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Abstract

In this dissertation, we apply second-order many-body perturbation theory (MBPT)
to calculate the single-particle (charged) excitations of solids using localized atom-
centered orbital basis set.

The single-particle excitation energies that shape the band structure of the
solid are defined as the differences of total energies of the neutral and charged
systems. It was shown (J.-Q. Sun and R. J. Bartlett: J. Chem. Phys. 107, 5058
(1997)) that a practical approximation can be obtained by applying MBPT to the
energy differences. This method can be used for the calculation of the correction
to the charged excitation energies with a possibility to systematically improve ac-
curacy by including higher orders of perturbation, without calculating neutral and
charged systems separately. We implement and apply this method for corrections
up to second order for the calculation of the band gaps and band structure of three-
dimensional solids. We find that the second-order correction is not sufficient, and
there is the need to include higher-order terms. For this reason, we employ the
Dyson equation, which provides an explicit summation of classes of perturbation
terms (described by certain diagrams) up to infinite order. We use the Dyson equa-
tion with the self-energy that is produced by the second-order MBPT to calculate
band gaps of a series of prototypical semiconductors. We find a significant im-
provement of the calculated band gaps, compared to the second-order correction,
which is just the first iteration of the Dyson equation.

A significant difficulty for the application of MBPT to solids is the slow
convergence of the reciprocal-space integrals, caused by the singularity of the
Coulomb potential. The main approach used until now to overcome the slow con-
vergence is by extrapolation to an infinitely dense k-point grid. We demonstrate
that this approach leads to very large errors. The reason is that the converged
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vi ABSTRACT

single-particle excitation energy value is very sensitive to the extrapolation func-
tion that defines the asymptotic behavior of the value as a function of the number
of k-points in the first Brillouin zone. To solve this problem, we have examined
the singularity and the contribution to the slow convergence of the energies analyt-
ically. The analysis is done for a localized basis set, but it can be generalized for
any basis set. Due to this analysis, the contribution of the singularity to the slow
convergence is now known and can be tackled by either a reliable extrapolation,
since the law of extrapolation is now known, or by correcting the value using a
generalization of the Gygi-Baldereschi method, as proposed in this thesis. This
way, we calculate single-particle energies that are converged in reciprocal space.



Zusammenfassung

In dieser Dissertation wenden wir Vielteilchen-Störungstheorie zweiter Ordnung
(MBPT) an, um unter Verwendung eines lokalisierten, atomzentrierten Orbitalba-
sissatze die (geladenen) Ein-Teilchen-Anregungen von Festkörpern zu berechnen.

Die Ein-Teilchen-Anregungsenergien, die die elektronische Bandstruktur von
Festkörpern bestimmen, sind definiert als die Differenz der Gesamtenergien des
neutralen und des geladenen Systems. Es ist bekannt, [J.-Q. Sun und R. J. Bartlett:
J. Chem. Phys. 107, 5058 (1997)], dass diese näherungsweise bestimmt wer-
den können, indem MBPT bei der Berechnung von Energiedifferenzen eingesetzt
wird. Dies ermöglicht es, Korrekturterme für die Berechnung von geladenen
Anregungsenergien zu verwenden, deren Genauigkeit durch Einbeziehung von
Störungstermen höhere Ordnungen systematisch verbessert werden kann, ohne
neutrale und geladene Systeme explizit getrennt berechnen zu müssen. Wir haben
diese Methode für die Berechnung der Bandlücken und der Bandstruktur von drei-
dimensionalen Festkörpern implementiert und verwendet, wobei Korrekturen bis
zur zweiten Ordnung berücksichtigt wurden. Damit konnten wir zeigen , dass
Korrekturen zweiter Ordnung nicht ausreichend sind und dass es notwendig ist,
auch Terme höherer Ordnung zu berücksichtigen. Um dies zu ermöglichen, ver-
wenden wir die Dyson Gleichung, die eine explizite Summierung von Störungster-
men einer bestimmten Klasse, die durch spezifische Diagramme beschrieben wird,
bis zu einer unendlichen Ordnung ermöglicht. Wir haben die Dyson-Gleichung
und MBPT-Eigenenergie zweiter Ordnung verwendet, um die Bandlücken für
eine Reihe von prototypischen Halbleitern zu berechnen. Dabei haben wir eine
signifikante Verbesserung der berechneten Bandlücken festgestellt, insbesondere
im Vergleich mit Korrekturen zweiter Ordnung, die nur der ersten Iteration der
Dyson-Gleichung entsprechen.
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viii ZUSAMMENFASSUNG

Eine erhebliche Schwierigkeit bei der Anwendung von MBPT für Festkörper
ist die langsame Konvergenz der Integrale im reziproken Raum, die durch die
Singularität des Coulomb-Potentials verursacht wird. Bisher ist die Extrapolation
auf ein unendlich dichtes k-Punkt-Gitter der weitverbreitetste Ansatz, um diese
langsame Konvergenz zu überwinden. Wir konnten zeigen, dass eine solche Ex-
trapolation zu sehr großen Fehlern führen kann. Der Grund dafür ist, dass der
konvergierte Wert der Ein-Teilchen-Anregungsenergie sehr empfindlich auf die
Extrapolationsfunktion reagiert, die das asymptotische Verhalten dieses Wertes in
Abhängigkeit der Anzahl von k-Punkten in der ersten Brillouin-Zone beschreibt.
Zur Lösung dieses Problems haben wir die Singularität und den Beitrag, der
die langsame Konvergenz der Energien verursacht, analytisch untersucht. Für
diese Analyse wurde ein lokalisierter Basissatz verwendet, aber der dargestellte
Formalismus kann für jeden Basissatz verallgemeinert werden. Da damit der
Beitrag der Singularität zur langsamen Konvergenz analytisch bekannt ist, kön-
nen zuverlässige Extrapolationsmethoden entworfen werden. Wie in dieser Arbeit
vorgeschlagen, lassen sich dadurch nun auch mit Hilfe einer Verallgemeinerung
der Gygi-Baldereschi-Methode akkurate Korrekturterme bestimmen. Wir zeigen
dies durch die Berechnung von Ein-Teilchen Energien, die bezüglich der Integrale
im reziproken Raum konvergiert sind.
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Chapter 1

Introduction

During the first years after the foundation of quantum theory, the difficulties of
applying it to real-life problems surfaced, leading Dirac to state:

"The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems without
too much computation."[1]

The underlying physical laws that Dirac is referring to are the Schrödinger
equation [2] and its solutions that govern the evolution of quantum systems. The
non-relativistic Schrödinger equation is a partial differential equation:

iℏ
∂ |ψ(t)⟩
∂t

= Ĥ |ψ(t)⟩ (1.1)

where |ψ(t)⟩ is the time-dependent wavefunction and Ĥ is the Hamiltonian oper-
ator representing the total energy. The Hamiltonian equation:

Ĥ |ψ⟩ = E |ψ⟩ (1.2)

is the time-independent form of the Schrödinger equation, as a result of the vari-
able separation method. The Schrödinger equation can describe any quantum me-
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2 CHAPTER 1. INTRODUCTION

chanical system on a non-relativistic level. Therefore, we can assume1 that pre-
dicting the properties of matter can be reduced to solving the Schrödinger equa-
tion or if relativity cannot be ignored, the relativistic analogue, the Dirac equation
[4]. Incorporating relativistic effects by solving the Dirac equation, the wavefunc-
tion is no longer scalar but a four-component vector. For this reason, solving it
is significantly more demanding than the non-relativistic Schrödinger equation.
However, the effects of relativity are negligible for light elements [5] and, as a
first approximation, are ignored for many applications2. Thus, the objective of
quantum chemistry and first-principle material science is to solve the Schrödinger
equation (or the Dirac equation when relativity is relevant) for systems composed
of atoms.

Solving the Schrödinger equation for systems with a few atoms is a demanding
task that can turn impossible for systems with a substantial number of atoms. This
is because the Coulomb interaction included in the Schrödinger equation couples
the degrees of freedom of all the electrons and nuclei of the system, and there
is no known general transformation to decouple them. Consequently, as the de-
grees of freedom of the system increase, so does the complexity of the equation
to be solved. Therefore, as Dirac’s quote suggests, the need for approximations
is inevitable. The Born-Oppenheimer approximation [7] is commonly employed
first, decoupling the degrees of freedom of nuclei and electrons. Solving the exact
electronic problem requires the diagonalization of the Hamiltonian matrix. Full
Configuration Interaction Method (Full CI) [8] is an exact technique that relies
on calculating Hartree-Fock (HF) energy and single-particle states [9], [10] and
constructing a basis set from a linear combination of Slater determinants of the
HF states. Assuming that the system consists of N particles, and we use a ba-
sis set with n HF states, the dimension of the matrix to be diagonalized is

(
n
N

)
.

This number becomes extremely large as the number of electrons of the system
increases. Thus, FCI is unfeasible for systems with more than a few electrons due

1The properties prediction reduction into the description of the interactions of the building
particles of matter assumes that no new properties emerge at higher-level structures. See, for
example, this article from P. W. Anderson: [3].

2Relativistic effects can be significant for heavy elements and can be approximately accounted
for by replacing the Schrödinger equation with a two-component or scalar approximate equation
[6].
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to limited computational capacity.

Many methods have been developed to approximate the many-body problem
and the solution of the time-independent Schrödinger equation. An efficient ap-
proximation must balance the desired accuracy and the computational cost. For in-
stance, density-functional theory (DFT) [11], [12] based methods are widely used
and are, in general, of relatively low computational cost since they access only
the electron density. DFT within the Kohn-Sham (KS) ansatz [13] has been the
leading method by virtue of its low computational cost. The Kohn-Sham ansatz
gives a practical way to solve the many-body problem by replacing it with ficti-
tious non-interacting particles moving in a potential that depends on the density
and counts for all interactions, known as the Hartree plus exchange-correlation
(XC) potential. The exact XC potential is unknown, but many approximations
have been developed. The most widely used approximations are the local-density
approximation (LDA) [13] and generalized gradient approximation (GGA) [14]–
[16], which are computationally inexpensive and produce good results in many
cases. The limitation of DFT methods comes from the fact that there is no sys-
tematic way to approach the exact potential that would lead to the exact density.

Consequently, there are many different XC potential approximations, and each
may improve the results for some materials and properties, but not all. This lim-
itation does not help achieving the predictive power that a method requires to
discover new materials.

The most acknowledged case of DFT failure is related to the excitation en-
ergies, where it significantly underestimates the bandgaps in solids [17]. This
thesis aims to explore alternatives to DFT by applying quantum chemistry and
wavefunction methods to excitation energies and bandgap prediction. Before we
review existing approaches for the excitation energies that go beyond DFT, we will
examine the quantum chemistry methods for the ground state energy prediction.

Approaches to the ground state energy

Quantum chemistry methods for the ground state energy include, among others,
the coupled-cluster (CC) theory [18], the many-body perturbation theory (MBPT)
[19], [20], and the latter’s widely used variant Møller–Plesset (MP) perturbation
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theory [21]. These methods can achieve high accuracy by approaching the many-
body wavefunction directly and constitute a robust alternative, considering they
are, in principle, systematically improvable. Nonetheless, they can be computa-
tionally high demanding.

In the case of MBPT, the many-body wavefunction and energy are written as
an infinite series of ordered terms, with each term improving the accuracy3 [22].
This way, the exact result can be approximated by the sum of a finite number
of terms. The diagrammatic representation of the correction in each order is an
essential tool for tracking the complex expressions that must be evaluated to apply
MBPT. The drawback of MBPT is its computational demand, which raises in
response to the increase of the complexity of higher-order terms.

While MBPT can start from any approximate Hamiltonian, MP perturbation
theory, which has HF as a starting point, is a commonly-used variety of MBPT.
MP starts with the self-consistent solution to the HF equation and approaches the
exact ground state energy with corrections of increasing order n (MPn). The dif-
ference between the exact ground state total energy and HF total energy is known
as correlation energy. The first-order correction is zero as a result of Brillouin’s
theorem [23]. Thus second-order MP (MP2) is the first step beyond HF to ap-
proach the exact solution. MP2 has been applied to a wide range of molecules,
including typically 85% to 95% of the correlation energy[24]. Hence, interest in
the application of MP2 to solids has been growing in the last years (see [25] and
references within).

However, its application to solids is limited due to computational demand that
increases with the size of the system, as O(N5) [26]. For this reason, early imple-
mentations were applied in one-dimensional systems [27], [28]. One of the most
important features of any implementation is the basis set that spans the single-
particle orbitals. An effective selection allows accurate calculations by spanning
the wavefunction space with fewer functions. For example, the first implemen-
tation for general three-dimensional materials, reported in 2005 by Pissani et al.
[29], became feasible by introducing non-canonical local functions to span the

3MBPT corrections improve the accuracy under the constraint that the Hamiltonian can be
properly separated into a solvable part and a perturbation part, where the effect of the perturbation
part is such that the corrections form a descending sequence and the series converges.



5

space. This version of MP2 is known as local-MP2 or LMP2. This local approxi-
mation [30] allowed reducing the size scale to O(N).

Other three-dimensional periodical implementations followed [31], includ-
ing also canonical implementations, as the one based on VASP code [32] which
adopts plane-waves as the basis set and efficiently exploits parallel computing
[33]. Plane-waves are advantageous because of their analytical form that allows
simplifications for the matrix elements of the Hamiltonian. While they can de-
scribe very well the delocalized, almost-free electrons, the description of localized
electrons, as is the case of electrons close to the nuclei, is not practical, resulting
in the necessity of approximation methods such as the frozen-core method or the
introduction of pseudopotentials, such as the Projector-Augmented-Wave (PAW)
method [34] also utilized in the VASP code.

On the other hand, numerical atom-centered orbitals (NAOs) [35], [36] can de-
scribe localized electrons eliminating the need for approximate potentials. More-
over, some variations can be very efficient for MBPT methods such as MP [37]. A
disadvantage is that their form does not allow for an analytical calculation of the
products needed for the Coulomb interaction term. For numerical atom-centered
orbitals, but also for any general non-analytic basis, the density fitting technique,
also known as resolution of identity (RI) [38]–[40], is preferable since it reduces
computational cost [41]–[43]. The basic idea of the RI technique is to represent
the products of orbitals with an auxiliary basis set, thus, reducing the cost of the
integrations needed for the calculation of the Coulomb matrix elements. This cal-
culation is the most time-consuming step of HF, MP2, as well as for other MBPT
approximations. The representation is not unique [44], but the choice defines dif-
ferent varieties of RI. For extended systems, a localized version of RI (RI-LVL)
[45], [46] is of practical use for MP2 and other methods that depend on the calcu-
lation of the Coulomb matrix by reducing the size scale significantly, even down
to linear scale. Fritz Haber Institute ’ab initio molecular simulations’ (FHI-aims)
is an all-electron, full-potential electronic-structure package that uses NAOs and
includes a massively parallel, in-memory implementation of periodic MP2, taking
advantage of RI-LVL [47], [48].
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Approaches to the excitation energies

A valuable concept for the study of excitations in solids is the quasiparticle [49],
[50]. It is based on the assumption that the interacting electron system behaves like
a normal Fermi liquid [51], in which the interactions do not dramatically change
the system’s properties. Still, when one electron is excited, the other electrons
will react as a result of the interactions. One can imagine an excited electron
moving around other electrons. This electron repels those in its neighbourhood,
creating a "lack of electrons" around it. It will move together with this "lack
of electrons", forming in this way a collective excitation. This combination is
called a quasiparticle. Likewise, if a delocalized electron is excited, it will affect
other electrons’ momentum. In both cases, the quasiparticle can be described as a
particle with altered properties. Thus the non-interacting particle picture does not
entirely break, and the excitations resemble the excitations of the non-interacting
case. However, instead of particle excitations, we consider collective excitations,
namely the quasiparticles.

For a non-interacting system, the Hamiltonian reduces into equivalent inde-
pendent Hamiltonians for each electron. The solutions constitute the states the
electrons can occupy, following the Fermi-Dirac distribution. The energy for re-
moving an electron is connected to the energy of the eigenstate that it was oc-
cupying and adding an electron to the energy of the previously empty eigenstate
that it will occupy, in both cases, without changing the energy of any other elec-
tron. When exciting any interacting system instead, by removing or adding an
electron, we end up with a linear combination of the many-body eigenstates of
the N − 1 or N + 1 system. We can define the energy differences of the neutral
and the charged system as the single-particle excitation energies, independently
of whether the quasiparticle picture holds. If the quasiparticle picture holds, then
the resulting state will approximate one of the eigenstates of the charged system.

Single-particle excitations are obtainable through experiment, in which an
electron is removed or added to a solid [52]. Additionally, they define proper-
ties such as density of states, band structure, and, in the case of insulators and
semiconductors, bandgap. Thus, single-particle excitations are essential for de-
scribing solids, but as energy differences, they are equally or more complex to
calculate than the ground state energy.
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A well-known approach for the single-particle excitations is the single-particle
Green’s function-based methods, where the propagator (or Green’s function) is
approximated using the time-dependent MBPT, resulting in a sequence of correc-
tions, as in MBPT [53]. Those methods provide direct access to the single-particle
excitation energies straight from the Lehmann representation of the propagator
[54], without needing to calculate energy differences. Therefore, they are pre-
ferred in the case of band-structure calculations. Furthermore, the advantageous
Dyson equation formulation [55], [56] offers a summation of infinite order terms
that originate from an order by order approximation to the self-energy.

One established approximation to the propagator is the GW approximation
[57]–[59], the most known representative of Green’s function methods. It in-
troduces the screened Coulomb potential and approximates the Green’s function
within the Dyson equation formulation, and has been applied on a wide range
of materials, most commonly in a non-self-consistent approximation, known as
single-shot GW or G0W0 [60], [61]. One way to go beyond GW is the inclusion of
parts of the vertex correction, for example, the second and higher-order exchange
terms as applied by Ren et al. on molecular systems [62]. The same strategy can
be used for periodic solids in principle, but the application is restrained due to the
considerably higher cost and complexity. Another approach is Green’s function
approximations based on CC theory [63], [64], which receives growing interest
[65], [66].

An alternative practical theory was developed by Sun and Bartlett in 1997
[67], obtaining the single-particle energies directly from MBPT. They generated
a diagrammatic theory to express any-order correction to the single-particle en-
ergies. When the HF Hamiltonian is used as a starting point, then this approach
defines a series of approximations which we will refer to as sp-Møller–Plesset(n)
or sp-MP(n). Furthermore, the Dyson equation can be used to go beyond by in-
cluding infinite ordered terms. While there are a few reported sp-MP2 energies
of one-dimensional systems [28], [31], [68], [69], single-particle energies from
MBPT have not yet been well researched for three-dimensional materials. One
report for single-particle energies comes from Grüneis et al. in 2010 [70], where
they applied an approximate form of the Dyson equation for three-dimensional
materials.
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Convergence of MBPT

One of the most known challenges for calculating the total and single-particle
energies from MBPT in periodic systems is the convergence of lattice points sum-
mations present in the Coulomb potential matrix elements. The summation can
be performed in real, reciprocal or, when using the Ewald method [71], partially
in real and partially in reciprocal space. A proof of the convergence of MBPT
correction terms in all orders is described by Sun and Bartlett in 1997 [72], with
the lattice points summation performed over real space. Although the MBPT cor-
rections are proven to converge, the convergence is very slow and unpractical, re-
quiring computationally expensive summations, especially for three-dimensional
cases.

The issue of slow convergence is already known from HF calculations [73].
When the Coulomb potential is represented in reciprocal space, the slow conver-
gence is assigned to the singularity arising when the denominator is zero. Many
efforts have been made to improve the convergence in HF, such as the Gygi-
Baldereschi method [73], [74] and the truncated Coulomb potential [75], both
reducing the grid density needed for a converged result, therefore their computa-
tional effort. Both methods have been successfully implemented for HF, and DFT
hybrid functionals [47], [76].

In MP2 and other MBPT-based methods, such as for example CC with sin-
gles and doubles (CCSD), the dense grid limit is approached by an extrapolation
[32], [77]–[79]. Different extrapolation schemes have been proposed for MP2
and CCSD methods. They are easy to define and they depend on the mathematical
treatment of the calculation components. For example, in the case of a plane-wave
basis, a linear relation between the inverse of the grid size and the finite-size error
is proposed to extrapolate to the infinite limit [80]. On the other hand, for a Gaus-
sian basis a linear relation between the inverse of the grid’s size third root and the
finite-size error [65] is suggested. With careful comparison of the two methods,
one can understand that this contradiction derives from a different treatment of
different components. Note here that the size dependence of the finite size error
requires attentive consideration for each method and its components. Regarding
sp-MP2 convergence, there are reports for the one-dimensional case [31], [81]. It
is found to be slower than ground-state MP2, but there is a lack of further research
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for higher-dimensional cases.

Moreover, a scheme reducing the computational cost of the lattice summa-
tions, as exemplified by Gygi-Baldereschi for the HF case, could expand the ap-
plicability of MBPT methods.

Thesis overview

This thesis aspires to explore MBPT for the band structure of solids, as established
by Sun and Bartlett [67]. More specifically, it focuses on calculating single-
particle excitations, particularly the bandgap using the sp-MP2 and the Dyson
equation for three-dimensional insulators and semiconductors. Beyond that, we
address the convergence issue of sp-MP2 for three-dimensional cases by gener-
ating a method that treats the issue with an extrapolation based on the analytical
behaviour of the Coulomb matrix. Furthermore, we suggest a technique to reduce
the grid density needed, in the spirit of Gygi-Baldereschi’s method.

