0,019 0,087 0,002 0,085
PNST 0,003 0,039 0,010 0,071 0,006 0,017
SCC 0,015 0,025 0,009 0,032 0,020 0,027
Trichoblastoma 0,003 0,023 0,003 0,005 0,014 0,010
Histiocytoma 0,002 0,115 0,007 0,005 0,031 0,005
Tumor 0,913 0,748 0,954 0,908 0,703 0,936 0,800
Precision
Tumor Recall 0,898 0,791 0,799 0,861 0,846 0,942 0,829
F1 Score 0,906 0,769 0,870 0,884 0,768 0,939 0,814

Patch-Level Precision 0.85
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4.4 Human vs machine challenge

The same slides used in the test set (=140 slides, 20 per tumor type) were used in human
vs machine challenge. Qualitatively, the slide level accuracy of the pathologists was 98%
(137/140), with an average of 5.8/6 correct answers (i.e. average agreement of six
pathologist on each of the 140 WSis, table 3b). These results were obtained qualitatively,
counting only the majority of votes received by the different diagnoses (similar to the final
decision of the algorithm) and ignoring the rest, regardless of their vote count (1-0).
However, in order to understand the behavior and compare it with the predictions of the
algorithm, the accuracy, precision and recall calculations were carried out, as well as the

F1 score with respect to the percentages given by the pathologists (quantitatively).

Summary results of the precision (positive predictive value) and recall (sensitivity) of the
pathologists’ answers and of our model's classification are shown in Table 5. The
comparison of both classifications (diagnostic) with the balanced values (F1 score) is
shown in Table 6.

Statistical analysis of this section was conducted at the Institute of Veterinary

Epidemiology and Biometry at the Freie Universitat Berlin.

Trichoblastoma, PNST, SCC, MCT and histiocytoma were properly diagnosed in all slides
with an accuracy of 99%, 100% 100%, 98% and 90%, respectively. Melanoma was
misdiagnosed in 2 cases, in the slide number 98 as PNST with an average of 4/6 votes in
favor of this tumor on all slides of this group and in the slide number 119 as SCC again
with an average of 4/6 votes in favor of this tumor on all slides of this group. IHC test of
the slides number 98 against Melan-A was strongly positive (Figure 6c¢); in the 119 was
slightly positive, but the IHC against CK10 was negative. Plasmacytoma was
misdiagnosed as MCT in the slide 35 with 3/6 votes for this tumor type of this group. This

case had a strong positivity in IHC for antibodies against CD79.
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4.4 Results by tumor type

The results of the algorithm and the pathologists grouped by tumor type are described

below:

4.4.1 Trichoblastoma

All slides were successfully classified as trichoblastoma (100% accuracy), with a precision
and recall of 94% each. Algorithm confusion occurred mostly with SCC and melanoma,
with 2% and 1.7% respectively (false positives recovered). The model ignored false
negatives that mainly classified as plasmacytoma in 2.3% of the patches and again with
SCC in 1.4% (false negatives).

The six pathologists (6/6) primarily diagnosed all slides as trichoblastoma with a
confidence of 97% (considering that this number was the maximum they could reach, as
if it was 100% confidence). This shows the most homogenous results. As the second
(differential) diagnosis, SCC was the most voted in all slides, with an average of 4/6 votes,
with a confidence of 1%. Melanoma was the third diagnosis assigned by the majority of
pathologists in the slides, with an average of 3.5/6 votes and a confidence of 1%. This
means that from the options provided to the 6 pathologists, the majority considered the
most likely differential diagnosis of trichoblastoma to be SCC and Melanoma as third

option.

4.4.2 PNST

All slides were correctly classified as PNST (100% accuracy), with a precision of 91% and
a recall of 86% (F1=88%). Confusion of predicted patches occurred in 3.2% with SCC and
2.0% with melanoma (false positives). Patches ignored by the algorithm that were

classified as (false) negative, were classified as SCC (7%) and plasmacytoma (4%).

The six pathologists primarily diagnosed all slides as PNST, with a confidence of 96%.
This shows the second most homogenous results. As the second diagnosis (differential),
melanoma was the most frequently mentioned by pathologists (5.3/6 votes in average),
with a confidence of 2%. As the third diagnosis, SCC was the most voted diagnosis in the
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majority of slides (16/20), with an average of votes of 3.2/6. Trichoblastoma was the most

voted in the remaining slides (4/20), with an average of 2.5/6 votes and a confidence of
1%. This means that from the options provided to pathologists, the most likely differential

diagnosis of PNST is melanoma and SCC as a third differential diagnosis.

4.4.3 Melanoma

The model appropriately classified 95% of the slides (19/20) and one of them was
misclassified as PNST. The precision of this group was 91% with a recall of 90%
(F1=91%), as it falsely recognized 5% of the patches as plasmacytoma, 2% as MCT and
1.5% as SCC. Likewise, the remaining patches were ignored as melanoma and identified

as SCC in 4% and as PNST, plasmacytoma and trichoblastoma in 2% (false negatives).

