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Adjusting for baseline values and covariates is a recurrent statistical problem in
medical science. In particular, variance heteroscedasticity is non-negligible in
experimental designs and ignoring it might result in false conclusions. Approx-
imate inference methods are developed to test null hypotheses formulated in
terms of adjusted treatment effects and regression parameters in general analysis
of covariance designs with arbitrary numbers of factors. Variance homoscedas-
ticity is not assumed. The distributions of the test statistics are approximated
using Box-type approximation methods. Extensive simulation studies show that
the procedures are particularly suitable when sample sizes are rather small. A
real data set illustrates the application of the methods.
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1 INTRODUCTION

General linear models play a major role in experimental sciences and especially in both preclinical (including trans-
lational) and clinical research. Hereby, not only the factor levels and their combinations might impact the response
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variable, but also other variables called covariates. For instance, baseline values, age, gender, and/or body weight
might obscure the factor effects of the independent groups. Analysis of covariance (ANCOVA) is a general linear model
that blends analysis of variance (ANOVA) and regression methods, and hence makes estimation of (adjusted) treat-
ment effects as well as testing hypotheses formulated in terms of the (adjusted) treatment effects in such designs
possible.1 However, the performance of the methods (F-tests) with respect to maintaining the nominal type-1 error
rate heavily depends on whether the data fulfill model assumptions, such as multivariate normality and homogeneous
variances of the error term. Indeed, if the data are not in line with them, the methods tend to be liberal or conserva-
tive, depending on the amount of variance heteroscedasticity, sample size allocations, and general distributional shapes
(see Section 5 for details). In statistical practice, however, verifying such assumptions is quasi impossible, especially
when being confronted with small sample sizes.2,3 We therefore prefer to use less stringent statistical methods for mak-
ing inferences. The present article aims to introduce statistical inference methods for general ANCOVA designs with
arbitrary (but fixed) numbers of factors and covariates without assuming multivariate normality and homoscedastic
variances.

In recent years, several authors have proposed different methods to tackle the problem of variance heteroscedastic-
ity in general ANOVA designs (without covariates). Pauly et al4 provide a detailed overview of the different solutions
and highlight the so-called Wald-type statistic (along with a permutation version) as well as the ANOVA-type statistic
developed by Brunner et al.5 In comparison, the Wald-type statistic is applicable for large samples only (ni ≈ 50), while
the ANOVA-type statistic controls the type-1 error rate accurately even when sample sizes are rather small (ni ≈ 10).
However, both of the statistics found their way into statistical practice and are implemented in prominent software pack-
ages like SAS PROC MIXED and in the R-package GFD.6 For the analysis of general ANCOVA designs, Zimmermann
et al7 propose a Wald-type test along with a resampling version (wild-bootstrap approach) using Heteroscedasticity Con-
sistent Standard Error (HCSE) estimators.8-11 The methods even allow for complete variance heteroscedasticity, that
is, every unit might have a different variance. Even though resampling methods share the advantages of being suit-
able methods particularly for small sample sizes, they might be numerically cumbersome and show their limitations
in statistical planning purposes, in general. Statistical models that allow for complete heteroscedasticity might be very
flexible and less stringent, however, in medicine and related sciences, reporting groupwise variance estimates is nec-
essary, especially in translational research. We therefore focus on groupwise variance heteroscedasticity and discuss
methods for complete heteroscedasticity as an aside. SAS PROC MIXED realizes an ANOVA-type statistic in such gen-
eral ANCOVA designs by replacing the empirical means and variance estimators as used by Brunner et al5 in ANOVA
designs with estimators obtained from Minimum Variance Quadratic Unbiased Estimation (MIVQUE0)12 algorithms in
the general ANCOVA framework (see https://support.sas.com/documentation/onlinedoc/stat/141/mixed.pdf). The sup-
porting site says “This generalizes results in the appendix of Brunner, Dette, and Munk (1997) to a broader class of models,”
see https://support.sas.com/kb/24/516.html. The results, however, are only available in SAS PROC MIXED. We inves-
tigate whether the methods maintain the nominal type-1 error rate (and power) in extensive simulation studies and
find that the methods make accurate inferences in fixed effects, while the tests for the covariate effects tend to be very
liberal. In this article, we will therefore generalize the results and propose novel test statistics. We develop unbiased
estimators of the variance components using methods of moments and approximate the distributions of the test statis-
tics using Box-type approximation methods.13,14 Numerical investigations and extensive simulation studies show that (1)
the tests for the fixed effects are very similar and of similar quality as their siblings in SAS and control the type-1 error
rate accurately, while (2) the new approximation for testing the effects of the covariates outperforms its competitor in
SAS. Especially for skewed data, it turns out the ANOVA-type statistics seem to control the type-1 error rate better than
the wild-bootstrap test.7 We note that HCSE estimators are also available in SAS PROC MIXED using the EMPIRICAL
option.

The remainder of the article is organized as follows. In Section 2, a factorial toxicological and carcinogenic study
is discussed. The statistical model, point estimators, and hypotheses of interest are introduced in Section 3. In the
following Section 4, procedures for testing the aforementioned hypotheses are explained. Their behavior in small sam-
ple size situations is investigated in extensive simulation studies in Section 5. The article closes with the evaluation
of the data in Section 6 and a discussion about the results in Section 7. Technical derivations are provided in the
Appendix.

