
Utilizing Alternative Data Sources for Official Statistics

Inaugural-Dissertation zur Erlangung des akademischen Grades eines

Doktors/einer Doktorin der Wirtschaftswissenschaft des Fachbereichs

Wirtschaftswissenschaft der Freien Universität Berlin

vorgelegt von Till Koebe

aus Berlin

Berlin, 2022



Dekan: Prof. Dr. Dr. Giacomo Corneo

Erstgutachter: Prof. Dr. Timo Schmid

Zweitgutachter: Prof. Dr. Jan Marcus

Tag der Disputation: 7. November 2022

1



Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Dr. Timo Schmid (Otto-
Friedrich-Universität, Bamberg). His patience and support has been greatly appreci-
ated throughout the journey.

I am also thankful to Prof. Dr. Jan Marcus (Freie Universität, Berlin) for helping
me finalize the thesis in one way or the other.

Special thanks go to the State of Berlin for supporting this thesis through the Elsa-
Neumann scholarship.

Furthermore, I am very grateful to all others who have accompanied me on the way to
this thesis, especially my co-authors, my friends, my wife and my family.

2



Publication List

The publications listed below are the result of the research carried out in this thesis
titled, ”Utilizing Alternative Data Sources for Official Statistics”

1. Schmid, T., Bruckschen, F., Salvati, N., & Zbiranski, T. (2017). Constructing
sociodemographic indicators for national statistical institutes by using mobile
phone data: estimating literacy rates in Senegal. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 180(4), 1163-1190.

2. Koebe, T. (2020). Better coverage, better outcomes? Mapping mobile network
data to official statistics using satellite imagery and radio propagation modelling.
PloS one, 15(11), e0241981.

3. Koebe, T., Arias-Salazar, A., Rojas-Perilla, N., & Schmid, T. (2022). Intercensal
updating using structure-preserving methods and satellite imagery. Journal of
the Royal Statistical Society: Series A (Statistics in Society), 1– 27.

4. Koebe, T., & Arias-Salazar, A. (2022). Releasing survey microdata with exact
cluster locations and additional privacy safeguards. arXiv preprint arXiv:2205.12260.

3



Contents

Introduction 7

I Use Cases for Improving Official Statistics with New Data Sources 9

1 Constructing sociodemographic indicators for national statistical institutes by us-
ing mobile phone data: estimating literacy rates in Senegal 10
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Data sources: survey data and mobile phone data . . . . . . . . . . . . . . . . 14

1.2.1 Demographic and Health Survey . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Mobile Phone Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Description of the small area estimation method . . . . . . . . . . . . . . . . . 20

1.3.1 Fay-Herriot estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 Transformed Fay-Herriot estimator . . . . . . . . . . . . . . . . . . . 23

1.3.3 Benchmarked Fay-Herriot estimators . . . . . . . . . . . . . . . . . . 25

1.4 Application: estimating literacy rates in Senegal . . . . . . . . . . . . . . . . . 25

1.4.1 Model selection and model checking . . . . . . . . . . . . . . . . . . . 26

1.4.2 Small area estimates at commune level . . . . . . . . . . . . . . . . . 28

1.4.3 Literacy rates by gender in Senegal . . . . . . . . . . . . . . . . . . . 29

1.5 Design-based simulation for unemployment . . . . . . . . . . . . . . . . . . . 33

1.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Supplementary material A 38
A.1 Additional description: mobile phone covariates . . . . . . . . . . . . . . . . . 38

A.2 Design-based simulation for unemployment . . . . . . . . . . . . . . . . . . . 38

2 Intercensal updating using structure-preserving methods and satellite imagery 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 Structure Preserving Estimation (SPREE) . . . . . . . . . . . . . . . . 44

2.2.2 SPREE with auxiliary information . . . . . . . . . . . . . . . . . . . . 46

2.2.3 Assessment of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Case study: multidimensional poverty in Senegal . . . . . . . . . . . . . . . . 48

2.3.1 Geography of Senegal . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Multidimensional poverty in Senegal . . . . . . . . . . . . . . . . . . 49

4



2.3.3 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

II Addressing Methodological Challenges in Survey Augmentation 66

3 Better coverage, better outcomes? Mapping mobile network data to official statis-
tics using satellite imagery and radio propagation modelling 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Mobile phone metadata . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.2 Radio propagation modelling . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Point-to-polygon allocation . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.2 Voronoi tessellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.3 Augmented voronoi tessellation . . . . . . . . . . . . . . . . . . . . . 76

3.3.4 Propagation-based mapping schemes . . . . . . . . . . . . . . . . . . 77

3.3.5 Potential extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.1 Situation in Senegal . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.2 Original study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Supplementary material B 93
B.1 Cross-checks of application results . . . . . . . . . . . . . . . . . . . . . . . . 93

B.1.1 Rural-urban performance differences . . . . . . . . . . . . . . . . . . 93

B.1.2 Classification error in the settlement data . . . . . . . . . . . . . . . . 93

B.1.3 Additional outcomes of interest . . . . . . . . . . . . . . . . . . . . . 94

B.2 Replicating the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.3 Replicating the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5



4 Releasing survey microdata with exact cluster locations and additional privacy
safeguards 96
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.1 Geomasking to obfuscate true survey locations . . . . . . . . . . . . . 98

4.2.2 Copula-based synthetic data generation . . . . . . . . . . . . . . . . . 99

4.2.3 Population uniqueness of survey respondents . . . . . . . . . . . . . . 101

4.2.4 Risk of re-identifying private geocodes . . . . . . . . . . . . . . . . . 103

4.2.5 Utility for survey augmentation . . . . . . . . . . . . . . . . . . . . . 103

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4.1 Fitting Gaussian copulas to survey attributes . . . . . . . . . . . . . . 107

4.4.2 Area-level survey augmentation methods . . . . . . . . . . . . . . . . 109

Supplementary material C 111
C.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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Introduction

To this end, we acknowledge the importance of developing sound statistical infras-

tructures, including through dedicated statistical surveys, appropriate domestic,

national and international legal and technical frameworks for data access and use,

while protecting personal data and privacy, strengthening of NSOs’ capabilities in

using linked data, increased availability of open data, and enhanced collaboration

with the private sector and relevant stakeholders, including in exploring alterna-

tive sources of data and data collection practices. (Declaration of the G20 Digital

Ministers, 2021)

To ensure that knowledge is not exclusive to a few, but available for the many, public

agencies publish statistics as a public good - also called official statistics. Facing increasing

competition about the prerogative of ’facts’, statistical agencies are expected to provide more

disaggregated, frequent, granular and reliable statistics in a timely manner (MacFeely, 2016).

Already today, enormous amounts of data are generated around us frequently as more and

more parts of our lives move into the digital realm. Much of this information on human ac-

tion is linked to place and time. Exploiting those spatio-temporal patterns may help to better

understand underlying dependencies and trends in the socio-economic fabric of our society.

Consequently, can official statistics leverage this new ”data deluge” (Vale, 2011) and live up to

the promises of better, more relevant statistics?

In attempts to do so, the use of satellite imagery, mobile phone data, social network data

and other new data sources for demographic or socio-economic mapping has drawn much

attention in recent years (e.g. Pokhriyal and Jacques (2017); Blumenstock et al. (2015); Leyk

et al. (2019) and Fatehkia et al. (2020)). The advantages are obvious: data is already collected

at a higher frequency or better geographical coverage than traditional statistical methods such

as household surveys. On the other hand, limitations are multiple, too: the data generating

processes underlying new data sources are usually neither controlled by national statistical

offices nor do they adhere to statistical data collection standards. The consequences are, among

others, selection biases that are hard to address, complex error structures that are difficult to pin

down and conceptual frameworks that are demanding to reconcile (Pestre et al., 2020). While

acknowledging these methodological and political challenges, where can new data sources

provide an actual value added to official statistics then?

The thesis contributes to this field of research on applied statistics in two ways: Part I

showcases how new data sources can be utilized to improve traditional statistical data collec-

tion techniques, notably censuses and surveys, especially in settings with weak national sta-
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tistical systems. Specifically, Chapter 1 investigates whether the extensive coverage of mobile

networks can be used during household survey operations a) to estimate socio-demographic

key performance indicators – exemplified using the literacy rate in Senegal – for small areas

not considered in the sampling process, and b) to drive down sampling errors for the in-sample

areas by ‘borrowing strength‘ from mobile network data. Chapter 2 turns an eye on the often

called ‘gold standard‘ in official statistics: the census. It explores whether census updates can

overcome the risk of outdated census data in between the decennial collection cycle by uti-

lizing annual, fine-granular subnational population estimates derived from satellite imagery in

combination with recent survey data.

In contrast to the application-driven first part of the thesis, Part II focuses on overcoming

methodological challenges in augmenting official statistics with new data sources, especially

when combining these disparate data sources in the first place. For example, official statistics

are usually collected for administrative areas whereas mobile networks work on the level of

network cells and satellite imagery on the level of pixels. Chapter 3 therefore looks at dif-

ferent strategies to geographically link statistical data with data from mobile networks on an

area-level. A major shortcoming in most area-level matching strategies in official statistics

is the uncertainty of the data collection locations in survey data – the survey clusters. Many

household survey programs displace the true locations of the survey clusters to protect the re-

spondents’ privacy with the consequence that the more granular the matching level, the noisier

the area-level survey estimates – an example of the privacy-utility trade-off official statisticians

regularly face when publishing data. Chapter 4 addresses that trade-off by proposing an alter-

native microdata dissemination strategy that uses two datasets: the original survey microdata

with geographical identifiers for large areas only, and a fully synthetic dataset with the true

cluster locations.

The presented use cases and methodological contributions are just a few among many steps

necessary to pave the way for alternative data sources to be utilized in the business processes of

official statistics. But as enterprise data became an important pillar for measuring modern-day

economic activity a century ago, as administrative data overhauled long-time census practices

only recently, eventually (privately-held) non-statistical data from mobile and social networks,

from satellite imagery or other sensors may find their way into mainstream official statistics

one day to produce statistics in a more disaggregated, frequent, granular, reliable and timely

manner after all.
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Use Cases for Improving Official
Statistics with New Data Sources
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Chapter 1

Constructing sociodemographic
indicators for national statistical
institutes by using mobile phone data:
estimating literacy rates in Senegal

This is the peer reviewed version of the following article: Schmid, T., Bruckschen, F., Salvati,

N., & Zbiranski, T. (2017). Constructing sociodemographic indicators for national statistical

institutes by using mobile phone data: estimating literacy rates in Senegal. Journal of the Royal

Statistical Society: Series A (Statistics in Society), 180(4), 1163-1190., which has been pub-

lished in final form at https://doi.org/10.1111/rssa.12305. This article may be

used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of

Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed

into a derivative work, without express permission from Wiley or by statutory rights under ap-

plicable legislation. Copyright notices must not be removed, obscured or modified. The article

must be linked to Wiley’s version of record on Wiley Online Library and any embedding, fram-

ing or otherwise making available the article or pages thereof by third parties from platforms,

services and websites other than Wiley Online Library must be prohibited.

