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Abstract
In head and neck squamous cell cancers (HNSCs) that present as metastases with an unknown primary (HNSC-CUPs),
the identification of a primary tumor improves therapy options and increases patient survival. However, the currently
available diagnostic methods are laborious and do not offer a sufficient detection rate. Predictive machine learning
models based on DNA methylation profiles have recently emerged as a promising technique for tumor classification.
We applied this technique to HNSC to develop a tool that can improve the diagnostic work-up for HNSC-CUPs. On a
reference cohort of 405 primary HNSC samples, we developed four classifiers based on different machine learning
models [random forest (RF), neural network (NN), elastic net penalized logistic regression (LOGREG), and support
vector machine (SVM)] that predict the primary site of HNSC tumors from their DNA methylation profile. The clas-
sifiers achieved high classification accuracies (RF = 83%, NN = 88%, LOGREG = SVM = 89%) on an independent
cohort of 64 HNSCmetastases. Further, the NN, LOGREG, and SVMmodels significantly outperformed p16 status as a
marker for an origin in the oropharynx. In conclusion, the DNA methylation profiles of HNSC metastases are charac-
teristic for their primary sites, and the classifiers developed in this study, which are made available to the scientific
community, can provide valuable information to guide the diagnostic work-up of HNSC-CUP.
© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Comprising about 4.6% of all cancers, head and neck
cancers are the eighth most common malignancy world-
wide [1]. Up to 9% of head and neck cancers initially

present as cervical lymph node metastases with
unknown primary, i.e. their primary tumor could not be
identified in the routine diagnostic work-up. Squamous
cell carcinomas account for up to 75% of tumors present-
ing in such a constellation [2].

Journal of Pathology
J Pathol 2022; 256: 378–387
Published online 20 January 2022 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/path.5845

ORIGINAL ARTICLE

© 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

 10969896, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/path.5845 by C

harité - U
niversitaetsm

edizin, W
iley O

nline L
ibrary on [01/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-7745-3794
https://orcid.org/0000-0002-9249-4292
mailto:philipp.jurmeister@med.uni-muenchen.de
mailto:philipp.jurmeister@med.uni-muenchen.de
mailto:michael.bockmayr@charite.de
http://wileyonlinelibrary.com
http://creativecommons.org/licenses/by-nc/4.0/


While these head and neck squamous cell cancers
(HNSCs) of unknown primary (HNSC-CUPs) have a
more favorable prognosis than the general class of can-
cers of unknown primary (CUPs) [3], their therapy
remains challenging. The identification of a primary
tumor significantly improves the overall survival of
these patients by enabling a more specific therapeutic
approach [4,5]. Most importantly, precautionary irradia-
tion of putative primary sites, which is otherwise the
recommended procedure in many cases [6], can be
avoided. Further, the identified primaries often have a
low local tumor stage (see, for example, Figure 1A–D)
and can potentially be resected with clear surgical
margins [6].

The current American Society of Clinical Oncology
(ASCO) guidelines [6] recommend an extensive diag-
nostic work-up for HNSC-CUP. After the diagnosis
has been established from a biopsy or resection of the
suspicious neck mass, a thorough physical examination,
computed tomography (CT), and positron emission
tomography-CT (PET-CT) imaging should be per-
formed. If necessary, complete operative evaluation of
the upper aerodigestive tract, including biopsies of any
suspicious mucosal sites and in some cases diagnostic
tonsillectomy, is recommended. With traditional panen-
doscopic methods, primary detection rates of 50–60%
are reported for the combination of the described proce-
dures. In more recent publications, the use of transoral
laser microsurgery or transoral robotic surgery in the
evaluation of the upper aerodigestive tract showed
improved rates, ranging from 63% to 90% [7]. From a
pathologist’s perspective, squamous cell carcinomas of

different primary sites do not show any specific histo-
morphological features. Therefore, the only tissue-based
method that can assist in determining the primary site of
an HNSC-CUP is the detection of Epstein–Barr virus
(EBV) or human papillomavirus (HPV), both of which
are associated with tumors of the nasopharynx and oro-
pharynx, respectively [4]. In its entirety, the recom-
mended diagnostic work-up is costly, invasive, and
time-intensive, and is still not sufficient to identify the
primary tumor in all cases. Thus, further techniques to
assist the identification of the primary tumor in
HNSC-CUP cases are needed.
In recent years, machine learning (ML) techniques