Throughout the article we use the following notation. 1n denotes the n × 1 vector of 1’s and Ia the a × a unit matrix.
The a × a centering matrix is Pa = Ia − 1

a
1a1′a. Furthermore, A

⨁
B and A ⊗ B denote the direct sum (block operator)

and the Kronecker product of the matrices A and B, respectively.
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2 A MOTIVATING EXAMPLE

As a motivating example, we consider a part of the toxicological study15 on pyridine (number C55301B) obtained from
the US National Toxicology Program (see https://manticore.niehs.nih.gov/cebssearch/test_article/110-86-1; assessed
November 2020). This animal testing aims to investigate the impact of pyridine (a basic heterocyclic organic compound)
on different clinical chemistry parameters. Here, we chose blood urea nitrogen (BUN) measured in mg/dL as the response
variable. Initially, N = 120 rats (60 male and 60 female) were randomized to six different dose levels of pyridine (0, 50,
100, 250, 500, or 1000 ppm) (nij = 10 animals per dose) and BUN was measured at baseline and after 90 days. In addi-
tion, we also chose the change in body weight (in g) as a covariate. The data can thus be described in means of a two-way
factorial design involving the factors gender with two levels and the factor dose with six levels with two covariates. We
aim to estimate treatment effects of pyridine adjusted for baseline and change in body weight and to test whether the two
factors and their interaction impact the results. We note that one male and two females in dose level 1000 died after the
treatment, which makes the design imbalanced. Boxplots of BUN stratified by gender and pyridine concentration levels
are displayed in Figure 1.

It can be seen from Figure 1 that the factor gender seems to have an impact on BUN for each pyridine concentration.
It also appears that the effect of the pyridine concentration is homogeneous across gender (ie, no interaction effect). Since
the sample sizes of the study are rather small, making any distributional assumptions (eg, normality) would be doubt-
ful. The boxplots in Figure 1 indicate that the BUN data are not necessarily symmetrically distributed. Moreover, the
empirical variances of each factor-level combinations of the two factors are rather different and thus, assuming variance
homoscedasticity is unlikely. Therefore, we will analyze this factorial study without either assuming any specific distri-
bution or homogeneous variances of the data using the methodologies presented in this article. First, a general ANCOVA
model, point estimators, and hypotheses of interest will be introduced in the next section.

3 STATISTICAL MODEL, HYPOTHESES, AND POINT ESTIMATORS

We consider a general ANCOVA model

Yij = bi +
M∑
𝓁=1

p𝓁M(𝓁)
ij + 𝜖ij, i = 1, … , a; j = 1, … ,ni,

where Yij and M(𝓁)
ij denote the response and 𝓁th covariate value from subject j under condition (treatment) i, bi

represents the fixed treatment effect of condition i, p𝓁 the 𝓁th regression parameter, and 𝜖ij the error term with E(𝜖i1) = 0
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F I G U R E 1 Boxplots of blood urea nitrogen (BUN) on day 90
stratified by the two factors: gender and pyridine concentration
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and Var(𝜖i1) = 𝜎2
i , i = 1, … , a. In total, N =

∑a
i=1ni subjects are enrolled in the trial, where ni denotes the number of

subjects in group i ∈ {1, … , a}. We note that two- and higher-way layouts can be modeled by subindexing the index i. In
matrix notation, the model can be written as

Y = Xb + Mp + 𝝐, (1)

where Y denotes the N × 1 response vector, X =
⨁a

i=11ni the design matrix for the vector of fixed treatment effects b =
(b1, … , ba)′, M = (M(𝓁)

ij ) a N × M matrix of covariates, p = (p1, … , pM)′ the M × 1 vector of regression parameters, and
𝝐 the vector of independent errors with

E(𝝐) = 0 and Var(𝝐) = 𝚺 =
a⨁

i=1
𝜎2

i Ini , (2)

respectively. We furthermore assume the existence of fourth moments, that is, E(𝜖4
ij) < ∞. Now, the aim of ANCOVA is

estimating and making inference across the components of the vectors b and p, that is, testing the null hypotheses

H(b)
0 ∶ Hb = 0 vs H(b)

1 ∶ Hb ≠ 0, and (3)

H(p𝓁)
0 ∶ p𝓁 = 0 vs H(p𝓁 )

1 ∶ p𝓁 ≠ 0,𝓁 = 1, … ,M. (4)

Which hypothesis matrix H to chose depends on the actual model and research question of interest. For example, in
a one-way design with a levels, H = Pa. In a two-way design involving a factor A with a levels and a factor B with b levels
the null hypotheses of no main effect A, no main-effect B and no-interaction (AB) between A and B are tested using the
contrast matrices

H(b)
0 (A) ∶ HAb =

(
Pa ⊗

1
b

1′b
)

b = 0 or b1⋅ = … = ba⋅, bi⋅ =
1
b

b∑
j=1

bij,

H(b)
0 (B) ∶ HBb =

(1
a

1′a ⊗ Pb

)
b = 0 or b⋅1 = … = b⋅b, b⋅j =

1
a

a∑
i=1

bij,

H(b)
0 (AB) ∶ HABb = (Pb ⊗ Pb)b = 0 or bij = bi⋅ + b⋅j − b⋅⋅, b⋅⋅ =

1
ab

a∑
i=1

b∑
j=1

bij (5)

as known from linear model theory. Here, bij denotes the effect of cell (i, j). For more details we refer to, for example, Pauly
et al.4 We estimate the unknown model parameters b and p using methods of least squares and obtain

b̂ = (X′𝚺−1
∗ X)−1X′𝚺−1

∗ (Y − Mp̂) and p̂ = (M′Q𝚺−1
∗ M)−1M′Q𝚺−1

∗ Y. (6)

Here, P = X(X′X)−1X′ and Q = I − P denote the projection matrices and 𝚺∗ denotes a suitable regular matrix, for
example, ordinary least squares (OLS) estimators are obtained using 𝚺∗ = IN and generalized least squares (GLS) esti-
mators using 𝚺 if it is known, or a consistent estimator thereof, respectively. Different estimation methods of 𝚺 will be
discussed in the next subsection.

