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Chapter 1.

Introduction

Statistical models of shape have been established as one of the most successful
methods for understanding and assessing the geometric variability of anatomi-
cal structures [Ambellan et al., 2019a]. Statistical Shape Models (SSMs) have
become an essential tool for medical image analysis with a wide range of ap-
plications such as segmentation of anatomical structures, computer-aided di-
agnosis and therapy planning. Shape modeling is of particular interest in
image guided diagnosis where morphological changes of anatomies have been
hypothesized to be linked to various disorders, often as early indicators. For
example, musculoskeletal disorders affecting large proportions of the adult pop-
ulation such as Osteoarthritis (OA) [Lawrence et al., 2008] are associated with
morphological changes. Hence, the overall socio-economic burden [Conaghan
et al., 2014] associated with this and other diseases provides a strong impe-
tus to develop novel computational approaches for the support of treatment
and prevention strategies. One of those are advanced SSMs. Based on a set
of consistently discretized training shapes and a notion of shape space, SSMs
efficiently parametrize the geometric variability of the biological objects under
study. This in turn is not only useful in imposing shape constraints in syn-
thesis and analysis problems but also in understanding the processes behind
growth and disease. Hence, statistical shape modeling has moved well beyond
its de-facto application of automatic image segmentation [Cootes et al., 1995;
Seim et al., 2010; Kainmüller et al., 2013; Saito et al., 2016]. Given a set
of samples from an object class under study, SSMs estimate the distribution
of the underlying population in terms of a reference shape and a hierarchy
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Chapter 1. Introduction

of principle modes encoding the main trends in the variation of the samples
around that reference. Moreover, representing samples within the basis of
principle modes provides a highly discriminative, yet compact description that
is susceptible for analysis, inference by learning algorithms (e.g. classification
or clustering) and exploration. For example, descriptors based on statistical
shape modeling have proven effective for predicting the onset and progression
of OA [Bredbenner et al., 2010; Neogi et al., 2013; Thomson et al., 2015, 2016],
in anthropometric studies [Robinette et al., 1999; Hasler et al., 2009] and in
detection of Alzheimer’s [Shen et al., 2012]. An overview of the numerous con-
tributions as well as the wide range of applications can be found in [Heimann
and Meinzer, 2009; Sarkalkan et al., 2014; Brunton et al., 2014; Lamecker and
Zachow, 2016].

Since the pioneering work of Kendall [Kendall, 1989], which introduced a rigor-
ous mathematical foundation for shape spaces and statistics thereon, numerous
practical approaches were devised. In the simplest case, the space of shapes is
represented by an Euclidean vector space, e.g. by describing a shape ranging
from a sparse set of landmarks up to a dense collection of boundary points.
This structure then allows statistical tools like Principal Component Analysis
(PCA) to be applied to the training data resulting in fast and simple algo-
rithms for the analysis and synthesis of shapes. In medical image processing,
the construction and application of statistical models of shape in a linear vec-
tor space is a standard technique with long tradition [Kelemen et al., 1999].
This approach was introduced by Cootes et al. [1995], we will refer to it as the
Point Distribution Model (PDM) throughout the thesis. However, the qual-
ity of such model depends on the validity of the assumption that instances
of the object class being modeled lie in (or are well-approximated by) a flat
Euclidean space. This assumption is a poor choice for data with a large spread
or within regions of high curvature in shape space [Huckemann et al., 2010;
Zhang et al., 2015] and, thus, is considered a limiting factor for the ability to
represent natural biological variability in populations (cf. for example [Davis
et al., 2010] and the references therein). Figure 1.1 shows an example from
phytomorphology of a shape imposing difficulties within this setting.

How this technique can be generalized to shape spaces with non-Euclidean
structures is still an active area of research. One line of work to introduce
nonlinearity are so-called kernel methods that embed data into a potentially
infinite-dimensional feature space and perform linear statistic analysis
there [Kirschner et al., 2011]. While this approach is widely applicable, the
choice of a kernel is however non-trivial and does usually depend on the spe-
cific application. Furthermore, there exists in general no (exact) pre-image

2



Figure 1.1.: A naturally twisted structure that is difficult to be deformed plau-
sibly in shape spaces based on landmark representations in Euclidean space.

in shape space so that one can only settle for approximate reconstructions
thereof [Mika et al., 1999]. This in turn can impede the synthesis of new
shapes considerably. A comparison between different kernel methods is given
in [Rathi et al., 2006]. Other exciting contributions accounting for nonliner-
ity have been presented ranging from the large deformation framework [Miller
et al., 2015] in computational anatomy, based on diffeomorphisms of the am-
bient space, to modeling the variability of surfaces employing geometric as
well as physical concepts such as Hausdorff distance [Charpiat et al., 2006],
elasticity [Rumpf and Wirth, 2011; von Tycowicz et al., 2015; Zhang et al.,
2015] and viscous flows [Fuchs et al., 2009; Brandt et al., 2016; Heeren et al.,
2018]. An overview of the various concepts can be found in the chapter by
Rumpf and Wirth [Rumpf and Wirth, 2015]. Another recent string of con-
tributions investigates functional characterizations of intrinsic and extrinsic
geometry [Rustamov et al., 2013; Corman et al., 2017; Wang et al., 2018] to
obtain shape descriptors. While the underlying functional map framework alle-
viates the requirement on point-to-point correspondences, the reduced function
spaces are based on low-frequency variations and, thus, prone to insensitivity
for localized shape variability such as osteophyte formation during the course
of OA. In spite of these developments, linear methods are still the most widely
used approaches to 3D statistical shape modeling [Sarkalkan et al., 2014]. This
hesitant adoption of non-Euclidean methods has been linked to the numeri-
cal instability and local minima [Heimann and Meinzer, 2009] that appear as
typical drawbacks in nonlinear, high-dimensional optimization problems. Fur-
thermore, while the development of specific fast-converging algorithms for the
underlying optimization problems is still an ongoing field of research, many
medical applications such as computer-assisted intervention or interactive seg-
mentation require near-realtime response rates which prohibits the use of com-
putationally expensive, nonlinear models. Moreover, even for non-interactive
applications the order of magnitude of computational cost becomes a deci-
sive factor when processing thousands or even tens of thousands subjects from
large-scale morphological studies.

3



Chapter 1. Introduction

For the case of Riemannian shape spaces the strength of shape variations can
be measured in terms of geodesic distances. Averages in these spaces have
been presented by Fréchet [1948] and were further analysed by Karcher [1977].
There also exists a natural linear representation of shapes in the tangent space
of the mean via the geodesic logarithmic map. Fletcher et al. [2004] em-
ploy this structure to extend the PCA to the manifold setting which is thus
referred to as Principal Geodesic Analysis (PGA). In fact, Fletcher et al. pro-
pose to linearly approximate PGA—nowadays known as Linearized Principal
Geodesic Analysis (LPGA)/Tangent Principal Component Analysis (TPCA).
While intrinsic distances between training shapes and mean are preserved un-
der the logarithmic map this is generally not the case for the distances between
shapes. Exact PGA [Sommer et al., 2010], geodesic PCA [Huckemann et al.,
2010] as well as barycentric subspace analysis [Pennec, 2018] attempt to cap-
ture this additional information by employing the true intrinsic distances. In
general, geodesic calculus on manifold shape spaces is hard to carry out in
practice because most required operations do not admit closed-form solutions.
To alleviate these challenges, one line of work, closely related to this thesis’ ap-
proach, models shapes explicitly by a collection of elementary building blocks
called primitives (e.g. triangles, M-reps etc.) [Fletcher et al., 2003; Hefny et al.,
2015] with a natural, geometric structure. Especially if employing triangles as
primitives, local changes in shape can be effectively encoded piecewise as ori-
entation preserving affine transformations and be equipped with a Lie group
structure. In contrast to the former, utilizing a differential description, namely
differential coordinates induced by the deformation gradient, provides a local
description of the geometry rather than absolute positions [Hasler et al., 2009;
Freifeld and Black, 2012; Gao et al., 2016]. A related concept is to exploit
the homogeneous structure of the ambient space and to encode displacements
of points in terms of (e.g. rigid or affine) transformations [Gilles et al., 2011;
Arsigny et al., 2003, 2009; McLeod et al., 2015]. Exploiting the spatial re-
dundancy of such representations present, e.g. in articulated motion, these
approaches provide low-dimensional encodings of deformations. Considering
the limit case of triangle-wise supported polyaffine/-rigid deformations, this is
similar to simplicial maps underlying the construction in [Freifeld and Black,
2012] as well as our setup. However, the latter employs differential characteri-
zations of such maps that remove translational components and put local geo-
metric variability into focus, i.e. provides invariance under translation. These
methods are posed in a purely discrete setting that is not readily applicable to
different shape representations. Furthermore, the lack of a continuous coun-
terpart leaves questions as for the consistency and convergence of the discrete
model unanswered. These aspects are not only of concern in the refinement
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limit: Results will depend on the resolution and anisotropy of the sampling.
Within this thesis we provide continuous model for the differential character-
ization that alleviates these issues. Typically differential coordinates that are
derived from the (deformation) gradient of the map that encodes the shape
relative to a reference naturally belong to the group of orientation preserving
linear transformations GL+(3). However, to the best of our knowledge and in
contrast to this thesis, previous work does not account for the rich geomet-
ric structure inherent to GL+(3). Approaches like [Zacur et al., 2014] based
on the Riemannian framework are not stable according to group operations
(composition and inversion) due to the lack of bi-invariant metrics for GL+(3).
Anyhow, consistency/equivariance with group operations is desirable as it pro-
vides invariance w.r.t. changes of reference and data coordinate systems and
thus prevents bias due to arbitrary choices thereof. We also propose an al-
ternative SO(3) × Sym+(3)-group structure consisting of rotations and sym-
metric positive definite matrices (representing stretches) that in turn provides
bi-invariance and grants relief w.r.t. existence and uniqueness of logarithmic
maps by the price of ignoring the original, canonical structure. Furthermore,
while Woods [Woods, 2003] proposes a similar approach for image deformation,
he employs a surface representation that is not group-valued. Despite their
inherent nonlinear structure, the employed representations are not invariant
under Euclidean motion and, thus, analysis thereon suffers from bias due to
arbitrary choices. While the effect of rigid motions can be removed between
pairs of shapes using alignment strategies, non-transitivity thereof prevents
true group-wise alignment. This thesis devises a shape representation based
on rotation invariant differential coordinates, that we refer to as fundamental
coordinates due to their surface-theoretic interpretation. These fundamental
coordinates are invariant under Euclidean motion and, thus, not susceptible
to any bias due to misalignment by definition. Although in computer graphics
and vision communities rotation invariant differential coordinates have also
been successfully employed for geometry processing applications, e.g. Kircher
and Garland [2008], these approaches fall short of a fully intrinsic treatment
(e.g. due to lack of bi-invariant group structure and linearization) and have
not been adapted to the field of SSMs. Performing intrinsic calculus on the
uncoupled primitives allows for fast computations while, at the same time, ac-
counting for the nonlinearity in shape variation. However, solving the inverse
problem, i.e. mapping from primitives back to surface meshes, is generally non-
trivial. We will present a physically motivated approach based on differential
coordinates for which the inverse problem is well-known and can be solved at
(close to) linear cost. Furthermore, we also propose an efficient local/global
algorithm to solve the inverse problem for the fundamental coordinates.
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Chapter 1. Introduction

1.1. Main Achievements

In this work, we address the challenge of developing SSMs that account for
the non-Euclidean nature inherent to (anatomical) shape variation and at the
same time offer fast, numerically robust processing and as much invariance as
possible regarding translation and rotation, i.e. Euclidean motion. This work
makes the following major contributions to the body of research:

• We formulate a continuous and physically motivated notion of shape
space based on deformation gradients. Other than Euclidean structures
that pronounce shape variations with large displacements even if they are
near-isometries, our differential representation puts the (local) geometric
changes into focus, which is mechanically sound. We follow two differ-
ent tracks endowing the differential representation with a Riemannian
structure in order to develop two different SSMs:

∎ GL
+(3)-Model (GLM): We derive a novel SSM based on linear

differential coordinates as elements in GL+(3) that is as-invariant-
as-possible and, hence, promises increased consistency and reduced
bias. To this end, we adapt the notion of bi-invariant means as
proposed in [Pennec and Arsigny, 2013] employing an affine con-
nection structure on GL+(3). Furthermore, we perform second-
order statistics based on a family of Riemannian metrics providing
the most possible invariance, viz. GL+(3)-left-invariance and O(3)-
right-invariance. We evaluate the performance of the derived model
in terms of shape-based classification of pathological malformations
of the human knee demonstrating state-of-the-art accuracy.

∎ Differential Coordinates Model (DCM): Second, we endow the
differential coordinates with a non-Euclidean structure that comes
with both: Excellent theoretical properties and closed-form expres-
sions yielding simple and efficient algorithms. In particular, the
structure stems from a product Lie group of stretches and rotations
for which we present a bi-invariant metric. We demonstrate that
our model is able to correctly capture nonlinear deformations, e.g.
inherent to articulation and pathological morphology. We further
derive a statistical shape descriptor that captures systematic differ-
ences in shape between normal and diseased subpopulations. We
show that these descriptors are very well suited for classification
tasks in qualitative as well as quantitative evaluation for OA of the
distal femur.
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1.1. Main Achievements

• Fundamental Coordinates Model (FCM): This work further presents
a novel shape representation based on discrete fundamental forms that
is invariant under Euclidean motion, namely the fundamental coordi-
nates. We endow this representation with a Lie group structure that
admits bi-invariant metrics and therefore allows for consistent analy-
sis using manifold-valued statistics based on the Riemannian frame-
work. Furthermore, we derive a simple, efficient, robust, yet accurate
(i.e. without resorting to model approximations) solver for the inverse
problem that allows for interactive applications. Beyond statistical shape
modeling the proposed framework is amenable for surface processing
such as quasi-isometric flattening. Experimental evaluation for knee OA
and Alzheimer’s demonstrates great performance for shape-based disease
classification.

Additionally, this thesis aims on shape-based, continuous disease stratification
to provide means that objectify disease assessment over the current clinical
practice of ordinal grading systems. This work develops one major contribution
to the field:

• We derive the geodesic B-score, a generalization of the recently pro-
posed B-score to manifold shape spaces that adheres to the rich geo-
metric structure thereof and at the same time is consistent with its Eu-
clidean counterpart. To this end, we build upon a solid mathematical
foundation employing concepts from differential geometry and geometric
statistics. We further present an original Newton-type fixed point itera-
tion for projection onto geodesics that is both simple to implement and
computationally efficient. To the best of our knowledge, previous algo-
rithms restrict to first-order descent schemes [Sommer et al., 2014] or are
tailored to special manifolds [Huckemann and Hotz, 2009; Chakraborty
et al., 2016]. On the application side, we show that the derived geodesic
B-score features improved predictive performance on assessing the risk
of Total Knee Replacement (TKR) surgery within 8 years time using a
single time point.

We want to emphasize that all presented approaches to statistical shape mod-
eling as well as the basic building blocks for the geodesic B-score are pub-
licly available as part of the Morphomatics: Geometric morphometrics in non-
Euclidean shape spaces Python library1 [Ambellan et al., 2021a]. This library
constitutes a joint effort of the author together with M. Hanik and C. von
Tycowicz—it should not be considered as a direct part of the thesis at hand.

1morphomatics.github.io
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1.2. Prior Publications

The results on Riemannian statistical shape modeling presented in this disser-
tation were published in two journal and three conference articles. More pre-
cisely, the two journal articles have been published in the high-ranking Med-
ical Image Analysis: [von Tycowicz et al., 2018]2 (DCM), [Ambellan et al.,
2021c] (FCM and quasi-isometric flattening). The author further presented
results at the internationally appreciated, top-tier medical image analysis con-
ferences Medical Image Computing and Computer Assisted Intervention (MIC-
CAI) 2019 including the main conference [Ambellan et al., 2019d] (FCM) as
well as the International Workshop on Mathematical Foundations of Computa-
tional Anatomy (MFCA) [Ambellan et al., 2019c] (GLM) and the International
Conference on Information Processing in Medical Imaging (IPMI) 2021 [Am-
bellan et al., 2021b] (geodesic B-score).

1.3. Outline

The thesis at hand comprises six chapters: this introduction, one chapter
on the mathematical background, three chapters that form the centerpiece
and develop the contributions, as well as one final chapter concluding the
manuscript and proposing directions for future research.

The mathematical foundations on Riemannian geometry, Lie groups, bi-in-
variance and geometric statistics are given in Chapter 2 in a compact, yet
self-contained manner. The chapter closes with a formal definition of what
we understand as SSM. Chapter 3 details on the methodological development
of different approaches on deformation gradient based statistical shape mod-
eling. Differential coordinates are introduced in a continuous as well as a
discrete setting. An efficient algorithm to solve the inverse problem of recon-
structing a shape from coordinates is given. We propose different Lie group
structures defined thereon allowing for different paths to novel SSMs based
on mean-variance analysis, i.e. the GLM and the DCM. Then the fundamen-
tal coordinates are developed as Euclidean motion invariant extension of the
differential coordinates with its foundations in classical surface-theory. An ef-
fective local/global algorithm to solve the nonlinear inverse problem is devised
as well as an approach to quasi-isometric surface flattening through manipu-
lation of the coordinates. These coordinates admit a bi-invariant Lie group

2C. von Tycowicz and F. Ambellan share the first authorship.
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1.3. Outline

structure that serves as a basis for the formation of the FCM. The chapter
closes with the description of the fundamental coordinates. In Chapter 4 we
provide quantitative and qualitative evaluation and comparison between the
developed methods as well as other modeling approaches including standard
PDM and MeshCNN. This evaluation includes, among others, assessment of
model compactness, specificity and generalization ability that are widely ac-
cepted as standard measures for SSMs. Finally, Chapter 5 focuses on appli-
cations in disease assessment for knee OA and Alzheimer’s as well as disease
stratification for knee OA featuring the geodesic B-score. Moreover, we provide
further insight on the employed data and additional experiments on parameters
in Appendix A.
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Chapter 2.

Geometric Foundations and

Preliminaries

The chapter recalls the mathematical foundations this thesis is built upon,
in order to keep it as self-contained as possible. Hence, descriptions are kept
concise and restricted to the strictly necessary. There are various text books
available providing more details and proofs on all touched topics in Rieman-
nian geometry and Lie group theory, e.g. Gallier and Quaintance [2020]; Post-
nikov [2013]; Baum [2009]; Helgason [2001]; do Carmo [1992]; O’Neill [1983];
Kobayashi and Nomizu [1963]. We refer the interested readers to these refer-
ences.

2.1. Riemannian Manifolds and Geodesic Lines

Definition 2.1. A Riemannian manifold (M, g) is a pair consisting of a real,
smooth manifold M and a Riemannian metric g, i.e. a positive-definite, sym-
metric, nondegenerate bilinear form gp on TpM for each p ∈ M , smoothly
varying with p.

In order to have a notion of how to differentiate vector fields (along curves)
in direction of vector fields (along curves) on M, we need to define the affine
connection.

11
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Definition 2.2. An affine connection on a manifold M is a mapping

∇ ∶ Γ(TM) × Γ(TM)→ Γ(TM)(X,Y )↦ ∇XY, with

∇XY is C∞(M,R)-linear in X,

∇XY is R-linear in Y,

∇XfY =X(f)Y + f∇XY for all f ∈ C∞(M,R).
Definition 2.3. A smooth curve γ ∶ [a, b]→M is called geodesic if ∇γ̇ γ̇ = 0.

The above definition signifies that geodesics feature a velocity field γ̇ = dγ/dt
that is parallel along the curve, marking these curves as ‘straight lines’.

Theorem 2.4. Given p ∈M and v ∈ TpM there exists unique maximal (w.r.t.
domain) geodesic γ ∶ I ⊆ R→M , s.t. γ(0) = p and γ̇(0) = v.
Definition 2.5. We call a Riemannian space (M,g) geodesically complete if
every maximal geodesic is defined on all R.

There is a particular relationship between metric and affine geometry stated
by the following theorem.