1.1 Introduction

If you can’t measure it, you can’t manage it. (Michael Bloomberg, former Mayor

of New York City)

A country’s budget can hardly be allocated efficiently, if the country does not know where

the money is needed the most. Reliable knowledge on the socio-demographic indicators of a

country’s population is essential for sound evidence-based policymaking. For instance, the ge-

ographic distribution of wealth is used to make decisions regarding the allocation of resources.

Traditionally, this knowledge is collected via household surveys and is provided by National

Statistical Institutes (NSI). The surveys are generally designed to provide reliable estimates for

the indicators only for larger domains such as the national or the regional level. One possible
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way to derive estimates on spatially disaggregated levels, like municipalities or communes, is

by using small area methods (Rao and Molina, 2015). During the last decade there has been a

substantial growth in the development and application of model-based small area methods for

the estimation of indicators. Examples are manifold in literature: Elbers et al. (2003), Molina

and Rao (2010) and Pratesi (2016) used small area techniques for the estimation of poverty

indicators and, recently, Lopez-Vizcaino et al. (2015) and Chambers et al. (2016) investigated

the estimation of labour force indicators. For a comprehensive review we refer to Pfeffermann

(2013) and Rao and Molina (2015). However, the production of precise small area estimates

of indicators relies on the availability of predictive auxiliary variables like census or register

information. In many countries successive census and national surveys are conducted with

long lag times. Both require a well-functioning infrastructure, starting from cars for the in-

terviewers to computers and well-trained personnel for the analysis. With national statistical

systems in developing countries often being subject to unstable funding and a lack of human

resources, the collection and processing of relevant data imposes a great challenge or often

does not exist (Ghosh and Rao, 1994). For instance, in Angola the most recent census before

2014 was conducted in 1970 and the official population grew by more than 400% in that period

(Blumenstock et al., 2015).

An alternative to the usage of census information for small area estimation is to investigate

different sources of passively collected data like social media sources (e.g. Facebook, Twitter

etc.) or mobile phone data. Eagle et al. (2010) used recently social network data to measure

economic growth in the UK. Nevertheless, social media data are rare in developing countries

whereas mobile phone data are a remarkable exception. The unique subscriber penetration is

between 40%−55% in developing countries with a share of around 40% in Sub-Saharan Africa

(GSMA, 2015).

In this paper we investigate how mobile phone data (in combination with survey data) can

be used to predict socio-demographic indicators at regionally disaggregated levels when cen-

sus information is not available. The motivation is that mobile phone data are collected as a

by-product and include valuable information on the timing and frequency of communication

events and patterns of location and travel choices (Blumenstock et al., 2015). Eagle et al. (2010)

and Deville et al. (2014) showed that spatially aggregated measures of mobile phone usage and

penetration have a high correlation with spatially aggregated statistics from censuses. At this

point we should make clear that the paper does not discuss whether the socio-demographic in-

dicators can be directly estimated using only the mobile data. We are aware of some important

recent work by Blumenstock et al. (2015). The authors predict poverty and wealth by using

an individual’s past history of mobile phone usage in combination with a phone survey. In our

paper we had access to the Demographic and Health Survey (DHS) 2011 and mobile phone

data covering the year 2013 in Senegal.

The Republic of Senegal is located in West Africa at the Atlantic Ocean between Mauritania

to the North and Guinea-Bissau to the South. At the most Western tip lies Dakar, the country’s

capital and also the largest city. The set-up of administrative areas in Senegal is complex, but

can be divided into four different levels: 14 regions, 45 departments, 123 arrondissements and

431 communes. The total population is estimated at about 13.5 million (2013) and consists of
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several ethnic groups, e.g. the Wolof or the Serer.

From a methodological point of view the present article uses area-level small area models

(Fay and Herriot, 1979) in combination with covariates from alternative data sources. The re-

sulting estimates are benchmarked such that the aggregated small area estimates produce the

official national estimate for the country. We also apply transformation to restrict the indica-

tor of interest, for instance the literacy rate, to particular intervals when necessary. However,

the idea of alternative covariates is not new in literature. Porter et al. (2014) applied functional

covariates extracted from Google in spatial Fay-Herriot models (Pratesi and Salvati, 2009). Re-

cently, Marchetti et al. (2015) give a comprehensive overview how alternative data sources can

be used in the context of small area estimation. Nevertheless, none of these papers considered

in detail the usage of mobile phone data. To the best of our knowledge, this paper is the first

attempt to provide an easily applicable approach for NSIs to model a basket of regionally dis-

aggregated socio-demographic indicators using survey data in combination with mobile phone

data. In particular, the paper investigates the usability of mobile phone data, in this case tower-

to-tower traffic in Senegal from 2013, for constructing fine granular indicators, like literacy

and poverty rates, access to electricity and safe water or religious affiliations. The application

here aims at estimating the socio-demographic indicator literacy rate for women and men for

regionally disaggregated areas because it is a common problem across Africa. From an applied

point of view, the paper also discusses the processing, cleaning and handling of the mobile

phone data used as additional source of information.

Especially child labour, poverty and poor access to education are common problems across

the Africa continent (Ford, 2007). Poverty in developing countries is not only a result of low

income, but also of a lack of opportunities to improve the situation (UNESCO, 2015). Literacy

is one of the keys to improve people’s chances to escape from the lowest poverty levels. Al-

though there are countries with a situation worse than the one of Senegal, the country is only

ranked 117th out of 127 countries in the Education for All Development Index (EDI) published

by the UNESCO (2012). Especially the literacy rate is quite low compared to other African

countries (literacy rate in 2011: 37.8% for women and 60.0% for men (Agence Nationale de

la Statistique et de la Démographie, 2012)). The high number of illiterates can be partially

explained by historic reason. Senegal was a former French colony until it gained independence

from France in 1960. At that point the school attendance of children in the primary school

was at 36%, while the country’s average literacy rate was around 34% (Schelle, 2013). The

origin for this low share of literacy lies in the little interest of the colonial rulers in educat-

ing the indigenous people. Other colonial powers in West Africa like Germany (Togoland) or

England (Gold Coast, now called Ghana) had a pupils count which was around four times as

high as Senegal’s count (Schelle, 2013). Concerning the country’s literacy rate from 2011, not

much has changed in this regard since the withdrawal of the French power in 1960. Another

problem of the educational situation is the slow development of a coherent education system

due to opposing education concepts with different traditions. The indigenous African concept

coexists next to the Islamic and Western concept. Nowadays, if children visit school, they

often visit a public school and additionally a Qur’anic school in Senegal. In 2002 a new sys-

tem emerged, the so called franco-arabic schools. A hybrid form of a bilingual (French and
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Arabic) school with a heavy curriculum. Although Villalon and Bodian (2012) predict this

franco-arabic schools could be the future and predominant form of public schools, Senegal is

after more than 50 years of independence still in the development stage of a coherent education

system. The problem is doubtless not only due to a fragmented school system, but also caused

by low attendance rates of children at any school. Although primary and secondary education

is compulsory and free in Senegal, many parents still do not send their children to school, and

drop-out rates are high (Ford, 2007). UNESCO (2012) reported that as the level of education

increases especially the enrollment ratios of women in comparison with men strongly decrease.

Although Senegal achieved a gender parity in primary education, the disparity for secondary

education is even more severe. For every 100 boys attending secondary education in Sene-

gal, only around 79 girls attend (UNESCO, 2012). This is one reason for low literacy rates

especially among women. According to UNESCO (2012) more than two million women in

Senegal miss skills in basic literacy. Especially in the country’s poor regions like Matam and

Tambacounda, both located in the East, girls are involved in economic activities and therefore

the parents keep the girls out of the school to earn some additional income. Next to economic

reasons, gender-based violence, early marriage and pregnancy as well as the traditional role of

women in the society are further issues which add to low literacy rates for women (UNESCO,

2012).

The Senegalese government wants to significantly improve the literacy rate, especially for

women. For instance, in the early 2000s, the government built community schools and literacy

centers for disadvantaged people, like women who missed a basic school education. However,

according to the literacy rates for 2011 there is still a large gender disparity and a persist-

ing need to address this issue in Senegal. Organizations like the UNESCO and UNICEF are

constantly working on this educational issue and initiated several projects. Currently the Sene-

galese government and the UNESCO office in Dakar run a project to improve the literacy rate

for women (UNESCO, 2015). In particular, the PAJEF project (Projet d’alphabétisation des

jeunes filles et jeunes femmes) provides, for instance, access to organized literacy classes and

develops training manuals. The project currently runs in seven regions identified by the Na-

tional Agency of Statistics and Demography (ANSD - Agence Nationale de Statistique et de la

Demographie) in Senegal. Further information is available in UNESCO (2015).

So far Senegal belongs to the most successful countries in advancement of gender equal-

ity for the enrollment in primary schools, but the national number of illiterate women remains

high. All the efforts mentioned above are experimental and not countrywide because of a lack

of spatially disaggregated knowledge where more support is needed. To obtain a higher coun-

trywide literacy rate, areas of high illiteracy have to be identified. In this paper we propose an

approach for NSIs based on small area estimation for deriving estimates of the share of literates

by gender by using mobile phone data for the 431 communes in Senegal. The estimates are

used to identify hot spots of illiterate women for the PAJEF project with a need for additional

infrastructure.

The structure of the paper is as follows. In Section 1.2 we describe the DHS survey and the

mobile phone data including the cleaning and preparation. In Section 1.3 we review small area

estimation using Fay-Herriot models. The methodological approach for constructing socio-
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demographic indicators based on mobile phone data is described and computational details are

provided. In Section 1.4 we present the results of the application for the indicator literacy rate

in Senegal by using the mobile phone data. The performance of the proposed approach is em-

pirically evaluated in a large-scaled design-based simulation in Section 1.5. Finally, in Section

1.6 we conclude the paper with some final remarks and discuss limitations of the proposed

approach. Additional results are presented in the supplementary materials.

1.2 Data sources: survey data and mobile phone data

In this section we describe the data sources used in the analysis. In particular, we had access

to the Demographic and Health Survey (DHS) 2011 and mobile phone data covering the year

2013 in Senegal. We present details regarding practical implementation of the time-intensive

cleaning and preparation of the mobile phone data and discuss the construction of mobile phone

covariates.

1.2.1 Demographic and Health Survey

The DHS program collects representative data on population, health, HIV and nutrition in over

90 countries. The data that we use are from the DHS survey 2011 carried out by the ANSD in

Senegal. The survey includes a section on the production of socio-demographic indicators on

household level and another part on assessing the availability of material and human resources.