Remark 1. The general model can be generalized to model interactions between the treatment effect and covariates. For
instance, we aim to model an interaction term between group a and the 𝓁th covariate. In this case the regression part
Mp is kept in the model as above whereas the fixed treatment effect Xb is written as a regression model for qualitative
predictors by

Y = X⊙b⊙ + M(𝓁)ba𝓁 + Mp + 𝝐. (7)

Here, X⊙ denotes the adjusted design matrix, b⊙ = (b1, … , ba−1)′ the vector of the treatment effects of groups
1, … , a − 1 and ba𝓁 denotes the interaction effect of treatment a and the 𝓁th covariate, respectively.
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3.1 Estimation of the variances

For the ease of representation, we rewrite the estimators b̂ and p̂ using appropriate generating matrices

A = (M′Q𝚺−1
∗ M)−1M′Q𝚺−1

∗ and
D = (X′𝚺−1

∗ X)−1X′𝚺−1
∗ − (X′𝚺−1

∗ X)−1X′𝚺−1
∗ MA (8)

as b̂ = DY and p̂ = AY, respectively. For large sample sizes, that is, if N → ∞ such that N∕ni → 𝜆i (and under some mild
regulatory assumptions, see Zimmermann et al7), it can be shown that

√
N(b̂ − b) ∼⋅⋅ N(0,𝚿), 𝚿 = ND𝚺D′ and√
N(p̂ − p) ∼⋅⋅ N(0,𝚵), 𝚵 = NA𝚺A′,

where 𝚺 is as given in (2). Both of these matrices are, however, unknown in practical applications and must be esti-
mated from the data. Different methods for the estimation of 𝚺, 𝚿, and 𝚵 are available and include bootstrap, maximum
likelihood (ML and REML), MIVQUE0 as well as methods of moments.16 Clearly, each estimation method has its own
advantages and disadvantages, but beyond that, the resulting groupwise variance estimators depend on the outcomes
in the other groups using any of them. For instance, in a two-sample design, the estimators of 𝜎2

1 and 𝜎2
2 would change

when a third group (independent of the others) was included in the model (without changing any value in the initial
groups). This is not the case when covariates are not included in the model. The variance components 𝜎2

1 , … , 𝜎2
a are

model constants and we therefore prefer to estimate them on a group-specific level using methods of moments. We
follow the idea from Cao et al17 and estimate them using the corresponding submodels. Let Xi = 1ni denote the ni × 1
vector of 1’s and let Mi, i = 1, … , a denote the matrices of the covariates for each group separately. Furthermore, let
Bi = (Xi ⋮ Mi) denote the a partitioned matrices of Xi and the corresponding covariates Mi, and define the projection
matrices

Qi = Ini − Bi(B′
iBi)−1B′

i .

Then, unbiased and consistent estimators of the variances 𝜎2
i are given by

𝜎2
i = Y′

iQiYi∕(ni − 1 − rank(Mi)), i = 1, … , a. (9)

Unbiased estimators of the matrices 𝚺, 𝚿, and 𝚵 will be provided in the next corollary.

Corollary 1. Let 𝜎2
i as given in (9). Then, �̂�= ⨁a

i=1𝜎
2
i Ini is an unbiased and consistent estimator of 𝚺. Furthermore, �̂� =

ND�̂�D′ and �̂� = NA�̂�A′ are unbiased and consistent estimators of 𝚿 and 𝚵, respectively.

We note that 𝜎2
i is the ”classical” variance estimator for each group-specific submodel and therefore the result fol-

lows, see Cao et al.17 Both the estimators b̂ and p̂ of the treatment effects as well as their consistent variance-covariance
matrix estimators can now be used for the derivation of statistical procedures. This will be explained in the next
section.

4 THE ANCOVA-TYPE STATISTIC

In this section, test procedures for testing the null hypotheses H(b)
0 as well as H(p𝓁 )

0 as given in (3) and (4) will be introduced.
In general ANOVA and ANCOVA models, test procedures are mainly quadratic forms in the estimators (scaled with
variance-covariance estimators). Let H denote a suitable hypothesis matrix for testing H(b)

0 ∶ Hb = 0 given in (3). For large
sample sizes, a Wald-type statistic

QN(H) = N b̂′H′
(

H�̂�H′
)−

Hb̂
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KONIETSCHKE et al. 4737

for testing H(b)
0 is readily available. Here, (B)− denotes a generalized inverse of the matrix B. For large sample sizes,

QN(H) follows a 𝜒2
r distribution with r = rank(H) degrees of freedom. The Wald-type statistic is also numerically available

in SAS PROC MIXED using the CHISQ option within the model statement. Furthermore, F-tests are computed using
estimated degrees of freedom. These statistics, however, should only be applied when sample sizes are large. In the present
article, we focus on small sample sizes and we therefore emphasize the ANOVA-type statistic developed by Brunner
et al.5 In their original paper, the authors allow for mean comparisons only (ie, no covariates are involved in the model).
However, SAS PROC MIXED implements an ANOVA-type statistic within the ANOVAF option. The statistics shall now be
explained.

4.1 ANOVAF Option in SAS PROC MIXED

A version of the ANOVA-type statistic for testing the aforementioned null hypotheses is numerically available in
SAS PROC MIXED using the ANOVAF and MIVQUE0 options. Computational details are not provided, but the general
procedure is explained in available handbooks, for example, on https://support.sas.com/kb/24/516.html. The follow-
ing revisits its statements: “Let H denote the matrix of estimable functions for the hypothesis H ∶ Hb = 0 and let T =
H′(HH′)−H and let C denote the estimated variance-covariance matrix of (b̂ − b) (see the section ‘Statistical Properties’
in the PROC MIXED documentation for the construction of C). The ANOVAF F-statistics are computed as

FA = b̂′Tb̂∕t1. (10)

Note that this test is a modification of the usual F-statistic where (HCH′)− is replaced with t1 = tr(TC); see, for example
Brunner, Domhof, and Langer (2002, sec. 5.4). The p-values for this statistic are computed from either an F𝜈1,𝜈2 or an F𝜈1,∞
distribution. The respective degrees of freedom are determined by the MIXED procedure as follows:

𝜈1 =
t2
1

tr(TCTC)
, 𝜈∗2 =

2t2
1

g′Ag
, 𝜈2 =

{
max

{
min

{
𝜈∗2 , df𝜖

}
, 1
}

g′Ag > 1E3 × MACEPS
1 otherwise

The term g′Ag in the term 𝜈∗2 for the denominator degrees of freedom is based on approximating Var(tr(TC))
based on a first-order Taylor series about the true covariance parameters. This generalizes results in the appendix
of Brunner, Dette, and Munk (1997) to a broader class of models. The vector g = (g1, … , gq)′ contains the partial
derivatives

tr
(

H′(HH′)−H𝜕C
𝜕𝜃i

)

and A is the asymptotic variance-covariance matrix of the covariance parameter estimates (ASYCOV option in the PROC
MIXED statement). PROC MIXED reports 𝜈1 and 𝜈2 as NumDF and DenDF under the ANOVA F heading in the output.
The corresponding p-values are denoted as Pr > F(DDF) for F𝜈1,𝜈2 and Pr > F(infty) for F𝜈1,∞, respectively. P-values that
are computed with the ANOVAF option can be identical to the nonparametric tests in Akritas, Arnold, and Brunner
(1997) and in Brunner, Domhof, and Langer (2002), provided that the response data consists of properly created (and
sorted) ranks and that the covariance parameters are estimated by MIVQUE0 in models with the REPEATED statement
and properly chosen SUBJECT= and/or GROUP= effects.”

Up to now, the statistical procedure is available in SAS only. Replicating the computational steps is a very challenging
task, especially since some computational details are provided in a somewhat cryptic manner. Furthermore, as mentioned
above, the group-specific variance estimators depend on outcomes in other groups. The detailed code for the computation
of the statistic is as follows

PROC MIXED DATA =... METHOD = MIVQUE0 ANOVAF;
CLASS condition;
MODEL y = condition covariate1...covariateM;
REPEATED / TYPE=UN(1) GROUP=condition;
RUN;
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The usage of the REPEATED statement is necessary for the groupwise estimation of the variances and should not be
confused with “repeated measures”. The repeated statement allows modeling of the structure of the variance-covariance
matrix of the error term. When no covariates are available (ie, mean comparisons only), the ANOVA-type statistic is also
implemented in the R-package GFD.6

4.2 A novel approach

In the following, a novel ANCOVA-type statistic based on the point estimators b̂ and p̂ as well as their unbiased and
consistent variance-covariance estimators �̂� and �̂� will be introduced. First, procedures for testing H(b)

0 will be presented.
Methods for testing the impact of the covariates will be obtained afterward in a similar way. Analogously to the ANOVAF
realization in SAS, let T = H′(HH′)−H denote the projection onto the column space of H and consider the test statistic

FN(T) =
N

tr(T�̂�)
b̂
′
Tb̂. (11)

Note that FN(T) is very similar to FA as given in (10), with the exception of using different variance estimators. The
next proposition introduces an approximation of its asymptotic distribution.

Proposition 1. Let D be as given in (8) and define the matrix K = HD = [kij]j=1,… ,N
i=1,… ,a . Furthermore, let DK =

diag{K1, … ,Ka} and D𝜎 = diag{𝜎2
1 , … , 𝜎2

a} denote the diagonal matrices with diagonal elements Ki =
∑ni

j=1k2
ij and 𝜎2

i , i =
1, … , a, respectively. Furthermore, let 𝛀 = diag{n1 − 1 − rank(M1), … ,na − 1 − rank(Ma)} denote the diagonal matrix
with elements obtained from the denominators of 𝜎2

i . Then, under H(b)
0 , the distribution of FN(T) as given in (11) can be

approximated by a central F (̂f1, f̂2) distribution, where

f̂1 = [tr(T�̂�)]2

tr(T�̂�T�̂�)
and f̂2 = [tr(T�̂�)]2

tr(D2
KD2

𝝈
𝛀)

.

The derivation of the approximation is given in the appendix. Test procedures for testing the null hypothesis H(p𝓁)
0 ∶

p𝓁 = 0 (or any linear combination of the regression parameter as H(p)
0 ∶ c′p = 0) are obtained in the same way. Here, H is

replaced with the 𝓁th unit vector, �̂� is replaced with �̂�, and the diagonal elements of DK are obtained from the 𝓁th row
of the generating matrix A, respectively.

5 SIMULATION RESULTS

All of the methods presented in this article are of asymptotic nature and we will therefore examine their behavior in small
sample size situations with the help of extensive simulation studies (each with 10 000 simulation runs). We will use their
control of the nominal type-1 error rate (𝛼 = 5%) as well as their powers to detect selected alternatives as quality criteria.
Due to the abundance of possible general designs (numbers of factors), sample size/variance allocations, numbers of
covariates, and their impact on the distribution of the response variable, we select a broad range of different designs to
cover realistic practical scenarios, especially including the motivating example discussed in Section 2. Data have been
generated from one- and two-way designs

Yik = bi +
3∑

𝓁=1
p𝓁M(𝓁)

ik + 𝜎i ⋅
Zik − E(Zik)√

Var(Zik)
, i = 1, … , 4; k = 1, … ,ni, (Model I)

Yijk = bij +
3∑

𝓁=1
p𝓁M(𝓁)

ijk + 𝜎ij ⋅
Zijk − E(Zijk)√

Var(Zijk)
, i = 1, 2; j = 1, … , 6; k = 1, … ,nij, (Model II)

each with M = 3 covariates drawn from discretized normal distributions with p = (0, 1
2
, 1)′ and bi ≡ bij ≡ 10. The random

variables Zik and Zijk base the error terms and were generated from standard normal, t3, Laplace, 𝜒2
15, 𝜒2