We initiate with a theoretical introduction to MBPT and the single-particle
MBPT in chapter two. In the first section, we state the problem mathematically
and describe the difficulties of finding the exact solution, even for simple sys-
tems. In the second section, we review the single-particle approximations that
serve as a starting point for MBPT and are essential for the correction’s accuracy.
In the third section, we review MBPT and how diagrams can help keeping track
of every order’s contributions. In the fourth section, we define single-particle ex-
citations as energy differences and how MBPT is applied to these differences. A
diagrammatic notation is introduced following Sun and Bartlett’s theory. Section
five introduces time-dependent perturbation theory and the Dyson equation to go
beyond single-particle MBPT. Sections six and seven introduce an efficient ba-
sis set based on localized orbitals and describe the Coulomb operator, a crucial
ingredient of MBPT.

Chapter three of this thesis presents the outcome of our research. In the
first section, we analyze the singularity and its effect on the convergence of the
reciprocal-space integrals. We also prove the integrability of the singularity in
MP2 and sp-MP2 equations, and we demonstrate that the treatments applied pre-
viously to HF are not suitable for MP2. Moreover, we suggest a way to generalize
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Gygi-Baldereschi’s method to improve accuracy and treat the convergence of sp-
MP2. The second section presents our sp-MP2 implementation and the results
for a set of selected materials. Additionally, we implement and apply the Dyson
equation with the self-energy in a diagonal second-order approximation to cal-
culate band structure and bandgap. We showcase the importance of the Dyson
equation by improving the sp-MP2 bandgaps significantly.



Chapter 2

Theoretical background

2.1 The many-body Hamiltonian

We begin by formulating the main purpose of the electronic-structure theory,
which is to solve the many-body Schrödinger equation, and we discuss the chal-
lenges to fulfilling this task. We see how the electronic and nuclear degrees of
freedom can be separated within the Born-Oppenheimer approximation. For now,
we ignore relativistic effects.

The non-relativistic Hamiltonian required to solve in order to define the prop-
erties of a molecular or solid system with N electrons and M nuclei will be the
sum of the operators of the electrons’ kinetic energy T̂e, kinetic energy of nu-
clei T̂nuc, and interactions between electrons and nuclei V̂nuc−e, between nuclei
V̂nuc−nuc and between electrons V̂e−e:

Ĥ = T̂e + T̂nuc + V̂nuc−e + V̂nuc−nuc + V̂e−e. (2.1)

In Hartree atomic units (ℏ = me = e = 1), the kinetic energy of electrons and the
kinetic energy of the nuclei will be, respectively:

T̂e =
N∑
i=1

−1

2
∇2

ri (2.2)

T̂nuc =
M∑
n=1

− 1

2mn

∇2
Rn
. (2.3)
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The interaction between nuclei, electrons and electrons-nuclei is:

V̂nuc−nuc =
1

2

∑
n̸=m

ZnZm

|Rn − Rm|
(2.4)

V̂e−e =
1

2

∑
i ̸=j

1

|ri − rj|
(2.5)

V̂nuc−e =
N∑
i

M∑
n

Zn

|ri − Rn|
. (2.6)

The last term is mixing degrees of freedom of electrons and nuclei, increasing the
complexity of solving the problem directly.

2.1.1 Born-Oppenheimer approximation

Due to their large mass mn, the nuclei move much slower than electrons. As a
first approximation, it can be assumed that the electrons follow the motion of the
nuclei instantaneously, and the nuclei are affected only by the average electron
distribution. This is the Born-Oppenheimer approximation[7] , also called adia-
batic, which decouples the motion of nuclei and electrons. Since it is assumed that
the electrons follow the motion of the nuclei instantaneously, the wavefunction of
the electrons is determined by ignoring the motion of the nuclei and treating their
positions as parameters. The wavefunction will be the solution of the Hamiltonian
[82]:

ĤN = T̂e + V̂ext + V̂e−e (2.7)

where V̂ext is the interaction between electrons and nuclei, and between the nuclei,
for a defined position of the nuclei. The wavefunctions of the above Hamiltonian
depend on the nuclei positions and define the average electron density in which the
nuclei moves, under the Born-Oppenheimer approximation. This thesis focuses
on solving the Hamiltonian 2.7, the solutions of which are defined by the equation:

ĤNΨ
N
n (r1σ1, r2σ2, ..., rNσN) = EN

n ΨN
n (r1σ1, r2σ2, ..., rNσN) (2.8)

where ri and σi are the coordinates and spin of the electron i, respectively. EN
n

are the total energies of the system, with EN
0 being the ground-state energy, which

we will denote as EN for simplification.
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The wavefunction depends on the degrees of freedom of all particles in the
system. The interaction between electrons couples the electron degrees of free-
dom, making the problem extremely hard to solve, since the computational effort
increases exponentially as the number of electrons in the system increases in an
arbitrary system. As discussed in the introduction, a systematic way to approach
the solution of this equation is MBPT, which to be applied requires a reliable
starting point. This is discussed in the next section.

2.2 Single-particle approximations

As stated in the previous section, the electronic part of the Hamiltonian within
the Born-Oppenheimer approximation (equation 2.7), ignoring relativistic effects,
has three terms. The first two are single-particle operators, thus, by ignoring the
third term the equation can be solved separately for each electron by using the
separation of variables technique. The many-body solution will be just a linear
combination of the products of single-body wavefunctions. The first step one can
do to approach the solution of the Hamiltonian 2.7 is to approximate the two-body
Coulomb potential with an appropriate single-particle potential, and we can split
the Hamiltonian into the single-electron part:

Ĥ0 =
N∑
i=1

T̂i +
N∑
i=1

V̂ext(ri) +
N∑
i=1

V̂eff (ri) (2.9)

and the remaining interactions:

V̂int =
1

2

∑
i ̸=j

1

|ri − rj|
−

N∑
i=1

V̂eff (ri). (2.10)

If the choice of the effective potential is adequate, the many-body interaction (eq.
2.10) can be treated as a perturbation, and MBPT can be applied. This way, a
part of the complexity of the problem is passed on to finding an adequate effective
potential. After that, MBPT can be applied to describe the system within the
desired precision.
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2.2.1 Many-body states for indistinguishable particles

The electrons are indistinguishable particles and, therefore, the observables should
not change under the exchange of two electrons and the exact solution of the
electronic problem should obey this symmetry. As a result, the wavefunction
should be symmetric or antisymmetric under the exchange of two particles. Based
on the Pauli exclusion principle and quantum field theory, the appropriate solution
is antisymmetric.

Suppose {ϕn} is the set of orthogonal eigenfunctions of the single-particle
Hamiltonian. In that case, a subset of N eigenfunctions ϕ1, ϕ2, ..., ϕN can be the
occupied states for a problem with N electrons. The many-body independent
particle solution for this subset will be an antisymmetric wavefunction that can be
expanded as a Slater determinant:

ΦN
n (r1σ1, r2σ2, ..., rNσN) =

1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(r1σ1) ϕ2(r1σ1) ϕ3(r1σ1) . . . ϕN(r1σ1)
ϕ1(r2σ2) ϕ2(r2σ2) ϕ3(r2σ2) . . . ϕN(r2σ2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ1(rNσN) ϕ2(rNσN) ϕ3(rNσN) . . . ϕN(rNσN)

∣∣∣∣∣∣∣∣∣
(2.11)

Following the Dirac notation, a single-particle state is denoted by a ket |ϕn⟩. The
position and spin representation of the state n for the particle i will be ϕn(riσi) =
⟨riσi|ϕn⟩, that can be separated into a spin part and a position part as ϕn(riσi) =
ψn(ri)χn(σi). The spin part can be projected to two spin functions, for spin up:

χ↑ =

[
1

0

]
(2.12)

and spin down:

χ↓ =

[
0

1

]
(2.13)

We can separate the wavefunction in spin-up part and spin-down part: ϕp(rσ) =
ψpσ(r)χσ where σ =↑, ↓. The antisymmetric Slater determinant wavefunction is
denoted as:

∣∣ΦN
n

〉
= |ϕ1ϕ2...ϕN⟩ .
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In the lowest-energy state, the ground state
∣∣ΦN

0

〉
, N states with the lowest

eigenvalues are occupied1. Since the set {ϕn} forms a basis for the single particle
problem, we can form a basis for the many-particle problem with the set of anti-
symmetric many-body wavefunctions, corresponding to all possible combinations
of occupied states. Starting from the ground state by replacing one occupied state
i with an unoccupied state a, we obtain:

|Φa
i ⟩ = |ϕ1...ϕi−1ϕi+1...ϕN , ϕa⟩ (2.14)

In the same way, we can replace two occupied with two unoccupied states to form∣∣Φab
ij

〉
2, and so forth. In general, we denote by i, j, ... the states that are occupied in

the ground state, and by a, b, .. the ones that are unoccupied. This set can be used
as a basis to expand the many-body state solution of the interacting Hamiltonian.
Any many-body state can be written as:

∣∣ΨN
n

〉
= c0

∣∣ΦN
0

〉
+
∑
ai

cai |Φa
i ⟩+

∑
abij

cabij
∣∣Φab

ij

〉
+ ... (2.15)

2.2.2 Approximations to the single-particle potential

Hartree-Fock approximation

By approximating the many-body state as a single Slater determinant and mini-
mizing the expectation value of the Hamiltonian [83], we obtain the many-body
wavefunctions as solutions of the effective Hamiltonian:

ĤHF = T̂e + V̂ext + V̂Hartree + V̂x (2.16)

where the Hartree potential for each electron is:

V̂Hartree(r) =
∑
i,σ

∫
dr′

|ψiσ(r′)|2

|r − r′|
(2.17)

1The case where the way to take the first N eigenvalues that give the lowest energy is not
unique (degenerate ground state) needs special care as it is be explained later.

2The antisymmetry leads to the relations:
∣∣Φab

ij

〉
=
∣∣Φba

ji

〉
= −

∣∣Φba
ij

〉
= −

∣∣Φab
ji

〉
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and V̂x is the exchange operator defined by the operation:

V̂x(r)ψjσj
(r) =

∑
i,σi

δσi,σj

∫
dr′

ψ∗
iσi
(r′)ψjσj

(r′)
|r − r′|

ψiσi
(r) (2.18)

This is called Hartree-Fock (HF) approximation, and it describes a system
where every electron is moving in the mean-field created by the charge den-
sity of the rest of electrons and nuclei, obeying Pauli’s exclusion principle. In
this approximation, the many-body problem is converted to a set of effective
single-particle equations, with the Hamiltonian itself depending on all occupied
eigenfunctions. This defines a nonlinear problem that needs to be solved self-
consistently. The HF eigenfunctions are used to construct the Slater determinant∣∣ΦHF

0

〉
=
∣∣ϕHF

1 ϕHF
2 , ..., ϕHF

N

〉
. The energy will be the expectation value of the

Hamiltonian:

EHF =
〈
ϕHF
1 ϕHF

2 , ..., ϕHF
N

∣∣Ĥ∣∣ϕHF
1 ϕHF

2 , ..., ϕHF
N

〉
(2.19)

Note here that the total energy EHF is not in zeroth order, since it is not calcu-
lated as the sum of the eigenvalues, but it includes first order contribution as the
expectation value of the Hamiltonian. As a virtue of the variational principle, this
energy constitutes an upper limit to the exact total energy. The exact wavefunction
is a linear combination of all Slater determinants that can be assembled from the
HF functions.

Kohn-Sham effective potential

Kohn-Sham approach, based on density-functional theory (DFT), provides an-
other way to approximate the many-body problem by solving a set of independent
particle equations. DFT is based on Hohenberg-Kohn theorem[13], which states
that all properties of the ground state can be determined from the ground-state
density, thus, a single space variable function is required instead of the N variable
wavefunction. However, the connection from the density to any property, i.e., the
functional, is unknown and there is no trivial way to find it. The Kohn and Sham
ansatz states that the density of the interacting system is equal to the density of a
different fictitious non-interacting system which obeys to the Hamiltonian [84]:

ĤKS = T̂s + V̂ext + V̂Hartree + V̂xc (2.20)
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While T̂s is the kinetic energy operator, its expectation value does not represent
the kinetic energy of true interacting system but of the fictitious non-interacting
system. The form of V̂xc is unknown and, thus, many approximations exist,
such as local-density approximation (LDA) or generalized gradient approximation
(GGA). These approximations, although quite simple, have proven to be efficient
in many systems and are widely used.

The eigenfunctions and eigenvalues of the KS Hamiltonian, even though not
representing real particle energies, can serve as an approximation or as a starting
point for perturbation theory, as we will see in section 2.3, many-body perturba-
tion theory.

Crystalline solids and periodic boundary conditions

Periodic boundary conditions can model crystalline large systems for which the
effects of non-periodicity is negligible. In a periodic system, the positions of all
atoms can be obtained by translating a small subset of atoms (lattice basis) along
the lattice vectors. A unit cell is a volume containing the lattice basis, if it fills
the entire space when periodically repeated, but does not overlap with its periodic
images.

Even when there is a translational symmetry in atomic positions, the electronic
wavefunctions are not necessarily periodic with the same lattice vectors. To make
electronic states countable, Born-von-Karman conditions can be used:

ψ(r +Niai) = ψ(r) (2.21)

whereNi is the number of cells in the box in each direction so thatN1N2N3 = N 3.
This condition results in a discrete set of wavefunctions, and the exact solution can
be obtained in the thermodynamic limit (Ni → ∞).

3In the case of a many-particle wavefunction the same condition would be implied but this time
we should write

ψ(r1, ..., ri +Niai, ...) = ψ(r1, ..., ri, ...)
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Figure 2.1: A volume VN = N1N2N3Ω where Ω is the volume of the unit cell.

Bloch theorem

The wavefunctions of a Hamiltonian with translational symmetry4 can be written
as:

ψik(r) = uik(r)eikr (2.22)

where the function u is satisfying the equation: uik(r+R) = uik(r), following the
lattice periodicity. This is the Bloch’s theorem. Its proof (See for example: Neil
Ashcroft and N. David Mermin, Solid State Physics, 1976 [85]) is based on the
translational symmetry of the lattice. Another useful form of Bloch’s theorem is
ψik(r − R) = ψik(r)eikR, which shows that for a symmetrically equivalent points
in space, the wavefunction changes only by a phase. It follows from the Born-von-
Karman boundary conditions (equation 2.21), that the crystal momentum quantum
number k should obey the relation:

eikNiai = 1 (2.23)

4The Hamiltonian is translationally invariant in the case we have a periodic potential V (r +

R) = V (r)
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For a set of vectors g1 such that g1aj = 2πδi,j , the crystal momentum can be
written as:

k =
m1

N1

g1 +
m2

N2

g2 +
m3

N3

g3

with m1,m2,m3 = 0,±1,±2, .... The vectors g1, g2, g3 define a lattice in the
reciprocal space. In the limit of infinite crystal N1, N2, N3 → ∞, the crystal
momentum is continuous. The relation between energy and crystal momentum is
called dispersion relation.

2.3 Many body perturbation theory

There are multiple ways to apply MBPT. We start with Rayleigh-Schrödinger
perturbation theory, which is widely applied. Applying HF as the unperturbed
Hamiltonian (MP perturbation theory) has the advantage of canceling many of the
contributions, since they are already included by virtue of the self-consistency of
HF wavefunctions. MBPT provides an approximation to the many-body eigen-
states and eigenenergies of the interacting system, allowing to obtain the single
particle excitation energies, as presented in the next section 2.4.

2.3.1 Rayleigh-Schrödinger perturbation theory

To apply MBPT, we separate the Hamiltonian into two parts: one with a known
solution, and the other is the perturbation term that should be small. Therefore,
the Hamiltonian is expressed as:

Ĥ = Ĥ0 + λV̂int (2.24)

where λ is a small constant which ensures that the perturbation term is small [82].
The solutions of the Hamiltonian obey the equation: Ĥ |Ψn⟩ = En |Ψn⟩. The un-
perturbed energies and wavefunctions are solutions of the equation: Ĥ0

∣∣∣Ψ(0)
n

〉
=

E
(0)
n

∣∣∣Ψ(0)
n

〉
where the wavefunctions are chosen to be orthonormal, following the

relation :
〈
Ψ

(0)
n

∣∣∣Ψ(0)
m

〉
= δm,n. The wavefunctions depend, in general, on the co-

ordinates and spin of all particles in the system. Applying perturbation theory, the
exact wavefunction and energy can be written as an expansion:

|Ψn⟩ =
∣∣Ψ(0)

n

〉
+ λ

∣∣Ψ(1)
n

〉
+ λ2

∣∣Ψ(2)
n

〉
+ ... (2.25)
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En = E(0)
n + λE(1)

n + λ2E(2)
n + ... (2.26)

The solutions for the perturbed system can be found on every order from the equa-
tions:

E(m)
n =

〈
Ψ(0)

n

∣∣V̂int∣∣Ψ(m−1)
n

〉
(2.27)

and: ∣∣Ψ(m)
n

〉
=
∑
k

αm
kn

∣∣∣Ψ(0)
k

〉
(2.28)

where the coefficients αm
kn should obey the relation:

(E0
n − E0

k)α
m
kn =

∑
j

V kj
intα

m−1
jn −

m−1∑
l=0

Em−l
n αl

kn (2.29)

V kj
int are the matrix elements of the perturbation in the basis set of the unperturbed

system’s eigenvectors. An extra relation for the coefficients arises from normaliza-
tion, where most commonly the unperturbed wavefunctions are chosen orthogonal
to the correction in every order:

〈
Ψ

(0)
n

∣∣∣Ψ(m)
n

〉
= δm,0. From the above equations,

it is easy to express the first-order correction in energy:

E(1)
n =

〈
Ψ(0)

n

∣∣V̂int∣∣Ψ(0)
n

〉
= V nn

int (2.30)

and wavefunction: ∣∣Ψ(1)
n

〉
=
∑
k ̸=n

V kn
int

(E0
n − E0

k)

∣∣∣Ψ(0)
k

〉
(2.31)

Knowing the first-order correction, we can directly calculate the second-order cor-
rection to the energy:

E(2)
n =

∑
k ̸=n

V kn
intV

nk
int

(E0
n − E0

k)
=
∑
k ̸=n

|V nk
int |2

(E0
n − E0

k)
(2.32)

In this expression there are two perturbation matrix elements multiplied for E(2)
n ,

while for E(1)
n we have only one. This is true for all orders, i.e., in the third order

we have three, and so forth. The same is true for the states. The second-order
correction to the state is:∣∣Ψ(2)

n

〉
=
∑
k ̸=n

[∑
j ̸=n

V kj
intV

jn
int

(E0
n − E0

k)(E
0
n − E0

j )
− V kn

intV
nn
int

(E0
n − E0

k)
2

] ∣∣∣Ψ(0)
k

〉
(2.33)

Following the same process higher-order corrections can be calculated, but its
expressions become increasingly complex.
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Degenerate case

In the degenerate case, applying the theory as described above is problematic be-
cause there is no unique way to go from the perturbed system to the unperturbed
for λ → 0. Since this case is out of the scope of this thesis, it will only be dis-
cussed briefly. For the degenerate states, the quantity (E0

n − E0
k) will be zero for

some n ̸= k. This does not provide a unique way to project the perturbed states
to the unperturbed, since the eigenstates are not uniquely defined in the degener-
acy subspace. We can solve this by choosing the right linear combination of the
eigenstates that diagonalize the perturbation directly in the degeneracy subspace,
under the condition that the perturbation does not share the same symmetry with
the unperturbed Hamiltonian.

2.3.2 Application to many-body problems

As described in section 2.2, the many-body problem can be separated into a single-
particle part and an interaction part that can be treated as a perturbation. The
solutions to the single-particle part will be the antisymmetrized states (the Slater
determinants) described in section 2.2.1. Before we apply perturbation theory
to many-body problems, we demonstrate how to calculate the expectation values
of single-particle operators and two-particle operators, in particular the Coulomb
interaction. For this purpose, it is useful to introduce the second quantization
formulation.

Second quantization

We begin by defining the removal and addition operators, α̂p and α̂†
q as:

α̂p |ϕ1, ..., ϕp, ..., ϕN⟩ = (−1)P |ϕ1, ..., ϕN⟩ , or zero if p not present (2.34)

α̂†
p |ϕ1, ..., ϕN⟩ = (−1)P |ϕ1, ..., ϕp, ..., ϕN⟩ , or zero if p present (2.35)

where P is the number of permutations needed to bring the p function from the
most left position to the final one, according to ascending energy. A single-particle
operator can be written as:

Ô =
∑
pq

Opqα̂
†
pα̂q (2.36)
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where Opq is the matrix element of the operator Opq =< ϕp|Ô|ϕq >. For two
Slater determinants the matrix element will be:

⟨Ψ|Ô|Φ⟩ = ⟨ψ1ψ2...ψN |Ô|ϕ1ϕ2...ϕN⟩ (2.37)

where replacing the second-quantized form we will have:

⟨Ψ|Ô|Φ⟩ =
∑
pq

Opq ⟨ψ1ψ2, ..., ψN |α̂†
pα̂q|ϕ1ϕ2, ..., ϕN⟩ (2.38)

According to the order of the operators, the function ϕq should exist in the right
state, otherwise the action of the operator will result in zero. Then the addition
operator acts, adding a function ϕp. In order for this operation to be non-zero,
the function ϕp should either be identical to ϕq (the element will be non-zero for
all occupied functions) or it should not be present in the right state in the first
place. The matrix element will be non-zero, if the state created coincides with a
permutation of the left state. In other words, if there is a permutation in which all
orbitals coincide: |ψ1ψ2, ..., ψN⟩ = (−1)P P̂ |ϕ1ϕ2, ..., ϕN⟩, then:

⟨Ψ|Ô|Φ⟩ =
N∑
i=1

(−1)P ⟨ϕi|Ô|ϕi⟩ (2.39)

If there is a permutation in which |ψ1, ..., ψi, ..., ψN⟩ = (−1)P P̂ |ϕ1, ..., ψi, ..., ϕN⟩,
with ψi ̸= ϕi, i.e., there is one orbital that does not coincide in the two determi-
nants, then:

⟨Ψ|Ô|Φ⟩ = (−1)P ⟨ψi|Ô|ϕi⟩ (2.40)

If there are two or more orbitals that do not coincide the expectation value is zero,
since we cannot create the same state or a permutation of it while acting with one
removal and one addition operator.