In particular, the DHS survey consists of three questionnaires: (i) a household questionnaire,

(ii) a women’s questionnaire and (iii) a men’s questionnaire. The household survey collects in-

formation on the usual household members including, for instance, gender, age, education,

survival of parents, and child labor. Additional information like household characteristics

(source of water, availability of electricity, building material and type of toilet), ownership,

use of mosquito nets and several health related questions are collected as well. The house-

hold survey is also used to identify men and women for the individual questionnaires. The

questionnaire for women consists of ten sections covering socio-demographic indicators (like

age and date of birth, schooling, literacy, and ethnicity), reproduction, use of contraception,

pregnancy, marriage and female genital mutilation. The men’s questionnaire is a short version

of the questionnaire for women covering socio-demographic characteristics and health related

questions. Note as socio-demographic characteristics are only available in the gender-specific

questionnaires we focus in the analysis in this paper on the women’s and men’s questionnaires.

For additional information regarding the variables and the questionnaires we refer to Agence

Nationale de la Statistique et de la Démographie (2012).

The survey aims to cover the complete country and is based on a stratified two-stage clus-

ter sampling design. The 28 strata are defined by a cross-classification of the 14 regions and

rural/urban areas in Senegal. The survey is designed to produce reliable results for most indi-

cators for the 14 regions. In the first sampling stage 391 census districts (147 urban and 244

rural) were drawn with probability proportional to size (number of households in the census

districts). In the second sampling stage 21 households were selected with equal probability in

each of the 391 census districts which were sampled in the DHS survey. Among the 21 house-
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Figure 1.1: Estimates for the literacy rate by gender on regional level based on DHS survey
2011.

holds selected for the women’s survey, 8 households were drawn for the men’s survey. All men

(age between 15-59) and women (age between 15-49) in these households were interviewed.

The interview was successfully conducted for 15,688 women (response rate of 92.7 percent)

and for 4,929 men (response rate of 87 percent) (Agence Nationale de la Statistique et de la

Démographie, 2012).

Figure 1.1 presents results based on DHS survey 2011 of the indicator literacy rate by gen-

der for the regions in Senegal. In particular, the variable literacy is collected by four different

categories in the DHS survey. The categories ’able to read only parts of sentence’ and ’able to

read whole sentence’ are grouped as ’literate’. The answers ’blind/ visually impaired’, ’cannot

read at all’ and ’no card with required language’ are categorized ’illiterate’. The initial results

indicate that the proportion of literate women (37.8%) in Senegal is lower than the proportion

of literate men (60.0%). The results are consistent with the official published results of the

Agence Nationale de la Statistique et de la Démographie (2012).

As the ANSD aims to estimate socio-demographic indicators for the 431 communes in

Senegal, we allocated the information of the DHS survey to the administrative areas (com-

munes). In particular, we had access to the geographical coordinates of the centroids of the 391

census districts. As the actual coverage of the census districts was not available, we matched

the centroids of the census districts with the geographical boundaries of the 431 communes.

Six out of the 391 census districts were excluded from the analysis because the coordinates

of the centroids were missing. Direct survey estimates are only available for 242 out of the

431 communes given the data from the DHS survey 2011. A summary of the commune spe-

cific sample sizes for the women’s and men’s questionnaires is provided in Table 1.1. Figure

1.2 shows direct estimates for the literacy rate by gender on commune level for the capital

Dakar (right panel) and for the rest of Senegal (left panel). Communes filled with white color

represent areas with zero sample size, so direct estimates based on the DHS survey 2011 are
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Figure 1.2: Estimates for the literacy rate by gender on commune level based on DHS
survey 2011: Senegal (left panel) and Dakar (right panel).
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Table 1.1: Sample sizes over communes.

Min. 1st Qu. Median Mean 3rd Qu. Max. NA
Women’s questionnaire 15 35 44 63.90 61 756 189
Men’s questionnaire 2 10 14 19.98 20 160 189

not available. The spatial distribution of literacy on commune level is not clearly visible and

the identification of hot spots of illiterates with a need for additional infrastructure might be

difficult.

The application of small area methods could significantly improve the interpretation of

Figure 1.2 by providing results for the communes with zero sample size. This requires fitting

of an appropriate model to the survey data. The estimated model parameters are then com-

bined with known population information. The reason that we relied on mobile phone data for

predicting socio-demographic indicators is twofold: first, the predictive power of the covari-

ates for socio-demographic indicators from the Senegalese census is limited and second, the

ANSD is interested in a widely applicable approach based on the DHS survey for disaggregated

indicators independent of census data.

1.2.2 Mobile Phone Data

The mobile phone data used in this paper consist of anonymized call detail records (CDR)

from the Senegalese telecommunication company Sonatel covering the year 2013. The dataset

is based on more than 9 million unique mobile phone numbers and represents a market share of

around 60%. In particular, we had access to the tower-to-tower traffic of all 1666 mobile phone

towers in Senegal. In the following we discuss the practical implementation of the processing

of the mobile phone data and present details regarding the construction of the mobile phone

covariates.

Data processing and cleaning

The preprocessing of the mobile phone raw data is essential and accounts for a considerable

amount of time in the whole analysis. The dataset is not dirty or noisy in the sense of an exces-

sive amount of missing values or illogical recorded values. The data is collected automatically

by machines and not gathered by human hand. This means errors in the data are more likely a

consequence of machine breakdowns than of human failure.

The traffic of all 1666 towers in Senegal for 2013 is about 1.1 Terabyte of data stored in

a cloud system. Because of the massive amount of data, the mobile phone records need to be

preprocessed directly in the cloud system. In particular, the raw data is organized in a Hadoop

cluster with one separate file by hour per day per month. Hadoop is an open-source software

for storing and handling massive data. Each single row contains an interaction and has several

characteristics. For example indicating if it is an incoming or outgoing interaction, if it is a

phone call or short message service (SMS), which tower received and sent the interaction, or

simply the duration of a call in minutes. To process these data we used Apache Hive (Apache

Hive is a data warehouse infrastructure built on top of Hadoop for providing data summariza-
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tion) and its SQL logic. MapReduce is applied to create daily, monthly and yearly aggregates

of the variables of interest on the cluster. The programming model MapReduce is an imple-

mentation for processing large datasets with parallel algorithms on a cluster.

For instance, the aggregated dataset for SMS usage includes the number of incoming and

outgoing SMS for every tower on an hourly basis for the year 2013. Table 1.2 shows the head

of a preprocessed dataset for the usage of SMS. The first column is the observation indicator

Table 1.2: Structure of the call detail records for SMS.

DH TO TI E
1 2013-01-01 00 1 61 1
2 2013-01-01 00 1 340 1
3 2013-01-01 00 1 419 1
4 2013-01-01 00 1 420 1
5 2013-01-01 00 1 447 2
6 2013-01-01 00 1 495 1

which reaches in January 2013 alone around 50 million rows. Variable DH tracks the day and

hour of a sent SMS; TO and TI are the tower numbers corresponding to outgoing and incoming,

respectively; E gives the number of events happening, i.e. SMS being sent. So the first row

says that on the 1st of January at midnight there was sent 1 SMS from tower 1 to tower 61. We

also had access to the exact geo-coordinate (longitude and latitude) of the towers provided by

Sonatel.

Construction of mobile phone covariates

Mobile phone data are measured on tower level on an hourly basis with an excessive amount

of observations over the year. To construct variables which can be used as covariates for a

statistical model for estimating indicators on commune level, the data needs to be aggregated

by two dimensions: time and geographic level. First, in order to reduce the amount of data,

the aggregation was done up to the whole year 2013 for each tower. Annual aggregates may

disregard sub-annual trends, but since most of the socio-demographic indicators, especially the

literacy rate, are time insensitive variables, this fact can be neglected. Second, for having the

covariates on the same geographical level like the DHS survey, we used the aggregated (by

time) covariates on tower level and averaged them for higher geographic levels like communes

or regions. Note as the actual coverage of the mobile towers are unknown, we matched the

geo-coordinate of the tower with the geographical boundaries of the 431 communes.

In total we constructed around 70 mobile phone covariates on commune level based on the

call detail records. The aggregation routine is done in R by using the package data.table.

The package extends data.frames in R based on SQL logic and focuses on fast aggregation

of large data (Dowle et al., 2014). For instance, we construct the sum of the number of calls

starting from/ending in a specific tower and denote these variables as outgoing calls / incoming

calls, respectively. In addition, we also build the variable call volume which sums up the

minutes of calls. In the following we label SMS and phone calls together as events. For

each event we also calculated the ratios of the number of outgoing events divided by incoming
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events. The variable mean distance is defined as the average distance in kilometers for an event.

In particular, the distance is computed on the tower level by taking the distance of the outgoing

tower to the incoming tower for each event and dividing it by the amount of events between

the two towers. The covariate distance-to-dakar measures the distance from each tower to a

centroid of the region Dakar. In addition we construct the variable isolation which quantifies

the diversity of interactions by users of a tower. The variable is defined for an outgoing tower

ti by

Isolation(ti) =

1666∑
j ̸=i
j=1

IE(ti,tj), (1.1)

where the indicator function I is 1 if the condition E(ti, tj) is true, i.e. an event happened

between the towers ti and tj , and 0 otherwise. The variable ranges between 0 and 1666 (total

number of towers). We measure the average amount of information an event contains by the

variable Entropy (de Montjoye et al., 2014). The intuition behind Entropy is that the more

unlikely an event is to happen, the more information it contains once it happens. Entropy for a

tower ti is defined by

Entropy(ti) = −
1666∑
j ̸=i
j=1

p(ti, tj) · log
[
p(ti, tj)

]
, (1.2)

where p(ti, tj) is the probability of an event between the towers ti and tj . In addition, we

calculated the monthly growth and the variation (i.e. variance) of monthly aggregates for the

number and volume of events respectively. Variables Calls-to-dakar and sms-to-dakar reflect

the amount of calls or SMS for each tower that were directed to towers located in the capital

Dakar. A complete list and description of the covariates is provided in the supplementary

materials.

Additionally to the variables described above and in the supplementary materials, we cre-

ated behavioral indicators based on the mobile phone data with the open-source python toolkit

bandicoot (Montjoye et al., 2013). A list of these variables can be found at the bandicoot web-

site. As the bandicoot indicators are constructed for analyzing individual patterns based on the

mobile behavior of each single user, we summarized the information to tower level. In particu-

lar, a bandicoot indicator on tower level is calculated as a weighted average of all individuals’

indicators where this tower was part of the interaction. The steps are as follows: first, we calcu-

lated the bandicoot indicators on a monthly level for all single users. Second, we extracted the

number of interactions (calls and SMS) during that month for each user and tower combination

from the call detail records. Third, we used the number of interactions as a weight to average

the individuals’ indicators on tower level for each month. Finally, we averaged the monthly

values to obtain a yearly indicator for each tower.