Theorem 2.6. Among all affine connections on (M, g), there is one uniquely
determined by fulfilling the Koszul formula

2g(∇XY,Z) =X(g(Y,Z)) + Y (g(X,Z)) −Z(g(X,Y ))
+ g([X,Y ], Z) − g([X,Z], Y ) − g([Y,Z],X),

where X(⋅) denotes the directional derivative for functions/vector fields in
direction of X and [⋅, ⋅] the Lie bracket for vector fields defined by [X,Y ](f) =
X(Y (f)) − Y (X(f)) with f a scalar function.

This affine connection is called Levi-Civita connection.

As of now we will assume ∇ to be the Levi-Civita connection if not stated
otherwise.

12



2.1. Riemannian Manifolds and Geodesic Lines

Definition 2.7. Let (M, g) be a Riemannian manifold and γ ∶ [a, b] → M a
piecewise continuously differentiable (C1) curve. The length of γ is given by

l(γ) ∶= ∫ b

a

√
gγ(t) (γ̇(t), γ̇(t))dt.

Now we can define the distance between arbitrary elements in Riemannian
manifolds. We note that if γ is a geodesic, then gγ(t)(γ̇(t), γ̇(t)) ≡ const, i.e. γ
is parametrized proportionally to arclength.

Definition 2.8. For two points p, q ∈ (M,g) we define their distance as

d(p, q) ∶= inf {l(γ) ∣ γ ∶ [a, b]→M,γ piecewise C1 s.t. γ(a) = p and γ(b) = q }
In case we have found a length-minimizing curve, suitably parametrized, it is
already a geodesic as stated by the following theorem.

Theorem 2.9. Let (M,g) be a connected Riemannian manifold, p, q ∈M and
γ ∶ [a, b] → M , with γ(a) = p, γ(b) = q length-minimizing and parametrized
proportionally to arclength, then γ is a geodesic line.

If we now consider the star-shaped (around o ∈ TpM) set Dp ∶={v ∈ TpM ∣1 ∈ Iv} ⊆ TpM , i.e. the set of all vectors serving as initial directions
for maximal geodesics γv starting at γv(0) = p ∈M , s.t. γv(1) is valid, we can
define the Riemannian exponential map.

Definition 2.10. For p ∈ M and Dp as explained above we call the smooth
map

Expp ∶Dp ⊆ TpM →M

v ↦ γv(1)
Riemannian exponential at p.

The Riemannian exponential comes with some interesting properties.

Theorem 2.11. Properties of Expp.

• Expp(tv) = γtv(1) = γv(t) (line segments in TpM are mapped to geodesic
segments in M).

13
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• Expp is a local diffeomorphism around the origin o ∈ TpM , with doExpp =

IdTpM , we name the inverse mapping Riemannian logarithm (Logp).
A first example is the n-dimensional real vector space with standard metric
(Rn, ⟨⋅, ⋅⟩), where Expp(v) = p + v and Logp(q) = q − p, since its geodesics are
simply straight lines.

Definition 2.12. Let D ⊆ TpM be a star domain around o ∈ TpM , s.t. Expp ∶

D → Expp(D) = U ∋ p is a diffeomorphism. We call U normal neighbourhood
of p.

Theorem 2.13. For every q in a normal neighbourhood U of p ∈ M exists
a unique geodesic connecting γ(0) = p and γ(1) = q within U , namely γ(t) =
Expp(tLogp(q)), with t ∈ [0,1]. Moreover, there exists an ε > 0, s.t. if q ∈
Exp (Bε(o)) ⊂ U , where Bε(o) denotes the ball of radius ε around o ∈ TpM ,

then γ is also lenght-minimizing and d(p, q) =√gp (Logp(q),Logp(q)).
Definition 2.14. Given (M,g) a geodesically complete space. For p ∈M we call
the largest value i(p,M), s.t. Expp ∣Bi(p,M)(o) is a diffeomorphism the injectivity
radius of M in p. Furthermore, we call i(M) = infp∈M{i(p,M)} the injectivity
radius of M.

Theorem 2.15 (Hopf-Rinow). Let (M,g) be a connected Riemannian mani-
fold, then the following statements are equivalent:

(i) M is geodesically complete;

(ii) M together with its geodesic distance forms a complete metric space;

(iii) There exists a point p ∈M , s.t. Expp is defined on whole TpM ;

(iv) Every closed and bounded subset of M is compact.

2.2. Lie Groups, Lie Algebras and Bi-invariance

Definition 2.16. A Lie group G is a group with a smooth manifold structure
s.t.

G ×G→ G(g, h)↦ g ⋅ h−1

is a smooth map, i.e. multiplication and inversion are smooth operations.
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A very important class of Lie groups are matrix groups. Among these three
examples are of highest interest for this thesis:

(i) the (positive) general linear group GL+(n) = {A ∈ Rn×n ∣ det(A) > 0},
(ii) the special orthogonal group SO(n) = {R ∈ Rn×n ∣ det(R) = 1, R−1 = RT},
(iii) the symmetric positive-definite matrices equipped with log-Euclidean

multiplication [Arsigny et al., 2006]

Sym+(n) = {U ∈ Rn×n ∣U = UT , xTUx > 0 for all o ≠ x ∈ Rn}
U ○ V ∶= exp(log(U) + log(V )), using matrix exponential and logarithm.

Definition 2.17. For a fixed g ∈ G we call the diffeomorphisms

Lg ∶ G→ G; Lg(h) ∶= g ⋅ h
Rg ∶ G→ G; Rg(h) ∶= h ⋅ g

left and right translation.

Obviously, left and right translation act simply transitive and commute with
each other.

Definition 2.18. A Vector field X on Lie group G is called left-invariant
(right-invariant) if dhLg(X(h)) = X(gh) (dhRg(X(h)) = X(hg)) for all g, h ∈
G. Moreover, if X is left- and right-invariant we call it bi-invariant.

Definition 2.19. Let V be a vector space and [⋅, ⋅] ∶ V ×V → V an alternating
bilinear map fulfilling the Jacobi identity

[[u, v], w] + [[v,w], u] + [[w,u], v] = 0 for all u, v,w ∈ V.

We name (V, [⋅, ⋅]) Lie algebra and [⋅, ⋅] Lie bracket.

We can now equip the vector space of left-invariant vector fields g with the
vector field bracket [X,Y ](f) = X(Y (f)) − Y (X(f)), for f ∈ C∞(G,R), s.t.
it turns into a Lie algebra. Please note that X(f) specifies the derivative of
function f in direction of vector field X and not the evaluation of X in a certain
group element.

Definition 2.20. The left-invariant vector fields of a Lie group G together
with the vector field bracket (g, [⋅, ⋅]) are called Lie algebra of Lie group G.
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Since left-invariant vector fields are uniquely determined by their value at e ∈ G
through X(g) = deLg(X(e)) we have a natural identification g ≃ TeG. Keeping
this in mind both terms are from now on used interchangeably.

Theorem 2.21. Given Lie group G and its Lie algebra g. Let X ∈ g be a
left-invariant vector field and γX its maximal integral curve through e ∈ G.

(i) γX is defined on all R.

(ii) γX ∶ R→ G is a Lie group homomorphism (1-parameter subgroup), i.e.
γX(0) = e and γX(s + t) = γX(s) ⋅ γX(t) for all s, t ∈ R.

(iii) γsX(t) = γX(s ⋅ t) for all s, t ∈ R.

Definition 2.22. For g being the Lie algebra of G we call the smooth map

exp ∶ g→ G

X ↦ γX(1)
exponential of G.

Theorem 2.23. Properties of exp.

• exp(tX) = γtX(1) = γX(t) (lines in g are mapped to integral curves of
left-invariant vector fields in G).

• exp is a local diffeomorphism around o ∈ g, with do exp = Idg, we name
the inverse mapping logarithm (log).

• exp(o) = e and exp(−X) = (exp(X))−1.
• Lg(exp(tX)) is the maximal integral curve of X through g ∈ G.

Theorem 2.24. For Lie groups that are matrix groups the Lie group exponen-
tial/logarithm coincides with the matrix exponential/logarithm.
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2.2.1. Bi-invariant Connections

Definition 2.25. An affine connection ∇ on Lie group G is called
left-invariant if ∇XY is left-invariant for all left-invariant X,Y , i.e.
∇dhLg(X(h))dhLg(Y (h)) = dhLg(∇XY (h)) = ∇XY (gh) for all g, h ∈ G. Right-
invariant affine connections are defined analogously. Moreover, if ∇ is left-
and right-invariant we call it bi-invariant.

Theorem 2.26. Any bilinear operator α(⋅, ⋅) on g ≃ TeG can be extended to a
left-invariant connection ∇ on G by defining, for each h ∈ G and all X,Y ∈ g,

∇XY (h) = deLh(∇XY (e)) = deLh(α(X,Y ))
In fact, there is a bijective relationship between left-invariant connections and
bilinear operators on g ≃ TeG. An analogous result holds for right-invariant
connections.

Definition 2.27. A left-invariant connection ∇ on a Lie group G is called a
Cartan-Shouten connection if its geodesics coincide with the integral curves of
left-invariant vector fields, i.e. left-translates of 1-parameter subgroups of G.

Corollary 2.28. Lie groups equipped with Cartan-Shouten connection are
geodesically complete, i.e. all geodesics are defined on all R.

Theorem 2.29. A left-invariant connection ∇ on a Lie group G emerging
from bilinear operator α on g is a Cartan-Shouten connection if, and only if
α is skew-symmetric.

Definition 2.30. A connection ∇ is called torsion-free (symmetric) if ∇XY −

∇YX = [X,Y ], i.e. α(X,Y ) − α(Y,X) = [X,Y ] for all X,Y ∈ g.

Theorem 2.31. Given a Lie group G, there exists one unique torsion-free
Cartan-Shouten connection given by:

α(X,Y ) = 1

2
[X,Y ], for all X,Y ∈ g.

We refer to this connection as the canonical Cartan-Shouten connection on G.
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Chapter 2. Geometric Foundations and Preliminaries

2.2.2. Bi-invariant Metrices

Definition 2.32. Let G be a Lie group. A Riemannian metric g on G is said
to be left-invariant, if every left translation is an isometry of g. That is, if for
each g, h ∈ G and every v,w ∈ ThG,

gh(v,w) = ggh(dhLg(v), dhLg(w)).
Right-invariant metrics are defined analogously. Furthermore, a metric is
called bi-invariant if it is both left- and right-invariant.

Theorem 2.33. Any inner product ⟨⋅, ⋅⟩ on TeG can be extended to a left-
invariant metric on G by defining, for each h ∈ G and all v,w ∈ ThG,

gh(v,w) = ge(dhLh−1(v), dhLh−1(w)) = ⟨dhLh−1(v), dhLh−1(w)⟩.
In fact, there is a bijective relationship between left-invariant metrics and inner
products on TeG. An analogous result holds for right-invariant metrics.

Bi-invariant metrics do not exist for every Lie group, but there are important
special cases where its existence can be assured.

Theorem 2.34. Every compact Lie group G admits a bi-invariant metric.

Corollary 2.35. SO(n) = det−1(1) is compact. It features a well known bi-
invariant metric emerging from left translation of the Frobenius inner product⟨X,Y ⟩F = Tr(XTY ).
Note, although quite common in the literature, e.g. [Rentmeesters and Absil,
2011; Pennec and Arsigny, 2013], we do not employ any additional factor 1/2
scaling the trace.

Theorem 2.36. If G is Abelian, left and right translations coincide, so every
left-invariant metric is bi-invariant.

Corollary 2.37. Sym+(n) is Abelian and hence features a bi-invariant met-
ric emerging from left translation of the Frobenius inner product ⟨U,V ⟩F =
Tr(UTV ).
We can now state the main theorem that sheds light on the connection between
Lie groups and Riemannian manifolds.
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Theorem 2.38. Given (G,g) a Lie group with bi-invariant metric the
geodesics of G coincide with the collection of left-translates of 1-parameter
subgroups of G and the exponential map coincides with the usual Riemannian
exponential map at the identity element.

Theorem 2.39. For a Lie group with bi-invariant metric (G,g) the canonical
Cartan-Shouten connection (cf. Theorem 2.31) coincides with the Levi-Civita
connection on G.

In the light of the above theorem we note that the canonical Cartan-Shouten
connection on a group is the closest relative to a Levi-Civita connection on that
same group carrying a bi-invariant metric. This makes it a very reasonable
choice for further consideration in groups that do not admit a bi-invariant
metric, as e.g. GL+(n).
Corollary 2.40. Lie groups equipped with bi-invariant metric are geodesically
complete, i.e. all geodesics are defined on all R.

This essentially means that Lie group structures with bi-invariant metric are
compatible with their respective Riemannian structure. Thus, the rather com-
plicated Riemannian maps Exp and Log can be expressed in terms of their
comparatively simple Lie group counterparts.

Acknowledging their importance, the following paragraphs will give a brief
description of the structure for two Lie groups already introduced, namely, the
rotation group (in dimension 3) and the group of symmetric positive matrices
(in dimension n, equipped with log-euclidean multiplication).

The Rotation Group SO(3)
The Lie algebra of the rotation group SO(3) consists of all skew-symmetric
matrices so(3) = {X ∈ R3×3) ∣X = −XT}. This is substantially the angle-
axis representation of rotations, since every X ∈ so(3) describes a rotation
by angle θ = ∥X∥F/√2 around axis v = θ−1 ⋅ (X32,X13,X21). However, formally
the exponential is given by the Rodrigues’ formula. Let X,Y ∈ so(3), s.t.∥Y ∥F =√2 and X = θY

R = exp(X) = exp(θY ) = I + sin(θ)Y + (1 − cos(θ))Y 2.
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The logarithm of a rotation R ∈ SO(3) can also be calculated explicitly by

log(R) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ

2 sin(θ)(R −RT ) ,0 ≠ θ ∈ (−π, π)
0 , θ = 0

,

where θ = arccos (Tr(R)−1/2) denotes the angle of rotation R. Note that the
logarithm is not globally defined, due to the ambiguity of rotations by ±π.
The distance for R,Q ∈ SO(3) emerging from the bi-invariant metric (Corol-
lary 2.35) also features an explicit formula dSO(3)(R,Q) =∥log(RTQ)∥

F
.

Symmetric Positive Definite Matrices Sym+(n)
Since the matrix logarithm is compatible with change of basis and every sym-
metric positive-definite matrix U ∈ Sym+(n) is diagonalizable with only pos-
itive eigenvalues, it is given by log(U) = P log(D)P −1, where P is a basis of
eigenvectors and D a diagonal matrix formed by the respective eigenvalues.
This indicates that log(U) is symmetric but not necessarily positive-definite,
leading to the identification sym(n) = {X ∈ Rn×n ∣X = XT}. Conforming to
this, the exponential is mapping symmetric matrices to symmetric positive-
definite matrices, it respects change of basis and hence is given analogously
by exp(X) = P exp(D)P −1 for every X ∈ sym(n). Note that exponential
and logarithm are globally diffeomorphic. If we finally consider the distance
of U,V ∈ Sym+(n) associated to the bi-invariant metric (Corollary 2.37) we
again have a closed form expression dSym+(n)(U,V ) =∥log(U) − log(V )∥F .

2.3. Statistics on Riemannian Manifolds and Lie

Groups

In the first part of this section we will introduce the notion of mean value for
Riemannian manifolds and Lie groups and PGA for Riemannian manifolds,
two basic concepts within the field of geometric statistics. In the second part
a formal definition of a SSM is proposed, serving as basis for further method-
ological development in Chapter 3.
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2.3.1. Bi-invariant Lie Group Mean

This subsection introduces the notion of mean for the metric-free but affine
setting via exponential barycenters following [Pennec and Arsigny, 2013].

Definition 2.41. Given G a Lie group with canonical Cartan-Shouten connec-
tion and {g1, . . . , gn} ⊂ G a finite set of elements in G. We call µ bi-invariant
sample group mean if it fulfills the Karcher equation

n

∑
i=1

log(µ−1gi) = 0.
This characterizes µ as the barycenter of the input data w.r.t. geodesics leaving
µ towards each input element. Note that bi-invariant refers to that µ behaves
equivariant under left-translation, right-translation and inversion of the input
samples.

Theorem 2.42. Given {g1, . . . , gn} ⊂ G a finite set of elements in Lie Group G
with canonical Cartan-Shouten connection. If the data belongs to a sufficiently
small normal convex neighborhood for some g ∈ G, then there exists a unique
bi-invariant group mean.

Especially in view of our applications (Chapter 5) we will necessarily always
assume well-localizedness of our data.

2.3.2. Fréchet Mean

In this subsection the Fréchet mean on Riemannian manifolds is defined. Fur-
ther details on existence and uniqueness are discussed roughly following Chap-
ter 2 of [Pennec et al., 2019].

Definition 2.43. Given (M,g) a Riemannian space with geodesic distance d
and {p1, . . . , pn} ⊂M a finite set of elements in M . We call the minimizers of
the sum-of-squared-distances

µ = argmin
p∈M

n

∑
i=1

d2(pi, p)
the sample Fréchet means.
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We note that every Fréchet mean on a Lie group fulfills a Riemannian version
of the Karcher equation of Definition 2.41 (Riemannian logarithm w.r.t. Levi-
Civita connection replaces group logarithm). In fact, every solution to the
Riemannian Karcher equation is a critical point of the Fréchet mean objective.
Furthermore, as for a given bi-invariant metric both logarithms coincide, we
see that the bi-invariant group mean is a natural generalization of the Fréchet
mean to the metric-free affine setting.

Proposition 2.44. For the Rm with standard metric the notion of Fréchet
mean agrees to the usual arithmetic mean.

Theorem 2.45. Let (M,g) be a Riemannian manifold, that is a complete
metric space w.r.t. its geodesic distance d. Then the Fréchet mean exists for
any a finite set of elements {p1, . . . , pn} in M .

Corollary 2.46. Since Lie groups with bi-invariant metric are geodesically
complete it follows with Theorem 2.15 that the Fréchet mean always exists.

Theorem 2.47. For a complete Riemannian space (M,g) with sectional cur-
vature bounded from above by κ and with injectivity radius i(M) the Fréchet
mean of a finite set {p1, . . . , pn} in M is unique if all elements are contained
in a geodesic ball with radius

ε =
1

2

⎧⎪⎪⎨⎪⎪⎩
min(i(M), π/√κ) , κ > 0,

i(M) , κ ≤ 0.

Note that the Fréchet mean on manifolds is occasionally also called Karcher
mean. This clash of nomenclature is due to Fréchet primarily working on
metric spaces and Karcher approaching Riemannian manifolds. Additionally,
Fréchet means are considered to be global, whereas Karcher means are con-
sidered to be local. A well-arranged overview on this is given in Chapter 8
of [Nielsen and Bhatia, 2013]. Within this thesis we will use both terms in-
terchangeably, since we on the one hand are taking the manifold perspective
and on the other hand assume well-localizedness of our data s.t. uniqueness is
granted.

Corollary 2.48. SO(3) with bi-invariant metric emerging from the Frobe-
nius inner product has non-negative curvature bounded by κ = 1/8[Cheeger and
Ebin, 2008, Chapter 3],[Ge, 2014]. As discussed above, its injectivity radius
is i(M) = √2π. Hence, ε =

√
2π/2, i.e. the respective geodesic ball contains all

rotations differing by an angle of less than ±π/2 from the identity.
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Corollary 2.49. Sym+(n) is an Abelian Lie group and thus flat, i.e. κ = 0.
As discussed above exp is a global diffeomorphism, i.e. i(M) =∞. Hence, the
Fréchet mean is always unique.

Note that this global uniqueness is still granted if we consider the symmetric
positive-definite matrices with the affine-invariant metric (cf. [Thanwerdas and
Pennec, 2019]), since their sectional curvature is non-positive, i.e. κ ≤ 0 as can
be found e.g. in [Pennec et al., 2019].

2.3.3. Principal Geodesic Analysis

In this section we follow the work of [Fletcher et al., 2003, 2004] and at first
give a notion of variance based on [Fréchet, 1948] and thereon define PGA as
mechanism to find a sequence of nested geodesic submanifolds that maximize
the projected variance of the data. Furthermore, we briefly discuss the special
case of PCA and conclude with a description of LPGA, a.k.a. TPCA that will
be of practical importance throughout the rest of the thesis.