For two-particle operators symmetric to the exchange of two particles, as is
the Coulomb interaction, we can write in second quantization:

V̂ =
1

4

∑
pqrs

Vpq,rsα̂
†
pα̂

†
qα̂sα̂r (2.41)

where

Vpq,rs = ⟨ϕpϕq|V̂ |ϕrϕs⟩ =

2

(
1

2
⟨ϕp| ⟨ϕq| V̂ |ϕr⟩ |ϕs⟩ −

1

2
⟨ϕp| ⟨ϕq| V̂ |ϕs⟩ |ϕr⟩

)
≡ ⟨ϕpϕq| |ϕrϕs⟩

(2.42)
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In the second-quantized form:

⟨Ψ|V̂ |Φ⟩ = 1

2

∑
pqrs

Vpq,rs ⟨ψ1ψ2, ..., ψN |α̂†
pα̂

†
qα̂sα̂r|ϕ1ϕ2, ..., ϕN⟩ (2.43)

In this case, both functions ϕr and ϕs must exist in the right state to yield a non-
zero result. Then, if ϕp and ϕq do not exist in the state created after the operation
of both removal operators, the action of the addition operators will give a non-
zero result. If the state created after the operation of the addition operators is the
left state or a permutation of it, the matrix element will be non-zero. Thus, if all
orbitals coincide under some permutation P , we will have:

⟨Ψ|V̂ |Φ⟩ = (−1)P
1

2

N,N∑
i,j

⟨ϕiϕj| |ϕiϕj⟩ (2.44)

If there is one non-coincidence ψi ̸= ϕi:

⟨Ψ|V̂ |Φ⟩ = (−1)P
N∑
j

⟨ψiϕj| |ϕiϕj⟩ (2.45)

If there are two non-coincidences ψi ̸= ϕi and ψj ̸= ϕj:

⟨Ψ|V̂ |Φ⟩ = ⟨ϕiϕj| |ϕiϕj⟩ (2.46)

For more than two non-coincidences the matrix element is zero.

Zeroth order

In the zeroth order, we arrive at the solutions of the Hamiltonian 2.9, |Φn⟩. We
start with {ϕi} that are eigenfunctions of the single-particle Hamiltonian 2.9 solved
for each electron separately. For a system with N particles, we can form states
where we select N functions ϕiϕj, ...ϕk to be occupied and the rest ϕaϕb, ... un-
occupied. The antisymmetric Slater determinants: |Φn⟩ = |ϕiϕj...ϕk⟩ composed
of different occupied functions will be the set of zeroth-order wavefunctions. We
denote the ground state as |Φ⟩, composed of the lowest-energy functions as de-
scribed in section 2.2.1. The highest of the occupied functions’ energies is denoted
as ϵHO and the lowest of the unoccupied functions energies as ϵLU . Excitations
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are formed by leaving unoccupied functions with energies smaller than ϵHO and
occupy functions with energies higher than ϵLU . When one occupied function is
replaced with an unoccupied we have the single excited state |Φa

i ⟩. For two re-
placements we have the double excited state

∣∣Φab
ij

〉
, and so forth. The energy of

any state is the sum of the energies of the occupied functions.

First-order correction

While we focus on the correction of the ground state, the same process applies to
any state. From the relation 2.30:

E(1) = ⟨Φ|V̂int|Φ⟩ = ⟨Φ|V̂ − V̂eff |Φ⟩ (2.47)

Here, V̂ is the Coulomb operator:

⟨Φ|V̂ |Φ⟩ = 1

2

N,N∑
i,j

⟨ϕiϕj| |ϕiϕj⟩ (2.48)

and V̂eff is the effective potential in the Hamiltonian 2.9:

⟨Φ|V̂eff |Φ⟩ =
N∑
i=1

⟨ϕi|V̂eff |ϕi⟩ (2.49)

We note that:

⟨Φ|Ĥ|Φ⟩ = E(0) + E(1) (2.50)

This is the reference energy. For example, if we use HF as a starting point then:
EHF = ⟨ΦHF |ĤN |ΦHF ⟩, where H is the full many-body Hamiltonian of the
electrons (eq. 2.7).

Second-order correction

The second-order correction to the energy is given in equation 2.32. The summa-
tion over the states excludes the state that we want to correct, so only the excited
determinants (with at least one orbital different from the reference determinant)
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are included in the sum. Since we have only one- and two-body operators in our
perturbation, just the single and double excitations will result in a non-zero matrix
element. For single excitations, the matrix element is:

⟨Φa
i |V̂int|Φ⟩ = ⟨Φa

i |V̂ − V̂eff |Φ⟩ (2.51)

and for double excitations, the single-particle part will be zero:〈
Φab

ij

∣∣V̂int∣∣Φ〉 = 〈
Φab

ij

∣∣V̂ ∣∣Φ〉 (2.52)

We can write the correction in two parts, the part that comes from double
excitations:

E
(2)
d =

1

4

∑
ijab

| ⟨ϕiϕj| |ϕaϕb⟩ |2

ϵi + ϵj − ϵa − ϵb
(2.53)

and the part coming from singly excited states:

E(2)
s =

∑
ia

|1
2

∑
j

⟨ϕiϕj| |ϕaϕj⟩ − ⟨ϕi|V̂eff |ϕa⟩ |2

ϵi − ϵa
(2.54)

We express the effective potential as the difference of two operators: one de-
fined as an operator Û that when projected to a basis set for a system with N

occupied single-particle states results in:

Upq =
∑
j

⟨ϕqϕj| |ϕqϕj⟩ (2.55)

and the other, defined as:
F̂eff = Û − V̂eff . (2.56)

Then we can rewrite this term as:

E(2)
s =

∑
ia

| ⟨ϕi|F̂eff |ϕa⟩ |2

ϵi − ϵa
. (2.57)

When Hartree-Fock orbitals are used, the contribution of this term is zero since
V̂eff(HF ) = Û .

In general, the interaction can be written as:

V̂int = Ŵ + F̂eff (2.58)
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with Ŵ = V̂ − Û . Consequently, some parts of the Coulomb matrix elements
cancel. For example, in the matrix element:〈

Φa
i

∣∣Ŵ ∣∣Φab
ij

〉
=∑

k

⟨ϕbϕk| |ϕjϕk⟩+ ⟨ϕbϕa| |ϕjϕa⟩ − ⟨ϕbϕi| |ϕjϕi⟩

−
∑
k

⟨ϕbϕk| |ϕjϕk⟩

(2.59)

the last term comes from Û and cancels the first term coming from V̂ .

2.3.3 Elements of diagrammatic notation

Writing and keeping track of the corrections becomes challenging as we increase
in order. A convenient way to overcome this is the diagrammatic notation com-
bined with the necessary rules that describe the connection of a diagram to an
equation. There are many diagrammatic notations including Feynman, Goldstone,
Hugenholtz diagrams, besides others. In many cases there is a connection between
representations. For example, the connection between Feynman and Goldstone
diagrams is described in literature by Fetter and Walecha in Quantum Theory of
Many-Particle Systems [86], and the connection between Goldstone and Hugen-
holtz diagramms by Shavitt and Bartlett on Many-body methods in chemistry and
physics [22]. Here we review some basics principles of Goldstone diagrams [19]
and how to read them. Goldstone showed that the energy difference between the
ground states of the interacting and non-interacting Hamiltonians can be written
as:

E − E(0) = ⟨Φ|V̂int
∑
n

(
1

E(0) − Ĥ0

V̂int

)n

|Φ⟩connected (2.60)

where "connected" means we should keep only the connected diagrams, as will
be explained as soon as we review how to represent the above expression diagram-
matically. In order to understand this expression we expand the summation:

V̂int

(∑
n

1

E(0) − Ĥ0

V̂int

)n

=

V̂int + V̂int
1

E(0) − Ĥ0

V̂int + V̂int
1

E(0) − Ĥ0

V̂int
1

E(0) − Ĥ0

V̂int + ...

(2.61)
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i a

jb

×

i a
j

i a

b

Figure 2.2: Examples of diagram parts. The first of the above diagrams repre-
sents the term ⟨ϕi| ⟨ϕj| V̂ |ϕa⟩ |ϕb⟩, the second represents single-body interaction
⟨ϕi|f̂eff |ϕa⟩, and the third represents the interaction between a particle and a hole
⟨ϕi| ⟨ϕa| V̂ |ϕj⟩ |ϕb⟩. In general, the rule ⟨left-out right-out|V̂ |left-in right-in⟩
holds.

We can now insert the projection operator:
∑
k

|Φk⟩ ⟨Φk| between the operators:

⟨Φ|V̂int|Φ⟩+
∑
k

⟨Φ|V̂int|Φk⟩ ⟨Φk|V̂int|Φ⟩
E(0) − E

(0)
k

+ ... (2.62)

The interaction creates excited states where the excited orbitals can be interpreted
as particles, and the orbitals that were occupied in |Φ⟩ but unoccupied in the ex-
cited state as holes. A particle-hole pair propagates until the next interaction op-
erator scatters them or creates new particles and holes, and so forth. This can be
depicted by representing a particle (hole) a (i) by a line with an arrow going up
(down), the two-body interaction V̂ as a wavy line, and the single-body interac-
tion F̂eff as a dashed line.

We may create diagrams representing the expectation value of the sequence
of operators by starting at the bottom, where the ground state is represented by
nothing, i.e., no particle or hole lines, then adding all interaction lines as they
appear in the sequence, and finally connecting with the hole and particle lines that
end on the top of the diagram with the ground state again. The order of the diagram
is the number of two-particle interaction lines that it has, e.g., a diagram with five
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−× −

Figure 2.3: First order diagrams.

wavy lines will be of fifth order. From all possible diagrams, Goldstone’s theorem
states to choose only the connected ones. Connected diagrams are the ones that
cannot be separated into two or more diagrams, i.e., all parts of the diagram are
connected with an interaction line.

First-order diagrams

The first order correction is the interaction’s expectation value:

E(1) = ⟨Φ|V̂int|Φ⟩ ,

so that no holes or particles are created, and only the interaction between the occu-
pied orbitals is present. By rewriting the first-order correction using the definition
2.56, we get:

E(1) =
∑
i

⟨ϕi|F̂eff |ϕi⟩ −
1

2

∑
ij

⟨ϕiϕj| |ϕiϕj⟩ . (2.63)

This corresponds to the diagrams of figure 2.3.

Second-order diagrams

In the second order particle-hole pairs are created and propagate until they interact
again to recombine. The first two diagrams of figure 2.4 represent the direct and
exchange parts of the two-body term shown in the equation 2.53, and the third
diagram represents the single-body part 2.57. This thesis we focuses on theories
based on second-order perturbation correction so, even though the diagrammatic
representation is a very useful tool to keep track of higher-order corrections, we
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×

×

+ +

Figure 2.4: Second-order diagrams.

will not need them here. Instead, we will show how we can use second-order dia-
grams can be applied to go beyond second order by using summation techniques.
Such techniques are beneficial when it is not sufficient to end the expansion in a
finite order.

Antisymmetrized Goldstone diagrams

The diagrammatic representation can be simplified by taking advantage of the
symmetries. In this case, we can represent the antisymmetrized Coulomb matrix
element:

⟨ϕiϕj| |ϕaϕb⟩

with one interaction line instead of having both:

⟨ϕi| ⟨ϕj| V̂ |ϕa⟩ |ϕb⟩

and:

⟨ϕi| ⟨ϕj| V̂ |ϕb⟩ |ϕa⟩

The direct and exchange diagrams will be equivalent, but we need to assign a
factor of 1/2 for each equivalent pair, since the summation over all states will
include each pair twice. With the antisymmetric diagrammatic notation, the first-
and second-order diagrams are found in figures 2.5 and 2.6.
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−×

Figure 2.5: Antisymmetrized Goldstone diagrams representing the first-order cor-
rections to the total energy.

×

×

+

Figure 2.6: Antisymmetrized Goldstone diagrams representing the second-order
corrections to the total energy.

2.4 MBPT for the band structure of solids

The main goal of this thesis is the application of second-order based theories for
the calculation of the bandgap and band structure of semiconductors and insu-
lators. For this reason, we start by exploring how to apply Rayleigh-Schrödinger
MBPT, based on the theory developed by J.Q. Sun and R.J. Bartlet in 1997 [67] for
the calculation of the bandgap and band structure of solids. More specifically, we
focus on single-particle excitations, known also as charged excitations, since they
describe the addition or removal of an electron to/from the ground state. These
excitations are relevant for the band structure and gap. Single-particle excitation
energies are accessible experimentally. In the case of solids, direct and inverse
photoelectron spectroscopy can give important information about the band struc-
ture and the bandgap of solids [59].
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The energy of a single-particle excitation5 is defined as the energy difference
between the ground state ofN electrons and a state with one less or extra electron:

ϵ−p = E(N)− Ep(N − 1)

ϵ+p = Ep(N + 1)− E(N)
(2.64)

The bandgap is then the minimum of the difference G = ϵ+p − ϵ−p = [Ep(N +1)−
E(N)]− [E(N)− Ep(N − 1)].

2.4.1 Single-particle excitations in single-particle approxima-
tions

Within the independent-particle picture, removing one electron will leave a pre-
viously occupied state unoccupied, whereas adding an electron will occupy one
extra state.

Since the total energy is the sum of the energies of the occupied states, the
bandgap is ϵLU − ϵHO

6.

2.4.2 MBPT for single-particle excitations

To calculate the single-particle (charged) excitation energies we should solve the
Hamiltonian not only for the neutral system but also for the charged systems with
N − 1 and N + 1 electrons:

ĤN−1
∣∣ΨN−1

p

〉
= EN−1

p

∣∣ΨN−1
p

〉
ĤN+1

∣∣ΨN+1
p

〉
= EN+1

p

∣∣ΨN+1
p

〉
5We note here that the single particle excitations that are charged excitations, as the two-

particle, three-particle, etc. excitations, that describe the removal or addition of two, three, etc,
electrons, there are also the neutral excitations that are the excited states of the Hamiltonian HN

of eq. 2.7. These excitations can be found, for example, from the theory of the previous section
applying MBPT for the excited states.

6This is not so when the potential in the single-particle Hamiltonian depends on the states or
the density of other electrons, as in HF, LDA, or GGA, because removing or adding an electron
affects in general the wavefunctions of the other electrons. What happens is that the effective
potential can be different for different number of electrons.
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The exact solution of the many-body Hamiltonian cannot be obtained for most
systems of practical interest. Instead, we apply MBPT and the excitation energy
can be evaluated in each order of perturbation as follows:

±ϵ∓p =E(N)− Ep(N∓1) =

[E(0)(N)− E(0)
p (N∓1)] + [E(1)(N)− E(1)

p (N∓1)]

+ [E(2)(N)− E(2)
p (N∓1)] + ... =

± ϵ∓(0)
p +±ϵ∓(1)

p +±ϵ∓(2)
p + ...

(2.65)

We start with an approximate single particle Hamiltonian with the form of eq.
2.9, assuming an appropriate effective potential Veff that is a good approximation
for the charged and the neutral system. For the charged system, the summation
will be for N ± 1 electrons instead of N . Let us denote as |Φp±⟩ a Slater determi-
nant of the charged system where an electron has been removed from or added to
the state p. Then:

E(0)
p (N±1) = E(0)(N)± ϵ±p

For the addition of an electron, p must be an unoccupied orbital, whereas for the
removal it should be an occupied orbital of the ground state |Φ⟩. For the neutral
system, we have defined an operator Û (see section ??) in such a way that it
cancels a part of the Coulomb operator. Then the interaction can be expressed as:

V̂int = (V̂ − Û) + F̂eff (2.66)

with F̂eff = Û − V̂eff . The operator Û is defined by its matrix elements:

Uqr =
N∑
j

⟨ϕqϕj| |ϕrϕj⟩ (2.67)

Denoting Ŵ = V̂ − Û , we can write:

V̂ N
int = Ŵ + F̂eff (2.68)

For the charged system, the interaction can be written as

V̂ p
int = Ŵ + F̂ p

eff (2.69)
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The operator in the equation 2.67 does not include the effect of the addition or
removal of an electron. To include the effect we need to add:

Up
qr = ±⟨ϕqϕp| |ϕrϕp⟩ (2.70)

where the +/− sign is for addition/removal of an electron. By comparing, we can
observe that F̂ p

eff = F̂eff + Ûp.

The neutral system’s energy is:

E = ⟨Φ|Ĥ|Φ⟩+ ⟨Φ|V̂int

(
∞∑
n=1

1

E(0) − Ĥ0

V̂int

)n

|Φ⟩connected (2.71)

The charged system’s energy is:

Ep(N±1) = ⟨Φp|ĤN±1|Φp⟩+

⟨Φp|V̂ p
int

(
∞∑
n=2

1

E(0) − Ĥ0

V̂ p
int

)n

|Φp⟩connected
(2.72)

The single-electron excitation energies are the differences between the above total
energies. To calculate the excitation energies in different orders of perturbation,
we derive the first- and second-order differences and then generalize the derivation
to higher-order terms.

First order

In the first order we have:

∓ϵ(1)p = ⟨Φp|V̂ p
int|Φp⟩ − ⟨Φ|V̂int|Φ⟩ =

= ∓⟨ϕp|F̂eff |ϕp⟩ = ∓
N∑
j

⟨ϕpϕj| |ϕpϕj⟩ ∓ ⟨ϕp|V̂eff |ϕp⟩
(2.73)

Following the diagrammatic notation as defined for the ground state, we can write
the diagrams for ϵ(1)p in the same way, only that now we must represent also the
selected state p. This is done with a thicker line, following J.-Q. Sun and R. J.
Bartlett [67]. The first-order diagram is represented in figure 2.7.
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×

Figure 2.7: First order diagram for the quasiparticle energies.