First descriptive statistics

Figure 1.3 gives a first impression of the spatial distribution of the 1666 mobile phone towers

(red points) in Senegal. The towers are spread over the whole country with higher densities in
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Table 1.3: Mobile phone towers over communes.

Min. 1st Qu. Median Mean 3rd Qu. 90% Max. NA
Number of towers 1 1 2 4.11 4 9 60 30

Figure 1.3: Location of mobile phone towers in Senegal.

regions with higher population densities. For instance, most of the towers are located in the

region of the capital Dakar which itself is located on the Cap-Vert Peninsula on the Atlantic

coast in the West. Table 1.3 shows summary statistics of the number of mobile phone towers

over the communes. The mean number of towers per commune is 4.1 with a maximum of 60.

Although Figure 1.3 suggests a good coverage of the country by mobile phone towers, there

are 30 communes without mobile phone towers. Most of these communes are quite small and

they are mainly covered by towers which are close-by. For instance, the map at the top on

the right of Figure 1.3 shows the area around the commune Badegne Ouolof without tower

information. Badegne Ouolof is located in north-western Senegal within the Louga Region on

a total of around 300 square kilometers. The centroid of Badegne Ouolof is represented by a

blue triangle. In order to apply small area estimation methods for the out-of-covariate com-

munes, the covariates are constructed by inverse distance weighting from neighboring mobile

towers. In particular, the assigned covariates to out-of-covariate communes are calculated by a

weighted average of the covariates available at known tower locations. We used the Euclidian

distance function and a power parameter of 2 in the weighting.

1.3 Description of the small area estimation method

In this section we describe the methodological approach for constructing socio-demographic

indicators based on mobile phone data. Since our aim is to provide an easy-applicable approach
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for the production of official statistics, especially for the ANSD in Senegal, we apply relatively

simple small area estimation methods and correct for misspecifications by adjustments. The

implemented approach should meet three conditions:

1. the method should provide estimates for all 431 communes in Senegal;

2. the estimates should be close to the direct estimators for communes with large sample

sizes;

3. the aggregated estimates for the communes should produce the official national estimate

for the country.

Note that the Ministry of Chile recently conducted a small area project for the estimation of

poverty in Chile based on similar guidelines (Casas-Cordero et al., 2016). In addition the mo-

bile phone covariates are only available on area-level (communes) and it is not possible to link

the individuals in the survey with the mobile phone numbers because of confidentiality con-

straints. Based on the mentioned conditions and available data we considered a benchmarked

transformed Fay-Herriot estimator in this paper.

1.3.1 Fay-Herriot estimator

We assume that the population U , consisting of N units, is divided into m disjoint small areas.

The sample s is selected from the population by using a complex sampling design. The popula-

tion is separated into n sampled andN−n non-sampled units, indexed by s and r, respectively.

We use the subscript i to indicate the restriction to the area i, for instance, ni and Ni denote the

sample size and the population size in area i, respectively. Let y denote a continuous variable

of interest and yij the response value of unit j in area i and ωij are the corresponding sampling

weights. An estimator for the population mean θi of the variable of interest y in area i is given

by

θ̂directi =

ni∑
j=1

ωijyij

/ ni∑
j=1

ωij . (1.3)

The area level model proposed by Fay and Herriot (1979) (hereafter FH model) links the direct

estimates with area-level covariates. The FH model is based on two stages:

Sampling model (first stage) : θ̂directi = θi + εi (1.4)

Linking model (second stage) : θi = xT
i β + ui, (1.5)

where xT
i and β denote the (k × 1) vectors of area-level covariates and regression parame-

ters, respectively. The sampling errors are assumed to be normally distributed and independent

with εi ∼ N(0, σ2εi). The random effects ui are assumed to be independently normally dis-

tributed with ui ∼ N(0, σ2u). For additional details we refer to Rao and Molina (2015). The

combination of both models leads to an area-level linear mixed model given by

θ̂directi = xT
i β + ui + εi. (1.6)
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Let β̂ define the empirical best linear unbiased estimator (EBLUE) of β and ûi the empirical

best linear unbiased predictor (EBLUP) of ui (Henderson, 1950; Searle, 1971), where the vari-

ance component σ2u can be estimated by maximum likelihood or residual maximum likelihood

(Datta and Lahiri, 2000; Rao and Molina, 2015). The EBLUP of θi under the FH model is

obtained by

θ̂FH
i = xT

i β̂ + ûi (1.7)

= γ̂iθ̂
direct
i + (1− γ̂i)xT

i β̂, (1.8)

where γ̂i = σ̂2u(σ̂
2
u+σ

2
εi)

−1 denotes the shrinkage factor for area i and ûi = γ̂i(θ̂
direct
i −xT

i β̂).

In practice, many of the small areas may have zero sample sizes, so a direct estimator is not

available. In this case we rely on synthetic estimation as follows (Rao and Molina, 2015):

θ̂FH
i,out = xT

i β̂. (1.9)

The MSE of the EBLUP in (1.7) can be obtained by analytic solutions following Prasad and

Rao (1990) and Datta et al. (2005). Note that Li and Lahiri (2010) pointed out that standard

estimation methods of the variance component in the Fay-Herriot model can produce zero

estimates of the strictly positive model variance. Standard methods for the estimation of the

variance component considered in the literature are, for instance, the Prasad-Rao method-of-

moments estimator (Prasad and Rao, 1990), the Fay-Herriot method-of-moments estimator

(Fay and Herriot, 1979), the maximum likelihood estimator or the residual maximum likelihood

estimator. As a consequence, the EBLUP estimator (1.7) can reduce to a regression estimator,

which can have an overshrinking problem. Li and Lahiri (2010) propose an adjusted maximum

likelihood estimator of the variance component. In particular, an adjusted likelihood of σ2u is

defined by

Ladj(σ
2
u) = σ2u × L(σ2u), (1.10)

where L(σ2u) can be either the profile likelihood function or the residual likelihood function.

Under certain regularity conditions, the adjusted maximum likelihood estimator of σ2u is con-

sistent for a large number of areas m and the shrinkage factors, γi, are all strictly greater than

0, even for small m, and are also consistent for large m (Li and Lahiri, 2010). From a Monte-

Carlo simulation study carried out by Li and Lahiri (2010) results that in terms of bias and

mean squared error, the adjusted maximum profile likelihood method turns out to be better

than the adjusted maximum residual likelihood approach. For this reason, we use the adjusted

profile likelihood function for estimating the value of σ2u in the paper. Note that Yoshimori and

Lahiri (2014) recently proposed an improvement to the adjusted likelihood estimators of Li and

Lahiri (2010), showing better performance in a simulation study when σ2u is small relative to

the sampling variance σ2εi .
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1.3.2 Transformed Fay-Herriot estimator

Some socio-demographic indicators are restricted to a specific range. For instance, the share

of literates in an area i should be within the interval [0, 1]. However, there is no guarantee that

the FH estimates produces estimates in a particular range. In the context of estimating small

area proportions Jiang and Lahiri (2001), Liu et al. (2014), Bell and Franco (2015), and oth-

ers present different modeling options for the linking and sampling distribution for area-level

models. In particular, Ha et al. (2014) propose a normal-logistic model (NL) with a logistic

distribution for the linking model. In addition, they extend the model by Liu et al. (2014) to

general complex survey designs and denote it as a normal-logistic random sampling variance

model (NLRS). The NLRS model captures parts of the uncertainty due to the estimation of the

small area sampling variance. For additional details we refer to Ha et al. (2014). Following

Carter and Rolph (1974), Jiang et al. (2001) and Raghunathan et al. (2007) we use in this paper

an arcsine transformation for the modeling. Let y now denote a binary variable of interest and

yij is the 0-1 response value of unit j in area i. The steps of the estimation are as follows:

1. Transform the direct estimator via ϑi = f(θ̂directi ) = arcsin
√
θ̂directi .

2. The sampling variance of ϑi is approximated by σ2εi = 1/(4ñi), where ñi stands for the

effective sample size (Jiang et al., 2001). In particular, the effective sample size is the

sample size divided by an estimate of the design effect.

3. Estimate θ̂FH
i

{
ϑi, 1/(4ñi)

}
according to (1.7). θ̂FH

i is truncated to the interval [0, π/2]

if necessary .

4. Back-transform the estimator θ̂FH
i to the original scale via

θ̂FH,trans
i = f−1(θ̂FH

i ) = sin2(θ̂FH
i ) for i = 1, ...,m, (1.11)

where θ̂FH,trans
i denotes the transformed FH estimator.

For constructing the confidence intervals for θi we use a parametric bootstrap procedure

following Casas-Cordero et al. (2016). See also Chatterjee et al. (2008) and Li and Lahiri

(2010). The steps are as follows:

1. For given β̂, σ̂2u and γ̂i estimated with the transformed direct estimator ϑi, sampling vari-

ance 1/(4ñi) and covariates xi, we generate u∗i fromN(0, σ̂2u) and ε∗i fromN(0, 1/(4ñi)).

2. Using u∗i and ε∗i to generate the bootstrap sample,

θ̂
∗,(b)
i = xT

i β̂ + u∗i + ε∗i (1.12)

and the corresponding bootstrap population parameter

θ
∗,(b)
i = xT

i β̂ + u∗i . (1.13)

3. Using the bootstrap sample, we estimate the model parameters in (1.6). Based on the

estimated model parameters from the bootstrap sample, we compute the corresponding

FH estimator (1.7) in area i, θ̂FH,(b)
i .
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4. Calculate the following pivotal quantity:

t
(b)
i =

θ
∗,(b)
i − θ̂FH,(b)

i√
γ̂
(b)
i /(4ñi)

(1.14)

5. Repeat steps 1-4 B times.

6. For each area i, calculate the 100α/2 quantile q1i and 100(1 − α/2) quantile q2i of

{t(b)i , b = 1, . . . , B}.

7. An approximate 100(1 − α) confidence interval for θi is defined as: (loi, upi), where

loi = θ̂FH
i + q1i

√
γ̂i/(4ñi), and upi = θ̂FH

i + q2i
√
γ̂i/(4ñi). If loi is negative, it

is truncated to 0 and if upi is greater than π/2, it is truncated to π/2. This truncated

confidence interval is defined (lo∗i , up
∗
i ). Back-transform the lower and the upper lim-

its (lo∗i , up
∗
i ) for each area to obtain the approximate 100(1 − α) confidence interval:

(sin2(lo∗i ), sin
2(up∗i )).

