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Introduction

Official statistics are intended to support decision makers by providing reliable information on

different population groups, identifying what their needs are and where they are located. This

allows, for example, to better guide public policies and focus resources on the population most

in need. Statistical information must have some characteristics to be useful for this purpose.

This data must be reliable, up-to-date and also disaggregated at different domain levels, e.g.,

geographically or by sociodemographic groups (Eurostat, 2017).

Statistical data producers (e.g., national statistical offices) face great challenges in deliv-

ering statistics with these three characteristics, mainly due to lack of resources. Population

censuses collect data on demographic, economic and social aspects of all persons in a country

which makes information at all domains of interest available. They quickly become outdated

since they are carried out only every 10 years, especially in developing countries. Furthermore,

administrative data sources in many countries have not enough quality to produce statistics that

are reliable and comparable with other relevant sources. On the contrary, national surveys are

conducted more frequently than censuses and offer the possibility of studying more complex

topics. Due to their sample sizes, direct estimates are only published based on domains where

the estimates reach a specific level of precision. These domains are called planned domains or

large areas in this thesis, and the domains in which direct estimates cannot be produced due to

lack of sample size or low precision will be called small areas or domains.

Small area estimation (SAE) methods have been proposed as a solution to produce reliable

estimates in small domains. These methods allow improving the precision of direct estimates,

as well as providing reliable information in domains where the sample size is zero or where

direct estimates cannot be obtained by combining data from censuses and surveys (Rao and

Molina, 2015). Thereby, the variables obtained from both data sources are assumed to be

highly correlated but the census actually may be outdated.

In these cases, structure preservation estimation (SPREE) methods offer a solution when

the target indicator is a categorical variable, with at least two categories (for example, the labor

market status of an individual can be categorised as: ‘employed’, ‘unemployed’, and ‘out of

labor force’). The population counts are arranged in contingency tables: by rows (domains of

interest) and columns (the categories of the variable of interest) (Purcell and Kish, 1980). These

types of estimators are studied in Part I of this work. In Chapter 1, SPREE methods are applied

to produce postcensal population counts for the indicators that make up the ‘health’ dimension

of the multidimensional poverty index (MPI) defined by Costa Rica. This case study is also

used to illustrate the functionalities of the R spree package. It is a user-friendly tool designed to

produce updated point and uncertainty estimates based on three different approaches: SPREE
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Introduction

(Purcell and Kish, 1980), generalised SPREE (GSPREE) (Zhang and Chambers, 2004), and

multivariate SPREE (MSPREE) (Luna-Hernández, 2016).

SPREE-type estimators help to update population counts by preserving the census structure

and relying on new and updated totals that are usually provided by recent survey data. However,

two scenarios can jeopardise the use of standard SPREE methods: a) the indicator of interest is

not available in the census data e.g., income or expenditure information to estimate monetary-

based poverty indicators, and b) the total margins are not reliable, for instance, when changes

in the population distribution between areas are not captured correctly by the surveys or when

some domains are not selected in the sample. Chapters 2 and 3 offer a solution for these cases,

respectively.

Chapter 2 presents a two-step procedure that allows obtaining reliable and updated esti-

mates for small areas when the variable of interest is not available in the census. The first step

is to obtain the population counts for the census year using a well-known small-area estima-

tion approach: the empirical best prediction (EBP) (Molina and Rao, 2010) method. Then,

the result of this procedure is used as input to proceed with the update for postcensal years by

implementing the MSPREE (Luna-Hernández, 2016) method. This methodology is applied to

the case of local areas in Costa Rica, where incidence of poverty (based on income) is esti-

mated and updated for postcensal years (2012-2017). Chapter 3 deals with the second scenario

where the population totals in local areas provided by the survey data are strengthened by in-

cluding satellite imagery as an auxiliary source. These new margins are used as input in the

SPREE procedure. In the case study in this paper, annual updates of the MPI for female-headed

households in Senegal are produced.

While the use of satellite imagery and other big data sources can improve the reliability

of small-area estimates, access to survey data that can be matched with these novel sources is

restricted for confidentiality reasons. Therefore, a data dissemination strategy for micro-level

survey data is proposed in the paper presented in Part II. This strategy aims to help statistical

data producers to improve the trade-off between privacy risk and utility of the data that they

release for research purposes.

10
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Chapter 1

Updating Intercensal Health
Indicators for Small Areas using the R
Package spree

1.1 Introduction

The definition, monitoring, and evaluation of public policies based on quality statistics allow

decision makers to better guide their actions to combat phenomena such as poverty. The reduc-

tion of poverty in all its expressions is relevant for national and international agendas (United

Nations, 2019). Due to its complexity, poverty can be approached from different points of view,

as well as measurements. For example, from an income-based perspective, the Foster-Greer-

Thorbecke (FGT) indicators (Foster et al., 1984) are an extensively used set of indicators that

includes, among others, the incidence of poverty or head count ratio, and the poverty gap. Both

indicators require a defined poverty line specifying when an individual or household is under

poverty.

Another approach is to measure poverty based on deprivations, for instance with the unsat-

isfied basic needs (USB) index (Feres and Mancero, 2001), and the multidimensional poverty

index (MPI) (Alkire and Foster, 2007). These methods intend to represent the non-monetary

capacities of the individuals or households in several aspects, that are also highly correlated

with their purchasing power. The analysis of both approaches is relevant for most developing

economies, e.g., in Latin America, where poverty has been identified as a structural problem

(ECLAC, 2014). In this paper, the MPI of Costa Rica is taken as an example. Since one of the

main characteristics of this index, is its flexibility to be applicable to specific national realities

(Alkire et al., 2019), Costa Rica adopted and adapted the MPI as a complimentary tool along

with income-based poverty measures to evaluate and monitor this phenomenon.

This Central American country defines five equally-weighted dimensions (‘housing’, ‘ed-

ucation’, ‘employment’, ‘health’, and ‘social protection’), each one consisting of a set of di-

chotomous indicators defining the deprivations that a individual or household has. Based on the

number of deprivation and a specific national threshold that defines when a person or house-

hold is considered multidimensionally poor (INEC, 2015). Although Costa Rica produces and
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releases information on this index annually, the sample size of the National Household Survey

(ENAHO - Encuesta Nacional de Hogares) only allows the production of reliable estimates

for zone (urban and rural) and six planning regions. Costa Rica faces limitations not only to

produce estimates of the MPI for smaller geographic areas, e.g., 81 cantons and 472 districts,

but also for its components, i.e., dimensions and indicators. In recent years, ‘health’ has been

found to be one of the dimensions that has more relative contribution to the overall index in

this country. For instance, the contribution of this dimension to the index was 22.8% in 2020

(INEC, 2020). However, it remains unknown how of the health indicator behaves in small

domains.

Small area estimation (SAE) methods are popularly used as a solution for these types of

scenarios. SAE models allow improving the reliability of direct estimates based only on survey

data and increasing the resolution of the target geographic scale, by combining data sources

and making use of highly correlated auxiliary information, generally from population censuses

or administrative records (Pfeffermann, 2013; Rao and Molina, 2015; Tzavidis et al., 2018).

Regarding the availability of auxiliary sources to apply SAE methods, many developing

countries do not have administrative records or systems to control their quality. For this reason,

population and housing censuses are traditionally considered as auxiliary source although they

are carried out only every 10 years. The literature of SAE methods that specifically tackles the

time constraint between the survey and the census data is very limited. In this paper the most

popular methods in this field are used: the structure preserving-estimation (SPREE) methods.

These estimators have been implemented mainly to produce updated population information

on labour market status for local areas (Luna-Hernández et al., 2015a), occupation (Berg and

Fuller, Berg and Fuller; Hidiroglou and Patak, 2009), and monetary poverty (Isidro et al., 2016;

Arias-Salazar, 2022). The SPREE-type estimators permit updating population counts by pre-

serving the internal structure of a census. They require the census information to be organised

in contingency or multi-way tables: by rows, for instance, domains of interest, and by columns,

where each column contains the different categories of the variable of interest, e.g., ‘employed’,

‘unemployed’, ‘out of labor force’.

The purpose of this paper is twofold. First, to provide updated population counts in the 81

cantons, from 2012 to 2017 in the ‘health’ dimension of the Costa Rican MPI and its respective

indicators. The cantons with the highest proportion of vulnerable households will be identified,

i.e., households that have three or more deprivations. The different indicators at zone and

planning region level will also be analysed.

The second objective of this work is to present and illustrate the use of the R package spree
to update intercensal indicators using SPREE-type estimators. To the best of my knowledge,

none of these estimators are available in existing R packages.

This paper has the following structure: Section 1.2 describes the SPREE methods as tech-

niques to updated population counts in intercensal years. Section 1.3 introduces the package

spree and its functionalities. The case study that motivates this paper is presented in Section

1.4. Examples of the implementation of the package in this specific case are also shown in this

section, as well as some results of the application. In the last section, conclusions and some

recommendations for further research are pointed out.

14
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1.2 Methodology

This section describes the methodology to update intercensal counts for small areas based on

SPREE-type estimators behind the R package spree. Three main estimators are available in

SPREE literature, namely SPREE, generalised SPREE (GSPREE), and multivariate SPREE

(MSPREE). All of them are provided in the R package spree.

A clarification of the concepts that will be used in the upcoming sections is relevant at this

point. In the context of SPREE, the population and sample data are cross-classified tables,

also referred as compositions where the inner cells are counts. The term row margins refer to

area sizes, domains sizes or sums by rows, and column margins refer to totals by categories or

columns. Furthermore, the names population and census data are used interchangeably as well

as sample and survey data.

1.2.1 SPREE-type estimators

The structure preserving estimator (SPREE)

The first version of the SPREE estimators was proposed by Purcell and Kish (1980) as a solu-

tion to obtain counts and proportions for intercensal years, when the variable of interest has at

least two categories and the population (census) data can be arranged in a cross-classification

table. In this sense, for a population of size N , all units i (e.g., individuals or households) are

organised in tables according to the area and category of the variable of interest to which they

belong. For the census year (t0), the table is represented as Zaj,t0 , with a = 1, . . . , A areas or

domains (rows) and j = 1, . . . , J categories of the variable of interest (columns).

The main assumption behind this proposal is that the census data is reliable in its inter-

actions between rows and columns (i.e., between domains and categories of the variable of

interest), but the total of observations that belongs to each domain and category are outdated in

the postcensal years.

A two-way contingency table for the census year t0 can be represented as a saturated log-

linear model

logZaj,t0 = αZ0,t0 + αZa,t0 + αZj,t0 + αZaj,t0 .

The terms αZ0,t0 , α
Z
a,t0 , α

Z
j,t0

are called allocation structure and the interaction term αZaj,t0
association structure. These terms can be defined using a centred-constraint parametrization:

αZ0,t0 =
1

AJ

A∑
a=1

J∑
j=1

logZaj,t0 ,

αZa,t0 =
1

J

J∑
j=1

logZaj,t0 − αZ0,t0 ,

αZj,t0 =
1

A

A∑
a=1

logZaj,t0 − αZ0,t0 ,
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αZaj,t0 = logZaj,t0 − αZa,t0 − α
Z
j,t0 − α

Z
0,t0 ,

and the constraints:

A∑
a=1

αZa,t0 =
J∑
j=1

αZj,t0 =
A∑
a=1

αZaj,t0 =
J∑
j=1

αZaj,t0 = 0, (1.1)

must be fulfilled (Luna-Hernández, 2016). The updated target composition Yaj,t1 can also

be defined as a saturated log-linear model (logYaj,t1) with the same constraints. However,

usually only survey data is available in t1. As aforementioned, official results are only released

for planned domains in that period due to sample size limitations.

To obtain an updated population table Ŷaj,t1 , SPREE uses the information form survey data

that can be assumed reliable: its margins, i.e., the allocation structure. For the inner cells or

interactions between rows and columns, the association structure of the census table is used.

Therefore, the assumption of SPREE is that this structure in t0 remains unchanged in the target

year t1, and is defined as follows:

αYaj,t1 = αZaj,t0 . (1.2)

A visual representation of the components and structure of SPREE is shown in Figure 1.1.

The target composition Ŷaj,t1 is obtained with census data Zaj,t0 and reliable actual margins

Ya,t1 and Yj,t1 .

Column margin:
categories Yj,t1

Census: Zaj,t0

Target:
Ŷaj,t1

Row margin:
areas Ya,t1

Figure 1.1: Representation of data requirements to apply SPREE based on Purcell and Kish
(1980)

The updated target estimates can be obtained via the iterative proportional fitting (IPF)

algorithm (Deming and Stephan, 1940), which is a well-known method to update census infor-

mation (Suesse et al., 2017). This algorithm fits counts of a contingency table based on a set

of given margins (Deville and Särndal, 1992). In the context of SPREE, the fitting is done on

a census table by keeping a set of updated and reliable margins fixed. See the supplementary

material for further details.

The updated SPREE composition Ŷ S
aj,t1

obtained using the IPF algorithm is represented by

Luna-Hernández (2016) as:

16
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Ŷ S
aj,t1 = IPF

[
exp(α̂Yaj,t1), Ya,t1 , Yj,t1

]
, (1.3)

with Ya,t1 and Yj,t1 representing the reliable survey margins (rows and columns) and âYaj,t1 =

aZaj,t0 , the interaction terms that are preserved as in the census data. The superscript S is used

to denote that SPREE was implemented.

The IPF approach requires some considerations for its implementation: the input data must

be arranged by domains and categories, i.e., contingency tables, and both, census and survey

data, must have the same dimensions. Furthermore, the variable of interest must be available

in the census data with same definition as in survey data, or a highly correlated variable (Green

et al., 1998).

The generalised SPREE (GSPREE)

Zhang and Chambers (2004) introduced the GSPREE with the aim of relaxing the assumption

that the interactions between domains and categories of the variable of interest in t1 remain

exactly as in the census period, i.e., αYaj,t1 = αZaj,t0 . Using direct estimates from survey data

Ŷ Dir
aj,t1

with same structure as the census composition (e.g., a contingency table), a proportion-

ality coefficient β is included and the structural assumption is now:

αYaj,t1 = βαZaj,t0 .

Note that SPREE is a particular case of GSPREE when the constant β = 1. To compute this

coefficient, Zhang and Chambers (2004) suggest, among other alternatives, to obtain maximum

likelihood estimators (MLE) of β assuming a Poisson or a multinomial distribution for the

survey counts for each area, and consequently obtain αYaj,t1 . In terms of data requirements,

GSPREE needs the availability of a survey composition table, meanwhile the former version

of the estimator requires only a set of row and column margins. The IPF algorithm can be used

to obtain the target composition Ŷ G
aj,t1

as in Equation 1.3.

The multivariate SPREE (MSPREE)

Although GSPREE relaxes the structural assumption of SPREE by adding a coefficient of

proportionality gathered from direct estimates, this term is only one constant that is assumed

to be equal for all categories of the variable of interest. Luna-Hernández (2016) proposes a

novel version that aims to capture the relationships between the categories. The MSPREE uses

β as proportionality coefficient, which is now a J × J matrix (with (J − 1) × (J − 1) free

parameters), and varies inside each area, from one category to another. Here, the structural

assumption is:

αYa,t1 = βαZa,t0 .

Similarly as the previous two cases, the target MSPREE composition ŶM
aj,t1

can also be

obtained via IPF as in Equation 1.3. Notice that as well as in the GSPREE estimator, the β in

MSPREE requires direct estimates of the counts Ŷ Dir
aj,t1

, so the relationship between it and the
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target composition is also captured. If there are only two categories (J = 2) the β will be only

one constant, which would be the case of GSPREE.

The β satisfies also the sum-zero constraints similarly as in Equation 1.1, i.e., the sum

of coefficients by rows and columns is zero. A scaled-version of β in terms of proportional

interactions is used in the package spree to facilitate its interpretation. The scaled matrix

permits to compare the relationship between the categories in the updated (target) table and the

census table. This is illustrated in Figure 1.2. The diagonal terms in the scaled matrix represent

for each category how the interactions change (or differ) between the target and census table.

When these values are close to one, it means that the interactions in these two compositions are

basically the same, which is actually the structural assumption in SPREE (Equation 1.2).

The other elements (in gray in the Figure 1.2) are arranged based on the interactions of

the other categories with the purpose of satisfying the required constraints. The sum of these

off-diagonal terms is zero. The methodology to produce the scaled-version of β can be found

in Luna-Hernández (2016).

j1 j2 j3

j1 b11 b12 b13

j2 b21 b33 b23

j3 b31 b32 b33

Figure 1.2: Representation of the scaled-β matrix

Survey-based direct estimates are required to compute β, and several approaches can be

implemented: via maximum likelihood (ML) or iterative weighted least squares (IWLS) (Jiang,

2007), in both cases by using a log or a logit link. ML estimates of β can be obtained by

assuming

Ŷ Dir
aj,t1 |α

Z
a,t0

ind∼ Poisson(µaj,t1)

or

Ŷ Dir
a,t1 |α

Z
a,t0

ind∼ Multinomial
( J∑
j=1

Ŷ Dir
aj,t1 , πa,t1

)
,

where µaj,t1 are Poisson expected frequencies and πa,t1 the cell probabilities used under

multinomial sampling. The implementation of the ML approach can, however, lead to model

misspecification when an informative sampling design is ignored (Zhang and Chambers, 2004).

The IWLS algorithm provides a solution under this scenario by including an estimate of the

variance-covariance matrix of the target composition ŶM
aj,t1

(see Jiang (2007) for details on

this algorithm). Since this matrix is usually not available, Luna-Hernández (2016) proposes a

solution by multiplying a design effect with the variance that corresponds to a simple random
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sampling design without replacement. The estimate of this matrix is defined as

V̂aj,t1 =
deffj,t1eπ̂aj,t1(1− π̂aj,t1)

na,t1
, (1.4)

with π̂aj,t1 =
ŶMaj,t1
Ya,t1

and na,t1 the area sample sizes. The term deffj,t1 is a vector of size J ,

containing a design effect for each category.

For both approaches, ML and IWLS, the use of a log or a logit link leads to equal results.

For this reason, in the package spree only the multinomial model is implemented.

1.2.2 MSE estimation

To estimate a measure of uncertainty of the SPREE-type estimators an unconditional MSE

(U-MSE) based on a parametric bootstrap can be implemented. The U-MSE is given by

E[
(
Ŷaj,t1 − Yaj,t1

)2
], where the expectation is over Yaj,t1 and the sampling procedure, given a

population model for Yaj,t1 (Tzavidis et al., 2018; Luna-Hernández, 2016). Other alternatives

such as a finite population MSE (FP-MSE) or an analytical approximation of the variance can

be consulted in Luna-Hernández (2016).

Let K represent the SPREE-type estimator: SPREE, GSPREE, and MSPREE, and Ψ rep-

resents the proportionality coefficient for each case (1 , β, and β respectively). The steps to

obtain the U-MSE are summarised as follows:

1. From the point estimate Ŷ K
aj,t1

calculate the within-area proportions π̂aj,t1 =
Ŷ Kaj,t1
Ya,t1

, with

Ya,t1 reliable domain totals (row margins).

2. Generate B-bootstrap populations Y ∗baj,t1 under the assumption that the target estimate

across areas has the following distribution:

Ya,t1 |αZa,t0
ind∼ Multinomial

(
Ya,t1 , π̂a,t1

)
.

If K = GSPREE or MSPREE:

(a) Select a sample y∗baj,t1 from each B population by defining a sampling fraction or

setting the same sample size as in the sample data used to compute the point esti-

mate.

(b) For each sample obtain the proportionality coefficient Ψ̂ and set the structural as-

sumption:

α̂Y,baj,t1 = Ψ̂αY,∗baj,t1
.

