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Abstract
High-resolution X-ray microscopy (XRM) is gaining interest for biological inves-
tigations of extremely small-scale structures. XRM imaging of bones in living
mice could provide new insights into the emergence and treatment of osteo-
porosis by observing osteocyte lacunae, which are holes in the bone of few
micrometres in size. Imaging living animals at that resolution, however, is
extremely challenging and requires very sophisticated data processing convert-
ing the raw XRM detector output into reconstructed images. This paper presents
an open-source, differentiable reconstruction pipeline for XRM data which ana-
lytically computes the final image from the raw measurements. In contrast to
most proprietary reconstruction software, it offers the user full control over each
processing step and, additionally, makes the entire pipeline deep learning com-
patible by ensuring differentiability. This allows fitting trainable modules both
before and after the actual reconstruction step in a purely data-driven way using
the gradient-based optimizers of common deep learning frameworks. The value
of such differentiability is demonstrated by calibrating the parameters of a simple
cupping correction module operating on the raw projection images using only a
self-supervisory qualitymetric based on the reconstructed volume and no further
calibrationmeasurements. The retrospective calibration directly improves image
quality as it avoids cupping artefacts and decreases the difference in grey values
between outer and inner bone by 68–94%. Furthermore, it makes the recon-
struction process entirely independent of the XRM manufacturer and paves the
way to explore modern deep learning reconstruction methods for arbitrary XRM
and, potentially, other flat-panel computed tomography systems. This exempli-
fies how differentiable reconstruction can be leveraged in the context of XRM
and, hence, is an important step towards the goal of reducing the resolution limit
of in vivo bone imaging to the single micrometre domain.
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1 INTRODUCTION

Dedicated imaging is required to investigate malfunctions
in bone remodelling, which manifest themselves in dis-
eases like osteoporosis. The very small-scale structures in
bones play an important role in the process of bone build-
up and decrease.1 In particular, osteocytes are known to
orchestrate bone remodelling.2 These cells are located in
ellipsoidal holes in the bone, the lacunae, which have
been quantified to have a size of 3–20 µm3 (recent find-
ings even suggest that the upper end of this range reflects
small transcortical vessels instead of lacunae4). However,
their exact role in pathological changes of bone structure
such as osteoporosis is still poorly understood.5 A central
reason for this is that all imaging technologies capable
of resolving structures at a scale of few micrometres can
currently only be applied to ex vivo samples.2,6–9 Such
experiments cannot reveal any longitudinal relationship
between the progression of osteoporosis and changes in
the bony microstructure. in vivo measurements of ani-
mal bones could reveal those insights but are currently
limited to around 20–50 µm resolution which is not suf-
ficient to reliably resolve the lacunae.10,11 A promising
technology for pushing this in vivo limit towards the sin-
gle micrometre domain is X-raymicroscopy (XRM), which
is non-destructive and achieves a high contrast between
bone and soft tissue. Such data would be of great value to
broaden the understanding of osteoporosis.
Several challenges currently hinder the application of

XRM to in vivo samples. These are concerns about the
X-ray dose deposited in the animal, sample motion due
to respiration or heartbeat of the animal, and insufficient
calibration of the XRM to biological samples.12,13 These
issues need to be addressed before any experiments with
living animals can be performed. A severely degraded
image quality is to be expected otherwise. Addressing
these challenges demands for sophisticated data process-
ing beyond post-processing of the reconstruction obtained
from the scanner but incorporating both raw projection
data and reconstructed images. Such algorithms would
ideally intervene at multiple stages of the data process-
ing pipeline converting the raw XRM detector output
into reconstructed images. However, such an algorithmic
approach is currently not possible because the recon-
struction and data processing is usually implemented as
proprietary software with limited user control directly on
the scanner which outputs a reconstructed image but is

essentially a black box for the operator. Hence, to proceed
on the path towards in vivo imaging, it is crucial to open
that black box in order to adapt and augment the data
processing pipeline exactly to the given use case.
This paper presents an open-source implementation

of an entire reconstruction pipeline from the raw mea-
surement data of a Zeiss XRM scanner. It includes the
loading of projection data from the proprietary file for-
mat, extraction of the scan geometry information, neces-
sary correction and preprocessing steps on the projection
images and a filtered back-projection in the correct geom-
etry to analytically invert the XRM measurement process.
Not only does this allow for fully controlled data process-
ing without any dependency on proprietary software, but
the implementation is also differentiable, thereby mak-
ing the entire pipeline deep learning compatible. This is
an important step towards any experiment including liv-
ing animals because it is a tool that enables the user
to freely change and adapt each step in the pipeline
and, most importantly, to augment it with state-of-the-art
learning-based approaches.
Based on this pipeline, we present a dual-domain

approach to the problem of cupping correction because we
find that cupping artefacts are a prominent deterioration of
image quality in our current XRM measurements making
downstream tasks such as lacunae segmentation unneces-
sarily difficult. Instead of learning the parameters of a deep
model, we calibrate just the very few (2–3) free parame-
ters of a cupping correction step using only the corrupted
data itself and with no additional phantommeasurements
needed. This is possible because a self-supervised target
function can be formulated directly on the reconstructed
volume while still driving parameter updates in the raw
data domain. The cupping correction is a simple yet effec-
tive application of the proposed reconstruction pipeline
which also hints at its potential in tasks requiring deeper
models like complex artefact suppression14,15 or image
denoising.16,17
In summary, the main contributions of this paper are:

1. For the raw projection data acquired on a Zeiss X-ray
microscope, we translate the unstructured metadata
and image information into a well-defined format
which can directly be used with any state-of-the-art
cone-beam computed tomography (CBCT) reconstruc-
tion framework. The raw geometry information is con-
verted to universal and widely used projection matrices
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F IG 1 X-ray microscopy couples the geometrical magnification
of a cone-beam CT setup with further optical magnification to
capture extremely high-resolution projection images

which are the most general representation of a 3D
scan geometry. Projection images are pre-processed and
made ready for reconstruction.

2. From the available open-source CBCT reconstruction
frameworks, we specifically choose a differentiable
algorithm that allows for automatic gradient-based
optimization of free parameters – for classical optimiza-
tion problems or in a deep learning sense – across the
reconstruction operator without the need to manually
compute the gradient.