The six pathologists diagnosed 18/20 slides as melanoma, with a confidence of 96%. In
one slide, 4/6 votes of the pathologists was PNST as the primary diagnosis, with a
confidence of 97%. The IHC of this case was positive for antibodies against Melan-A (A-
103, figure 7C), so the confirmatory diagnosis is melanoma. Furthermore, from this slide
4/6 votes were for melanoma as the second diagnosis. In one slide, 4/6 votes were for
SCC as the primary diagnosis, with a confidence of 91%. The IHC of this case was slightly
positive for Melan-A and negative for CK10, so the confirmatory diagnosis is Melanoma.
From this slide, the most voted second diagnosis was plasmacytoma. From this group,
the most voted secondary (differential) diagnosis was PNST (4.4/6 votes) with a
confidence average of 2% and the most voted third diagnosis was trichoblastoma (3.6/6
votes), with a confidence of 1%. This means that from the options provided, 4.4/6 votes
of the pathologists agreed that the most likely differential diagnosis of melanoma is PNST,

and 3.6/6 votes of the pathologists agreed that the third is trichoblastoma.

444 MCT

Similar to the previous one, 95% of the slides were correctly classified as MCT (19/20)
and the remaining slide was incorrectly classified as SCC. The precision of this group of
slides with respect to the total count of the recovered patches was 95%, resulting in a
recall of 80% (F1=87%). False positives of 2% of the patches were equivocal for
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plasmacytoma and PNST (1% each). Patches ignored as MCT were reported as SCC and
histiocytoma (9% each), followed by plasmacytoma (3%).

All slides were primarily diagnosed as MCT by (5.85/6 votes by the pathologists), with a
confidence of 93%. Regarding this group, the second differential diagnosis was
histiocytoma in 11/20 slides, with an average of 4.5/6 of votes and with a confidence of
5%. The third differential diagnosis was plasmacytoma on 11/20 slides, with a votes
average of 4.5/6 and a confidence of 1%. This means that of the options provided, 4.5/6
votes agreed that the most likely differential diagnosis of MCT is histiocytoma and the third

IS plasmacytoma.

4.4.5 Histiocytoma

Out of the 20 slides, 19 were successfully classified (95% accuracy) and one was
incorrectly classified as plasmacytoma. The precision was 80% with a recall of 81%
(F1=81%). Confusion of the total number of patches that were erroneously classified as
histiocytoma occurred mainly within MCT (8%) and plasmacytoma (5%) and among the
ignored histiocytoma patches mainly within plasmacytoma (12%) and SCC (3%). The

residual false negatives were less than 1% per remaining tumor.

All slides were primarily diagnosed as histiocytoma with 5.3/6 votes in average and with
a confidence of 87%. From this group, the second diagnosis assigned by the pathologists
(4.4/6 votes) was MCT, with a confidence of 1%; the second most voted was
plasmacytoma for this category. The third diagnosis mentioned by pathologists (4.2/6
votes) was plasmacytoma, with a confidence of 2%; the second most voted in this
category was MCT. This means that from the options provided, 4.4/6 votes agreed that

the most likely differential diagnosis of histiocytoma is MCT and the third is plasmacytoma.

4.4.6 SCC

Within the 20 slides labeled as SCC, 18 were correctly classified (90% accuracy) and 2

slides (10%) were misclassified as plasmacytoma. The precision was 70% and recall was
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85% (F1=77%). Matrix confusion shows that false positives were mainly classified within
MCT (9%), PNST (7%) and plasmacytoma (6%), and that patches ignored as SCC were
classified as PNST and histiocytoma in 3%, respectively. Confusion of patches that were

ignored as SCC and classified as plasmacytoma was slightly more than 2%.

The six pathologists primarily diagnosed all slides as SCC (6/6), with a confidence of 95%.
This shows the third most homogenous results. Trichoblastoma was the most voted
secondary diagnosis in 19 of 20 slides, with an average of 5/6 of votes and a confidence
of 3%. Melanoma was the most voted tertiary diagnosis in 19/20 slides, with an average
of 4.3/6 votes and a confidence of 1%. This means that, from the options provided to
pathologists, trichoblastoma is the main differential diagnosis of SCC and melanoma the

third differential diagnosis.

4.4.7 Plasmacytoma

As in the previous case, 18 slides were correctly classified as plasmacytoma (90%
accuracy). Of the remainder, one slide was incorrectly classified as melanoma and the
other as SCC. This tumor type obtained a precision of 75% with respect to the total number
of classified patches, with a recall of 80% (F1=77%). Of the remaining patches incorrectly
classified as plasmacytoma (false positives), there was confusion mainly with
histiocytoma in more than 10% of the patches, as well as PNST (4%) and MCT (3%). Of
the retrieved patches that were ignored as plasmacytoma (false negatives), they were

mainly classified as SCC (6%), histiocytoma and melanoma (5% each).

All pathologists correctly diagnosed 19/20 slides as plasmacytoma (5.7/6 votes in
average), with a confidence of 82%. In one slide, 3/6 votes were for MCT as the primary
diagnosis, with a confidence of 83%. From this slide, 3/6 votes were for plasmacytoma as
second diagnosis, with a confidence of 26%. As differential (secondary) diagnosis,
histiocytoma was the most voted tumor in 13 slides (3.6/5 votes of the pathologists in
average, confidence of 15%), followed by MCT in 6 slides (3/6 votes in average,
confidence of 21%). Finally, as a tertiary diagnosis, the most voted tumor was MCT on 15
slides (3.7/6 votes in average, confidence of 5%). From this group it can be said that from
the choices given to the pathologists, the majority agree that the differential (secondary)
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diagnosis of plasmacytoma is histiocytoma, followed by MCT in the third differential
diagnosis.