3. Compute B K-SPREE estimators Ŷ K,b
aj,t1

= IPF
[
exp
(
α̂Y,baj,t1

)
, Ya,t1 , Yj,t1

]
.

4. Estimate the U-MSE:

Û-MSE
(
Ŷ K
aj,t1

)
=

1

B

B∑
b=1

(
Ŷ K,b
aj,t1
− Y ∗baj,t1

)2
.
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1.3 The R package spree

In this Section, an overview of the R package spree is presented. The package is avail-

able from the GitHub folder (https://github.com/AlejandraAriasSalazar/

spree_pkg). The main function of the package is spree, which allows obtaining point and

uncertainty estimates. The arguments of spree are summarised in Table 1.1.

As input, this function requires two data frames (population_data and

sample_data) with the exact same structure. They must have the same number of

rows and columns, and the population_domains, and sample_domains should be

the same, as well as the name of the columns in each data set. There are two cases when these

requirements are not met:

Case 1. Due to changes in the administrative organisation of the country or region. The

user must adjust the data in order to obtain the same structure in both data sets, considering

the possibilities based on the data characteristics and the relevance in the application. For

example, if in the target year a domain was divided into two, the user could re-construct the

original domain in the survey data as in the census data by merging them.

Case 2. Some domains where not included in the sample. A practical way to solve this issue

is adding the missing rows with a small value (e.g., 0.0001) (Isidro, 2010), so the updating

procedure can be performed. The spree package includes the function prep_sample_data

that helps to prepare the sample data in case of out-of-sample domains. The output is a data

frame that could be directly used as sample_data in the spree function.

Furthermore, as explained in Section 1.2.1, the ‘true’ total in t1 by rows and columns

must be the same. In this package, the updating process is performed using the totals of the

sample_datawhen no set of margins is provided. If the user wants to specify other margins,

both row_margins and column_margins must be provided and the sum of them must

be also equal. Column margins can be adjusted based on the sum of row margins and the

proportion of observations in each category of the sample data. The function column_tot is

an auxiliary function that can help the user to prepare the column_margins based on given

row_margins.

The output of the spree function is a list with four elements:

• updated_point: updated population data in t1. The total by rows and columns are

the same as the sample data if not set of margins were provided.

• MSE: mean squared error.

• CV: coefficients of variation.

• Beta: (scaled) proportionality coefficient.

Finally, the function compare_spree allows the user to make a visual comparison

(based on box plots) when various methods have been applied, in terms of point estimates

(Section 1.2.1), MSEs (Section 1.2.2) and CVs, which are computed as:

CV =

√
Û-MSE(Ŷ K

aj,t1
)/Ŷ K

aj,t1 .
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Table 1.1: Arguments of spree

Argument Description

population_domains Variable in population data that identifies the domains.

sample_domains Variable in sample data that identifies the domains.

population_data Data frame with A rows and J columns.

sample_data Data frame with A rows and J columns.

row_margins Numeric vector with A elements containing the ‘true’

domain sizes in t1. NULL is set as default and the

sum by rows in sample_data is used.

col_margins Numeric vector with J elements containing the ‘true’

totals for each category. The sum by columns in

sample_data is used as default.

type SPREE version to implement: ‘SPREE’, ‘GSPREE’,

‘MSPREE’. If this argument remains empty, the first

option is selected. The option ‘MSPREE’ requires

J ≥ 3. If J = 2, the ‘GSPREE’ will be applied.

B Number of bootstraps used in the MSE estimation.

method Method to obtain estimates of the β. This argument

is only required when type = ‘MSPREE’. The

alternatives are ‘ML’ and ‘IWLS’.

design_effect If type =‘MSPREE’ and method= ‘IWLS’ are

selected, a design effect for the column totals can be

provided. A vector containing 1’s is used as default.

1.4 Case study: Updating health indicators of the MPI for small
areas in Costa Rica

Administratively, Costa Rica is divided in four levels. Although several changes have occurred

in recent years, in the last census year (2011) the division was:

• Level 1: two zones (urban /rural).

• Level 2: six planning regions.

• Level 3: 82 cantons.

• Level 4: 472 districts.

21



CHAPTER 1. UPDATING HEALTH INDICATORS WITH THE R PACKAGE SPREE

The National Institute of Statistics and Censuses (INEC - Instituto Nacional de Estadística

y Censos) of Costa Rica produces monetary and non-monetary based indicators of poverty

with the aim to study the phenomenon from different perspectives. However, due to sample

size limitations of the data available on that matter, INEC releases official statistics only for the

first and second administrative level.

As aforementioned, this paper has two objectives: to update the indicators of the ‘health’

dimension of the Costa Rican MPI, and to show how this process is carried out using the spree
package. The upcoming subsections describe the target indicator and the data sources to be

used in the updating process, followed by illustrations of the use of the R package spree to

produce the target indicators. The last part of this section provides a more in-detail analysis of

the results.

The multidimensional poverty index of Costa Rica

INEC adapted the MPI proposed by Alkire and Foster (2007) as shown in Figure 1.3. The

Costa Rican MPI consists of five equally weighted dimensions, and each of them contains

four indicators. Each indicator is a dichotomous variable indicating 1 if the household has the

deprivation or 0 otherwise. In this paper, the focus is to update the indicators of the ‘health’

dimension, since unlike other dimensions, all its indicators are in both, census and survey data.

The methodology to compute this index can be found in INEC (2015).

MPI

Education Housing Health

Health
insurance

Drinking
water Sanitation Garbage

collection

Employment Social
protection

Figure 1.3: Dimensions and indicators of the MPI of Costa Rica

The ‘health’ dimension has the following indicators:

1. Health insurance: a household is considered deprived if at least one member (18 years

old or older) has no health insurance (private or public).

2. Drinking water: access to drinking water and source.

3. Sanitation: access and type of toilet facility.

4. Garbage collection: a household is considered deprived if it does not have a formal

garbage collection system.

It is important to emphasise the differences between the results in this paper and the official

publications. Results of the MPI released by INEC, taking into account its dimensions and in-

dicators, are only available for two zones (urban and rural) and six planning regions. By zone,
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results are provided considering both, the total of households and the total of multidimension-

ally poor households as the population of interest. For planning regions, only results on the

total of multidimensionally poor households are published. To produce the results of this pa-

per, the specification of which household is multidimensionally poor is not available. For this

reason, all results here provided (by zone, planning region, and cantons) consider the total of

Costa Rican households as the population of interest. Thus, results can only be compared with

official publications at zone level.

1.4.1 Data sources

The data sources used in this application were produced and provided by INEC of Costa Rica

under a confidentiality agreement.

Population and housing census 2011

The population and housing census in Costa Rica is carried out every ten years. The latest

data available is from the Xth National Population and VIth Housing Census (2011) (Xth Censo

Nacional de Población y VIth de Vivienda (2011)). The primary goal of this statistical opera-

tion is to collect information of people, households, and dwellings necessary for the planning,

execution, and evaluation of public policies (INEC, 2012). Several aspects of the population

are characterised based on this census, for example: access and use of internet, dwelling con-

ditions, employment status, access to social protection, among others. Regarding the MPI, this

census does not contain all the required variables for its computation. The dimension ‘health’

is the only one that is available, i.e., all four indicators are included in the census data.

National household surveys 2012-2017

The annual National Household Survey (ENAHO - Encuesta Nacional de Hogares) is the pri-

mary source for poverty measures based on poverty lines such as the incidence of poverty and

the poverty gap, as well as the Gini coefficient (Gini, 1912). Since 2014, the ENAHO includes

the MPI as one of the main products, providing information about housing characteristics, ed-

ucation, social protection, health, and employment of the household members. The sampling

design used in the ENAHO is a two-stage stratified random sampling where census segments

are the first stage units selected with probability proportional to size, and dwellings are defined

as the final stage units. To guarantee precision in its estimates, INEC releases results only at

national level, for two zones and six planning regions. This institution uses as quality parame-

ter for the main poverty measure (the percentage of household under poverty) a coefficient of

variation of 15% or less (INEC, 2017).

In the period considered in this work (2011-2017) one canton was divided in two so the

number of domains in the census data and some survey data differs. As one of the requirements

to apply SPREE-type estimators is that the dimension in both data sets must be equal, the

divided canton was re-grouped as in the census year.

Demographic projections

All SPREE-type estimators require a set of reliable total margins. That means trustworthy
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and updated population sizes for each domain as well as ‘true’ totals for each category of the

variable of interest.

A possible approach is to use the total provided by the survey data as ‘true’ set of margins,

under the assumption that the inner cells are not reliable, but the totals are. In this application,

the ENAHO has not enough sample size to provide reliable margins, indeed, in two years of

the period of study there were some cantons out of the sample. Consequently, demographic

projections for 2012-2017 are used as ‘true’ domain sizes. For this application, the procedure

to construct household projections was done following the methodology of Sáenz (2002).

1.4.2 Usage of the R package spree

One of the goals of this paper is to produce updated population estimates of health indicators

of the MPI for zone, regions, and cantons in Costa Rica, from 2012 to 2017. Two different

target compositions are defined:

1. the number of households in each canton with Zero, One, Two, Three or four depriva-

tions, and

2. the number of households in each zone and region with deprivation (Yes, No), in:

• Health insurance

• Drinking water

• Sanitation

• Garbage collection.

The first result makes it possible to identify the most vulnerable households that suffer

from various deprivations. The second result provides information on which aspect of ‘health’

dimension needs more improvement.

Notice that for the first case MSPREE can be implemented since it requires more than

two categories of the variable of interest. Because the second case consists of four different

independent dichotomous variables, only the SPREE and the GSPREE estimator can be used.

To illustrate the use of the package spree, the procedure to update the number of households

in each canton with Zero, One, Two, Three or four deprivations, is shown below. Other results

that will be presented at the end of this section at the zone and region level were also produced

with the help of the spree package following the same procedure. The only difference is the

specification of the domain of interest.

Preparing data

The minimum inputs required to use the function spree are the population and sample data,

as well as their respective domain (ID) variable within the data. Both input arguments are data

frames with the same number of domains (rows) and variables (categories or columns).

First, it is important to check that the names of the domains and categories are the same.

The dimension of the census and survey data must be also equal:
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R> str(census)

’data.frame’: 81 obs. of 5 variables:

$ Canton : chr "101" "102" "103" "104" ...

$ Zero : int 75252 15043 52047 6040 2932 13321 ...

$ One : int 7914 1658 5877 3013 1094 2437 1111 ...

$ Two : int 761 119 561 716 395 484 262 245 161 ...

$ Three_Four: int 139 19 123 122 211 106 47 28 41 108 ...

R> str(survey_17)

’data.frame’: 80 obs. of 5 variables:

$ Canton : int 101 102 103 104 105 106 107 108 ...

$ Zero : int 443 80 280 57 7 84 58 206 45 128 ...

$ One : int 165 30 107 43 6 48 25 72 29 73 ...

$ Two : int 9 2 9 6 5 3 2 0 2 3 ...

$ Three_Four: int 3 0 3 0 2 2 0 0 0 0 ...

Notice that the survey data survey_17 has only 80 domains, meaning that in 2017 one of

the cantons were not selected in the sample. The sample table must have the same dimensions,

domains and categories as the population table. A solution is to add the missing domain with a

small value in each category. This can be done with the function prep_sample_data:

R> survey_17f <- prep_sample_data(population_domains =

"Canton", sample_domains = "Canton", population_data =

census, sample_data = survey_17)

Out of sample domains:

Percentage: 1.23 %

Number: 1

Domains: 117

The output shows the number and percentage of domains that are out of sample, as well as

the name or identification of them (in this example, the name of the domain is ‘117’). Now, the

output object survey_17f is a data frame with the exact same domains and categories as in

the census file:

R> str(survey_17f)

’data.frame’: 81 obs. of 5 variables:

$ Canton : chr "101" "102" "103" "104" ...

$ Zero : num 443 80 280 57 7 84 58 206 45 128 ...

$ One : num 165 30 107 43 6 48 25 72 29 73 ...

$ Two : num 9 2 9 6 5 3 2 0 2 3 ...

$ Three_Four: num 3 0 3 0 2 2 0 0 0 0 ...

As stated in Table 1.1 if no specification for the row_margins, and col_margins

arguments is given, the ‘true’ margins will be set as in the survey data, i.e., based on row and
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column sums. For this case-study, household projections (P2017c) for each canton are used

as ‘true’ row margins:

R> str(P2017c)

num [1:81] 112177 21855 73772 12073 5598 ...

To provide ‘true’ column margins (i.e., totals for each category), the function column_tot

is implemented. Here, the sum of the column margin (total) will be set as the given total_true

and the totals for each category will be assigned based on the proportions of data_true:

R> ctotals_17 <- column_tot(data_true= survey_17f,

domains = "Canton",

total_true= sum(P2017c))

The result is the total number of households for each category:

R> ctotals_17

[,1]

[1,] 949178

[2,] 482892

[3,] 103716

[4,] 32193

The sum of these numbers almost equals the total of households provided by the ‘true’ row

margin. Small derivations are due to the proportional assignment:

R> sum(ctotals_17)

[1] 1567979

R> sum(P2017c)

[1] 1567978

Updating procedure

The function spree allows to obtain updated population counts by defining the arguments

mentioned in Table 1.1. Here, an example of the type ‘MSPREE’ with ‘IWLS’ as the method

to estimate β is shown, since this is the most complex alternative in terms of arguments. In

this application, no design effects are available and for that reason a simple random sampling

design is assumed:

R> MSPREE_IWLS_17 <- spree(population_domains = "Canton",

sample_domains = "Canton", population_data = census,

sample_data = survey_17f, row_margins = P2017,

col_margins = ctotals_2017, type = "MSPREE",

method = "IWLS", design_effect = c(1,1,1,1))

The output is a list with the updated point estimates, MSEs, CVs and the proportionality

coefficient.
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Comparing methods

A basic overview of the results can be reached, for example, with the summary function:

R> summary(MSPREE_IWLS_17$updated_point)

Canton Zero One

Length:81 Min. : 871 Min. : 802

Class :character 1st Qu.: 4276 1st Qu.: 2483

Mode :character Median : 7064 Median : 4112

Mean :11718 Mean : 5962

3rd Qu.:14899 3rd Qu.: 6828

Max. :78072 Max. :30454

Two Three_Four

Min. : 71.05 Min. : 33.33

1st Qu.: 395.51 1st Qu.: 163.92

Median : 694.49 Median : 270.81

Mean :1280.44 Mean : 397.44

3rd Qu.:1864.96 3rd Qu.: 456.88

Max. :6879.26 Max. :2218.16

The summary shows that on average, more household have no or only one deprivation

than two or more. If other SPREE-type estimators are also performed, the user can make

some comparison between them. For instance, the scaled-proportionality coefficients for each

SPREE-type can also be extracted from the return object Beta. For SPREE and GSPREE,

Beta is only one value:

R> SPREE_17$Beta

[1] 1

R> GSPREE_17$Beta

[,1]

[1,] 0.5674238

For MSPREE, a matrix is returned which can be summarised by the column sums:

R> MSPREE_ML_17$Beta

[,1] [,2] [,3] [,4]

[1,] 0.63789813 0.118702658 -0.136335443 0.01763279

[2,] -0.14718895 0.047786306 0.002263418 0.14492554

[3,] 0.16499605 -0.002437728 0.741091597 -0.16255832

[4,] -0.01780709 -0.116264930 0.134072025 0.81537154

R> colSums(MSPREE_ML$Beta)

[1] 0.63789813 0.04778631 0.74109160 0.81537154

R> MSPREE_IWLS_17$Beta

[,1] [,2] [,3] [,4]

[1,] 1.1554847 0.2396119 -0.03605342 -0.2035585

[2,] -0.7789303 -1.0248650 -0.27354121 1.0524715

[3,] 0.6727972 0.1761158 0.27959438 -0.8489130
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[4,] 0.1061331 -0.4157277 0.30959463 0.7512027

R> colSums(MSPREE_IWLS$Beta)

[1] 1.1554847 -1.0248650 0.2795944 0.7512027

Notice, for example, that in the second category when the MSPREE with IWLS is per-

formed, the scaled-coefficient is close to one. This gives an indication, that this particularly

category does not receive much benefit from applying this estimator vs applying SPREE (which

has β = 1). The function compare_spree helps to compare visually the different estimators

in terms of the point and uncertainty estimations. The instruction requires a minimum of two

lists which are the outputs from using the function spree :

R> plots_spree<- compare_spree(SPREE_17, GSPREE_17,

MSPREE_ML_17, MSPREE_IWLS_17)

As output, three comparative plots are displayed (Figure 1.4).
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Figure 1.4: Comparison between SPREE-type estimators in terms of point estimates, MSEs
and CVs
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Unlike other SAE methods based on regression models, there are no model diagnostics for

SPREE-type estimators. The decision of which type is more suitable for a specific case study

can be made based on the MSEs and CVs.

In this specific case, the uncertainty estimations are relatively similar among estimators.

For the last category ‘Three or four’ deprivations in the dimension ‘health’, the MSPREE with

IWLS offers smaller values of the CV. This estimator is selected for the upcoming results.

Application

The updated tables are provided as data.frame and further analysis can be done. Using the

results from the MSPREE with IWLS, the five cantons that had the biggest absolute change

between 2012 and 2017 in the proportion of households with ‘Three or four’ deprivations in

the dimension ‘health’ are displayed in Figure 1.5.
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Figure 1.5: Cantons with the biggest reduction in the proportion of households with ‘Three or
four’ deprivations in the ‘health’ dimension

Figure 1.6 shows the proportion of households with ‘Three or four’ deprivations in the

dimension ‘health’ in 2012 and 2017 and the exact location of the five cantons with biggest

reductions between these years. Although reductions in general can be noticed, the cantons

with the highest values of this indicator in 2012 had also the highest values in 2017. Even

though this study only focuses on one dimension, results of previous publications on the overall

MPI and monetary poverty support these trends. For instance, the cantons on the border with

Nicaragua located in the north of the country (e.g., ‘Upala’ and ‘La Cruz’) are in general poorer

(Méndez and Bravo, 2011; Arias-Salazar, 2022).

An analysis by indicator makes it possible to identify the most common deprivations among

Costa Rican households. Figure 1.7 compares the proportion of households with deprivation in

each of the four indicators of the ‘health’ dimension, between 2016 and 2017 for the six plan-

ning regions. The indicator ‘sanitation’ is in general the less problematic and additionally the

biggest reductions can be seen except for the Central region. The indicators ‘health insurance’

and ‘garbage collection’ show higher proportions of households with these deprivations. The

Central region which is predominantly urban shows, as expected, by far the lowest values in

the indicator ‘garbage collection’.

29



CHAPTER 1. UPDATING HEALTH INDICATORS WITH THE R PACKAGE SPREE

Figure 1.6: Proportion of households with ‘Three or four’ deprivations in the ‘health’ dimen-
sion by canton, 2012 and 2017

In 2017, the biggest values in terms of incidence (34.7%) and intensity (28.6 %) of the

overall MPI were found in the Huetar Norte region (INEC, 2017). This region is made up of

six cantons. The analysis of this paper allows to zoom into the changes between 2016 and

2017 in the proportion of households that are considered deprived in each of the indicators of

the ‘health’ dimension which are shown in the Figure 1.8. ‘San Carlos’ is the only canton that

has seen reductions in all the indicators during this period, while ‘Upala’, ‘Los Chiles’, and

‘Sarapiquí’ have seen increases in the proportion of households with deprivations in three of

the indicators.

A direct comparison between the updated estimates via SPREE-estimators and the official

results is only possible by zone (urban and rural), since this is the only result published by

INEC considering the total number of Costa Rican households as the population of interest.