Definition 2.50. Given (M, g) a connected complete Riemannian manifold
and denote U = Expµ(Bi(µ,M)) ⊂ M . Further let µ be the Fréchet mean of a
finite set {p1, . . . , pn} ⊂ U , then we define its sample variance as

σ2
=
1

n

n

∑
i=1

d2(pi, µ) = 1

n

n

∑
i=1

∥Logµ(pi)∥2 . (2.1)

In order to relate data samples to geodesic submanifolds we need a notion of
distance that is achieved by distance minimizing projection.

Definition 2.51. Let (M, g) be a connected complete Riemannian manifold
and H ⊂ M be a geodesic submanifold in p∗ ∈ H (i.e. geodesics of H through
p∗ are also geodesics of M). Then we call

πH ∶M →H

p↦ πH(p) = argmin
q∈H

d2(p, q), (2.2)

metric projection onto H.
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Further information on existence and uniqueness of the metric projection op-
eration can be found e.g. in [Walter, 1974]. However, as [Fletcher et al., 2004]
points out existence and uniqueness are granted for sufficiently small neighbor-
hoods around p∗ ∈ H. Nevertheless, assessing the projection without further
simplification or in-depth examination of the manifold’s properties remains a
rather intricate task.

Anyway, if we now combine Equations (2.1) and (2.2) we can define sample
variance maximizing principal modes of variation.

Definition 2.52. Given (M, g) a connected complete Riemannian manifold
and U = Expµ(Bi(µ,M)) ⊂M . Further let µ be the Fréchet mean of a finite set{p1, . . . , pn} ⊂ U , then we define its principal modes of variation by

ϑk = argmax
∥v∥=1

gµ(ϑj ,v)=0, j<k

n

∑
i=1

∥Logµ(πH(pi))∥2, k = 1, . . . , n − 1; (2.3)

H = Expµ(span({ϑ1, . . . , ϑk−1, v})) ∩U.
Note that the number of modes is actually bounded by min(n − 1, dim(M)).
However, since we study small sized sample populations in high-dimensional
spaces throughout this thesis, we will deliberately assume n − 1 ≤ dim(M).
Having determined the modes of variation every input element pi features a
unique low-dimensional representation in the tangent space at µ employing
exponential and logarithm. It is given by means of a principal modes linear
combination

pi = Expµ ( n−1

∑
k=1

gµ(Logµ(pi), ϑk)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
αk
i

ϑk),

with coefficients αk
i called principal scores or shape weights of pi.

The assessment of principal modes and scores in order to analyze variability
within a given set of manifold-valued data and to reduce its dimensionality
is called PGA. It can be furthermore understood as generalization of PCA to
manifold data, as the following proposition states.

Proposition 2.53. For (Rn, ⟨⋅, ⋅⟩) Equation (2.3) reduces to

ϑk = argmax
∥v∥=1

⟨ϑj ,v⟩=0, j<k

n

∑
i=1

⟨pi − µ, v⟩2, k = 1, . . . , n − 1, (2.4)
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The given definition of principal modes can further be seen as finding the

directions maximizing the sample variance∥Logµ(πH(pi))∥2 by nested geodesic
subspaces. An alternative definition was introduced by [Sommer et al., 2010]

in terms of minimization of residual reconstruction errors ∥Logpi(πH(pi))∥2.
As consequence of the Pythagorean theorem both definitions agree for the
Euclidean setting, yet not in the general Riemannian case, i.e. they have to be
understood as different generalizations of Euclidean PCA.

Note that the optimization problem given in Definition 2.52 comes with neither
existence nor uniqueness assurance for general manifolds. This makes its prac-
tical application rather uncomfortable. However, Fletcher et al. [2004] already
provided a feasible solution to this in their original work through linearization
of the projection operation.

Proposition 2.54. Assuming Logµ(πHk
(pi)) ≈ ∑k

j=1 gµ(Logµ(pi), ϑj) ⋅ ϑj,
where Hk = Expµ(span({ϑ1, . . . , ϑk}))∩U , i.e. the submanifold projection of pi
can be well approximated by linear projection of Logµ(pi) onto the respective
generating subspace, Equation (2.3) reduces to

ϑk = argmax
∥v∥=1

gµ(ϑj ,v)=0, j<k

n

∑
i=1

g2µ(Logµ(pi), v), k = 1, . . . , n − 1. (2.5)

This equation can be solved uniquely as long as the particular logarithms
exist and are unique. Moreover, it obviously agrees for (Rm, ⟨⋅, ⋅⟩) with Equa-
tion (2.4). Solving this linearized problem in order to approximate PGA is
called performing LPGA/TPCA.

2.4. Statistical Shape Models

Within this section we propose a (rough) formalization of the term SSM as
we will understand it for the rest of this thesis and how it fits the context
provided by the definitions given in the previous section. Throughout this
thesis we consider a shape as two-dimensional (2D) orientable surface modulo
translation and rotation embedded in 3D Euclidean space. However, we keep
the data inherent scale untouched as it, in the medical context, potentially
correlates with pathological anatomical changes. We additionally consider a
shape compact but possibly with boundary, i.e. not necessarily a closed surface.
For example, in this thesis we will work with hippocampus shapes (closed) and
shapes representing the distal part of the femur bone (not closed).
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Definition 2.55. Let (M,g) be a Riemannian manifold and {s1, . . . , sn} ⊂M
a finite set, where each element uniquely represents an input shape. We define
a data-driven shape model as pair

(µ,{ϑk}d1) ,
where µ is a fixed element in M and {ϑk}d1 is a minimal set of g-orthonormal

vectors in TµM s.t. si = Expµ (∑d
k=1 gµ(Logµ(si), ϑk)ϑk) holds for all si. We

furthermore call (µ,{ϑk}d1) SSM if µ is a Fréchet mean (or an exponential
barycenter) and {ϑk}d1 is constructed employing PGA or LPGA as detailed in
the previous section.

The manifold M is, depending on the context, referred to as shape space,
feature space or configuration space.

It is worth mentioning that this definition leaves the inverse problem of shape
reconstruction from the manifold-valued representation completely open. This
is because reconstruction poses no obstruction for shape statistics. From the
practical point of view this means an SSM, as we understand it here, does not
necessarily need to be a generative model, in the sense that new instances sim-
ilar to the inputs can be synthesized from it. However, all models discussed in
Chapter 3 are generative and algorithms for shape reconstruction are given.

One, if not the most prominent, SSM-type is the PDM. It was first put into
focus of a broad public and applied for medical image segmentation by Cootes
et al. [1995]. To express the PDM in our technical setting we assume hav-
ing given m shapes discretized as point clouds, formed by a finite number of
l points, coming with point correspondence, i.e. every two shapes feature a
semantic bijection of their discretizations. In a medical context this corre-
spondence usually aligns with anatomical characteristics, i.e. points tend to
represent distinct anatomical landmarks. The i-th shape is now uniquely rep-
resented via its vectorized coordinates: si = (x1, y1, z1, . . . , xl, yl, zl) ∈ R3l.

Definition 2.56. Let (R3l, ⟨⋅, ⋅⟩) be the 3l-dimensional Euclidean space with
standard metric and let further {s1, . . . , sn} ⊂ R3l be a finite set, where each
element contains vectorized coordinates representing an input shape. All in-
put shapes are moreover assumed to feature point correspondence. The SSM(µ,{ϑk}d1) consisting of the arithmetic mean µ and {ϑk}d1 constructed by PCA
is called PDM.
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The PDM is also called linear/Euclidean model, due to the respective proper-
ties of (R3l, ⟨⋅, ⋅⟩). It is obiviously generative by definition.

Note that the landmark-based PDM exhibits an interesting relationship to a
similar construction on Kendall’s shape space Σl

3 [Kendall et al., 1999; Dryden
and Mardia, 2016; Nava-Yazdani et al., 2020] (for l 3D landmarks) if we con-
sider only two input shapes s1, s2 that are superimposed utilizing Procrustes
alignment [Gower, 1975] (i.e. including scale removal). In fact, the geodesic
joining s1, s2 is realized by the respective geodesic in the Sphere S3l−1. More-
over, the geodesic joining both in R3l (i.e. the straight line) is related to this
great-circle arc simply through normalization. This in particular implies that
the shape at half way between them, realizing the respective means in Σl

3 and
R3l, differ only in scale. Thus, exemplification and discussion in this thesis
referring to inaccurate means of two input shapes in the Euclidean case (cf.
Sections 3.3, 3.4, 3.7) can, without explicit mention, as the inaccuracies ob-
viously do not depend on scaling, be directly extended to Kendall’s shape
space.
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Chapter 3.

Deformation Gradient based

Statistical Shape Modeling

In this chapter we introduce the notion of deformation gradient between two
objects and differential coordinates respectively. We present three different ap-
proaches to further process these coordinates and establish Riemannian and/or
Lie group structures thereon in order to perform geometric statistics allowing
for SSM construction as defined in Chapter 2.

3.1. Differential Coordinates

In the following, we regard shapes as boundaries of physical objects belonging
to a particular class of anatomical structures so that they can be represented as
a collection of (orientation-preserving) embeddings φ1, . . . , φn ∈ C of a common
reference S̄ ⊂ R3, where C denotes the space of (smooth enough) deformations
φ ∶ S̄ → R3. While some applications require the interior of the object, e.g.
joint shape and appearance analysis, typically only the object’s surface is of
importance. For now, we let S̄ denote the entire volume of the object and
defer the extension to the 2D case to Section 3.2.2.

In order to derive a notion of shape space, C is typically projected onto a non-
trivial space that is obtained by quotening out rigid motions or reparametriza-
tions. However, the analysis of the geometry of such spaces and the de-
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velopment of practically applicable algorithms is still an active area of re-
search [Bauer et al., 2014]. An alternative approach, that we employ here, is
to shift the alignment and correspondence problem to a pre-process. This also
allows for auxiliary information like appearances to be exploited, improving
registration accuracy and robustness [see e.g. Bogo et al., 2014].

In this light, we derive a physically motivated shape representation. Working
directly with the Euclidean coordinates given by the φi introduces confounding
information into the analysis as they are subject to overall changes in shape.
For example, parts of an object might move rigidly leading to large displace-
ments, albeit without local change in shape. To address this aspect, we propose
a representation that puts the local differential properties into focus. In par-
ticular, as we are interested in a representation that describes a deformation
φ within a local neighborhood of a point p ∈ S̄, it is reasonable to approximate
φ by its first-order Taylor expansion: φ(q) ≈ φ(p) +∇φ∣p(q − p). Here, ∇φ∣p is
the 3 × 3 matrix of partial derivatives of φ at p and is called the deformation
gradient (although it is technically no gradient). As the constant term (i.e. the
Euclidean coordinate) in the expansion corresponds to translations and hence
causes no changes in shape, the gradient ∇φ∣p furnishes a complete descrip-
tion of the shape changes within an infinitesimal neighborhood. This property
is utilized, e.g., in continuum mechanics where the strain energy density of
a homogenous hyperelastic material is a function of ∇φ∣p alone. For these
reasons we propose to perform the analysis on the deformation gradients ∇φ.
We therefore represent the shapes given by the φi in the space F of (regular
enough) functions S ∶ S̄ → GL+(3) with Si(p) = ∇φi∣p and GL+(3) the group of
3 × 3 matrices with positive determinant.

3.2. Solving the Inverse Problem

Employing gradient fields as differential representation has the additional ad-
vantage that the inverse problem of mapping differential coordinates S ∈ F to
configurations π(S) ∈ C is related to the Helmholtz-Hodge decomposition for
which existence and uniqueness of solutions is well analyzed [see e.g. Bhatia
et al., 2013]. In particular, the map π can be formulated as a variational
problem

π(S) ∶= argmin
φ∈C

1

2
∫
S̄

∥∇φ − S∥2 dV, (3.1)
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where dV is the volume form on S̄. The solutions are unique up to additive
constants for each connected component of S̄ that correspond to translations.
We remove the additive constants by fixing the center of gravity of each com-
ponent. Note that, due to these constraints, shapes will be recovered exactly,
i.e. π(∇φ) = φ. The Euler-Lagrange equation of the variational problem (3.1)
is the well-known Poisson equation

∆φ = ∇⋅ S, (3.2)

where ∆ and ∇⋅ denote the Laplacian and divergence operator, respectively.
We emphasize that Equation (3.2) is a linear differential equation that can
be solved efficiently using e.g. multigrid methods for which computational
cost scales linearly with the number of variables. This facilitates fast pro-
cessing even for large-scale problems. Furthermore, as a global variational
approach, the minimizer given by the Poisson equation tends to distribute
errors uniformly such that local gradient field inconsistencies are attenuated
(see Figure 4.7 left for mappings from F to C). For additional information and
description we refer to [Yu et al., 2004]. Throughout the thesis we will addi-
tionally identify a deformation π(S) with its image, i.e. π(S)(S̄) = S = S(S) to
emphasize its character as geometric realization of given coordinates S.

3.2.1. Statistical Framework

We now develop the methodology for statistical analysis of the differential
representation presented in the previous section. To this end, we derive the
intrinsic mean [Fréchet, 1948] of a set of points in the space of differential
coordinates F and then apply (tangent) principal geodesic analysis [Fletcher
et al., 2004] to extract the dominant modes of variation. In this section we will
hereby focus on the smooth setting, used discretizations are to be introduced
later along with the respective shape modeling approach.

Intrinsic mean

Let dF (⋅, ⋅) be a distance for 3×3 matrices with positive determinant, we define
the distance in F as

dF(S1, S2) = (∫
S̄

dF (S1(p), S2(p))2 dV )12 . (3.3)
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The intrinsic or Fréchet mean µ of a collection of n points S1, . . . , Sn ∈ F is
then defined as the minimizer of the functional ∑n

i=1 dF(S, Si)2, i.e. the sum-
of-squared distances to each point. This functional can also be written as

∫S̄ L(S(p))dV , where L(⋅) = ∑n
i=1 dF (⋅, Si)2 is the sum-of-squared point-wise

distances. Due to its simple form, the Euler-Lagrange equations reduce to
∂L/∂Sqp = 0 (with natural boundary conditions trivially satisfied) and, hence,
µ can be computed point-wise, i.e. µ(p) depends only on the gradients Si(p)
and the choice of dF . This local characterization of µ is an important property
as it reduces the discrete high-dimensional problem to a system of independent,
low-dimensional ones that can be handled much more efficiently.

Tangent Principal Geodesic Analysis

As detailed in Section 2.3, we perform a principal component analysis in the
tangent space TµF at the intrinsic mean to approximate the principal geodesic
submanifold that best represents the variability of the shapes. Let

gµ(v,w) = ∫
S̄

⟨v(p), w(p)⟩
µ(p) dV (3.4)

be the inner product on TµF , where ⟨⋅, ⋅⟩µ(p) denotes an inner product on
Tµ(p)F .

Using g, we can define a covariance operator for deviations from the intrinsic
mean as

C(⋅) = 1
n ∑n

i=1 gµ(⋅, vi)vi, (3.5)

where vi = Logµ(Si) is the representation of the i-th shape in TµF . Note that
(by the same variational approach as for the mean) the geodesic logarithmic
mapping Logµ(⋅) can be computed point-wise and leads to efficient, closed-form
expressions entailing the matrix logarithm in F .

C is positive-definite on span(v1, . . . , vn) and diagonalizing it on this finite-
dimensional space yields a set of g-orthogonal eigenfunctions ψi and -values
λi with C(ψi) = λiψi. Accordingly, the principal geodesic curves given by the
exponential mappings (see e.g. Figure 4.7) of the ψi define the main modes of
variation with the λi encoding the corresponding variances.
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3.2.2. Discretization for Simplicial Manifolds

In the discrete setting, we consider a d-dimensional simplicial manifold S̄ as
reference shape, i.e. a triangular (d = 2) or tetrahedral (d = 3) mesh with
vertices {σ0

1, . . . , σ
0
n0
}. Deformations φ of S̄ are then represented as piecewise

affine coordinate functions defined by barycentric interpolation of vertices σ0
j ∈

R3, i.e.

φ(p) = ∑n0

j=1ϕj(p)σ0
j . (3.6)

Here, the ϕj denote the Lagrange basis functions that are linear within each
simplex and satisfy ϕj(σ0

k) = δjk. Each deformation φ is thus uniquely deter-
mined by its coefficients φ = (σ0

1 . . . σ
0
n0
)T ∈ Rn0×3. The gradient is then

∇φ∣p = ∑n0

j=1 σ
0
j ∇ϕj(p)T (3.7)

and yields a constant 3 × 3 matrix Dk = ∇φ∣σd
k

for each d-simplex σd
k of S̄.

However, note that the deformation of a triangle does not fully specify an
affine map of R3 so that the deformation gradient is only defined within its
tangent plane. Nevertheless, Botsch et al. [2006] showed that employing ∇φ∣p
as deformation gradient yields an efficient dimension reduction with a natural
surface-based formulation of the Poisson equation.

Now, the computation of the gradients Dk can be written with a 3nd × n0

matrix D, where nd is either the number of triangles (d = 2) or tetrahedra
(d = 3), and

Dij = (∇ϕj ∣σd
⌊i/3⌋
)
imod3

(3.8)

such that Dφ = (D1 . . .Dnd
)T . The discrete version of the Poisson equa-

tion (3.2) is then given by

DTMDφ =DTMs, (3.9)

where M is a diagonal matrix containing the triangle areas or tetrahedron
volumes and s is the 3nd × 3 matrix of coefficients determining the piecewise
constant matrix-field of differential coordinates. The discrete problem results
in a sparse, linear system of equations with positive semi-definite system ma-
trix. We want to emphasize that the matrices depend only on the reference
shape S̄. The problem in Equation (3.9) can thus be solved efficiently using
a direct solver: We compute the factorization once during pre-processing and
only perform forward- and backward substitutions with close to linear costs at
run-time.
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3.3. GL+(3)-based Statistical Shape Model

In this section we will introduce the GLM that treats triangle-wise
deformation-gradients simply as elements in GL+(3) without any additional
structure. We therefore consider shapes to be instances of a class of anatomi-
cal objects that are topologically consistent, s.t. they can be represented as a
left-acting deformation φ of a common reference S̄. We further assume that
S̄ is discretized as a simplicial surface mesh with l vertices and m triangles.
In order to perform analysis on local geometric details rather than absolute
coordinates of a shape S = φ(S̄), we can employ a differential representation
given by the deformation gradient ∇φ, i.e. the 3 × 3 matrix of partial deriva-
tives of φ (cf. previous section). Let φ be orientation-preserving and affine on
each triangle T̄i of S̄, then the derivatives are constant on each triangle with
∇φ∣T̄i

≡Di ∈ GL+(3). Note, the deformation of a triangle fully specifies an affine
map of R3 if we assume that triangle normals are mapped onto each other (cf.
Kirchhoff–Love kinematic assumptions). Accordingly, a representation of a
shape S in linear differential coordinates is given by s = (D1, . . . ,Dm)T .

In order to derive information of our geometric data we perform element-wise
geometric statistics on it. Let {sj = (Dj

1, . . . ,D
j
m)T}nj=1 be the set of all input

shapes represented in differential coordinates. Following our Definition 2.55
the essential components to set up an SSM are mean value and TPCA to
analyze the input as deviations thereof.

3.3.1. Bi-invariant Mean

Since GL+(3) does not admit a bi-invariant metric there can not exist a bi-
invariant Riemannian mean. Nevertheless, due to the Lie group structure there
exists a naturally bi-invariant candidate for the mean in terms of the group
exponential barycenter called bi-invariant mean We follow hereby the work of
Pennec and Arsigny [Pennec and Arsigny, 2013] who delivered a comprehensive
characterization and analysis on this topic (cf. Chapter 2). The bi-invariant
mean µi is defined through:

n

∑
j=1

log (Dj
i ⋅ µ

−1
i ) = 0, (3.10)
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where log denotes the group logarithm. To solve for the unknown µi we apply
an iterative fixed point scheme:

µk+1
i = exp

⎛⎝
n

∑
j=1

log (Dj
i ⋅ (µk

i )−1)⎞⎠ ⋅ µk
i , (3.11)

where exp denotes the group exponential. The local existence and uniqueness
of the bi-invariant mean have been proven for data with small enough disper-
sion, i.e. if the data lies within a sufficiently small normal convex neighborhood
of some point of the Lie group. Furthermore, the algorithm given by Equa-
tion (3.11) always converges to µi at least with linear speed provided that the
initialization is chosen sufficiently close to the data.