3. We demonstrate the usefulness of such differentiability
by fitting a low-dimensional cupping correction model
both on a per-scan basis and on a full data set of murine
tibia XRM scans divided into training and test data.

4. The code and example data aremade publicly available.

2 MATERIALS ANDMETHODS

2.1 X-ray microscopy

XRM is applied in a range of different research disciplines,
among them are material science, geoscience and life
science.18–21 Depending on the application, the exact type
of microscope can differ in a number of aspects, such as
the source properties or the scanning procedure. The basic
working principle of the system deployed in this study
is similar to classical CBCT, but it deploys an additional
optical system which further increases the resolution. A
polychromatic X-ray source with a low spot size generates
cone-shaped, divergent X-ray beams which traverse the
object and lead to geometricalmagnification. A scintillator
converts the X-ray photons into visible light which is cou-
pled into an optical system for further magnification and
detected by a charge-coupled device (CCD) camera (see
Figure 1). On their way to the detector, the X-ray photons
are attenuated depending on the properties of the mate-
rial they traverse. Hence, the pixel values in the measured

TABLE 1 XRM scan settings

X-ray source voltage 60 kVp
X-ray source current 108 µA
Number of acquired projection images
per scan

1401

Angular range 202◦(short scan)
Exposure time per projection 28 s
Detector shape 2038 × 2038
Detector pixel size 11.0 µm
Source–isocentre distance 10.3 mm
Isocentre–detector distance 10.0 mm
Magnification (geometrical/optical/total) 1.97/4/7.88
Reconstructed volume shape (height ×
width × slices)

1997 × 2038 × 2014

Voxel size 1.4 µm
Spatial resolution 2.5 µm
Signal-to-noise ratio 57.1

2D projection images depend on the integral of the entire
attenuation that the photon has experienced on the ray
between source and detector pixel. X-ray projection images
are acquired from multiple angles by rotating the sample
around its vertical axis. To sample each ray through the
central horizontal plane of the object at least once, a rota-
tion of at least 180◦ plus the fan angle 𝛾 is required (short
scan).
For our experiments, we use an ex vivo murine tibia

data set. It consists of eight scans of the most distal part
of the tibia which forms part of the animal’s ankle. Exem-
plary centre slices are depicted in the first column of
Figure 4. The data set is acquired on a Zeiss Xradia 620
Versamicroscope (Carl Zeiss) with a tube current of 108 µA
and a source voltage of 60 kV which accelerates electrons
towards a tungsten transmission anode. The resulting X-
ray spectrum has amaximum energy of 60 keV. The X-rays
pass an additional spectral filter afterwhich the exact X-ray
spectrum is unknown. Other scan parameters are sum-
marized in Table 1. The voxel size of 1.4 µm corresponds
to the pixel size of the detector when virtually scaled to
the isocentre, that is, the quotient of physical detector
pixel size and total magnification. The spatial resolution
inferred from measurements of a stripe pattern phantom
is 2.5 µm (see Figure 1 in the supplementary material).
The signal-to-noise ratio is computed as the quotient of the
mean bone grey value and the standard deviation of the
grey values in a background patch on the centre slice of
one scan reconstructed by the proprietary software. Note
that all scan parameters are optimized for high-resolution
imaging of ex vivo samples and are not directly transferable
to in vivo samples.
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F IG 4 Qualitative reconstruction results comparing centre slices of the proprietary algorithm with our proposed algorithm. We show the
results without any cupping correction applied and after performing a cupping correction with a polynomial of degree𝑁 = 2 and 𝑁 = 3. The
first row is a result of a per-sample optimization whereas rows two and three show the results of the two test samples from the full data set
experiment. The proprietary and the uncorrected reconstruction using our pipeline exhibit brighter grey values at the outer border of the
bone. This effect is largely removed in the corrected versions. All figures have a grey value window of 900–2300 HU

2.2 Ethical compliance and sample
preparation

We complied with all relevant ethical regulations in terms
of organ removals in this study. All organ removals
conducted at the University of Erlangen were per-
formed in accordance with German guidelines and laws,
were approved by local animal ethic committees of the
Regierung von Mittelfranken (TS-12/2015), and were con-
ducted according to the guidelines of the Federation of
European Laboratory Animal Science Associations. In this
study, C57BL/6 mice of both sexes were used. The mice
were aged 56–93 weeks. For sample preparation, the mice
were euthanized by CO2, perfused with 5 mM EDTA/PBS,
and perfusion-fixed with 4% PFA/PBS (pH 7.4). Tibiae
were relieved from muscle tissue and post-fixed in 4%
PFA/PBS (pH 7.4) for 4 h at 4–8◦C with gentle shaking.
Tissue fixation was followed by 100% ethanol dehydration.
The ethanol-dehydrated bones were then transferred to
the XRM.

2.3 Differentiable cone-beam
reconstruction

CBCT reconstruction seeks to invert the mathematical for-
ward model of X-ray image formation characterized by the
integration of attenuation coefficients along rays through
the volume according to the Lambert–Beer law. The mea-
sured detector signal is a series of 2D projection images
of the volume along rays defined by the imaging geome-
try and is referred to as sinogram. This signal is translated
back into a 3D volume in image space by a reconstruction
algorithm. An analytical, approximate and widely used
filtered-back-projection CT reconstruction algorithm for
cone-beam geometry is known as Feldkamp–Davis–Kress
(FDK) reconstruction.22 It comprises a scaling of projec-
tion images by a cosine function, a row-wise filtering of
projection images with a ramp filter in Fourier domain
and a back-projection of filtered projection images along
rays through the volumeweighted by the distance between
the reconstruction and the focal point. We refer the reader
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to Ref. 23 for a detailed explanation of this algorithm. For
short scan acquisitions (180◦+𝛾 trajectories instead of a full
360◦ rotation), an additional Parker weighting is used to
downweigh oversampled rays.24
It has been shown that CT reconstruction can be