Second order

The second-order correction is:

∓ϵ(2)p = ⟨Φp|V̂ p
int

1

E(0) − Ĥ0

V̂ p
int|Φp⟩connected−

⟨Φ|V̂int
1

E(0) − Ĥ0

V̂int|Φ⟩connected
(2.74)

Inserting the projection operator between the interaction operator V̂ p
int and the

fraction 1

E(0)−Ĥ0
of the equation 2.74, we obtain the matrix elements to be calcu-

lated:
〈
Φp

∣∣V̂ p
int

∣∣Φp
a
i

〉
, and

〈
Φp

∣∣∣V̂ p
int

∣∣∣Φp
ab
ij

〉
. For electron addition, the states a, b

cannot be p. Instead, p should be treated as an occupied state. Similarly, for
electron removal, the states i, j cannot be p because it should be treated as be un-
occupied. Remembering that V̂ p

int = Ŵ + F̂eff + Ûp and
〈
Φp

∣∣Ŵ ∣∣Φp
a
i

〉
= 0 , we

obtain: 〈
Φp

∣∣V̂ p
int

∣∣Φp
a
i

〉
=
〈
Φp

∣∣(F̂ eff + Ûp
)∣∣Φp

a
i

〉
=

⟨ϕi|(F̂eff + Ûp)|ϕa⟩
(2.75)

and 〈
Φp

∣∣∣V̂ p
int

∣∣∣Φp
ab
ij

〉
=
〈
Φp

∣∣∣Ŵ ∣∣∣Φp
ab
ij

〉
= ⟨ϕiϕj| |ϕaϕb⟩ (2.76)

The second-order correction can then be written as:

∓ϵ(2)p =
∑

ia±{p}

〈
Φp

∣∣∣V̂ p
int

1

E(0) − Ĥ0

∣∣∣Φa
i p

〉 〈
Φa

i p

∣∣∣V̂ p
int

∣∣∣Φp

〉
−
∑
ia

⟨Φ|V̂int
1

E(0) − Ĥ0

|Φa
i ⟩ ⟨Φa

i |V̂int|Φ⟩

+
∑

ijab±{p}

〈
Φp

∣∣∣V̂ p
int

1

E(0) − Ĥ0

∣∣∣Φab
ij p

〉 〈
Φab

ij p

∣∣∣V̂ p
int

∣∣∣Φp

〉
−
∑
ijab

〈
Φ
∣∣V̂int 1

E(0) − Ĥ0

∣∣Φab
ij

〉 〈
Φab

ij

∣∣V̂int∣∣Φ〉
(2.77)
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For the singles part we have:

S =
∑

ia±{p}

〈
Φp

∣∣∣V̂ p
int

1

E(0) − Ĥ0

∣∣∣Φa
i p

〉 〈
Φa

i p

∣∣∣V̂ p
int

∣∣∣Φp

〉
−
∑
ia

⟨Φ|V̂int
1

E(0) − Ĥ0

|Φa
i ⟩ ⟨Φa

i |V̂int|Φ⟩ =∑
ia

1

ϵi − ϵa
| ⟨ϕi|(F̂eff + Ûp)|ϕa⟩ |2 −

∑
ia

1

ϵi − ϵa
| ⟨ϕi|F̂eff |ϕa⟩ |2

±
∑
a̸=p

1

ϵi − ϵa
| ⟨ϕp|F̂eff |ϕa⟩ |2 ∓

∑
i ̸=p

1

ϵi − ϵa
| ⟨ϕi|F̂eff |ϕp⟩2

(2.78)

For the doubles part we have:

D =
∑

ijab±{p}

〈
Φp

∣∣∣V̂ p
int

1

E(0) − Ĥ0

∣∣∣Φab
ij p

〉 〈
Φab

ij p

∣∣∣V̂ p
int

∣∣∣Φp

〉
−
∑
ijab

〈
Φ
∣∣V̂int 1

E(0) − Ĥ0

∣∣Φab
ij

〉 〈
Φab

ij

∣∣V̂int∣∣Φ〉 (2.79)

All terms coming from the first row of equation 2.79, that do not have a p orbital,
will cancel with the terms of the second row. Only the terms that have p orbitals,
either as occupied or unoccupied, will remain. The denominator will give us the
energies of the single-particle wavefunctions. Replacing the second-quantized
form of the Coulomb operator, the expression 2.79 can be written as:

D =∓ 1

2

∑
iab

| ⟨ϕpϕi| |ϕaϕb⟩ |2

(ϵp + ϵi − ϵa − ϵb)
± 1

2

∑
iab

| ⟨ϕiϕj| |ϕpϕa⟩ |2

(ϵi + ϵj − ϵp − ϵa)

−
∑
ia

| ⟨ϕiϕp| |ϕaϕp⟩ |2

(ϵi − ϵa)

(2.80)

The correction will be the sum of singles and doubles, S + D. The last term of
the doubles will cancel with the Ûp term in singles, resulting in the expression:

ϵ(2)p =
1

2

∑
iab

| ⟨ϕpϕi| |ϕaϕb⟩ |2

(ϵp + ϵi − ϵa − ϵb)
+

1

2

∑
iab

| ⟨ϕiϕj| |ϕpϕa⟩ |2

(ϵi + ϵj − ϵp − ϵa)
+

∑
a̸=p

1

ϵi − ϵa
| ⟨ϕp|F̂eff |ϕa⟩ |2 −

∑
i ̸=p

1

ϵi − ϵa
| ⟨ϕi|F̂eff |ϕp⟩ |2+

∑
ia

1

ϵi − ϵa

[
⟨ϕi|F̂eff |ϕa⟩ ⟨ϕaϕp|V̂ |ϕiϕp⟩A + c.c.

] (2.81)

The corresponding second-order diagrams are shown in figure 2.8.
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Figure 2.8: Second-order diagrams for the quasiparticle energies.

Higher orders

For any order n, the correction can be evaluated as follows:

∓ϵ(n)p = ⟨Φp|V̂ p
int

(
1

E(0) − Ĥ0

V̂ p
int

)n

|Φp⟩connected−

⟨Φ|V̂int
(

1

E(0) − Ĥ0

V̂int

)n

|Φ⟩connected
(2.82)

Diagrammatically, the non-zero terms are the total-energy diagrams that have at
least one wavefunction p, and the diagrams that have at least one bubble coming
from the extra term Ûp. There is cancellation of some terms. For example, the
diagrams:
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where the box represents any equivalent structure common in both diagrams,
which will cancel each other, as we saw in the case of second-order correction,
when adding singles and doubles in the equation 2.81. Despite this cancellation,
the diagrams become quite complicated compared to total-energy diagrams. For
example, in the third order, for single-particle excitations there are 60 diagrams,
12 of which are non-zero when HF is used as a reference, while for total energy
there are 14 diagrams, 3 of which are non-zero for HF reference. Another im-
portant difference is that every diagram in ϵ(n)p has at least one less summation
index, since at least one index is fixed. For example, in the second-order there are
summations over one or three indices, while for total energy there are summations
over two or four indices.

2.5 Single-particle propagator and the Dyson equa-
tion

This section presents how to go beyond second-order perturbation theory for
solids using the Dyson equation.

2.5.1 Single-particle propagator

Another way to assess the single-particle energies is through the single-particle
propagator or Green’s function. The single-particle propagator is really useful,
since it can provide the expectation value of any single-particle operator in the
ground state, the ground state energy, and the single-particle excitation energies.
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The propagator definition is:

G(p, q; t, t′) = −i⟨ΨN |T
[
α̂pH(t)α̂

†
qH(t

′)
]
|ΨN⟩ (2.83)

where α̂p and α̂†
q are the removal and addition operators in the Heisenberg picture,

defined as:

α̂pH(t) = eiĤtα̂pe
−iĤt

α̂†
pH(t) = eiĤtα̂†

pe
−iĤt

and T is the time ordering operator. The single-particle propagator within the
Lehmann representation, which is relevant for the single-particle excitations, can
be written as:

G(p, q; ϵ) = lim
η→0

[∑
n

⟨ΨN |α̂†
p|ΨN−1

n ⟩⟨ΨN−1
n |α̂q|ΨN⟩

ϵ− [E(N)− En(N − 1)]− iη
+

∑
m

⟨ΨN |α̂p|ΨN+1
m ⟩⟨ΨN+1

m |α̂†
q|ΨN⟩

ϵ− [Em(N + 1)− E(N)] + iη

] (2.84)

where p, q denote the orthogonal basis functions on which we project our propaga-
tor. The above equation is the Fourier transform of the propagator in eq. 2.83 from
time to energy domain. This form of the propagator shows that the single-particle
excitation energies, as defined in equation 2.64, are the poles of the propagator.

For the propagator of the non-interacting system, it is beneficial to use the
eigenfunctions of a single-particle Hamiltonian as defined in eq. 2.9. As we have
seen, this is usually the Kohn-Sham or HF wavefunctions. The non-interacting
propagator takes the following form:

G0(p, q; ϵ) = δp,q lim
η→0

[
θ(nho − p)

ϵ− ϵp − iη
+
θ(p− nlu)

ϵ− ϵp + iη

]
(2.85)

where nho is the index of the highest occupied state, nlu the index of the lowest
unoccupied state, and θ(n) = 1 for n ≥ 0, θ(n) = 0 for n < 0. In other words,
when p is an occupied state, the first term will be non-zero, whereas the second
term will be zero, and the other way around when p is an unoccupied state.
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2.5.2 Time-depended perturbation theory for the propagator

To find the propagator of the interacting system, we apply the time-dependent
perturbation theory, which is based on the time-evolution operator defined as:

|ΨI(t)⟩ = Û(t, t0)|ΨI(t0)⟩ (2.86)

The notation I denotes the interaction picture defined as:

|ΨI(t)⟩ = eiĤ0t|Ψ(t)⟩ (2.87)

where |Ψ(t)⟩ is the solution of the time-dependent Schrödinger equation i ∂
∂t
|Ψ(t)⟩ =

Ĥ|Ψ(t)⟩, and Ĥ0 is the single-particle Hamiltonian 2.9. The Schrödinger equation
can be rewritten as:

i
∂

∂t
Û(t, t0)|ΨI(t0)⟩ = V̂int(t)Û(t, t0)|ΨI(t0)⟩ (2.88)

where V̂int(t) = eiĤ0tV̂inte
−iĤ0t. Then the time evolution operator can be written

as:

Û(t, t0) = T

exp
−i

t∫
t0

dt′V̂int(t
′)

 (2.89)

Expanding the exponential gives the perturbation expansion. To find a connection
between the ground states of the unperturbed and perturbed systems, we use the
adiabatic switching method for the perturbation V̂inte−ϵ|t|. Then:

|Ψ⟩ = Ûϵ(0,−∞) |Φ⟩ (2.90)

where |Φ⟩ is the non-interacting system’s ground state. The Gell-Mann and Low
theorem then states that if the quantity:

lim
ϵ→0

Ûϵ(0,−∞)|Φ⟩
⟨Φ|Ûϵ(0,−∞)|Φ⟩

≡ |Ψ⟩
⟨Φ|Ψ⟩

exists in all orders of the perturbation expansion, then:

Ĥ|Ψ⟩
⟨Φ|Ψ⟩

=
E|Ψ⟩
⟨Φ|Ψ⟩

(2.91)
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and:

E − E0 =
⟨Φ|V̂int|Ψ⟩
⟨Φ|Ψ⟩

(2.92)

From the property of the evolution operator, Û(t, t0) = eiĤ0te−iĤ(t−t0)e−iĤ0t (which
can be proven from the definitions in eq. 2.86 and eq. 2.87) for an arbitrary oper-
ator in Heisenberg picture, we can write:

⟨Ψ|ÔH(t)|Ψ⟩
⟨Ψ|Ψ⟩

= lim
ϵ→0

⟨Φ|Ûϵ(+∞, t)ÔI(t)Ûϵ(t,−∞)|Φ⟩
⟨Φ|Ûϵ(+∞,−∞)|Φ⟩

(2.93)

By inserting here Ûϵ from eq. 2.89, expanding the exponential and rearranging
terms we obtain:

⟨Ψ|ÔH(t)|Ψ⟩
⟨Ψ|Ψ⟩

=
1

⟨Φ|Û(+∞,−∞)|Φ⟩
⟨Φ|

∞∑
n=0

(−i)n

n!

∞∫
∞

dt1...

∞∫
∞

dtn×

T
[
V̂int(t1)...V̂int(tn)ÔI(t)

]
|Φ⟩

(2.94)

In particular, for the single-particle propagator this yields:

G(p, q; t, t′) = −i
1

⟨Φ|Û(+∞,−∞)|Φ⟩

∞∑
n=0

(−i)n

n!

∞∫
∞

dt1...

∞∫
∞

dtn×

⟨Φ|T
[
V̂int(t1)...V̂int(tn)α̂p(t)α̂

†
q(t

′)
]
|Φ⟩

(2.95)

where the removal and addition operators are in the interaction picture.

The disconnected parts factor out and cancel with the denominator (see, for
example: Quantum theory of many-particle systems, A. Fetter and J. Walecka),
resulting in:

G(p, q; t, t′) = −i
∞∑
n=0

(−i)n

n!

∞∫
∞

dt1...

∞∫
∞

dtn×

⟨Φ| T
[
V̂int(t1)...V̂int(tn)α̂p(t)α̂

†
q(t

′)
]
|Φ⟩connected

(2.96)

2.5.3 Feynman Diagrams

As in the case of MBPT, there is a convenient way to illustrate with diagrams
the expressions of the corrections for the propagator at each order. Starting with
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zero order, G0(p, q; t, t′) = −i ⟨Φ| T
[
α̂p(t)α̂

†
q(t

′)
]
|Φ⟩ (see eq. 2.96). This is the

propagator of the non-interacting system:

G0(p, q; t, t′) = −iδp,q

[
θ(t− t′)θ(nho − p)e−iϵp(t−t′)

−θ(t′ − t)θ(q − nlu)e
iϵp(t′−t)

] (2.97)

The Fourier transform of the above expression will give eq. 2.85.

Diagrammatically, the non-interacting propagator G0 is represented as a line:

t

t′

Replacing the operators with their second-quantization form of the interaction
operator 2.41 and taking into account the definition of the interaction picture, we
can write:

V̂int(t) =
1

4

∑
pqrs

Vpq,rsα̂
†
p(t)α̂

†
q(t)α̂s(t)α̂r(t)−

∑
pq

V pq
eff α̂

†
p(t)α̂q(t) (2.98)

To evaluate the expression for the propagator in any order, we need to evaluate the
expectation value of time-ordered addition and removal operators. To do this, we
will use Wick’s theorem:

T
[
α̂p(t1)α̂

†
q(t1)α̂r(t3)α̂

†
s(t4)...α̂y(tn−1)α̂

†
z(tn)

]
=

N
[
α̂p(t1)α̂

†
q(t1)α̂r(t3)α̂

†
s(t4)...α̂y(tn−1)α̂

†
z(tn)

]
+

N
[
sum over all possible pairs of contractions

]
=

N
[
α̂p(t1)α̂

†
q(t1)α̂r(t3)α̂

†
s(t4)...α̂y(tn−1)α̂

†
z(tn)

]
+

N
[
α̂p(t1)α̂

†
q(t2)α̂r(t3)α̂

†
s(t4)...α̂y(tn−1)α̂

†
z(tn)

]
+

N
[
α̂p(t1)α̂

†
q(t2)α̂r(t3)α̂

†
s(t4)...α̂y(tn−1)α̂

†
z(tn)

]
+ ...

N
[
α̂p(t1)α̂

†
q(t2)α̂r(t3)α̂

†
s(t4)...α̂y(tn−1)α̂

†
z(tn)

]
+ ...

(2.99)

where N is the normal ordering, defined by rearranging an operator to the right,
if that operator results in zero when acting on the ground state. This way, if not
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all operators are contracted the expectation value of a normal order will always be
zero. The expectation value of the time-ordered product at any order of correction
for the propagator will be the product of all possible contraction pairs.

A contraction is defined as the difference between the time ordering of the
two operators minus the normal ordering. It is denoted by a line that connects the
operators in the previous equation. For a pair of removal and addition operators,
the normal order will be:

N
[
α̂p(t)α̂

†
q(t

′)
]
=

−α̂†
q(t

′)α̂p(t), if p and q are unoccupied

α̂p(t)α̂
†
q(t

′), otherwise
(2.100)

Then a contraction will be equal to the propagator:

α̂p(t)α̂
†
q(t) = −α̂†

q(t)α̂p(t) = iG(0)(p, q; t, t′) (2.101)

First order

In first order we have:

G(1)(p, q; t, t′) = −i

∞∫
∞

dt1 ⟨Φ| T
[
V̂int(t1)α̂p(t)α̂

†
q(t

′)
]
|Φ⟩connected (2.102)

Replacing the interaction in second-quantization form, eq. 2.98, the propagator
will be the summation of a term coming from the two-particle part and a term
from the single-particle part. For the single-particle part, we need to contract the
operators:

α̂†
r(t1)α̂s(t1)α̂p(t)α̂

†
q(t

′) (2.103)

From all possible contractions, we must choose the connected ones. Each con-
traction will result in a propagator according to equation 2.101. The propagator is
then represented by a steady line. For example, the contraction:

α̂†
r(t1)α̂s(t1)α̂p(t)α̂

†
q(t

′) (2.104)

generates a disconnected diagram:
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t

t′

t1 ×

The dashed line represents the matrix element of the single-particle part of the
interaction V rs

eff .

The other possible set of contracted pairs is:

α̂†
r(t1)α̂s(t1)α̂p(t)α̂

†
q(t

′) (2.105)

This generates the connected diagram:

t

t′

t1 ×

Since we have to integrate over all time, only the topology is important in
Feynman’s diagrams and not the time order. For example, the previous diagram is
topologically equivalent to:
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t′

t1

t

×

The corresponding contribution to the G(1) propagator will be:

− i

∞∫
∞

dt1
∑
rs

V rs
effG

0(p, r; t1, t
′)(−1)G0(s, q; t, t1) (2.106)

For the two-particle part we must contract the operators:

α̂†
r(t1)α̂

†
s(t1)α̂t(t1)α̂w(t1)α̂p(t)α̂

†
q(t

′) (2.107)

Note that interchanging r with s and t with w will give the same result since we
sum over all possible values the indices can take. Then all distinct connected
diagrams will come from the contractions:

α̂†
r(t1)α̂

†
s(t1)α̂t(t1)α̂w(t1)α̂p(t)α̂

†
q(t

′)
(2.108)

α̂†
r(t1)α̂

†
s(t1)α̂t(t1)α̂w(t1)α̂p(t)α̂

†
q(t

′)
(2.109)

t

t′

t1

t

t′

t1



2.5. S-P PROPAGATOR AND THE DYSON EQUATION 45

The two-particle part of the interaction is represented with a wavy line. Due to
their shapes, the first diagram is called "bubble" and the second "oyster". For find-
ing the single-particle excitation spectrum, only the Fourier-transformed propa-
gator is relevant. Therefore, we use the inverse Fourier transform of the time-
dependent non-interacting propagator:

G0(p, q; t, t′) =
1

2π

∞∫
∞

dϵG0(p, q; ϵ)e−iϵ(t−t′) (2.110)

to replace the contractions. Then, time integrations in equation 2.96 can be ex-
plicitly done for any order. Each integration will give δ-functions that preserve
the energy of each interaction line. Each propagator line should then be labeled
with an energy variable taking into account the energy conservation and thus, time
becomes irrelevant.

Second order

In the second-order, we have diagrams that derive from the two-particle part of the
interaction – the Coulomb operator – and the ones that include the single-particle
effective potential. The second-order diagrams will be:
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1 2

3 4

5
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6

7

8 9

10

As one can see, diagrams 1-4 include parts that are connected only with a non-
interacting propagator. Such diagrams are called reducible diagrams. The rest of
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the diagrams are not reducible, but diagrams 5-8 can be produced by first-order
diagrams if we replace a non-interacting propagator line G(0) with the propaga-
tor line G(1). For example, diagram 5 can be generated by replacing the non-
interacting propagator circle line of the bubble diagram with the bubble diagram
itself. If instead we replace the oyster diagram, we end up with diagram 6. Simi-
larly, we can produce diagrams 7 and 8 starting from the oyster diagram. Diagrams
9 and 10 cannot be produced from first-order diagrams.

As in Goldstone diagrams, we can define an antisymmetric version. In this
case, we require only the first diagram in first order, the bubble diagram. In the
second order, we can skip diagrams 2, 3, and 4, keeping only 1, and skip 6, 7, 8
by keeping only 5. For the last two diagrams, 9 is antisymmetric with 10, so we
can retain only 9. Finally, we include the second-order diagrams that have at least
one effective potential line:
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2.5.4 Dyson equation

The Dyson equation for the single-particle propagator is:

G(p, q; ϵ) = G0(p, q; ϵ) +
∑
rs

G0(p, r; ϵ)Σ(r, s; ϵ)G(s, q; ϵ) (2.111)

where Σ is the self-energy defined by this equation. This equation is represented
diagrammatically as:

Σ= +

where the thick line represents the propagator of the interacting system G. Self-
energy will include all irreducible parts of the diagrams of all orders. By approx-
imating the self-energy to include, for example, only all first-order contributions,
we include in the propagator reducible diagrams of all orders that are assembled
from the first-order diagrams. This becomes clear if we rewrite the equation as a
series:

G(p, q; ϵ) = G0(p, q; ϵ) +
∑
rs

G0(p, r; ϵ)Σ(r, s; ϵ)G0(s, q; ϵ)+∑
rs

∑
tu

G0(p, r; ϵ)Σ(r, s; ϵ)G0(s, t; ϵ)Σ(t, u; ϵ)G0(u, q; ϵ) + ...
(2.112)

The Dyson equation provides a non-pertubative propagator since it includes cor-
rections of all orders. As an example, the diagrams that are included in the prop-
agator if we approximate self-energy by the first-order diagrams are:

Σ(1) = +

where the dots represent the connection point of the two propagators (see eq.
2.111). Remember that this is the antisymmetrized version of diagrams, so the



50 CHAPTER 2. THEORETICAL BACKGROUND

bubble diagram includes in fact two diagrams. The propagator is represented as
follows:

= + + +

+ + +

+ ...

We see that the reducible diagrams of second and higher orders are included,
although we have considered the self-energy only up to first-order approximation.

The next step is to include the diagrams as diagram 5 of second order, which
can also be produced by first-order diagrams, as explained in section 2.5.3. Since
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we use antisymmetrized diagrams, exchange diagrams are included as well (dia-
grams 6, 7, and 8 in this case). We achieve that by replacing the non-interacting
propagators G0 with the interacting propagators G in the self-energy.

ΣHF = +

The above approximation of the self-energy gives the HF approximation. To go
beyond HF and include second-order diagrams that cannot be produced by first
order, the only extra diagram we need is diagram 9, since we use antisymmetrized
diagrams. To include all diagrams that can be produced by second-order, in the
same way we did with Σ1 to produce ΣHF , the non-interacting propagator is re-
placed with the interacting one:

=Σ(2)

The complete self-consistent self-energy up to second order is7:

Σ2 = + +

7It can be shown that the exact self-energy can be written as

Σ(p, q; ϵ) = −⟨ϕp|V̂eff |ϕq⟩ − i

∫
C↑

dϵ′

2π

∑
rs

G(p, r; ϵ) ⟨ϕpϕp|V̂ |ϕqϕp⟩+

+
1

2

∫
dϵ′

2π

∫
dϵ′′

2π

∑
rs

∑
tu

∑
vw

⟨ϕpϕp|V̂ |ϕqϕp⟩×

×G(p, r; ϵ′)G(s, t; ϵ′′)G(u, q; ϵ′ + ϵ′′ − ϵ) ⟨ϕpϕp|Γ̂(ϵ′, ϵ′′; ϵ, ϵ′ + ϵ′′ − ϵ)|ϕqϕp⟩

where Γ is the vertex correction. Approximating Σ with self-consistent Σ2 is equivalent to ap-
proximating the "dressed" interaction Γ, with the bare interaction V [87].
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2.6 Localized basis set

In practical calculations, single-particle states are expanded in a basis set. In prin-
ciple, the basis set should be complete. However, in practice this is not possible,
since we would need an infinite set of functions. For this reason, a finite set of
functions must be chosen. This selection is essential for a particular numerical im-
plementation: If the number of functions needed is large, then the computational
efficiency of the code is decreasing, and the time needed for a computation can
become impractical.