From Equation (3.11) we see that the group logarithm and exponential of
GL+(3) are essential operations required to determine the mean shape as well
as for the statistical analysis in its tangent space (Section 3.3.2). However,
it should be emphasized that there does not exist a real logarithm for every
element in GL+(3). We can classify such elements by investigating the un-
derlying eigenvalue structure. Let D be an arbitrary element in GL+(3). It
is known that there always exists a real Jordan-Decomposition [Gallier, 2018]
D = V ⋅ E ⋅ V −1 s.t. E belongs (modulo permutation) to one of the following
three types:

A:

⎛⎜⎜⎝
λ1 α 0

0 λ2 β

0 0 λ3

⎞⎟⎟⎠ , where λi ∈ R
+, α, β ∈ {0,1}

B:

⎛⎜⎜⎝
−λ1 0 0

0 −λ2 0

0 0 λ3

⎞⎟⎟⎠ , where λi ∈ R
+, λ1 ≠ λ2,

C:

⎛⎜⎜⎝
λ1 ν 0

−ν λ1 0

0 0 λ2

⎞⎟⎟⎠ , where λ1 + iν ∈ C ∖R
+

0 , λ2 ∈ R
+.

As the logarithm is compatible with a change of basis it is enough to consider
only matrices of the above form. Both cases A and C admit a real logarithm,
contrasting case B that does not allow for its existence. This raises the question
what deformation gradients could feature such an eigenvalue configuration and
whether it is likely to appear. If we take a closer look at case B we see that it
encodes an anisotropic scale with two negative weights. Since the respective
deformation is orientation preserving it must invert two edges of a triangle
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and change their lengths in a non-uniform fashion. This seems to be a rather
unlikely deformation if we consider data to be aligned and without artifacts
such as local overfolds. In particular, the two real word datasets we performed
our experiments on (Section 4.2.1, Chapter 5) did not admit any element in
any input shape that came across with a deformation gradient of this structure.
Neither during calculation of the mean nor during analysis.

However, in order to do statistics in GL+(3) that are robust to such extreme
cases we require an alternative auxiliary strategy. To this end, we propose
to perform a pseudo logarithm operation. Let D be an element of GL+(3)
with no real logarithm. We define its pseudo logarithm plog employing polar
decomposition as follows:

plog(D) = plog(RU) ∶= log(R) + log(U)
In case a real log(D) exists this formula can be seen as first order (commutator
free) approximation in terms of the Baker–Campbell–Hausdorff formula and
for commutating R,U this formula would be even exact. This can additionally
be interpreted as a fallback to the product structure of the DCM (Section 3.4).
Contrary to the logarithm, the matrix exponential always exists and can ef-
ficiently be calculated using the scaling-and-squaring method together with
Padé approximations [Higham, 2005].

3.3.2. Tangent Principal Component Analysis

In the previous section we were able to circumvent the absence of a (bi-
invariant) metric but this is no longer possible if we want to perform
higher-order analysis employing TPCA. While there is no bi-GL+(3)-invariant
metric, we are interested in metrics that yield at least invariance under
orthogonal transformations, i.e. metrics that are invariant with respect to a
change of coordinates obtained by rotating or mirroring the data. Indeed,
there exists exactly one family of metrics that is GL+(3)-left-invariant and
O(3)-right-invariant and uniquely determined up to three positive real
constants [Martin and Neff, 2016]. We define the metric as usual via the inner
product on the respective Lie algebra (cf. Theorem 2.33).

Let X,Y ∈ gl(3) = R3×3 and τ, ν, κ ∈ R+:

⟨X,Y ⟩τ,ν,κ ∶= τ ⟨dev symX,dev symY ⟩ + ν ⟨skewX, skewY ⟩ + κ
3
tr(X) tr(Y ),
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where we have used the following notation:

⟨X,Y ⟩ = ⟨X,Y ⟩F = tr (XTY ) (standard inner product),

symX =
1

2
(X +XT ) (symmetric part of X),

skewX =
1

2
(X −XT ) (skew-symmetric part of X),

devX =X −
trX

3
I3 (deviator of X).

If we consider X as infinitesimal transformation the above terms admit certain
geometric interpretations: skewX represents the rotational part and symX

the distortion part. While the trace tr quantifies volume changes, the deviator
dev represents the trace-free part and, hence, dev symX describes the shear-
ing (volume-preserving distortion) part of X. Furthermore, the above inner
product features two interesting properties:

⟨X,Y ⟩1,1,1 = ⟨X,Y ⟩ for all X,Y ∈ gl(3),
⟨X,Y ⟩τ,ν,κ = 0 X ∈ so(3), Y symmetric.

Hence, this family of metrics can be seen as natural generalization of the
standard metric arising from the standard inner product for matrices. Let us
assume to have n input shapes with m triangles each, then we perform TPCA
in the tagent space Tµ(GL+(3))m at the differential coordinates of the mean
shape µ = (µ1, . . . , µm). The k-th mode of variation is hereby given as:

ϑk = argmax
∥v∥τ,ν,κ=1

g
τ,ν,κ
µ (ϑi,v)=0, i<k

n

∑
j=1

gτ,ν,κµ (logµ(sj), v)2, k = 1, . . . , n − 1. (3.12)

where sj = (Dj
1, . . . ,D

j
m), log is applied component-wise and g

τ,ν,κ
µ = ∑ Āi ⋅

g
τ,ν,κ
µi

is the metric emerging from ⟨⋅, ⋅⟩τ,ν,κ scaled with the triangle area of the
respective element of the reference shape.

Putting it all together, the tuple (µ,{ϑk}d1) consisting of mean µ and modes of
variation {ϑk} rises to an SSM as specified in Definition 2.55. It is furthermore,
enabled through Equation (3.9), a generative model.

3.3.3. Atlas construction

In the preceding sections we derived a framework for the statistical analysis
of geometric variability of a population under study. To this end, we con-
sidered the variability to be represented via embeddings of a reference shape.
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The reference shape therefore serves as an anatomical atlas that provides a
common coordinate system. The construction of such atlases is a key task in
population based medical image analysis and has, in turn, been a driving ap-
plication of statistical shape modeling. A common choice of atlas is to employ
either a template or a single subject’s anatomy. However, in general, a single
anatomy cannot faithfully represent the complex structural variability evident
in a population and thus inherently introduces a bias. To avoid this system-
atic bias we opt for an atlas construction according to Joshi et al. [2004] that
requires the anatomical atlas to agree with the mean of the training data, in
other words S̄ = S̄(µ), i.e. the reference shape equals the geometric realization
of µ. This approach results in an alternating optimization that updates the
reference shape with the current mean shape in each iteration. This strategy
typically converges rapidly s.t. we limit the number of iterations to ≤ 10 in our
implementation.

In summary: The given GL+(3) shape model comprises an exponential
barycenter based on the affine connection structure on GL+(3)m, since GL+(3)
does not admit bi-invariant metric. The modes of variation are determined by
TPCA carried out utilizing the metric closest as possible to bi-invariant. It is
worth mentioning that the shape representation is, due to its simple structure,
compatible with piecewise (triangle-wise) affine transformations of the input
shapes, i.e. taking the differential representation and applying the transforma-
tion commutes. However, although invariant under translation, the barycenter
and the modes of variation do depend on the input shapes’ orientation in the
ambient space calling for an initial generalized Procrustes alignment of the
input to minimize the bias introduced through data misalignment.

3.4. Differential Coordinates Model

As we have seen in Section 3.2.1 calculation of the mean in differential coor-
dinates can be carried out point-wise. However, since we are now assuming
triangular meshes as discretizations, we find the deformation gradient triangle-
wise constant, allowing to perform calculations at triangle-level.

To compute the local intrinsic mean, we derive a distance dF that is tailored
to our differential coordinates. Let D = S(p) be the deformation gradient at
p ∈ S̄. By the polar decomposition from linear algebra, D can be uniquely
factored as D = RU , where R is a special orthogonal matrix and U—called the
right Biot stretch tensor—is symmetric positive-definite. Thus, a deformation
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is locally given to first order by a stretching with U followed by a rotation R.
With this in mind, we interpret the gradients as elements in set

F ∶= SO(3) × Sym+(3), (3.13)

where SO(3) is the Lie group of rotations in R3 (with Lie algebra so(3)) and
Sym+(3) is the space of 3 × 3 symmetric and positive-definite matrices.

While there exists a well-developed theory for SO(3) with a natural notion of
distance, there is no canonical setup for stretch tensors in Sym+(3). Resort-
ing to Euclidean operations on symmetric matrices without taking positive-
definiteness into account causes defects: The determinant of the Euclidean
mean (and thus the volume form) can be larger than those of the original
stretch tensors. Furthermore, nonconvex combinations typically yield indefi-
nite stretch tensors corresponding to physically invalid configurations.

To circumvent these shortcomings, we employ the Log-Euclidean approach [Ar-
signy et al., 2006] that turns Sym+(3) into a commutative Lie group (with Lie
algebra sym+(3)) based on the logarithmic multiplication defined as

U ○U ′ ∶= exp(log(U) + log(U ′)). (3.14)

Here, exp and log are the standard matrix exponential and logarithmic map,
respectively. Remarkably, bi-invariant metrics exist for this structure and are
particularly simple. In particular, we endow sym+(3) with the standard inner
product for quadratic matrices

⟨u, u′⟩sym+(3) ∶= ⟨u, u′⟩ = tr(uTu′), (3.15)

inducing the distance on Sym+(3)
dSym+(3)(U,U ′) = ∥log(U ′) − log(U)∥F , (3.16)

where ∣∣⋅∣∣F denotes the Frobenius norm. This distance is invariant with respect
to a change of coordinates obtained by orthogonal transformation and scaling
(similarity transforms).

As a product of Lie groups, F is itself a Lie group and we can define the
distance dF as

d2F = ωd
2
SO(3) + d

2
Sym+(3). (3.17)

Here, ω is a positive weighting factor (see also Section 3.2.1) and dSO(3) denotes
the canonical distance on SO(3)

dSO(3)(R,R′) = ∥log(RTR′)∥
F

(3.18)
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that is, too, induced by the standard inner product ⟨⋅, ⋅⟩ on so(3). Indeed, dF
is also bi-invariant and thus comes with strong theoretical properties:

• Geodesic completeness of F , i.e. invalid tensors are at an infinite distance
from any element in F ,

• the mean is completely consistent with algebraic operations (left/right
composition and inversion), and

• the Lie group and Riemannian exponential coincide yielding particularly
simple expressions for geodesics.

Furthermore, the group exponential can be efficiently calculated due to the
nilpotency and diagonalizability of elements in so(3) and sym+(3), respec-
tively. In contrast to numerical approximation schemes, this provides improved
performance and robustness necessary in practical applications, e.g., in med-
ical image processing. Putting it all together, our discrete feature space can
simply be defined as G = Fm as we have one gradient per triangle. This leads
us directly to the discretized version of Equation (3.3)

dG(s1, s2) = ⎛⎝
m

∑
j=1

Āj ⋅ dF (sj1, sj2)2⎞⎠
1

2

, (3.19)

where Āj is the triangle area of the j-th triangle of the reference surface.
As for bi-invariant Lie groups Rieamannian exponential/logarithm and group
exponential/logarithm (and hence Riemannian and group mean) coincide we
can efficiently solve for the mean µ in differential coordinates employing a
Gauss-Newton descent algorithm [Pennec, 2006; Arsigny et al., 2006]:

µk+1
= exp(∑

i

log (si ⋅ (µk)−1)) ⋅ µk.

The construction of an anatomical atlas can then be carried out analogously
to the description in the previous section on the GLM.

In order to perform TPCA we need a discrete version of the Riemannian metric
given in Equation (3.4). We employ the following:

gµ(v,w) = m

∑
j=1

Āj ⋅ ⟨vj, wj⟩µj
. (3.20)

Moreover, in line with the definition of dF in Equation (3.17), the rotational
component in ⟨⋅, ⋅⟩µ(p) is weighted by ω. While the mean is invariant w.r.t.
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ω, this weighting does effect the modes of variation. In particular, as the
rotational and stretching components are not in the same units, ω provides
a mean to commensurate both terms. A data-driven approach is to deter-
mine ω s.t. the range of both terms agrees within a population under study.
Alternatively, following the paradigms from nonlinear elasticity all change in
shape is encoded in the stretch tensor, which suggests values of ω close to zero.
However, for surfaces the rotations describe how normals transform and thus
encode curvature information.

Let us recall the definition of the main modes of variation and assume to have
n input shapes with m triangles each, then we perform TPCA in the tagent
space TµG at the differential coordinates of the mean shape µ. The k-th mode
of variation is hereby given as:

ϑk = argmax
∥v∥=1

gµ(ϑi,v)=0, i<k

n

∑
j=1

gµ(logµ(sj), v)2, k = 1, . . . , n − 1. (3.21)

To practically solve for the main modes algorithmically we perform eigen-
decomposition of the Gram matrix (cij)ij, with cij = gµ(logµ (si), logµ (sj))
(cf. Younes [2010] Section E.2.2).

As in the previous section on the GLM, the tuple (µ,{ϑk}d1) consisting of mean
µ and modes of variation {ϑk} rises to an SSM as defined in Definition 2.55.
It is furthermore, enabled through Equation 3.9, a generative model. We will
refer to it as the DCM.

In summary: The developed shape model based on differential coordinates
comprises a Riemannian center of mass due to a bi-invariant metric structure
introduced on G and the modes of variation determined by TPCA utilizing this
metric. The given shape representation, compared to the previous GL+(3)-
based one, is as well invariant under translation and comes with the additional
advantage that a real logarithm is always defined. However, mean shape and
modes of variation do depend on the input shapes’ orientation in the ambient
space posing the need for an initial generalized Procrustes alignment of the
input to minimize the bias introduced through misalignment. Furthermore,
problems may arise due to the ambiguity of rotations by angles of (±π), i.e.
large rotational deformation might induce discontinuous rotations for neigh-
boring triangles (Figure 4.8).
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3.5. Fundamental Coordinates

In this section, we derive a discrete surface representation based on concepts
from differential geometry of smooth surfaces. This representation’s key fea-
ture, its invariance under Euclidean motion and hence well-suitedness for shape
analysis purposes, arises directly from discretization of surface theoretical re-
sults. Finally, the proposed representation setting exhibits a Lie group struc-
ture that we endow with a bi-invariant metric in order to ensure structural
unity between Riemannian and Lie group framework (see e.g. [Pennec and
Lorenzi, 2020]).

3.5.1. Fundamental Forms and Surface Theory

As shape statistics should neither depend on a shape’s orientation nor a
shape’s position in the ambient space, we are in need of a shape representation
that is invariant under Euclidean motion. In order to derive this representa-
tion we will at first take a short side trip into classical surface theory. To every
smooth surface there uniquely exist two smoothly pointwise varying and sym-
metric bilinear forms on the tangent plane, the so-called fundamental forms.
The first fundamental form I (a.k.a. metric tensor) is positive-definite and al-
lows for angle, length and area measurement. The second fundamental form
II describes the curvature of the surface. A prominent result in classical math-
ematics, the Fundamental Theorem of Surface Theory according to Bonnet
(≈1860, e.g. do Carmo [1976] Section 4.3), states that if given two symmetric
bilinear forms (one of them positive-definite), s.t. for both certain integrability
conditions hold (viz. the Gauß–Codazzi equations), then they (locally, i.e. per
connected component) determine uniquely, up to global rotation and trans-
lation, a surface embedded in three dimensional space with these two as its
fundamental forms. Therefore, a discrete description of the fundamental forms
is an excellent candidate for a rotation-invariant surface representation.

3.5.2. Discretization

We consider shapes that belong to a particular population of anatomical struc-
tures, s.t. each digital shape S can be described as a left-acting deformation
φ of a common reference shape S̄ given as triangulated surface. Let deforma-
tion φ be affine on each triangle T̄i of S̄, then the deformation gradient ∇φ
is the 3 × 3 matrix of partial derivatives of φ and constant on each triangle

42



3.5. Fundamental Coordinates

F̄i

F̄ j

Fi

F j

Ci j

Ri, s.t. Di = Ri · Ui

C̄i j

R j = RiF̄iCi jF̄
T
j
=: Ri→ j

S̄ S

Figure 3.1.: Relations between reference shape S̄ (left) and shape S = φ(S̄), a
deformation thereof (right), s.t. Di ∶= ∇φ∣T̄i

. Note that each frame Fi = RiF̄i

is defined solely on the respective triangle Ti and all neighboring frames are
connected across the shared edge of their underlying triangles via FiCij = Fj.

Di ∶= ∇φ∣T̄i
(see e.g. Botsch et al. [2006] for detailed expressions). Note that

transition from deformation to deformation gradient provides invariance under
translations. Assuming φ to be an orientation-preserving embedding of S̄, we
can decompose Di uniquely into its rotational Ri and stretching Ui compo-
nents by means of the polar decomposition Di = RiUi. Note that Ui furnishes
a complete description of the metric distortion of T̄i and is defined in refer-
ence coordinates, hence invariant under rotation of S. Indeed, we can obtain
a representation of the first fundamental form by restricting the stretches to
the tangent plane. To this end, we define an arbitrary but fixed element-wise
field {F̄i} of orthonormal frames on S̄, s.t. the last column of each frame is
the normal of the respective element. Then, we represent the metric in terms
of reduced stretch Ũi ∶= [F̄ T

i UiF̄i]3,3 = I∣1/2T̄i
, where [ ⋅ ]3,3 denotes the submatrix

with the third row and column removed.

As for the second fundamental form, we note that at a point p ∈ S it is deter-
mined by the differential of the normal field N , viz. IIp(v,w) = Ip(−dNp(v), w)
for tangent vectors v,w. For a triangulated surface, the differential dN is sup-
ported along the edges. In order to derive a representation thereof, we induce
the frame field {Fi} on S consistent to {F̄i} using the rotational part of the de-
formation gradient, i.e. Fi = RiF̄i. This allows us to define transition rotations
FiCij = Fj for each inner edge (incident to triangles Ti, Tj) that fully describe
the change in normal directions. Note that, while both the frames {Fi} and
the rotations {Ri} are equivariant, the transition rotations {Cij} are invari-
ant under global rotations of S and S̄. Further details hereon are depicted in
Figure 3.1.
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Chapter 3. Deformation Gradient based Statistical Shape Modeling

3.6. Solving the Inverse Problem

In this section, we propose an efficient numerical algorithm to solve for the
inverse problem of mapping a point in representation space G to a correspond-
ing shape S = φ(S̄). If the corresponding rotations {Ri} were known, φ could
be obtained as the minimizer of

m

∑
i=1

Āi∥Di −RiUi∥2F
by solving the well-known Poisson equation (see e.g. Botsch et al. [2006] or Sec-
tion 3.2). However, in our representation the rotations are only given implicitly
in terms of the transition rotations. In particular, an immediate computation
shows that Rj = RiF̄iCijF̄

T
j =∶ Ri→j for an integrable field {Cij}. Based on this

condition, for each triangle Ti we can formulate a residual term

εi(φ,{Ri}) = ∑
j∈Ni

1∣Ni∣∥Di −Rj→iUi∥2F
in terms of the rotations of neighboring triangles (indexed by Ni). Then, the
objective for the inverse problem is given as

E(φ) = min
{Ri∈SO(3)}

E(φ,{Ri}),
where

E(φ,{Ri}) = m

∑
i=1

Āi εi(φ,{Ri}).
Although E(φ) is a nonlinear function calling for iterative optimization rou-
tines, it exhibits a special structure amenable to an efficient alternating mini-
mization technique.

Efficient shape reconstruction is an essential part of this work and consists of
an initialization and an iteration of global and local step until a solution is
reached. Since the global step is basically solving a Poisson problem and also
exemplified in Section 3.2.2 we will keep its description at this point rather
brief. To ease deeper inside on how to initialize the reconstruction algorithm
and how to do the local step we provide two schematic visuals and explicitly
determine the solution of the local step through direct calculation.

Initialization: To provide the solver with a warm start, we compute an initial
guess for the rotation field {Ri}. To this end, we employ the local integrability
condition Rj = Ri→j to propagate an initial rotation matrix from an arbitrary
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3.6. Solving the Inverse Problem

seed along a precomputed spanning tree of the dual graph of S̄. Note, that
this strategy recovers the rotation field exactly for integrable {Cij}. In case
of non-integrable fields, one advantage of the Poisson-based reconstruction
(global step) is that it distributes errors uniformly s.t. local inconsistencies are
attenuated.
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Figure 3.2.: Initialization procedure propagating an initial rotation Ri0 along
a pre-computed spanning tree across the data. The red digits indicate the
number of propagation steps needed to reach a certain point.