Note that the back-transformed confidence interval can be obtained because the function sin−1

and sin2 are monotonically increasing functions of the parameters in the ranges of interest

(Casas-Cordero et al., 2016). In addition, as the upper and lower bound of the confidence

interval depends on the effective sample size ñi in area i, we can only estimate the confidence

interval for the in-sample areas. In order to obtain a second-order correct confidence interval

for out-of-sample areas, one has to replace Equation 1.14 by the following pivotal quantity:

t
(b)
i,out =

θ
∗,(b)
i,out − xT

i,outβ̂
(b)

σ̂
(b)
u

, (1.15)

where β̂(b) and σ̂(b)u are estimates of β and σu based on in-sample b-th parametric bootstrap

replicate (Chatterjee et al., 2008). Following Chatterjee et al. (2008), the boundaries of the

confidence interval for the out-of-sample areas are given by loi,out = xT
i,outβ̂ + q1i,outσ̂u, and

upi,out = xT
i,outβ̂ + q2i,outσ̂u, where q1i,out and q2i,out are the 100α/2 and 100(1 − α/2)

percent quantiles of {t(b)i,out, b = 1, ..., B}, respectively.

An alternative approach is to apply a jackknife method on the transformed scale proposed

by Jiang et al. (2001). In particular, Jiang et al. (2001) consider an arcsine transformation

and show that the bias of the jackknife MSE estimator is of order o(m−1). Then, the authors

approximate the MSE in the original scale for θ̂FH,trans
i cFHback) by

mse[θ̂FH,trans
i ] = f−1′(θ̂FH

i )mse(θ̂FH
i ),

where f−1′ denotes the derivative of f−1 (defined in Equation 1.11) with respect to θ̂FH
i .

mse(θ̂FH
i ) is an estimate of the MSE obtained by the jackknife method proposed by Jiang

et al. (2001). Future work can be devoted to compare the width of the confidence interval and

the coverage rate obtained with the parametric bootstrap (Casas-Cordero et al., 2016) and the

jackknife procedure (Jiang et al., 2001).
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1.3.3 Benchmarked Fay-Herriot estimators

Although the model-based estimator in (1.11) provides estimates for all communes (small ar-

eas) in Senegal, the aggregated estimates on national level can differ from the corresponding

direct estimator. Following Datta et al. (2010) we use a benchmark approach to achieve the

internal consistency with the direct estimator on national level.

For the FH model proposed in Section 1.3.1, we seek for a benchmarked FH estimator

θ̂FH,bench
i such that

m∑
i=1

ξiθ̂
FH,bench
i = τ,

where

τ =

m∑
i=1

ξiθ̂
direct
i .

We define the weights by ξi = Ni/N . We define the benchmarked FH estimator (Datta et al.,

2010) by

θ̂FH,bench
i = θ̂FH

i +

(
m∑
i=1

ξ2i
ϕi

)−1(
τ −

m∑
i=1

ξiθ̂
FH
i

)
ξi
ϕi

for i = 1, ...,m. (1.16)

There are several ways to define the weight ϕi (Datta et al., 2010). For instance, ϕi = ξi/θ̂
FH
i

leads to a ratio adjustment of the FH estimator, where small areas with larger estimates will

receive a larger adjustment and vice versa. Another option is to define the weights by ϕi =

ξi/ ˆMSE(θ̂FH
i ). That means that small areas with higher variability in terms of MSE will

receive a larger adjustment.

For the benchmarked transformed FH estimator proposed in Section 1.3.2, we use a naive

approach where the weights are given by ϕi = ξi. Thus, the benchmarked transformed FH

estimator results as a constant shift from the transformed FH estimator 1.11 and is given by

θ̂FH,trans,bench
i = θ̂FH,trans

i +

(
τ −

m∑
i=1

ξiθ̂
FH,trans
i

)
for i = 1, ...,m. (1.17)

1.4 Application: estimating literacy rates in Senegal

In this section the benefits of using the presented Fay-Herriot-type estimators in combination

with mobile phone covariates for the estimation of socio-demographic indicators are illustrated

in an application which uses the data from the DHS survey 2011 and the mobile phone data

we described in Section 1.2. The application aims at estimating the literacy rate by gender on

commune level in Senegal. The analysis is carried out by using the variables literacy women

and literacy men from the gender-specific questionnaires introduced in Section 1.2. The esti-

mates are used to identify hot spots of illiterate women for the PAJEF project with a need for

additional infrastructure and financial support from the government.
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1.4.1 Model selection and model checking

Before proceeding with the analysis of literacy in Senegal, we discuss the model selection and

present some diagnostic plots. As discussed in Section 1.2.2 there are various commune spe-

cific covariates available from the mobile phone data. To select reasonable covariates in the

context of Fay-Herriot models we followed an approach taken by several authors (Jiang et al.,

2001; Ha et al., 2014; Casas-Cordero et al., 2016). In particular, we used the Bayesian infor-

mation criterion (BIC) based on a linear regression model with arcsin
√
θ̂directi as dependent

variable and considered only data from the 50% largest communes in terms of sample size for

the model selection. The reasons for choosing this particular model selection technique are

threefold: First, we implicitly assume that for these communes the sampling variability of the

direct estimators is reduced, so standard selection techniques are applicable. Second, we apply

the BIC to penalize the model complexity more heavily compared to the Akaike information

criterion (AIC) in order to enhance the interpretability of the final model. Third, although we

are aware of more complex methods for Fay-Herriot model selection discussed in Marhuenda

et al. (2014) we use a simple approach which is efficiently implemented by automatic stepwise

selection procedures in standard statistical software. The final model on commune level for

the variables literacy women and literacy men include 7 and 8 mobile phone covariates with an

adjusted R2 of 82% and 76% respectively. Note that we report an adjusted R2 here proposed

by Lahiri and Suntornchost (2015) that accounts for the sampling error variability.

Based on the transformed direct estimates from the DHS survey 2011 and the set of selected

mobile phone covariates on commune level we fitted area level mixed models (1.6) by gender.

As discussed in Section 1.3 the sampling variances of the direct estimates are approximated by

1/4ñi where ñi denotes the sample size divided by the design effect. Following Casas-Cordero

et al. (2016), we used the design effect on regional level as an approximation for the design

effect on commune level. The reason here is that the variance estimation of the direct estimator

is unstable because of a low number of cluster or even not directly possible because only one

cluster is nested in some communes. We refer to Opsomer et al. (2012) for a recent discussion

on this issue in the context of forestry data.

Table 1.4 reports the design effects of the direct estimators by gender on regional level in

Senegal. The estimates are consistent with official results published by the Agence Nationale

de la Statistique et de la Démographie (2012) in Senegal and show a high value of the design

effect of the direct estimator using DHS survey 2011.

Table 1.4: Design effects of the direct estimator in Senegal by region.

Region Female Male Region Female Male

Dakar 6.260 2.825 Louga 4.473 3.410
Diourbel 3.186 1.987 Saint Louis 4.584 1.874
Fatick 7.695 2.499 Matam 6.569 3.908
Kaffrine 5.058 2.682 Sedhiou 7.840 3.216
Kaolack 5.153 2.434 Tambacounda 4.281 3.386
Kedougou 2.566 1.962 Thies 5.480 3.227
Kolda 3.434 2.615 Ziguinchor 2.525 2.165
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Figure 1.4: Normal probability plots of standardized residuals (level 1) and the standard-
ized random effects (level 2) for the female model (left panel) and for the male model
(right panel).
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Figure 1.4 shows normal probability plots of the standardized residuals (level 1) and the

standardized random effects (level 2) obtained from fitting the female model (left panel) and

the male model (right panel). The figure indicates some small departures from normality espe-

cially in the tails of the distribution. However, the departures are not severe. The Shapiro-Wilk

test supports the lack of evidence against the normality assumption for the level 1 standardized

residuals (p-values: male model = 0.4453 and female model = 0.4656) and level 2 standard-

ized random effects (p-values: male model = 0.3311 and female model = 0.6059). Using the

transformed Fay-Herriot model (1.11) may be advisable for estimating the literacy of women

and men.

1.4.2 Small area estimates at commune level

Estimates of the literacy rate by gender for each commune are calculated by using the trans-

formed FH estimator (1.11) (FH Trans) and by the benchmarked transformed FH estimator

(1.17) (FH Bench). For constructing the confidence intervals based on the FH Trans we use

the parametric bootstrap approach of Casas-Cordero et al. (2016) discussed in Section 1.3. We

performed B = 500 bootstrap replications. We also include the direct estimator to assess the

resulting estimates as the model-based estimators should be consistent with the unbiased direct

estimators but with a higher precision. Note that direct estimation is not an option for the DHS

survey 2011 on commune level because around 45% of the communes are out-of-sample. The

estimators are implemented by computationally efficient algorithms using R. The codes are

available from the authors upon request.

Table 1.5 reports the distribution of estimated literacy rates for women and men in the com-

munes in Senegal, split by in-sample, out-of-sample and out-of-covariate communes. Our first

observation is that the estimates for female and male literacy rates are higher for the FH Bench

compared to the FH Trans, respectively. The reason is that the aggregated FH Trans estimates

(women: 36.1% and men: 57.7%) on national level slightly underestimate the national share

of literates (women: 37.8% and men: 60.0% ) and, thus, need a small adjustment to meet the

national estimate for the country.

In order to judge the quality of the model-based FH Trans, we have a closer look to the

Figures 1.5 and 1.6. In particular, Figure 1.5 represents the shrinkage factor for the female

(left panel) and the male (right panel) model as well as the corresponding sample sizes (dashed

lines). On the x-axis, communes are ordered by their sample size (descending order from

left to right). We observe that for communes with larger sample size the direct estimator gets

substantial weight for both models. In contrast, for communes with a smaller sample size the

FH Trans tends to be highly synthetic. Comparing both models we note that the FH Trans

for the female model puts in general more weight on the direct estimator than the male model

- mean shrinkage factor: 0.262 (female) vs. 0.206 (male) - as a consequence of the larger

sample size in the women’s questionnaire (cf. Table 1.1). In Figure 1.6 we plot the direct

(diamonds) and the FH Trans (dots) estimates of literacy rates against communes ordered by

their sample size (descending order from left to right) for the male and female model (top

down). For illustration, we show only every fourth commune in the figure. The estimated

national literacy rate (based on the DHS survey) is represented by the solid line. The vertical
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Table 1.5: Distribution of the female and male literacy rates over communes in Senegal.

233 In-sample communes

Gender Estimator Min. 1st Qu. Median Mean 3rd Qu. Max.

Female Direct 0.000 0.105 0.234 0.298 0.474 0.839
FH Trans 0.002 0.151 0.252 0.296 0.434 0.822
FH Bench 0.002 0.158 0.264 0.310 0.455 0.861

Male Direct 0.000 0.250 0.533 0.508 0.720 1.000
FH Trans 0.062 0.368 0.500 0.516 0.662 0.971
FH Bench 0.064 0.383 0.520 0.537 0.689 1.000

168 Out-of-sample communes

Min. 1st Qu. Median Mean 3rd Qu. Max.