An orbital can be written as:

ϕp(rσ) = ψpσ(r)χσ

where σ =↑, ↓ and χσ are the basis functions for spin space. To expand the spatial
part we need a basis set in real space that can express any state ψpσ(r) as a linear
combination of the basis functions:

ψpσ(r) =
Nb∑
i=1

cipσφi(r) (2.113)

Plane waves, localized functions, or a combination of the two can be used as a
basis set.

2.6.1 Atom-centered orbitals

A basis set that has proven efficacy, by virtue of its flexibility, is the NAO’s basis
set [35]. The general form of the orbitals is:

φi(r) =
ui(r)

r
Ylm(Ωr)

where Ylm are the spherical harmonics. The radial part ui(r) can be defined
analytically, e.g. Gaussian, or numerically as a solution to the radial part of a
Schrödinger equation with a spherically symmetric potential:[

−1

2

d2

dr2
+
l(l + 1)

r2
+ Vi(r) + Vcut(r)

]
ui(r) = ϵiui(r) (2.114)

where Vcut is a function that allows the smooth decay to zero after a certain ra-
dius, and Vi can be any numerically defined potential, for example, the free-atom
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potential from a single-particle approximation such as HF or LDA. The success
of NAO’s comes from the flexibility of defining Vi that allows an optimization of
the basis sets for every element.

2.6.2 Bloch functions from atom-centered orbitals

In the case of periodic systems, a set of Bloch functions are defined from NAO’s
as follows:

φik(r) =
∑

R

eikRφi(r − R − Rat) (2.115)

where Rat refers to the position of the atom where the orbital is centered, and R
is a lattice vector. This indeed defines a Bloch function:
1) for any lattice vector R:

φik(r + R) = eikRφik(r); (2.116)

2) we can rewrite the wavefunction as a product of a lattice-periodic part and a
phase factor:

φik(r) = eikr

[
e−ikr

∑
R

eikRφi(r − R − Rat)

]
= eikRuik(r) (2.117)

where it is easy to conclude that the expression in the bracket:

uik(r) =
∑

R

eik(R−r)φi(r − R − Rat) (2.118)

is lattice-periodic:

uik(r + R) = uik(r) (2.119)

With the above Bloch functions, the spatial part of single-particle states with
spin σ can be written as:

ψpkσ(r) =
∑
i

cipkσφik(r) (2.120)
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2.7 The two-particle Coulomb operator

A matrix element of the Coulomb operator in the Bloch basis introduced in section
2.6 is an eight-index object:

V ik,jq
kk′,lq′ =

∫
dr
∫
dr′φ∗

ik(r)φ
∗
jk′(r′)

1

|r − r′|
φlq′(r′)φkq′(r). (2.121)

Momentum conservation allows reducing the crystal momentum indices from four
to three. Direct calculation and storage of this object is generally challenging,
which can be addressed by applying a method called resolution of identity or
density fitting, as described below.

2.7.1 Auxiliary basis set and resolution of identity

The high computational cost of calculating Coulomb matrix elements can be re-
duced by using an auxiliary basis set Pµ(r−Rat′) to expand the products of wave-
functions [38]–[40]. The corresponding Bloch basis functions are constructed
similarly to the main basis:

P k
µ (r) =

∑
R

eikRPµ(r − R − Rat′) (2.122)

By expanding the products of basis functions needed for the calculation of the
Coulomb matrix, we get:

φ∗
ik(r)φkq(r) =

∑
µ

Cµ
ik,kqP

q−k
µ (r) (2.123)

The product of two single-particle wavefunctions is then:

ψ∗
pkσ(r)ψqqσ′(r) =

∑
µ

Mµ
pkσ,qqσ′P

q−k
µ (r) (2.124)

where Mµ
pkσ,qqσ′ =

∑
i,j

ci∗pkσc
j
qqσ′C

µ
ik,jq.

With this, we can expand the Coulomb potential as follows:

V q−k,q′−k′

µ,µ′ =

∫
dr
∫
dr′P q−k

µ (r)
1

|r − r′|
P q′−k′

µ′ (r′) =∑
R,R′

ei(q−k)Rei(q
′−k′)R′

∫
dr
∫
dr′Pµ(r − R)

1

|r − r′|
Pµ′(r′ − R′)

(2.125)
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Setting R′′ = R′ − R yields:

V q−k,q′−k′

µ,µ′ =∑
R,R′′

ei(q−k)Rei(q
′−k′)(R′′+R)

∫
dr
∫
dr′Pµ(r − R)

1

|r − r′|
Pµ′(r′ − R′′ − R) =

∑
R,R′′

ei(q−k)Rei(q
′−k′)(R′′−R)

∫
dr
∫
dr′Pµ(r)

1

|r − r′|
Pµ′(r′ − R′′) =

∑
R

ei(q
′−k′)R′′

∫
dr
∫
dr′Pµ(r)

1

|r − r′|
Pµ′(r′ − R′′)

∑
R

ei[(q−k)+(q′−k′)]R =

NRδ(q−k),−(q′−k′)+G

∑
R′′

ei(q
′−k′)R′′

∫
dr
∫
dr′Pµ(r)

1

|r − r′|
Pµ′(r′ − R′′)

(2.126)

The δ-function ensures the crystal-momentum conservation. To simplify the for-
malism, we define the object:

V p
µ,µ′ =

∑
R

eipR
∫
dr
∫
dr′

Pµ′(r − R)Pµ(r′)
|r − r′| (2.127)

where p = q − k is the momentum transferred by the interaction. Then V p,p′

µ,µ′ =

NRδp,−p′+GV
p
µ,µ′ and the Coulomb operator in the basis of the single-particle wave-

functions is:

V qk′σ′,rq′σ′

pkσ,sqσ =

∫
dr
∫
dr′ψ∗

pkσ(r)ψ
∗
qk′σ′(r′)

1

|r − r′|
ψrq′σ′(r′)ψsqσ(r) =

δq−k,q′−k′

∑
µµ′

Mµ
pkσ,sqσM

µ′

qk′σ′,rq′σ′V
q−k
µ,µ′

(2.128)

Truncating the basis set and density fitting technique

The incompleteness of the auxiliary basis generates an error when representing
products of two functions:

δρi,j(r) = ϕi(r)ϕk(r)−
Nb∑
µ=1

Cµ
i,kPµ(r) (2.129)

where Nb is the number of auxiliary functions, and ϕi(r), ϕj(r) are the localized
atomic orbitals, as described in section 2.6. The coefficients Cµ

i,k can be chosen in
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different ways. One is to minimize the error directly
∫
dr∥δρi,k(r)∥. In this case,

the coefficients will be:

Cν
i,k =

Nb∑
µ=1

S−1
µ,ν(ik|µ) =

Nb∑
µ=1

S−1
µ,ν

∫
drϕi(r)ϕk(r)Pµ(r)

where Sµ,ν =
∫
drPµ(r)Pν(r). This method is known as RI-SVS (RI stands for

resolution of identity) due to the form of the Coulomb integrals:

V i,j
k,l =

∑
µ,µ′,ν,ν′

(ik|µ)S−1
µ,νVν,ν′S

−1
µ′,ν′(ν|jl) (2.130)

However, we are interested in the accurate evaluation of the Coulomb integrals
rather than pair products. In this case, it is better to choose the coefficients that
minimize the error in the integrals [44]. The resulting coefficients are:

Cν
i,k =

Nb∑
µ=1

V −1
µ,ν (ik|V |µ) =

Nb∑
µ=1

V −1
µ,ν

∫
dr
ϕi(r)ϕk(r)Pµ(r′)

|r − r′|

This method is known as RI-V, because the Coulomb integral becomes:

V i,j
k,l =

∑
µ,ν

Cµ
i,kVµ,νC

ν
i,k =

∑
µ,ν

(ik|V |µ)V −1
µ,ν (ν|V |jl) (2.131)

While RI-V significantly reduces errors in the Coulomb integrals compared to
RI-SVS, it does not reduce the calculation’s size scaling [48]. To overcome this
problem, as described in the previous reference, a localized version of RI-V, called
RI-LVL [40], is employed. In this approach, the coefficients Cµ

i,k are set to zero
when the auxiliary basis function Pµ(r) is not centered at one of the two atoms
that the functions i or k are centered at:

ϕi(r −R)ϕk(r − R′) ≈
∑
µ

[
Cµ

i,kPµ(r −R) + Cµ
i,kPµ(r −R′)

]
(2.132)

2.7.2 Calculating Coulomb matrix in real space

One way to evaluate the Coulomb matrix V p
µ,µ′ defined in equation 2.127 is through

a summation in real space as follows:

V p
µ,µ′ =

∑
R

e−ipRVµ,µ′(R) (2.133)
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where Vµ,µ′(R) represents the Coulomb interaction of two auxiliary basis func-
tions, and R is a lattice vector:

Vµ,µ′(R) =

∫
dr
∫
dr′

Pµ(r − Raµ)Pµ′(r′ − Raµ′ − R)

|r − r′|
(2.134)

It is important to remember that each µ is referring to an l,m pair and an atom
position Rat where the auxiliary function is centered. When the charge distribu-
tions do not overlap, we can use multipole expansion to calculate the interaction
[88]. To take advantage of this, the lattice summation is separated into two parts:
(i) summation over a set of lattice vectors {Rovl} in which the auxiliary functions
Pµ(r − Raµ) and Pµ′(r − Raµ′ − R) overlap, and (ii) summation over the lattice
vectors {Rn−ovl} in which the functions do not overlap:

V p
µ,µ′ =

∑
R

e−ipRVµ,µ′(R) =
∑

R∈{Rovl}

e−ipRVµ,µ′(R)+

∑
R∈{Rn−ovl}

e−ipRVµ,µ′(R)
(2.135)

For non-overlapping functions we can write [89]:

Vµ,µ′(R) =
∑

LA,MA

∑
LB ,MB

(−1)LB(−1)MA+MB

√
(2LA + 2LB)!

2LA!((2LB))!
QLA,MA

QLB ,MB√
4π

2LA + 2LB + 1
⟨LA,MA;LB,MB|LA + LB,MA +MB⟩

Y −MA+MB
LA+LB

RLA+LB+1
AB

(2.136)

where RAB = |Raµ − Raµ′
− R| is the distance between the atoms, QL1,M1 are

the multipole moments of the charge distribution of each Pµ(r) around the atom
origin:

QL,M =

∫
dr3rL

√
4π

2L+ 1
YLM(Ωr)Pµ(r) =∫

drrLfµ(r)

∫
dΩrYLM(Ωr)Ylm(Ωr) = δL,lδM,m

∫
drrlfµ(r)

(2.137)

and ⟨L1,M1;L2,M2|L1 + L2,M1 +M2⟩ are the Clebsch-Gordan coefficients.

The summation over infinite space is converging very slowly. Moreover, for
p = 0 and LA, LB = 0, the term is diverging [72]. It is more efficient to transform
into the reciprocal space and use the Ewald summation method, as presented in
the next sections.
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2.7.3 Calculating Coulomb matrix in reciprocal space

To calculate the Coulomb matrix (eq. 2.128) in reciprocal space, we start by defin-
ing our space as a Born-von Karmann supercell of N unit cells and a total volume
VN . Then we take the thermodynamic limit N → ∞. The Fourier transform in
this volume will be8:

f̃(q) =
1

VN

∫
VN

dre−iqrf(r) (2.138)

Since all functions of interest are periodic in the supercell, there is a discrete set
of allowed q vectors. Therefore, the inverse Fourier transform is a sum:

f(r) =
∑

q

eiqrf̃(q) (2.139)

Furthermore, it holds:

1

VN

∫
VN

dreir(q−q′) = δq,q′ (2.140)

For a lattice defined in the system of lattice vectors, a1, a2, a3, the lattice points
will be R = (n1, n2, n3). The total volume can be written as VN = ΩN1N2N3,
where Ω is the volume of the unit cell, and Ni are the number of unit cells in each
direction. Defining the reciprocal vectors as biaj = 2πδi,j with i, j = 1, 2, 3,
the points of the reciprocal lattice are G = (m1,m2,m3), with m1,m2,m3 =

0± 1,±2, ... and the allowed crystal momenta are q = (m1

N1
, m2

N2
, m3

N3
). In addition,

the following is true: ∑
R

eiqR = Nδq−G,0 (2.141)

i.e., the sum is non-zero only for the crystal momentum equal to one of the recip-
rocal lattice vectors9. This also means that functions that have the periodicity of
the lattice, e.g., lattice potential, will have non-zero Fourier coefficients only for
q = G.

8The normalization of Fourier transform can be different in different definitions
9If we confine crystal momentum to first Brillouin zone then only the zero (0,0,0) lattice vector

will belong to this zone.
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The Fourier transform of the Coulomb potential is:

Ṽ (q) =
1

VN

∫
VN

dre−iqr 1

|r| (2.142)

This integral can be calculated in the limit of VN → ∞ using the adiabatic switch-
ing method. Let us introduce an exponential factor e−µ|r| in the nominator and then
take the limit as defined by Fetter and Walecha [86], µ → 0, under the condition
1/µ < V 1/3:

Ṽ (q) =
1

VN

∫
VN

dre−iqr e
−µ|r|

|r|
=

1

VN

4π

(|q|2 + µ2) (2.143)

with the inverse:

V (r) =
∑

q

eiqrṼ (q) (2.144)

Inserting the above equation in place of the Coulomb potential in the expression
for the Coulomb matrix elements eq. 2.127, we obtain:

V p
µ,µ′ =

∑
R

eipR
∫
dr
∫
dr′Pµ′(r − R)Pµ(r′)

∑
q

eiq(r−r′)Ṽ (q) =

VN
∑

G

P̃ ∗
µ′(G − p)P̃µ(G − p)

4π

|G − p|2 + µ2

(2.145)

where P̃µ(q) is the Fourier transform of the basis functions Pµ(r). The above
expression is singular for G = 0,p = 0 for µ = 0.

2.7.4 Ewald summation for Coulomb matrix integrals

The calculation of the Coulomb matrix can be more efficient if it is done partially
in real space and partially in reciprocal space. For each localized function Pµ(r)

with non-zero multipole moment, we define a charge distribution with zero mo-
ment in the far field by introducing P̄µ(r) = Pµ(r)−Qµplm(r), where plm(r) is a
Gaussian charge distribution of the form:

plm(r) = Alr
le−γr2/2Ylm(r̂)
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The normalization assures that the Gaussian functions have multipole moments
equal to 1 (Al =

√
2
π

γl+3/2

(2l−1)!!
). The integral in equation 2.134 can then be rewritten

as follows:

Vµ,µ′(R) =

∫
dr
∫
dr′

Pµ(r − Raµ)Pµ′(r′ − Raµ′
− R)

|r − r′|
=

−
∫
dr
∫
dr′

P̄µ(r − Raµ)P̄µ′(r′ − Raµ′
− R)

|r − r′|
+∫

dr
∫
dr′

P̄µ(r − Raµ)Pµ′(r′ − Raµ′
− R)

|r − r′|
+∫

dr
∫
dr′

Pµ(r − RaµP̄µ′(r′ − Raµ′
− R)

|r − r′|
+∫

dr
∫
dr′

Qµplm(r − Raµ)Qµ′pl′m′(r′ − Raµ′
− R)

|r − r′|

(2.146)

The first three terms are zero when the orbitals do not overlap, because P̄µ and P̄µ′

have zero multipole moments. Therefore, for this part, the summation over lattice
vectors for the calculation of the potential

∑
R

eipRVµ,µ′(R) can be performed in

real space. We focus now on the calculation of the lattice sum for the fourth
term, which can be calculated using the Ewald summation method. This term is
challenging because the terms proportional to 1/|p|2 that will appear give rise to
a singularity for p → 0.

We start by calculating the Fourier transform of the Gaussian function plm, as
introduced in section 2.7.3:

p̃lm(q) =
1

VN

∫
VN

dre−iqrplm(r) (2.147)

To calculate this integral we will use Hankel transform of half-integer order, also
known as the spherical Bessel transform. The exponential is expanded in spherical
harmonics:

eipr =(2π)
3
2

∑
l,m

il
√

2

π
jl(pr)Ylm(p̂)Y

∗
lm(r̂) (2.148)

where the spherical Bessel functions are defined as:

jl(r) =

√
π

2

Jl+1/2(r)√
r
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Then we obtain10:

p̃lm(q) =
(2π)3/2

VN
i−lp̃lm(q)Ylm(Ωq) (2.149)

where:

p̃lm(q) =

∫
drr2

√
2

π
jl(pr)[Alr

le−γr2/2] = Ãlq
le−q2/γ2

with Ãl =
Al

γl+3/2 . Then the contribution of the last term in equation 2.146 to the
Coulomb matrix elements (eq. 2.145) is:

V
p(Gauss)
µ,µ′ =

∑
R

eipR
∫
dr
∫
dr′

Qµplm(r − Raµ)Qµ′plm(r′ − Raµ′
− R)

|r − r′|
=

VNQµQµ′eipDµ,µ′
∑

G

p̃lm(G − p)p̃∗l′m′(G − p)
4π

|G − p|2 + µ2

(2.150)

where Dµ,µ′ = Raµ −Raµ′
. Taking into account the form of p̃lm(q) from equation

2.149, we obtain:

V
p(Gauss)
µ,µ′ = VNQµQµ′eipDµ,µ′

(2π)3

V 2
N

i−l+l′×∑
G

ÃlÃl′ |G − p|l+l′e−(|G−p|)2/γ2

Ylm(ΩG−p)Y
∗
l′m′(ΩG−p)

4π

|G − p|2 + µ2

(2.151)

This expression needs special care for p → 0 since the limit µ → 0 needs to
be taken. In the next section, we are going to explore the behavior of the matrix
elements and explore ways to treat them analytically and computationally.

10This integral can be found in integral tables, for example see here [90]
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Chapter 3

Results

3.1 Singularity of the Coulomb potential

In section 2.7, we showed the expression of the Coulomb matrix elements in terms
of a Bloch function basis set, created from atom-centered localized orbitals. We
showed that the expression is problematic for small crystal momentum vectors
p. This problem is extensively studied for the HF case, but inadequately studied
for higher order terms of the many-body perturbation theory, as the second-order
corrections. Until now, the main approach is an extrapolation from an assumed
law of decay [78]. We begin by analysing the methods used for HF and the reasons
why we cannot use them directly for second-order theory. Later, we present the
connection between the power of the singularity and the decay law, providing a
proper scheme of extrapolation, with no assumptions. Furthermore, we suggest a
scheme to generalize the Gygi-Baldereschi method, for the application to second-
order theory, which until now was not possible.

3.1.1 Coulomb potential in the limit p → 0

The singularity problem arises from the non-converging summation over the lat-
tice vectors in the equation 2.127 if p = 0. This demands the integration of a
function proportional to 1/|p|2 (see equation 2.151). We now analyze this expres-

63
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sion. The problematic G = 0 term in equation 2.151 is:

Tp
µ,µ′ =

(2π)3

VN
i−l+l′ÃlÃl′QµQµ′eipDµ,µ′ |p|l+l′e−(|p|)2/γ2

Ylm(Ωp)Y
∗
l′m′(Ωp)

4π

|p|2 + µ2

(3.1)

The order of taking limits p → 0 and µ → 0 is important. If we first take the
limit µ → 0, then the term will be proportional to pl+l′−2Ylm(Ωp)Y

∗
l′m′(Ωp). The

behavior of this term for p → 0 depends on l + l′:

• If l + l′ > 2, the limit is zero.

• When l + l′ = 2, it will be equal to lim
p→0

Ylm(Ωp)Y
∗
l′m′(Ωp) which is not

well-defined for l, l′ ̸= 0, because it depends on the direction from which p

approaches zero. In any case, it is bound.

• For l + l′ = 1 the limit diverges. How it diverges depends on the direction
of approaching zero.

• For l + l′ = 0, the limit is diverging to +∞

On the other hand, if we take the limit p → 0 with finite µ:

• If l + l′ > 0, the limit is zero.

• For l + l′ = 0, the limit is diverging to +∞.

Let us examine the dependence on µ and p = |p| in the equation 3.1. For this,
we analyze the dependence of f(p) = pL

p2+µ2 on p for different values of µ in the

range between µ = 0 and µ = 1/V
1/3
0 in units of 1/V 1/3 for L = l + l′ = 0, 1, 2.