Ri0 is propagated along this path employing the local integrability condition,
viz. Rj ∶= Ri→j = RiF̄iCijF̄

T
j . Finally this procedure provides a field of extrinsic

rotations {Ri} to initialize the local/global solver. Note that the algorithm will
stop right after the first iteration, if the {Cij} come from an integrable system.
In that case the initialization is additionally invariant w.r.t. the choice of the
fixed triangle and spanning tree. Figure 3.2 provides a schematic overview on
the initialization process.

Local Step: First, we minimize E(φ,{Ri}) over the rotations {Ri} keeping
φ (hence Di) fixed. Each summand in εi depends on a single rotation Ri,
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Chapter 3. Deformation Gradient based Statistical Shape Modeling

s.t. the problem decouples into individual low-dimensional optimizations that
can be solved in closed-form and allow for massive parallelization. We aim to
find Ri for every triangle i, s.t. it, mediated through {Cij}, locally optimally
accompanies φ. »Local« hereby has to be understood as the one-ring triangle-
neighborhood. This problem has a closed-form solution that we will work
out within the following proposition via direct calculation on the optimization
target.

Proposition 3.1. The local step within the shape reconstruction algorithm
targeting the optimization problem:

Ri = argmin
R∈SO(3)

∑
s∈Ni

∥∇φ∣T̄s
−RF̄iCisF̄

T
s Us∥2F ,

where Ni is the set of indices belonging to edge neighbors of triangle i, can be
solved in closed form and the solution is unique.

Proof. For the sake of simplicity let Ds = ∇φ∣T̄s
. We carry out a direct cal-

culation utilizing the definition ⟨A,B⟩F ∶= tr (ATB) and the trace’s invariance
under cyclic permutations:

Ri = argmin
R∈SO(3)

∑
s∈Ni

∥Ds −RF̄iCisF̄
T
s Us∥2F

= argmin
R∈SO(3)

∑
s∈Ni

∥Ds∥2F´¹¹¹¸¹¹¹¶
const.

−2 ⟨Ds,RF̄iCisF̄
T
s Us⟩F +∥RF̄iCisF̄

T
s Us∥2F´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

const.

= argmax
R∈SO(3)

∑
s∈Ni

tr (DT
s RF̄iCisF̄

T
s Us)

= argmax
R∈SO(3)

∑
s∈Ni

⟨DsU
T
s F̄sC

T
isF̄

T
i ,R⟩F = argmax

R∈SO(3)
⟨DNi

,R⟩
F

SinceDNi
is a nonsingular and orientation-preserving matrix it can be uniquely

decomposed via polar decomposition to RNi
UNi

, where RNi
∈ SO(3) and UNi

∈

Sym+(3) s.t.

RNi
= argmax

R∈SO(3)
⟨DNi

,R⟩
F
.

Figure 3.3 schematically illustrates the underlying neighboring relations fram-
ing the local integrability constraints.
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Ri

Ri→ j

Ri→k

Ri→l

F̄iCik F̄T
k

F̄iCil F̄
T
l

F̄iCi j F̄
T
j

Figure 3.3.: Neighboring relations employed in the local step of the integration
procedure. Rotations Ri are connected by transition rotations Cij.

Global step: Second, we minimize E(φ,{Ri}) over φ with rotations {Ri}
fixed leading to a quadratic optimization problem for which the optimality
conditions are determined by a Poisson equation. As the system matrix is
sparse and depends only on the reference shape, it can be factorized once
during the preprocess allowing for very efficient global solves with close to
linear cost.

Note that the objective is bounded from below and that both local and global
steps feature unique solutions that are guaranteed to weakly decrease the ob-
jective making any numerical safeguards unnecessary. This contrasts with
classical approaches that require precautions, such as line search strategies
and modification schemes for singular or indefinite Hessians, to guarantee ro-
bustness.
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−1
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(II)

S̄ S

Figure 3.4.: Schematic summary of the argumentation to proof the proposition
on relative transition rotations. The given construction allows to separate
relative transition rotations into normal (I) and tangential (II) type.

3.6.1. Properties of Relative Transition Rotations

As with other non-Euclidean approaches, existence and uniqueness of the in-
trinsic mean is only ensured for well-localized data. In particular, for our
representation this concerns the rotational components describing the changes
in curvature. We would like to remark that this is a rather academic dis-
cussion as we did not encounter any example with critical disparity. Indeed,
even for the synthetic PIPE dataset (cf. Appendix A.1) representing a severe
nonlinear deformation the relative transition rotations are located in a small
neighborhood of radius 5π/23, see Figure 3.5. However, the following propo-
sition explains how to (theoretically) control the relative transition rotations
and thus how to avoid ambiguities regarding the rotational logarithm.

Proposition 3.2. For any given n shapes S1, . . . , Sn there exists a common
discretization and a frame field, such that all relative transition rotations ex-
hibit angles in (−π, π). Furthermore, if the angle defect introduced to relative
transition rotations through shearing of any two pairs of neighbouring triangles
is smaller than ∣π/2∣ the corridor of possible angles narrows down to (−π/2, π/2).
Proof. At the beginning we have a look at the following formula [Altmann,
2005] relating the angle θ12 of a composite rotation with those of the two
sequential ones (θ1, θ2) and their axes of rotation (v1, v2):

cos(θ12
2
) = cos(θ1

2
) cos(θ2

2
) − sin(θ1

2
) sin(θ2

2
) ⟨v1, v2⟩ . (3.22)
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3.6. Solving the Inverse Problem

Figure 3.5.: Histogram of angles between transition rotations of the PIPE
shapes. The angles are all relatively small and far away from the critical
region of angles.

Employing standard calculus we can deduce from the above that for minimal/-
maximal angles it has to hold that θ12 = θ1 ±θ2 and ⟨v1, v2⟩ = ±1. We keep this
in mind and now poof the result for two shapes S̄, S since the argumentation
naturally extends to the whole n shapes. As the vector v̄ij defining the edge
connecting two triangles T̄i, T̄j of S̄ plays an important role in the following,
we will detail on how it is deformed to the corresponding counterpart vij of
S. As before we denote RiUi = Di = ∇φ∣T̄i

determined by polar decomposi-
tion and as the gradients have to agree on shared edges Div̄ij = Dj v̄ij = vij
holds. However, in general and contrary to this, we have to point out that
vij ≠ Riv̄ij ≠ Rj v̄ij ≠ vij. In the special situation that Ui, Uj are both realiz-
ing isotropic stretch in tangential direction, we remain with the the weaker
equality Ri

v̄ij/∥v̄ij∥ = Rj
v̄ij/∥v̄ij∥ = vij/∥vij∥. Yet, for the common case of anisotropic

stretching even the resulting directions are not equal any longer. This phe-
nomenon is due to the shearing components of Di,Dj, which are essentially
the non-isotropic residuals of the respective stretches, and the compensation
of the hence introduced angle defect between v̄ij and Uiv̄ij, Uj v̄ij by means of
Ri,Rj. This angle defect is bounded, as the shearing angle itself by ±π/2 (at-
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tention: angel defect ≠ shearing angle in general!). These bounds are not sharp
as extreme angles correspond to an infinite length of Uiv̄ij, Uj v̄ij, i.e. an infi-
nite ratio λmax

i /λmin

i , λ
max

j /λmin

j of the largest and smallest stretching eigenvalue. In
fact, as we operate in finite realm, we can assume that the angle defect resides
in (−(π/2 − δ), π/2 − δ) for some δ > 0 and all triangles of S. Now, we have to
control change in normal direction in regions of high curvature. We therefore
simultaneously refine the triangulations until the angle between normals of any
two neighboring triangles lies in (−ε, ε) with ε < δ. This can always be achieved
as the shearing is not altered by simple subdivision. From this point onwards
the argumentation is additionally summarized in Figure 3.4. The basic idea
of the following construction is to separate normal from tangential difference
and to argue independently on each. We now subdivide every triangle T̄l of S̄
(analogously for Tl of S) into three parts T̄l0 , T̄l1 , T̄l2 by means of the incenter
and the bisecting lines of the angles. Without loss of generality we can assume
that T̄j0 is neighboring T̄i0 (thus T̄j was already neighboring T̄i). We fix a
frame F̄i0 on T̄i0 ensuring alignment of the first basis vector to the edge shared
with T̄j0 . Frame F̄j0 is now defined by rotating F̄i0 around the common edge.
This directly implies that C̄i0j0 realizes an angle with absolute value smaller
than ε. For Ci0j0 the situation is slightly more intricate since Fl = RlF̄l does
not preserve alignment of the frames with the underlaying triangles. However,
we can decompose Ci0j0 = Q

−1
j0
Qi0j0Qi0 , where Qi0 is the rotation s.t. the first

basis vector (Fi0)0 = Ri(F̄i0)0 rotates by angle θi0 around the normal of Ti0
((Fi0)2) onto vi0j0 ; Qi0j0 rotates Qi0(Fi0)2 by angle θi0j0 around vi0j0 and Q−1j0 is
the rotation s.t. vij rotates by angle −θj0 around the normal of Tj0 onto (Fj0)0.
In other words: Qi0 and Q−1j0 handle the angle defect due to shearing in Di/Dj,
whereas Qi0j0 realizes the normal change between Ti and Tj. We analogously
define F̄ik if T̄ik has neighbors, if not, we simply set F̄ik = F̄i0 . This construc-
tion allows to explicitly differentiate two different types of relative transition
rotations: type (I) that comes from normal differences (and shearing defects)
like Ci0j0C̄

−1
i0j0

and type (II) like Cj0j1C̄
−1
j0j1

that is induced by (non-shearing)

tangential change. Since Fj0 = RjF̄j0 and Fj1 = RjF̄j1 we see immediately
that Cj0j1 = F̄

−1
j0
R−1j RjF̄j1 = C̄j0j1 and thus Cj0j1C̄

−1
j0j1
= I3. To clarify (I) let

φi0j0/ − φ̄i0j0 be the angles of Ci0j0/C̄−1i0j0 and ϕi0j0 the angle of their compo-
sition. We now calculate the bounds of ϕi0j0 employing (3.22) together with
the decomposition Ci0j0 = Q

−1
j0
Qi0j0Qi0 , the domains of the therein appearing

50



3.6. Solving the Inverse Problem

angles and lastly ε < δ:

minϕi0j0 ≥minφi0j0 +min−φ̄i0j0 ≥min θi0 +min θi0j0 +min−θj0 +min−φ̄i0j0

= − (π/2 − δ) − ε − (π/2 − δ) − ε > −π,
maxϕi0j0 ≤maxφi0j0 +max−φ̄i0j0 ≤max θi0 +max θi0j0 +max−θj0 +max−φ̄i0j0

= (π/2 − δ) + ε + (π/2 − δ) + ε < π.
Finally, we have see that ϕi0j0 is always located in (−π, π), hence is well-
localized. The second statement too follows directly from the above inequalities
as a smaller angle defect effectively reduces the bounds of the ϕi0j0 .

3.6.2. Quasi-Isometric Surface Flattening

In the following section we focus on the quasi-isometric surfaces flattening in
the space of fundamental coordinates, i.e. the natural approach within that
framework to determine a quasi-isometric chart for a given embedded 2D sur-
faces in 3D space. We of course assume that the surface under study allows for
a single chart, otherwise the presented approach can be applied to a suitable
submanifold.

F̄i

F̄ j

Fi

F j

∇φ|T̄i
= Ri · Ui,

where Ui ≈ ISym+

φ

C̄i j

Ci j = F−1
i
· RN

ji
· F j,

where RN
ji

unfolds T̄i, T̄ j

S̄ S = φ(S̄ )

Figure 3.6.: Non-flat surface S̄ is employed as reference within the deformation
setup. Flat surface S is determined via deformation of S̄ by φ, s.t. metric
distortion, i.e. Ui, is close to identity and Ri is determined by means of Cij

that are normal vector fixing modifications of C̄ij.

Apart from shape analysis, the proposed representation provides an effective
framework for processing operations. In this section, we derive an approach
for the calculation of a quasi-isometric surface chart, i.e. a low-distortion im-
mersion of a given surface into the two dimensional Euclidean space. Since
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Figure 3.7.: Left: Example for a flattened femoral articular cartilage region.
Right: Flattened femoral cartilage with gray value coded cartilage thickness.
The top row shows healthy subjects whereas the subjects in the bottom row
exhibit denuded areas within the cartilage region.

flattening techniques provide a way to access problems of three dimensional
context in a two dimensional fashion, such an approach facilitates practically
relevant applications like visualization and deep learning based assessment of
knee cartilage thickness (Figure 3.7). For a broader overview on application
examples we refer to Kreiser et al. [2018], who published a survey on flattening-
based medical visualization techniques. The key idea behind our flattening
approach is to consider the set of flat immersions of the reference shape S̄ as
a submanifold in shape space. This submanifold has a particularly convenient
characterization in our representation space G allowing for a simple, isometric
projection: We fix the metric part {Ui = ISym+} as identity (no metric distor-
tion) and choose transition rotations s.t. they act as identity on the normals
(zero curvature). In particular, the latter are given by {Cij = F

−1
i ⋅ R

N
ji ⋅ Fj},

where RN
ji unfolds triangle T̄j to the plane of triangle T̄i. Phrasing it in the

group setting this means we project the transition rotations to SO(2) (em-
bedded in SO(3)) since all feasible flat shape representations necessarily have
to be elements of SO(2)n × Sym+(2)m (cf. next section). See Figure 3.6 for a
schematic overview. Note that the obtained projection corresponds to a realiz-
able deformation, iff the input shape S̄ is isometric to the plane. In general, a
near-isometric flattening can be efficiently computed using our reconstruction
(cf. previous section).
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3.7. Fundamental Coordinates Model

In the following section, we will introduce the FCM by first specifying a group
structure with notion of distance and second defining mean and modes of
variation.

3.7.1. Group Structure and Distance

In order to perform intrinsic statistical analysis we derive a distance that is
compatible with the underlying representation space. In particular, we endow
the space with a Lie group structure together with a bi-invariant Riemannian
metric for which group and Riemannian notions of exponential and logarithm
coincide. This allows us to exploit closed-form expressions to perform geodesic
calculus yielding simple, efficient, and numerically robust algorithms. We rec-
ommend chapter two of Alexandrino and Bettiol [2015] to readers interested
in deeper insight into bi-invariant metrics on Lie groups. Especially regarding
their existence and the geometric consequences thereof. A concise description
of that topic is also given in Section 2.2.

Our shape representation consists of transition rotations Cij ∈ SO(3) (one per
inner edge) and tangential stretches Ũi ∈ Sym

+(2) (one per triangle), where
SO(3) is the Lie group of rotations in R3 and Sym+(2) the space of symmetric
and positive-definite 2 × 2 matrices. Following the approach in Arsigny et al.
[2006], we equip U,V ∈ Sym+(2) with a multiplication U ○ V ∶= exp(log(U) +
log(V )), s.t. Sym+(2) turns into a commutative Lie group. It now allows for a
bi-invariant metric induced by the Frobenius inner product yielding distance
dSym+(2)(U,V ) = ∥log(V ) − log(U)∥F . Note that this structure and metric do
not exhibit the swelling effect of determinants in interpolation [Goh et al.,
2011]. SO(3) as a compact Lie group also admits a bi-invariant metric induced
by the Frobenius inner product with distance dSO(3)(Q,R) = ∥log(QTR)∥

F
,

s.t. we define our representation space as the product group G ∶= SO(3)n ×
Sym+(2)m and m,n the number of triangles and inner edges. Finally, we define
the distance of two shapes S,T based on the respective group representation
s = s(S), t = t(T ) ∈ G as

d2ω(s, t) = ω3

ĀE
∑
(i,j)∈E

Āij d
2
SO(3) (Cs

ij, C
t
ij)

+
ω

Ā

m

∑
i=1

Āi d
2
Sym+(2) (Ũ s

i , Ũ
t
i ) , (3.23)
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where ω ∈ R+ is a weighting factor, E is the set of inner edges, Āi is the area
of triangle T̄i, Āij =

1/3(Āi + Āj), ĀE = ∑(i,j)∈E Āij, and Ā = ∑m
i=1 Āi. The

area terms hereby provide invariance under refinement of the mesh as well as
simultaneous scaling of S̄, S, T , whereas ω allows for commensuration of the
curvature and metric contributions in analogy to the Koiter thin shell model
(e.g. Ciarlet [2005] Section 4.1).

3.7.2. Statistical Shape Modeling

The derived representation carries a rich non-Euclidean structure calling for
manifold-valued generalizations for first and second moment statistical analy-
sis. By virtue of the bi-invariant metric, the proposed representation allows
for consistent analysis within the Riemannian framework for which statistics
are well-developed, while at the same time providing closed-form, group theo-
retic expressions for geodesic calculus (cf. Chapter 2). In particular, we employ
the Riemannian center of mass that provides a rigorous notion of a mean µ of
elements {si = si(Si)} and can be efficiently computed using the Newton-type
descent algorithm [Pennec, 2006; Arsigny et al., 2006]:

µk+1
= exp(∑

i

log (si ⋅ (µk)−1)) ⋅ µk.

As our representation space comprises a symmetric positive-definite and a ro-
tational part the algorithm’s respective behavior can be assessed separately.
Since Sym+(2) is abelian and flat (indeed a vector space) the algorithm con-
verges after exactly one step [Pennec, 2006]. In contrast, SO(3) features a less
trivial structure exhibiting, e.g. a non-empty cut locus. However, as long as the
data is located within some ε-ball, with ε smaller than half the injectivity ra-
dius of the exponential map, the existence and (local) uniqueness of the mean
can be guaranteed [Pennec, 2020] and thus convergence of the algorithm. Note
that this assumption is only violated for transition rotations differing by more
than ±π/2, what can be brought in relation to too large shearings of pairs of
neighbouring triangles. (cf. Proposition. 3.2). As framework for second order
statistics we employ LPGA [Fletcher et al., 2004] at µ that is an extension of
the common Principal Component Analysis to Riemannian manifolds allowing
for covariance analysis. In particular, we solve

ϑp = argmax
ϑ∈TµG

∑
i

gµω(ϑ, logµ (si))2,
s.t. gµω(ϑp, ϑl) = δpl, for 1 ≤ l ≤ p
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for the main modes of variation ϑp, where gω is the metric associated to dis-
tance dω of Equation (3.23). The solution is found algorithmically by eigende-
composition of the Gram matrix C = (cij)ij, with cij = g

µ
ω(logµ (si), logµ (sj))

(cf. Younes [2010] Section E.2.2). In order to avoid a systematic bias due to
the choice of reference shape S̄, we require it to agree with the mean of the
training data (S̄ = S̄(µ)) as proposed in Joshi et al. [2004]. Details on how to
determine a shape for given representation parameters are given in Section 3.6.
The pair (µ,{ϑk}d1) consisting of mean shape and modes of variation consti-
tutes an SSM in the sense of Definition 2.55. It is furthermore a generative
model, an algorithm to solve the inverse problem, from shape representation
to surface, is given.

In summary: The fundamental coordinates model as introduced above com-
prises a Riemannian center of mass for a bi-invariant distance and modes of
variation determined by TPCA and the respective Riemannian metric. In con-
trast to the previous two shape representations, the fundamental coordinates
are invariant under Euclidean motions and thus allow for alignment-free shape
analysis.
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Chapter 4.

Experimental Model Evaluation

and Comparison

In this chapter we want to evaluate the SSMs proposed in the previous chapter
both quantitatively and qualitatively w.r.t. certain well-known standard met-
rics. Furthermore, we perform a comparison to the classic PDM and discuss
the outcome.

4.1. Quantitative Assessment

We evaluate the quality of the models under study in terms of specificity,
generalization ability, and compactness. A brief description of these measures
is given in the following, however, a more detailed discussion of those can be
found in Davies et al. [2008].