Table 1.2 shows that the estimated indicators (i.e., the proportion of private households in each

indicator) are very close to those published. In fact, they are all within the 95% confidence

interval. This result can be consulted in INEC (2017).
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Figure 1.7: Proportion of households with deprivation in the indicators of the ‘health’ dimen-
sion by region (2016-2017)
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Figure 1.8: Absolute change in the proportion of households with deprivation in each indicator,
for the cantons of the Huetar Norte region (2016-2017)

Table 1.2: Comparison between updated estimates via GSPREE and official results. The lower
and upper bounds around the estimated proportion are based on a 95% confidence interval

Indicator/ GSPREE Official results

Zone Estimation Estimation Lower Upper

Health insurance

Urban 0.267 0.265 0.255 0.276

Rural 0.304 0.390 0.292 0.328

Drinking water

Urban 0.034 0.033 0.028 0.039

Rural 0.178 0.181 0.156 0.206

Sanitation

Urban 0.018 0.018 0.014 0.228

Rural 0.042 0.043 0.033 0.952

Garbage collection

Urban 0.024 0.022 0.016 0.029

Rural 0.261 0.267 0.239 0.295
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1.5 Conclusions and further developments

In this paper, the health indicators of the multidimensional poverty index of Costa Rica are

updated for several postcensal years using SPREE-type estimators. With the help of these

techniques, it was possible to identify the cantons with the highest proportion of households

that have three or more deprivations in the ‘health’ dimension, as well as the cantons that

achieved the biggest reductions in these numbers from 2012 to 2017. Moreover, updating

census counts by planning region made possible to compare the absolute changes in the last

two years of the study period, in each of the health indicators.

As mentioned before, a fair and direct comparison with official publications is not possi-

ble, because INEC measures the proportion of households with specific deprivations among the

multidimensionally poor households at planning region level, and this information is not avail-

able in the census data. Nonetheless, the trend is the same, e.g., the regions with the highest

incidence in all deprivations are Huetar Norte and Huetar Caribe.

Several ways to improve these results are identified. A higher geographical resolution, for

instance for the 472 districts, could provide better inputs to study these indicators and offer

better tools for decision makers. The use of auxiliary information can be a good alternative

to have better population totals for each subdomain (i.e., row margins), for example through

satellite imagery (Koebe et al., 2022). Greater disaggregation by other socio-demographic

groups (e.g., sex, education and age of the head of the household) could also be relevant.

In addition, this case study was used to show the functionalities of the R package spree.

This package is a user-friendly tool to update postcensal counts and also produce uncertainty

measures. Currently, this package offers the estimators that can be used when the variable of

interest is available in the population data. An extension of this package could include the

new SPREE-type estimators that apply a SAE procedure as a previous step (Isidro et al., 2016;

Arias-Salazar, 2022). The package could also be improved by providing more flexibility to

the user in regarding the structure of the input data. For instance, when changes occur in the

definition of domains in postcensal years. Furthermore, the package could support the looping

though several intercensal years, providing more analysis and comparison options.
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Supplementary material A

A.1 Iterative proportional fitting algorithm

Let Yaj,t1 be the unknown (target) table in the current period t1. The estimated table Ŷaj,t1 is

obtained by using a census table Zaj,t0 from an earlier period t0 and a set of margins from a

recent survey Ya,t1 and Yj,t1 .

Using the census Zaj,t0 as a base or starting point, the first cycle of the algorithm is de-

scribed below:

1. Rescale to the first row margins of Zaj,t0 :

Ŷ
(1)
aj,t1

= Zaj,t0
Yj,t1
Zj,t0

.

2. The cells rescaled in the previous step are rescaled again, now with the column margins

of Ŷ (1)
aj,t1

:

Ŷ
(2)
aj,t1

= Ŷ
(1)
aj,t1

Ya,t1

Ŷ
(1)
a,t1

.

3. Cells are rescaled again, with row margins of Ŷ (2)
aj,t1

:

Ŷ
(3)
aj = Ŷ

(2)
aj,t1

Ŷ
(2)
j,t1

Yj,t1
.

In this way, the IPF follows an iterative process, repeating the last two final steps until

reaching convergence.

This estimator manages to fulfil two important characteristics, minimising the χ2 distance:

χ2 =

A∑
a=1

J∑
j=1

(Yaj,t1 − Ŷaj,t1)2

Yaj,t1
.

Furthermore Ireland and Kullback (1968) show that for positive initial values, this proce-

dure manages to find an optimal solution, according to the Kullback-Leibler (KL) divergence

measure, in other words, the IPF manages to minimise the relative entropy:
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KL =
A∑
a=1

J∑
j=1

Yaj,t1 log
Yaj,t1

Ŷaj,t1
,

More information about this algorithm can be found in Bishop et al. (2007) and Zaloznik

(2011).
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Chapter 2

Small Area Estimates of Poverty
Incidence in Costa Rica under a
Structure Preserving Estimation
(SPREE) Approach

This article can be share and distributed under the terms of the Creative Commons Attribution-

NonCommercial-NoDerivs (https://creativecommons.org/licenses/by-nc-nd/

3.0/).

2.1 Introduction

The estimation and monitoring of socio-economic indicators is relevant for decision-making

and the development of public policies aimed at improving the conditions of the citizens.

Among other characteristics, high-quality statistics must be relevant, accurate, and reliable

to use them in the design, development and assessment of programs of social interest (Euro-

stat, 2017). The success of these plans depends on how they are formulated and oriented, but

in many cases, the information available is not enough to achieve this objective. Traditionally,

national surveys are carried out every year in many countries to produce an up-to-date status

of important topics such as poverty, inequality, and unemployment. This information, which is

obtained periodically, usually satisfies the quality requirements, for instance of national statis-

tical offices only at bigger domains. In other words, due to lack of resources, the sample sizes

are not large enough to study the problems of interest in detail. For example, in the case of

poverty: Where is the most vulnerable population located? Which areas have been improved

through the years and which areas have stagnated? Which other conditions (e.g., sex, age,

disabilities) are associated with this phenomenon, and in which local areas?

Small area estimation (SAE) methods have the goal of producing reliable estimates in

smaller domains, i.e., with adequate precision. Most of these methodologies, usually classi-

fied as unit- or area-level models, provide efficiency gains if the correlation between existing
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auxiliary information and the survey data is sufficient (Pfeffermann, 2013; Rao and Molina,

2015; Tzavidis et al., 2018). In middle-income countries, administrative records are usually

not sound enough and therefore censuses are the most important auxiliary source of informa-

tion for the entire population, with the limitation that it is usually collected every ten years.

The time gap between annual surveys and population censuses is usually ignored in SAE

methods. The use of covariates from an earlier period may lead to less reliable indicators than

what would be expected from more solid auxiliary information. Academic literature on updat-

ing estimates in small areas is limited. Post censal population estimates have been obtained,

for example, from traditional procedures in demography, like the component method (United

Nations, 1956) and vital rates (Rao, 2003). Emwanu et al. (2006) use panel survey data to

obtain small area estimates of welfare in post-census years by regressing recent income (or ex-

penditure) data on household characteristics that are available in both survey and census data.

The best-known tool in this field is the structure preserving estimation (SPREE) method, which

is also the focus of this paper and will be described in detail in Section 2.3. This technique was

originally introduced by Purcell and Kish (1980) to obtain post-census estimates (counts or

proportions), arranged by small domains and categories of interest. SPREE have been espe-

cially applied for updating demographic information and socio-economic indicators including

employment (Berg and Fuller, Berg and Fuller; Hidiroglou and Patak, 2009; Luna-Hernández

et al., 2015a) and poverty (Isidro et al., 2016).

Thereafter, several versions of SPREE have been proposed with the aim of improving the

method by adding flexibility and reducing bias, namely the Generalized-SPREE (GSPREE)

(Zhang and Chambers, 2004) and most recently, the Multivariate-SPREE (MSPREE) (Luna-

Hernández, 2016). These SPREE-techniques have specific assumptions and requirements for

their implementation. For example, the variable of interest must be categorical, and it must be

not only in the survey (most recent) but also in the census data, which for indicators like the

poverty rate are usually not available for variables based on income or expenditure. An alter-

native version called Extended-SPREE (ESPREE) (Isidro et al., 2016) solves this problem by

applying a small area estimation technique: the Elbers, Lanjouw and Lanjouw (ELL) method

(Elbers et al., 2003), as a previous step to obtain the required information for the census year.

Once the estimated census information is obtained, Isidro et al. (2016) perform the original

SPREE (Purcell and Kish, 1980) to compute postcensal estimates. Moreover, Luna-Hernández

(2016) showed that MSPREE is more efficient compared to SPREE (in terms of lower mean

squared errors). Therefore, the current paper extends the framework of Isidro et al. (2016) by

allowing for the MSPREE in the updating process. In particular, the paper aims to provide a

modern methodology to a) estimate and b) update counts or proportions of relevant indicators

in small areas when the information of interest is not available in the census data.

The motivation of the proposal is to offer updated reliable income-based poverty estimates

of Costa Rican cantons in three mutually exclusive categories: ‘extreme poor’, ‘poor’ (not

extreme), and ‘not poor’ in the postcensal years 2012 to 2017. Due to its political stability and

good performance in general macroeconomic aspects, Costa Rica has been for several years an

example among other economies in the region (OECD, 2016). Despite this, a point that draws

attention and has been the object of study in recent years, is the stagnation of relative poverty
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that the country has had for more than two decades, unlike other Latin American countries

that have achieved greater reductions in their poverty rates (CEPAL & MIDEPLAN, 2016).

As well as in the international agenda, previously through the Millennium Development Goals

(MDGs) (United Nations, 2015) and currently the Sustainable Development Goals (SDGs)

(United Nations, 2019), one of the main concerns specifically in this country is the extreme

poverty. Traditionally, and for international comparison, the National Institute of Statistic and

Censuses (INEC - Instituto National de Estadística y Censos) of Costa Rica measures poverty

based on the poverty line method. With this approach, a person or household is considered

poor (or extreme poor) if its monthly per capita income is equal or below a specific poverty

line. The idea of defining a threshold or line is to set the minimum amount in the per capita

income that a person or household requires to satisfy food and non-food needs, included in a

basket of goods and services (INEC, 2015). In Costa Rica, extreme poverty had a reduction,

from 2004 to 2013, of only 0.8 percentage points in accordance with a diagnosis of structural

gaps. Research showed that this status of poverty has three determinants: the adverse home and

social environment, the insufficient scope of social programs and the exclusive labor market

(CEPAL & MIDEPLAN, 2016). Because of a lack of data, this kind of studies can only be

conducted in census years or for larger areas, limiting the possibility of applying targeted policy

interventions for specific groups or domains.

As well as other middle-income economies, Costa Rica faces several limitations to obtain

small area estimates of poverty: administrative records at the unit level are not available, the

census does not contain income or expenditure information to compute poverty estimates via

the poverty line method, and the census is carried out only every ten years which can reasonably

lead to outdated poverty estimates. The main study previously conducted in Costa Rica to

obtain estimates of poverty in local areas was carried out for the same year as the census,

using the ELL method. Although this work, developed by Méndez and Bravo (2011), certainly

allowed to obtain more detailed information about poverty in local areas (classified as poor

and not poor), two aspects can be improved with the proposal presented in this paper: a)

provide poverty estimates for non-censal years, and b) produce estimates on extreme poverty

as a specific group of interest. The methodology proposed in this paper can also be applied to

many other countries that share similar conditions and extended to other relevant demographic

and socio-economic (categorical) indicators.

This paper has the following structure: Section 2.2 describes the data sets and explains

the definition of poverty used in the application. Section 2.3 introduces the SPREE methods

as small area estimation and updating techniques. The strategy proposed to obtain and up-

date poverty estimates in Costa Rican cantons is also explained in this section, as well as the

methodology to produce uncertainty measures. Application results are shown in Section 2.4.

The results of a simulation study to validate the proposed method are presented in Section 2.5.

The last section is dedicated to the conclusions and recommendations for further research.
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2.2 Data description and definition of poverty

As will be explained in detail in Section 2.3, the basic approach of the SPREE techniques

requires one complete cross-classification table (also known as composition), usually from a

census collected in a previous time, and reliable, up-to-date population totals (margins) for the

variable of interest and for the area population sizes. Extensions to this methodology including

the one implemented here require an updated estimate of the cross-classification of interest

that can be obtained from survey data. The aim of this section is to describe the data sources

available and explain the definition of poverty considered in the application. Population and

housing census, as well as the National Household Survey data sets, were provided by the

INEC of Costa Rica, under specific confidential agreements.

2.2.1 Population and housing census 2011

In Costa Rica, the Population and Housing Censuses are carried out every ten years by the

INEC. The most recent census (Xth Censo Nacional de Población y VIth de Vivienda was con-

ducted in 2011 (data collection from 30th, May to 3rd, June) and it collected information of

people, households, and dwellings necessary for the planning, execution, and evaluation of

public policies (INEC, 2012). With the information collected, it is possible to identify the rele-

vant characteristics of the population such as access to education, employment, social security,

technology, and health centres. Although the census 2011 includes questions to compute the

unsatisfied basic needs (UBNs) index (Feres and Mancero, 2001), it did not produce infor-

mation about income or expenditures of the persons and households, which are necessary to

calculate the incidence of poverty via the poverty line method. The sampling frame which is

needed to conduct national surveys and other statistical operations is constructed based on this

population and housing census. With this census, 10,461 primary sampling units (PSUs) and

1,359,168 dwellings were identified.

2.2.2 National household surveys 2011-2017

The National Household Survey (ENAHO - Encuesta Nacional de Hogares) is the primary

source for poverty and inequality measures in Costa Rica. In this aspect, this survey collects

information about housing characteristics, education, social security and employment of the

household members. This study is carried out annually (data collection during the month of

July). Surveys from 2011 to 2014 used the sampling framework from the previous census

2000, the following surveys used the sampling framework updated with the census 2011. The

sampling design used in the ENAHO is a two-stage stratified random sampling where census

segments are the first stage units selected with probability proportional to size, and dwellings

are defined as the final stage units. Administratively, Costa Rica has four disaggregation levels:

two zones, six planning regions, 82 cantons and 473 districts (municipalities). The sampling

design specifies twelve strata - each planning region divided by urban and rural areas. In

this case, the strata coincide with the study domains. Smaller domains are not considered to

guarantee a coefficient of variation less than 15% for the main poverty measure (percentage

of household under poverty) (INEC, 2017). For 2011, the ENAHO selected 1120 PSUs and
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13,440 dwellings (10.7% and 9.9% of the sampling framework, respectively).

There are two main differences across the survey rounds as well as regarding the census

data. On the one hand, the last surveys collected more variables than the previous ones and

the census, and the definition of some of the variables also changed. On the other hand, there

were land reforms in the period of study: in 2011 there were only 81 cantons but in 2017

another canton was created. To deal with these obstacles, only variables that exist with the

same definition in both the census and survey data are included for the analysis. Also, for the

last survey, cantons were grouped exactly the same as in the census 2011. This straightforward-

aggregation is possible because the new canton was created by dividing one of the existing

cantons. In this paper, the objective is to obtain quality poverty information of households for

the third administrative level as defined in 2011, i.e., the 81 cantons, which are defined as the

target small areas.

2.2.3 Demographic projections

In order to apply a SPREE technique, it is necessary to provide reliable and up-to-date area to-

tals as it will be explained in detail in Section 2.3. Since survey data usually does not produce

trustworthy population sizes for small areas (due to sample sizes and out-of-sample areas), de-

mographic projections are used instead in this paper. In Costa Rica, population projections are

calculated with the cohort component method (Preston et al., 2001) which considers changes in

three components: mortality, fertility and migration. The mortality projection was carried out

with an autoregressive integrated moving average (ARIMA) random walk model with drift, and

for the fertility and migration components, functional data analysis models were implemented.

Further details can be found in INEC & CCP (2013).

Because of population projections in Costa Rica consider persons at an aggregate (e.g., can-

ton) level, but in this application the aim is to update the total of households according to their

status of poverty, the headship rate (United Nations, 1973) by sex and age groups is applied in

order to get the household projections. A previous implementation of this methodology in this

country can be found in Sáenz (2002).

2.2.4 Definition of poverty

In Costa Rica, poverty is measured under different uni- and multidimensional approaches. One

of the most important, and that is the focus in this paper, is the (monetary) poverty rate which

is based on the poverty line method (using non-equivalised household per capita income). The

INEC defines two types of lines or thresholds:

• The indigence or extreme poverty line: set by the per capita costs of a basic food bas-

ket. The composition of this basket is defined from the national survey on Income and

Expenditure of the Households (ENIGH - Encuesta Nacional de Ingresos y Gastos de

los Hogares) which is carried out every five years. The value of the basket is updated

every month based on the consumer price index. If the monthly per capita income of

a household is below this line, it is considered under ‘extreme’ poverty. For the census
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time (July 2011), the indigence line was 39,428 colones (Costa Rican currency) (INEC,

2011) which was 27.9% of the median per capita income at that time.

• The poverty line: considers additionally non-food basic needs. A household is classified

in this category if the monthly per capita income is equal to or below this value but

higher than the indigence line. The poverty line in July 2011 was 84,006 colones which

is 60.7% of the median per capita income (Méndez and Bravo, 2011).

In this paper, the number of households grouped in three categories of poverty (‘extreme

poor’, ‘poor’ (not extreme) and ‘not poor’) is estimated and updated for six postcensal years

(2012-2017) in 81 cantons.

2.3 Methodology

This section describes the methodology for estimating and updating counts and proportions for

small areas. First, SPREE techniques are introduced because they are the basis of this proposal.

Second, the recommended strategy for obtaining and updating estimates is explained. Finally,

the steps to produce uncertainty measures are described.

2.3.1 Structure preserving estimation (SPREE) methods

As stated above, SPREE was originally proposed by Purcell and Kish (1980) as a tool to up-

date counts or proportions of a categorical variable of interest according to study domains in

intercensal years. The target information of interest in a recent time t1 is shown as a multi-way

contingency table Yaj,t1 grouped by a = 1, . . . , A areas or domains (rows) and j = 1, . . . , J

categories of the variable of interest (columns) (e.g., poverty status). In other words, for a pop-

ulation of size N , all the units i (e.g., individuals or households) are organised according to the

area and category to which they belong. The structure of a two-way contingency table can be

represented as a saturated log-linear model:

log Yaj,t1 = αY0,t1 + αYa,t1 + αYj,t1 + αYaj,t1 . (2.1)

The terms αY0,t1 , α
Y
a,t1 , α

Y
j,t1

and αYaj,t1 can be defined using a centred-constraint parametri-

sation, see e.g., Luna-Hernández (2016). Notice that data from a census (time t0) can also

be arranged as a contingency table (Zaj,t0) and represented as a saturated log-linear model

(logZaj,t0) with the same constraints.

For intercensal years, the production of official statistics relies in many cases on survey

data. However, due to sample size limitations, trustworthy results are only available for big

areas. The SPREE method provides a solution when updated estimates of frequency character-

istics are required in smaller domains. The terms αY0,t1 , α
Y
a,t1 and αYj,t1 represent the allocation

structure which are benchmarked to totals or current margins (A row and J column totals),

usually provided by direct survey estimates and/or demographic projections. In this paper, for

simplicity, the allocation structure is also referred to as the survey margins, although it is made

up of both demographic projections and survey data. It is assumed that these totals are reli-

able and updated for postcensal years. Furthermore, the method supposes that the interactions
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between rows and columns of the census Zaj,t0 (inner cells in the contingency table) remain

unchanged for the target years. Therefore, the structural assumption is;

αYaj,t1 = αZaj,t0 . (2.2)

This interaction term provided by the census is usually known as the association structure.