regarded as a differentiable operation, meaning that the
partial derivative of each output voxel with respect to
each projection pixel in the input can be calculated. Con-
sequently, the back-projection algorithm can be embed-
ded as a known operator within a neural network.25
As such, it does not contain any trainable parameters
on its own but introduces analytical knowledge about
the reconstruction step into a differentiable computa-
tion graph. This graph connects it via the chain rule
of differentiation to potential other trainable modules in
both sinogram and image domain, that is, before or after
the reconstruction step, respectively. The differentiabil-
ity ensures that a gradient of a loss function in image
domain can flow back into the sinogram domain. This
is required to update trainable weights operating in both
domains in an end-to-end fashion using standard gradient-
based optimization which drives the training of neural
networks. Most well-known open-source CBCT recon-
struction frameworks are not differentiable out-of-the-box.
Someworks consequently deploy awrapper26 around such
non-differentiable frameworks like the ASTRA toolbox27
or TomoPy28 which allows for integration into differen-
tiable pipelines. Other frameworks are tailored specifically
towards differentiability.29,30 A detailed comparison of
these different implementations is beyond the scope of this
work. We use the PyroNN framework by Syben et al.29
for all following investigations as it is a computation-
ally efficient solution for differentiable CT reconstruction
modules which are integrated into the recent deep learn-
ing frameworks. It allows using the said reconstruction
module in conjunction with the automatic differentiation
algorithms which drive the parameter updates in com-
mon deep learning frameworks. The user only specifies
the forwardmodel and optimization via gradient descent is
performed automatically, iteratively approaching a locally
minimal solution with respect to the calculated loss func-
tion. In this work, we build upon that framework wrapped
for the deep learning framework PyTorch31 to implement
the reconstruction for the XRM data.
The embedding of knowledge about the physics under-

lying CT reconstruction into learned pipelines has been
explored before, mostly in the medical context, but also
on XRM data similar to ours.32–34 The areas of applica-
tion range from improving reconstruction quality in low
dose, limited or missing angle scenarios34,35 over learn-
ing of data-optimal reconstruction filters or weights36,37
to calibration of, for example, the position of the rotation
axis from the measured data.32 Some of the mentioned
approaches propose deep learning architectures in the

classical sense involving ahighnumber of trainable param-
eters. However, as prior knowledge is explicitly imposed
by the reconstruction operator, it is often possible to
reduce the number of free parameters considerably.25 In
the extreme cases, only a small number of free parameters
which have a well-defined task suffice to model the prob-
lem in an interpretable way. Training these very low para-
metric methods could be viewed as general gradient-based
optimization. Nevertheless, they still rely on the automatic
differentiation of frameworks like PyTorchwhich bypasses
the non-trivial work to manually compute the correspond-
ing gradient. Just as for classical deep learning approaches,
defining the forward model suffices making a clear dis-
tinction between deep learning and mere optimization
methods in the context of differentiable reconstruction
operators difficult.

2.4 Details on reconstruction pipeline

The proposed reconstruction pipeline consists of several
steps highlighted as coloured boxes in Figure 2. Input to
the pipeline is the raw measurement data from the scan-
ner stored in a proprietary file format (.txrm). One such
file contains all projection images of a scan as well as
metadata concerning the geometry or correction factors.
Our reader is extended from work by De Carlo et al.38
and extracts images and the necessary header informa-
tion. Next, several pre-processing steps are performed on
the raw projection images. These are a flat field correction
and a revision of detector shifts which are applied inten-
tionally during data acquisition to minimize the influence
of defect pixels on the detector. Following these steps, by
applying the negative logarithm, the projection data are
converted to line integral domain which reflects the actual
attenuation instead of the remaining X-ray intensity after
traversing the object. Finally, a truncation correction is
applied if the imaged object exceeds the detector. The pro-
jection images are laterally extended by 10% of the original
image width on both left and right sides and the imaged
bone is extrapolated by linearly fading out absorption val-
ues to zero towards both sides. To cope with the high
memory requirements of the given data, downsampling
can be applied both spatially and in angular direction. The
scan’s geometry is defined in terms of projection matrices.
These define the geometrical relationship of 3D points in
the volume and their corresponding detector location after
projection under a given angle. An ideal circular trajectory
is assumed and specified by the following parameters from
the metadata: The number of projection images, their pri-
mary acquisition angles, the detector height and width in
pixels, the detector pixel size, the source to rotation centre
distance, the detector offset from the centre and the cone
angle. Given the pre-processed projection images and their
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F IG 2 Overview of the proposed reconstruction pipeline. We implement each of the coloured boxes to (1) read the raw projection data, (2)
pre-process the images, (3) define the scan geometry and (4) perform a filtered back-projection

corresponding projectionmatrices, the differentiable back-
projection module introduced in the previous section is
called. It performs the Parker and cosine weighting, ramp
filtering and actual back-projection into the volume based
on the differentiable implementation in Ref. 29. The final
reconstruction represents the spatial function of attenua-
tion values which are typically given in Hounsfield Units
(HU), where the attenuation of water corresponds to 0
HU and the attenuation of air is −1000 HU.39 As such,
our pipeline does not contain any trainable parameters at
all. Rather, we see it as a tool that can enable state-of-
the-art reconstruction approaches for Zeiss XRM data. In
Section 2.5, we propose a simple application of the pipeline
in the context of mouse bone imaging.

2.5 Application to cupping correction

CT reconstruction algorithms usually neglect the fact that
the attenuation of X-rays traversing an object is not only
material- but also energy-dependent. In reality, however,
lower-energetic parts of the X-ray spectrum are typically
attenuated stronger than high-energetic parts, especially
in dense material like bone. This introduces a non-linear
error in the detector signal leading to cupping artefacts
or dark streaks in the reconstruction.40,41 We observe
those cupping artefacts in the data reconstructed by our
pipeline and in the proprietary reconstruction in the form
of decreasing grey values of the bone towards the bone
marrow (see Figure 4, ‘Ours uncorrected’). As cupping
artefacts arise from a distortion of grey values in the projec-
tion images, they can effectively be reduced by a correction
polynomial of degree 𝑁