Specificity is the property that a model generates only valid instances of the
class(es) of objects presented in the training set, i.e. instances that are similar
to the training shapes. First, we consider the model as a Gaussian distribution
in shape space and randomly draw 2000 shapes according to that distribution.
Specificity is then measured as the degree to which these sample shapes cluster
in the vicinity of the training data by averaging the distances of each sample
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to its closest training shape:

spec(M) = 1

N

N

∑
i=1

min
j=1,...,n

W(M(αi), Sj).
The lower the average the more specific is the model w.r.t. its training set.
Twining and Taylor [2011] showed that this measure estimates the divergence
between the unknown probability density function from which the training data
was drawn and the one underlying the model. As specificity depends directly
on the distance used to evaluate the closeness between the samples and the
training shapes, employing the Euclidean L2 or any distance directly related
to the previously described SSMs (cf. Sections 3.4, 3.7) could introduce a bias
for PDM or any of the proposed models, respectively. Therefore, we employ
the independent measureW that was shown to successfully quantize nonlinear
variations in shape [Zhang et al., 2015; Grinspun et al., 2003] known as the
Discrete Shells Energy. The discrete shells energy is physically plausible for
thin shell materials by capturing two important modes of deformation: bending
and stretching [Heeren et al., 2018].

Generalization ability measures how well a model is able to represent unseen
instances of the class of objects that is modeled. We evaluate the generalization
ability from the training shapes by performing leave-one-out cross validation.
To this end, we construct a model from all but one training shapes and then
fit it to the excluded instance. The accuracy to which the model can represent
the unseen instance is measured as the distance between the instance and the
reconstruction thereof. This process is repeated, excluding each of the training
shapes in turn, and the accuracy is averaged over the complete set of trials:

gen(M) = 1

n

n

∑
j=1

j≠i

W(πMi
(si(Si)), Sj).

where Mi = Mi(S1, . . . , Ŝi, . . . , Sn) = (µ,{vk}d1) is the model constructed uti-
lizing all input shapes but Si, si = si(Si) denotes the shape space repre-
sentation of Si and πMi

(si) the si-distance minimizing element in Mi, i.e.
πMi
(si) = argminπ∈Mi

d2(π, si). Lower values correspond to a higher ability to
generalize to unseen data. As for specificity, we report generalization ability
for the physically-motivated energy W .

Compactness measures the relative variability within a training set as cap-
tured by a SSM. Specifically, it is the ratio of the variance encoded by the k
most dominant modes and total variance in the set,

com(M) = k

∑
i=1

λi

∑d
i=1 λi

,
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where the λi denote the variances as defined for the respective model (cf. Sec-
tion 3.2.1). In Figure 4.3 we plot the compactness as a function of k for each
of the constructed models.

4.1.1. DCM – Specificity, Generalization Ability,

Compactness

We report specificity results for both the Fine Alignment Using Scan Texture
(FAUST) and Osteoarthritis Initiative (OAI) datasets (cf. Appendix. A) in
Figure 4.2. It can be seen that the proposed method outperforms the other
approaches for the physically based measure W .

Figure 4.1.: Generalization ability as function of the number of modes (model
parameters) forW of the DCM, PDM, and SE(3)-based model [Hefny et al.,
2015].

Figure. 4.1 summarizes the results for generalization ability. In total, the
proposed method features a better generalization ability than the other ap-
proaches.

The limited performance of the method by Hefny et al. [2015] (SE(3)) for both
datasets in terms of specificity and generalization ability can be attributed
to their purely local treatment of shape that models triangles as elements
in SE(3). Unlike our formulation, this approach does not model stretches
potentially leading to physically invalid configurations. Furthermore, there is
no canonical way of projecting from SE(3)-based shape space to global vertex
positions since each vertex is contained in several triangles that in general
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Figure 4.2.: Specificity as function of the number of modes (model parameters)
for W of the DCM, PDM, and SE(3)-based model [Hefny et al., 2015].

take different paths in SE(3). Contrary, our Poisson-based reconstruction
consistently bridges among local differential properties and global effects. The
inherent defects of the SE(3) model are also apparent in Figure 4.7, where we
provide a visualization of the mean shapes.

For both datasets, PDM concentrates more variance on the first modes as
compared to the other models. The behavior implies that variance modeled
in Euclidean space is more easily captured than in non-Euclidean spaces (this
is consistent with the observations for elastic variance in [Zhang et al., 2015]).
However, since the variances are computed in different shape spaces, we should
be cautious in how to interpret these results. For example, the most-dominant
mode of the PDM and the proposed model for the FAUST data describes
similar change in posture (see Figure 4.7), yet account for a substantially
different portion (63% and 36% respectively) of the total variance.

4.1.2. FCM – Specificity, Generalization Ability,

Compactness

We perform a quantitative comparison with PDM and DCM using the above
mentioned standard measures and the physically-based surface energy W on
the OAI dataset. .The results show that the FCM is more specific than PDM
and DCM (Figure 4.4 center). In terms of generalization ability, the FCM is
superior to PDM, yet inferior to DCM (Figure 4.4 left). Finally, the FCM is
less compact than PDM and DCM (Figure 4.4 right). Note that compactness
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Figure 4.3.: Compactness as function of the number of modes (model param-
eters) of the DCM PDM, and SE(3)-based model [Hefny et al., 2015].

Figure 4.4.: Generalization ability (left, lower∼better), specificity (middle,
lower∼more specific) and compactness (right, higher∼more compact) of the
FCM, PDM, and DCM on the OAI dataset.

is calculated for each model w.r.t. its own metric, hence not directly compara-
ble. In particular, we found that decreasing ω leads to increased compactness,
albeit at the possible expense of accuracy for disease classification (cf. Ap-
pendix. A.2.2).

4.1.3. FCM – Computational Performance

We compare our framework in terms of computational efficiency to two state-
of-the-art approaches: The large deformation diffeomorphism metric mapping
(LDDMM) using the open-source Deformetrica [Durrleman et al., 2014] soft-
ware, and the recent DCM. To this end, we compute the mean shape on 100
randomly sampled pairs from the OAI dataset. Overall, the LDDMM approach
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requires 172.8s (±44.8s) in average whereas the proposed FCM features an av-
erage runtime of only 2.3s (±1.9s), hence a two orders of magnitude speedup.
In comparison to the highly efficient DCM—requiring 1.1s (±0.3s) in average—
our model achieves runtimes within the same order of magnitude, despite the
added nonlinearity in the inverse problem.

4.2. Qualitative Assessment

We qualitatively assessed the model performance of GLM, DCM, and FCM
w.r.t. the validity (correctness) of generated shape instances. In a medical or
biological context »correctness« can be understood as anatomical plausibil-
ity.

4.2.1. GLM – Validity

We perform two qualitative experiments. At first, a comparison of the mean
shape of the OAI dataset as determined by the DCM as well as the GLM. To
achieve this we align both shapes and calculate the surface distance between
them. Both mean shapes are highly similar as can be seen in Figure 4.5. At
second, an analysis of the skeletal hand dataset (cf. Appendix A) is performed.
We calculate the mean shape of the two input poses, perform TPCA and
(visually) investigate the resulting trajectory connecting the two input shapes
through the mean w.r.t. plausibility. As shown in Figure 4.6 the principal
mode shows natural nonlinear deformation characteristics.

4.2.2. DCM – Validity

In order to get a qualitative impression of the DCM’s ability to generate
plausible shapes in presence of large deformations we take two samples from
the FAUST dataset, one person with arms up, and the same person with
arms down, and calculate the interpolating geodesic between them. Fig-
ure 4.7 depicts this experiment for the DCM, the PDM, and the SE(3)-based
model [Hefny et al., 2015] (interpreting triangle-wise deformations as elements
in SE(3)). It can clearly be seen that the DCM correctly captures the expected
interpolating motion between the two inputs, whereas the PDM fails since this
linear approach linearizes rotational components of the underlying deforma-
tion and hence introducing heavy distortion. The SE(3) model already fails to
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Figure 4.5.: Deviations of mean distal femur shape as calculated with the GLM
model and the DCM. Absolute values of the surface distance are plotted
color-coded on the DCM mean shape.

calculate a mean shape since it does not provide a mechanism to consistently
stitch neighboring triangles together.

4.2.3. FCM – Validity

Frequently, datasets feature a high nonlinear variability that are characterized
by large rotational components, which are insufficiently captured by linear
models like PDM (previous subsection). While DCM treats the rotational
components explicitly, it requires them to be well-localized, s.t. the logarithm is

Figure 4.6.: Trajectory as calculated with the GLM connecting the input shapes
(left, right) via the exponential mean (center) showing natural deformation
characteristics.
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Figure 4.7.: Mean shapes (opaque) and first principal geodesic curve (transpar-
ent at ±0.75 and ±1.5 standard deviations) for the FAUST dataset obtained
using the DCM (left), the PDM (center), and the SE(3)-based model∗ [Hefny
et al., 2015] (right). (∗ curve not shown due to degeneracies)

unambiguous. This assumption may not be satisfied for data with large spread
in shape space. Contrary, our model overcomes this limitation by utilizing
a relative encoding via transition rotations, which will never exceed ±π in
practical scenarios (cf. Proposition 3.2). In Figure 4.8 we illustrate the validity
of our model for two extreme examples in comparison to PDM and DCM. Note
that, although not depicted in the figure, the GLM features similar problems
as the DCM since it is also susceptible for ambiguities with large rotations
components.

Figure 4.8.: Interpolating geodesic (mean highlighted) for the pipe surface (left)
and FAUST (right) data within (f.l.t.r.) the DCM, the FCM, and PDM,
each.
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Applications in Disease

Assessment

Main motivation from the application side for the thesis at hand is the field
of disease assessment in a purely shape-based manner. The availability of
huge databases holding thousands of medical imaging scans and disease re-
lated expert labeling (e.g. OAI database and Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database) is calling for comprehensive but computational
light-weight methods. Hence, the evaluation on real-world data and real-world
problems is besides the methodological development the second core compo-
nent of this thesis.

5.1. Classification of Knee Osteoarthritis

OA is i.a. characterized by changes of the shape of bones composing the knee.
Figure 5.1 shows an example of a healthy as well as a diseased femur within
the OAI-based dataset and illustrates a set of geometric features incident to
femoral OA. In this experiment we investigate the ability of the proposed mod-
els to capture characteristic changes in shape that are incident to radiographic
knee OA. To this end, we perform classification of healthy and severely diseased
femora according to Kellgren–Lawrence (KL) grades of 0 or 1 and 4, respec-
tively. The KL system [Kellgren and Lawrence, 1957] is a categorial scale of
radiographic knee OA that assesses the severity of OA based on a number of
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radiographic features, e.g. osteophyte formation, joint space narrowing, and
sclerosis.

GLM – Knee Osteoarthritis Classification

With this experiment we want to investigate the proposed GLM’s sensitivity
w.r.t. pathological shape changes and thus its ability to classify knee OA for
the OAI dataset of distal femora. To achieve this, we utilize a simple Support
Vector Machine (SVM) with linear kernel directly on the 115-dimensional space
of shape weights. These weights are the vectors of coefficients w.r.t. the prin-
cipal modes for each shape. The weights serve as input features to the SVM.
The classifier is trained on a balanced set (healthy/diseased) of feature vectors
for different shares of randomly chosen data varying from 10% to 90% whereas
the testing is performed on the respective complement. Since we have some
randomness in our experimental design we carry out the experiment 10000
times for each partition and consider the mean accuracy and the standard de-
viation. We compare our method to the PDM [Cootes et al., 1995] as well as
to the DCM and the FCM, which both achieved highly accurate classification
results. To this end, we employ the above outlined classifier setup using the
respective model specific shape weights. The following experiments are per-
formed utilizing (rounded) metric parameters τ = 0.1, ν = 29.42, κ = 1.3 that
have been found conducting hyper parameter optimization (HPO) w.r.t. best
performance in our classification experiment. HPO was carried out within the
Scikit-Optimize1 python framework performing a sequential optimization us-

1scikit-optimize.github.io

Figure 5.1.: Healthy (left) and osteoarthritic (right) distal femur with delin-
eated pathological changes in shape.
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5.1. Classification of Knee Osteoarthritis

Figure 5.2.: OA classification experiment for the GLM, PDM, as well as the
FCM (left) and the DCM (right). The accuracy of the GLM ranges from
91.6% (at 10% training) to 96.3% (at 90% training).

ing decision trees (forest_minimize) on the cubical domain [0.05,1000]3. Fig-
ure 5.2 shows the results in terms of average accuracy and standard deviation.
The accuracy of the GL+(3) model ranges from 91.6% (at 10% training) to
96.3% (at 90% training). Note that solely the proposed GLM method achieves
an accuracy of over 91% in case of sparse (10%) training data. However, one
should be careful with the resulting accuracy, since HPO was applied directly
to the classification experiment. This suggests there might be a possibility
that the parameters slightly overfit the data.

DCM – Knee Osteoarthritis Classification

To evaluate the performance of the proposed method, we compare it to the
PDM [Cootes et al., 1995] that is frequently employed to derive systems for
the prediction of the onset and progression of OA, see e.g. [Bredbenner et al.,
2010; Neogi et al., 2013; Thomson et al., 2015, 2016] as well as [Sarkalkan et al.,
2014] and the references therein. In literature the terms SSM and PDM are
often used synonymously. We differentiate here and use only PDM to explicitly
refer to the particular model since it on one hand emphasizes the underlying
character of working with points and on the other hand leaves SSM to be used
more general for any kind of model. As in previous works, we consider the
principal component scores of the training data, i.e. the coefficients encoding
the shapes within the basis of principal modes, as representative features. This
results, for both models, in a 115-dimensional feature vector of shape mode
coefficients for each subject. In Figure 5.3 we present a visualization of the
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Figure 5.3.: Sammon plots visualizing the distribution of statistical shape de-
scriptors obtained by the proposed and the PDM for the dataset of healthy
and diseased distal femora from the OAI database.

distribution of feature vectors using Sammon projection [Sammon, 1969]—
a type of dimension reduction that (nonlinearly) maps the high-dimensional
features onto the plane such that pairwise distances are preserved as good as
possible. This first qualitative comparison already reveals an improved degree
of separation for the proposed features between the non-OA and OA shapes
promising superior performance as statistical shape descriptor.

The visualization of the most dominant mode shown in Figure 5.5 further
suggests an improved ability to capture the inter-population differences. While
both models exhibit displacements around the cartilage plate—modulating the
characteristic increased ridge of osteophytic growth (see also Figure 5.1)—the
proposed model features more localized and well-delineated shape variations
in comparison to PDM.

We additionally perform a quantitative evaluation of the features in terms
of classification accuracy. To this end, an SVM with linear kernel is used
to classify healthy and diseased femora, where the classifier is trained from
only a balanced subset of feature vectors of the training data. The remaining
feature vectors are used during testing to measure the classification accuracy.
In particular, the percentage of randomly sampled balanced training data w.r.t.
the complete dataset is varied from 10% to 90%, and the rest is used for
testing as shown in Figure 5.4. To address the randomness of our experimental
design, we run the experiment 1000 times per data partition and plot the
mean accuracy together with standard deviations. Note that, not only we are
outperforming the PDM in all levels, but by only taking 10% of the data as
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Figure 5.4.: Classification accuracy achieved by the proposed and the PDM as
function of the percentage of training data.

Figure 5.5.: Magnitude of displacements under the first principal geodesic curve
(±1 standard deviations) for the DCM (left) and the PDM (right) color-
coded on the respective mean shape ( ). While both
curves model the characteristic increased ridge of osteophytic growth, the
DCM features more localized and well-delineated shape variations.

training set, we outperform PDM by approximately 15%, which emphasizes
further the ability of the proposed method to identify systematic differences
between the subpopulations.

69



Chapter 5. Applications in Disease Assessment

FCM – Knee Osteoarthritis Classification

OA is a degenerative disease of the joints that is i.a. characterized by changes
of the bone shape (see Figure 5.6). Here, we investigate the proposed FCM’s
ability to classify knee OA for the OAI dataset of distal femora. Since our
test set contains 58 healthy and 58 diseased cases the SVM classifier is trained
on 115-dimensional feature vectors. We compare to the popular PDM [Cootes
et al., 1995] as well as to the DCM, which achieved highly accurate classification
results. Figure 5.7 shows the results in terms of average accuracy and standard
deviation. Note that solely the FCM achieves an accuracy of over 90% in case
of sparse (10%) training data.

Figure 5.6.: Mean shape of healthy distal femora overlaid with (larger) mean
shape of the diseased femora wherever the distance is larger than 1.45mm,
colored accordingly.

Transparency

The proposed classifier exposes a high degree of interpretability and explain-
ability due to the generative character of SSMs and the linearity of the em-
ployed SVM. In particular, the discriminating direction underlying the SVM
corresponds to a geodesic in representation space that directly encodes the
single type of morphological variation that determines the classifier’s predic-
tion. We provide a visualization of the discriminating direction for the OA
classification experiment in Figure 5.8 based on SVM instances with average
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Figure 5.7.: OA classification experiment for FCM, PDM and DCM.

classification accuracy obtained for 40%/60% training/testing split. In addi-
tion to shapes sampled along the discriminating direction, we provide a 2D
visualization using orthogonal projection onto the plane spanned by the two
principal geodesic modes that retain the highest classification accuracy, viz.
ϑ1, ϑ2 for OAI.

5.2. Stratification of Knee Osteoarthritis

5.2.1. Introduction

OA is a highly prevalent, degenerative joint disease with a considerable societal
and economic impact, in addition to the physical and psychological sequelae
it causes in affected individuals. The pathophysiology of OA involves several
tissues and is primarily associated with a deterioration of articular cartilage as
well as related changes in the underlying bone and at the joint margins. While
OA can affect any joint, knee OA accounts for more than 80% of the global dis-
ease burden [Vos et al., 2012]. There exist various ways of characterizing OA in
the literature ranging from subjective assessment to clinical and radiographic
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η�

η

η

Figure 5.8.: Visualization of the discriminating direction η and separating hy-
perplane η� for OA classification showing a 2D projection (right) and corre-
sponding shapes (left) equidistantly sampled within the interval containing
the input data (note that projections onto η and the visualizing plane do
not commute causing the interval to appear smaller). Point-wise distance to
the middle shape colored using -0.5mm 0.5mm with neutral
window (i.e. rosy color) from -0.15mm to 0.15mm.

ones, albeit with a limited degree of concordance between them. In practice,
plain radiography remains a mainstay for the diagnosis of OA with the KL
grading systemposing the de-facto standard classification scheme. However,
due to its sensitivity on acquisition method and rater reliability, which is re-
flected in the high number of disagreements between the readers (cf. [Bowes
et al., 2020]), there is a dire need for accurate and reliable assessment of OA
status.

Whereas plain radiography only provides 2D projections, advances in imaging
technologies, especially in Magnetic Resonance Imaging (MRI), have enabled
the understanding of 3D OA structural pathology. In particular, bone shape
derived from MRI has been found to be associated with radiographic structural
progression [Hanik et al., 2020], to predict radiographic onset of OAI [Neogi
et al., 2013], and to discriminate knees w.r.t. osteophyte formation [von Ty-
cowicz, 2020] and OA status (previous section). These findings suggest that
bone morphology validly relates to a broader construct of OA pathology. Fur-
thermore, shape-based assessment holds the promise of reduced sensitivity on
image appearance and data acquisition set-ups; e.g. systematic changes due
to regular technology upgrades with full hardware replacements every 5 to 10
years. In this light, Bowes et al. [Bowes et al., 2020] recently introduced a
novel, geometrically derived measure to quantify knee OA from bone morphol-
ogy termed B-score. Contrary to the semi-quantitative KL grade, the B-score
is determined fully automatically from femur bone shape and, thus, does not
suffer from the subjectivity of the practitioner. Being a continuous score it en-
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ables fine-grained stratification of OA-related structural changes and increases
discrimination of risk for clinically important outcomes such as TKR surgery.

Despite these recent advances, the formulation of B-score builds upon the
popular PDM [Cootes et al., 1995] that treats shapes as elements of Euclidean
spaces. However, such linearity assumptions are often inadequate for capturing
the high, natural variability in biological shapes (see [Ambellan et al., 2019a]
and the references therein). In particular, sizable empirical improvements can
be observed when taking the inherent, geometric structure of shape spaces into
account [Davis et al., 2010; Zhang et al., 2015; von Tycowicz, 2020].

Shape space

Before we summarize the employed shape representation, we would like to
emphasize that the derived concepts and algorithms provided in this work are
not tailored towards a particular choice and are indeed applicable to general
Riemannian shape spaces.