7 , or exponential
distributions, respectively. Thus, three differently tailed symmetric distributions as well as three skewed distributions with
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T A B L E 1 Overview of the
different designs used in the
simulation study for Model I and
Model II

Setting Model I Model II Meaning

1 n1,I + m,𝝈1,I n1,II + m,𝝈1,II Balanced/homoscedastic

2 n1,I + m,𝝈2,I n1,II + m,𝝈2,II Balanced/heteroscedastic

3 n2,I + m,𝝈1,I n2,II + m,𝝈1,II Unbalanced/homoscedastic

4 n2,I + m,𝝈2,I n2,II + m,𝝈2,II Positive pairing

5 n2,I + m,𝝈3,I n1,II + m,𝝈3,II Negative pairing

6 — n2,II + m,𝝈4,II Positive/negative pairing

different amount of skewness (mild, medium, and very) were chosen as error term distributions (standardized) in each
of the two models. The constants 𝜎i and 𝜎ij ensure Var(Yik) = 𝜎2

i and Var(Yijk) = 𝜎2
ij. As a major assessment criteria, we

will exemplify the behavior of the methods in positive and negative pairings of sample sizes and variances. The resulting
different settings of sample sizes and groupwise variance allocations are displayed in Table 1.

The initial parameters of Model I are n1,I = (7, 7, 7, 7)′, n2,I = (7, 10, 13, 18)′, 𝝈1,I = (1, 1, 1, 1)′, 𝝈2,I =
(1,

√
2,
√

3, 2)′, and 𝝈3,I = (2,
√

3,
√

2, 1)′, whereas the initial parameters of Model II were set as n1,II =
(n′

1,I ,n′
1,I ,n′

1,I)
′, n(1)

2,II = (7, 10, 13, 15, 18, 20)′, n2,II = (n(1)′
2,II ,n(1)′

2,II)
′, and standard deviations 𝝈1,II = (𝝈′

1,I ,𝝈
′
1,I ,𝝈

′
1,I)

′,
𝝈
(1)
2,II = (1,

√
2,
√

3,
√

4,
√

5,
√

6)′, 𝝈2,II = (𝝈(1)′
2,II ,𝝈

(1)′
2,II)

′, 𝝈
(1)
3,II = (

√
6,
√

5,
√

4,
√

3,
√

2, 1)′, 𝝈3,II = (𝝈(1)′
3,II ,𝝈

(1)′
3,II)

′, and
𝝈4,II = (𝝈(1)′

3,II ,𝝈
(1)′
2,II)

′, respectively. In addition, m ∈ {0, 2, … , 10} is a constant that is added to each initial sample size
setting n𝓁,I = (n1, … ,n4)′ and n𝓁,II = (n11, … ,n12)′, 𝓁 = 1, 2. Settings 1 and 2 represent balanced cases with equal or
unequal variances, while settings 3 to 6 cover unbalanced designs with homoscedastic and heteroscedastic variances.
Each of the six different error distributions was simulated in all of the five (Model I) and six (Model II) scenarios with
varying sample sizes and groupwise variances. We report the type-1 error (𝛼 = 5%) simulation results of the four main
competitors: FA in (10) implemented in SAS PROC MIXED, the wild-bootstrap test W∗(T) from Zimmermann et al7 (also
see Equation (15)) (using nboot = 10 000 bootstrap runs), the classical ANCOVA F-test as well as the novel ANCOVA-type
test FN(T) in (11) for testing the null hypotheses

H(b)
0 ∶ P4b = 0 (Model I) and H(b)

0 ∶ (P2 ⊗ P6)b = 0 (Model II)

in Figure 2 and in Figure 3, respectively.
First, it can readily be seen from Figure 2 that the two ANCOVA-type tests FA (10) and FN(T) are of equal quality,

and both procedures tend to control the nominal type-1 error rate quite accurate in all considered scenarios. When sam-
ple sizes are very small, they tend to be slightly conservative. It can also be seen that the quality of the approximation
depends on distributional shapes. In case of symmetric distributions, the heavier the tail the more conservative the meth-
ods seem to be. This observation was made in each of the different settings. In case of skewed distributions, a similar
pattern can be recognized. The higher the skewness the more conservative the tests behave. The classical F-test per-
forms as expected and controls the nominal type-1 error rate very well under variance homoscedasticity, while it tends to
be liberal or conservative under negative or positive pairings, respectively. The procedure is based on a pooled variance
estimator (assuming equal variances), which is biased when the data actually have different variances in unbalanced
designs. The wild-bootstrap method W∗(T) (15) controls the type-1 error well in case of symmetric distributions. Under
skewed distributions, the opposite as with the ANCOVA-type tests can be observed, namely the higher the skewness,
the more liberal the test behaves and thus, over-rejects the null hypothesis. With increasing sample sizes, the conser-
vatism of the ANCOVA-type tests as well as the liberality of W∗(T) tend to decrease. Summing up all findings, the quality
of each method depends on the shape of the underlying data distribution. In case of symmetric distributions, no major
differences between the methods could be detected in the selected scenarios except for the t3 distribution, where the
wild-bootstrap test is closer to the nominal level than the somewhat conservative new ANCOVA-type tests. By contrast,
the FN(T) seems more stable under skewed distributions than the wild-bootstrap method. Next, we will investigate the
control of the type-1 error rate of the competing methods for testing the null hypothesis H(p1)

0 ∶ p1 = 0. Since the results
obtained under Model II and Model I were very similar, we omit the latter. The simulation results are displayed in
Figure 4.
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F I G U R E 2 Type-1 error
(𝛼 = 5%) simulation results of
FA in (10) implemented in
SAS PROC MIXED, the
wild-bootstrap test W∗(T) in
(15), the classical ANCOVA
F-test, and the novel test FN (T)
in (11) for testing H(b)

0 in
one-way designs (Model I)
[Colour figure can be viewed at
wileyonlinelibrary.com]