�̂�(𝐜) =

𝑁∑
𝑛=1

𝑐𝑛𝑥
𝑛 , 𝑐𝑛 ∈ ℝ, (1)

which maps each grey value 𝑥 to its corrected value �̂� in
projection domain. This polynomial contains 𝑁 scanner-
and object-dependent parameters stored in the vector 𝐜 ∈
ℝ𝑁 . These can, for example, be found via calibration
with a known phantom42 or by maximizing the consis-

tency between the projection images.43 With the proposed
framework, the fitting of the free polynomial coefficients
can be achieved easily by including the polynomial map-
ping in Equation (1) into the differentiable computation
graph before feeding the projection images to the back-
projection module (see Figure 3). Only the coefficients 𝐜
of the polynomial in Equation (1) are defined as trainable
parameters within PyTorch. Because image and projec-
tion domain are connected in a differentiable way, the
target function for optimizing the coefficients can be for-
mulated in image domain and still drive the updates
of 𝐜 operating in projection domain. More precisely, the
projection images are first corrected by the polynomial
cupping correction model with trainable parameters 𝐜
and then reconstructed using the differentiable framework
PyroNN which performs Parker and cosine weighting,
ramp filtering and the actual back-projection operation
(see Section 2.3). The obtained reconstruction is normal-
ized to unit standard deviation and a self-supervised loss
in the form of the total variation (TV) norm is applied.
Because each step in this chain is differentiable, the gradi-
ent of the TV norm can be propagated backwards such that
it can finally be used to update 𝐜. The TV loss is defined as

TV(𝐈) =
𝐽∑
𝑗=0

|∇𝐼𝑗|1 . (2)

It integrates the absolute values of the image gradient ∇𝐼
for all pixels 𝑗 thereby preferring piecewise constant solu-
tions. Our intuition behind choosing the TV norm as a loss
function is that this function punishes intensity gradients
such as those introduced by beam hardening.
When left unconstrained, the self-supervised optimiza-

tion of 𝐜 could converge towards trivial solutions, for
example, 𝐜 = 𝟎. To restrict this effect, we enforce that the
coefficients 𝐜 have unit 𝓁2-norm with

‖𝐜‖2 = 1. (3)

Incorporating this constraint into the gradient-based opti-
mization requires restricting the space of possible solutions
for the free parameters 𝐜. All gradient updates on 𝐜 must
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F IG 3 Self-supervised calibration of a polynomial mapping for cupping correction. The forward model of the correction step is specified
and inserted into the differentiable computation graph in sinogram domain. A TV norm on the reconstructed volume serves as objective
function for automatic gradient-based optimization of the free parameters 𝐜 ∈ ℝ𝑁 with 𝑁 ∈ {2, 3}

still fulfil Equation (3) and hence lead to solutions which
lie on the 𝑁-dimensional unit sphere with respect to the
𝓁2-norm. Such update steps can be performed using spe-
cial Riemannian optimizers. Gradients are computed in
the tangent space of the current location on the manifold
of the 𝑁-dimensional unit sphere and the optimizer per-
forms a special gradient update which cannot leave the
manifold.44,45 We use the Riemannian version of the well-
known stochastic gradient descent (SGD) optimizer with a
learning rate of 10−9 which ensures that the required con-
straint in Equation (3) is always fulfilled. A pseudo-code
formulation of the proposed cupping correction algorithm
is given in Algorithm 1.

3 EXPERIMENTS

We perform two types of experiments:

1. Per-scan experiments: Cupping correction is performed
on a per-scan basis where the polynomial parameters 𝐜
are optimized on the target scan itself.

2. Full data set experiments: Cupping correction is per-
formed on a full data set split into training, validation
and test samples. One parameter vector 𝐜 is fitted using
all training samples and applied without changes to
correct previously unseen test samples.

In the second case, we split the eight available bone scans
into five samples for training, one for validation and two for

A l g o r i t hm 1 Self-supervised cupping correction
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testing. Running the optimization on the full-size recon-
struction problem per sample is intractable because all
projection images and the reconstructed volume need to
reside on the GPU simultaneously which is beyond the
memory capacity of recent consumer graphics boards.
Hence, we subdivide each volume into 11 stacks of 100
slices which are reconstructed independently during opti-
mization. This leads to a setting where only the central
1100 of 2014 slices of each scan are utilized. The outer
slices are omitted because of an increasing influence of
cone-beam artefacts. The described setting results in a
training set of 55 individual samples from five different
bone scans reconstructed per epoch for the full data set
case. In the per-scan setting, all 11 stacks of the target scan
are used during optimization. Algorithm 1 is valid for both
experimental settings.
In addition to splitting the volumes into smaller stacks,

we downsample the projection images angularly and spa-
tially by a factor of 2 and the reconstructions by a factor
of 2 in each direction. Hence, after downsampling, each
sample has 50 slices and half the width and height of the
proprietary reconstruction given in Table 1 during opti-
mization. Experiments are performedwith a degree of𝑁 =

2 and 𝑁 = 3 for the polynomial in Equation (1), that is,
with just two or three free parameters involved. Projec-
tion images aswell as the geometry configuration are saved
after all pre-processing steps including the conversion to
line integral domain such that, during optimization, only
the polynomial correction step and the back-projection
module itself need to be evaluated (see Figure 3). Opti-
mization is performed for 200 epochs in the per-scan
experiments and for 40 epochs in the full data set exper-
iments leading to an identical number of update steps for
both cases. All experiments are performed with a learning
rate of 𝜇 = 1 × 10−9.
For evaluation, as we have no dedicated ground-truth

reconstruction without cupping artefacts, we compare dif-
ferent uncorrected and corrected reconstructions obtained
with the proposed reconstruction pipeline and the propri-
etary reconstruction obtained with the black-box scanner
software. All evaluations are done on the central 100 slices
of the scans on full resolution. Even though we enforce a
constant norm on the polynomial coefficients, the average
intensity in the reconstructions is not preserved by the pro-
posed correction step. Furthermore, the intensity values
of the proprietary reconstruction are on a completely dif-
ferent scale than those obtained with our reconstruction
pipeline. Hence, for comparison purposes, each recon-
struction is rescaled such that the background has a value
of 0 and the bone has a value of 1800 which corresponds
to the HU-value of cortical bone.46 The histogram of each
scan is computed and the grey values 𝐼bone and 𝐼background
corresponding to bone and background peak, respectively,

are identified. The rescaling is performed independently
for each scan via

𝐼𝑗 =
𝐼𝑗 − 𝐼background

𝐼bone − 𝐼background
∗ 1800HU (4)

for 𝐼𝑗 being the original grey value of the 𝑗th reconstructed
voxel and 𝐼𝑗 being the rescaled grey value of that voxel in
Hounsfield Units. For quantification of the cupping arte-
facts, we compute the outer and inner contour of the bone
per slice usingmorphological snakes.47 These contours are
used to programmatically and repeatedly extract 100 lines
per slice across the bone connecting the outer and inner
contour at equally spaced points. Profiles of the bone grey
values are evaluated along these lines. Furthermore, the
middle points between corresponding points on the outer
and the inner contour are used to define a middle contour
which splits the bone into an inner and outer area per slice.