For experimental evaluation, we opt for the FCM Section 3.7. This model is
formulated within the commonly employed deformation-based morphometric
framework in which shapes are expressed as deformations of a common refer-
ence surface. More precisely, a digital surface S is encoded via the orientation
preserving deformation φ of a triangular surface mesh S̄. For simplicial φ, the
deformation gradient ∇φ (also known as Jacobian matrix) is a 3 × 3 matrix of
partial derivatives and constant on each triangle of S̄. In analogy to surface
theory, discrete first and second fundamental forms can be derived from ∇φ
that furnish a complete description of the intrinsic and extrinsic geometry of S.
While the former takes the form of a piece-wise constant (one per triangle) field
of 2 × 2 symmetric positive-definite matrices (Sym+(2)), the latter is given by
3D rotations (SO(3)) associated with the edges. In particular, let m,n be the
number of triangles and inner edges, then the resulting shape space is given
as the product G ∶= SO(3)n × Sym+(2)m. Remarkably, G can be equipped
with a bi-invariant Lie group structure (by virtue of the log-Euclidean frame-
work for Sym+(2) [Pennec et al., 2019; Arsigny et al., 2006], cf. Chapter 2,
Section 3.7 ) that lends itself for efficient computations of Riemannian oper-
ations. Furthermore, the FCM provides a Euclidean motion invariant–hence
alignment-free–shape representation that assures valid shape instances even in
presence of strong nonlinear variability.
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Geometric statistics

The nonlinear nature of shape spaces implies that there are no such familiar
properties as vector space structure or global system of coordinates (that is,
linear combinations of shapes do not generally lie in the space again and shape
variations w.r.t. to different base shapes are not directly comparable). Con-
sequently, core operations pervasive in machine learning and statistics often
have to be generalized based on the geometry and specifics of the data at hand.
Approaches that generalize statistical tools to non-Euclidean domains in order
to leverage the intrinsic structure belong to the field of geometric statistics and
we refer to [Pennec et al., 2019] for an overview.

The simplest–yet also perhaps most fundamentally important–statistic is the
sample mean, which estimates the center of a data set. Because a Riemannian
manifold M has a distance dM (length of the shortest path connecting two
points), we can characterize the mean as the point closest to the data points
x1, . . . , xN ∈M. This leads to the notion of (sample) Fréchet mean that is the
minimizer of the sum-of-squared geodesic distances to the data:

µ = argmin
x∈M

N

∑
i=1

d2M(x, xi).
While closed-form solutions exist in flat spaces, solving this least-squares prob-
lem in general requires iterative optimization routines. For geodesic manifolds,
solutions always exist and are unique for well-localized data [Pennec et al.,
2019] (cf. Chapter 2).

Another fundamental problem is the (statistical) normalization of shape tra-
jectories, i.e. smooth curves in shape space encoding e.g. soft-body motion of
anatomical structures. Normalization of such trajectories into a common ref-
erence frame is a challenging task in curved spaces (due to holonomy). The
aim is to preserve as much as possible of the structural variability, while allow-
ing a precise comparison in a common geometric space. To this end, parallel
transport [do Carmo, 1992] provides a promising approach with a strong math-
ematical foundation. Parallel transport allows to propagate a tangent vector
(i.e. an infinitesimal shape change) along a path by preserving its properties
w.r.t. the space geometry, such as a notion of parallelism.

5.2.2. Geodesic B-score

In this section, we derive a generalization of the recently proposed B-
score [Bowes et al., 2020] to Riemannian shape spaces and present a simple,
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yet effective computational scheme for the determination thereof. In doing
so, our guiding principle is to obtain expressions that take the rich geometric
structure of shape space into account (e.g. refraining from linearization) and
at the same time are consistent with its Euclidean counterpart (i.e. agree with
the original definition for the special case of flat vector spaces). We term the
resulting quantity geodesic B-score and will refer to the original definition (re-
spectively, its application in linear spaces) as Euclidean B-score whenever this
distinction is necessary.

Generalization

At the core of the construction in [Bowes et al., 2020] lies the projection
to an OA-vector that is defined as the line passing through the mean shapes
of populations with and without OA as determined by KL grades ≥ 2 and
≤ 1, respectively. While we can readily rely on the Fréchet mean, differen-
tial geometry provides us with a consistent notion of straight lines known as
geodesics [do Carmo, 1992]. In particular, we define the OA-geodesic γ as the
length minimizing geodesic between the Fréchet means of the two populations
(which will be unique under the assumptions for the means and the observed
overlap of both distributions [Neogi et al., 2013; Bowes et al., 2020]). A visual-
ization of the OA-geodesic is provided in Figure 5.10 (details on the underlying
data are provided in Section 5.2.3). In order to determine the B-score for a
shape σ ∈ G, we first perform an (intrinsic) projection onto the OA-geodesic:

πγ(σ) ∶= argmin
x∈γ

d2G(x, σ). (5.1)

The signed distance of πγ(σ) along the OA-geodesic w.r.t. the non-OA mean
µD (with positive values in direction of the OA mean) then yields the desired
notion of geodesic B-score, i.e.

Bγ,λ(σ) = λ gγ(0) (γ̇(0)/∣∣γ̇(0)∣∣,Logγ(0) ○ πγ(σ)) , (5.2)

where λ is a positive weighting factor and g, Log denote the Riemannian
metric, logarithmic map. A visualization is given in Figure 5.9.

In order to increase interpretability, we take a statistical approach that weights
the distances in terms of their distribution within the non-OA population.
More precisely, we employ the Mahalanobis distance such that λ is deter-
mined as the inverse of the standard deviation std({Bγ,1(σ)∣σ ∈ H}) for the
non-OA group H. In fact, this statistical re-weighting relates the score to
the natural morphological inter-subject variability and renders it unitless and
scale-invariant.
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Figure 5.9.: Geometric interpretation of geodesic B-score (with λ = 1) as signed
distance along OA-geodesic. Colors indicate different levels of disease sever-
ity.

Sex-specific Reference

Females and males have systematically different bone shape [Bowes et al., 2020]
introducing a bias during estimation of the B-score. In line with the Euclidean
B-score, we correct for this bias using sex-specific OA-geodesics determined
by translating γ s.t. it passes through the separately computed non-OA mean
shapes for each sex. As a geodesic is uniquely determined by a point and a
direction (viz. tangent vector at that point), we perform parallel transport of
the defining vector along the geodesic connecting the mixed-sex and the sex-
specific mean of the respective non-OA group. Given sex-specific OA geodesics
γ♂, γ♀ we also estimate weighting factors λ♂, λ♀ for each sex and define the B-
score as

B(σ) = ⎧⎪⎪⎨⎪⎪⎩
Bγ♀,λ♀(σ), σ female

Bγ♂,λ♂(σ), σ male.

Algorithmic Treatment

Determining solutions to the projection problem in Equation (5.1) does not
admit closed-form expressions (except for the special case of constant curvature
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Figure 5.10.: Signed vertex deviation from mean shape of mixed-sex non-OA
group along the OA-geodesic. Color-coding: −1mm 5mm,
with neutral window (i.e. yellowish bone color) from −0.3mm to 0.4mm.

manifolds [Chakraborty et al., 2016]), thus, requiring iterative optimization.
However, this step is an essential ingredient for the computation of the geodesic
B-score. In order to derive an efficient numerical scheme we assume (without
loss of generality) γ ∶ t ↦ γ(t) ∈ G to be an arc-length parameterized geodesic
and express the projection problem as an unconstrained optimization over t
with objective function F (t) = d2G(γ(t), σ). A well-established scheme for this
type of problem is Newton’s method that employs second-order approximations
to gain greatly in convergence speed, achieving quadratic convergence rate
when close enough to the optimum. Analogously, a quadratic approximation
for the objective F is given by

F (t + δ) ≈ F (t) + d

dt
F (t) ⋅ δ + 1

2

d2

dt2
F (t) ⋅ δ2, with

d

dt
F (t) = −2gγ(t) (Logγ(t)(σ), γ̇(t)) , and

d2

dt2
F (t) = −2gγ(t) (dγ(t) Logγ(t)(σ)(γ̇(t)), γ̇(t)) .

Additionally, employing the first-order approximation for the differential of the
logarithm dγ(t) Logγ(t)(σ) ≈ −Id [Pennec, 2017, Equation (5)] (Id denoting the
identity) we can obtain an optimal step size δ∗ for this quadratic model as

δ∗ = gγ(t) (Logγ(t)(σ), γ̇(t)) . (5.3)

Indeed, verifiable by direct calculation, this step agrees with the explicit solu-
tion for the case of flat spaces (Figure 5.11, right). Eventually, we derive the
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Newton-type fixed point iteration

πi+1 = Expπi
(δ∗i γ̇i), (5.4)

where Exp denotes the Riemannian exponential map (Figure 5.11, left). In
our setting, the choice π0 = γ(0) as initial guess is reasonable, since it is the
healthy mean.

Figure 5.11.: Projection algorithm onto OA-geodesic, general Riemannian case
(left) and Euclidian case (right).

5.2.3. Results and Discussion

Data description

Within this practical evaluation we rely on 9290 shapes of left an right dis-
tal femora from the OAI database spread over all KL grades of OA severity.
Further details and demographic information can be found in Appendix A.1.

Since the shape space we employ is not scale invariant (as well as the PDM)
this leaves the option to factor it out. However, since femoral osteoarthritis,
among others, leads to flattening and widening of the condyle region that at
least partially appears as deviation in scale w.r.t. a healthy configuration we
forego scale alignment to preserve sensitivity for scale. Based on the geodesic
B-score as derived in Section 5.2.2, we restrict our study population to the
B-score percentile range from 0.75 to 99.25 (in terms of B-score: -3.12, 14.65)
in order to exclude outliers. The resulting distribution of geodesic B-scores
per KL grade is shown in Figure 5.12, visualizing the positive correlation of
both grading schemes. Note that the depicted distribution is normalized to
account for imbalance within the OAI database of KL grade frequencies, i.e.
re-weighted as if KL groups were of equal cardinality.
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Figure 5.12.: Distribution of B-scores by KL grades normalized w.r.t. KL grade
imbalance.

Efficiency of projection algorithm

We empirically evaluate the performance of the derived Newton-type iteration
listed in Equation (5.4) using a python-based prototype implementation with-
out parallelization, publicly available as part of the Morphomatics2 library. To
this end, we computed projections of 100 randomly selected femur shapes. We
were able to observe quadratic convergence of the algorithm for all cases with
0.97s and three iterations per case in average.

Predictive validity

We assess the value of the geodesic B-score as a measure of OA status by
examining its relationship with risk of TKR surgery—an important clinical
outcome. Here and throughout, we refer to the risk of an outcome as the
proportion w.r.t. a population. Additionally, we perform a comparison of the
predictive performance between the geodesic and Euclidean B-score. To this

2morphomatics.github.io
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Figure 5.13.: Comparison of TKR risk assessment for patient groups with TKR
and No TKR clinical outcome respectively. Orange plus: mean, red line:
median, box range: 25th to 75th percentile, whisker range: 5th to 95th
percentile.

end, we follow the proposed setup from [Bowes et al., 2020] by modeling the
predictor of TKR (within the follow-up period of 8 years) against B-score using
logistic regression.

The determination of Euclidean B-scores is based on the space of vertex coordi-
nates. To reduce confounding effects due to misalignment of the input shapes
we employed generalized Procrustes analysis [Cootes et al., 1995] (adding a
certain degree of nonlinearity over the approach in [Bowes et al., 2020]). No
such considerations apply for the FCM-based geodesic B-score as it inherits
the invariance to rigid motions. For both scores, computations were performed
on the same input meshes using a modular software design sharing all routines
that are not specific to the respective shape space. To compare the predictive
performance of the derived models we grouped the study population into a
TKR cohort that did receive TKR and a non-TKR cohort that did not. In
Figure 5.13 we provide box plots for the resulting risk distributions that show
clear differences in median risk between non-TKR and TKR. Furthermore, for
the non-TKR cohort the geodesic B-score model validly yields median risks
that are half of those for the Euclidean model. All these differences are sta-
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tistically significant as determined using Mann–Whitney U tests. While both
approaches yield the same median risk for the TKR cohort, the distribution
of the geodesic B-score model is skewed towards higher risks. These findings
substantiate an improved predictive power for the geodesic B-score.

5.3. Classification of Alzheimer’s Disease

There is a substantial body of work confirming the well-known connection be-
tween hippocampal volume loss and Alzheimer’s progression [Köhler et al.,
1998; de Toledo-Morrell et al., 2000; Bonner-Jackson et al., 2015]. In line with
these findings, we observe ≈ 1/4 volume loss between the FCM-based mean
shapes of the diseased subjects to the one of the healthy controls. This moti-
vates a classification experiment regarding the shape of right hippocampi and
the disease state to further evaluate the descriptiveness of our shape represen-
tation.

5.3.1. FCM – Alzheimer’s Classification

For this experiment we employ the commensuration parameter ω = 0.98 that
empirically performs best w.r.t. classification accuracy, i.e. metric and curva-
ture related differences are weighted almost equally within the shape analysis.
Since our test set contains 60 cognitive normal and 60 diagnosed Alzheimer’s
cases the SVM is trained on 119-dimensional feature vectors.

Given the coarse discretization of the hippocampal surface (other than the
OAI data) and, thus, moderate hardware requirements, we can perform a di-
rect comparison to MeshCNN [Hanocka et al., 2019], i.e. a state-of-the-art
surface-based classifier from the field of geometric deep learning. Specifically,
we employed the implementation of the authors3 performing training on an
Nvidia GTX 980 TI graphics card (6GB memory). Due to the lack of proper
stopping criteria (no option for a validation set), we report the best test accu-
racy attained in the first 100 epochs, which is rather an upper bound for the
classification performance. Due to the high computational cost (> 2 hours for
training) we restrict to 10 samples per partitioning during Monte Carlo cross-
validation, which increases variability as evident by the lack of monotonicity of
the estimated dependency of the accuracy on the training size. Partitioning is

3github.com/ranahanocka/MeshCNN
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Figure 5.14.: Alzheimer’s classification experiment for FCM,
MeshCNN [Hanocka et al., 2019] and PDM [Cootes et al., 1995].

carried out analogously to the SVM classifier and training employs the Adam
optimizer [Kingma and Ba, 2014] with weight decay β1 = 0.9 and β2 = 0.999.

Figure 5.14 shows the obtained classification accuracies for MeshCNN as well
as our FCM-based and (for reference) PDM-based SVM. Note that the FCM
reaches average accuracies ranging from 75.6% (10% training) up to 80.8%
(90% training) with values above 80% for all data shares ≥50%. Remarkably,
the FCM-based classifier not only outperforms the PDM one but is also supe-
rior to MeshCNN especially in presence of sparse training data. Note, these
results have to be understood in the context of data used, namely the shape
of one single anatomy. Higher classification accuracy is possible if more data
is utilized, as e.g. 3D MRI scans of the whole brain in Seo et al. [2016].

Explainability

Analogously to the OA classification we provide a visualization of the SVM
discriminating direction for the Alzheimer’s classification experiment in Fig-
ure 5.16 based on SVM instances with average classification accuracy obtained
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Figure 5.15.: Mean shape of diseased right hippocampi overlaid with mean
shape of the healthy hippocampi wherever the distance is larger than 0.6mm,
colored accordingly.

for 40%/60% training/testing split. In addition to shapes sampled along the
discriminating direction, we further provide a 2D visualization using orthogo-
nal projection onto the plane spanned by the two principal geodesic modes that
retain the highest classification accuracy, viz. ϑ1, ϑ3 for ADNI, respectively.

η�

η

η

Figure 5.16.: Visualization of the discriminating direction η and separating
hyperplane η� for Alzheimer’s classification showing a 2D projection (right)
and corresponding shapes (left) equidistantly sampled within the interval
containing the input data (note that projections onto η and the visualizing
plane do not commute causing the interval to appear smaller). Point-wise
distance to the middle shape colored using -2.5mm 2.5mm
with neutral window (i.e. rosy color) from -0.5mm to 0.5mm.
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Chapter 6.

Conclusion and Future Work

6.1. Conclusion

6.1.1. Conclusion on Aspects of statistical shape

modeling

In this work, we presented three novel approaches for nonlinear statistical
analysis of shapes, which we consider discretized as a collection of correspond-
ing primitives (e.g. triangles). Shape variability within a shape population is
hereby encoded as deformations of a common reference shape. These defor-
mations are represented through the deformation gradient, i.e. as differential
coordinates. On these coordinates we defined different manifold structures al-
lowing for different approaches to shape analysis. In contrast to the standard
PDM every shape model shown in this thesis comes at least with invariance
under translation, due to the nature of the underlying differential shape rep-
resentation. An algorithm to solve the inverse problem, devising shapes from
given coordinates, employing Poisson-based reconstruction is given.

The GLM was based on the canonical GL+(3) structure of the deformation
gradient. It utilized the bi-invariant Lie group mean and a tangent principal
component analysis employing a GL+(3)-left-invariant, O(3)-right-invariant
metric in GL+(3). It can thus be considered as as-invariant-as-possible w.r.t.
the canonical GL+(3) structure. This structure on the one hand is compatible
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with piecewise (triangle-wise) affine transformations of the input shapes, i.e.
taking the differential representation and applying the transformation com-
mutes. However, the barycenter and the modes of variation do depend on the
input shapes’ orientation in the ambient space calling for an initial generalized
Procrustes alignment. Furthermore, we have shown that the GLM possesses a
high descriptiveness w.r.t. natural biological differences in shape. In particu-
lar, we conducted experiments on OA classification. In order to determine the
parameters of the metric we applied a hyper parameter optimization targeting
classification accuracy.

We presented the DCM as second approach for nonlinear statistical analy-
sis of shapes. Our formulation employs a differential representation of shape
that incorporates a natural (local) measure of deformation in terms of stretch
tensors. We furthermore endow this representation, consisting of deformation
gradients split into rotational and stretch components, with a Riemannian
structure that provides our shape space with strong theoretical properties. In
particular, physically invalid (stretch-)tensors are at an infinite distance from
any element in our space. Despite its non-Euclidean structure our DCM ad-
mits closed-form expressions for most operations and therefore facilitates fast
and numerically robust processing. Indeed, this addresses one of the major
shortcomings usually found in nonlinear statistical tools limiting their practi-
cal applicability.

We experimentally evaluated the performance of DCM and compared it to
alternative approaches. Specifically, in comparison to the state-of-the-art,
physically-based Shell PCA model we demonstrated a speedup of two orders of
magnitude while, at the same time, being more numerically robust. We further
derived a shape descriptor based on the principal component scores and showed
the superiority of these features for the characterization of inter-population dif-
ferences in a classifier system for knee OA. Additionally, we showed that the
DCM is better able to capture the nonlinear variations present in articulated
body pose and disease-specific data by comparing it to the standard PDM
and the recent SE(3)-based model [Hefny et al., 2015]. Notably, the DCM
showed significant improvements in specificity and generalization ability. As
with other non-Euclidean approaches, existence and uniqueness of the intrinsic
mean is only ensured for ‘well-localized’ data. In particular, the logarithm is
only well defined if the rotational part is also well defined, i.e. if the rotations
feature angles less than π.

Finally, we presented the FCM based on a Euclidean motion invariant—hence
alignment-free—shape representation with deep foundations in surface theory.
The rich structure of the derived shape space assures valid shape instances
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even in presence of strong nonlinear variability. Moreover, we demonstrated
that the proposed shape representation can be used to effectively calculate
quasi-isometric flat immersions to the plane. We performed manifold-valued
statistics in a consistent Lie group setup allowing for closed-form evaluation
of Riemannian operations. Furthermore, we devised an efficient and robust
local-global algorithm to solve the inverse problem that does not require any
numerical safeguards.

We showed that FCM yields highly differentiating shape descriptors that pro-
mote great performance for shape-based disease state classifications for knee
OA and Alzheimer’s: (1) In comparisons our FCM descriptors are superior
to the DCM ones, as well as the popular linear PDM based descriptors; (2)
Remarkably, the FCM-based classifier significantly outperformed the state-of-
the-art, geometric deep learning approach MeshCNN [Hanocka et al., 2019].
We would like to remark that our approach guarantees deformations to be
only locally diffeomorphic (i.e. immersions) but not globally. However, we did
not observe any non-diffeomorphic instances in our experiments (e.g. all FCM-
derived shapes shown in this thesis are embeddings). Indeed, the FCM cor-
rectly captures nonlinear deformations with large rotational components that
violate well-localizedness assumptions of previous approaches. On the other
hand, in comparison to shape spaces based on diffeomorphic mapping, FCM
allows for fast processing of large-scale shape collections and is invariant under
Euclidean motion, hence, not susceptible to any bias due to misalignment.