have contributed to diagnosis in pathology [8–13].
Models based on DNA methylation profiles have been
used to classify CNS tumors [14] and to predict the ori-
gin of neuroendocrine tumors [15] as well as CUPs
[16]. In the latter, the set of tumors is heterogeneous with
respect to histology and primary site, and the prediction
classes are therefore broad. In particular, there was no
further differentiation within the class of squamous cell
tumors. In a recent study, we found first indications that
squamous cell carcinomas from different subregions of
the head and neck area exhibit characteristic DNAmeth-
ylation profiles [17].
To date, most applications of ML methods to DNA

methylation analysis have been based on random forest
(RF) models [14–16,18]. While these were successful,
support vector machines (SVMs), elastic net penalized
logistic regression (LOGREG), and neural network
(NN) models showed better results in two recent
studies [17,19].

Figure 1. Histopathology and anatomy of HNSC. (A) H&E and (B) p16 immunohistochemistry images of an HNSC lymph node metastasis from
the validation set. (C) H&E and (D) p16 immunohistochemistry images of the corresponding primary T1 tumor located in the tonsil. Scale bars,
50 μm. (E) Illustration of the workflow for the developed classifiers, including the relevant anatomical subregions of the head and neck.
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The goal of the present study was to develop a DNA
methylation-based classifier able to further differentiate
the regions of origin for HNSC metastases. Such a clas-
sifier has the potential to be used in the diagnostic work-
up of HNSC-CUPs and could facilitate faster and more
frequent identification of a primary tumor and thus better
patient outcome.

Materials and methods

Study design
We developed four different machine learning classifiers
that predict the primary site of HNSC tumors (‘oral cav-
ity’, ‘oropharynx’, ‘hypopharynx or larynx’) from their
DNA methylation profile. They were trained on a refer-
ence cohort of HNSC primary tumors (n = 405) and
applied to an independent validation cohort of HNSC
metastases (n = 64) to compare their performance.
The data used in this study included the previously

published datasets GSE87053 [20], GSE95036 [21],
and GSE124052 [17] from the Gene Expression Omni-
bus (GEO) [22] and the HNSC dataset (TCGA HNSC)
from The Cancer Genome Atlas (TCGA) [23,24]. This
was complemented by data from a DNA methylation
analysis of patient samples from our archives (hereafter
‘study dataset’). An overview of these datasets and their
characteristics is given in Table 1.
For inclusion in the reference cohort, all HNSC pri-

mary tumor samples from the included datasets were
considered. After exclusion of 63 samples from the
TCGAHNSC dataset due to an unclear primary site, this
yielded a reference cohort of 405 samples (see Table 2).
The validation cohort was composed of all HNSCmetas-
tasis samples in the included datasets. For four samples,
no clear primary site could be assigned, and one sample
did not pass the quality control for its DNA methylation
data. After exclusion of these samples, the validation
cohort contained 64 samples (see Table 2).

Patient selection, samples, and clinical data
For inclusion in the study dataset, we identified 49 suit-
able patients with cervical lymph node metastases of
HNSC using the electronic patient files and the elec-
tronic database of the Charité –University Hospital Ber-
lin. We specifically selected cases that were initially
diagnosed as CUPs but had their primary tumor site
identified in the further course of the disease through

additional diagnostic procedures. Additional clinical
data for these cases are given in supplementary material,
Table S1.

Formalin-fixed and paraffin-embedded (FFPE) tissue
was retrieved from the archives of the Institute of Pathol-
ogy at the Charité – University Hospital Berlin and clin-
ical data were extracted from the electronic patient files.
Ethics approval was granted by the local ethics commit-
tee (EA1/122/18).

Annotation of primary sites
The primary sites of HNSC tumors were categorized into
three classes: oral cavity, oropharynx, and hypopharynx
or larynx (Figure 1E). These individual regions and their
anatomical subsites were defined according to the cur-
rent guidelines of the WHO [25]. Hypopharynx and lar-
ynx were combined into one class due to the small
number of samples with a hypopharyngeal primary site
(n = 29) and their anatomical adjacency.

Additionally, all HNSC tumors were annotated with
regard to their organ of origin. The following organs
were considered for annotation: oral mucosa, tongue
(composed of oral tongue in the oral cavity and base of
tongue in the oropharynx), pharyngeal wall (ranging
over oropharynx and hypopharynx), tonsil, and larynx.