Table 5. Recall (sensitivity) and precision (positive predictive value) of pathologists' diagnoses and
algorithm classification in dataset 2.

Recall Recall

Pathologist consensus Algorithm
Tumor

Median Min Max Estimate

Histiocytoma 0.925 0.750 1.000 0.800

MCT 0.975 0.950 1.000 0.900

Melanoma 0.950 0.900 0.950 0.950

Plasmacytoma 0.775 0.700 0.950 0.950

PNST 1.000 1.000 1.000 1.000

SCC 1.000 1.000 1.000 0.950

Trichoblastoma 1.000 0.950 1.000 1.000

Precision Precision
Pathologist consensus Algorithm
Tumor

Median Min Max Estimate
Histiocytoma 0.848 0.800 0.900 1.000
MCT 0.930 0.864 0.952 1.000
Melanoma 1.000 0.900 1.000 1.000
Plasmacytoma 0.944 0.762 1.000 0.760
PNST 0.952 0.952 1.000 0.952
SCC 0.952 0.952 1.000 0.950
Trichoblastoma 1.000 1.000 1.000 0.952

MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous cell carcinoma.

Table 6. Comparison of the combination of recall and precision (F1 score) with respect to the individual
pathologists' diagnosis (first column), the pathologists' consensus (column two) and the algorithm
classification (column 3).

Pathologists single Algorithm
Tumor median (min- max)
Histiocytoma 0.897 (0.789-0.976) 0.889
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MCT 0.950 (0.905-0.976) 0.947
Melanoma 0.974 (0.900-0.974) 0.974
Plasmacytoma 0.828 (0.780-0.950) 0.844
PNST 0.976 (0.976-1.000) 0.975
SCC 0.976 (0.976-1.000) 0.950
Trichoblastoma 1.000 (0.974-1.000) 0.975
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5. Discussion

5.1 Algorithm performance

A reliable automated diagnostic work-up for seven of the most important/common canine
skin tumors is shown in this study. This algorithm was developed with complete annotations
on 350 WSI. Although we focused our annotations on all seven tumor types,we also created
annotations for normal skin structures (Table 1). The major sub- compartments annotated
in the skin were dermis, epidermis and subcutis (subcutaneousfatty tissue and muscle).
Likewise, we created classes for tissue types that are not part ofthe skin per se, but were
present in some cases such as ear cartilage, bone in the paws (mainly melanoma and
SCC) (Marinoet al., 1995) or inflammation and necrosis as a secondary response to tumor

growth. Artifacts were ignored and excluded in all slides.

In many cases, the stroma was present in high amounts (e.g. PNST or trichoblastoma), so
the stroma was annotated as part of the tumor. In tumors where it was difficult to distinguish
the exact borders (e.g. in round cell tumors or SCC), the borders were definedas the region
where normal tissue began/ended (Figure 1J-L). In order to obtain accurateresults, the
annotations were systematically made with the polygon tool (Figure 1)(Aubreville et al.,
2018). We performed the skin annotations starting from the external surface (epidermis)
towards the deep surface (subcutaneous), usually from left to right (Figure 1F), similar to
the system described by Lindman et al. (Lindman et al., 2019) The delineation between the
epidermis and the rest of the tissues was the simplest but still time-consuming, due to de
great amount of it in most of the slides (Table 1, Figure 1D-E). The separation of the tumor
and dermis was the most laborious and time-consuming because all tumors had at least a
small dermal involvementand because we wanted to avoid overlapping annotations on the
entire slide. In those slides where the tumors were easier to delineate, we annotated the
dermis after epidermis; in those where there was no clear division between dermis-tumor-
subcutis, weannotated the tumor after the epidermis and the rest after. No annotation was

overlapped.
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Specifically, in SCC, tumor delineation was complicated by the high frequency of
inflammation (Figure 1J-L), desmoplasia and necrosis. Inflammation in SCC is one of the
most notorious and common features observed although the role of its presence is
controversial (Cerezo-Echevarria et al., 2020; Santana et al 2016). Santana et al
demonstrated that the presence of inflammation in SCC, regardless of the degree of
differentiation, is common and is usually characterized by macrophages, lymphocytes and
plasma cells (Santana et al., 2016). For this reason, and due to its high difficulty during
tumor delineation, we decided to include subacute-chronic inflammation secondary to the
tumor in most cases. Acute inflammation (mostly necrotic and neutrophilic) was annotated
as part of the inflammation/necrosis class only in those cases where there was ulcerationor
external inflammation; when the inflammation involved inner tumoral structures, it was
annotated as part of the tumor (Figures 1A-C, 1G-L). Our results showed that within the
CNN during testing, the algorithm was able to correctly diagnose 90% of the SCC slides;
however, confusion with plasmacytoma resulted in 10% of the slides labeled as SCC
(Figure 5). Likewise, in the slides labeled as MCT and plasmacytoma, the reverse occurred,
as 5% of the slides of these tumors were incorrectly classified as SCC (Figure 7). We
speculate that the confusion of patches within our database in this group was a
consequence of the complexity of the tumor (high frequency of subacute-chronic
inflammation among neoplastic groups of cells), as well as the objectivity of the algorithm.
The evaluated patches demonstrate that the algorithm had the greatest difficulty of
classification in those areas with the highest number of inflammatory cells (Figure 5) and
classified them with respect to most of the cells present (plasma cells, histiocytes or
lymphocytes). It could be that in some patches, the differentiation between round cells
caused conflicts because although no or only few mast cells were observed as part of the
inflammation, the algorithm decided to classify some patches as MCT. In the case that was
misclassified as plasmacytoma, there was a large amount of inflammation and little
squamous cell tumor density. We believe this is justified during the annotation process.
Nevertheless, our data are of high relevance since to date, no algorithm has been