4 RESULTS

Figure 4 shows the centre slices of three different murine
tibia reconstructions. A visual comparison of our recon-
struction to the proprietary reconstruction (‘Ours uncor-
rected’ and ‘Proprietary’) proves high accordance with
clearly visible small-scale structures inside the cortical
bone. The resulting polynomial coefficients for correction
are 𝐜𝑁=2 = (0.813, 0.582) and 𝐜𝑁=3 = (0.815, 0.576, 0.063)

for the full data set experiment and 𝐜𝑁=2 = (0.855, 0.519)

and 𝐜𝑁=3 = (0.854, 0.519, 0.037) for a per-scan experiment.
Both the uncorrected and the proprietary reconstruction
exhibit decreasing grey values from the outer part of the
bone towards the bone marrow. In the corrected versions
of the reconstruction obtainedwith the presented pipeline,
the grey values of the bone tissue are more homogeneous
across the bone. These observations hold for the per-scan
optimization (Figure 4, upper row) as well as for the full
data set experiments (Figure 4, rows two and three). No
clear visual difference can be observed between a correc-
tion with degree𝑁 = 2 and𝑁 = 3 (Figure 4, columns four
and five). Figures 5A–C visualize average profiles of bone
grey values across the bone, that is, along lines connecting
the outer and the inner bone contour as described in Sec-
tion 3. Both the proprietary and our uncorrected pipeline
have line profiles with a negative slope representing
decreasing grey values from outer to inner contour. In
addition, both test samples from the full data set experi-
ments exhibit extraordinarily high grey values close to the
outer bone contour which are slightly more pronounced in
the uncorrected reconstruction obtained with our pipeline
than in the proprietary one. Apart from that, uncorrected
and proprietary reconstruction show a similar trend in
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F IG 5 Upper row: Average line profiles connecting outer and inner bone contours. Proprietary and uncorrected reconstructions exhibit
peaks close to the outer contour and decreasing grey values towards the inner contour. Grey values remain largely constant in both corrected
versions with some drop off towards both outer and inner contour. The standard deviation across different lines connecting outer and inner
bone and different slices is in the range of the line width. Lower row: The kernel density estimation of bone grey values (kernel bandwidth:
0.1𝜎, 𝜎: standard variance of grey values) computed inside the outer and inner region of the bone. Quartiles are indicated by dashed lines for
different reconstructions. The proposed correction aligns outer and inner grey values when using a polynomial of degree 𝑁 = 2 and 𝑁 = 3.
Note that we have excluded all grey values below 1400 HU because these correspond to cavities inside the bone which are not distributed
equally across the bone and would distort the results. Panels A and D correspond to the per-scan experiment and Panels B, C, E and F depict
the two test samples in the full data set experiment

TABLE 2 All quantitative results are given in the following format: per-scan experiment, full data set test sample 1, full data set test
sample 2. The best result for each metric is highlighted in bold font

Proprietary Ours uncorrected Ours𝑵 = 𝟐 Ours𝑵 = 𝟑

𝑠 −0.622, −1.341, −0.851 −0.755, −1.386, −1.095 0.172, −0.124, 0.006 0.165, −0.154, -0.001
Δ𝑔 [HU] 69.53, 105.49, 42.45 80.03, 112.96, 57.19 6.24, 8.79, 19.40 5.73, 6.69, 18.31

NoteWe compute the slope 𝑠 of a straight line fitted to average grey value profiles along lines connecting outer and inner contour and themean absolute grey value
offset between outer and inner bone region Δ𝑔 in HU. For both metrics, we regard values close to 0 as best.

their average line profiles. Similarly, there is no apparent
difference in the line profiles of the corrected reconstruc-
tions with 𝑁 = 2 or 𝑁 = 3. Compared to the uncorrected
reconstruction, however, the line profiles of the corrected
reconstruction do not show the decreasing behaviour.
Instead, they remain largely constant with a slight drop-off
towards both sides. This is also reflected in the quantitative
metrics in Table 2.We fit a straight line to each average line
profile and report its slope 𝑠 to measure the decrease or
increase of grey values between inner and outer contour.
The uncorrected reconstruction obtained with our pro-
posed pipeline has the largest negative slope followed by
the proprietary reconstruction. For the corrected versions,

the slope is closer to zero. It is even slightly positive for the
per-scan experiment, still slightly negative for the first full
data experiment test sample and almost perfectly zero for
the second test sample. Figure 5D-F visualizes the distribu-
tion of bone grey values in the outer and inner bone regions
of all 100 central slices at full resolutionwith quartiles indi-
cated by dashed lines for the proprietary, uncorrected and
both corrected reconstructions. For the uncorrected case,
the inner and outer distributions exhibit a clear vertical
offset with grey values being lower in the inner section of
the bone. This difference is reduced in both corrected
reconstructions. The quantitative absolute difference in
mean grey values between the outer and inner part Δ𝑔 can
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be found in Table 2. Again, it is highest for our uncorrected
reconstruction, followed by the proprietary reconstruction
and with best results for the two corrected versions. In
the best case (test sample 1), a mean difference of 112.96
HU over all slices in the uncorrected reconstruction is
reduced to 6.69 HU after correction with 𝑁 = 3 which is
a reduction by 94%. Even in the worst case, a mean grey
value difference of 57.19 HU is reduced to 18.31 HU which
still corresponds to a reduction by 68%.