Female FH Trans 0.005 0.157 0.219 0.271 0.363 0.732
FH Bench 0.006 0.165 0.230 0.283 0.381 0.766

Male FH Trans 0.066 0.309 0.468 0.478 0.633 0.960
FH Bench 0.069 0.322 0.487 0.497 0.659 0.999

30 Out-of-covariate communes

Min. 1st Qu. Median Mean 3rd Qu. Max.

Female FH Trans. 0.130 0.188 0.213 0.227 0.226 0.501
FH Bench. 0.136 0.198 0.223 0.238 0.237 0.525

Male FH Trans. 0.346 0.383 0.431 0.444 0.499 0.721
FH Bench. 0.360 0.398 0.448 0.462 0.519 0.750

lines show the confidence intervals for each commune. Note that we do not report variance

estimates for the direct estimator because there was only one sampling cluster nested in most

of the communes. We observe that the FH Trans and the direct estimates randomly vary around

the national estimate and do not indicate any systematic behaviour to show a possible bias from

the modeling. Confirming the findings from Figure 1.5, the direct estimates are very similar to

the model-based estimates for communes with a larger sample size. Most of the direct estimates

are contained within the confidence intervals for both models. The length of the confidence

interval are larger for the male model than for the female model. Due to the shrinkage the FH

Trans estimates tend to be more stable around the national estimate than the direct estimator.

The variability of the direct estimates and the length of the confidence intervals increase as we

move from left to the right side of the figure.

1.4.3 Literacy rates by gender in Senegal

Having assessed the results of the estimators from a statistical perspective, we now discuss

the results in the context of female and male literacy in Senegal. As the required approach

for the ANSD should meet the third guideline which is that the aggregated estimates for the

communes should produce the official national estimate for Senegal we focus in the following

only on the benchmarked transformed FH. Figure 1.7 shows the estimates for literacy by gender

on commune level for the capital Dakar (right panel) and for the rest of Senegal (left panel).
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Figure 1.6: Coverage for the FH Trans for the male and female model (top down).
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In order to simplify the interpretation of the results, Figure 1.7 presents geographical maps for

Dakar and for Senegal which are extracted from Google Maps. As a first comment, we note

that the relative spatial distribution of male and female literacy rates are very similar in the

Dakar region and in the rest of Senegal.

Having a closer look to the Dakar region (right panel) we observe that the coastal area,

where the city of Dakar and its harbor are located, shows a very high rate of literates for male

and female. This trend continues by moving from the peninsula closer to the main land and

is only interrupted by a pocket of lower literacy around the district of Pikine (located to the

east of the lake in the middle of Dakar). The district was founded in 1952 by the French

colonial government for the former residents of the coastal area around the harbor. Since 1967,

it is forbidden by law to build houses on this land because of problems with flooding. Today,

however, illegal housings of migrant workers and refugees dominate this area, reflected in

remarkably low literacy rates. Moving further into the interior of the country, the area gets

more rural and the literacy rate shrinks.

We now turn to the estimated literacy rates for the rest of Senegal in Figure 1.7 (left panel).

Next to the Dakar region, the region around Ziguinchor below Gambia reveals a high literacy

rate for men and women. The high literacy rates can be explained by the strategic position be-

tween the countries Guinea-Bissau and Gambia as well as to its closeness to the Atlantic Ocean.

Ziguinchor is Senegal’s second largest city and it is also the trade center of the Casamance re-

gion (area of Senegal south of Gambia including the Casamance river). Another reason is

that the Casamance region is ethnically different from the other parts of Senegal. The region

consists mainly of Jola people with a strong influence of Christianity whereas the Islam is the

predominant religion in most other parts of the country (Heil, 2014). Another finding is that

communes closer to the ocean and to borders in the North to Mauritania and in the South to

Guinea-Bissau have higher literacy rates for men and women. In contrast, communes located

on the boarders to Mali (South-East) and to Gambia tend to have lower ones. As expected, the

density of mobile phone towers in Figure 1.3 is higher in communes with higher literacy rates.

Rural communes with a low coverage of mobile phone towers seem to have a lower literacy

rates in general. Especially the central part of Senegal in the Matam and Tambacounda region

reveals high shares of illiterate men and women.

Although the relative distribution is very similar in Senegal, Figure 1.7 reveals clear differ-

ences in terms of absolute values. The literacy rate for women is around 20% lower compared

to men. Reasons are manifold in Senegal: Especially in poor regions of the country like Matam

and Tambacounda in the eastern part of the country, girls are involved in economic activities

and therefore the parents keep the girls out of the school to earn some additional income. Next

to economic reasons, unsafe and long roads to school, gender-based violence, early marriage

and pregnancy, the traditional role of women in the society and the low quality of the educa-

tion system are further issues which add to low literacy rates for women. The PAJEF project,

already mentioned in the introduction, aims to boost literacy among women in Senegal is cur-

rently conducted by UNESCO Dakar and the government of Senegal (UNESCO, 2015). The

project runs in the seven regions (Dakar, Diourbel, Fatick, Kedougou, Matam, Saint-Louis and

Tambacounda) with the lowest literacy rate identified by the ANSD based on the DHS survey.
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Figure 1.7: Estimates for the literacy rate by gender on commune level based on a bench-
marked FH model: Senegal (left panel) and Dakar (right panel).
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Figure 1.8: Estimates for the literacy rate for women: 20% of the communes with the lowest
literacy rate (left panel) and seven regions in Senegal identified by the ANSD for the PAJEF
project (right panel).

The seven regions and the corresponding literacy rates for women are displayed in Figure 1.8

(right panel). The regions cover around 50% of the country. The left figure shows the literacy

rate for women on commune level held by the lowest 20% estimated by using the DHS survey

2011 in combination with mobile phone covariates. There are some hotspots for example in

the region around Gambia in the Ziguinchor region or in the Western part of Senegal, with

low literacy rates for women but without any financial support. In contrast, the PAJEF project

provides financial support to the Saint-Louis region in the north of Senegal or to Dakar where

the female literacy rates are above average.

Hence, the use of the proposed approach may enable NSIs and governmental organisations

to make sound strategic decisions regarding the best places for investing in creating infras-

tructure for education. Figures for the indicators no school education or secondary school

education or higher are available from the authors upon request.

1.5 Design-based simulation for unemployment

The analysis of literacy rates by gender in Section 1.4 was sample specific which makes conclu-

sions about efficiency and bias difficult. In this section, we present results from a design-based

simulation study that was carried out for assessing the performance of the introduced method-

ology we discussed in Section 1.3. The aim of the design-based simulation is to investigate the

behaviour of the Fay-Herriot type models for estimating socio-demographic indicators based

on mobile phone covariates in a controlled environment. In particular, for the evaluation of the

approach we had access to the variable unemployment from the Senegalese register by collab-

orating with the staff of the ANSD.

The pseudo population in the design-based simulation is based on data collected from a
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sample of around 1 million individuals in Senegal. The data was collected by ANSD as part of

the census 2013 and is spread across the 431 communes. The pseudo population reflects around

10% of the population in Senegal. The variable of interest is defined by 0 = employed and 1 =

unemployed. Summaries of the population sizes and unemployment rate over communes are

given in Table 1.6. Given the fixed pseudo population we independently drew T = 500 samples

Table 1.6: Summary statistics over communes.

Min. 1st Qu. Median Mean 3rd Qu. Max. NA
Population size 82 717 1303 2257.0 2373 56670 -
Unemployment rate 0.274 0.488 0.550 0.555 0.617 0.898 -
Sample size 3 28 48 79.3 81 1448 235

following a sampling design similar to the one of the DHS survey. The design is a stratified

two-stage cluster sampling design, with the 431 communes as primary sampling units (PSUs).

Similar to the DHS survey, we used 14 strata corresponding to the 14 regions of Senegal. In the

first sampling stage we selected communes within each stratum with a probability proportional

to their size. Around 2% of the individuals within each selected commune are drawn using

equal probability systematic sampling. This leads to a sample size of around 15,543 individ-

uals with 196 in-sample communes and 235 out-of-sample communes similar to the women’s

questionnaire (n = 15, 688) in the DHS survey (cf. Table 1.1). The summary statistics of the

sample sizes over communes are also provided in Table 1.6.

We investigate the estimators presented in Section 1.3 under repeated sampling perfor-

mance for the unemployment rate on commune level in Senegal using aggregated mobile phone

covariates. To do so, we used an area-level linear mixed model (1.6). The covariates were se-

lected by using the Bayesian information criterion (BIC) and held fixed for the simulation

study. In particular, we considered only data from communes with a sample size of more than

30. Like in the application, we implicitly assume that for these communes the sampling vari-

ances of the direct estimators are negligible and standard regression model selection tools are

applicable. We refer to Jiang et al. (2001) and Ha et al. (2014) for a similar approach for the

model selection. The adjusted R2 by Lahiri and Suntornchost (2015) was on average around

47% depending on the selected sample. We evaluate four estimators for the unemployment rate

in the communes in the simulation. These are the direct estimator (1.3), the transformed FH

estimator based on an arcsine transformation (1.11) (FH Trans) as well as the normal-logistic

model (NL) and the normal-logistic random sampling variance model (NLRS) proposed by Ha

et al. (2014). The direct estimator and FH Trans are implemented by computationally efficient

algorithms using R. The NL and NLRS are implemented by using JAGS with three parallel

chains, each with 20000 iterations, a burn-in of 10000 and the samples were thinned by a

factor of two (Liu et al., 2014). The codes are available from the authors upon request. Ad-

ditionally, we also assess the benchmarked transformed FH estimator (1.17) (FH Bench), the

benchmarked NL estimator (NL Bench) and the benchmarked NLRS estimator (NLRS Bench).

Note that we also use the naive benchmarking approach introduced in Section 1.3.3 for the NL

and NLRS estimators.

The performance of the estimators is assessed by the bias (Bias) and root mean squared
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errors (RMSE) given by

Bias(m̂i) =
1

T

T∑
t=1

(m̂ti −mi)

RMSE(m̂i) =

√√√√ 1

T

T∑
t=1

(m̂ti −mi)
2,

where m̂i is a generic notation to denote an estimator of the share in commune i andmi denotes

the true population share in commune i.