First, it can readily be seen that the ANCOVA-type test FA implemented in SAS is pretty liberal and over-rejects the
null hypothesis when sample sizes are either small or of medium size. This can be observed under all of the investigated
data distributions and settings. With increasing sample sizes, the liberality vanishes, but, it still cannot be recommended
when sample sizes are ni ≈ 20. This behavior of the test might occur because SAS uses the generalized least squares
with the estimated variances as the point estimators. The estimation of the variances of the estimators might be unstable
and not well tracked within the approximation procedure when sample sizes are as small as considered here. The novel
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F I G U R E 3 Type-1 error
(𝛼 = 5%) simulation results of FA in
(10) implemented in
SAS PROC MIXED, the
wild-bootstrap test W∗(T) in (15),
the classical ANCOVA F-test, and
the novel test FN (T) in (11) for
testing H(b)

0 of no interaction effect
in two-way designs (Model II)
[Colour figure can be viewed at
wileyonlinelibrary.com]
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ANCOVA-type test FN(T) as well as the resampling version W∗(T) control the nominal type-1 error level very well in all
of the considered scenarios.

5.1 Power simulations

We conducted extensive simulation studies to compare the powers (at significance level 𝛼 = 5%) of FA in (10), W∗(T) in
(15) and FN(T) in (11) in various scenarios. Due to the abundance of different factorial designs, we compare the powers
of the methods to detect the three selected alternatives
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F I G U R E 4 Type-1 error
(𝛼 = 5%) simulation results of FA in
(10) implemented in
SAS PROC MIXED, the wild-bootstrap
test W∗(T) in (15), the classical and
novel ANCOVA F-test and FN (T) in
(11) for testing H(p1)

0 in two-way
designs (Model II) [Colour figure can
be viewed at wileyonlinelibrary.com]

Alternative 1 Alternative 2 Alternative 3

b =
(
10 − 𝛿, 101′3

)′ b =
(
10 − 𝛿, 10 + 𝛿, 101′2

)′ b =
(

10 − 𝛿, 10 + 𝛿, 10 + 1
2
𝛿, 10

)′

b =
(
10 − 𝛿, 101′11

)′ b =
(
10 − 𝛿, 101′5, 10 + 𝛿, 101′5

)′ b =
(

10 − 𝛿, 10 + 𝛿, 10 + 1
2
𝛿, 101′3, 10 + 𝛿, 10 − 𝛿, 10 − 1

2
𝛿, 101′3

)′

(12)

in Model I (upper row) and Model II (lower row) with varying 𝛿 ∈ {0, 0.1, … , 2} in all of the different
settings as described in Table 1. Throughout, we set m = 0 and thus do not compare the impact of increasing
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F I G U R E 5 Power
simulation results (𝛼 = 5%) to
detect the three alternatives in
(12) of FA in (10) implemented
in SAS PROC MIXED, the
wild-bootstrap test W∗(T) in
(15) and novel ANCOVA F-test
and FN (T) in (11) in one-way
designs (Model I) [Colour
figure can be viewed at
wileyonlinelibrary.com]
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sample sizes on the powers of the tests. Due to the liberal or conservative behavior of the classical F-test, we did not
include the method in the comparison. The power curves are displayed in Figures 5 (Model I) and 6 (Model II),
respectively.

We find that the wild-bootstrap method tends to have a higher power than the ANCOVA-tests in few scenarios
(eg, Setting 2 in both Model I and Model II). A possible explanation could be that the method is a Wald-type statis-
tic, while the others are approximate solutions. However, we also see the opposite in few scenarios (eg, Setting 3,
Alternative 1). In general, the wild-bootstrap test W∗(T) has a slightly higher power under variance heteroscedasticity,
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F I G U R E 6 Power
simulation results (𝛼 = 5%) to
detect the three alternatives in
(12) of FA in (10) implemented in
SAS PROC MIXED, the
wild-bootstrap test W∗(T) in (15)
and novel ANCOVA F-test and
FN (T) in (11) in two-way designs
(Model II) [Colour figure can be
viewed at
wileyonlinelibrary.com]

depending on variance and sample size allocations. In case of equal variances, its power is slightly smaller than of its
competitors. Furthermore, FA in (10) also tends to have a slightly higher power than FN(T) in (11) (about 1% higher).
The power increase might either result from using MIVQUE0 variance estimators and/or from using generalized least
squares estimators. Overall, we see that the powers of the methods depend on various parameters, for instance the
hypothesis of interest (contrast matrix), alternative pattern, sample sizes, degree of variance heteroscedasticity and espe-
cially their allocations. Therefore, finding a general conclusion is quasi impossible in the designs considered here. In
general, none of the methods has a superior power, while there are situations in which any of the method outperforms
the others.
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T A B L E 2 Group-specific point
estimators of the treatment effects, their
standard errors, and the variances of the
two-way ANCOVA model

Variance

Gender
Pyridine con.
(in ppm) nij

Treatment
effect (b̂ij)

Standard
error of b̂ij 𝝈2

ij
MIVQUE0

Female 0 10 22.58 0.26 7.12 6.86

50 10 21.97 0.25 7.29 7.47

100 10 23.02 0.25 8.56 13.40

250 10 19.87 0.25 4.84 4.06

500 10 21.43 0.26 3.72 4.94

1000 8 24.88 0.26 14.71 13.52

Male 0 10 27.68 0.44 2.39 1.82

50 10 25.77 0.45 4.01 4.79

100 10 26.62 0.46 3.51 3.48

250 10 26.59 0.45 5.48 4.68

500 10 27.42 0.41 11.83 9.97

1000 9 27.38 0.37 17.01 14.25

6 DATA EVALUATIONS

The two-way factorial toxicological and carcinogenic study introduced in Section 2 can now be analyzed with the new
methods. First, the data of this trial can be modeled by

Yijk = bij +
2∑

𝓁=1
p𝓁M(𝓁)

ijk + 𝜖ijk, i = 1, … , 2; j = 1, … , 6; k = 1, … ,nij,

with Yijk denoting BUN (equivalently change of BUN), M(1)
ijk and M(2)

ijk BUN at baseline and change of bodyweight of rat k

of gender i in dose level j, respectively. First, the estimated treatment effects (b̂ij), standard errors of b̂ij, and the variance
estimators (𝜎ij) for each factor-level combinations of the two factors: gender (A) and pyridine concentration (B) are listed
in Table 2. For illustration, we also report the variance estimators obtained by MIVQUE0 in SAS PROC MIXED.