5 DISCUSSION

The presented pipeline fits the coefficients 𝐜 of a poly-
nomial operating in projection domain using a straight-
forward, self-supervised target function defined on the
reconstructed volume. This allows for a data-driven, ret-
rospective calibration for cupping correction without the
need to acquire any extra calibration measurements or to
manually set up an entire optimization algorithm. With
this, even though our reconstruction pipeline is deep learn-
ing compatible, we do not perform deep learning in the
classical sense of fitting a highly overparametrized neu-
ral network but use the built-in automatic differentiation
of PyTorch to perform gradient-based optimization on a
problem that would be very hard to set up and derive
with respect to the free parameters otherwise. Extending
that algorithm with deep networks is easily implemented
by attaching the deep model to the computational graph
during the forward pass. The general optimization proce-
dure remains identical. Experiments have been performed
with a polynomial of orders 2 and 3 which have both
yielded improved reconstructions over the uncorrected
one. On the used data set, both versions yield very similar
results and we cannot decide which one performs better.
Conveniently, the fitted polynomial operates on the projec-
tion images’ intensity values only. Therefore, it is largely
independent of the resolution of both projection images
and reconstruction volume. We exploit this property by
running the optimization on downsampled data for com-
putational reasons, but we use the resulting polynomial for
correction of the full resolution data. The beam-hardening
correction is not intensity-preserving by itself because the
TV norm does not punish piecewise constant offsets in the
data. As the data used here stems from an uncalibrated
scanner, the absolute grey values are not directly phys-
ically interpretable. Hence, intensity preservation is not
a primary concern but can be achieved by a subsequent
rescaling (see Equation 4). This process can easily be auto-
mated and applied to many samples in order to obtain
consistent grey values even if optimization is performed
per sample. In the case of a large series of samples with
very similar properties, an optimization procedure com-
parable to the described full data set experiment would
be preferable. A representative training set can be used to

calibrate the parameters 𝐜 which are then applied to all
samples of the series without changes. In our experiments,
the per sample and the full data set setup yielded similar
coefficients 𝐜. Hence, we expect similar cupping correction
performance for bothmethods as long as the samples in the
data set have comparable absorption properties. Conver-
gence curves in the supplementary material indicate that
both experimental settings converge.
The self-supervised fit of coefficients is easy to apply but

has some limitations. It can potentially converge towards
physically implausible results if the hyperparameters such
as the learning rate are not controlled carefully. This can
be counteracted by introducing further constraints such
as monotonicity and convexity of the polynomial.48 How-
ever, PyTorch and comparable deep learning frameworks
are primarily designed for unconstrained optimization of
highly parametrized models and might not be perfectly
suited for strongly constrained settings. Currently, the unit
𝓁2-norm for the free parameters 𝐜 is enforced by using
a special Riemannian optimizer. Hence, additional con-
straints are not easily added because they directly affect the
optimizer itself. If artefact-reduced ground-truth recon-
structions are available, they can be used to drive the train-
ing in a supervisedmanner to avoid physically implausible
results as well as intensity shifts. This would also make
the requirement of any additional norm obsolete. Fur-
thermore, we have not performed a detailed evaluation of
the influence of different noise levels in the reconstruc-
tion on our algorithm. The TV norm is frequently utilized
for denoising applications as well. Noise reduction tech-
niques, however, usually rely on averaging operations over
neighbourhood pixels. As our method is restricted to the
same polynomial per-pixel mapping for the entire stack of
projection images, such a neighbourhood-dependent oper-
ation is not possible by design. Hence, in our case, the
minimization of the TV norm needs to be achieved by cup-
ping correction rather than noise reduction. It has already
been demonstrated that incorporating a denoiser based
on supervised learning into the proposed pipeline yields
state-of-the-art results.49 Investigating a joint denoising
and cupping correction approach can be an interesting
avenue for future work.
Overall, the presented work on retrospective cupping

correction is a simple example which expresses the value
of a differentiable reconstruction algorithm.While compa-
rable experiments incorporating differentiable CT recon-
struction have already shown its usefulness on simulated
data,25,50 it has not yet been applied extensively to real data.
This paper demonstrates the applicability to a real-world
example and opens up many possibilities to leverage the
idea in future work. We plan to investigate the use of the
proposed pipeline for purposes such as denoising or other
artefact reduction aiming at the development of an XRM
scanning protocol suitable for in vivo imaging. While we
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work on XRM data here, the general idea of differentiable
reconstruction is not limited to a specific scanner but can
be generalized to any flat-panel CBCT device.

6 CONCLUSIONS

We present a complete reconstruction algorithm for Zeiss
X-ray microscopes for which, to the best of our knowl-
edge, no other open-source algorithm exists at the time
of writing. With the back-projection step of this pipeline
being differentiable, a cupping correction can be retro-
spectively calibrated from real XRM data. This relaxes the
dependency on proprietary software and opens the door
for further applications of learned modules in conjunction
with XRM reconstruction. Ultimately, such algorithms can
help to overcome some of the challenges associated with
high-resolution in vivo bone imaging using XRM.

ACKNOWLEDGEMENTS
The research leading to these results has received fund-
ing from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
program (ERC Grant No. 810316).
Open access funding enabled and organized by Projekt

DEAL.

CONFL ICT OF INTEREST
The authors declare that there is no conflict of interest that
could be perceived as prejudicing the impartiality of the
research reported.

ORCID
MareikeThies https://orcid.org/0000-0002-1364-4337

REFERENCES
1. Gruber, R., Pietschmann, P., & Peterlik, M. (2008). Introduction

to bone development, remodelling and repair. In Radiology of
osteoporosis (pp. 1–23). Springer Berlin Heidelberg.

2. Buenzli, P. R., & Sims, N. A. (2015). Quantifying the osteocyte
network in the human skeleton. Bone, 75, 144–150.

3. Hannah, K. M., Thomas, C. D., Clement, J. G., De Carlo, F., &
Peele, A. G. (2010). Bimodal distribution of osteocyte lacunar
size in the human femoral cortex as revealed bymicro-CT. Bone,
47(5), 866–871.

4. Grüneboom, A., Hawwari, I., Weidner, D., Culemann, S.,
Müller, S., Henneberg, S., Brenzel, A., Merz, S., Bornemann, L.,
Zec, K., Wuelling, M., Kling, L., Hasenberg, M., Voortmann, S.,
Lang, S., Baum, W., Ohs, A., Kraff, O., Quick, H. H., . . . Gunzer,
M. (2019). A network of trans-cortical capillaries as mainstay
for blood circulation in long bones. Nature Metabolism, 1(2),
236–250.