(a) µ = 10−31/V 1/3 (b) µ = 10−41/V 1/3

Figure 3.1: f(p) = 1
p2+µ2

As can be seen in figures 3.1-3.4, for p close to 0, the largest term at µ → 0

is for L = 0, where the function diverges. For L = 1, there is a maximum at
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(a) µ = 10−31/V 1/3 (b) µ = 10−41/V 1/3

Figure 3.2: f(p) = p
p2+µ2

(a) µ = 10−31/V 1/3 (b) µ = 10−41/V 1/3

Figure 3.3: f(p) = p2

p2+µ2

p0 = µ√
2

with a magnitude of 2
3
√
2µ

getting larger as µ → 0. For L = 2, the
function is bound by 1, increasing from zero as 1

µ
p2 for p << 1 (in 1/V 1/3 units).

For higher L, the term approaches zero as pL/µ2 for p→ 0. The value of µ affects
only the L = 1 and L = 2 cases.

To address the singularity issue, it is required to take into account that the fi-
nal expressions we are interested in are always summations over states, meaning
that there will be a summation over the first Brillouin zone for the crystal momen-
tum. In the thermodynamic limit, the summation over a crystal momentum p will
become an integral: ∑

p

→ VN
(2π)3

∫
1stBZ

dp

In practical calculations, the integration is performed as a summation over p
on a finite reciprocal-space grid inside the first Brillouin zone. If the chosen grid
has N0 points, the integration step will be (2π)3

N0
. The quantities will be calculated

per unit-cell volume, since V0 = N0Ω. The problem with the Coulomb matrix
singularity is that the integrand is very large or even infinite, and the contribution
of this singularity to the integral needs to be treated carefully.

As a first step, we must demonstrate that the integral converges. For HF, this
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(a) µ = 10−31/V 1/3 (b) µ = 10−41/V 1/3

Figure 3.4: f(p) = p3

p2+µ2

can be easily demonstrated by writing the integral in spherical coordinates. How-
ever, for higher-order corrections of MBPT, it is not so obvious. After showing
that the integral converges, a way to continue is by applying a uniform grid and
then ignoring the singular point. This method converges very slowly and, for this
reason, methods to accelerate it by treating the singularity have been proposed in
the case of HF. We review two of the most widely used approaches, the Gygi-
Baldereschi and the truncated Coulomb potential, and we show that they cannot
be applied directly in the case of second-order MBPT. We then discuss the options
we have for second-order correction of MBPT. The main approach until now is
to treat the singularity is by fitting the data and extrapolating to the dense k-grid
limit.

The Gygi-Baldereschi method

Gygi and Baldereschi suggested a way to treat the singularity when calculating
the exchange energy of HF approximation:

EHF
x = −1

2

occ∑
i,j

∑
σ

∑
q∈BZ

∑
k∈BZ

V iqσ,jkσ
jkσ,iqσ (3.2)

The main idea is to add and subtract a term that has the same singularity as the
Coulomb interaction, but that can be integrated analytically [91].

To explain the method, we will write the quantities that need to be calculated
in a similar form as was written originally for HF, which has a linear dependence
on Coulomb matrix elements. The method was applied for a plane-wave basis
set, so the Coulomb operator is projected in reciprocal space as in equation 2.143,
so Ṽ (p − G) ∝ 1

|p−G|2 . Since the integrand in HF has a linear dependence on
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the Coulomb matrix, it can be written in the form: f(p,G)Ṽ (p − G), where
p = q − k is the momentum transferred from the interaction, so the summation
becomes:

∑
qk

→
∑
qp

. The function f represents anything that will be a factor of

the Coulomb matrix in reciprocal space. Thus, the quantity to be integrated in the
thermodynamic limit can be written as:

I =
∑
p∈BZ

∑
G

f(p,G)

|p−G|2 (3.3)

To eliminate the singularity, we search for functions that have the same singular-
ity as the above expression. A practical function, suitable for all systems, was
suggested by Massidda et al. [74]:

∑
p∈BZ

Fa(p) =
∑
p∈BZ

∑
G

e−a|p−G|2f(0, 0)

|p−G|2 (3.4)

where a is a parameter whose value is chosen in order to have a Gaussian width
comparable to the Brillouin zone linear size. Without the Gaussian, the integral
would diverge. The function is integrable and can be taken analytically:

∑
p∈BZ

∑
G

e−a|p−G|2f(0, 0)

|p−G|2
= f(0, 0)

∑
p

e−a|p|2

|p|2
→

f(0, 0)
VN
(2π)3

∫
dp
e−a|p|2

|p|2
= f(0, 0)

VN
(2π)3

4π

√
π

4a

(3.5)

Advancing from the first row to the second in the equation 3.5, we consider that the
summation over p on the first Brillouin zone and the summation over all reciprocal
lattice points G results in a summation over the whole space. By rewriting the
expression 3.3:

I =
∑
p∈BZ

∑
G

f(p,G)Ṽ (p−G) =

∑
p∈BZ

∑
G

[
f(p,G)

|p−G|2
− e−a|p−G|2f(0, 0)

|p−G|2

]

+
∑
p∈BZ

∑
G

e−a|p−G|2f(0, 0)

|p−G|2

(3.6)
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we split it into two parts, one non-singular, and another which is analytically inte-
grable. Therefore, the term for p = 0 can be omitted from the first sum:

Ω

N0

∑′

p∈BZ

∑
G

[
f(p,G)

|p−G|2
− e−a|p−G|2f(0, 0)

|p−G|2

]

+
Ω

(2π)3

∫
dp
e−a|p|2f(0, 0)

|p|2

(3.7)

In practical implementations, the application of the Gygi-Balderesci correc-
tion scheme for HF can be applied by excluding the singular point in the calcula-
tion of the Coulomb matrix elements and, in its place, include the correction:[

− Ω

N0

∑′

p

e−a|p|2

|p|2
+

Ω

(2π)3

∫
dp
e−a|p|2

|p|2

]
. (3.8)

The simple swap of the singular term with a correction is possible because of
the linear dependence of the integrand from the Coulomb matrix elements in the
case of HF. This is not the case for second-order theory were the integrand is not
linearly dependent to the Coulomb matrix elements. Because of this, a simple
swap of the singular point with the correction will not work. Instead, we explore
possible solutions in the section about the generalization of the Gygi-Balderesci
correction scheme 3.1.3.

Moreover, we note that the exact dependence of the integrand on p depends
also on the behavior of f(p,G) around p = 0. Considering a Taylor series ex-
pansion around p = 0, one realizes that the above correction takes into account
only the contribution from the zero power term of the Taylor expansion, while
there might be higher power terms, giving rise to singularities proportional to p−1

or p0. These terms are not corrected by the Gygi-Baldereschi method, but we
suggest a scheme to include them in the section about the generalization of the
Gygi-Balderesci correction scheme.

The truncated Coulomb potential method

Another approach to address the singularity issue is the truncation of the Coulomb
potential, also known as the cut-Coulomb method and it was presented by J.
Spencer and A. Alavi [75] in 2008 for the calculation of HF exchange energy, as an
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alternative to Gygi-Baldereschi method. They proposed that instead of calculat-
ing the Fourier transform of the full Coulomb potential (eq. 2.142), the following
potential should be used:

Vcut =

 1
|r−r′| , if |r − r′| ≤ Rcut

0, otherwise
(3.9)

The radius Rcut must be consistent with the volume of the Born-von Karman
supercell, V0, so that when V0 → ∞ also Rcut → ∞. Thus, the correct limit is
recovered while increasing the density of the k-point grid. To have an analytical
expression of the Fourier transform, the radius can be chosen as the radius of a
sphere with the same volume as the Born-von Karman supercell, 4

3
πR3

cut = V0.
The Fourier transform of the modified Coulomb potential becomes:

Ṽ (q) =
1

VN

4π

(|q|2)
(1− cos(|q|Rcut)) (3.10)

This approach is easier to implement than the Gygi-Baldereschi method and works
well for the exchange energy in the case of HF [47].

3.1.2 Singularity in second-order MBPT

To calculate the second-order corrections, eq. 2.53 for the total energy and eq.
2.81 for the single particle energies must be evaluated. As can be concluded from
these equations, the Coulomb matrix elements enter the integrals over the recip-
rocal space in the second power, | ⟨ϕpϕq| |ϕrϕs⟩ |2. This means that the singularity
of the integrand can be ∼ 1/p4. This type of singularity will be present in direct
terms for l = l′ = 0. Before proceeding, we prove that the integral in the recip-
rocal space exists. The proof relies on the cancellation of the 1/p4 term due to
the orthogonality of the wavefunctions. To the best of our knowledge, such an
analysis has not been reported for the second-order MBPT correction formulated
in the framework of localized basis sets and Ewald summation.
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Convergence of second-order MBPT

From the expression 2.145 for the Coulomb matrix element, we arrive at:

V p
µ,µ′ = VN

[
P̃µ(p)P̃µ′(p)Ṽ (p) +

∑
G−p

′P̃ ∗
µ′(G − p)P̃µ(G − p)Ṽ (G − p)

]
(3.11)

where we have separated the G = 0 term from the summation. The matrix element
of the potential from equation 2.128 for p = 0 can be written as:

V ik′σ′,bk′σ′

nkσ,akσ =
∑
µµ′

Mµ
nkσ,akσM

µ′

ik′σ′,bk′σ′V
0
µ,µ′ =∑

µµ′

Mµ
nkσ,akσM

µ′

ik′σ′,bk′σ′VN P̃µ(0)P̃µ′(0)Ṽ (0)+∑
µµ′

Mµ
nkσ,akσM

µ′

ik′σ′,bk′σ′VN
∑

G

′P̃ ∗
µ′(G)P̃µ(G)Ṽ (G)

(3.12)

The singular terms are the ones proportional to Ṽ (0), and to understand their
behavior in the above expression, we rewrite the orthogonality relation:∫

drψaσk(r)ψiσ′k′(r) = N0δk−k′,Gδa,iδσσ′ (3.13)

In the limit of a complete auxiliary basis set, we can express the product of the
functions as follows:

ψaσk(r)ψiσ′k′(r) =
∑
µ

Mµ
akσ,ik′σ′P

k−k′

µ (r) (3.14)

Then we write the orthogonality relation 3.13 as:∑
µ

Mµ
akσ,ik′σ′

∫
drP k−k′

µ (r) = Nδk−k′,Gδa,iδσσ′ =⇒

∑
µ

Mµ
akσ,ik′σ′

∫
drPµ(r) = δa,iδσσ′

(3.15)

Applying the Taylor expansion to the Fourier transformormation of the auxiliary
basis functions Pµ, it follows that:

P̃µ(p) =
1

VN

∫
dre−iprPµ(r) =

1

VN

∫
dre−iprPµ(r)− ip

1

VN

∫
drrPµ(r) + ...

(3.16)



3.1. SINGULARITY OF THE COULOMB POTENTIAL 71

and:

P̃µ(0) =
1

VN

∫
drPµ(r) =

1

VN
δlµ,0

∫
drr2Pµ(r) =

1

VN
δlµ,0Qµ (3.17)

where we take into account that the auxiliary functions Pµ(r) have a radial part
and an angular part: Pµ(r) = Pµ(r)Ylµmµ . Combining eq. 3.15 with eq. 3.17
yields: ∑

µ

Mµ
akσ,ik′σ′VN P̃µ(0) =

∑
µ

Mµ
akσ,ik′σ′δlµ,0Qµ = δa,iδσσ′ (3.18)

In second-order correction of MBPT, the two products of wave functions are ex-
panded by Pµ and Pµ′ respectively, and at least one of them will be a product of an
occupied and an unoccupied function, as demonstrated in equation 2.81. There-
fore, the singular part of equation 3.12, resulted from the auxiliary basis functions
for l = l′ = 0 will cancel. The singular part will have a singularity proportional to
1/p, which will lead to an integrable singularity proportional to 1/|p|2 in the case
of second-order, where we have products of Coulomb matrix elements.

In the Ewald method, the Coulomb matrix is only partially calculated in the
reciprocal space (see section 2.7.4), thus only this part will be singular.

3.1.3 Generalized Gygi-Baldereschi method

In this section, we develop a generalization of Gygi-Baldereschi method that in-
cludes other contributions to the Coulomb matrix singularity besides the ones
proportional to 1/p2. The method should improve the convergence of HF fur-
ther. Moreover, its terms are the only ones relevant for the second-order MBPT
singularity.

The Coulomb matrix element in the auxiliary basis from equation 2.128 is:

V rq′σ′,sqσ
pkσ,qk′σ′ =

∑
µµ′

Mµ
pkσ,sqσM

µ′

qk′σ′,rq′σ′V
p
µ,µ′ (3.19)

where we remind here that p is the momentum transferred by the interaction p =

q − k and it is contained by the momentum conservation q − k = −q′ + k′ + G.
The analytical form of the long-range singular part of V p

µ,µ′ is given in equation
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2.151. From equation 2.151 we separate the terms that depend on p:

Flm,l′m′(p) = eipDµ,µ′
∑

G

e−(|G−p|)2/γ2

Ylm(ΩG−p)Y
∗
l′m′(ΩG−p)

4π|G − p|l+l′

|G − p|2
.

(3.20)

Expanding the exponential:

eipDµ,µ′ =(2π)
3
2

∑
l,m

il
√

2

π
jl(pDµ,µ′)Ylm(p̂)Y

∗
lm(D̂µ,µ′) =

1 +
4πi

3
pDµ,µ′

1∑
m=−1

Y1m(p̂)Y
∗
1m(D̂µ,µ′)−(

1

30
+

1

15

2∑
m=−2

Y2m(p̂)Y
∗
2m(D̂µ,µ′)

)
(pDµ,µ′)2 +O(p3)

(3.21)

where jl(pr) are the spherical Bessel functions:

jl(pr) =
∑
n=0

a(l)n (pr)2n+l

with a(l)n+1 = −a(l)n
1

3(n+ 1)(2n+ 2l + 3)
and a(l)0 =

1

(2l + 1)!!

(3.22)

and we obtain1:

Flm,l′m′(p) =
∑

G

e−(|G−p|)2/γ2

Ylm(ΩG−p)Y
∗
l′m′(ΩG−p)

4π|G − p|l+l′

|G − p|2[
1 +

(
4πi

3

1∑
m=−1

Y1m(p̂)Y
∗
1m(D̂µ,µ′)

)
pDµ,µ′−(

1

30
+

1

15

2∑
m=−2

Y2m(p̂)Y
∗
2m(D̂µ,µ′)

)
(pDµ,µ′)2 +O(p3)

] (3.23)

Following the Gygi-Baldereschi method, we introduce a treatment to the singu-
larity that considers that the Coulomb matrix elements dependence on p has the

1In principle, we can also expand the factor e−(|G−p|)2/γ2

(coming from Ewald summation)
for G = 0 around p = 0. However, in the original Gygi-Baldereschi method, a Gaussian factor
must be introduced artificially, so that the integral in equation 3.4 gives a finite result. In the case
of Ewald summation, keeping the Gaussian factor e−(|G−p|)2/γ2

ensures that the integral is finite.
Thus, the already existing Gaussian from the Ewald summation can serve this purpose.
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above form, and not the form of equation 3.3. This way, the dependence of the
function f(p,G) on p is partially treated and, most importantly, it is now possi-
ble to treat second-order MBPT in which, as explained in section 3.1.2, the terms
proportional to |p|−2 are irrelevant, since they cancel due to the orthogonality.

Generalized Gygi-Baldereschi method for HF

We begin with the application of the generalized Gygi-Baldereschi method to HF.
The exchange energy of the HF approximation is:

EHF
x = −1

2

occ∑
i,j

∑
σ

1

Nk

∑
k

1

Nq

∑
q

∑
µµ′

Mµ
jk,iqM

µ′

iq,jkV
p
µ,µ′ (3.24)

where p = q − k is the momentum transferred from the interaction. We can
rewrite the summation:

∑
qk

→
∑
qp

, as was done also in section 3.1.1.

As demonstrated, we benefit from using Ewald summation to calculate the
Coulomb matrix in two parts, each of which converges faster in real or recipro-
cal space. One part comes from a short-ranged interaction that is non-zero only
when the orbitals overlap. The second part is the long-range interaction, described
through the interaction of localized Gaussian orbitals with multipole moments
equal to the multipole moments of the orbitals they are compensating. The matrix
element of the Coulomb potential in equation 3.19 can be written as a sum of the
short-range interaction and the long-range interaction:∑

µµ′

Mµ
mk,nqM

µ′

nq,mkV
p
µ,µ′ =

∑
µµ′

Mµ
mk,nqM

µ′

nq,mk

∑
R

eipRV sr
µ,µ′(R)+∑

µµ′

Mµ
mk,nqM

µ′

nq,mkV
p(Gauss)
µ,µ′

(3.25)

The part that is singular at the point p = 0 is the second term on the right-hand
side of the above expression. The singular point needs to be excluded when cal-
culating the summation over p in the first Brillouin zone, as mentioned in section
3.1.1. Instead, following the Gygi-Baldereschi method analyzed in section 3.1.1,
a correction can be added to compensate the exclusion of the singular term at the
point p = 0. The correction replaces V p(Gauss)

µ,µ′ in equation 3.25 for p = 0 and
will have the expression:
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Cµ,µ′
=

(2π)3

VN
i−l+l′QµQµ′ÃlÃl′×[

−
∑
p

′F lm,l′m′
(p) +

V0
(2π)3

∫
dpF lm,l′m′

(p)

] (3.26)

where:

F lm,l′m′
(p) = |p|l+l′e−(p|)2/γ2

Ylm(Ωp)Y
∗
l′m′(Ωp)

4π

|p|2[
1 +

(
4πi

3

1∑
M=−1

Y1M(p̂)Y ∗
1M(D̂µ,µ′)

)
pDµ,µ′−(

1

30
+

1

15

2∑
M=−2

Y2M(p̂)Y ∗
2M(D̂µ,µ′)

)
(pDµ,µ′)2 +O(p3)

] (3.27)

As mentioned, the l,m and l′,m′ indices are the indices of the angular part of the
auxiliary basis with indices µ and µ′, respectively. The summations in equation
3.24 in the thermodynamic limit will be integrals and the angular part of the in-
tegral involves the integration of the product of three spherical harmonics. This
integral determines the selection rules for the involved orbital momenta via the
relation [92]:∫

dp̂Ylm(Ωp)Y
∗
l′m′(Ωp)YLM(p̂) =√

(2l + 2)(2l′ + 2)(2L+ 2)

4π

(
l l′ L

m m′ M

)(
l l′ L

0 0 0

) (3.28)

The last factor is non-zero for |l − l′| ≤ L ≤ |l + l′| and l + l′ + L = 2κ, where
κ is an integer. For the combinations of l, l′, L in which the above integral is zero,
the summation of F lm,l′m′

(p) over p converges very fast to zero, so we can keep
only the terms with non-zero integrals. For l + l′ = 0 the integral is:∫

dpF (00,00)(p) =
∫
dpp2e−p2/γ2 4π

p2

[
1− 1

30
(pDµ,µ′)2 +O(p3)

]
(3.29)

and the corresponding contribution to the correction is:

−
∑

p

′e−p2/γ2 4π

p2

[
1− 1

30
(pDµ,µ′)2 +O(p3)

]
+

V0
(2π)3

∫
dpe−p2/γ2 4π

p2

[
1− 1

30
(pDµ,µ′)2 +O(p3)

] (3.30)
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This contribution coincides with Gygi-Baldereschi correction.

As a first approximation, only the terms of the function F lm,l′m′ for each pair
of lm, l′m′ that give terms with p in powers of p−2 and up to the power p0 are
kept. In section 3.1.1 we saw that the contribution to the integral close to p = 0

will decrease as the power of p increases. For l = 1, l′ = 0:

F 1m,00(p) =

p2Dµ,µ′e−p2/γ2

Y1m(Ωp)Y
∗
00(Ωp)

4π

p2

(
4πi

3

1∑
M=−1

Y1M(p̂)Y ∗
1M(D̂µ,µ′)

)
+O(p4)

(3.31)

where m = −1, 0, 1. For l = 0, l′ = 1, the correction will be the complex
conjugate of the l = 1, l′ = 0 correction.

For l = 1, l′ = 1:

F 1m,1m′
(p) = p2e−p2/γ2

Y1m(Ωp)Y
∗
1m′(Ωp)

4π

p2
+O(p4) (3.32)

The remaining temrs involve higher-order corrections.

Generalized Gygi-Baldereschi method for second-order MBPT

As seen in equations 2.53 for total energy and 2.81 for the single-particle excita-
tions, the subject to be corrected is proportional to the product of two Coulomb
matrix elements, given in equation 2.128. Even though the integrand is the prod-
uct of two Coulomb matrix elements, the correction cannot be written as a product
of two corrections Cµ1,µ′

1Cµ2,µ′
2 . Thus, it depends on four indices µ1, µ

′
1, µ2, µ

′
2.

Equation 2.128 shows that if we set q − k = q′ − k′ = 0, which means p = 0 for
the coefficients, it results in integrations over p of the expression V p

µ1,µ′
1
V p
µ2,µ′

2
in

the thermodynamic limit. The correction will then be expressed as:

Cµ1,µ′
1µ2,µ′

2 =

[
(2π)3

VN

]2
i−l1+l′1 i−l2+l′2Qµ1Qµ′

1
Qµ2Qµ′

2
Ãl1Ãl′1

Ãl2Ãl′2
×[

−
∑
p

′F l1m1,l1
′m1

′
(p)F l2m2,l2

′m2
′
(p)+

V0
(2π)3

∫
dpF l1m1,l1

′m1
′
(p)F l2m2,l2

′m2
′
(p)
] (3.33)
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where F l1m1,l1
′m1

′
(p) and F l2m2,l2

′m2
′
(p) are the same as in equation 3.27. From

the form of equation 3.27 we conclude that for l1 + l′1 + l2 + l′2 ≤ 2, the prod-
uct F l1m1,l1

′m1
′
(p)F l2m2,l2

′m2
′
(p) is not integrable. However, as it was shown in

section 3.1.2, from equation 3.18 the terms cancel if one of the l is zero. There-
fore, we consider only F l1m1,l1

′m1
′
(p) with l1 + l′1 ≥ 1 and F l2m2,l2

′m2
′
(p) with

l2 + l′2 ≥ 1.