developed that has achieved this using H&E-stained WSI in cutaneous SCC.
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Following the issue of inflammation and necrosis, as mentioned above, in addition to the
normal skin structures and the seven tumor types, we decided to create an annotation class
for inflammation and necrosis in order to achieve a more adequate segmentation during
the testing of the algorithm. In total, 719 inflammation/necrosis annotations were achieved,
with an area of 2050.16 mm? (Table 1) and successful segmentation (Figure 3).Although it
was not our goal to determine and quantify necrosis within tumors, this is an important
finding in the diagnostic and prognostic understanding of specific situations. Theimportance
of necrosis within tumors has been proven (Hanahan & Weinberg, 2011), as determining
its presence and extent can provide useful information for the diagnosis andprognosis of
some tumors such as soft tissue sarcomas, like PNST (Kuntz et al., 1997) and melanoma
(Smith et al., 2002). In these two tumors in our database, the delineation of necrosis was
laborious because it was randomly distributed inside and outside the tumor (Figure 1A-C,
1G-H); however, segmentation was successfully achieved and the necrotic regions were
excluded before classifying the tumor type by the algorithm (Table 2, Figure 3). A good
performance of ML and DL in DP has been reported during the evaluation of tumor-related
necrosis mainly in osteosarcoma (Arunachalam et al., 2019; Fu et al., 2020; Ho et al.,
2020), due to its great usefulness during patient assessment in human chemotherapy
(Kang et al., 2017).Likewise, Arunachalam et al. (Arunachalam et al., 2019) described a
reliable model for identification and quantification of necrosis within osteosarcoma with
potential for use in other tumor types. In the same way, we believe that our method and
model could be implemented in veterinary pathology in tumors of dogs and most probably

other species.

Our model classified all trichoblastoma slides correctly, with excellent performance as its
precision and recall were 94% each (F1=94%). These results are the highest and most
homogeneous of the seven tumors we included in our database, training and testing. As
mentioned above, the annotations of this tumor were the most easily made because of its
clear demarcation from the rest of the normal histologic structures of the skin and becauseit
does not tend to be contiguous with the epidermis (Figure 1D-E). We suspect that these
characteristics, in addition to the tissue morphology of this neoplasm, were fundamental
factors for the excellent performance of our model. Trichoblastoma is the most common

cutaneous follicular tumor in dogs (Abramo et al., 1999; Goldschmidt et al., 2018;
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Goldschmidt, 1998) and its histologic features differentiate it from most cutaneous tumors
and tumor-like lesions (Abramo et al., 1999; Goldschmidt et al., 2018; Goldschmidt, 1998;
Wiener, 2021). Despite its different histologic subtypes (ribbon, medusoid, trabecular,
granular, and fusiform), its histologic features are unique in our database. This probably
also explains the efficiency of our model. It would be interesting in future research to test
whether a differentiation between trichoblastoma and its differential diagnoses
(trichoepithelioma, tricholemmoma, basal cell carcinoma, etc.) can be created through ML
and DL in WSI. Following the previous line of discussion, within the confusion matrix it can
be determined that the algorithm had a slight difficulty indifferentiating it with SCC, as 2%
of the evaluated patches of this group were classified as such (Table 4). This finding is
interesting as it means that the algorithm was able to identify similarities between tumors
of follicular origin. This is the first study in veterinary medicine to include trichoblastoma

within a CNN training in WSI of canine tumors.

All slides labeled as PNST were correctly classified (100% accuracy), with a precision of
91% and a recall of 86% (F1=88%). Of the total number of patches recovered during the
test in this group of tumors, 3% were classified as SCC and 2% as melanoma,; likewise,
the tumor with the highest number of false negatives was SCC (Table 4). Previously we
discussed one of the main characteristics of SCC that caused confusion in our model, such
as inflammation and necrosis; however, within its histological features, the high
desmoplastic activity is well known (Goldschmidt et al., 2018; Goldschmidt, 1998; Zainab
et al., 2019) which, as in inflammation, the relevance of its presentation is not yet fully

elucidated and is still under discussion (Zainabet al., 2019).