5. Rho, J.-Y., Kuhn-Spearing, L., & Zioupos, P. (1998). Mechani-
cal properties and the hierarchical structure of bone. Medical
Engineering and Physics, 20(2), 92–102.

6. Grüneboom, A., Kling, L., Christiansen, S., Mill, L., Maier, A.,
Engelke, K., Quick, H. H., Schett, G., & Gunzer, M. (2019). Next-

generation imaging of the skeletal system and its blood supply.
Nature Reviews Rheumatology, 15(9), 533–549.

7. Yu, B., Pacureanu, A., Olivier, C., Cloetens, P., & Peyrin,
F. (2021). Quantification of the bone lacunocanalicular net-
work from 3D X-ray phase nanotomography images. Journal of
Microscopy, 282(1), 30–44.

8. Varga, P., Hesse, B., Langer, M., Schrof, S., Männicke, N.,
Suhonen, H., Pacureanu, A., Pahr, D., Peyrin, F., & Raum, K.
(2015). Synchrotron X-ray phase nano-tomography-based anal-
ysis of the lacunar–canalicular network morphology and its
relation to the strains experienced by osteocytes in situ as pre-
dicted by case-specific finite element analysis.Biomechanics and
Modeling in Mechanobiology, 14(2), 267–282.

9. Kerschnitzki, M., Kollmannsberger, P., Burghammer,M., Duda,
G. N.,Weinkamer, R.,Wagermaier,W., & Fratzl, P. (2013). Archi-
tecture of the osteocyte network correlates with bone material
quality. Journal of Bone and Mineral Research, 28(8), 1837–1845.

10. Clark, D. P., & Badea, C. (2014). Micro-CT of rodents: State-of-
the-art and future perspectives. Physica Medica, 30(6), 619–634.

11. Longo, A. B., Salmon, P. L., & Ward, W. E. (2017). Comparison
of ex vivo and in vivo micro-computed tomography of rat tibia
at different scanning settings. Journal of Orthopaedic Research,
35(8), 1690–1698.

12. Mill, L., Bier, B., Syben, C., Kling, L., Klingberg, A.,
Christiansen, S., Schett, G., & Maier, A. (2018). Towards
in-vivo x-ray nanoscopy—The effect of motion on image
quality. In Bildverarbeitung für die Medizin 2018 (pp. 115–120).
Springer Berlin Heidelberg.

13. Huang, Y., Mill, L., Stoll, R., Kling, L., Aust, O., Wagner, F.,
Grüneboom, A., Schett, G., Christiansen, S., & Maier, A. (2021).
Semi-permeable filters for interior region of interest dose reduc-
tion in X-ray microscopy. In Bildverarbeitung für die Medizin
2021 (pp. 61–66). Springer Fachmedien Wiesbaden.

14. Ghani, M. U., & Karl, W. (2018). Deep learning based sino-
gram correction for metal artifact reduction. Electronic Imaging,
2018(15), 4721–4728.

15. Ketcha,M.D.,Marrama,M., Souza, A., Uneri, A.,Wu, P., Zhang,
X., Helm, P. A., & Siewerdsen, J. H. (2021). Sinogram + image
domain neural network approach for metal artifact reduction in
low-dose cone-beam computed tomography. Journal of Medical
Imaging, 8(5), 1–16.

16. Yi, X., & Babyn, P. (2018). Sharpness-aware low-dose CT denois-
ing using conditional generative adversarial network. Journal of
Digital Imaging, 31(5), 655–669.

17. Patwari,M.,Gutjahr, R., Raupach, R., &Maier, A. (2020). JBFnet
- Low dose CT denoising by trainable joint bilateral filtering. In
Proc. MICCAI (pp. 506–515). Springer.

18. Jacobsen, C. (2019). X-ray microscopy. Advances in Microscopy
and Microanalysis. Cambridge University Press.

19. Niverty, S., Torbatissaraf, H., Nikitin, V., De Andrade, V.,
Niauzorau, S., Kublik, N., Azeredo, B., Tekawade, A., De Carlo,
F., & Chawla, N. (2021). Computational imaging in 3D X-ray
microscopy: Reconstruction, image segmentation and time-
evolved experiments. In IEEE InternationalConference on Image
Processing (pp. 3502–3506). IEEE.

20. Langer, M., & Peyrin, F. (2016). 3D X-ray ultra-microscopy of
bone tissue. Osteoporosis International, 27(2), 441–455.

21. Andrews, J. C., Almeida, E., van der Meulen, M. C. H., Alwood,
J. S., Lee, C., Liu, Y., Chen, J., Meirer, F., Feser, M., Gelb, J.,
Rudati, J., Tkachuk, A., Yun,W., & Pianetta, P. (2010). Nanoscale

https://orcid.org/0000-0002-1364-4337
https://orcid.org/0000-0002-1364-4337


92 Thies et al.

x-ray microscopic imaging of mammalian mineralized tissue.
Microscopy and Microanalysis, 16(3), 327–336.

22. Feldkamp, L. A., Davis, L. C., & Kress, J. W. (1984). Practical
cone-beam algorithm. Journal of the Optical Society of America
A, 1(6), 612–619.

23. Zeng, G. L. (2010). Medical image reconstruction: A conceptual
tutorial. Springer.

24. Parker, D. L. (1982). Optimal short scan convolution reconstruc-
tion for fan beam CT.Medical Physics, 9(2), 254–257.

25. Maier, A., Syben, C., Stimpel, B., Würfl, T., Hoffmann, M.,
Schebesch, F., Fu, W., Mill, L., Kling, L., & Christiansen, S.
(2019). Learning with known operators reduces maximum error
bounds. Nature Machine Intelligence, 1(8), 373–380.

26. Öktem, O., Adler, J., & Kohr, H. (2022). Operator discretiza-
tion library (ODL). GitHub. Retrieved from https://github.com/
odlgroup/odl

27. van Aarle, W., Palenstijn, W. J., Cant, J., Janssens, E., Bleichrodt,
F., Dabravolski, A., Beenhouwer, J. D., Batenburg, K. J., &
Sijbers, J. (2016). Fast and flexible X-ray tomography using the
ASTRA toolbox. Optics Express, 24(22), 25129–25147.