As in the case of HF, we can to consider only terms that give non-zero con-
tribution after the integration over p in the correction Cµ1,µ′

1µ2,µ′
2 . Because the

correction contains the products of four spherical harmonics, we can simplify the
long-range interaction expression using the identity:

Y ∗
lm(p)Yl′m′(p) =∑
LM

Y ∗
LM(p)

√
(2l + 2)(2l′ + 2)(2L+ 2)

4π

(
l l′ L

−m m′ M

)(
l l′ L

0 0 0

)
(3.34)

For the l + l′ = 1 case, the above expression will be non-zero only for L = 1 and
m−m′ =M . The correction function takes the form:

Cl1m1,l′1m
′
1,l2m2,l′2m

′
2
= δl1+l′1,1

δl2+l′2,1
e−2p2/γ2 4π

p2
Y1,m1−m′

1
(p)Y ∗

1,m2−m′
2
(p) +O(1/p)

(3.35)

Even though powers higher than p−2 can be important, this term corrects the
very slow k-points convergence that behaves as ∼ 1/(Nk)

1/3. The correction
to (V p

µ1,µ′
1
)∗V p

µ2,µ′
2

is proportional to:

−δl1+l′1,1
δl2+l′2,1

∑
p

′e−2p2/γ2 4π

p2
Y1,m1−m′

1
(p)Y ∗

1,m2−m′
2
(p)

+δl1+l′1,1
δl2+l′2,1

V0
(2π)3

∫
dpe−2p2/γ2 4π

p2
Y1,m1−m′

1
(p)Y ∗

1,m2−m′
2
(p)

(3.36)

The integral of the above expression is:∫
dpe−2p2/γ2 4π

p2
Y1,m1−m′

1
(p)Y ∗

1,m2−m′
2
(p) = δm1−m′

1,m2−m′
2
4π
γ

2

√
2

π
(3.37)

In the exchange term V p
µ1,µ′

1
V p′

µ2,µ′
2

is a product of Coulomb matrix elements with
different momentum, in contrast to the direct term that has the product: V p

µ1,µ′
1
V p
µ2,µ′

2
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and thus Coulomb matrix elements with the same momentum transfer. The power
of p or p′ will then be the power of V p

µ1,µ′
1

or V p′

µ2,µ′
2

separately, and neglected for
now, since the highest power will be lower than the highest power in the direct
term. The angular part converges very fast to unity, so the correction can be writ-
ten as:

F µ1µ′
1µ2µ′

2 = Qµ1Qµ′
1
Qµ2Qµ′

2

(
(2π)3

VN

)2

i−l1+l′1 i−l2+l′2×

Ãl1Ãl′1
Ãl2Ãl′2

δm1−m′
1,m2−m′

2
δl1+l′1,1

δl2+l′2,1
V0

(2π)3
F (N0)

(3.38)

where F (N0) is:

F (N0) = 4π
γ

2

√
2

π
− (2π)3

N0Ω

∑
p

′e−2p2/γ2 4π

p2
1

4π
(3.39)

Figure 3.5: F (N0) from eq. 3.39 as a function of the number of k-points per
directionN = (N0)

1/3 for γ = 1 and a cubic lattice with a lattice constant a = 5.0

Applying the Gygi-Baldereschi method or its generalization as proposed here
is very useful for electronic-structure methods that involve integrals of functions
proportional to the first power of the potential matrix elements. This is not the case
when the integrand contains higher powers of the Coulomb matrix elements, as in
the case of second-order perturbation theory, where the integrand is proportional
to the product of the matrix elements. In practice, we need to calculate an object
with four indices, µ1, µ

′
1µ2, µ

′
2. This is not as computationally efficient as is in the

case of HF.
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3.1.4 Integration error and extrapolation

In principle, any integrand, including singular ones, can be expressed as a Lau-
rent series that includes negative powers of the integrand variable p. If the se-
ries includes powers smaller than −2 the singularity is not integrable for a three-
dimensional integration. This is not expected to happen, since MBPT converges to
a finite number for all orders, as shown by Jun-Qiang Sun, and Rodney J. Bartlett
[72]. The proof provided in their work relies on a real-space lattice summation. In
this thesis we proved the finite convergence also when using the Ewald summation
in the sp-MP2 and MP2 corrections (see section 3.1.2). This means that Laurent
series for the integrand contains a minimum power of −2 around the singularity.

Let us consider the integration of a singular function f(p) = f(p, θ, ϕ). In
general, we can write the function f as a power series of pn as

∑
n

fn(θ, ϕ)p
n. For

a singular function, n can be negative. If n ≤ −2 the singularity is integrable.
Then we can write:

f(p) =
f−2((θ, ϕ))

p2
+
f−1(θ, ϕ)

p1
+
f0(θ, ϕ)

p0
+ f1(θ, ϕ)p+ ... (3.40)

The integral of tthe function f inside a volume V
∫
V

dpf(p) can be problematic if it

is not done analytically. Since the value for p = 0 is infinite, we must skip zero in
the case of a finite grid summation. The integral can be calculated as 1

N3

∑
p̸=0

f(p)

where N are the number of points in the grid per direction, so the total points are
N3. In the limit of an infinitely dense grid, this quantity approaches the calculated
analytically integral.

The difference of the summation from the integration shows how close to con-
vergence the summation is:

G(N) =

∫
V

dpf(p)− V

N3

∑
p ̸=0

f(p) (3.41)

The integral of f(p) can be calculated for each term of the equation 3.40 sepa-
rately, so we can find the contribution of each of them. We define:

Gn(N) =

∫
dpfn((θ, ϕ))pn −

V

N3

∑
p

′fn((θ, ϕ))p
n

(3.42)
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The equation 3.39 found in the generalized Gygi-Baldereschi method for the high-
est power correction of sp-MP2 singularity, proposed in this thesis, is similar to
the contribution for n = −2. The difference is the Gaussian factor, which ensures
the convergence of the integral when the integration is done in the whole space.
Thus, the function defined in equation 3.39 is not only proportional to the correc-
tion, but will also show the convergence behavior as a function of N . To model
the convergence behavior in any power, we define the function:

Fn(N) =

∫
dpe−a|p|2|p|n − (2π)3

N3Ω

∑
p

′e−a|p|2|p|n (3.43)

Figure 3.6: The numerical integration error Fn(N) from equation 3.43 for n = −2

as a function of 1/N . The dependence is very close to linear for the considered
range of 1/N .
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Figure 3.7: The function Fn(N) from equation 3.43 for n = −1 as a function of
1/N2. The dependence is very close to linear for the considered range of 1/N2.

Figure 3.8: The function Fn(N) from equation 3.43 for n = 0 as a function of
1/N3. The dependence is very close to linear for the considered range of 1/N2

From the plots 3.6-3.8 we see that the convergence behavior for N → ∞
is dominated by the minimum power of the inttegrand’s expansion. From this
schematic analysis, we conclude that the convergence of sp-MP2 band gap, that
has a linear behavior when plotted as a function of 1/N (as demonstrated for MgO
in figure 3.12) is dominated by a 1/p2 singularity, in agreement with the analysis
done in the section 3.1.2. If the dominant singularity was 1/p, the convergence
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would be linear when plotted with 1/N2. If the integrand did not have a singular-
ity, i.e., the power series would start from n = 0, and the integration error would
behave as 1/N3.

It becomes clear that by knowing the behavior of the integration error around
the singularity, we can extrapolate properly to the dense grid limit. Moreover, if
we know the factors fn of the singular terms, as, for example, f−2 for the singular
term p−2 in equation 3.40, we can analytically calculate that term. This is the core
idea behind the generalized Gygi-Baldereschi method.

There are two ways to determine f−2, f−1, and f0. One is analytically as
described in section 3.1.3. Its advantage is that converged results can be obtained
with a relatively sparse integration grid. Its drawback is that the p-dependence
of the coefficients Mµ, present in the integrand of HF, MP2 and sp-MP2 (see
equations 3.24, 3.46, and 3.47), is not known. Thus, we can make an expansion
as in equation 3.40, but now the factors fn have a dependency on p, so they can
be written as fn(p, θ, ϕ), and not as fn(θ, ϕ). This dependence should be smooth
and with powers higher or equal to n = 0, since the singularity arises from the
part that is known analytically. Furthermore, as discussed in section 3.1.3, the
construction of the factors fn is not practical for MP2 and sp-MP2 since they
require the calculation of four-index objects.

The alternative way is to fit the numerical integration error as a function of the
number of grid points and extrapolate the fitting function to the infinitely dense
grid. The factors fn are determined from the fitting. This is the method adopted
in this thesis.

3.2 Bandgaps with second-order MBPT

Having now the tools to calculate the Coulomb operator matrix elements, we focus
on second-order correction, with HF wavefunctions as our starting point. This
method is advantageous, because HF already includes a part of the interaction,
namely, the one described by single excitations as shown in the section 2.3.2. To
approach the dense k-grid limit, we use the results of our analysis of the singularity
performed in the the section 3.1.
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3.2.1 Bandgaps with single-particle MP2

To obtain MP2 single-particle (sp-MP2) energies of a periodic solid, one has to
calculate only the first term of eq. 2.81 taking into account the crystal momentum
quantum numbers:

ϵMP2
pkσ = ϵHF

pkσ+

1

2

∑
σ′

∑
i,a,b

1

Nk′Nq′Nq

∑
k′qq′

| < ψpkσ, ψik′σ′ ||ψaqσ, ψbq′σ′ > |2

ϵHF
pkσ + ϵHF

ik′σ′ − ϵHF
aqσ − ϵHF

bq′σ′
+

1

2

∑
σ′

∑
i,j,a

1

Nk′Nq′Nq

∑
k′qq′

| < ψpkσ, ψak′σ′ ||ψiqσ, ψjq′σ′ > |2

ϵHF
pkσ + ϵHF

ak′σ′ − ϵHF
iqσ − ϵHF

iq′σ′

(3.44)

where Nk′ , Nq and Nq′ denote the total number of points of the grid for the sum-
mation over k′, q, and q′ respectively. This expression is very similar to the total-
energy MP2 in periodic boundary conditions, where one has to calculate:

EMP2 = EHF+

1

4

∑
σ,σ′

∑
i,j,a,b

1

NkNk′Nq′Nq

∑
k,k′qq′

| < ψikσ, ψjk′σ′ ||ψaqσ, ψbq′σ′ > |2

ϵHF
ikσ + ϵHF

jk′σ′ − ϵHF
aqσ − ϵHF

bq′σ′

(3.45)

In the case of sp-MP2 the summation runs over three states instead of four in
total-energy MP2.

In the auxiliary basis the Coulomb matrix elements take the form given in eq.
2.128. Then, the total-energy MP2 correction to HF energy can be written as:

EMP (2) =

1

4

∑
σ,σ′

∑
i,j,a,b

1

Nk, Nk′Nq′Nq

∑
k,k′qq′

1

ϵaqσ,bq′σ′

ikσ,jk′σ′

[(∑
µµ′

Mµ
ikσ,aqσM

µ′

jk′σ′,bq′σ′V
p
µ,µ′

)2
+

δσ,σ′

(∑
µµ′

Mµ
ikσ,aqσM

µ′

jk′σ′,bq′σ′V
p
µ,µ′

)(∑
µµ′

Mµ
ikσ,bq′σ′M

µ′

jk′σ′,aqσV
p′

µ,µ′

)]
(3.46)

The MP2 single-particle energy corrections to HF energies are expressed as fol-
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lows:

ϵ
MP (2)
pkσ =

1

2

∑
σ′

∑
i,a,b

1

Nk′Nq′Nq

∑
k′qq′

1

ϵaqσ,bq′σ′

pkσ,ik′σ′

[(∑
µµ′

Mµ
pkσ,aqσM

µ′

ik′σ′,bq′σ′V
p
µ,µ′

)2
+

δσ,σ

(∑
µµ′

Mµ
pkσ,aqσM

µ′

ik′σ′,bq′σ′V
p
µ,µ′

)(∑
µµ′

Mµ
pkσ,bq′σ′M

µ′

ik′σ′,aqσV
p′

µ,µ′

)]
+

1

2

∑
σ′

∑
i,j,a

1

Nk′Nq′Nq

∑
k′qq′

1

ϵiqσ,jq′σ′

pkσ,ak′σ′

[(∑
µµ′

Mµ
pkσ,iqσM

µ′

ak′σ′,jq′σ′V
p
µ,µ′

)2
+

δσ,σ

(∑
µµ′

Mµ
pkσ,iqσM

µ′

ak′σ′,jq′σ′V
p
µ,µ′

)(∑
µµ′

Mµ
pkσ,jq′σ′M

µ′

ak′σ′,iqσV
p′

µ,µ′

)]
(3.47)

Taking into account the crystal momentum conservation as shown in eq. 2.126,
q−k = −q′+k′+G, we can rewrite the summation:

∑
k′qq′

→
∑
q′p

, where p = q−k

is the momentum transferred by the Coulomb potential. We can now calculate the
bandgaps for a test set of solids. Before we present and examine the results, we
introduce the details of the implementation carried out in the framework of this
thesis.

Implementation of sp-MP2 on the all-electron, full-potential elec-
tronic structure code package FHI-aims

We base our implementation of single-particle excitations MP2 (sp-MP2) on the
preexisting total-energy MP2 implementation on the all-electron full-potential
electronic structure code package FHI-aims electronic-structure package [35]. The
MP2 and sp-MP2 implementation challenges emerge mostly from the size of the
Coulomb matrix and the singularity, as described in section 3.1.1.

After demonstrating, in section 3.1.2, that the integral converges, we can em-
ploy the truncated Coulomb operator, since it must converge to the exact result
in the limit of an infinitely dense reciprocal space grid. Applying the truncated
Coulomb potential method does not require any special treatment and can be ap-
plied as in HF. The Coulomb operator is modified in the same way as in equation
3.9.
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We conclude that in the case of second-order single-particle energies, the trun-
cated Coulomb operator does not output a smooth convergence even after increas-
ing the k-grid significantly, as can be seen in figure 3.9. A solution is to use the
truncated Coulomb operator only for p = 0. This approach is used for total-
energy second-order MBPT [78] and we have also used to obtain our results for
the second-order MBPT bandgaps presented in this thesis.

Figure 3.9: Convergence of the sp-MP2 bandgap using truncated Coulomb oper-
ator for all momentum transfer values p. The system is MgO with PBE lattice
constant (2.1055Å). This figure shows that the truncated Coulomb operator does
not give a smooth convergence.

The parallelization of MP2 implementation is done in reciprocal space. From
equation 3.46 together with the momentum conservation 2.126, the summation
over the k-grid points can be separated to up to Np × Nk × Nq steps2. The steps
can then be distributed to the available tasks along with the relevant matrices
(Coulomb matrix elements, HF eigenfunctions, and eigenvectors) for the calcu-
lation of each

∑
µµ′
Mµ

ikσ,aqσM
µ′

jk′σ′,bq′σ′V
p
µ,µ′ . In practice, it is convenient to create

the objects:

Lυ
ikσ,aqσ =

∑
µ

Mµ
ikσ,aqσ[V

p
µ,υ]

1/2

Rυ′

jk′σ′,bq′σ′ =
∑
µ

[V p
µ,υ]

1/2Mµ
jk′σ′,bq′σ′

(3.48)

2In principle the same grid is used for all summations.
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Then each summand:

Esum(k,q,p) =
1

4

∑
σ,σ′

∑
i,j,a,b

1

ϵaqσ,bq′σ′

ikσ,jk′σ′

[(∑
υ

Lυ
ikσ,aqσR

υ
jk′σ′,bq′σ′

)2
+

δσ,σ′

(∑
υ

Lυ
ikσ,aqσR

υ
jk′σ′,bq′σ′

)(∑
υ

Lυ
ikσ,bq′σ′Rυ

jk′σ′,aqσ

)] (3.49)

is calculated. After the calculation of the summand, it is stored in a restart file and
then the calculation continues until all steps are done. Next, the summands are
added and the MP2 calculation is finished.

Proceeding to sp-MP2 calculation, it can be noticed in equation 3.47 that there
is a summation over two instead of three k-point grids. Nonetheless, the index
k still needs to run for the calculation of each ϵMP (2)

pkσ . This process is similar to
MP2, but in every step the relevant summand of every ϵMP (2)

pkσ is calculated. Thus,
with the same number of loops as MP2, we can calculate all ϵMP (2)

pkσ for the relevant
k-grid, which can be used for the band structure calculation. In the case that only
the bandgap is calculated, the summations over k and p are not needed, and the
calculation is much faster.

Before advancing to the test-set calculations, we compare our periodic sp-
MP2 implementation to the respective implementation for molecules on our code
FHI-aims. For this purpose, we have considered a water molecule in a large su-
percell. We found that a supercell of the size 100Åis sufficient. In table 3.1, the
only value that has a difference more than 10−4 is for the second state. The reason
that this value is a result of the breakdown of the nondegenerate perturbation the-
ory. This happens when the denominator of equation 3.47 is zero, so the increased
difference between our implementation and the molecular implementation for the
second state is due to numerical noise from the diverging denominator. This lim-
itation of sp-MP2 is discussed analytically by Sun and Bartlett [28]. For this rea-
son, the differences between molecular implementation and our implementation
are less than 10−4eV , which is compatible with the accuracy of the calculation.
The same finding is true for other molecular systems tested.

To validate of our sp-MP2 implementation, we compare our results with the re-
sults reported by Sun and Bartlett39 for the alternating trans-polyacetylene chain.
In their implementation, the lattice summation for the Coulomb potential calcula-
tion is done in real space, while FHI-aims uses the Ewald summation, as described
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Water molecule ionization energies and electron affinities (eV)

state molecular implementation our implementation
1 -545.1477 -545.1478
2 -43.8191 -43.8198
3 -18.2320 -18.2321
4 -13.8432 -13.8433
5 -12.1483 -12.1484
5 7.4192 7.4191
7 12.7588 12.7587

Table 3.1: Testing the accuracy of our MP2 implementation by calculating the
ionization energies and electron affinities of a water molecule in a large super-
cell (100Å) and comparing with the respective implementation for molecules pre-
existing on FHI-aims, using minimal basis set.

N of k points 80 100 120

HF (eV) 7.792 7.792 7.792
sp-MP2 (eV) 6.641 6.640 6.640

Table 3.2: MP2 bandgaps calculated with FHI-aims using STO-3G basis set.

in section 2.7.4.

Although different methods are employed for the reciprocal space conver-
gence, from figure 3.10 we can conclude that our results showcase satisfactory
agreement.

Bandgap results

We present here the bandgaps for a set of materials, calculated with our imple-
mentation of sp-MP2 on the all-electron, full-potential electronic structure code
package, FHI-aims. To the best of our knowledge there are no reported data for
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Figure 3.10: The bandgap of alternating trans-polyacetylene (basis set: STO-3G)
as reported by Sun and Bartlett. The horizontal axis N is the number of unit
cells in the lattice summations. The red line is our result for alternating trans-
polyacetylene with the same basis set, obtained from our periodic sp-MP2 imple-
mentation. The difference between our value shown in table 3.2 and the last point
from Sun and Bartlett calculations for N = 17 is 0.066eV, resulting from the fact
that their calculation is not converged.
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3D semiconductors or insulators to the level of theory of sp-MP23. Our results are
in the table 3.3.

Bandgap of solids with sp-MP2

Material k points Bandgap (eV)

MgO

5×5×5 7.12
6×6×6 6.54
7×7×7 6.27
8×8×8 5.96
9×9×9 5.74

10×10×10 5.55
11×11×11 5.38

ZnO
6×6×6 1.95
7×7×7 1.62
8×8×8 1.37

ZnS
6×6×6 2.48
7×7×7 2.03
8×8×8 1.68

GaAs
6×6×6 -0.76
7×7×7 -1.35
8×8×8 -1.99

C
(diamond)

6×6×6 1.74
7×7×7 1.35

Table 3.3: sp-MP2 bandgaps calculated with FHI-aims using tight numerical set-
tings and different k-grids.

Data in table 3.3 show that the convergence is slow in agreement with Sun’s
and Bartlett39’s report. In our code, the Ewald method is used to calculate the
lattice summations of the Coulomb potential. This results in the singularity of the

3To avoid any confusion, we note here that A. Grüneis [70] reports quasiparticle energies that
are of higher level of perturbation theory since the reported values are an approximation of the
Dyson(D2), but the name might be confusing, since he calls them MP2 QP. In section 3.2.3 we
report the Dyson(D2) bandgaps and there we will present a comparison between Grüneis results
and ours.
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Coulomb potential which governs the reciprocal space convergence, as was shown
in section 3.1.