Following the proposal of Purcell and Kish (1980), the updated estimates are obtained via

the iterative proportional fitting (IPF) algorithm (Deming and Stephan, 1940) (also found in

literature as raking or contingency table standardisation). Detailed description of the IPF is

available e.g., in Bishop et al. (2007) and Zaloznik (2011). This algorithm fits a census table

by keeping reliable survey margins fixed. The process to obtain the updated SPREE of Yaj,t1
is represented by Luna-Hernández (2016) as:

Ŷ S
aj,t1 = IPF

[
exp(α̂Yaj,t1), Ya,t1 , Yj,t1

]
, (2.3)

with the superscript S to denote that SPREE was applied, Ya,t1 and Yj,t1 represent the

reliable survey margins (rows and columns) and âYaj,t1 = aZaj,t0 .

As it will be later described, new versions of SPREE estimators have been proposed and

each of them define different assumptions on their association structure α̂Yaj,t1 . The process in

2.3 is applied with the defined association structure of each SPREE-type estimator.

In order to apply a fitting strategy via IPF, Koebe et al. (2022) summarise some basic

requirements that should be considered:

1. The data to fit must be arranged in categories (e.g., contingency tables).

2. The margins of the census and survey structures must have same length (same number

of rows and columns).

3. Totals by rows and columns must be equal.

4. The census data (association structure) must contain the indicator of interest (e.g., poverty

status) with the same definition or a highly correlated indicator (Green et al., 1998).

In practice, requirements two and four are not met in the Costa Rican scenario. Due to ad-

ministrative reforms that occurred in postcensal years (e.g.,merge or split domains), the number

of local areas in the census and in the surveys differs. Another situation where requirement two

may not be fulfilled is when some areas were not selected in the sample, leading to an incom-

plete allocation structure. For these cases, several solutions can be considered: complimentary

information such as administrative registries or population projections could be used as reliable

survey margins, rows that are not in the survey composition can be eliminated from the census,

or adding missing rows with small values (e.g., 0.0001) to re-construct the survey compositions

in the same way as defined in the census. Since population projections are available, the first

alternative is implemented in the current example.

Regarding the fourth requirement, income or poverty information is not obtained directly

in the Costa Rican census. A solution for this kind of situation was proposed by Isidro et al.

(2016). The so-called ESPREE considers the case when the indicator of interest is not present
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in the census data. Another small area estimation method, the ELL method, is applied as a

first step with the aim of obtaining the required information for the census year. Thereafter, the

original SPREE technique is conducted as a second step to proceed with the updating process.

Considering the characteristics of the case study exposed in this paper, the methodology of

ESPREE is followed to obtain updated poverty estimates.

Another line of research within the SPREE framework is the bias reduction of the estimator.

The GSPREE introduced by Zhang and Chambers (2004) makes the structural assumption of

SPREE more flexible by adding a proportionality coefficient (constant obtained through direct

estimates Ŷ Dir
aj,t1

) adjusting Equation 2.2 to:

αYaj,t1 = βαZaj,t0 . (2.4)

Note that the SPREE assumption defined previously in Equation 2.2 is the case of Equa-

tion 2.4 when β = 1. Moreover, Luna-Hernández (2016) proposes a version that aims to relax

two restrictions of the former methods (SPREE and GSPREE): the relationship between the

association structures (interaction terms) of census and target compositions are controlled only

by one parameter, and in the case of the GSPREE the proportionality parameter β, is assumed

to be the same for all the categories. GSPREE and MSPREE mainly differ from the original

SPREE because a multi-way contingency table of direct estimates is also necessary in order to

update the association structure, meanwhile the former version only requires the availability of

suitable (total) margins. The novel method is called multivariate SPREE (MSPREE) because

in this case, the target compositions are the interactions within each area. Then, the coefficient

β, similar to the proportionality coefficient specified by Zhang and Chambers (2004), now is

represented by a J × J matrix (with (J − 1) × (J − 1) free parameters), and varies inside

each area, from one category to another. The main benefit of this proposal is to be able to cap-

ture better relationships between categories, instead of assuming that these interactions remain

identical over time. With this, the bias that can occur through changes in the association struc-

ture (which is not accounted in SPREE and GSPREE), is reduced. Similarly as in Equations

2.2 and 2.4, the MSPREE structural assumption is expressed as:
αYa1

...

αYaJ

 =


β11 . . . β1J

...
. . .

...

βJ1 . . . βJJ



αZa1

...

αZaJ


which is equivalent to:

αY
a,t1 = βαZ

a,t0 , (2.5)

where a = 1, ..., A areas, and for each area, the interaction terms: αY
a,t1 =(

αYa1,t1
, . . . , αYaJ,t1

)
and αZ

a,t0 =
(
αZa1,t0

, . . . , αZaJ,t0
)
. The target MSPREE composition

ŶM
aj,t1

can also be obtained via IPF as in Equation 2.3. In the same way as in the original

SPREE and GSPREE, the reliable total margins are preserved, but the same list of requirements

aforementioned must be fulfilled.
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Estimates of β can been obtained via maximum likelihood (ML) or iterative weighted

least squares (IWLS), in both cases by using a log or a logit link. Because a target contin-

gency table can be represented as a log-linear model, SPREE fits within the framework of

generalised linear models (Marker, 1999; Noble et al., 2002). Moreover, as Agresti (2002)

indicates, a log link with a Poisson response is commonly applied to model cell counts in

contingency tables, but he also shows that the Poisson expected frequencies µaj,t1 are equal

to nπaj,t1 , where πaj,t1 are the cell probabilities used under multinomial sampling and n the

sample size. For this reason, when working with log-linear models (as SPREE), the estimation

of coefficients β can be obtained with a Poisson Ŷ Dir
aj,t1
|αZa,t0

ind∼ Poisson(µaj,t1) or multinomial

Ŷ Dir
a,t1 |α

Z
a,t0

ind∼ Multinomial(
∑J

j=1 Ŷ
Dir
aj,t1

, πa,t1) distribution, both leading to similar results.

Notice that, similarly to the GSPREE, the computation of β requires direct estimates (i.e., not

only survey margins but a survey composition Ŷ Dir
aj,t1

).

The second alternative to obtain estimates of β is using IWLS. This algorithm is imple-

mented in Zhang and Chambers (2004) and Luna-Hernández (2016) suggests it when the sam-

ple is drawn using a complex sampling design because using ML for the parameter estimation

can lead to misspecification if sampling design information is ignored. In the case of the survey

data used in this paper, the sample was gathered in a two-stage selection process considering

unequal selection probabilities, and for this reason, a fully distributional approach should not

be assumed. Consequently, in this paper, the parameters of interest are estimated via IWLS.

This method requires an estimate of the variance-covariance matrix of the target composition

ŶM
aj,t1

which is usually not available. Luna-Hernández (2016) solves this issue by multiplying

a design effect with the variance that corresponds to a simple random sample without replace-

ment design. This proposal assumes that samples are independently selected in each area and

there are no existing correlations among estimates from different areas. The estimate of the

variance-covariance matrix is represented as:

V̂aj,t1 =
deffj,t1eπ̂

M
aj,t1

(1− π̂Maj,t1)

na,t1
, (2.6)

with π̂Maj,t1 =
ŶMaj,t1
Ya,t1

and na,t1 the area sample sizes. Further details about the IWLS algo-

rithm can be consulted in Jiang (2007) and Luna-Hernández (2016).

2.3.2 The empirical best predictor method

The empirical best predictor (EBP) is applied in order to obtain the information of poverty

status in the census structure and satisfy requirement four. The EBP methodology proposed by

Rao and Molina (2015) implements a unit-level nested error regression model to get estimates

of a specific variable of interest in the census, using (usually) survey data that contains this

variable. This method has been extensively implemented in SAE problems and also specifically

for poverty estimation (see e.g., Pratesi (2016) or Das and Haslett (2019)). The process assumes

a random effects model for a finite population of size N :

yai = xTaiβ + ua + eai,
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where yai represents the target variable and xai the set of covariates for the ith individual

or household in ath area, ua indicates the area-specific random effects and eai, the unit-level

error. The two last terms are assumed to be normal, independent and identically distributed.

By using survey data, the following estimates are obtained: β̂, σ̂2
u, σ̂

2
e and the weighting factors

γ̂a = σ̂2
u

σ̂2
u+

σ̂2e
na

, where na denotes the sample size in area a, and σ2
u and σ2

e indicates the between

and within group variance respectively.

Then, l = 1, . . . , L Monte Carlo simulations to generate a pseudo population are con-

ducted:

yai
(l) = xTaiβ̂ + ûa + v(l)

a + e
(l)
ai , (2.7)

where v(l)
a

iid∼ N
(
0, σ̂2

u(1− γ̂a)
)

and e(l)
ai

iid∼ N
(
0, σ̂2

e

)
and the predicted random effect ûa is

defined as ûa = E(ua|yas). The subscript s in yas denotes the in-sample elements. The final

indicator of interest is obtained taking the mean over the L iterations.

Molina and Rao (2010) explain that the EBP estimator can be biased when model error

terms depart from normality. When working with income data, a common practice to achieve

Gaussian assumptions is by using a logarithmic transformation (Elbers et al., 2003; Molina

and Rao, 2010) which is a special case of the Box-Cox transformation (Box and Cox, 1964).

In this case study, as will be explained in detail in Section 2.4.1, the incidence of poverty is

approximated by modeling income. For this reason, departures from normality are reduced

with a Box-Cox transformation. Further details on the performance of the EBP under data-

driven transformations can be found in Rojas-Perilla et al. (2020). The EBP was conducted

using R, specifically with the Package emdi (Kreutzmann et al., 2019).

2.3.3 Strategy to estimate and update poverty estimates in Costa Rican cantons

The goal of this paper is to obtain and update poverty estimates in three categories: ‘extreme

poor’, ‘poor’ (not extreme), and ‘not poor’. However, as noted previously, no poverty in-

formation is collected directly from the census, nor income or expenditure data. Thus, the

applied methodology considers characteristics of some of the SPREE methods, specifically the

ESPREE and the MSPREE. Since the census data does not contain poverty information, this

paper adjusts the ESPREE framework. Instead of applying an ELL model to estimate poverty

in the census data followed by the original SPREE to update the counts as in Isidro et al.

(2016), the EBP (Rao and Molina, 2015) is implemented followed by the MSPREE in this

work (for simplicity, also referred as EBP-MSPREE). To the best of my knowledge, MSPREE

is the most recent and complete technique mentioned in SPREE literature. This version pro-

vides more flexibility and bias reduction compared with the previous versions, therefore it is

implemented as the main tool in the updating part of the process.

The estimation and updating strategy can be summarised in the following steps:

1. Estimating the proxy association structure via EBP. Considering that census and sur-

vey data, both for the same year at individual level are available, the EBP explained in

Section 2.3.2 is applied in order to obtain the information of poverty status in the census
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structure.

2. Obtaining the allocation structure. Household projections as mentioned in Section

2.2.3 provide the total of households in each canton (row margins) and survey data,

described in Section 2.2.2, the total of households by poverty status. Both sources are

available for postcensal years (2012-2017).

3. Updating estimates via MSPREE. Intercensal EBP-MSPREE compositions Ŷ EM
aj,t1

are

estimated considering the outputs from the two previous steps: association structure

αZaj,t0 from Step 1, and row Ya,t1 and column Yj,t1 margins from Step 2, that repre-

sent the allocation structure. Direct estimates from survey data and design effects are

also required as explained at the end of Section 2.3.1. With these inputs, the procedure

can be described as follows:

(a) The matrix of coefficients β is estimated with an IWLS algorithm that requires

a variance-covariance matrix. This matrix is approximated using design effects

as showed in Equation 2.6 with EBP composition estimated in t0 and the direct

estimate obtained from the survey in t1.

(b) α̂Yaj,t1 is estimated with Equation 2.5.

(c) Taking into account all these elements, the target estimate Ŷ EM
aj,t1

is finally obtained

with Equation 2.3.

2.3.4 Uncertainty of the updated estimates

The benefits of two SPREE versions are used in this paper. To motivate the proposed un-

certainty measure M̂SE
(
Ŷ EM
aj,t1

)
, the procedures via bootstrap of the predecessors (MSE of

ESPREE and MSPREE) are briefly described in this section. Details about other approaches,

e.g., via linearisation methods can be found in Isidro (2010), Isidro et al. (2016) and Luna-

Hernández (2016).

Two sources of variation are considered when obtaining estimates via the ESPREE method:

survey data (allocation structure) and pseudo-populations (association structure). Being Ŷ E
aj,t1

the ESPREE estimates, the uncertainty estimate is the sum of two variances: Var(Ŷ E
aj,t1

) =

Varsurvey
(
Ŷ E
aj,t1

)
+ Varcensus

(
ẐEaj,t1

)
. The first variance term Varsurvey is obtained by generating

b = 1, . . . , B independent bootstrap samples from the original survey data and computing

Ŷ E,b
aj,t1

by keeping fixed the census data (i.e., association component) in every replication.

The second term Varcensus is obtained in a similar way. In this case, B ESPREE estimates

Ŷ E,b
aj,t1

are compute based on b = 1, . . . , B bootstrap populations or pseudo-census to account

for the uncertainty provided by the association structure, and the allocations structure (survey

margins) will be held fixed over the replications. Because in ESPREE, the census values are

estimated via ELL (or EBP), the b = 1, . . . , B pseudo-census generated from the ELL process

can also be used here. Both, V̂ar
survey

and V̂ar
census

are unconditional variances. As aforemen-

tioned, the final uncertainty estimation is only the sum of these two terms, meaning that the

authors assume that there is no covariance between both estimators.
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Regarding MSPREE uncertainty measures of ŶM
aj,t1

, Luna-Hernández (2016) proposed

three alternatives: an analytical approximation for the variance of the estimator, a Finite Pop-

ulation MSE (FP-MSE) and an Unconditional MSE (U-MSE). For simplicity and consis-

tency, the last one is described here. From the point estimate ŶM
aj,t1

, calculate the within-area

proportions π̂a,t1 =
ŶMaj,t1
Ya,t1

for each area a = 1, . . . , A. Generate B-bootstrap populations

Y ∗baj,t1 under the assumption that the target estimate across areas has the following distribution:

Ya,t1 |αZ
a,t0

ind∼ Multinomial
(
Ya,t1 , π̂a,t1

)
. From each bootstrap population draw a sample

and follow the steps of Section 2.3.1 to obtain ŶM,b
aj,t1

. Finally, compute Û-MSE
(
ŶM
aj,t1

)
=

1
B

∑B
b=1

(
ŶM,b
aj,t1
− Y ∗baj,t1

)2
.

The two procedures to obtain the MSE of Ŷ E
aj,t1

and ŶM
aj,t1

, are briefly described to better

contextualise the MSE proposed in this paper, and to point out the differences and similarities

between them. Thus, results from these two previously described MSEs are not produced in

this paper.

Because the estimation and updating process in this application makes use of the EBP fol-

lowed by the MSPREE, the sources of uncertainty in all of the steps should be considered.

The idea of including the variation of each element is taken from Isidro et al. (2016). The

objective is to contemplate that the MSE of the EBP-MSPREE entails three sources of un-

certainty: allocation structure, association structure, and the yearly association updating. The

difference in this proposal is that instead of calculating each variability term and adding them

(Varsurvey + Varcensus + Varβ), a single bootstrap procedure will be performed, varying each of

the required elements in each replication. This decision is made since it cannot be denied that

covariances between the estimators exist. This aspect requires special attention and it should

be study in further investigations. The steps to obtain the MSE for the EBP-MSPREE are as

follows:

1. From Equation 2.7, L Monte Carlo pseudo populations in t0 are generated. Based on

defined thresholds (poverty lines), L cross-classified population tables are created with

dimension: A areas and J categories of poverty. Notice that the average across them

was used to defined αZaj,t0 and finally compute the point estimate Ŷ EM
aj,t1

. Now, these L

pseudo populations are used to create αZ,baj,t0 (with L = B), to account for the uncertainty

that this structure provides, similarly as in Isidro (2010) and Isidro et al. (2016).

2. To take into consideration the uncertainty from the allocation structure, generate B pairs

of margins Y b
a,t1 , Y

b
j,t1

from the point estimate Ŷ EM
aj,t1

assuming a multinomial distribution,

i.e., Y b
a,t1

ind∼ Multinomial(Ỹ , π̃a), where π̃a =
Ŷa,t1
Ỹ

and Ỹ =
∑A

a=1 Ŷa,t1 .

3. The uncertainty due to the estimation of β required in the MSPREE is obtained follow-

ing the procedure of the U-MSE previously described: From the point estimate Ŷaj,t1

calculate the within-area proportions π̂a,t1 =
ŶMaj,t1
Ya,t1

for each area a = 1, . . . , A. Gen-

erate B bootstrap populations Y ∗baj,t1 under the assumption that the target estimate across

areas has the following distribution: Ya|αZ
a,t0

ind∼ Multinomial
(
Ya,t1 , π̂a,t1

)
. From each

bootstrap population, draw a sample to get yEM,b
aj,t1

.
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4. With the output of Step 1 and 3, specify the MSPREE structural assumption α̂Y,b
a,t1

as in

Equation 2.5.

5. With L = B and the output of Step 2 and 4, compute B EBP-MSPREE estimates

Ŷ EM,b
aj,t1

= IPF
[
exp
(
α̂Y,b
a,t1

)
, Y b

a,t1 , Y
b
j,t1

]
.

6. Finally, estimate the MSE:

M̂SE
(
Ŷ EM
aj,t1

)
=

1

B

B∑
b=1

(
Ŷ EM,b
aj,t1

− Y ∗baj,t1
)2
. (2.8)

2.4 Results of the application

In this section, the results of the estimation and the updating process are explained. First, the

EBP model for obtaining the association structure is described with its corresponding model

evaluation and descriptive statistics. Second, some relevant results in the practical sense are

shown, e.g., the evolution of (updated) poverty indicators from 2012 to 2017 for selected can-

tons, and the cantons with the highest poverty rates in the last year of study. Finally, uncertainty

measures and validation results are presented.

2.4.1 Poverty estimates for the census

An EBP model to obtain poverty incidence by domain was conducted by setting income per

capita of the household as the dependent variable and the socio-economic covariates described

in Table 2.1 as predictors. In Costa Rica, urbanity plays an important role in socioeconomic

topics. For this reason, the variable zone (urban/rural) is added to the model. The other groups

of variables contain information on the head of the household, the household members, and

the housing. Most of them have been used in previous studies as predictors of poverty or are

part of indexes such as the UBNS and the multidimensional poverty index (MPI) (Alkire and

Foster, 2007). Under the model specified here, the sample design is assumed non-informative.

To select the model, several transformations are considered to reduce normality departures

of the error terms, but the final version applies a Box-Cox transformation (Box and Cox, 1964)

with an optimal lambda (0.1585) using the restricted maximum likelihood (REML) approach.

Regarding the normality assumptions of this linear mixed model, formal tests and graphical

diagnostic of the residuals are used. Figure 2.1 shows that normality assumptions are rejected

for the unit level (Skewness -0.049 and Kurtosis 6.418), but not for the random effects (canton-

level). The latter is also confirmed with the Shapiro Wilk test (W= 0.986 and p = 0.529), and

Skewness (-0.359) and Kurtosis (3.065) measures. For this example, normality for both, the

unit level and the random effects, is assumed. The use of the Box-Cox transformation helps, at

least, to get more symmetrical tails (Rojas-Perilla et al., 2020) than other (or no) transforma-

tions. Also, the marginal R2 = 0.500 and the conditional R2 = 0.508 were observed.