It can readily be seen from Table 2 that the variance estimators from both estimation methods after adjusting for the
two covariates are rather different for each combination of the two factors. Therefore, assuming homoscedastic variances
in the classical ANCOVA model may lead to inaccurate statistical inferences.

In order to analyze the main effects and the interaction effect, we test each null hypothesis given in (5) using the novel
ANCOVA-type test FN(T) in (11), the ANCOVA-type test FA in (10) implemented in SAS PROC MIXED, the wild-bootstrap
test W∗(T) in (15), and the classical ANCOVA F-test. The results are summarized in Table 3 with the test statistics, degrees
of freedom (DF), and the P-values.

It can readily be seen from Table 3 that the factor A (gender) has a significant impact on the endpoint BUN at 5%
level of significance using the first three tests: FN(T), FA, and W∗(T), while an insignificant impact using the classical
ANCOVA F-test. This difference in results might be because the test assumes homogenous variances. None of the tests
detects a dose effect (pyridine concentration) at 5% level of significance. Furthermore, the bodyweight change does not
seem to impact the response.

7 DISCUSSION

Analysis of covariance is a fundamental inference method in statistical practice and allows estimation and testing of
adjusted treatment effects in general factorial designs. For example, adjusting for baseline values is essential in a vari-
ety of trials. In addition, variance heteroscedasticity is a non-negligible impact which might complicate the statistical
analysis, especially in small sample sizes. In the present article, we discussed available methods for the analysis of
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T A B L E 3 Test results for the two-way factorial toxicological and carcinogenic study. Here, two factors are
the gender of rats (A) and the pyridine concentration (B)

DF

Estimation method Effect Test statistic Num Den P-value

Novel ANCOVA-type test: FN (T) A 4.16 1.00 54.58 .0462

B 2.00 3.08 53.70 .1240

A × B 1.44 3.66 51.56 .2365

ANCOVA-type test: FA in SAS A 5.02 1.00 52.40 .0294

B 2.29 3.53 84.20 .0740

A × B 1.45 3.95 76.90 .2265

Wild-bootstrap test: W∗(T) A 5.77 — — .0267

B 13.61 — — .0683

A × B 9.54 — — .1749

Classical ANCOVA F-test A 2.51 1 103 .1161

B 1.37 5 103 .2425

A × B 1.23 5 103 .3020

ANCOVA models under groupwise heteroscedasticity. In particular, we investigated the ANCOVA-type statistic FA
available in SAS PROC MIXED. In this spirit, we were able to derive its sibling statistic FN , which can be seen as a gen-
eralization of the ANOVA-type statistic.5 In comparison with FA, FN is numerically feasible and can be computed within
few numerical steps. Extensive simulation studies show that the ANCOVA-type tests control the nominal type-1 error rate
equally well and have comparable powers to detect alternatives. As further competitor, we investigated a wild-bootstrap
approach.7 Extensive simulation studies show that none of the methods has a superior power. In few situations depending
on variance heteroscedasticity, type of hypothesis, sample sizes, and so forth, W∗ has a higher power than its competitors.
In general, the methods are applicable even in case of small sample sizes. As a rough recommendation, they are appli-
cable when ni ≥ 10 (depending on the actual model under consideration). Furthermore, when confronted with small
sample sizes, we recommend testing for no covariate effect(s) with the statistic FN . All of the presented methods are, how-
ever, approximate solutions each with its own pros and cons. Besides evaluating data, statistical planning and sample
size computations are of same importance. We will tackle them in future research projects. Furthermore, we investi-
gated Box-type approximations only. The investigation of other methods, for example, the pretty popular Kenward-Roger
approximation methods18,19 (which are implemented in SAS PROC MIXED as well), will also be part of future
research.

Extension: Completely heteroscedastic errors

The assumption of equal variances within groups (see Equation (2)) may be further relaxed, in order to cover also scenarios
with subject-specific errors (ie, “completely heteroscedastic” settings), namely by only assuming

Var(𝝐) =
a⨁

i=1

ni⨁
j=1

𝜎2
ij. (13)

Translating the ANCOVA-type approximation framework that has been considered in the present article to such a
general setting is not straightforward. By contrast, a Wald-type approach is still applicable, because the covariance matrix
given in (13) may be replaced by the estimator

V̂ar(𝝐) =
a⨁

i=1

ni⨁
j=1

𝜖2
ij, (14)
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where 𝜖ij denotes the ANCOVA residual of subject j in group i, i ∈ {1, … , a}, j ∈ {1, … ,ni}. In order to improve the
finite-sample performance, the following wild-bootstrap Wald-type test has been proposed in Zimmermann et al.7 Let
B ∶= (X,M) denote the design matrix of the ANCOVA model. Independently from the data, we generate a sample of i.i.d.
random variables T11, … ,Tana satisfying P(T1 = −1) = P(T1 = 1) = 1∕2 and obtain the corresponding bootstrap observa-
tions Y∗

ij = 𝜖ijTij(1 − pij)−1∕2, where pij denotes the diagonal element of the hat matrix PB = B(B′B)−1B′ corresponding to
subject j within group i. Finally, we calculate the wild-bootstrap Wald-type statistic

W∗(T) ∶= (Tb̂∗)′(T�̂�∗T)−1Tb̂∗. (15)