A slow convergence is also reported in total-energy MP2 calculations [80]. We
explore an extrapolation method, as proposed for total-energy MP2 [78]. Zhang
et al. proposed that the error in total-energy MP2 due to the finite k-grid follows
the relation:

∆E(N) = E(N)− E(N → ∞) =
A

Nα

where N is the number of k-grid points per direction (N = (Nk)
1
3 ). Since the

treatment of the singularity is done in the same way in both cases, we will explore
a similar law of decay for the bandgap:

∆G(N) = G(N)−G(N → ∞) =
A

Nα
(3.50)

In contrast to previous research, we have identified the behaviour of the finite-
size error analytically and determined the value of α in the case of sp-MP2. Con-
sidering the analysis in section 3.1.4, we can find the infinite grid limit N → ∞
by extrapolating to 1/N to zero, as in figure 3.1.4.

Figure 3.11: Convergence of the sp-MP2 bandgap plotted as a function of 1/N
where N is the number of points per direction. The equation shows the linear fit
of the last four points (8×8×8, 9×9×9, 10×10×10, and 11×11×11). The R2

value of the linear fit is 0.998.
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Material
Extrapolated (α = 1)

HF bandgap Experiment
sp-MP2 bandgap (eV)

MgO 3.85 15.70 7.98
ZnO -0.37 11.33 3.60
ZnS -0.71 10.43 3.92

GaAs -5.60 7.16 1.57
C -0.99 12.71 5.85

Table 3.4: sp-MP2 bandgaps calculated by an extrapolation using eq. 3.50 with
α = 1 for the grids N × N × N with N = 6, 7, 8, except C, where the extrap-
olation was done for N = 6, 7. Zero-point renormalization is removed from the
experimental points (see: [60] and reference within, and [93]

Table 3.4 demonstrates that sp-MP2 severely underestimate the bandgaps and
in many of the cases, sp-MP2 outputs a negative number, thus failing to predict a
gap for the material. This was expected, since the same issue of negative gaps is
predicted in the quasiparticle energies calculations by Grüneis [70], using a higher
level of perturbation theory. For this reason, in section 3.2.2, we go beyond sp-
MP2 and employ Dyson(D2), which significantly improves the results.

From figure 3.11, we confirm that the convergence with the number of k-
points N is linear when plotted with 1/(N)1/3. The same behavior is expected
and observed for the uncorrected single-particle energies obtained by skipping the
singular point, since the correction should, in general, have the same asymptotic
behavior. The convergence of sp-MP2 bandgap with the number of k-points ob-
tained with two different approaches is shown in figure 3.12. The first approach
is the truncated Coulomb potential method applied to the singular point only, as
described previously in section (3.2.1). In the second approach, the singularity
is simply omitted from the summation in equation 3.47 while using the bare (un-
modified) Coulomb operator. As demonstrated, the convergence behavior is the
same in both methods, meaning that the truncated Coulomb approach simply gives
a practical way of calculating the singular point, but it does not improve the con-
vergence.

From the results obtained by the linear fit (α = 1) in table 3.4, the sp-MP2
bandgaps underestimate the experimental ones. While sp-MP2 is an improve-
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Figure 3.12: The convergence of sp-MP2 bandgap in MgO with k-points per di-
rection N . The black dots are obtained with the truncated Coulomb operator ap-
proach applied to the singular point (see section 3.2.1), as was used to obtain the
results in figure 3.11. The red dots are obtained by using bare Coulomb operator
and excluding the singularity from the summation in eq. 3.47

ment compared to HF bandgaps, which are significantly overestimated, sp-MP2
over-corrects HF. One way to improve the bandgap predictions is to go beyond
second-order correction. However, higher orders in truncated MBPT series come
with a higher computational cost and complexity. As an alternative, one can turn
to methods such as the Dyson equation, described in section 2.5, where the infi-
nite summation is performed for certain classes of diagrams, resulting in a non-
perturbative correction to the single-particle energies. In the next section, we
present our results by solving the Dyson equation with an approximate second-
order self-energy.

3.2.2 Renormalized second-order perturbation theory

Self-consistency in self-energy comes with a high computational cost. For this
reason, we implement a non self-consistent second-order self-energy, where the
propagators are replaced with the HF propagators as shown in figure 3.13.
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Σ2 = + +

Figure 3.13: Non self-consistent second-order self-energy. The semi-bold propa-
gator lines represent the HF propagator.

The propagator’s lines will either be the HF propagator or the propagator
of any other approximate single-particle Hamiltonian. While the self-consistent
second-order self-energy and the respective propagator from the Dyson equation
are independent from the effective potential, in this approximation they are not.
Here we calculate the self-energy and single-particle excitation energies using HF
as an effective potential. The contribution from the HF potential cancels the con-
tribution from the bubble diagram in self-energy Σ2 and the only contribution
comes from the second-order diagram:

Σ2(p, q; ϵ) =
1

2

∑
iab

⟨ϕpϕi| |ϕaϕb⟩ ⟨ϕaϕb| |ϕqϕi⟩
ϵ+ ϵi − ϵa − ϵb + iη

+
1

2

∑
ija

⟨ϕiϕj| |ϕqϕa⟩ ⟨ϕpϕa| |ϕiϕj⟩
ϵ+ ϵa − ϵi − ϵj − iη

(3.51)

If we adopt a diagonal approximation for the self-energy the above equation be-
comes:

ΣD2(p; ϵ) =
1

2

∑
iab

| ⟨ϕpϕi| |ϕaϕb⟩ |2

ϵ+ ϵi − ϵa − ϵb + iη
+

1

2

∑
ija

| ⟨ϕiϕj| |ϕpϕa⟩ |2

ϵ+ ϵa − ϵi − ϵj − iη (3.52)

We arrive at an expression very similar to the one for second-order correction to
the single-particle energies in equation 2.81, obtained in section 2.4.2. In the limit
of η → 0, if we set ϵ = ϵp in equation 3.52, we end up with the equation 3.44.

Substituting this self-energy in the Dyson equation, we obtain the poles of the
propagator, determining the single-particle excitations as solutions to the equa-
tion:

ϵD(D2) = ϵp + ΣD2(p; ϵD(D2)) (3.53)

This enables going beyond sp-MP2 with a small additional computational effort.
In the next section, we present an in-depth analysis of the practical aspects of
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solving the Dyson equation with the self-energy in a second-order diagonal ap-
proximation (Dyson(D2)).

3.2.3 Bandgaps from Dyson(D2)

We can solve in a practical way the Dyson equation in the second-order diagonal
self-energy approximation employing graphical solution by calculating following
function:

f(ϵ) = ϵ− ϵp − ΣD2(p; ϵ) (3.54)

for a range of ϵ and then we search for the roots of eq. f(ϵ) = 0. It is helpful to
examine the behavior of the above equation. Note that ±η in the denominators in
self-energy expression (eq. 3.53) does not affect the position of the roots, as long
as they do not coincide with the poles or branch cuts of the self-energy. The self-
energy will be a noncontinuous function of ϵ, but in the interval centered in the
middle of the gap with a width of 3G (where G is the HF bandgap) it will consist
of a continuous part [87]. Thus, in the range ϵho−G < ϵ < ϵlu+G, self-energy is
well-defined without poles, and monotonically decreasing since its nominator is
always positive. Then, for each HF eigenstate p, there will be one solution of the
Dyson equation in that interval. As a consequence of the many-body nature of the
problem, there will be more than one excitation for a state p, but for the bandgap
the relevant excitations will lie in this interval.

From the equation 3.54 we can state that if we consider the HF eigenvalue,
ϵ = ϵp, then f will be equal to minus the sp-MP2 correction (η = 0):

f(ϵHF
p ) = −ΣD2(p; ϵHF

p ) (3.55)

We know from sp-MP2 that the correction will be negative for the conduction band
and positive for the valence band. This can be seen in the form of the correction
in equation 3.44. Therefore, the bandgaps predicted by sp-MP2 are smaller than
the HF bandgaps, as found also in the section ??. The solution of eq. 3.54 should
be between sp-MP2 and HF energies for the conduction band minimum (CBm),
and between HF and sp-MP2 energies for the valence band maximum (VBm).
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(a) CBm (b) VBm

Figure 3.14: Graphical solution of the Dyson equation for the CBm (a) and VBm
(b) of MgO. The calculation is done with tight settings and a 6×6× k-point grid.
The values on the y-axis correspond to f(ϵ) from equation 3.54. The x-value for
which y-value is zero is the solution of the Dyson equation.

Figure 3.14 shows the function f(ϵ) from eq. 3.54 versus ϵ for CBm and
VBm in MgO. Clearly, the behavior away from the poles and branch cuts is near-
linear. Therefore, we find the solution from the linear fit. The HF value for the
CBm is 0.17 eV while sp-MP2-corrected value is -4.29 eV. The solution of the
Dyson equation lies in between, with a value of -3.81 eV. For the VBm, the HF
value is -15.54 eV and the sp-MP2 value is -11.41 eV. The solution of the Dyson
equation gives the value -12.11 eV. The resulting Dyson(D2) bandgap is 8.3 eV,
to be compared to sp-MP2 gap 7.12 eV and the HF gap 15.37 eV. This behavior
is persistent in all materials and k-point grids calculated. This demonstrates that
solving the Dyson equation improves the overcorrection of HF bandgaps by sp-
MP2. We identify that the convergence behavior of the bandgap with increasing k-
grid density (see figure 3.15) is similar to sp-MP2 (see figure 3.11). Furthermore,
in table 3.5 we report the bandgap values obtained by a linear extrapolation to an
infinitely dense k-point grid.

In the figure 3.16 we summarize the results of sp-MP2 and Dyson(D2) com-
pared to HF and the experimental values. Dyson(D2) improves significantly HF
and sp-MP2 bandgaps. Still, the difference between Dyson(D2) and experimental
values is in the order of eV, with the larger difference for diamond and GaAs. We
note here that for diamond (C), HF is not converged in the reciprocal space even
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Figure 3.15: Convergence of the Dyson(D2) bandgap with the number of k-points
per direction N . The equation shows the linear fit including all points

for the grid of 7 × 7 × 7. There was a difference of 0.06eV for the HF values
going from 6× 6× 6 to 7× 7× 7. This is due to the indirect gap of diamond that
might affect the extrapolation method, since now the positions of both the CBm
and VBm need a denser grid to be accurately calculated for HF.

As mentioned before, Grüneis reports bandgaps for a set of materials using an
approximation to Dyson(D2) referring to it as MP2 QP. Although there are many
differences between Grüneis calculation and ours, it is worth to discuss them. In
Grüneis work a plane-wave basis set is used, while we employ a localized basis
set. Due to the pseudopotentials used in the plane-wave case, an accurate numer-
ical comparison is difficult. Moreover, the reciprocal space convergence is not
studied in Grüneis work. Moreover, an approximation is done by Grüneis to the
solution of the Dyson equation, in which it is assumed a linear behavior of equa-
tion 3.54 around the HF energy. As we see from the figures in 3.14 we demonstrate
that this is a good approximation for the materials studied, so we do not expect
that this approximation results in important discrepancies. The differences seen
in the table 3.6 are due to the distinct basis sets and convergence treatment.

Although the numbers have differences, the conclusions from both approaches
are similar. In both cases, for semiconductors (GaAs in our case and Si for
Greuneis case), Dyson(D2) and the approximate MP2 QP can fail to predict a
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Figure 3.16: Dyson(D2) and MP2 bandgaps for a set of materials. The num-
bers are obtained using FHI-aims code in tight settings. To converge in reciprocal
space, we extrapolate linearly, after plotting the bandgaps obtained from finite
grids with N points per direction as a function 1/N , as described in 3.2.3 for
Dyson(D2) and 3.2.1 for sp-MP2. HF (tight settings with an 8× 8× 8 reciprocal
grid) and the experimental values (also shown in table 3.4) are plotted for refer-
ence.
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Bandgap of solids with Dyson(D2)

Material basis set k points Bandgap (eV)

MgO
tight

5×5×5 8.28
6×6×6 7.83
7×7×7 7.64
8×8×8 7.40

extrapolated 6.01

ZnO tight
5×5×5 3.88
6×6×6 3.53
7×7×7 3.30
8×8×8 3.11

extrapolated 1.88

ZnS tight
5×5×5 4.35
6×6×6 3.90
7×7×7 3.59
8×8×8 3.36

extrapolated 1.74

GaAs tight
6×6×6 1.04
7×7×7 0.70
8×8×8 0.31

extrapolated -1.60

C tight
6×6×6 3.69
7×7×7 3.5

extrapolated 2.36

Table 3.5: Dyson(D2) Bandgaps calculated with FHI-aims, using tight settings for
a set of materials with different k-grids.

bandgap. While HF overestimates the bandgaps, Dyson(D2) (and the approxi-
mate MP2 QP) overcorrect HF and underestimate the bandgaps. From our work
we conclude that sp-MP2 improves HF, and it is improved by Dyson(D2), as ex-
pected from the MBPT hierarchy.
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material Dyson(D2) MP2 QP (Grüneis et al.)
MgO 7.4 7.1
ZnO 3.1 2.1
ZnS 3.36 2.0
C 3.5 1.9
Si - -1.2

GaAs 0.31 -

Table 3.6: Comparison between MP2 QP (Andreas Grüneis, Martijn Marsman,
and Georg Kresse, J. Chem. Phys. 133, 074107 (2010)) and our Dyson(D2) result
for a finite grid (8 × 8 × 8). The differences are mainly because of the different
basis set.

3.2.4 Potential for further development

Figure 3.16 shows that there is still a relatively large difference of 2-3 eV between
the Dyson(D2) bandgap and the experimental bandgap in all studied materials.
From the analysis of this thesis, we suggest ways to go beyond Dyson(D2) to
increase the accuracy of the bandgap prediction.

One of the possible reason for the Dyson(D2) bandgap underestimation is the
diagonal approximation to the self-energy, i.e., going from equation 3.51 to equa-
tion 3.52. Solving the Dyson equation with the self-energy in a diagonal approx-
imation simplifies significantly its solution, which otherwise would be a relation
between matrices [87]. Nonetheless, the non-diagonal part of the self-energy can
be significant. Therefore, solving the Dyson equation 2.111 with the approximate
self-energy from equation 3.51 is a direct way to surpass Dyson(D2) accuracy.

Another way to possibly improve the bandgap prediction of sp-MP2 and Dyson(D2)
(or Dyson(2)) is changing the reference approximation. MBPT depends on the
wavefunctions used to construct the ground state |Φ⟩, as we show in section 2.3.2.
The use of a different starting point will give different results. For sp-MP2 this
means that now the Feff , as defined in equation 2.56, will not be zero, thus there
are more diagrams that need to be taken into account, as shown in equation 2.81.
For Dyson(2) and Dyson(D2), the cancellation between the first and second di-
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Figure 3.17: Dyson(D2), MP2 and HF bandgaps as a function of the experimental
bandgap.

agrams on the right side of figure 3.13 will not happen when a different starting
point than HF is used. Hence, these terms have to be included in the self-energy
when solving the Dyson equation 2.111. Even though the inclusion of more terms
increases the implementation complexity and computational cost, single-particle
approximations such as LDA or GGA have proven reliable starting points in the
case of G0W0 [60]. Since G0W0 is based also on the approximation of the self-
energy in Dyson equation, it is possible that using LDA and GGA approximations
as a reference will improve Dyson(2) and Dyson(D2).

To include more diagrams, the full self-consistent propagator can be used for
the calculation of the self-energy. In this case, the Dyson equation needs to be
solved self-consistently. When this approximation is applied, the dependence on
the starting point is eliminated. We will refer to this approach as sc-Dyson(2),
which has not yet been studied for solids to the best of our knowledge.

Another way to go beyond is to combine methods. Analyzing the diagrams
that contribute to the G0W0 self-energy (fig. 3.18) can help us combine it with
diagrams present in Dyson(D2) and Dyson(2) but missing from G0W0. To do
this, we will not use the antisymmetrized diagrams that we were using until now.
Consequently, every interaction line will represent the Coulomb matrix and not the
antisymmetrized Coulomb matrix. From the figure 3.18 we see that second-order
and higher-order exchange diagrams are missing. We could combine the exchange
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Σ2 = +

Figure 3.18: G0W0 self-energy. The thick line represents the screened Coulomb
interaction (see for example Phys. Rev. B92, 081104, 2015).

part of Dyson(2) or Dyson(D2) with G0W0 [94]. An alternative approach is to
replace the bare interaction with the screened interaction on the exchange diagram.
This is known as second-order screened exchange correction (SOSEX) [62]. It can
be concluded that there is a variety of approximations that can be explored. The
drawback is the computational cost and the slow convergence, caused partially by
the low reciprocal convergence, rooted in the Coulomb potential singularity.

In conclusion, MBPT offers a variety of hierarchical approximations that can
approach the exact solution of any system. Although second-order is just a first
step beyond the single-particle approximations, it paves the way to more accu-
rate methods starting with Dyson(D2) (which is applied here) and going beyond
to methods that include more diagrams in their self-energy, as Dyson(2) and sc-
Dyson(2). This way, MBPT can provide a systematic approach to ground and
excited state properties, by including more and more diagrams. In contrast, ap-
proximations as LDA and GGA are limited, since there is no systematical way
to improve them. For this reason, it is important to explore the possible ways to
go up the hierarchy of MBPT. In this process many issues can occur, such as the
singularity of the Coulomb potential present in the application of MBPT to peri-
odic systems, and the computational cost. We hope that this thesis contributes to
the application of high-level approximations based on MBPT and the handling of
occurring issues, especially in the case of the Coulomb potential singularity.



Chapter 4

Conclusions and outlook

The findings of this thesis contribute to the development of MBPT and wavefunction-
based methods applied to condensed matter and materials, which hold a growing
interest and investment. Particularly, the results fill a gap in second-order based
calculations for solids bandgaps. We have focused on the problem of calculat-
ing the bandgap by implementing and applying the second-order MBPT-based
methods sp-MP2 and Dyson(D2). In addition, we have studied the long-standing
problem of the convergence of MBPT-based theories, and we have contributed by
suggesting and applying an extrapolation scheme for the sp-MP2 and Dyson(D2).

The implementation of the all-electron sp-MP2 and Dyson(D2) approaches
are based on a canonical formulation of second-order Møller–Plesset PT. It was
performed with the periodic version of localized atom-centered orbitals as basis
functions and applied to semiconductors and insulators. The method was inte-
grated into the framework of the FHI-aims electronic-structure package, inher-
iting the advantages of the code, such as the efficiency of its basis set and the
robust parallelization potential, both critical for the highly-computationally costly
wavefunction-based methods.

Upon reviewing this thesis’ results, one can conclude that to achieve adequate
accuracy for periodic systems, more diagrams and higher contributions need to
be included to sp-MP2. We showed that the quasiparticle problem is even more
challenging than the total energy. A qualitative picture can be demonstrated by
employing the quasiparticle concept. When we induce a charged excitation, as
the single-particle excitations described in this thesis (electrons or holes), a po-
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larization cloud is generated, coating the charge and reducing its effective field.
Mean-field theories, such as HF, by definition, cannot describe this phenomenon,
resulting in overestimated bandgaps. Thus we can rely on correlation methods to
account for the polarization, which will reduce the bandgap energy. However, if
we consider only the second-order correction to the correlation, we significantly
undervalue the bandgap, suggesting an overestimated polarization induction due
to the charged excitation.

A simplified approach to help understand this result comes from considering
a localized picture for the electrons and the quasiparticles1. Adding a localized
electron or hole in a solid will repel or attract other electrons in its surroundings,
respectively. MP2 overestimates this reaction because it cannot consider that once
the polarization cloud is formed, the charge will no longer interact with an effec-
tive interaction. Nevertheless, sp-MP2 is the first step beyond mean-field theory
and is a highly challenging task. It gives a first estimation of the quasiparticle
energies, and a successful application paves the path for more precise theories,
such as the Dyson equation and coupled-cluster methods. In this work, we im-
plemented the Dyson(D2), and, as expected, it delivered significant quantitative
improvements toward experimental values.

One more substantial contribution of this thesis is the formal analysis of the
singularity of the Coulomb operator, addressing the convergence issue of sp-MP2
and Dyson(D2) and the inherent potential for broader applications on MBPT. The
singularity of the Coulomb operator, which is present in all orders of MBPT and
thus sp-MP2 and Dyson(D2), affects the integration convergence over the first
Brillouin zone. The treatment of this singularity has been studied extensively for
the case of Hartree-Fock, and it has been addressed with methods that reduce the
computational cost, such as Gygi-Baldereschi and truncated Coulomb. However,
only extrapolation schemes have been explored for second or higher-order theo-
ries such as MP2 and CC. After the exploration and analytical formulation of the
finite-size error behaviour, our research enabled the design and application of an
extrapolation technique. Our analysis shows that the convergence and the way to
treat the singularity depends on the basis functions and how the Coulomb potential

1Similar conclusions can be extracted in the reciprocal space, only that in this case, the elec-
trons are localized in reciprocal space.
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matrix elements are calculated by integration in k-space. The analysis can be gen-
eralized for other MBPT methods, including the Coulomb operator. Furthermore,
we explored a generalized Gygi-Baldeschi method that can, in principle, reduce
the grid density needed to obtain converged results, although its formulation and
computation are more demanding than the Gygi-Baldeschi method itself.

I would like to conclude this thesis with the hope that my study on MBPT for
the excitation energies and the analysis of the convergence behaviour will further
promote advancement in the application of wavefunction and MBPT methods in
materials, a promising path to advance the understanding of the electronic struc-
ture of materials and predictive models building.
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