Table 2.2 shows the summary statistics of the population and sample domains. For 2011,

all cantons are in-sample although it is not the case for some postcensal years. Domain sizes
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Table 2.1: Covariates included in the EBP model to obtain poverty estimates in census

Category Variable

Geographical 1. Zone

Head of the 2. Age

household 3. Highest degree of education completed

4. Sex

5. Labor condition

Household 6. Proportion of employees in the household

conditions 7. Equivalized size of the household

8. Overcrowding

9. At least one member without health insurance

10. Quantity of economically dependent members

11. At least one member not attending to formal education

12. At least one member not with a educational lag

Housing 13. Poor condition of the floor or ceiling

conditions 14. Any member not used internet last 3 months

15. No garbage disposal system

16. No exclusive toilet for the household

Notes: Labor condition has three categories: employed, unemployed, out of labor force.
espace Variable 9 refers to population older than 17 years old.
espace Variables 11 and 12 refer to population between 5 and 19 years old.
espace Variable 14 refers to population older than 4 years old.

from the survey data vary from 12 to 877 households, and in the case of the census data, it

varies from 1705 to 84,066 households,

In order to study poverty in the three aforementioned interest groups, the two poverty lines

described in Section 2.2.4 were implemented (as ‘customised indicators’ in the R package

emdi, for further details about this functionality see Kreutzmann et al. (2019)). Descriptives

of coefficients of variation (CV) for the direct- and model-based estimates obtained via EBP

are presented in Table 2.3. As expected, the CVs reflect the lack of precision in the categories

‘extreme poor’ and ‘poor’ (not extreme) for the direct estimates. The improvement when the

EBP model is conducted is clear, with a maximum CV of 29.9% and 18.2% for ‘extreme poor’

and ‘poor’ (not extreme) categories respectively. Notice also, that the third quartile of the CV

in the category ‘extreme poor’ is below 20%.

Figure 2.2 shows the proportion of households under extreme poverty based on the direct

estimates (ENAHO 2011) and the model-based estimates obtained via the EBP model. The
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Figure 2.1: Q-Q plots of the unit-level errors and the random effects

Table 2.2: Summary statistics for sample and population sizes

Min 1st Q Median Mean 3rd Q Max

Sample domains
12 62 103 144.37 191 877

(In-sample: 100%)

Population domains 1705 5961 11032 15271.37 17148 84066

maps on the right side give a closer look at the metropolitan area which consists of 31 cantons,

covering approximately 60% of the population.

In four of these cantons, no households were identified as ‘extreme poor’ with direct esti-

mates (out-of-sample domains represented in black in Figure 2.2 (a) and (b)). The results are

consistent with a previous study (Méndez and Bravo, 2011), where higher levels of poverty are

found on the border with Nicaragua (e.g., La Cruz, located in the northwest of the country) and

on the border with Panamá (e.g., Buenos Aires, and Talamanca, located in the southeast of the

country).

2.4.2 Updated poverty estimates

For the intercensal years, estimates on incidence of extreme poverty are obtained with EBP-

MSPREE. To analyse major changes in this indicator between 2011 and 2017 Z-scores are

used:

Z =
Estimate2011 − Estimate2017√

(Standard error2011)2 + (Standard error2017)2
.

This measure represents the standardised distance between the estimates in both years

(Isidro, 2010).

Figure 2.3 presents the three cantons with biggest change in this category of poverty.
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Table 2.3: Coefficients of variation of the direct and model-based estimates for poverty status

Direct EBP

CV Extreme Poor Not Poor Extreme Poor Not Poor

Min 0.068 0.071 0.033 0.085 0.045 0.012

1st Q. 0.232 0.164 0.086 0.127 0.065 0.023

Median 0.332 0.323 0.110 0.155 0.085 0.033

Mean 0.412 0.271 0.123 0.160 0.089 0.033

3rd Q. 0.524 0.234 0.145 0.181 0.106 0.040

Max 1.000 1.000 0.281 0.299 0.182 0.062

Among the 81 cantons, these are the cantons with absolute Z-scores higher than two. Note

that all of them show a reduction in the incidence of poverty between 2011 and 2017 meaning

that the biggest changes in this period were actually reductions. It is also important to mention

that none of the three cantons are among the poorest, which means that the biggest improve-

ments are not observed in the areas most in need. On the contrary, the cantons Curridabat

and Montes de Oca had the highest growth in extreme poverty (although small Z-score values:

0.223 and 0.205, respectively). However, both are among the cantons with the lowest incidence

of extreme poverty in both years.

Identifying the poorest cantons is also relevant in order to fight against this phenomenon in

a more efficient way. Figure 2.4 shows the small areas with the highest incidence of extreme

poverty (in proportions) in the last year (2017). Here, it is important to point out that for all the

years of study (2011-2017) the same five cantons remain on this list, indicating that economic

conditions of these areas have not been better in comparison with other areas in recent years.

The sources of uncertainty that were explained in Section 2.3.4, are displayed for the last

year of study as a coefficients of variation in Figure 2.5. As expected, the category ‘not poor’

is the one with the minimum CV and most of the values are under 20% which is considered

‘acceptable’ according to the parameters for official publications of the national statistical office

of Costa Rica (INEC, 2015).

As explained in Section 2.2.2, the target areas in this paper, the 81 cantons, are nested in six

planning regions. Because the INEC of Costa Rica publishes official results on poverty only for

these planning regions (gathered from the ENAHO), this is the only geographical level where

it is possible to make the comparison with the updated estimates via EBP-MSPREE. For this

reason, as a way to evaluate the updated estimates of poverty, model-based estimates of cantons

are aggregated into the six planning regions and compared with the official publication. It is

relevant to mention that three cantons overlap with two regions at the same time. This problem

was solved by allocating the estimated counts in proportion to the respective population in each

region. For a more practical comparison, proportions instead of counts are shown in Table

2.4. EBP-MSPREE results are satisfactory in terms of their similarity to the direct estimates.

Most of the regions show close results to the published one, and the region with the highest

discrepancies is the Pacífico Central. This region, however, is the domain with a smaller sample
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Figure 2.2: Proportion of extreme poverty: direct and model-based estimates, 2011
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Figure 2.5: Coefficients of variation for 2017

size. Therefore, it is expected to have less accurate results. The opposite is the case of the

region Central which has the biggest sample size and results are very close to the ones in the

official publication (results available in INEC (2017)).

Table 2.4: Direct and EBP-MSPREE estimates for poverty status (proportions) by planning
region 2017

Direct EBP-MSPREE

Regions Extreme Poor Not Poor Extreme Poor Not Poor

Central 3.9 11.9 84.2 3.8 11.7 84.5

Chorotega 5.9 16.5 77.6 8.3 18.0 73.7

Pacífico Central 8.9 21.0 70.1 6.8 16.7 76.5

Brunca 10.4 19.1 70.5 10.7 20.7 68.6

Huetar Caribe 8.9 17.8 73.3 9.3 18.9 71.8

Huetar Norte 9.2 18.3 72.5 7.8 17.6 74.6

Total 5.7 14.3 80.0 5.7 14.3 80.0

2.5 Design-based simulation

In this section, results from a design-based simulation study are presented. The objective is to

evaluate the EBP-MSPREE procedure explained in Section 2.3.3 to estimate and update counts

on poverty incidence in three categories: ‘Extreme poor’, ‘poor’ (not extreme), and ‘not poor’,

as well as assessing the performance of the bootstrap MSE estimator described in Section 2.3.4.

To conduct the evaluation, two census compositions are required. One census from time t0 as

the primary input to get EBP-MSPREE estimates but also a second census from time t1 to

compare the updated results. Since a recent census is not available, the survey data described

in Section 2.2.2 is used in this experiment. Survey data set from 2011 is used as a census in

t0 (Zaj,t0) and survey data from 2012 as a census in t1 (Zaj,t1). Samples are drawn from them

54



CHAPTER 2. SAE OF POVERTY INCIDENCE UNDER SPREE

with simple random sampling without replacement, with a sampling fraction of f = 0.2. Since

survey data is used as census, there are many domains with only few observations. For this

reason, the number of cantons in the simulation is reduced to A = 23 (instead of A = 81 as

in the application), and the biggest domains were selected. This allows having all cells with a

positive sample, in this case, with at least 15 observations in each category of poverty for all

domains. For the first part of the procedure where point estimates are obtained, i.e., with an

EBP model, a Box-Cox transformation is chosen. Also, the income per capita is defined as

the dependent variable and a reduced number of covariates are included in the model, namely:

the proportion of employees in the household, highest degree of education completed by the

head of the household, zone, quantity of economically dependent members in the household,

equivalised size of the household, at least one member without health insurance, and at least

one member not with an educational lag.

In this simulation study, the performance of an EBP-SPREE (similarly as in Isidro et al.

(2016)) is compared with the proposal of this paper, i.e., EBP-MSPREE. A total of R = 500

Monte Carlo iterations are defined, with L = 100 Monte Carlo iterations for implementing

the EBP, and B = 100 bootstrap iterations for MSE estimation. The performance of the esti-

mated EBP-MSPREE (Ŷ EM
aj,t1

) is evaluated with the relative bias (RB) and the square root MSE

(RMSE), defined as:

RB(Ŷ EM
aj,t1 ) =

1

R

R∑
r=1

( Ŷ EM,r
aj,t1

− Zaj,t1
Zaj,t1

)
and,

RMSE(Ŷ EM
aj,t1 ) =

√√√√ 1

R

R∑
r=1

(
Ŷ EM,r
aj,t1

− Zaj,t1
)2
, (2.9)

which is treated as the empirical RMSE. A plot comparing the estimated RMSE (from

Equation 2.8) and the empirical RMSE (from Equation 2.9) is used to validate the proposed

MSE estimator M̂SE(Ŷ EM
aj,t1

). Relative bias and relative RMSE of the estimated RMSE for each

area a and category j are also computed as follows:

rel.Bias.Est.RMSE =
(Est.RMSE− Emp.RMSE

Emp.RMSE

)

rel.RMSE.Est.RMSE =

√(Est.RMSE− Emp.RMSE
Emp.RMSE

)2
.

Results of the design-based simulation

Table 2.5 summarises results of the evaluation of the EBP-MSPREE estimator in compar-

ison with a previous version, namely EBP-SPREE. The values of RB and RMSE are averaged

over 23 areas for each category of poverty. In general, EBP-MSPREE shows lower values,

although the category ‘poor’ (not extreme) has larger RMSEs in comparison with the SPREE

version.
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Table 2.5: RB and RMSE for the incidence of poverty by status under different SPREE
approaches

Extreme Poor not extreme Not poor

Median Mean Median Mean Median Mean

RB EBP-SPREE 0.197 0.128 0.019 0.011 -0.022 0.034

EBP-MSPREE 0.020 0.099 0.032 0.014 -0.013 0.010

RMSE EBP-SPREE 0.312 0.347 0.127 0.151 0.074 0.106

EBP-MSPREE 0.278 0.354 0.148 0.167 0.071 0.099

Figure 2.6 displays the estimated and empirical RMSE over the domains and categories

of poverty for the EBP-MSPREE and the EBP-SPREE methods. Based on this figure, it is

possible to conclude that the estimated RMSE tracks the empirical RMSE better for the EBP-

MSPREE procedure, and this can be observed for all of the categories of poverty. A closer

look at the performance of the proposed MSE is provided in Table 2.6. The RB-RMSE for

the EBP-MSPREE indicates a moderate underestimation in the mean and the median for the

‘extreme’ and ‘poor’ categories and an overestimation for the median of the category ‘poor’.

In terms of RB-RMSE and RRMSE-RMSE, the results on the performance of the MSE are

favorable for the EBP-MSPREE.

Table 2.6: Performance of the MSE estimator: Mean and median of RB and RMSE by poverty
status

Extreme Poor not extreme Not poor

Median Mean Median Mean Median Mean

RB- EBP-SPREE -0.329 -0.229 0.211 0.363 -0.297 -0.171

RMSE EBP-MSPREE -0.075 -0.081 -0.077 -0.071 0.139 0.008

RRMSE- EBP-SPREE 0.462 0.460 0.379 0.678 0.381 0.448

RMSE EBP-MSPREE 0.381 0.391 0.359 0.367 0.368 0.367
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Extreme Poor Not poor

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0

20

40

60

Domain

R
M

S
E

Type

Empirical

Estimated

MSPREE

Extreme Poor Not poor

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0

20

40

60

Domain

R
M

S
E

Type

Empirical

Estimated

SPREE

Figure 2.6: Estimated and empirical domain-and category-specific RMSEs of the counts on
poverty incidence

2.6 Conclusions and further steps

Public policies require not only accurate and reliable information for decision-making but this

information should also be timely. It is common that the production of official statistics faces

challenges due to limitations of resources. In this paper, a methodology to obtain reliable and

updated estimates in small areas is presented and exemplified with a real-world application. For

many developing countries, censuses are conducted every ten years and sample sizes of annual

national surveys are not big enough to provide reliable results for small areas. An additional

limitation that is considered in this work is that information of interest is not present in census

data, as it is required for SPREE methods. The strategy proposed considers two well-known

small area estimation techniques. An EBP is conducted to get poverty estimates in the census

data, and as a second step, the MSPREE of Luna-Hernández (2016) is applied to update the

estimates in postcensal years. Based on the results of the application, it is possible to conclude

that the strategy proposed delivers quality results in terms of CVs. The application shows

that this methodology gives the opportunity to analyse specific groups of interest, areas, and

years. For example, that the poorest cantons in Costa Rica have remained with little overall

improvements for the period studied.

Although the methodology proposed allows to obtain the target estimates, there are several

aspects that can be improved, especially in the uncertainty estimation. Original SPREE and
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two other versions (GSPREE and MSPREE) assume that the census has the variable of interest

and therefore no uncertainty from the association structure is required. However, when another

small area estimation method is needed as a first step to get the census structure (in this case

with an EBP), variability from it should be considered. In this methodology, a parametric boot-

strap is implemented to get uncertainty from the allocation, the association structure, and the

estimation of the β coefficients required in MSPREE. One potential topic for further research

is to combine the MSE that is produced directly from the EBP with the one from MSPREE un-

der an analytical approach. Furthermore, the impact that extreme values in the first part of the

procedure (e.g., EBP) can have in the final updated estimates deserves also to be investigated.

SPREE methods have other disadvantages that require further study to get a more flexible

technique. For example, a potential improvement in the method could be to allow updating

more complex indicators or non-categorical indicators such as the Gini index or (mean and/or

median) per capita income. The inclusion of associated variables as suggested by Purcell and

Kish (1980) can also be beneficial in the estimation procedure, for instance, the inclusion of

urbanity (urban and rural) can be relevant when working with poverty status.

The over-shrinking problem present in the context of small area estimation when the ex-

pected sample variance is smaller than the true parameter, also deserves to be explored when

implementing SPREE-type methods.

Understanding the benefits of SPREE-type methods in comparison with existing models in

the small area estimation context requires also further research. Three alternative approaches

to deal with the problem of obtaining updated counts or proportions in small domains have

been identified and deserve a closer comparison with the SPREE-type methods: 1. The use of

the EBP in each year of study with a final benchmark operation performed with MSPREE, 2.

exploring potential advantages of using panel survey data or time-series models, for example,

with the extension of the Fay-Herriot model proposed by Rao and Yu (1994), or 3. imple-

mentation of measurement error models also in the context of area-level models (Ybarra and

Lohr, 2008). Finally, it is recommended to study the inclusion of non-traditional information

sources (e.g., big data) as proposed in Koebe et al. (2022) since the structures of population

censuses can quickly become obsolete. A clear example of this is the socio-economic effect

that the COVID-19 pandemic generated in many countries, altering the living conditions of

many people in a short period of time.
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Chapter 4

Releasing Survey Microdata with
Exact Cluster Locations and
Additional Privacy Safeguards

4.1 Introduction

Since almost hundred years, sample surveys are dominating knowledge generation in empir-

ical research. The advantages of survey sampling are obvious: with an appropriate sampling

design representative results for a population can be collected by surveying only a fraction of

it. With computer assistance, the time from collecting data to publishing results can be sped

up significantly (Granello and Wheaton, 2004). Two trends, however, increasingly challenge

the way data is collected via surveys. On the one hand, the growing demand for fast and gran-

ular information drives up sample size and thus costs. As a response, recent years have seen

a large amount of academic research on augmenting surveys with secondary data from non-

traditional data sources such as social networks, mobile phones or remote sensing in order to

overcome shortcomings in coverage, frequency and granularity with applications in fields as

diverse as population dynamics (Stevens et al., 2015; Leasure et al., 2020), socio-demographic

analysis (Pokhriyal and Jacques, 2017; Schmid et al., 2017; Subash et al., 2018; Fatehkia et al.,

2020; Chi et al., 2022), policy targeting (Blumenstock, 2018; Aiken et al., 2022), environmen-

tal mapping (Grace et al., 2019) and health research (Brown et al., 2014; Arambepola et al.,

2020). This augmentation is usually done via geographic matching, i.e. combining area-level

averages (Koebe, 2020). Since the number of matched areas corresponds to the sample size for

subsequent supervised learning tasks, finding the smallest common geographical denominator

is essential to avoid running into small sample problems. However, this is not always trivial as

sample surveys usually provide data only for a fraction of small geographic areas. On the other

hand, digital transformations across various sectors such as health care have led to an explosion

of digital personal data. It is the abundance of secondary data that amplifies re-identification

risks in published surveys as some of the information could be used to link pseudoanonymized

survey responses back to the actual respondents (Armstrong et al., 1999; Kroll and Schnell,

2016; West et al., 2017). Together with new privacy regulations such as the European General
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Data Protection Regulation (GDPR) this calls for additional precautionary measures to safe-

guard the individual’s privacy. For aggregated data releases, the introduction of differential

privacy has provided a solid mathematical framework to manage re-identification risks inde-

pendent of a potential attacker’s capabilities or prior knowledge (Dwork, 2008). With regard to

microdata dissemination strategies, a common de-identification practice today is a combination

of deletion and perturbation procedures, which include removing (unique) identifiers such as

first and last name and replacing the individual’s true location with aggregated (i.e. area-level)

and randomized information (see e.g. Andrés et al. (2013); Templ (2017); de Jonge and de

Wolf (2019)).

For example, in the Demographic and Health Survey (DHS), a major global household sur-

vey program, urban survey clusters are re-located within a 2km-radius and rural clusters within

a 5km-, sometimes even 10km-radius (Burgert et al., 2013). This location privacy procedure

has two main advantages: it does not affect the quality of the remaining (non-spatial) survey

information and it reduces the need for other privacy safeguards, e.g. deleting or perturbing

sensitive information. However, it does not provide a similar rigorous measure for privacy pro-

tection as already small sets of attributes can quickly increase the chances of re-identification,

even in incomplete, pseudonymous datasets (Rocher et al., 2019). In addition, it obviously

affects the utility of the published data when it comes to matching with auxiliary data as this

type of analysis relies on the congruence of its geographic links (Elkies et al., 2015; Warren

et al., 2016; Blankespoor et al., 2021; Hunter et al., 2021).

In that regard, advances in synthetic data generation have introduced new ways to narrow

the void between information loss and privacy protection. These methods allow for the genera-

tion of synthetic records that resemble the real data by reproducing relationships learned from

the latter. While all approaches have in common that they try to capture the joint distribution

in the original data, the ways to do so vastly differ. For example, Drechsler et al. (2008) and

Heldal and Iancu (2019) use imputation processes to decompose the multidimensional joint dis-

tribution into conditional univariate distributions. Alfons et al. (2011) and Templ et al. (2017)

use parametric models in combination with conditional re-sampling to synthesize hierarchical

relationships. As an alternative to these fully parametric approaches, Reiter (2005) and Wang

and Reiter (2012) make use of classification and regression trees (CART), while more recently,

Li et al. (2014); Zhang et al. (2017); Rocher et al. (2019); Sun et al. (2019); Torkzadehmahani

et al. (2019); Xu et al. (2019) and others have used Bayesian networks, Generative Adversarial

Networks or copulas to capture the underlying linear and non-linear relationships between the

attributes.