Likewise, one of the main components of PNST (and soft tissue sarcomas) in dogs is the
presence of variable amounts of fibrovascular stroma (Dennis et al., 2011; Hendrick, 1998),
very similar to that present in SCC. In reviewing the patches, we found that our model had
difficulty differentiating between the two tumor types in a few of them. Since stroma is a
secondary reaction to the presence of both tumors, we determined that it is very important
to include any type of stroma within the annotations of tumors with such ability, because at
the end of the day, the difficulties in its classification were not relevant for the correct
classification and excellent performance of our algorithm. Our method of annotation and
training resembles that of Foersch et al, who developed an algorithm for the identification
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and differentiation of soft tissue sarcomas in humans with a high accuracy, similar to ours
(Foersch et al., 2021). Although we did not replicate the previously mentioned method, we
can conclude that in the same way, our model can assist pathologists, shorten diagnostic
intervals and increase their accuracy and confidence, regardless of the degree of expertise.
Although there are studies of Al in softtissue sarcomas in dogs (mainly in diagnostic imaging
such as tomography) (Ye et al., 2021), at present date its application in WSI has been
scarcely investigated. This is one of the first studies to include and investigate the
performance of Al in a type of soft tissue sarcoma in dogs with complete annotation in WSI.
The cellular characteristics and their relevance within ML and DL in WSI will be addressed
in the nextparagraph.

The performance of our model during the classification of the slides labeled as melanoma
reached 95% accuracy (19/20), with a precision of 91% and a recall of 90% (F1=90%). In
fact, this number is surprising since it was hypothesized that this tumor would cause
problems during testing due to its complexity and variability in pigmentation and histological
patterns and cell forms (pleomorphism), to such an extent that even for pathologists its
correct diagnosis can be challenging without using special tests (for example IHC)
(Goldschmidt, 1998; Smedley et al., 2011). Most likely, we believe the amount of pigment
greatly facilitated itsclassification, since from the slides we chose, 45% were heavily
pigmented melanomas, 35% had less than 50% pigment and 20% were amelanotic
melanomas. One of these slides was incorrectly classified as PNST (Figure 6). This case
is very particular and interesting within our database, since very similar results occurred in
the human vs. machine challenge. The aforementioned slide corresponds to a melanoma
whose histological characteristics contained a large number of spindle cells and little
melanin pigment (amelanotic spindle cell melanoma). As expected, the algorithm had great
difficulty classifying this case and the performance was not as precise as it determined that
44% of the patches corresponded to PNST, 35% to trichoblastoma, and only 13% to
melanoma. Spindle melanomas are among the different subtypes that have been
recognized (along with epithelioid melanoma), with absent or present pigment (Smedley et
al.,, 2011). These melanomas are arranged in streams and interweaving bundles, very
similar to soft tissue sarcomas (PNST or fibrosarcoma) but with nuclear pleomorphism and

karyomegaly, so those amelanotic spindle melanomas are often a diagnostic challenge
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without the utilization of specific tests such as IHC (Goldschmidt, 1998; Ramos-Vara &
Miller, 2011; Smedley et al., 2011). Outside this specificcase, our algorithm had an
accuracy similar to that of the 6 pathologists who evaluated the same cases, so once again
the model we developed has great diagnostic utility and could even be established as an
additional tool to software-assisted decision making in diagnostic and research laboratories
in veterinary pathology. It is worth mentioning that the usefulness of the development of
CNN in DP for the diagnosis of melanoma has already been proven on several occasions
(Norgan et al., 2018; Wang et al., 2020); however, in veterinary pathology it is still a little

explored area.

It would be worthwhile to investigate in depth its vast possibilities and future applications.

5.2 Algorithm performance: round cell tumors

For the round cell tumors included in our database, histiocytoma and MCT had a very
good classification accuracy of 95% (19/20) each and plasmacytoma 90% (18/20).
Although MCT and histiocytoma had the same number of correctly classified slides, the
precision of the individual patches was different, with MCT having an excellent precision
(95%) and histiocytoma a good precision (80%). However, the recall of both and
plasmacytoma was similar (MCT=80%, histiocytoma=83%, plasmacytoma=80%).
Likewise, the recall of these three tumors was the lowest in our results (less than 85%).
This means that out of the seven tumors, our model showed greater difficulties in
collecting the positive patches compared to the rest of the tumors, which obtained a recall
rate equal to or greater than 85%. We acknowledge that there is considerable discussion
among researchers concerning the facility for a pathologist to differentiate round cell
tumors from each other, which in addition to those we investigated, cutaneous lymphoma,
amelanotic melanoma, neuroendocrine tumors and transmissible venereal tumor (TVT)
are mentioned (Cangul, 2001; Meuten, 2016). It is also well known that due to their similar
cellular appearance and tissue arrangement, it is a great challenge for pathologists to
differentiate them without the utilization of special stains or complementary tests such as

IHC, especially in poorly differentiated tumors (Sandusky et al., 1987).