The region and organ of the primary site were deter-
mined based on all clinical data available for each sam-
ple (see Table 1 and section entitled ‘Patient selection,
samples, and clinical data’). For 63 samples in the refer-
ence cohort and four samples in the validation cohort, no
clear region of the primary site was identified, and they
were excluded from further analysis. The resulting distri-
bution of annotated regions is given in Table 2 and a full
list of the annotations is provided in supplementary
material, Table S2.

Tissue preparation and DNA methylation analysis
For samples from the study dataset, DNA methylation
analysis was performed on FFPE tissue with a tumor cell
content of at least 60%. Semi-automated DNA extrac-
tion was performed using the Maxwell RSC FFPE Plus
DNA Purification Kit (Promega, Fitchburg, WI, USA)
on a Maxwell RSC 16 instrument (Promega) according
to protocols supplied by the manufacturer. DNA quanti-
ties were measured using the Qubit HS DNA assay
(Thermo Fisher Scientific, Waltham, MA, USA). The
EpiTect Fast DNA Bisulfite Kit (Qiagen, Venlo, The
Netherlands) was used to perform DNA bisulfite

Table 1. Reference and validation cohort: included datasets and their characteristics.
Cohort Dataset Chip design Tumor type Tissue type IDAT source Annotation source

Reference GSE87053 450k Primary Frozen GEO GEO metadata
GSE95036 450k Primary FFPE GEO GEO metadata
TCGA HNSC 450k Primary Frozen TCGA TCGA pathology reports
GSE124052 (prim) EPIC Primary FFPE GEO GEO metadata + medical records

Validation GSE124052 (met) EPIC LU met FFPE GEO GEO metadata + medical records
Study dataset EPIC LN met FFPE Sample analysis Medical records

prim, primary tumors; met, metastases; LU, lung; LN, lymph node.
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conversion. Following DNA restoration for FFPE sam-
ples (Infinium HD FFPE DNA Restore Kit; Illumina,
San Diego, CA, USA), DNA methylation analysis was
carried out using the Infinium MethylationEPIC Bead-
Chip (Illumina), according to the manufacturer’s instruc-
tions. Stained bead array chips were analyzed using the
iScan platform (Illumina).

Data preprocessing
All data processing was performed in R (version 3.6.1; R
Foundation for Statistical Computing, Vienna, Austria).
Using the minfi library [26], raw IDAT files were
imported; Noob normalization was performed [27]; and
beta values were computed. Beta values whose corre-
sponding intensities on probe-level failed a z-test with
a P value threshold of 0.01 against background signal
were masked. To allow for consistent analysis of data
from EPIC and 450k chips, each sample was reduced
to the CpG sites present in both designs (n = 452 453).
Further, CpG sites on sex chromosomes were excluded
(n = 10 583) as well as a group of underperforming
CpG sites (n = 54 898) following the recommendation
in ref 28. Samples with more than 10% missing beta
values were excluded (five samples, see Table 2).
Finally, missing or masked beta values were imputed
by adopting the values of the CpG site with the closest
genomic position.

Classifier development
A dimensionality reduction was performed on the train-
ing set, in which each sample was reduced to the 2000
most variable CpG sites (results for alternative numbers
of CpG sites are shown in supplementary material,
Figure S1) across the training set. The chosen CpG sites
are provided in supplementary material, Table S3. Then,
LOGREG, RF, SVM, and NN models were trained and
evaluated using five-fold cross-validation on the training
set. Class-balanced partitions for the cross-validation
were created with the package caret [29]. All models
were configured to return probability scores. From those,
predictions were obtained by selecting the class with the
maximum probability score. The hyperparameters and
the packages used are listed in supplementary material,
Table S4. The optimal set of hyperparameters was
selected by minimal categorical cross-entropy loss dur-
ing cross-validation. The final model of each type was

then trained on the full training set with its optimal
hyperparameters. While chip design and tissue type are
known to be a possible cause of batch effects in DNA
methylation data, batch effect correction for these factors
did not significantly affect classification performance in
the cross-validation and was therefore not used subse-
quently (supplementary material, Table S5).