The challenge for data producers is to define adequate microdata dissemination strategies

that allow users to satisfy their needs, i.e. release survey microdata that can be used for statisti-

cal analysis and that are compatible with other sources of information allowing to answer new

and more detailed research questions and – at the same time – it must be ensured that the iden-

tities of the respondents are protected. In that regard, the Spatial Data Repository of the DHS

program (ICF, 2022) is a good example for facilitating new types of research by combining

survey microdata with geospatial covariates and gridded interpolation surfaces. However, also

those products are based on perturbed cluster locations, thus incurring a certain information
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loss.

Hence, as our main contribution of this paper, we propose an alternative microdata dissem-

ination strategy: instead of publishing original microdata with perturbed cluster locations, we

investigate the option of publishing two datasets – 1) original microdata stripped of geographic

identifiers for which survey results are not considered representative and 2) synthetic micro-

data with the original cluster locations. The choice is motivated by adopting a user-centric

perspective: official household survey publications predominantly report on results up to the

strata-level as results below are usually considered not representative. Analysis that benefits

from below strata-level data often investigates proximity-related questions such as distances

to certain locations and surrounding habitat. For the former, cluster locations are of minor

importance, for the latter, however, the spatial perturbation procedure introduces significant

levels of uncertainty to the analysis (Warren et al., 2016). The alternative microdata dissemi-

nation strategy obviously conserves data utility for analysis on the representative level via the

first dataset, while the second dataset allows for the accurate capture of proximity-related in-

formation. However, two potential shortcomings need to be considered: first, can we use the

synthetic dataset to predict the ‘private’ attribute in the original dataset, i.e. the small area iden-

tifier, thus bypassing the privacy protection measures? Second, is the uncertainty we introduce

by synthesizing the non-spatial attributes for spatial analysis smaller than the uncertainty from

perturbing the cluster locations?

We show in an experiment using Costa Rican census data from 2011 and satellite-derived

auxiliary information from WorldPop (WorldPop, 2018) that we can reduce the re-identification

risk vis-à-vis common spatial perturbation procedures, while maintaining data utility for non-

spatial analysis and improving data utility for spatial analysis.

From the plethora of options, we choose copulas as our synthetic data generation approach.

Copulas facilitate fine-tuning as they allow us to model the marginal distributions separately

from the joint distribution. Dating back to 1959 (Sklar, 1959) with diverse applications since,

their theoretical properties are well understood. In comparison with alternatives like GANs,

copula-based synthetic data generation has lower computational cost (Sun et al., 2019) and it is

easier to interpret (Kamthe et al., 2021). Furthermore, the procedure is in general less cumber-

some, in comparison with the steps followed by Alfons et al. (2011) to generate the synthetic

population data AAT-SILC (Artificial Austrian Statistics on Income and Living Conditions (Al-

fons et al., 2011). Finally, copulas are also attractive for data producers such as National Statis-

tical Offices as only new nationally representative margins are required to update the synthetic

microdata file (cf. Koebe et al. (2022)). In addition, well-documented open-source tools such

as the Synthetic Data Vault (MIT Data To AI Lab, 2022) are available to users with important

features such as data transformation and constraints specification.

4.2 Results

We consider a survey Dtrue as a random sample with sample size n from a given population of

sizeN . For our experiment, we use a 10% random sample of the original 2011 census of Costa

Rica, which can be obtained from INEC (2022) as a pseudo-population. In that year, Costa Rica
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had four administrative disaggregation levels: two zones, six planning regions, 81 cantons and

473 districts. For sampling purposes, enumeration areas (EAs) and strata are defined. Our units

of observation are individuals i living together in a household ζ. Each individual is described

by a set of attributes denoted as x = X1, . . . , Xm. Obfuscated attributes are denoted as y =

Y1, . . . , Ym in the following. The zip code attributeXzip ∈ x – corresponding to the level of k =

473 districts in Costa Rica – represents the smallest geographic identifier in this experiment as

true locations for the identifier of the census enumeration areas are not available. Consequently,

the obfuscated zip code is denoted by Yzip ∈ y. Following our proposed data dissemination

strategy, we further define the true survey without small-area geographic identifier as ‘No Zip

Code’ survey Dno := (X2, . . . , Xm) given that X1 ← Xzip. For notational simplicity, we

use Xzip and X1 interchangeably. While different sampling designs are possible, we assume

a commonly used complex design for larger household surveys such as the DHS: a stratified

two-stage cluster design. In the first stage, the primary sampling units (PSUs) denoted as j

– usually enumeration areas from the latest census – are selected for each stratum s with a

probability proportional to (population) size Ωj . In the second stage, households within each

selected PSU are sampled with a fixed probability Ωζ|j . Consequently, the sampling weights

defined as the inverses of the household-level inclusion probabilities are given for each stratum

separately by:

w =
1

Ωζj
, Ωζj = Ωζ|j ∗ Ωj with Ωj =

ns
Ns

, (4.1)

with ns and Ns the sample and population size in stratum s, respectively.

With enumeration area-specific population sizes in the pseudo-population too small to act

as survey clusters, we choose the districts (i.e. the zip codes) for each stratum as our PSUs, also

called clusters in the following. As zip codes can cover both rural and urban areas, there are

767 PSUs in total available in our experiment using Costa Rican census data from 2011. In the

following, we describe the original survey attributes as our true survey. The true survey builds

our starting point for further anonymization approaches, notably the geomasking approach

and the copula-based synthetic data generation approach. Figure 4.1 describes the complete

experimental setup used in this study.

In the first step, two-stage cluster sampling is used to create household survey microdata

(called thereafter the ‘True’ survey Dtrue). Randomly sampled point locations within the re-

spective zip codes are assigned to the clusters before displacement. Displaced clusters are

allocated to their new zip codes. True survey microdata with (partially) obfuscated zip codes

is called ‘Geomasked’ survey Dgeo thereafter and thus constitutes the benchmark anonymiza-

tion strategy in this experiment. In contrast, the strategy proposed in this paper considers two

datasets for dissemination: 1) the ‘Synthetic’ surveyDsyn with original zip codes and remaining

attributes being synthetically generated using a copula-based approach, and 2) the true original

survey microdata stripped of geographic identifiers below the strata-level (called the ‘No Zip

Code’ survey Dno thereafter). In the third step, an inference attack is designed to disclose the

private attribute - i.e. the true zip code - in the geomasked and the ‘no zip code’ survey, respec-

tively. Similar attacks to disclose private attributes in the synthetic survey could be considered,

however, these can be assumed to be comparatively less effective given the amount of true at-

90



CHAPTER 4. RELEASING SURVEY MICRODATA WITH CLUSTER LOCATIONS

Census (10% sample as pseudo-population)

(427,830 individuals, 106 attributes)

True survey

(~2% stratified two-stage cluster sample)

Geomasked survey

(Generate EAs, displace 
them, assign to new zip 

code)

Synthetic survey

(Synthesize all 
attributes, except true 

zip code)

‘No Zip Code’ survey

(Delete zip code, keep 
remaining true 

attributes)

Re-Identified survey

(Predict zip code in the ‘No Zip Code’ survey trained 
on the synthetic survey)

1. Sampling

4. Evaluation

Benchmark strategy Proposed strategy

2. Anonymization

Information loss: Normalized Kullback-Leibler divergence vis-à-vis the true census 
distribution

Population uniqueness: Share of uniquely identified survey respondents vis-à-vis 
the census

Risk of re-identification:  Share of successfully re-identified zip code labels vis-à-vis 
the true survey

Utility for survey augmentation: Performance metrics for estimating the 
‘NBI’-indicator using auxiliary information vis-à-vis the census

R
ep

ea
t 

1
0

0
 t

im
es

3. Privacy attack

Figure 4.1: Workflow diagram of the experiment with census data from Costa Rica.
Geographic identifiers are considered as part of the set of attributes. The attribute ‘zip code’
represents the smallest geographic identifier in this experiment as true locations of the census
enumeration areas are not available. Even though a privacy attack is also performed on the
geomasked survey (see Figure 4.3), the resulting dataset is not further analyzed in the remaining
study for the sake of readability. A detailed data description can be found in the Supplementary
Information.

tributes available to stage such an attack. In order to provide a comprehensive assessment of the

risk-utility-trade-off of the two approaches, the evaluation stage is composed of an information

loss measure, two measures to assess the privacy risk and three metrics for assessing the utility

of the different strategies in a data augmentation setting. Step 1 to 4 are repeated 100 times to

get a first understanding of the scale of uncertainty associated with the two approaches.
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4.2.1 Geomasking to obfuscate true survey locations

To implement the benchmark strategy in the anonymization step, we follow the geomasking

methodology outlined in Burgert et al. (2013) by perturbing the centroids denoted as r of the

selected clusters within a given larger administrative area l using a rejection sampling proce-

dure described in Algorithm 1. Even though clusters in our experiment correspond to the zip

codes in each stratum, we use available census information on enumeration areas v for the

displacement procedure. Since point locations for the corresponding enumeration areas rv are

not available, we randomly sample them from the smallest available area – the zip codes. That

way, we can approximate the displacement effect expected when one would sample from the

full population using enumeration areas as PSUs.

Algorithm 1: Geomasked survey: DHS cluster displacement algorithm

for v ∈ Dtrue do
while rmasked

v /∈ lrv do
angle← Uniform[0,360] ∗ π

180 ; /* Random displacement angle */

if v is Urban then
dist← Uniform[0,2000] ; /* Random displacement distance

(in meters) for urban clusters */

end
if v is Rural then

if v is selected as 1% of rural clusters then
dist← Uniform[0,10000] ; /* Random displacement

distance for 1% of rural clusters */

else
dist← Uniform[0,5000]

end
end
rmasked
x,v ← rx,v + dist ∗ cos(angle) ; /* Displace x-coordinate

(rx,v) */
rmasked
y,v ← ry,v + dist ∗ sin(angle) ; /* Displace y-coordinate

(ry,v) */

end
end

We denote the masked point locations of the sampled EAs with the superscript masked.

Households with masked EAs now located outside their original zip code, but inside their orig-

inal larger administrative area lrv are assigned the respective new zip code. As the overall

inclusion probability for a household is not affected by geomasking, direct estimates and cor-

responding variances for area-level aggregates l (corresponding in case of our experiment to

the 81 cantons in Costa Rica) and above remain the same. However, this does not hold for

area-level aggregates smaller than l. We describe the original survey attributes together with

the masked clusters as our geomasked survey Dgeo := Yzip, X2, . . . , Xm.

Through the displacement procedure, roughly 30% of the sampled EAs are assigned to a

new zip code, representing approx. 30% of the sampled individuals in each simulation round.
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4.2.2 Copula-based synthetic data generation

As an alternative to geomasking in the anonymization step, we use synthetically generated sur-

vey attributes for protecting the respondents’ privacy while keeping the true clusters. To do

so, we fit a Gaussian copula model on the transformed attributes denoted with X̃1, . . . , X̃m

of the original survey and sample from the learned joint distribution for each cluster individ-

ually with the original sample size nj . A copula allows to describe the dependence structure

- also called association structure - independently from the marginal distributions (also called

allocation structure). Several copula families are available. We focus on the Gaussian copula

that allows us to represent the association structure of random variables irrespective of their

true distribution through a multivariate standard normal distribution Patki et al. (2016). Since

we also assume the marginals to be normally distributed, which may certainly constitute a

mis-specification for some of the variables, we regard the results rather as a lower bound in

terms of goodness-of-fit. Further, a copula is uniquely defined only for continuous variables

Jeong et al. (2016), meaning that in principle, copulas cannot model non-continuous variables.

Since socio-economic surveys are largely made up of categorical variables, data transforma-

tion, e.g. via one-hot or frequency encoding, is needed. In addition, we impose constraints

on the marginals to account for censoring (e.g. to avoid negative synthetic age records) or

between-variable dependencies (e.g. female and male household members need to add up to

the total household size) via rejection sampling.

Thus, the process to generate synthetic data D̃syn from a survey dataset D̃true with trans-

formed categorical attributes X̃1, . . . , X̃m (details of the data transformation using frequency

encoding are described in Algorithms 3 and 4 in Section 4.4) using a Gaussian copula model

is summarized in Algorithm 2.

φΣ is the cumulative distribution function (cdf) of a multivariate normal distribution with

N (µ,Σ) and φm the cdf of a standard normal distribution. By fitting our model to the true

survey, it learns the parameters of both the allocation and association structure, i.e. of the

marginal distributions Ψ and the multivariate Gaussian copula CGΣ (u1, . . . , um) built on the

probability integral transforms u1, . . . , um. Based on these learned relationships, new synthetic

records ỹ{i} are sampled from the multivariate probability function cGΣ(u) using the inverse

probability integral transform for each component F−1
m (um) (cf. Janke et al. (2021)). Since we

sample in our experiment for each cluster individually to ensure a synthetic cluster-level sample

size of exactly nj , we use the parameters of a conditional multivariate normal distribution.

In case no conditions are applied, the scenario is simplified to drawing from a multivariate

standard normal distribution. We call the synthetic attributes Y2, . . . , Ym together with the true

cluster information Xzip our synthetic survey Dsyn := Xzip, Y2, . . . , Ym. Further details about

the copula-based synthetic data generation procedure can be found in the Section 4.4 and in

Nelsen (2007).

Figure 4.2 provides a first impression on the overall goodness-of-fit of the three different

survey datasets (cf. with the evaluation step in Figure 4.1). Specifically, Figures 4.2a - 4.2c

show the normalized Kullback-Leibler (KL) divergence ZKL for the survey attributes of Dtrue,

Dgeo and Dsyn from the true census attributes defined in this case for Dsyn as
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Algorithm 2: Synthetic survey: Copula-based synthetic data generation algorithm

Input D̃true = (X̃1, . . . , X̃m)
Output D̃syn = (Ỹ1, . . . , Ỹm), with Ỹ1 = X̃zip

for s ∈ D̃true do
Ψ← Estimated marginal distributions of X̃ with Ψm ∼ N (µ, σ2)
Σ← Estimated covariance matrix of Ψ
U ← F (Ψ) ; /* Probability integral transforms */

CGΣ (u1, . . . , um)← φΣ

(
φ−1

1 (u1), . . . , φ−1
m (um)

)
; /* m-dimensional

Gaussian copula */

for j ∈ D̃true,s do
for i← 1 to nj do

while ỹ{i} not meets constraints do
w ∼ N (µ̄, Σ̄) ; /* Conditional sampling */

ỹ{i} ← F−1
(
φ2(w2), . . . , φm(wm)

)
; /* Convert back to

original space */

end
end
D̃syn,j ← (Ỹ1 = k, ỹj) ∀ j ⊆ k ; /* Assign zip code k of the

respective cluster j */

end
end

ZKL(fm,k(Xm,k)||fm,k(Ym,k)) =
1

1 + δKL(fm,k(Xm,k)||fm,k(Ym,k))
, (4.2)

averaged across simulation runs for each attribute m and zip code k, respectively. In gen-

eral, the KL divergence δKL measures the difference between two probability distributions, in

this case between the census distribution and one of the survey datasets for a given attribute in a

given zip code. The better one distribution approximates the other, the smaller δKL. Therefore,

following Equation 4.2, values of the normalized KL divergence ZKL close to 1 indicate a high

goodness-of-fit.

Clearly visible is a gradient from the top left to the bottom right indicating that the overall

goodness-of-fit of the sample distributions improve the larger the underlying sample sizes and

the lower the number of classes per categorical attribute. We expect that high levels of sampling

variance usually associated with small samples may also lead to poor outcomes across multiple

simulation rounds irrespective the modelling approach. In addition, as expected, attributes

with high levels of non-response (visible through the white spots across the horizontal axis)

are stronger affected by sampling and anonymization compared to attributes with little or no

non-response.

To approach the utility-risk trade-off in (pseudo)-anonymized microdata, we define two

risk-related measures: a) the re-identification risk of a sensitive attribute in the original data

using the perturbed data, and b) the respondents’ re-identification risk, i.e. the population

uniqueness of the survey respondents.
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(b) Geomasked survey
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(c) Synthetic survey

Figure 4.2: Normalized Kullback-Leibler divergence (in bits) from the true census distri-
bution for each attribute and zip code, averaged across 100 simulation rounds.
The attributes on the y-axis are ordered by their respective number of classes, the zip codes on
the x-axis are ordered by their average sample size across simulation rounds. Values of ZKL
close to one (yellow) represent little divergence from the true census distribution and therefore
indicate a high goodness-of-fit. The number of attribute classes range from 2 to 111. Across
attributes and zip codes, the true survey scores best with ZKL = 0.76 in total, followed by the
synthetic survey with ZKL = 0.74 and the geomasked survey at ZKL = 0.73.

4.2.3 Risk of re-identifying private geocodes

To investigate the first shortcoming mentioned in Section 4.1, we define our first risk-related

measure: the re-identification risk of a sensitive attribute in the original data using the perturbed

data. In our experiment, we therefore train a random forest model on the small area identifier

- the zip code - in the anonymised surveys for each stratum separately. Across the generated

sample surveys, the sample sizes by zip code range from 24 to 715 units with mean of 81 and

median of 45. We use the trained models on the original data to predict the zip code for each

record. We call the ‘No Zip Code’ survey with the predicted zip codes X̂zip as ‘Re-identified’

survey Dre := (X̂zip, X2, . . . , Xm) in the following. Finally, we evaluate our predicted label

against the original label. In addition, we compare the outcomes to randomly guessing the

correct label in order to account for the number of small areas within each stratum. Figure 4.3

shows the median accuracy of the approaches across 100 simulation runs. While we are able to

successfully re-construct the original zip code in most cases for the geomasked survey, it does

not work much better for the synthetic data than for the random guess.

In our experiment, only one stratum consequently hosts more than ten small areas across

all simulation runs, with one stratum hosting only two small areas in some simulation runs,

giving the random guess also a good chance to predict correctly. Recalling that roughly 70%

of the displaced clusters stay within the same zip code in the geomasked survey, even pre-

dicting the sensitive attribute for strata hosting as little as two small areas, average population

uniqueness in the synthetic data would not exceed much the 50/50-chance of the random guess,

thus providing better privacy protection in the re-identified original survey than the geomasked

alternative.
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Figure 4.3: Re-identification of the zip code as private attribute in the true survey for each
stratum across 100 simulation runs.
Accuracy is measured by the share of successfully re-identified zip code labels in the true sur-
vey. A random forest model is trained on perturbed data, i.e. the geomasked and the synthetic
survey, respectively. We evaluate the results against the true zip code labels in the true survey
and compare them against random guesses of the private attribute.

4.2.4 Population uniqueness of survey respondents

Concerning the respondents’ re-identification risk, we define population uniqueness Ξt as the

share of survey respondents being unique in the population for a given (sub-)set of attributes in

Dtrue,Dno,Dgeo,Dsyn andDre, respectively. Similar to algorithm 2, we denote the subsets with

D′(t), t with 1 ≤ t ≤ m being the number of attributes used for calculating the population

uniqueness.

Ξt =
1

n

n∑
i

1i(t) with 1i(t) =

1, ifi(t) ∈ D′(t) unique in population

0, otherwise.
(4.3)

Figure 4.4 shows how Ξt changes with the increasing number of attributes t across 100

simulation runs. We kept the order of attributes constant across simulations to improve compa-

rability.