The results presented in Table 1.7 are splitted by the 191 in-sample, the 210 out-of-sample

and the 30 out-of-covariate communes. The table reports summary statistics of the RMSE

and Bias of the estimators (FH Trans, NL, and NLRS) over communes. The results confirm

our expectations regarding the performance of the estimators. The direct estimator is almost

unbiased but suffers from a higher RMSE compared to the model-based approaches (FH Trans,

NL, and NLRS) for the sampled communes. The performance of the FH Trans and NLRS is

very comparable regarding Bias and RMSE for the in-sample and out-of-sample communes

and outperforms the NL estimator in this particular simulation study. For the out-of-covariate

communes, where the covariates are obtained by geographically weighting as described in

Section 1.2, all model-based estimators (FH Trans, NL, and NLRS) reveal on average a small

positive bias.

In order to save space, the corresponding results for the benchmarked estimators (FH

Bench, NL Bench, and NLRS Bench) are only reported in the supplementary materials. How-

ever, the results of the benchmarked estimators (FH Bench, NL Bench, and NLRS Bench) and

the non-benchmarked estimators (FH Trans, NL, and NLRS) are close in terms of Bias and

RMSE because the average of the commune level estimates required only a small adjustment

to meet the national estimate for the country. However, note that the benchmarked and the

non-benchmarked results are not directly comparable as the FH Bench, NL Bench, and NLRS

Bench fulfil the benchmarking constraint.

The results from the study indicate that combining mobile phone covariates with survey

data based on model-based estimators can lead i) to gains in efficiency compared to the direct

estimator and ii) to reasonable results for communes with zero sample sizes.

1.6 Concluding remarks

Modern systems of official statistics require reliable statistics on socio-demographic indicators

on regionally disaggregated levels. These statistics are essential for sound evidence-based poli-

cymaking. In this paper we have discussed an easy-applicable approach for NSIs for estimating

these indicators by small area methods based on survey data and covariates from alternative

data sources. The motivation is to reduce the dependence on census or register information for

the NSIs. In particular, we used in this paper passively collected mobile phone data in combi-

nation with survey data to predict socio-demographic indicators. Although the paper focuses

on literacy rates as specific socio-demographic indicator, the proposed approach is applicable
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Table 1.7: Performance of predictors over communes in design-based simulations.

191 In-sample communes

Indictor Estimator Min. 1st Qu. Median Mean 3rd Qu. Max.

RMSE Direct 0.014 0.053 0.068 0.077 0.091 0.287
FH Trans 0.016 0.030 0.042 0.053 0.071 0.248
NL 0.013 0.040 0.049 0.055 0.061 0.260
NLRS 0.014 0.030 0.041 0.054 0.070 0.251

Bias Direct -0.019 -0.002 -0.000 0.000 0.002 0.019
FH Trans -0.203 -0.029 0.001 0.001 0.029 0.247
NL -0.106 -0.011 0.003 0.009 0.026 0.169
NLRS -0.210 -0.029 0.001 0.002 0.029 0.250

210 Out-of-sample communes

Min. 1st Qu. Median Mean 3rd Qu. Max.

RMSE FH Trans 0.012 0.030 0.053 0.073 0.104 0.349
NL 0.011 0.035 0.062 0.076 0.103 0.325
NLRS 0.010 0.030 0.057 0.073 0.101 0.349

Bias FH Trans -0.349 -0.044 0.011 0.007 0.062 0.245
NL -0.324 -0.043 0.012 0.013 0.065 0.281
NLRS -0.349 -0.043 0.008 0.008 0.059 0.247

30 Out-of-covariate communes

Min. 1st Qu. Median Mean 3rd Qu. Max.

RMSE FH Trans 0.010 0.033 0.058 0.079 0.098 0.276
NL 0.011 0.046 0.075 0.085 0.098 0.280
NLRS 0.010 0.034 0.059 0.080 0.094 0.279

Bias FH Trans -0.173 -0.003 0.043 0.036 0.090 0.276
NL -0.153 -0.003 0.048 0.044 0.093 0.280
NLRS -0.170 -0.002 0.038 0.036 0.083 0.279

to general indicators. For instance, we can provide results for two other indicators for women

in Senegal: i) Body mass index below 18.5 and ii) Current usage of any contraception method.

One interesting approach for further research would be to predict the indicators purely on the

mobile phone data and to further reduce the dependency of NSIs on actively collected data like

survey or register data. For instance, Blumenstock et al. (2015) predicted poverty by using

an individual’s past history of mobile phone usage in combination with a phone survey. One

could extend these results to different indicators. Furthermore, mobile phone data can be used

to update the small area estimates in the period between surveys. This would save considerable

money, but would require additional assumptions about the model remaining constant between

surveys.

For the combination of the survey data and the mobile phone covariates we used an easy-

applicable FH small area method for the modeling. Additionally, we have investigated more

complex extensions like the spatial FH (Pratesi and Salvati, 2009), the non-parametric FH

(Giusti et al., 2012) and the spatial non-stationary FH (Chandra et al., 2015), but the results

were comparable. One limitation of our modeling is the approximation of the sampling vari-
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ance by 1/(4ñi) for the transformed FH estimator. As the derivations of the arcsine transfor-

mations are based on large-sample theory, we might expect some deficiencies, especially for

communes with small sample sizes. Another limitation of our modeling is a potential back-

transformation bias in (1.11) due to the nonlinearity of the arcsine transformation. We noted

in Section 1.4.2 that the aggregation of θ̂FH,trans
i estimates is slightly lower than the national

estimate for the male and female model, leading to an upward adjustment from benchmarking.

Slud and Maiti (2006) discuss bias-corrected small area estimation formulas for the Fay-Herriot

model in the context of a logarithmically transformed data. In case of an arcsine transforma-

tion, rather than back-transforming the linear model predictions, one could calculate an additive

adjustment for the bias as E(θ̂directi )−E(θ̂FH,trans
i ), where E(·) is the unconditional expecta-

tion under the model. One additional line of research might be to explore the above mentioned

bias correction and to extend the MSE estimation to the adjusted predictors. Another line for

further work could be to investigate machine learning approaches like random forest for the

prediction of socio-demographic indicators and compare them with small area methods.

We have also presented first discussions regarding the time-intensive cleaning, processing

and handling of the mobile phone data and available software. However, this can be only a first

step in this direction. From a long-run perspective it is necessary to build platforms with open

software/ algorithms for NSIs. The aim of such platforms can be twofold: first, NSIs can use

code and software to work with large data sources and, second, NSIs can potentially access

passively collected data of private companies in a safe environment.

The use of mobile phone covariates has some drawbacks as well. First, additional uncer-

tainty in the mobile phone data arises from the fact that the coverage of the mobile phone tower

differs and is unknown. To the best of our knowledge we are not aware of an established way to

handle a potential overlap of tower coverage. Second, landlines and the use of internet-based

mobile communication services such as Skype, WhatsApp or Viber may cause distortion in

communication patterns. However, for Senegal the distortions may be less strongly because of

a stagnating landline penetration rate of 2.8% (GSMA, 2015). In addition, the all-time down-

loads of messaging applications are extremely low in Senegal compared to other countries (e.g.

WhatsApp 124,818 and Viber 95,891 on iOS as of December 18th 2014 - extracted from Priori

Data). Nevertheless, some types of users may systematically be excluded. Modelling these

users is another avenue for further research.
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Supplementary material A

A.1 Additional description: mobile phone covariates

Table A.1 describes the covariates used in the paper. The variables are split by categories to

ease the understanding of their calculation and origin. Hourly covariates have been calculated

on hourly call detail records, daily covariates on aggregated daily call detail records and so on.

The variables in the category interactions take every single interaction for the year 2013 into

account. The covariates are first calculated on a tower level for the year 2013 and then the

median is applied for the higher geographic levels like communes and regions. For instance,

the covariate ic sms work ratio for a tower is the ratio of incoming SMS during 9am to 5pm

over all incoming SMS for the year 2013 based on hourly call detail records.

Additionally to the variables described in Table A.1 we created covariates with the open-

source python toolkit bandicoot (http://bandicoot.mit.edu) (Montjoye et al., 2013). A list of

these variables can be found at the bandicoot website.

A.2 Design-based simulation for unemployment

The results presented in Table A.2 split by the 191 in-sample, the 210 out-of-sample and the

30 out-of-covariate communes. The table reports summary statistics of the RMSE and Bias of

the benchmarked estimators (FH Bench, NL Bench, and NLRS Bench) over communes. The

performance of the FH Bench and NLRS Bench is very comparable regarding Bias and RMSE

for the in-sample and out-of-sample communes and outperforms the NL Bench estimator in

this particular simulation study. For the out-of-covariate communes, where the covariates are

obtained by geographically weighting as described in Section 2, all benchmarked model-based

estimators (FH Bench, NL Bench, and NLRS Bench) reveal on average a small positive bias.

In addition, we point out that the results of the benchmarked estimators (FH Bench, NL Bench,

and NLRS Bench) are very similar to the non-benchmarked estimators (FH Trans, NL, and

NLRS) because the average of the commune level estimates required only a small adjustment

to meet the national estimate for the country.
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Table A.1: Mobile phone covariates.

Name Covariate Description

Distance

dist2d distance to Dakar The distance to the centroid of the Dakar region in kilometers.
calls dist mean average calls distance The average distance between towers that were involved in call interactions

during the year in kilometers.
sms dist mean average SMS distance The average distance between towers that were involved in SMS interactions

during the year in kilometers.

Interactions

calls entropy entropy of calls The entropy of calls based on tower to tower interactions
throughout the whole year.

sms entropy entropy of SMS The entropy of SMS based on tower to tower interactions
throughout the whole year.

calls isolation isolation of calls Total number of towers that a tower had call interactions with. The lower
this number, the more isolated a tower is assumed to be in terms of calls.

sms isolation isolation of SMS Total number of towers that a tower had SMS interactions with. The lower
this number, the more isolated a tower is assumed to be in terms of SMS.

Based on yearly aggregates

calls ratio calls ratio The ratio of outgoing calls over incoming calls.
sms ratio SMS ratio The ratio of outgoing SMS over incoming SMS.
vol ratio call volume ratio The ratio of minutes from outgoing calls over minutes from incoming calls.
sms2calls ratio SMS to calls ratio The ratio of outgoing SMS over outgoing calls.
calls2d ratio calls to Dakar ratio The ratio of call interactions where a tower inside the Dakar region

was involved over all call interactions.
sms2d ratio SMS to Dakar ratio The ratio of SMS interactions where a tower inside the Dakar region

was involved over all SMS interactions.

Based on monthly data

calls ratio var variance of calls ratios The variance of the monthly ratios of outgoing calls over incoming calls.
sms ratio var variance of sms ratios The variance of the monthly ratios of outgoing sms over incoming sms.
vol ratio var variance of call volume The variance of the monthly ratios of outgoing call minutes

ratios over incoming call minutes.