Classifier validation
The four classifiers were applied to the validation set
after a dimensionality reduction to the 2000 CpG sites
previously selected on the training set. Differences in
their results were verified in Cochran’s Q test using the
package RVAideMemoire. Fisher’s exact test was used
to assess the independence of prediction accuracy and
metastasis site (lung, lymph node) for each classifier.
Further, the performance of each classifier was com-
pared with p16-based prediction in the binary discrimi-
nation between oropharynx and non-oropharynx.

t-SNE plots
To visualize the high-dimensional methylation profiles, t-
distributed stochastic neighbor embeddings (t-SNE) [30]
were computed using the package Rtsne. Embeddings
were computed on the reference cohort only, and on the
reference and validation cohort combined with perplexity
20, with 1000 iterations and a 50-dimensional principal
component analysis.

Tumor purity estimation
The proportion of tumor cells was estimated from DNA
methylation profiles using the ESTIMATE-based
method provided by the package RFpurify [31]. A com-
parison of these results with estimates obtained by using
the package InfiniumPurify [32] is presented in the sup-
plementary material, Figure S2.

p16 status and HPV genotyping
Immunohistochemical evaluation was performed on the
Ventana BenchMark XT automated slide stainer (Roche
Tissue Diagnostics, Tucson, AZ, USA) according to the
manufacturer’s instructions. The D7C1M p16 antibody
(Cell Signaling Technology, Danvers, MA, USA) was
used diluted 1:1000. Samples with strong nuclear or
cytoplasmic staining in ≥70% of tumor cells were

Table 2. Reference and validation cohort: case numbers and distribution of primary sites.
Cohort Dataset No. considered ROO NA Failed QC No. used OC ORO H&L

Reference 468 63 0 405 234 (58%) 57 (14%) 114 (28%)
GSE87053 11 0 0 11 11 (100%) 0 (0%) 0 (0%)
GSE95036 11 0 0 11 3 (27%) 5 (45%) 3 (27%)
TCGA HNSC 442 63 0 379 217 (57%) 51 (13%) 111 (29%)
GSE124052 (prim) 4 0 0 4 3 (75%) 1 (25%) 0 (0%)

Validation 69 4 1 64 25 (39%) 25 (39%) 14 (22%)
GSE124052 (met) 20 4 0 16 3 (19%) 8 (50%) 5 (31%)
Study dataset 49 0 1 48 22 (46%) 17 (35%) 9 (19%)

prim, primary tumors; met, metastases; ROO, region of origin; NA, not available; QC, quality control; OC, oral cavity; ORO, oropharynx; H&L, hypopharynx or larynx.
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considered positive. HPV genotyping was performed as
described previously using the HPV Type 3.5 C LCD
array (Chipron, Berlin, Germany) [17].

Results

DNA methylation analysis of the reference cohort
To identify characteristic epigenetic signatures for
HNSC tumors with respect to their primary site, we first
analyzed the DNA methylomes of a reference cohort of
primary tumors (n = 405). The general characteristics
of the dataset and the distribution of classes are listed
in Tables 1 and 2, respectively.
A t-SNE of the reference cohort revealed three distinct

groups related to the region of the primary sites
(Figure 2A). The largest, central group was mainly com-
posed of samples from the oral cavity but also contained
a considerable number of samples from the hypopharynx
and larynx concentrated at its top. Additionally, several
samples from the oropharynx were scattered across this
group. The upper right group almost exclusively con-
sisted of samples from the oropharynx, whereas the
lower left one contained mostly samples from the hypo-
pharynx or larynx with a considerable number of excep-
tions from the oral cavity. For the organ of origin, the
relation to the grouping in the t-SNE plot was less pro-
nounced (Figure 2B). In particular, samples from the
tongue, which is part of both the oral cavity (oral tongue)
and the oropharynx (base of tongue), did not form a dis-
tinct subset but were distributed across the respective
regional groups. This indicated that the region of origin
explains the described grouping better than the organ

of origin. We observed no relation between the grouping
of the samples and their original dataset, thus ruling out
substantial batch effects concerning tissue preparation or
chip design (Figure 2C and Table 1). HPV-positive sam-
ples were mostly located within the aggregation of oro-
pharynx samples, where they did not form a distinct
subgroup (Figure 2D). Samples with a higher tumor cell
content were more clearly separated than samples with
lower purity. The latter were mostly found in the center
of the large group, thus resembling samples from the oral
cavity, which was the class with the highest number of
samples (Figure 2E).