6.1.2. Conclusion OA Stratification

We introduced a consistent generalization of the recently presented (Euclidean)
B-score to Riemannian shape spaces. We showed that the obtained formulation
features superior predictive power in an experiment on TKR risk assessment,
thus, suggesting improved discrimination of morphological status across the
range of OA severity. These advances foster the potential of B-score to replace
imprecise and insensitive measures for the assessment of OA status based on
plain radiography. Moreover, we further presented an original algorithm for
the projection of points in a Riemannian manifold onto a geodesic. In partic-
ular, the obtained iteration exposes fast, quadratic convergence and is simple
to implement. We chose a shape space based on fundamental coordinates,
because—due to its deep foundation in differential geometry and link to thin
elastic shells—it faithfully captures nonlinear shape variability, while offering
fast processing of large-scale shape collections. On the theoretical side, the
price to pay is that there is no guarantee that the projection is diffeomorphic.
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However, we would like to remark that the estimated OA-geodesic contains
only diffeomorphic deformations within the confidence interval, guaranteeing
valid instances even if the input shapes are not. Furthermore, contrary to
shape spaces based on diffeomorphic metric mapping, ours is invariant under
Euclidean motion and, thus, not susceptible to any bias due to misalignment.

Finally, all presented shape modeling approaches, as well as all components of
the Gedoesic B-score are implemented in the publicly available Morphomat-
ics1 - Geometric morphometrics in non-Euclidean shape spaces Python library
[Ambellan et al., 2021a]. This, together with the detailed Information on the
employed data (A.1) enables reproducibility of results and might stimulate
further research in the field.

6.2. Future Work

We consider it valuable and interesting to also investigate the purely Rieman-
nian perspective associated with the metric in the GLM setting and compare
it to our present work. However, this comes at a price as, although geodesics
can be evaluated in closed form for a given direction and the existence of a
shortest geodesic connecting two arbitrary points is theoretically guaranteed,
no closed form solution to determine the direction of one (and not necessarily
the shortest) connecting geodesic is known [Martin and Neff, 2016].

As another future direction we plan to extend our proposed models to also
account for appearances. This in turn can lead to improved accuracy and ro-
bustness in applications like 3D reconstruction via analysis-by-synthesis. Fur-
thermore, we want to investigate different strategies for commensuration of the
rotational and stretch components in our DCM metric. In particular, while
the rotational component is affected by local and global rigid motions it also
contains curvature information.

One possible and interesting way to proceed with DCM, FCM in the future is
to replace the log-Euclidean structure with the affine-invariant one, which can
be considered the natural on the symmetric positive-definite matrices. Addi-
tionally, investigation of the log-Cholesky structure [Lin, 2019] appears to be
promising. Another interesting line of future work is to explore the feasibil-
ity of fully automatic computer-aided diagnostics based on advanced machine
learning, e.g. by combining our shape representation with the approach in von
Tycowicz [2020] or utilizing the proposed flattening approach to transform

1morphomatics.github.io
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three-dimensional problems into the well-known two-dimensional image-based
deep learning setup. Finally, the variance analysis by TPCA could be re-
placed, where feasible, by exact PGA to avoid any confounding information
via linearization in the models.

Considering of the numerous size of available datasets (e.g. OAI database),
another promising line of work is the extension of SSM-based disease classifi-
cation methods to a broader data base, namely tens of thousands of samples.
This is feasible due to the numerical efficiency of the presented methods and
might allow for an even more accurate disease assessment. A first step in this
direction has already been taken by Tack et al. [2021] working with all subjects
from the OAI database.

In this work, we carefully generalized the B-score mimicking the geometric con-
struction of its Euclidean counterpart. However, there are various statistical
approaches that allow to estimate submanifolds based on separation or regres-
sion considerations, e.g. geodesic discriminant analysis [Louis et al., 2018] or
higher-order regression [Hanik et al., 2020], respectively. An interesting direc-
tion for future work is to investigate to which extend such geometric statistics
can serve as a foundation for advanced notions of an intrinsic B-score. From a
medical perspective, it will be most interesting to explore the relationship of
the geodesic B-score with further clinically important outcomes such as pain
and loss of function. In particular, we will investigate to which degree the
geodesic B-score can improve the related risk assessment. Since the presented
statistical approach can directly be extended to multiple connected compo-
nents, another line of work will aim on extension to multi-structure B-scores,
e.g. for Femur and Tibia. Moreover, for the future we envision a longitudinal
characterization beyond the static B-score that takes subject-specific shape
developments into account.
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List of Abbreviations

Notation Description First

ADNI Alzheimer’s Disease Neuroimaging Initiative. 65

CNN Convolutional Neural Network. 9

DCM Differential Coordinates Model. 6

FAUST Fine Alignment Using Scan Texture. 59
FCM Fundamental Coordinates Model. 7

GLM GL+(3)-Model. 6

LPGA Linearized Principal Geodesic Analysis. 4

MRI Magnetic Resonance Imaging. 72

OA Osteoarthritis. 1
OAI Osteoarthritis Initiative. 59

PCA Principal Component Analysis. 2
PDM Point Distribution Model. 2
PGA Principal Geodesic Analysis. 4

SSM Statistical Shape Model. 1
SVM Support Vector Machine. 66
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Notation Description First

TKR Total Knee Replacement. 7
TPCA Tangent Principal Component Analysis. 4

weDESS dual-echo steady state with selective water
excitation.
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Appendix A.

Information on Data and Further

Experiments

The following chapter of the appendix will give detailed information on the
employed datasets as well as on additional experiments that where carried out
in order to substantiate the presented SSMs.

A.1. Employed Datasets

In order to experimentally validate the performance of the presented SSMs
within this thesis we did employ six datasets in total. Furthermore, we globally
aligned the objects within each dataset w.r.t. position and orientation using
the standard generalized Procrustes method [Goodall, 1991]. This is, in view
of the FCM, not necessary, but to allow for a fair comparison between different
models with different invariances simply inevitable.

(i) OAI - Right distal femora (see e.g. Figure 4.5) from the OAI, which is
a longitudinal study of knee osteoarthritis maintaining (among others) clinical
evaluation data and radiological images from 4,796 men and women of age
45-79 that are available for public access at nda.nih.gov/oai[Peterfy et al.,
2006]. From the baseline dataset, we chose 58 severely diseased subjects and
58 healthy subjects according to their KL score [Kellgren and Lawrence, 1957]
(diseased: grade 4 healthy: grade 0,1). For the 116 subjects we extracted
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surfaces of the distal femora from the respective 3D dual-echo steady state
with selective water excitation (weDESS) MRI (0.37×0.37 mm matrix, 0.7 mm
slice thickness) using [Seim et al., 2010]. The used segmentation masks have
been published along with [Ambellan et al., 2019b] and are freely available
as part of the OAI-ZIB dataset1. In a supervised post-process, the quality
of segmentations as well as the correspondence of the resulting meshes (8988
vertices, 17829 triangles) were ensured. A detailed list of the exact subjects
that are included in the experiment OA classification experiment, as well as
their disease state are given in the following Table A.1.

Table A.1.: List of unique patient ids from the OAI database used in the OA
classification experiment.

Healthy (KL 0/1) Diseased (KL 4)
9008561 9258563 9510418 9246518 9391984 9631713
9013798 9304351 9517914 9256759 9393987 9638953
9017909 9331053 9582487 9263504 9413071 9642550
9036770 9333574 9601162 9266394 9414291 9660708
9036948 9341699 9617689 9267719 9421492 9672573
9039744 9341903 9645577 9271965 9422381 9680800
9089627 9355112 9655592 9284505 9430102 9689922
9108461 9383004 9718992 9287216 9439428 9691663
9116298 9391372 9750072 9301332 9457359 9695135
9120941 9394136 9854269 9326657 9467278 9700341
9132486 9397088 9876530 9331465 9469318 9710479
9141244 9397976 9878765 9340139 9470313 9745458
9153509 9433408 9879069 9349261 9475286 9750090
9171766 9440417 9907090 9364366 9477175 9760079
9184495 9460287 9916140 9365968 9477358 9781749
9189553 9474901 9967815 9375317 9508335 9858216
9207016 9486748 9973322 9379276 9517311 9895555
9211049 9488834 9978579 9389580 9557454 9933836
9245519 9501871 9988421 9391061 9568504 9943227

9504627 9604541

(ii) ADNI - Right hippocampi (see e.g. Figure 5.15) from the ADNI2 con-
sisting of 60 subjects showing Alzheimer’s disease and 60 cognitive normal con-
trols. We prepared this dataset using imaging data from the ADNI database
that contains, among others, 1632 brain MRI scans collected on four different
time points with segmented hippocampi, featuring three different Alzheimer’s
states: Cognitive normal (CN), mild cognitive impairment and Alzheimer’s

1doi.org/10.12752/4.ATEZ.1.0 or at pubdata.zib.de
2adni.loni.usc.edu
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disease (AD). We established surface correspondence (2280 vertices, 4556 tri-
angles) in a fully automatic manner employing the deblurring and denoising
of functional maps approach [Ezuz and Ben-Chen, 2017]3 for isosurfaces ex-
tracted from the given segmentations. The dataset was randomly assembled
from the baseline shapes for which segmentations were simply connected and
remeshed surfaces were well-approximating (≤ 10−5mm root mean square sur-
face distance to the isosurface). Similar as for the OAI dataset we added a
list of scan ids in Table A.2 since the used hippocampus segmentations are
publicly available as part of the ADNI database.

Table A.2.: List of unique scan ids from the ADNI database used in the
Alzheimer’s classification experiment.

Cognitive Normal Alzheimer’s Diagnosed
10312 13681 17207 10064 14974 22310
10605 13717 17232 10468 15001 22938
10813 13737 17487 10568 15145 23375
10835 13893 17527 10764 15287 23446
10883 14104 18109 11633 15315 24659
10960 14488 18236 12000 15935 24672
11006 14513 18321 12365 16313 25082
11161 14559 18450 12375 16924 25357
11314 14818 18827 12381 17191 25455
11584 14959 18909 12402 17337 25763
11594 14991 18917 12468 18077 26038
11928 15079 19971 12583 18094 26136
11974 15527 20352 12836 18151 26143
12081 15727 20753 12952 18189 26314
12419 15789 21817 13839 18373 26431
12485 16048 22439 13976 18390 27061
12563 16099 24338 13990 19296 27414
12992 16553 25680 14199 19386 27584
13191 16759 25829 14629 19395 27673
13556 17131 26899 14699 21207 28133

(iii) FAUST - An anthropological, open-access dataset of human body scans
that have been acquired with a high-accuracy 3D multi-stereo system Bogo
et al. [2014]. Specifically, we use the training data of FAUST that comprises
100 scans of 10 subjects of different shapes and in 10 different wide ranging
poses. FAUST features full-body, high-quality correspondences established via
registration that combines 3D shape and appearance. The provided FAUST
meshes are watertight, genus zero surfaces with (6890 vertices, 13776 faces).

3code online available: cs.technion.ac.il/ mirela/code/fmap2p2p.zip
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Note that the male human body in two poses used e.g. in Figure 4.8 (right) is
a subset of the whole FAUST set.

(iv) PIPE - A pair of synthetic pipe surfaces, one in a cylindrical and one in
a helical configuration consisting of 1220 triangles and 612 vertices as can be
seen in Figure 4.8 (left).

(v) Skeletal human hand - A pair of skeletal human hands (see Figure 4.6)
taken from the publicly available data4 of [Kilian et al., 2007] that is based
on data of the Large Geometric Models Archive from the Georgia Institute of
Technology. It features 13072 vertices and 26160 triangles.

(vi) OAI-B-score - Within B-score evaluation we rely on 3D sagittal weDESS
MRI acquired at baseline as part of the OAI database (similar to dataset
(i)). We segmented the distal femur bone for 9290 (of 9345) scans and es-
tablished pointwise correspondence employing a fully automatic method com-
bining CNNs with statistical shape knowledge achieving state-of-the art accu-
racy [Ambellan et al., 2019b]. The 55 cases not taken into consideration were
omitted due to imaging artifacts or failure of the segmentation pipeline. All
reconstructed distal femur shapes are taken as left femurs, i.e. all right shapes
were mirrored suitably and every shape consists of 8988 vertices and 17829
triangles (cf. Figure 5.10). Apart from image data the OAI database also pro-
vides clinical scores as KL and information about clinical outcomes such as
TKR surgery. An overview on the employed data is given in Table A.3. Note
that the list of unique MRI scan IDs defining the study population cannot be
attached to the thesis at hand, because of its extend, but is publicly available
as ancillary file (20 pages) accompanying the preprint5 to [Ambellan et al.,
2021b].

A.2. Additional Experiments

In order to perform parameter studies and to access the influence of parameters
on classification accuracy and model compactness we perform some additional
experiments for the DCM and FCM.

4graphics.stanford.edu/∼ niloy/research/shape_space/shape_space_sig_07.html
5arxiv.org/abs/2104.01107
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Table A.3.: Demographic information for the data involved to the B-score
experiments.

No. of Shapes 9290
Laterality (left, right) 4678, 4612
Sex (male, female) 3825, 5465
Age [years] 61.1 ± 9.2
BMI [k/m2] 28,6 ± 4.8
KL 0, 1, 2, 3, 4 3382, 1557, 2313, 1198, 282
TKR within 8 years 508

A.2.1. DCM – Additional Experiments

Commensuration strategies

We evaluated the impact of the different commensuration strategies discussed
in Section 3.4 by assessing the ability of the resulting model to capture char-
acteristic changes in shape that are incident to radiographic knee OA. To this
end, we performed the classification experiment presented in Section 5.1 us-
ing the proposed unweighted strategy, stretch-dominant weighting (ω close to
zero) as motivated from 3D elasticity, and the data-driven approach.

The results are shown in Figure A.1. While all strategies yield statistical shape
descriptors that outperform the PDM, the unweighted version (ω = 1) shows
the best performance. However, the accuracy of the data-driven approach
improves with the amount of available training data suggesting a superior
performance for large datasets.

Specificity

Low values for specificty (cf. Section 4.1.1) indicate that the model under
consideration generates instances similar to the training data. However, it
does not allow to differentiate whether the model is specific to the nonlinear
distribution underlying the training data or just a few of its training instances.
Therefore, we also evaluate how often each training instance was most similar
(i.e. closest) to one of the sampled instances. The histograms presented in
Figures A.3 and A.2 show that the proposed model is indeed specific to the
distribution from which the training data was drawn.
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Figure A.1.: Classification accuracy achieved by the DCM approach (employ-
ing different commensuration strategies) and the PDM as function of the
percentage of training data.

A.2.2. FCM – Additional Experiments

Classification with varying commensuration parameter

As we are on the one hand applying shape models for disease classification
purposes and on the other hand are in general interested in rather compact
models, we did vary the metric commensuration parameter ω (cf. Section 3.7)
since it directly affects both. We studied the connection between choice of ω,
classification accuracy and model compactness.

OAI - OA Classification. As can be seen in Figure A.4 the disease clas-
sification accuracy increases as ω increases. Looking at Equation (3.23) this
means putting higher weight on the rotational, thus curvature related term
leads to higher classification accuracy. Additionally all examined choices of ω
give FCM classification results with a superior performance compared to PDM.
However, the development of model compactness is contrary to the classifica-
tion accuracy as shown in Figure A.4. The larger ω gets, the less compact is
the shape model and none of the examined commensuration parameter choices
leads to a compactness as high as for the PDM.

ADNI - Alzheimer’s Classification. A similar experiment for Alzheimer’s
classification reveals a rather different dependency on the commensuration pa-
rameter, see Figure A.5. For values ω ≳ 10 the classification accuracy lies below
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Figure A.2.: Frequency of being the closest shape (w.r.t. W) during specificity
evaluation (full model) for each training shape within FAUST dataset.

Figure A.3.: Frequency of being the closest shape (w.r.t. W) during specificity
evaluation (full model) for each training shape within OAI dataset.

the one achieved by the PDM. For ω ≈ 0.98 the peak performance is reached
and for values below we note again slight decrease in performance. The com-
pactness instead, as can be seen in Figure A.5, develops very similar as for the
OAI dataset and is still for all ω below that of the PDM. As conclusion to this
section we conjecture, that comparison of compactness might be interesting for
models that are build on the same shape representation, but it becomes less
meaningful if different representations are compared. Furthermore, we find
that the most compact models do not (necessarily) give the best classification
accuracy. It appears that complex shape variation as it emerges from certain
diseases tends to require a less compact encoding for an expressive but specific
description.
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Figure A.4.: Varying commensuration parameter ω, as it increases the classi-
fication accuracy does and compactness decreases.

Figure A.5.: Varying commensuration parameter ω, with peak classification
accuracy for ω ≈ 0.98. As it increases the model compactness decreases.
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Appendix B. Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Herausforderung der Entwick-
lung statistischer Formmodelle, welche die inhärente nichteuklidische Struktur
(anatomischer) Formvariation berücksichtigen, gleichzeitig eine effiziente, nu-
merisch robuste Verarbeitung erlauben und zusätzlich möglichst viel Invarianz
unter euklidischen Bewegungen der verwendeten Daten bieten.

Dazu schlagen wir einen kontinuierlichen und physikalisch motivierten Formen-
raum basierend auf Deformationsgradienten vor. Wir verfolgen zwei verschiede-
ne Ansätze, um auf diesem eine Riemannsche Struktur und damit ein statisti-
sches Formmodell zu etablieren. (1) Wir entwickeln ein Modell für die differen-
tiellen Koordinaten als Elemente in GL+(3). Zu diesem Zweck adaptieren wir
den Begriff des biinvarianten Mittelwerts bezüglich eines affinen Zusammen-
hanges auf GL+(3) und führen Statistik zweiter Ordnung basierend auf einer
Familie maximal invarianter, d.h. GL+(3)-links- und O(3)-rechts-invarianter,
Riemannscher Metriken durch. (2) Wir versehen die differentiellen Koordinaten
mit einer nichteuklidischen Struktur, die angelehnt an die Lie-Produktgruppe
aus Streckungen und Rotationen ist. Diese lässt eine biinvariante Metrik und
damit eine konsistente Analyse mittels mannigfaltigkeitswertiger Statistik im
Riemannschen Rahmen zu.

Die vorliegende Arbeit präsentiert überdies die fundamentalen Koordinaten,
eine neue Formrepräsentation basierend auf diskreten Flächenfundamentalfor-
men, welche auf natürliche Weise invariant unter euklidischen Bewegungen ist.
Wir versehen diese Repräsentation mit einer Lie-Gruppenstruktur, die eine bi-
invariante Metrik und somit Riemannsche Statistik erlaubt. Darüber hinaus
entwickeln wir einen einfachen, effizienten, robusten, sowie akkuraten (d.h. oh-
ne Rückgriff auf Modellapproximationen) Löser für die Rückabbildung von den
Koordinaten zur Form im Raum. Neben der statistischen Formanalyse erlaubt
der beschriebene Ansatz auch Anwendungen in der Geometrieverarbeitung,
insbesondere zur quasi-isometrischen Oberflächenverflachung.

Der letzte Abschnitt der Arbeit befasst sich mit der Entwicklung kontinuierli-
cher formbasierter Erkrankungsstratifikationen, um die Krankheitsbewertung
über die aktuelle klinische Praxis ordinaler Bewertungssysteme hinaus zu ob-
jektivieren. Hierzu entwickeln wir den geodesic B-score in gekrümmten For-
menräumen zur Bewertung von Kniegelenksarthrose als Generalisierung des
euklidischen B-scores. In diesem Rahmen beschreiben wir eine Newton-Typ-
Fixpunktiteration zur Bestimmung der Projektion auf Geodätische im For-
menraum. Als Anwendung zeigen wir, dass der geodätische B-score gegenüber
seinem euklidischen Gegenstück eine verbesserte Vorhersageleistung hinsicht-
lich der Risikobewertung bezüglich einer totalen Kniearthroplastie besitzt.
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