Among these three tumors, plasmacytoma has a special complexity. In most of the
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plasmocytomas, regardless of the degree of differentiation, it is common to observe
atypical morphologic configurations like binucleations, multinucleations, variable amount
of amyloid, nuclear atypia and cellular pleomorphism (Baer et al., 1989; Banerjee et al.,
2004). Likewise, the cellular arrangement, which is usually sheet-like, atypical
presentations in the form of pseudoglandules have been reported (McHale et al., 2018).
We believe that the previously mentioned features mainly influenced the results of our
model, as this was the tumor with the lowest precisionand recall (F1=77%). Although this
tumor typically offers no diagnostic challenge for the pathologist, some subsets of it might
cause difficulties in differentiating it from other neoplasms such as amelanotic melanoma.
Although little research has been done on DLand CP with a focus on round cell tumors in
canines, Salvi et al. developed an algorithm very similar to the one we describe with
images collected from WSI (Salvi et al., 2021). However, comparing their results with ours,
and since they were very similar, we can conclude that our algorithm may be reproducible
and of high benefit in decreasing error rates during round cell diagnosis, not only in dogs
but also in other species. Likewise, although our intention was not to stage MCT in their
grades of malignancy as Salvi et al. did, we do not exclude the possibility that in future
research, an algorithm for the automated diagnosis of canine cutaneous tumors can be
created that can also achieve acorrect staging of malignancy. Our findings are of vital
importance, since a correct diagnosis of round cell tumors in dogs is important to
determine the prognosis and treatment of patients and this model could potentially be
implemented as a diagnostic support tool for the daily workflow in pathology laboratories
with equally efficient results but in less time and with lower cost than immunomolecular

tests.

Salvi et al. encountered similar difficulties in developing an algorithm for automated
detection of round cell tumors. They concluded that the amount of inflammatory cells
present in certain tumors (e.g. histiocytoma or SCC) might influence the decisions made
by the algorithm (Salvi et al., 2021). In the same way, our results can be compared with
those mentioned above, as with respect to our results, we believe that it is indispensable
to take these features into account in future attempts to improve the automated

classification of round cell tumors in dogs.
A well-illustrated example of the distribution of patches in a WSI during the algorithm
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classification is shown in Figure 8, where the histiocytoma was incorrectly classified as a
plasmacytoma. Another interesting finding in our model is the automatic identification of
the epidermal reaction secondary to tumor growth in some patches and its classification

as SCC (Figure 4).

. Melanoma

Figure 4. Histiocytoma. Automatic classification algorithm in WSI (normal histology on the
lower left). Note that most of the patches chosen by the algorithm that were correctly
classified as histiocytoma are situated in the central and lower region of the tumor (blue
patches) and in the upper region, close to the epidermis, most of the patches were
classified as SCC (red patches). Of the total number of patches in this WSI (n=495), 66%
were correctly classified as histiocytoma and 22% as SCC. Additionally, 7% of the patches
were classified as plasmacytoma, also distributed on the superficial surface of the tumor.
On the upper right is a magnification of a region that was classified as SCC; the epidermis
is identified with an irregular, pseudocarcinomatous acanthosis, subacute inflammation
and neoplastic cells.

WSI, H&E. MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous
cell carcinoma.
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Figure 5. SCC misclassified as plasmacytoma. Out of the total number of patches
recovered during segmentation (n=204), 51% were classified as plasmacytoma (green
patches) and 21% as SCC (red patches). In the left magnification, a transition zone is
observed; note that the neoplastic epithelial cell clusters (red) are properly classified and
the patches from that region arranged in the periphery correspond to subacute
inflammation which was classified as plasmacytoma (green) and histiocytoma (blue). In the
same way, in the magnification on the right side, the neoplastic groups in red (SCC) and in
the area with predominant inflammation classified as plasmacytoma and 1 patch as
histiocytoma.

WSI, H&E. MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous
cell carcinoma.

5.3 Comparison of algorithm performance against human performance

In order to validate the results of the algorithm and compare its results with the expertise
of the pathologists, a human vs. machine challenge was performed in which 6 experienced
and board-certified pathologists were provided with the same 140 slides used in the test
set of the algorithm. The qualitatively accuracy of the pathologists by diagnosing the slides
was 98%, i.e. of the total number of slides (n=140), 137 were correctly diagnosed. The
group of slides where misclassification or mismatch was observed was in the slides
labeled as melanoma (2/20) and plasmacytoma (1/20).
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Regarding slide 98, whose diagnosis corresponds to melanoma, in the same way as the
algorithm, 4/6 pathologists diagnosed it as PNST and 2/6 correctly as melanoma. This
case was previously discussed. However, it is very interesting that the algorithm behaved
similarly to the majority of pathologists (Table 6). It is worth remembering that in this
experiment, the pathologists were provided only with WSIs without the possibility of
performing special stains or complementary tests (e.g., IHC), so they had to depend on
their first guess (visual skills). In addition, the difficulty that can arise when diagnosing
melanomas with H&E alone, especially in poorly pigmented tumors, has been described
on numerous occasions (de Wit et al., 2004; Jungbluth, 2008; Koenig et al., 2001; Ohsie
et al., 2008), and therefore other tools are usually necessary. As already mentioned, this
case represented a melanoma with apredominance of spindle cells and scarce amount of
pigment with strong positivity in IHCagainst Melan-A antibodies (Figure 6). With respect to
the majority vote and the algorithmdecision, we could conclude that our results serve as a
basis for determining the inclusionof Al to support pathologists in the routine workflow.
This provides a good starting point for discussion and further research. We believe that
future research should be devoted tothe development of algorithms that can reach the

value of a molecular complementary test.