Classifier development on the reference cohort
Using the reference cohort, we trained four different clas-
sifiers, based on an NN, an SVM, a LOGREG, and an RF
model, to predict primary sites from DNA methylation
data (Figure 1E). The optimal hyperparameters for each
model were determined in a five-fold cross-validation
(supplementary material, Table S4). All models achieved
high training accuracies on the reference cohort (NN =
SVM = 93%, LOGREG = 92%, RF = 91%).

DNA methylation analysis of the validation cohort
Wecompiledanindependentvalidationcohortof64HNSC
metastases, comprising 48 cervical lymph nodemetastases
from the study dataset (e.g. Figure 1A–D) and 16 pulmo-
narymetastases from our previous work (Table 2).

In a combined t-SNE plot of the reference and valida-
tion cohort (Figure 3A), the samples from the validation
cohort integrated well into the existing groups according
to their region of origin, with only a few exceptions. Of

Figure 2. Reference cohort of primary HNSC tumors. Two-dimensional representation of the reference cohort samples (n = 405) based on a
t-SNE computed from their DNA methylation profiles. Individual samples are color-coded according to (A) the region of origin as used in the
classification, (B) the organ of origin, (C) the dataset, (D) HPV status, and (E) a tumor purity estimation.
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note, most metastasis samples from the hypopharynx or
larynx were located in the concentration of primary sam-
ples from the same region within the central group. In
contrast, the left group, which was mainly formed by pri-
mary samples from the hypopharynx or larynx, con-
tained no corresponding metastasis samples. We did
not observe distinct groups for lymph node and lung
metastasis specimens.

Classification results on the validation cohort
The four classifiers developed on the reference cohort
predicted the primary site in the validation cohort with
overall accuracies of 88% for the NN, 89% for both the
SVM and LOGREG, and 83% for the RF model
(Figure 3C). Although the accuracy of the RF classifier
is clearly lower than the others, a CochranQ test showed
no significant differences between all classifiers

(p = 0.45).Notably, 28%(n = 7) of oropharynx samples
were falsely classified as oral cavity by the RF model,
leading to a sensitivity of only 64% for the oropharynx
class.Theotherclassifiersdidnot showasimilar tendency
for false classifications in any class (Figure 3C).
By summing up the false classifications across the

four classifiers for each sample, four problematic sam-
pleswithmore than two false classificationswere identi-
fied (Figure 3B); they made up 50% (4/8), 57% (4/7),
43% (3/7), and36%(4/11) of the totalmisclassified sam-
ples for the NN, SVM, LOGREG, and RF models,
respectively.Of these four problematic cases, threewere
p16-negative oropharynx samples. Further analysis
showed that the sensitivity of all classifiers was indeed
remarkably lower on the subset of p16-negative oro-
pharynx samples (NN = SVM = LOGREG = 75%,
RF = 50%) than on p16-positive oropharynx samples
(NN = SVM = LOGREG = 100%, RF = 77%).

Figure 3. Classification results on the validation cohort of HNSC lung and lymph node metastases. (A) Two-dimensional representation of the
full dataset (n = 469) based on a t-SNE computed from the DNA methylation profiles of its samples. The full dataset contains the reference
cohort (n = 405) of primary HNSC tumors and the validation cohort (n = 64) of HNSC metastases in lung and lymph nodes. Samples from
the reference cohort are displayed in transparent colors, and samples from the validation cohort in opaque colors. Individual samples are
color-coded according to the region of origin as used in the classification. (B) Heatmap of the validation cohort (n = 64) showing the anno-
tated region of origin, the predictions of the four classifiers, the total number of wrong predictions across the classifiers, the p16 status, the
location of the metastases, and an estimation of tumor purity for every sample. (C) Confusion matrices for the result of the four classifiers on
the validation cohort (n = 64) showing the relationship between the annotated and the predicted regions of origin. The main numbers show
absolute counts of the respective cases; row and column percentages are displayed on the right and at the bottom of each square. The row
and column percentages of the diagonal entries are the sensitivity and positive predictive value of the corresponding class, respectively. The
overall accuracy of each classifier on the validation cohort is given below the confusion matrix.
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Comparison of accuracies for pulmonary and lymph
node metastases
Theoverall accuracydidnot showa significant difference
between samples from the lung and the lymph nodes for
any of the classifiers in a pairwise Fisher’s exact test
(P values: NN = 1.00, SVM = 1.00, LOGREG = 0.67,
RF = 0.12). The NN, SVM, and LOGREG models
achieved accuracies of around 90% on both subsets,
whereas the accuracy of the RF model was markedly
worse on pulmonary metastases, with 69%, than on
lymph node metastases, with 88% (Table 3).