Naturally, the share constantly increases for the true survey with more attributes being

available to distinguish between the respondents. For example, there might be 100 women in a

country, but likely just one aged 45 with poor eyesight and four children in a specific zip code.

For the geomasked survey, the population uniqueness increases to a level of roughly 70%.

Recalling that the only difference between the geomasked survey and the true survey is the per-

turbed zip code, the remaining 30% corresponds to the average number of survey respondents

assigned to a new zip code due to the spatial anonymization process. Thus, not considering

the zip code (i.e. the ‘No Zip Code’ setting) lets the population uniqueness of the geomasked

survey also converge towards 1 similar to the true survey, even though at a slower rate, which

means knowledge on additional attributes is required to compensate for the lack of geographic

stratification via the zip code. For the synthetic survey, the curve remains almost flat. The

initial bump can largely be explained by the probability of a random combination of attributes

representing an actual population unique in a small (area) sample size setting. Therefore, Fig-
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Figure 4.4: Population uniqueness across survey types.
Share of population-unique survey respondents for 100 simulation runs with a given number
of attributes. Geographic identifiers are considered as part of the set of attributes. The thick
lines represent the average population uniqueness across the 100 simulation runs, the thin lines
individual simulation runs. In the true survey, no attribute is perturbed. In the geomasked sur-
vey – the benchmark dissemination strategy in this study –, the zip code identifier is perturbed.
The ‘No Zip Code’ survey corresponds to the true survey, but lacks the geographic identifiers
below the strata level. Together with the synthetic survey, where all attributes but the zip code
identifier are perturbed, it represents the proposed microdata dissemination strategy. In the
re-identified survey, the synthetic survey is used to predict the "private" attribute – i.e. the zip
code – in the ‘No Zip Code’ dataset as part of a staged inference attack on the proposed micro-
data dissemination strategy. Both the re-identified and the synthetic survey provide significant
privacy gains vis-à-vis the other survey types.

ure 4.4 gives a strong indication that geomasking provides little additional safeguards for the

respondents’ privacy compared to the true survey in the presence of third-party information on

a subset of the contained attributes.

Besides this theoretical argument, synthetic data always provides plausible deniability to

the survey respondents. Similarly to our definition, Rocher et al. (2019) use a Gaussian copula

model to estimate the empirical likelihood of population uniqueness in incomplete datasets

such as D by assuming Ξt ∼ Binomial(1i(t), n) with ∀i(t) ∈ D′(t) i.i.d.. While this approach

is an excellent alternative to measure the re-identification risk in micro-level survey data when

no validation data (in our experiment the 2011 Costa Rican census) is available, it assumes that

the individual records are independent and identically distributed, which may be contestable in

the presence of hierarchical dependencies and complex sampling designs.

4.2.5 Utility for survey augmentation

To give an indication about the utility of the different anonymization approaches or survey data

augmentation, we use a setup common in recent academic literature (cf. Pokhriyal and Jacques

(2017); Leasure et al. (2020); Schmid et al. (2017)): we augment the surveys with auxiliary in-

formation from geospatial (big) data. Specifically, we construct zip code-level aggregates from

gridded satellite-derived features available from the WorldPop repository (WorldPop, 2018)

and combine them with zip code-level survey aggregates to provide predictions, especially for

areas not sampled in the survey. As our target variable, we select the Unsatisfied Basic Needs

index (Necesidades Básicas Insatisfechas (NBI)) - a composite indicator similar to the mul-
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tidimensional poverty index (MPI) (Méndez and Bravo, 2011; Alkire et al., 2019) used as a

key statistical indicator in Costa Rica. Details on the index can be found in the Supplementary

Information. We evaluate our predictions against the census in terms of adjusted R2, bias and

the Mean Squared Error (MSE). Figures 4.5a - 4.5c show the performance along these three

evaluation criteria across 100 simulation runs.
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Figure 4.5: Performance metrics of survey-based NBI estimates on the zip code-level.
(a) Adjusted R2 is based on the in-sample zip codes. (b) and (c) are based on the full sample
and predictions are evaluated against the census across 100 simulation runs. (d) compares zip
code-level NBI averages for a single simulation run.

Surprisingly, the synthetic approach not only outperforms the geomasked survey, it also

provides predictions more in line with the census results than the true survey. A possible

explanation could be that the copula approach reduces the impact of outliers on the zip code-

specific NBI sample averages. This explanation is supported by Figure 4.5d that shows the

distribution of zip code-level NBI averages grouped into quartiles for one simulation run as both

the synthetic survey and the census showcase smaller tails in their distributions, respectively.

We run additional experiments to compare the directly synthesized NBI and its underlying

indicators with their counterparts computed from synthetic survey variables (see Supplemen-

tary Table B.2 and Supplementary Fig. B.5 in the Supplementary Information).
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4.3 Discussion

In this paper, we proposed and evaluated an alternative data dissemination strategy for micro-

level survey data that improves the trade-off between privacy risk and data utility. Specifically,

we showed that by publishing two datasets, namely the original survey data with limited geo-

graphic identifiers and a synthetically-generated survey dataset with the true cluster locations,

re-identification risks can be reduced significantly vis-à-vis popular geomasking approaches

without incurring additional losses in terms of data utility for survey augmentation. This could

help mapping initiatives such as WorldPop or GRID3 to improve their products as more ac-

curate spatial data is available. In addition, by separating the marginals from the dependence

structure, it provides data producers such as National Statistical Offices also with a useful tool

to update the respective synthetic microdata files for the following years by updating the mar-

gins with nationally representative new data as sub-nationally representative surveys may only

be conducted every few years. In the Supplementary Information, we further investigate the

stability of our results by alternating the experiment design.

First, while we chose the strata for the main analysis as they provide ‘large-enough’ sample

sizes at the same time explicitly accounting for at least high-level regional variation, we study

in further experiments whether fitting on smaller or larger geographic levels may better capture

local variation at the expense of running into the risk of small sample problems or vice versa.

Supplementary Fig. B.2 summarizes the results for our copula model being fitted on the whole

survey, the twelve strata and the zip code-level, respectively. It shows that by selecting the

strata as our fitting level, we strike a balance between the underlying sample size (usually the

larger the better) and capturing regional variation (usually the more disaggregated the better)

both in terms of utility and risk. In addition, by using subsets of the full microdata for model

fitting, the approach becomes computationally tractable also for larger surveys.

Second, since generative models allow us to sample an arbitrary number of synthetic ob-

servations, we look at the impact of the synthetic sample size on the outcomes of the survey

augmentation experiment, notably the adjusted R2 and a measure of confidence in the direct

survey estimates of the Fay-Herriot model (cf. Section 4.4.2) - the shrinkage factor γ. Supple-

mentary Fig. B.3 shows that with an increasing sample size, γ increases as well, thus shifting

more weight to the direct estimate. Even though intuitive as the sampling variance naturally

decreases in n, at some point it may become misleading with potentially negative effects on the

model performance as the synthetic data generating process still relies on the same information

conveyed in the true survey with sample size n. However, in our experiment the adjusted R2

does not exhibit a bump, but increases monotonically, thus hinting at little additional explana-

tory power of our satellite-derived covariates vis-à-vis the area-level direct survey estimate for

the in-sample areas.

Third, since our target variable NBI is a composite indicator, we compare the different

composition levels of the synthetic NBI with the NBI constructed from synthetic data. While

the divergence measure shows an overall good fit for the underlying indicators (see Supplemen-

tary Table B.2 and Supplementary Fig. B.5), correlations are low, especially for higher-level

compositions as the dimensions or the NBI itself.

Lastly, we test alternative encoding schemes for the transformation of categorical data.
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Also, we relax our assumption of the normally distributed margins by opening up to a wider

group of parametric copulas (such as beta, gamma or uniform distributions) selected for each

margin individually based on the two-sample Kolmogorov-Smirnov (KS) statistic to study the

effect of the specification choice on the normalized KL divergence. Supplementary Fig. B.4

shows that neither the encoding scheme nor the specification of the marginal distributions have

large effects on the quality of the synthetically generated data.

Nevertheless, our approach is not without limitations. As synthetic data generation is in

its essence a modelling task by creating an abstract representation of the underlying data, sim-

ilar rules of thumb apply: a) a model is as good as its underlying data – if the sample is

partially skewed due small (class-specific) sample sizes or high levels of non-response, they

model might reproduce this skewedness and b) composite indicators have to be treated with

care as decomposability of the predictions is not necessarily guaranteed unless explicitly mod-

elled that way. The copula-based approach towards synthetic data generation largely fails to

correctly capture lower-level hierarchical relationships such as individuals - line numbers -

households - houses from the original data. As said before, since we see our analysis us-

ing a naïve Gaussian copula model as providing somewhat a lower bound for improving the

utility-risk trade-off by adopting the proposed microdata dissemination strategy vis-à-vis com-

mon geomasking approaches, there is much room for improvement. To name a few, latent

copula designs can be considered to avoid data transformations, marginal distributions can be

modelled non-parametrically, hierarchical structures can be accounted for more rigorously by

either modelling the hierarchies separately as suggested by Templ (2017) or by modelling the

relationships explicitly. In addition, synthetic data may - under some circumstances - leak pri-

vate information, e.g. through the generated value ranges. As a response, differentially-private

implementations of existing generative models have been proposed such as PrivBayes (Zhang

et al., 2017), PrivSyn (Zhang et al., 2021) and PATE-GAN (Jordon et al., 2019). That said, it is

important to point out that microdata irrespective of the selected dissemination strategy, cannot

be considered fully anonymous, but rather pseudonymous, thus requiring the data publisher

(e.g. the National Statistical Office) to conduct data protection impact assessments before re-

lease – depending on the respective jurisdiction. Lastly, as with most empirical research, it

would be interesting to apply the proposed dissemination strategy to other contexts/countries.

4.4 Methods

4.4.1 Fitting Gaussian copulas to survey attributes

As an alternative to geomasking, we use synthetically generated survey attributes for pro-

tecting the respondents’ privacy while keeping the true point locations of the selected clus-

ters. To do so, we fit a Gaussian copula model on the transformed survey attributes from

D̃true and sample from the learned joint distribution for each cluster individually with the

originally sample size nj . Therefore, consider our survey D̃true, where X̃1 represents a ran-

dom variable with a continuous marginal cumulative distribution function (cdf) denoted by

F1(x̃1) = P (X̃1 ≤ x̃1). For the multivariate case, the joint cdf for D̃true can be generalized to

F1,...,m(x̃1, . . . , xm) = P (X̃1 ≤ x̃1, . . . , X̃m ≤ x̃m).
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A copula, firstly introduced in the work of Sklar (1959), is a cumulative density function

with uniform marginals between [0,1]. Thus - based on Sklar´s theorem (Sklar, 1959) - when

all variables are continuous, the m-dimensional random vector X̃1, . . . , X̃m can be defined in

a uniform space [0, 1]m, creating a random vector U1, . . . , Um via the respective probability

integral transforms, e.g. um = Fm(xm). In this case, a unique m-dimensional copula C(u)

exists:

C(u) = F
(
F−1

1 (u1), . . . , F−1
m (um)

)
. (4.4)

As motivated in Section 4.2.2, we account for the fact that household surveys largely consist of

categorical variables by applying data transformation. Among the plethora of possible encod-

ing schemes, the most common encoding scheme is one-hot encoding, where for each class of

a categorical variable a binary dummy variable is created (Benali et al., 2021). A disadvantage

of this option is that it may become computationally challenging and prone to multicollinear-

ity in the presence of variables with a high cardinality, i.e. with a large number of classes,

since each possible class creates a new variable (Bourou et al., 2021). Interestingly, there is

– to the best of our knowledge – little comprehensive, comparative and conclusive scientific

evidence on the properties and performance of different categorical encoding schemes. There-

fore, we explore two other well-known alternatives with more favourable computation times:

ordinal and frequency encoding. Ordinal encoding uses integers to represent each class in a

categorical variable. Assigning an unreal order to nominal variables is the main pitfall of this

alternative (Jiang et al., 2020). Frequency encoding – as used in medical imaging (Mansfield

and Maudsley, 1977) and similar to the concept of term frequency in Natural Language Pro-

cessing (Aizawa, 2003) – assigns an interval in [0,1] to each class based on and ordered by its

proportion of occurrence. Then, it uses the middle point of each interval as float representative

of the respective class. Back-transformation is done by assigning a new point to a class via

the respective interval it falls into. In this sense, this alternative conveys information of the

importance of each class (Sabharwal and Agrawal, 2021) without increasing the number of at-

tributes. Based on the results of the different encoding schemes shown in Supplementary Fig.

B.4, we opt for the frequency encoding scheme in the following. Consequently, we denote the

subset of continuous attributes with P and the subset of non-continuous attributes that require

data transformation with Q. Algorithms 3 and 4 provide details on the chosen scheme.
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Algorithm 3: Transform cate-

gorical variables
Input Dtrue = (X1, . . . , Xm)

Output D̃true = (X̃1, . . . , X̃m)

for Xm ∈ Dtrue do
if Xm is Continuous then

X̃p ← Xm

end
if Xm is Non-continuous then

X̃q ← T(Xm)

end
end
D̃true ← (X̃p, X̃q) ∀p ∈ P, q ∈
Q and with m = p+ q

Algorithm 4: Back-transform

frequency encoded variables

Input D̃syn = Ỹ1, . . . , Ỹm)

Output
Dsyn = (Xzip, X2, . . . , Ym)

for Ỹm ∈ D̃true do
if Ỹm is indexed as variable in

P then
Ym ← Ỹm

end
if Ỹm is indexed as variable in

Q then
Ym ← T−1(Ỹm)

end
end
Dsyn ← (Xzip, Y2, . . . , Ym) with

Y1 = Xzip

Thus, the m-dimensional Gaussian copula CGΣ (u) is defined as the cdf of a multivariate

normal distribution N (µ,Σ) with Σ ∈ Rm×m represented on the unit cube [0, 1]m:

CGΣ (u1, . . . , um) = φΣ

(
φ−1(u1), . . . , φ−1(um)

)
. (4.5)

The density of a Gaussian copula is then defined as:

cGΣ(u) =
1√

det Σ
exp
(
− 1

2
φ−1(u)T · (Σ−1 − I) · φ−1(u)

)
. (4.6)

with u ∈ [0, 1]m, I ∈ Rm×m being the identity matrix, and φ−1 being the inverse cu-

mulative distribution function of a standard normal distribution. Σ is a positive semi-definite

covariance matrix that we estimate based on Pearson’s correlation coefficient ρ (Li et al., 2014).

As noted in Section 4.2.2, we sample for each cluster individually with a sample size of

nj . While rejection sampling could be an option for ensuring only synthetic rows with the

respective cluster identifier are selected, it proves computationally inefficient. With copulas

being multivariate cdfs, we introduce conditions instead. Hence, we sample from a multivari-

ate normal distribution conditional on cluster j. Thus, our transformed dataset D̃true with one

conditional variable becomes D̃true = (X̃a|X̃b) with X̃a := X̃2, . . . , X̃m being the transformed

attributes to be synthesized and X̃b := X̃1 being the transformed cluster identifier. The param-

eters of the respective multivariate normal distributions are thus partitioned into:

D̃ =

X̃a

X̃b

 ,xµ =

µa
µb

 andxΣ =

Σaa Σab

Σba Σbb

 (4.7)

with µa ∈ Rm−1 and µb ∈ R1 and Σaa ∈ R(m−1)×(m−1), Σab ∈ R(m−1)×1, Σba ∈
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R1×(m−1), and Σbb ∈ R1×1 being the means and positive semi-definite covariance matrices,

respectively. Following Algorithm 2, the parameters of our estimated marginal distributions Ψ

and of the copula CGΣ (u) need to be adapted to mirror the conditionality such that Ψa|b(X̃a|X̃b)

and CGΣ (ua|ub).

Consequently, we sample from ∼ N (µ̄, Σ̄) with:

µ̄ = µa + ΣabΣ
−1
bb (Xb − µb) ∈ Rm−1 (4.8)

and

Σ̄ = Σaa − ΣabΣ
−1
bb Σba ∈ R(m−1)×(m−1). (4.9)

We iterate the copula-based fitting and sampling procedure for every stratum separately

as it allows to better capture sub-national variation using representative sub-samples and as

it proves computationally more tractable. For sampling designs with varying household- or

individual-level inclusion probabilities (e.g. in the DHS, women - in comparison to men - are

usually oversampled), Templ (2017) suggests to sample a synthetic population and re-iterate

the sampling procedure to produce valid synthetic sampling weights. As in our design sam-

pling weights are identical across households for a given PSU due to the systematic sampling

approach in the second stage, the original sampling weights remain valid. The virtue in our

model choice is the relative simplicity, little requirements in terms of ex-ante knowledge about

the individual distributions X̃m and its computational efficiency. For further experiments on

the robustness and sensitivity of our modelling choices, we refer to the Supplementary Infor-

mation.

4.4.2 Area-level survey augmentation methods

Survey data can be augmented with the use of area-level models, e.g. the Fay-Herriot model

(Fay and Herriot, 1979) by linking direct estimators gathered from survey data to relevant aux-

iliary information. Both, direct estimators, and auxiliary data are aggregated on k areas. Tradi-

tionally, these auxiliary covariates xk are obtained from recent censuses, administrative records

or other geospatial (big) data sources. In this paper, we make use of satellite imagery features

as area-level covariates. The Fay-Herriot is a two-level model, the first part is composed by the

sampling model:

θ̂Dir
k = θk + ek, ek ∼ N(0, σ2

ek
), (4.10)

where the sampling error is represented by ek and θ̂Dir
k is the direct estimator of θk (e.g.

sample mean). The linking model provides the second part, where relevant area-level covariates

are considered:

θk = x′kβ̂ + uk. (4.11)

Here, the random area effects uk are assumed to be independent with mean 0 and variance

σ2
u. The empirical best linear unbiased predictor (EBLUP) estimator is given by:
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θ̂FH
k = γkθ̂

Dir
k + (1− γk)x′kβ̂ = x′kβ̂ + ûk, ............ (4.12)

with γk = σ̂2
u

σ̂2
u+σ̂2

ek

denoting the shrinkage factor for each area k. The parameter estimates of

this model can be obtained via maximum likelihood (ML) or restricted ML (REML). Note that

the shrinkage factor allows to weight in favor of the direct estimator when sampling variances

are small; on the contrary the synthetic estimator x′kβ̂ receives more weight when the sampling

variance is larger. Results on an experiment studying the sensitivity of the shrinkage factor and

adjusted R2 for varying synthetic sample sizes are shown in Supplementary Fig. B.3. Further

details on the Fay-Herriot model can be found in Rao and Molina (2015).
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Supplementary material B

B.1 Data description

As our reference dataset in this project, we use data from Costa Rica – notably the Xth Popula-

tion and VIth Housing Census of Costa Rica, 2011 (Censo Nacional de población y Viviendas

de Costa Rica 2011) – to produce three different data file types: First, we draw survey samples

from a census population using a stratified two-stage cluster sample design without applying

any statistical disclosure control mechanisms. We use these survey samples (called true surveys

in the study) as starting point for creating file types two and three: By re-assigning clusters to

new zip codes based on the displacement algorithm described in Algorithm 1 , we perturb the

zip code identifier in the true surveys, thereby creating the geomasked surveys. Again based

on the true surveys, we apply the copula-based synthetic data generation algorithm described

in Algorithm 2 to generate synthetic data for each attribute except the zip code, which keeps it

original structure. In addition, in order to test the robustness of our specifications, we create ad-

ditional datasets with alternating data generating process designs. The censuses are carried out

every ten years by the national statistic office of Costa Rica (INEC) and collect information of

people, households, and dwellings on topics such as access to education, employment, social

security, technology necessary for the planning, execution, and evaluation of public policies

(Méndez and Bravo, 2011).