The other case in the melanoma group that was incorrectly diagnosed by the majority of
pathologists (4/6, precision 91%) was diagnosed as SCC. Two of the six pathologists
correctly diagnosed this case. This case corresponds to an amelanotic melanoma
composed of mostly epithelioid cells and with clustered and nested arrangement, as
described in the literature (Goldschmidt, 1985; Smith et al., 2002). The behavior ofthe
algorithm was distinctive, since out of the 100% of the patches evaluated by the algorithm,
50% of them were correctly classified as melanoma, obtaining the majority of the votes,
followed by trichoblastoma (26%) and SCC (18%). Although the algorithm classified it
correctly, the tumors in our database with which it found the most confusion were
trichoblastoma and SCC, similar to the pathologists. This can only be explained by taking
into account that the pathologists performed the diagnosis at a slide level, while the
algorithm performed it at a patch level, so the pathologists' diagnostic confidence, without
complementary diagnosis techniques has to be arbitrary while the algorithm's decision-

making is more accountable (honest?) (Graphic 1).
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Graph 1. A. Distribution of algorithm classification regarding the tumor type. B. Distribution
of pathologists' consensus with respect to definitive diagnosis. Each point represents a
WSI that was grouped into a class with its precision of occurrence. n=140. SCC: squamous
cell carcinoma; MCT: mast cell tumor; PNST: peripheral nerve sheath tumor.

Another explanation is that diagnosis among different pathologists may become
subjective and subject to considerable inter-observer variability (Bueno-de-Mesquita et
al., 2010; Orlando et al., 2016; Schnitt, 2001). However, in recent studies, Bertram et al.
developed an algorithm to support the detection of mitoses in WSIs of canine MCT by
comparing it with the visual identification of board certified pathologists, demonstrating
that the assistance of algorithms in routine diagnosis is of high utility when there is high
inter-observer variability (Bertram et al., 2021; Bertram et al., 2020). Likewise, we propose
that our model can be implemented as part of a tool to support pathologists in daily

workflow, especially in dermatologic oncology.

In the last slide where there was an incorrect diagnosis, which was a plasmacytoma
(CD79 positive) (Ramos-Vara et al.,, 2007), 3/6 pathologists diagnosed it as MCT.

However, the average confidence with which the diagnosis was made was 83% and as a

differential diagnosis 3/6 pathologists considered plasmacytoma with an average
confidence rate of 26%. Alike, our model misclassified this case, as of the total number of

patches recovered, 44% were recognized as SCC, 17% as melanoma and 12% as
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histiocytoma. Plasmacytoma obtained only 8% precision (Figure 7). We previously
discussed the frequent difficulty encountered during the diagnosis of round cells,
especially when the degree of differentiation is very low. By comparing the results of Salvi
et al. and their algorithm for the automated detection of round cell tumors (Salvi et al.,
2021), we consider that in the same way our model could increase the efficiency of
pathological diagnosis, as well as serve as a second opinion tool for pathologists.
Furthermore, this study is a milestone for automated classification of round cell tumors in
WSIs using CNN.

Tables 5-6 show a summary comparison of the combination of pathologists' precision,
recall and F1 score with respect to those of our model and in the graphic 2 an visual
overview of recall, precision and F1 score of both, the algorithm and the pathologists
consensus. It is important to note that the behavior of our model is very similar to that of
the pathologists only when individual values are considered; we believe this is due to
frequent inter-observer variability. However, when compared to the pathologists'
consensus, the precision and recall clearly increases. The graphic 1, nevertheless, shows
the simplicity with which each pathologist diagnosed the 140 slides compared to the
different possibilities that the algorithm defined for each slide (slide level vs patch level).
This is clearly a consequence of the fashion of human reasoning versus the prediction of
an Al algorithm, since it can be said that the pathologists determined their diagnosis at a
slide level, considering general and particular, tissue and cellular features as a whole to
determine the ultimate decision, with respect to their expertise. On the other hand, the
algorithm segmented the slide, determined the tumor area and divided it into hundreds of
patches, analyzing it in detail one by one and determining an absolute decision for each
of them (Graphic 1). Let us remember that in the end, the class (type of tumor) that is
counted with the highest number determines the final decision of the algorithm. Since the
sensitivity and positive predictive value behaved similarly to that of the six pathologists,
we can conclude that our model could function as a diagnostic support tool in a similar

way to that which could support other types of tests, molecular for example.

Nevertheless, this assumption might be addressed in future studies.
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Melanoma Plasmacytoma

Figure 6. Amelanotic melanoma incorrectly classified as PNST. A. Out of the total number of patches
(n=1976), 44% were classified as PNST (blue), 35% as trichoblastoma (purple) and a mere 13% as
melanoma (orange). B. Magnification of a transitional region between patches classified as melanoma (right
side) with a predominance of subepidermic epithelioid cell nests and patches classified as PNST (left side)
with a predominance of spindle cells. WSI, H&E. C. Melan-A IHC with strong cytoplasmic positivity. MCT:

mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous cell carcinoma.