Thereby, b̂ denotes the least squares estimator of b defined in (6), but with the original observations replaced by the
bootstrap sample, and �̂�∗ denotes the upper-left block of the 2 × 2 block matrix

(B′B)−1B′V̂ar∗(𝝐)B(B′B)−1,

where V̂ar∗(𝝐) is the bootstrap counterpart of the covariance matrix estimator from (14). Now, when repeating the pro-
cedure of drawing i.i.d. bootstrap samples a “large” number of times, we may use the empirical (1 − 𝛼) quantile of the
conditional distribution of W∗(T) as the critical value for testing H(b)

0 ∶ Tb = 0. Some limited simulation evidence indi-
cates that the wild-bootstrap Wald-type test performs well even in the more general setting of unequal variances within
groups, except for some tendency toward a conservative behavior in the log-normal case (see table 1 in Zimmermann
et al7). In general, however, it should be kept in mind that in a well-designed study, one may expect at most slight het-
eroscedasticity within groups. Therefore, the ANCOVA-type approximation that has been considered in the present article
might actually cover most practically relevant scenarios.

Another potential line of action might be to use alternative methods for estimating the variances of the estimated
model coefficients instead of HCSE estimators.8,9 For example, the Hadamard estimator considered in Dobriban and Su20

may be less biased, and hence, improve the finite-sample performance of the wild-bootstrap ANCOVA. This idea needs to
be further studied in future research. So far, we restricted our research to independent observations. Repeated measures
designs and multivariate data will be part of future research. Implementations of the new methods in freely available
software packages (eg, within the R-package GFD6) are envisioned.
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APPENDIX. DERIVATION OF THE APPROXIMATION PROCEDURE

We will prove Proposition 1 in the following. It follows from the (asymptotic) multivariate normality of
√

N(b̂ − b) and the
representation theorem of a quadratic form in Mathai14 that the (asymptotic) distribution of B̃N(T) can be approximated
by a weighted sum of independent 𝜒2

1 random variables. Following the idea of Box13 and Brunner et al,5 we approximate
its distribution by a scaled g ⋅ 𝜒2

f1
distribution, equate the first two moments, and obtain

BN(T) = Nb̂
′
Tb̂ ⋅∼

a∑
i=1

𝜅i𝜒
2
1

!∼ g ⋅ 𝜒2
f1

with

E (BN(T)) =
a∑

i=1
𝜅i = tr(T𝚿) = g ⋅ f1 and

Var (BN(T)) = 2
a∑

i=1
𝜅2

i = 2tr(T𝚿T𝚿) = 2g2 ⋅ f1.

It follows that

g ⋅ f1 = tr(T𝚿) and f1 = [tr(T𝚿)]2

tr(T𝚿T𝚿)
.

Hence, under H(b)
0 , we obtain the approximation

F̃N(T) =
N

g ⋅ f1
b̂
′
Tb̂ = N

tr(T𝚿)
b̂
′
Tb̂ ⋅∼ 𝜒2

f1
∕f1.

Since tr(T𝚿)depends on unknown parameters and thus is unknown in practical applications, we replace it by its empirical
counterpart tr(T�̂�). However, we observe that we can write the latter as a quadratic form and approximate its distribution

 10970258, 2021, 21, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9092 by C
harité - U

niversitaetsm
edizin, W

iley O
nline L

ibrary on [30/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KONIETSCHKE et al. 4749

in the same way as above

tr(T�̂�) = tr( TD
⏟⏟⏟

=∶K

�̂�D′T′) = tr(K�̂�K′)

=
a∑

i=1

ni∑
j=1

k2
ij𝜎

2
i =

a∑
i=1

𝜎2
i

ni∑
j=1

k2
ij

⏟⏟⏟
Ki

=
a∑

i=1
Ki𝜎

2
i .

Thus, it follows that

tr(T�̂�) ∼ N
a∑

i=1

Ki𝜎2
i

ni − 1 − rank(Mi)
Vi,Vi ∼ 𝜒2

ni−1−rank(Mi)
.

In the last step we assumed ni−1−rank(Mi)
𝜎2

i
𝜎2

i ∼ 𝜒2
ni−1−rank(Mi)

(at least approximately). Following the ideas of Box13 and Brun-

ner et al5 again, we approximate the distribution of tr(T�̂�) by a scaled g2𝜒2
f2
∕f2 distribution such that the first two moments

coincide and obtain

E
(

tr(T�̂�)
)
= tr (T𝚿) = E(g2𝜒

2
f2
∕f2) = g2,

Var
(

tr(T�̂�)
)
= 2N2

a∑
i=1

K2
i 𝜎

4
i

ni − 1 − rank(Mi)
= 2g2

2∕f2

which yields

f2 = [tr(T𝚿)]2∑a
i=1

K2
i 𝜎

4
i

ni−1−rank(Mi)

= [tr(T𝚿)]2

tr(D2
KD2

𝝈𝛀)
.

Therefore, we obtain the approximation

F2(T) =
tr(T�̂�)
tr(T𝚿)

⋅∼ 𝜒2
f2
∕f2.

The quadratic forms F̃N(T) and F2(T) are independent which motivates as approximation

F∗
N(T) =

F̃N(T)
F2(T)

= N
tr(T�̂�)

b̂
′
Tb̂ ⋅∼

𝜒2
f1
∕f1

𝜒2
f2
∕f2

= F(f1, f2).

Finally, since f1 and f2 depend on unknown parameters, we replace them with their consistent estimators and obtain

FN(T) =
N

tr(T�̂�)
b̂
′
Tb̂ ⋅∼ F (̂f1, f̂2),

where

f̂1 = [tr(T�̂�)]2

tr(T�̂�T�̂�)
and f̂2 = [tr(T�̂�)]2

tr(D2
KD2

𝝈
𝛀)

,

respectively.
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