Binary classification (oropharynx versus
non-oropharynx) and p16 status
In the binary classification task of discriminating between
oropharyngeal and non-oropharyngeal origin, the NN,
SVM, and LOGREG models all achieved an accuracy
of 92%, a sensitivity of 88%, and a specificity of 95%
(Table 3). The predictions of the RF model had a slightly
lower accuracy of 84%,with a remarkably high sensitivity
of 97% and low specificity of 64%. Prediction based
purely on p16 status showed contrary results, with low
sensitivity (52%) and high specificity (95%). Further, all
classifiers had a higher overall accuracy than p16-based
prediction, with only 77%.

Discussion

Currently recommended practices for the diagnosis and
treatment of HNSC-CUPs [6] include laborious and
invasive measures to identify the occult primary tumor.
Identification of the primary site is highly desirable in
HNSC-CUPs as it allows for better treatment options
and increases patient survival [4,5]. In particular, the pri-
mary tumor can then be targeted directly for locoregional
control, and harmful procedures such as the precaution-
ary irradiation of potential primary areas can be avoided.
The classification algorithms based on the DNAmethyl-
ation signature of these tumors have the potential to
accelerate this process and increase the detection rate
of the primary tumor. Our approach can easily be imple-
mented in the diagnostic work-up of HNSC-CUPs.
Biopsy or resection of the involved lymph node is usu-
ally performed at the very beginning of the diagnostic
process. After the conventional histopathological work-
up has established the diagnosis of squamous cell

carcinoma, the same tissue can be used for DNAmethyl-
ation analysis. The most prominent use-case for the pro-
posed techniques is HNSC-CUPs in the upper cervical
lymph nodes (levels 1–3), which usually originate from
the head and neck region and are most commonly squa-
mous cell cancers [2]. Other promising applications of
the proposed methods are pulmonary HNSC metastases.
However, for their diagnosis as HNSC cancer, they first
need to be distinguished from primary squamous cell
cancer of the lung. For this purpose, another DNA
methylation-based classifier was developed recently [17].

To our knowledge, tests for EBV and HPV are the
only tissue-based methods that have been proposed for
the prediction of primary sites in HNSC-CUPs. EBV sta-
tus is reported to have a sensitivity and specificity of
around 90% [2] in predicting a primary site in the naso-
pharynx. HPV status, and p16 status as a surrogate
marker, achieve high accuracies and specificities of
about 90% and 98%, respectively, as predictors for oro-
pharyngeal primary sites in cervical squamous cell
lymph node metastases [33,34]. However, they are not
able to identify HPV-negative oropharyngeal HNSCs,
which constitute a distinct tumor entity [35], leading to
a sensitivity of only about 70% [33,34]. Both HPV and
EBV status are limited in their use because they are only
indicative of a single region of origin. The DNA
methylation-based classifiers developed in this study
can predict primary sites in all regions present in the
data. Further, the NN, SVM, and LOGREG models
clearly outperformed purely p16-based prediction on
our data in terms of overall accuracy (92% versus
77%) and sensitivity (88% versus 52%) and were also
superior to the results for HPV- and p16-status in the lit-
erature described above.

Gene expression [36–38] and protein profiling [39–41]
have been successfully applied to the classification of
other tumor entities by tissue of origin.A recent study [17]
showed the superiority of a DNAmethylation-based clas-
sifier over both of these approaches in distinguishing
HNSCmetastases from primary lung carcinoma, suggest-
ing that this method is more promising for the goal of the
present study. Gene expression and proteomic methods
are preferably performed on fresh-frozen samples as they
are negatively affected by deterioration of RNA and pro-
teins in FFPE tissue. DNA methylation-based methods
can be applied equally well to fresh-frozen and FFPE
tissue, which is an advantage in practicability, as FFPE
tissue samples are more readily available in routine diag-
nostic pathology.