Trichoblastoma || Histiocytoma

Figure 7. Plasmacytoma misclassified as SCC. A. Out of the total number of patches recovered during
segmentation, 44% were classified as SCC (red), 12% as histiocytoma and only 8% as plasmacytoma. B.
Magnification of a region classified as plasmacytoma (green) with a predominance of neoplastic plasma
cells. C. Patch classified as SCC with low density of neoplastic cells and high density of stroma. WSI, H&E.
MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC: squamous cell carcinoma.
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Trichoblastoma Histiocytoma

Figure 8. Histiocytoma misclassified as plasmacytoma. A. Out of the total number of patches retrieved
during segmentation (n=897), 64% were classified as plasmacytoma (green) and 32% as histiocytoma. Note the
distribution of correctly classified patches in the center and at the bottom margin of the tumor. B.
Magnification to an area completely classified as plasmacytoma.C. Transition zone between plasmacytoma
(left) and histiocytoma (right). WSI, H&E. MCT: mast cell tumor; PNST: peripheral nerve sheath tumor; SCC:
squamous cell carcinoma.
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Graph 2. Overview of recall (sensitivity), precision (positive predictive value) and the combination (F1 score)
of the individual diagnoses of the pathologists, consensus and algorithm. KI. Algorithm.
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. Conclusions / Summary

Anatomic pathology is a medical specialty with a basic doctrinal body that makes
it, on the one hand, an autonomous academic discipline and, on the other hand, a
functional unit in medical care as a diagnostic tool. The visualization and
interpretation of H&E-stained slides remains the basis of pathological analysis and

diagnostic medicine for more than a century.

DP is an emerging technology in pathology, in which a scanner converts glass
slides into WSI that can be viewed, analyzed and managed on a screen with the

help of visualization software, after which they are stored digitally.

It can facilitate faster and more efficient diagnoses and prognoses, more flexible
collaboration and high-quality case documentation. Online storage of digital slides

also opens the door to DL and Al applications.

The pathologist requires extensive and constant training, usually based on
following algorithmic decision trees that bring together a large amount of
information and its association with respect to cellular and tissue structures (visual
skills) in order to describe lesions and determine an appropriate diagnosis.
However, image interpretation is not always consistent among pathologists.
Emerging Al technologies, specifically ML and DL are now a state-of-the-art tool
that is routinely used in human pathology and in many veterinary pathological
diagnostic institutions. They have also proven to be very useful in reducing

disagreements between observers during H&E slide interpretation.

Our results highlight the similarities that artificial intelligence and human
intelligence share with respect to histopathologic diagnosis; however, this is more
evident in certain types of tumors, mainly round cell tumors. For example, our

model presented greater difficulty in differentiating round cell tumors from SCC and

Page 69 of 86



the pathologists' consensus presented greater difficulty in differentiating round cell
tumors from each other.

Our results also highlight the feasibility of including artificial intelligence as a
support tool in diagnostic and research oncologic pathology with future applications
in other species and other tumor types.
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7. Zusammenfassung

sAutomatisierte Diagnose von sieben wichtigen Hauttumoren bei Hunden mit
einem neuronalen Faltungs-Netzwerk (CNN) auf H&E-gefarbten
Ganzpraparatbildern (WSI)"

Die mikroskopische Untersuchung von HE-gefarbten Objekttragern ist der Goldstandard
fur eine Vielzahl von Krankheiten. Speziell in der Onkologie ist sie nicht nur fir eine
prazise Diagnose, sondern auch fur das Staging von Tumoren und die Evaluierung ihrer
Grenzen entscheidend. In den letzten Jahrzehnten, mit dem Aufkommen der Digitalen
Pathologie (DP) und der Whole Slide Images (WSIs), steht die Image-Analyse und die
Entwicklung von Algorithmen zur Durchfihrung spezifischer Aufgaben auf WSIs an
vorderster Front der Forschung in der Pathologie, mit Uberwéltigenden Ergebnissen. In
dieser Studie beschreiben wir einen funktionellen Algorithmus zur automatischen
Erkennung von sieben groBen Hauttumoren bei Hunden: Trichoblastom,
Plattenepithelkarzinom (SCC), peripherer Nervenscheidentumor (PNST), Melanom,
Histiozytom, Mastzelltumor (MCT) und Plasmozytom. Wir haben 350 H&E-geféarbte
Objekttrager (70 pro Tumorart) ausgewahlt, digitalisiert und mit Anmerkungen versehen,
um eine Datenbank zu erstellen, die in Trainings- (n=245 WSIs), Validierungs- (n=35
WSIs) und Testdaten (n=70 WSIs) unterteilt ist. AnschlieBend wurde ein neuronales
Faltungsnetzwerk (CNN) entwickelt und die Effizienz des Algorithmus an 140 neuen WSiIs
(20 pro Tumorart) getestet. Die Klassifizierungsgenauigkeit auf Objekttragerebene
erreichte 95 % (133/140 WSIs), die Préazision auf Patch-Ebene lag bei 85 %. Dieselben
140 WSIs wurden sechs zertifizierten Pathologen zur Diagnose vorgelegt, die eine
ahnliche Genauigkeit auf Objekttragerebene von 98 % erreichten (137/140 WSIs). Unsere
Ergebnisse zeigen, dass der Einsatz von kinstlicher Intelligenz als Hilfsmittel in der
diagnostischen und forschenden onkologischen Pathologie machbar ist und in Zukunft

auch bei anderen Spezies und anderen Tumorarten angewendet werden kann.
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