Administratively, Costa Rica had in 2011 four disaggregation levels: two zones, six plan-

ning regions, 81 cantons and 473 districts (municipalities). The sampling design used for the

main National Household Survey (Encuesta Nacional de Hogares, ENAHO) specifies twelve

strata - each planning region divided by urban and rural areas. In this case, the strata coincide

with the study domains. Supplementary Fig. B.1 shows the highest level of disaggregation

(districts) of Costa Rica, with the 12 strata since are the disaggregation levels used in this

paper.

For our experiment, we use a 10% random sample of the original 2011 census, which can

be obtained from INEC (2022) as a pseudo-population. The smallest geographical information

available in this dataset are the 473 districts. In the first stage, we select districts as our PSUs

for each stratum separately with a selection probability proportional to population size. In the

second stage, we select a minimum of 10 households in each PSU by using simple random

sampling without replacement. PSUs with less than 10 households are discarded from this

procedure, affecting roughly 4% of all PSUs.

As auxiliary information, we use covariates derived from satellite imagery. Specifically,
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Strata

Región  Brunca Rural
Región  Brunca Urbano
Región  Huetar Atlántica Rural
Región  Huetar Atlántica Urbano
Región  Huetar Norte Rural
Región  Huetar Norte Urbano
Región  Pacífico Central Rural
Región  Pacífico Central Urbano
Región Central Rural
Región Central Urbano
Región Chorotega Rural
Región Chorotega Urbano

Figure B.1: Administrative disaggregation of Costa Rica. Overlay of 473 districts (zip codes)
and 12 strata from the Xth Population and VIth Housing Census of Costa Rica, 2011.

NC nD # of all PSUs # of PSUs in D # of attributes

427830 [7638; 11914] 767 123 106

Table B.1: Descriptive statistics on the census-derived data across 100 simulation runs

we use features derived from satellite imagery provided by WorldPop (2018) in our survey

augmentation setup. The advantages of using satellite imagery here are five-fold: Data with

virtually global coverage at high spatial resolutions for frequent time intervals on human-made

impact provided in a structured format enables us to extract covariates for all administrative

areas in Costa Rica at the time of the census. Therefore, we can use area-level survey aug-

mentation (cf. Methods Section) to provide estimates, especially for areas not covered by the

respective survey. WorldPop data are provided in the tagged image file format (TIFF) with a

pixel representing roughly a 100m× 100m grid square in an open data repository under CC4.0

licence (WorldPop (2018)). Pixel values are aggregated to the administrative areas of Costa

Rica via their centroids. Specifically, we generate area-level averages for the distances to dif-

ferent types of natural areas (e.g. cultivated, woody-tree, and shrub areas, coastlines etc.) and

to infrastructure such as roads and waterways, the intensity of night-time lights, topographic

information and information on the presence of human settlements.

B.2 Sensitivity of copula vis-à-vis geographic fitting level

In order to study the effect of the geographic level on the copula modelling performed for

synthetic data generation, we run Algorithm 2 on the whole survey (‘Country), the twelve strata

(‘Strata’) and the roughly 110 zip code areas (‘Zip Code’), respectively. Results are provided

in Supplementary Fig. B.2. It appears that fitting the copula model on the whole survey limits
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the ability of the approach to capture regional variations. On the other hand, model fitting on

the zip code-level does neither increase the re-identification risk of the zip code identifier as

a private attribute and nor affect the overall prediction performance of the outcome variable,

hinting at overfitting not being a problem on that level. Striking a balance between underlying

sample size and a certain level of disaggregation shows better results. Also, it allows to scale

computations to settings with larger samples and more attributes.
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Figure B.2: Evaluation metrics for different geographical copula fitting levels.
(a) - (c) The copula model is fitted on the whole survey (‘Country’), for each of the twelve strata
(‘Strata’) and for each of the roughly 110 zip codes (‘Zip Code’) separately. As a reference,
the metrics for the geomasked and the true survey are provided as well. (d) The accuracy to
successfully re-identify the zip code as a private attribute in the original data using a random
forest model trained on synthetic data across fitting levels remains similar. (e) The share of
population-unique survey respondents is virtually not affected by the copula fitting level.

B.3 Effects of synthetic sample size on prediction outcomes

Generative models can be used to create synthetic samples of an arbitrary size regardless the

amount of underlying data. While the advantages of that are similar to those of other resampling

procedures such as bootstrapping (i.e. to estimate the precision of the sample statistics or

to perform cross-validation), it can also mislead modelling approaches that ‘borrow strength’

from auxiliary data by overestimating the strength of the synthetic direct estimates eventually

resulting in losses of explanatory power of the model. In our survey augmentation setup, the

shrinkage factor γ indicates whether final estimates rather rely on the direct estimates from the

synthetic survey or on the satellite-derived covariates for the in-sample predictions depending

on the sampling variance. Supplementary Fig. B.3 shows that larger sample sizes lead to
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increasing gamma values (via decreasing sampling variances of the direct estimator), however,

not incurring losses in the goodness-of-fit of our estimation model. This hints at the fact that

the contribution of the auxiliary information to the explanatory power of the model for the

in-sample predictions is negligible.

Figure B.3: Sensitivity of model performance on changes in synthetic sample size.
Samples are drawn from a synthetic population. The synthetic population is generated using the
copula-based approach described in the Results Section. Sample sizes are determined by the
sampling rate (shown on the x-axis). Results are evaluated against the true census population.
The shrinkage factor γ is averaged across zip codes. The thick lines represent the metric
averages across the 100 simulation runs, the thin lines individual simulation runs.

B.4 Choosing marginal distributions & encoding schemes

As already mentioned in the Results section, assuming normally-distributed margins may rep-

resent a misspecification of the true univariate distribution of Xdm. In addition, computa-

tionally tractable alternatives to one-hot encoding exist. We compare two different ways to

model the marginal distributions together with two different encoding schemes. The results

are presented in Supplementary Fig. B.4. Measured by the normalized KL divergence aver-

aged across 100 simulation runs, frequency encoding produces slightly better goodness-of-fit

of the synthetic data (ZKL = 0.74 for frequency encoding versus ZKL = 0.72 for ordinal

encoding with gaussian marginals). Surprisingly, the naïve assumption of normally distributed

marginals outperforms the KS-based parametric marginals with ZKL = 0.74 and ZKL = 0.70,

respectively.
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Figure B.4: Effect of encoding schemes and marginal distribution choice on the overall
goodness-of-fit of the synthetic data measured by the normalized KL divergence ZKL (in
bits).
The attributes on the y-axis are ordered by their respective number of classes, the zip codes on
the x-axis are ordered by their average sample size across simulation rounds. Values close to
one (yellow) represent little divergence from the true census distribution and therefore indicate
a high goodness-of-fit.

B.5 Detailed analysis of the NBI as composite indicator

The NBI is a composite indicator computed from approx. 20 underlying survey variables

grouped into four dimensions (i.e. access to decent housing (Acceso albergue digno), access

to a healthy life (Acceso a vida saludable), access to knowledge (Acceso al conocimiento) and

access to other goods and services (Acceso a otros bienes y servicios)) using 19 indicators in

total. All indicators and dimensions are binary (yes/no). An identified need in one of the indi-

cators leads to a positive needs status in higher dimensions. The sensitivity for false positives

is thus assumed to be high for the NBI as a small change (e.g. one year age difference) in one

of the 19 underlying variables can turn a NBI-negative to a NBI-positive survey respondent.

Generally, two strategies for computed indicators exist to create synthetic counterparts: a)

directly synthesize the computed indicators or b) re-construct the indicator based on synthetic

survey variables. While the former is more likely to reflect the original distribution, it may not

be consistently decomposable into its underlying indicators; vice-versa holds for the latter. The

strength of these effects are largely determined by the complexity and sensitivity of the com-
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posite indicator and the overall goodness-of-fit of the synthetic data. Thus, if both approaches

produce similar compositions, it can be regarded as a strong indication that the underlying syn-

thetic data also successfully captures relationships across multiple variables in the dataset, not

only the composite index. Supplementary Table B.2 shows that this not fully holds for the NBI.

Indicators # of indicators Pearson’s ρ ZKL Incidence

1.x 5 0.42 0.99 100

Dimension 1 0.24 0.98 647

2.x 5 0.22 0.98 85

Dimension 2 0.19 0.98 455

3.x 2 0.02 0.89 507

Dimension 3 0.02 0.84 1845

4.x 7 0.02 0.99 60

Dimension 4 0.03 1.00 622

Composite NBI 19 0.07 0.97 3253

Table B.2: Relationship between synthetic and computed NBI indicators across 100 sim-
ulation runs.
Indicator-level results (e.g. 1.x) are averaged across indicators. The incidence describes the
average number of respondents across 100 simulated surveys with unsatisfied needs in the re-
spective indicator/dimension.

Although the overall number of survey respondents with unsatisfied needs are captured

with a high accuracy as measured by the normalized KL divergence ZKL for binary data, the

NBI status on the individual level strongly diverges following Pearson’s ρ (cf. Supplementary

Table B.2). Supplementary Fig. B.5 shows that the lack of linear correlation is mainly due to

improperly captured relationships in the underlying variables than in the synthetic NBI as the

former is outperformed by the latter for survey augmentation expressed in terms of adjusted

R2, bias and MSE. However, it remains on par with the geomasked survey at lower privacy

risks.
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Figure B.5: Performance of the synthetic vs. computed composite NBI.
(a) - (c) show of the different survey types in our survey augmentation experiment across 100
simulation runs. (d) shows the densities of the composite NBI by quartiles for one simulation
run.

B.6 Stability of anonymization approaches across simulation runs
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Figure B.6: Stability of normalized KL divergence for 50 and 100 simulation rounds
Normalized Kullback-Leibler divergence (in bits) for the true, geomasked and synthetic survey
from the true census distribution for each attribute and zip code, averaged across 100 (B.6a -
B.6c) and 50 (B.6d - B.6f) simulation rounds, respectively. The attributes on the y-axis are
ordered by their respective number of classes, the zip codes on the x-axis are ordered by their
average sample size across simulation rounds. The results give strong indication that the results
across 100 simulation rounds can be considered stable.
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Abstracts in English

Abstract: Updating Intercensal Health Indicators for Small Areas using the R
Package spree

Due to the growing need to obtain quality estimates for small domains, several small area es-

timation models have been proposed. Most of these models require the use of census data,

which in many cases are collected only every 10 years. Structure preserving estimation meth-

ods provide a solution to produce updated population characteristics by domains of interest

in non-census years. In this paper, health indicators of the multidimensional poverty index of

Costa Rica are estimated for planning regions and cantons from 2012 to 2017 using structure

preserving estimation methods. Furthermore, this work shows how the process to update these

indicators in non-census years is carried out with the help of the R package spree. This pack-

age permits the use of different structure preserving estimation methods to produce point and

uncertainty estimates via parametric bootstrap. In addition, the user is provided with tools to

prepare the data sets as needed for the updating process, and to compare different methods in a

visual way.

Keywords: structure preserving estimation, official statistics, small area estimation, multidi-

mensional poverty

Abstract: Small Area Estimates of Poverty Incidence in Costa Rica under a Struc-
ture Preserving Estimation (SPREE) Approach

Obtaining reliable estimates in small areas is a challenge because of the coverage and period-

icity of data collection. Several techniques of small area estimation have been proposed to pro-

duce quality measures in small areas, but few of them are focused on updating these estimates.

By combining the attributes of the most recent versions of the structure preserving estimation

methods, this paper proposes a new alternative to estimate and update cross-classified counts

for small domains, when the variable of interest is not available in the census. The proposed

methodology is used to obtain and update estimates of the incidence of poverty in 81 Costa

Rican cantons for six postcensal years 2012 - 2017. As uncertainty measures, mean squared

errors are estimated via parametric bootstrap, and the adequacy of the proposed method is as-

sessed with a design-based simulation.

Keywords: extreme poverty, intercensal updating, small area estimation, log-linear models
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Abstract: Intercensal Updating using Structure Preserving Methods and Satellite
Imagery

Censuses are fundamental building blocks of most modern-day societies, yet collected every

ten years at best. We propose an extension of the widely popular census updating technique

structure preserving estimation by incorporating auxiliary information in order to take ongoing

subnational population shifts into account. We apply our method by incorporating satellite

imagery as additional source to derive annual small-area updates of multidimensional poverty

indicators from 2013 to 2020 for a population at risk: female-headed households in Senegal.

We evaluate the performance of our proposal using data from two different census periods.

Keywords: multidimensional poverty, official statistics, small area estimation, SPREE

Abstract: Releasing Survey Microdata with Exact Cluster Locations and Addi-
tional Privacy Safeguards

Household survey programs around the world publish fine-granular georeferenced microdata

to support research on the interdependence of human livelihoods and their surrounding envi-

ronment. To safeguard the respondents’ privacy, micro-level survey data is usually (pseudo)-

anonymised through deletion or perturbation procedures such as obfuscating the true location

of data collection. This, however, poses a challenge to emerging approaches that augment sur-

vey data with auxiliary information on a local level. Here, we propose an alternative microdata

dissemination strategy that leverages the utility of the original microdata with additional pri-

vacy safeguards through synthetically generated data using generative models. We back our

proposal with experiments using data from the 2011 Costa Rican census and satellite-derived

auxiliary information. Our strategy reduces the respondents’ re-identification risk for any num-

ber of disclosed attributes by 60-80% even under re-identification attempts.

Keywords: generative models, statistical disclosure control, geomasking, copula, official statis-

tics, satellite imagery

Kurzzusammenfassungen auf Deutsch

Zusammenfassung: Kleinräumigen Aktualisierung von Gesundheitsindikatoren
mit Hilfe des R Pakets spree

Aufgrund der zunehmenden Notwendigkeit qualitativ hochwertige Schätzungen für kleine Re-

gionen zu erhalten, werden vermehrt Small-Area-Methoden vorgeschlagen. Die meisten dieser

Modelle erfordern die Verwendung von Zensusdaten, die in vielen Fällen nur alle 10 Jahre

erhoben werden. Structure PREserving Estimation Methoden bieten eine Lösung, um aktua-

lisierte Bevölkerungsmerkmale bestimmter Gruppen oder Regionen in den Jahren nach der

Volkszählung zu erstellen. In dieser Arbeit werden Gesundheitsindikatoren des multidimensio-

nalen Armutsindexes von Costa Rica für Planungsregionen und Kantone von 2012 bis 2017 mit

Structure Preserving Estimation Methoden geschätzt. Darüber hinaus zeigt diese Arbeit, wie

der Prozess zur Aktualisierung dieser Indikatoren in den Jahren nach der Volkszählung mit dem

R Paket spree durchgeführt werden kann. Dieses Paket ermöglicht die Verwendung verschiede-
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ner strukturerhaltender Schätzmethoden zur Erstellung von Punkt- und Unsicherheitsschätzer

mittels parametrischer Bootstraps. Des Weiteren werden Funktionen zur Verfügung gestellt,

die den Anwender unterstützen, die für den Aktualisierungsprozess erforderlichen Datensätze

vorzubereiten und verschiedene Methoden visuell zu vergleichen.

Schlüsselwörter: Structure Preserving Estimation Methoden, amtliche Statistik, kleinräumige

Schätzung, multidimensionale Armut

Zusammenfassung: Kleinräumige Schätzungen der Armutsquote in Costa Rica
mit Structure Preserving Estimation (SPREE) Methoden

Die Erstellung zuverlässiger Schätzungen von kleinräumigen Indikatoren ist aufgrund des Er-

fassungsumfangs und der Periodizität amtlicher Datenerhebung eine Herausforderung. Ver-

schiedene Methoden, wie Indikatoren in kleine Gebieten zuverlässig geschätzt werden können,

werden in der Literatur vorgeschlagen aber nur wenige fokussieren die Aktualisierung von

Schätz. Durch die Kombination der Eigenschaften der neuesten Structure PREserving Estima-

tion Methoden wird in dieser Arbeit eine neue Alternative zur Schätzung und Aktualisierung

von kreuzklassifizierten Anzahlten für kleine Gebiete vorgeschlagen, wenn die interessieren-

de Variable im Zensus nicht verfügbar ist. Die vorgeschlagene Methode wird verwendet, um

Schätzungen der Armutsquote in 81 costa-ricanischen Kantonen für die sechs Jahre nach der

Erhebung des Zensus, 2012 bis 2017, zu erhalten. Als Unsicherheitsmaße werden mittlere qua-

dratische Fehler mittels parametrischer Bootstraps geschätzt, und die Güte der vorgeschlagenen

Methode wird mit einer designbasierten Simulation untersucht.

Schlüsselwörter: Extreme Armut, Aktualisierung zwischen den Zensus, Schätzung für klein-

räumige Indikatoren, log-lineare Modelle

Zusammenfassung: Zensusdaten aktualisieren mittels strukturerhaltender Me-
thoden und Satellitenbildern

Volkszählungen sind grundlegende Bausteine der meisten modernen Gesellschaften, werden

aber bestenfalls alle zehn Jahre erhoben. Wir schlagen eine Erweiterung der weit verbreiteten

Technik zur Aktualisierung von Volkszählungen Structure Preserving Estimation vor, indem

wir Hilfsinformationen einbeziehen, um laufende subnationale Bevölkerungsverschiebungen

zu berücksichtigen. Wir wenden unsere Methode an, indem wir Satellitenbilder als zusätzliche

Quelle einbeziehen, um jährliche kleinräumige Aktualisierungen multidimensionaler Armut-

sindikatoren von 2013 bis 2020 für eine gefährdete Bevölkerungsgruppe abzuleiten: von Frau-

en geführte Haushalte im Senegal. Wir bewerten den Mehrwert unseres Vorschlags anhand von

Daten aus zwei verschiedenen Zählperioden.

Schlüsselwörter: Mehrdimensionale Armut, Amtliche Statistik, Kleinräumige Schätzung, SPREE

Zusammenfassung: Amtliche Mikrodaten veröffentlichen mit genauen Datener-
hebungsstandorten und zusätzlichem Privatsphärenschutz

Programme zu Haushaltsbefragungen auf der ganzen Welt veröffentlichen detaillierte geore-

ferenzierte Mikrodaten, um Forschung über die Abhängigkeit menschlicher Lebensumstände
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und ihrer Umgebung zu unterstützen. Um die Privatsphäre der Befragten zu schützen, werden

Umfragedaten normalerweise (pseudo-)anonymisiert, indem Lösch- oder Störungsverfahren

wie die Verschleierung des wahren Ortes der Datenerhebung durchgeführt werden. Dies stellt

jedoch neue Ansätze, die Erhebungsdaten mit Hilfsinformationen auf lokaler Ebene ergänzen,

vor eine Herausforderung. Hier schlagen wir eine alternative Veröffentlichungsstrategie für

Mikrodaten vor, die den Nutzen der ursprünglichen Mikrodaten weitestgehend erhält und mit

zusätzlichen Datenschutzvorkehrungen durch synthetisch generierte Daten unter Verwendung

generativer Modelle schützt. Wir untermauern unseren Vorschlag mit Experimenten unter Ver-

wendung von Daten aus der Volkszählung von 2011 in Costa Rica und von Satelliten abgelei-

teten Hilfsinformationen. Unser Vorschlag reduziert das Reidentifikationsrisiko der Befragten

für eine beliebige Anzahl von offengelegten Merkmalen um 60-80%, selbst nach Reidentifika-

tionsversuchen.

Schlüsselwörter: Generative Modelle, Statistische Offenlegungskontrolle, Geomasking, Co-

pula, Amtliche Statistik, Satellitenbilder
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