Table 3. Binary classification results for oropharyngeal origin of metastases and comparison of accuracies by metastasis site.
Binary classification (ORO versus non-ORO) Multiclass classification (OC, ORO, H&L): comparison by metastasis site

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy lung (%) Accuracy lymph node (%)

NN 92 88 95 88 88
SVM 92 88 95 88 90
LOGREG 92 88 95 94 88
RF 84 97 64 69 88
p16 status 77 52 95 - -

OC, oral cavity; ORO, oropharynx; H&L, hypopharynx or larynx.
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We developed the classifiers on a dataset consisting
exclusively of primary tumor samples and applied them
to metastases with good results. This supports the
assumption that the epigenetic profiles of primary HNSC
tumors are preserved in their metastases. Similar results
from other publications indicate that this might be true
for a large class of tumor entities [15–17]. Further, we
found no significant differences in the overall accuracies
of all four classifiers on the subset of cervical lymph
node metastases compared with the pulmonary metasta-
ses in the validation set. A strength of this study is that
the cervical lymph node metastases in the validation set
of this study were in fact initially diagnosed as CUPs.
CUPs are hypothesized to be distinct tumor entities that
differ from their non-CUP counterparts in biological
characteristics relating, for example, to early dissemina-
tion and slow growth of the primary [42]. This may be
reflected in their DNA methylation profiles and make
their classification more challenging since the machine
learning models were trained on primary tumors. The
performance of the classifiers on this subset indicates
that they are robust to this potential effect.

The second aspect of this study is the comparison of
NN, SVM, LOGREG, and RF models for the classifica-
tion of HNSC tumors based on their DNA methylation
profiles. In most publications on similar classification
tasks, a single RF model with additional calibration
methods has been used successfully [14–16,18]. How-
ever, in a comparison of NN, SVM, and RF models for
the task of distinguishing pulmonary HNSC metastases
from primary SCC of the lung, the RF model performed
considerably worse than the other two classifiers [17]. A
comparison of a multitude of methods for the classifica-
tion of central nervous system tumor entities showed,
among other results and put in simplified terms, that a
LOGREGmodel performed best of all methods and also
substantially better than an RFmodel [19]. In the present
study, the RFmodel also had the lowest overall accuracy
(83%) on the validation set by a considerable margin,
whereas the other methods achieved similar results
(NN = 88%, SVM = LOGREG = 89%). However,
the difference in classifier performance on the validation
set of our study was not statistically significant. In the
binary classification task for oropharyngeal primary
sites, all models but RF achieved significantly better
accuracies than a purely p16-based prediction. Thus, in
line with the result of the previously reported compari-
sons, NN, SVM, and LOGREG models show advan-
tages over the RF model for the classification task in
this study.

A limitation of this study lies in the classes of primary
sites that the models were trained on. First, nasopharyn-
geal HNSC samples were not present in the dataset and
thus cannot be predicted by the classifiers. This is due
to the fact that no DNAmethylation datasets of nasopha-
ryngeal HNSC cases are currently publicly available,
and patients do not present at our institutions in sufficient
numbers since they are rare outside of Asia (<1% of new
HNSC cases in 2012) [43]. Second, we used a merged
hypopharynx and larynx class because the number of

available hypopharyngeal HNSC samples was too small.
However, due to the anatomical adjacency of these two
regions, a correct prediction of the combined class still
provides helpful information in a clinical setting,
e.g. by narrowing the irradiation target, guiding imaging
techniques, andenabling targetedbiopsiesof likely tumor
sites. When more data for naso- or hypo-pharyngeal
HNSCs become available, the classifiers can be extended
topredict their primarysitewithout a changeofmethodol-
ogy. Further analysis of the classification results revealed
that, for all classifiers, HPV/p16-negative oropharynx
samples are classified with lower accuracy than
p16-positive ones and make up a large proportion of the
total misclassifications. HPV status was shown to affect
the DNA methylation profiles of oropharyngeal HNSCs
[21,44],whichmakes the classificationof this entitymore
challenging. Finally, the different DNAmethylation pat-
terns of HNSCs could be linked not only to tumor locali-
zation but also to aspects of tumor biology that have
prognostic or therapeutic value. Response and follow-
up data were not available here, but prospective analyses
of prognosis and therapy responsebasedonDNAmethyl-
ationwithinclinical studiesarepromising future research.
In conclusion, we demonstrate that a classification of

the primary region of HNSC metastases by their DNA
methylation profiles is possible and provide a set of clas-
sifiers that achieve good results on a validation cohort
representative of possible applications. Further, we con-
clude that the NN, SVM, and LOGREGmodels are more
suitable for this classification task than the RF model.
The classifiers, which have been made publicly avail-
able, can be a useful tool in the search for the primary
tumors of HNSC-CUPs.
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