28. Gürsoy,D., DeCarlo, F., Xiao, X., & Jacobsen, C. (2014). TomoPy:
A framework for the analysis of synchrotron tomographic data.
Journal of Synchrotron Radiation, 21.

29. Syben, C., Michen, M., Stimpel, B., Seitz, S., Ploner, S., & Maier,
A. K. (2019). PYRO-NN: Python reconstruction operators in
neural networks.Medical Physics, 46(11), 5110–5115.

30. Ronchetti, M. (2020). TorchRadon: Fast differentiable routines
for computed tomography. arxiv.

31. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019).
PyTorch: An imperative style, high-performance deep learning
library. In Proc. NeurIPS (pp. 8024–8035). Curran Associates,
Inc.

32. Yang, X. (2021). Practical basics and applications of X-ray
tomography (pp. 27–44). Springer.

33. Yang, X., & Schroer, C. (2021). Strategies of deep learning for
tomographic reconstruction. In IEEE International Conference
on Image Processing (pp. 3473–3476).

34. Huang, Y., Wang, S., Guan, Y., & Maier, A. (2020). Limited
angle tomography for transmissionX-raymicroscopy using deep
learning. Journal of Synchrotron Radiation, 27(2), 477–485.

35. Chen, H., Zhang, Y., Chen, Y., Zhang, J., Zhang, W., Sun,
H., Lv, Y., Liao, P., Zhou, J., & Wang, G. (2018). LEARN:
Learned experts’ assessment-based reconstruction network for
sparse-data CT. IEEE Transactions on Medical Imaging, 37(6),
1333–1347.

36. Würfl, T., Hoffmann, M., Christlein, V., Breininger, K., Huang,
Y., Unberath, M., & Maier, A. K. (2018). Deep learning com-
puted tomography: Learning projection-domain weights from
image domain in limited angle problems. IEEE Transactions on
Medical Imaging, 37(6), 1454–1463.

37. Lagerwerf, M. J., Pelt, D. M., Palenstijn, W. J., & Batenburg, K. J.
(2020). A computationally efficient reconstruction algorithm for
circular cone-beam computed tomography using shallow neural
networks. Journal of Imaging, 6(12), 135.

38. De Carlo, F., Gürsoy, D., Marone, F., Rivers, M., Parkinson, D.
Y., Khan, F., Schwarz, N., Vine, D. J., Vogt, S., Gleber, S.-C.,
Narayanan, S., Newville, M., Lanzirotti, T., Sun, Y., Hong, Y.
P., & Jacobsen, C. (2014). Scientific data exchange: A schema

for HDF5-based storage of raw and analyzed data. Journal of
Synchrotron Radiation, 21(6), 1224–1230.

39. Brooks, R. A. (1977). A quantitative theory of theHounsfield unit
and its application to dual energy scanning. Journal of Computer
Assisted Tomography, 1(4), 487–493.

40. Schulze, R., Heil, U., Groß, D., Bruellmann, D. D.,
Dranischnikow, E., Schwanecke, U., & Schoemer, E. (2011).
Artefacts in CBCT: A review. Dentomaxillofacial Radiology,
40(5), 265–273.

41. Brooks, R. A., & Di Chiro, G. (1976). Beam hardening in x-
ray reconstructive tomography. Physics in Medicine and Biology,
21(3), 390–398.

42. Kachelrieß, M., Sourbelle, K., & Kalender, W. A. (2006). Empir-
ical cupping correction: A first-order raw data precorrection
for cone-beam computed tomography. Medical Physics, 33(5),
1269–1274.

43. Würfl, T., Maaß, N., Dennerlein, F., Huang, X., & Maier, A. K.
(2017). Epipolar consistency guided beam hardening reduction-
ECC2. In Proc. Fully3D (pp. 181–185).

44. Kochurov, M., Karimov, R., & Kozlukov, S. (2020). Geoopt:
Riemannian optimization in PyTorch. arxiv.

45. Bécigneul, G., & Ganea, O.-E. (2019). Riemannian adaptive
optimization methods. arxiv.

46. Fat, D. L., Kennedy, J., Galvin, R., O’Brien, F., Mc Grath, F.,
& Mullett, H. (2012). The Hounsfield value for cortical bone
geometry in the proximal Humerus’an in vitro study. Skeletal
Radiology, 41(5), 557–568.

47. Márquez-Neila, P., Baumela, L., & Alvarez, L. (2014). A mor-
phological approach to curvature-based evolution of curves and
surfaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(1), 2–17.

48. Würfl, T., Maaß, N., Dennerlein, F., Aichert, A., & Maier, A.
(2018). Physical constraints for beam hardening reduction using
polynomial models. In Proc. CT-Meeting (pp. 356–359).

49. Wagner, F., Thies,M., Gu,M., Huang, Y., Pechmann, S., Patwari,
M., Ploner, S., Aust, O., Uderhardt, S., Schett, G., Christiansen,
S., &Maier, A. (2022). Ultra low-parameter denoising: Trainable
bilateral filter layers in computed tomography. arxiv.

50. Syben, C., Stimpel, B., Lommen, J., Würfl, T., Dörfler, A., &
Maier, A. (2018). Deriving neural network architectures using
precision learning: Parallel-to-fan beam conversion. In German
Conference on Pattern Recognition (pp. 503–517). Springer.

SUPPORT ING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Thies, M., Wagner, F.,
Huang, Y., Gu, M., Kling, L., Pechmann, S., Aust,
O., Grüneboom, A., Schett, G., Christiansen, S., &
Maier, A. (2022). Calibration by differentiation –
Self-supervised calibration for X-ray microscopy
using a differentiable cone-beam reconstruction
operator. Journal of Microscopy, 287, 81–92.
https://doi.org/10.1111/jmi.13125

https://github.com/odlgroup/odl
https://github.com/odlgroup/odl
https://doi.org/10.1111/jmi.13125

	Calibration by differentiation - Self-supervised calibration for X-ray microscopy using a differentiable cone-beam reconstruction operator
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | X-ray microscopy
	2.2 | Ethical compliance and sample preparation
	2.3 | Differentiable cone-beam reconstruction
	2.4 | Details on reconstruction pipeline
	2.5 | Application to cupping correction

	3 | EXPERIMENTS
	4 | RESULTS
	5 | DISCUSSION
	6 | CONCLUSIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