Based on daily data

og calls week ratio outgoing calls week ratio The percentage of calls being initiated during the weekend.
og sms week ratio outgoing SMS week ratio The percentage of SMS being sent during the weekend.
og vol week ratio outgoing call volume week The percentage of minutes from outgoing calls during the weekend.

ratio
ic calls week ratio incoming calls week ratio The percentage of calls being received during the weekend.
ic sms week ratio incoming SMS week ratio The percentage of SMS being received during the weekend.
ic vol week ratio incoming call volume week The percentage of minutes from incoming calls during the weekend.

ratio

Based on hourly data

og calls work ratio outgoing calls work ratio The ratio of outgoing calls during 9 am to 5 pm over all outgoing calls.
og sms work ratio outgoing SMS work ratio The ratio of outgoing SMS during 9 am to 5 pm over all outgoing SMS.
og vol work ratio outgoing call volume work The ratio of minutes from outgoing calls during 9 am to 5 pm

ratio over all outgoing minutes.
ic calls work ratio incoming calls work ratio The ratio of incoming calls during 9 am to 5 pm over all incoming calls.
ic sms work ratio incoming SMS work ratio The ratio of incoming SMS during 9 am to 5 pm over all incoming SMS.
ic vol work ratio incoming call volume work The ratio of minutes from incoming calls during 9 am to 5 pm

ratio over all incoming minutes.
og calls peak ratio outgoing calls peak ratio The ratio of calls being initiated between 3 to 5 am (early peak) over calls

being initiated between 10 am to 12 pm (late peak)
og sms peak ratio outgoing SMS peak ratio The ratio of SMS being sent between 3 to 5 am (early peak) over sms

being sent between 10 am to 12 pm (late peak)
og vol peak ratio outgoing call volume peak The ratio of minutes from outgoing calls between 3 to 5 am (early peak)

ratio over minutes of outgoing calls between 10 am to 12 pm (late peak)
ic calls peak ratio incoming calls peak ratio The ratio of calls being received between 3 to 5 am (early peak)

over calls being received between 10 am to 12 pm (late peak)
ic sms peak ratio incoming SMS peak The ratio of SMS being received between 3 to 5 am (early peak)

ratio over SMS being received between 10 am to 12 pm (late peak)
ic vol peak ratio incoming call volume peak The ratio of minutes from incoming calls between 3 to 5 am (early peak)

ratio over minutes of incoming calls between 10 am to 12 pm (late peak)
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Table A.2: Performance of benchmarked predictors over communes in design-based sim-
ulations.

191 In-sample communes

Indictor Estimator Min. 1st Qu. Median Mean 3rd Qu. Max.

RMSE FH Bench. 0.017 0.030 0.042 0.053 0.069 0.254
NL Bench. 0.014 0.040 0.049 0.056 0.060 0.262
NLRS Bench. 0.015 0.029 0.043 0.053 0.070 0.256

Bias FH Bench. -0.196 -0.023 0.006 0.007 0.035 0.253
NL Bench. -0.103 -0.009 0.005 0.012 0.028 0.171
NLRS Bench. -0.204 -0.023 0.005 0.006 0.035 0.255

210 Out-of-sample communes

Min. 1st Qu. Median Mean 3rd Qu. Max.

RMSE FH Bench. 0.009 0.032 0.055 0.074 0.104 0.344
NL Bench. 0.009 0.035 0.061 0.076 0.104 0.322
NLRS Bench. 0.008 0.031 0.056 0.073 0.103 0.344

Bias FH Bench. -0.343 -0.039 0.017 0.013 0.068 0.252
NL Bench. -0.321 -0.040 0.014 0.015 0.067 0.284
NLRS Bench. -0.344 -0.038 0.013 0.013 0.064 0.253

30 Out-of-covariate communes

Min. 1st Qu. Median Mean 3rd Qu. Max.

RMSE FH Bench. 0.010 0.036 0.064 0.081 0.102 0.282
NL Bench. 0.010 0.043 0.077 0.086 0.101 0.282
NLRS Bench. 0.010 0.038 0.064 0.082 0.100 0.284

Bias FH Bench. -0.168 0.003 0.049 0.042 0.095 0.282
NL Bench. -0.150 -0.001 0.051 0.046 0.096 0.282
NLRS Bench. -0.165 0.003 0.044 0.042 0.090 0.284
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Chapter 2

Intercensal updating using
structure-preserving methods and
satellite imagery

This is the peer reviewed version of the following article: Koebe, T., Arias-Salazar, A., Rojas-

Perilla, N., & Schmid, T. (2022). Intercensal updating using structure-preserving methods

and satellite imagery. Journal of the Royal Statistical Society: Series A (Statistics in Society),

1– 27., which has been published in final form at https://doi.org/10.1111/rssa.

12802. This article may be used for non-commercial purposes in accordance with Wiley

Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced,

enriched or otherwise transformed into a derivative work, without express permission from Wi-

ley or by statutory rights under applicable legislation. Copyright notices must not be removed,

obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online

Library and any embedding, framing or otherwise making available the article or pages thereof

by third parties from platforms, services and websites other than Wiley Online Library must be

prohibited.

41

https://doi.org/10.1111/rssa.12802
https://doi.org/10.1111/rssa.12802


Part II

Addressing Methodological Challenges
in Survey Augmentation
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Chapter 3

Better coverage, better outcomes?
Mapping mobile network data to
official statistics using satellite imagery
and radio propagation modelling

This is an open access article distributed under the terms of the Creative Commons Attribu-

tion License (https://creativecommons.org/licenses/by/4.0/), which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the original au-

thor and source are credited.

3.1 Introduction

Mobile phone metadata has become a popular data source to complement official statistics.

When an individual makes a call, sends a message or uses the mobile internet, meta informa-

tion about this interaction, such as the time stamp and the location, are stored in a database of

the mobile network operator (MNO). Researchers exploit those spatio-temporal references for

geo-located analysis. One string of research in this field investigates the question whether a

certain characteristic such as poverty, literacy or food insecurity is reflected in mobile phone

behaviour. Matching this behaviour accurately to a ’groundtruth’ - often statistical data from

surveys or censuses provided for statistical areas - however, poses a major challenge as the two

data sources lack a common reference. In the case of call detail records (CDRs), the geographic

reference is provided by the antenna location, often stored as a point coordinate of the phys-

ical location of the corresponding base transmitter station (BTS). Due to its simplicity, some

scientific literature treat antennas as point coordinates (Schmid et al., 2017). However, the in-

teractions captured by the antenna do not happen entirely at this exact coordinate, but within

the coverage area of the antenna - the cell. While an antenna may be located in one statisti-

cal area, most of the cell may lie within the neighboring area. The state-of-the-art attempt to

address this is to use spatial weights based on the overlapping area size of statistical areas and

cells approximated via voronoi tessellation (Pokhriyal and Jacques, 2017; Blumenstock et al.,
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2015). This approach has three major drawbacks: First, voronoi tessellation perfectly divides

the space around BTS locations depending on the distance to the surrounding BTS. This repre-

sents a naı̈ve approximation of the true coverage areas as it does not take overlaps, areas without

coverage and additional network complexities (multiple antennas per site/BTS, directionality

of antennas, varying frequency bands etc.) into account (Ricciato et al., 2017). For example,

roughly 90 million people in Africa in 2019 were still not connected to any mobile network

hinting at major holes in the coverage (The Economist Intelligence Unit, 2019). Second, even

though the concept of ’home-locating’ subscribers to specific BTS offers a network-based al-

ternative to the statistical concept of ’usual place of residence’, it is not reflected within cells.

As the weights are based on area sizes, the voronoi tessellation implicitly assumes that indi-

viduals/households are homogeneously distributed within cells, which in most cases does not

hold true. For example, a lake would receive the same importance in the creation of area-level

mobile phone metadata aggregates as an equally sized built-up area. Third, as mobile stations

(MS, generally defined as a combination of device and SIM card) and antennas communicate

via modulated radio signals whose propagation paths depend on a range of factors such as the

weather, coverage areas are stochastic by nature. More elaborate approaches to model cover-

age ranges of mobile networks exist (Ricciato et al., 2017; Phillips et al., 2013), especially in

the field of radio propagation modelling native to electrical engineering, however, they often

require detailed information on the area’s topology, a number of technical details concerning

the network infrastructure and additional information from passive monitoring systems, which

mobile network operators are generally highly reluctant to share and in the latter case often not

capable to collect.

3.1.1 Contributions

Acknowledging this, I divide my methodological contribution in this paper in two parts: First,

I propose the use of settlement information extracted from publicly available satellite imagery

to account for within-cell heterogeneity within the mobile network when linking statistical data

with mobile phone metadata. Building on this, the second part of the methodology takes ad-

vantage of scenarios where additional technical specifications are available in order to address

the issues for holes, overlaps and non-linearities within the mobile network using propagation-

based modelling. My main contributions are as follows:

1. The idea of using settlements retrieved from publicly available satellite imagery as a

common reference for statistical units such as households and ’home-located’ MS in

order to calculate weights for mapping mobile phone metadata and statistical data based

on settlement counts in scenarios where MS counts are not available. This way, within-

cell heterogeneity is addressed.

2. A propagation-based approach to account for overlaps, holes and non-linearities in cov-

erage service provision - in case additional information on the network infrastructure are

available.

3. A large-scale simulation study on a synthetic population grid to systematically com-

pare the accuracy of different mapping approaches and their effects on predictive perfor-
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mance.

4. A real-world application that demonstrates the impact of the mapping choice on out-

comes in later analysis.

3.1.2 Datasets

In the application, I revisit the simulation study of Schmid et al. (2017) published in 2017 in

the Journal of the Royal Statistical Society Series A on fine-granular unemployment estimates

from mobile phone metadata in Senegal in order to investigate the effects of different map-

ping schemes on the unemployment outcomes. Therefore, I re-run the original simulation with

the difference that I implement multiple mapping schemes to derive area-level covariates from

CDRs. Specifically, I use behavioural indicators and SIM card counts extracted from CDRs

provided by the major Senegalese MNO Sonatel in the context of the D4D 2014 challenge for

the whole year of 2013 and aggregated on the level of BTS, for which the exact geo-coordinates

are also provided (de Montjoye et al., 2014). The behavioural indicators are generated using

the popular open-source Python module Bandicoot (de Montjoye et al., 2016). Further, I use

population counts from the full 2013 general population and housing census (RGPHAE 2013)

available for the NUTS 4-level of Senegal - the communes - on the website of ANSD, the Na-

tional Statistical Office of Senegal. Commune-level unemployment information are generated

from a 10 % sample of RGPHAE 2013. Unemployment information in RGPHAE 2013 are

self-reported. Geographic information on the administrative boundaries are available for com-

munes and above. The settlement-based weights I present in this paper use data on human

settlement areas in Senegal extracted from the Global Urban Footprint (GUF) project (Esch

et al., 2017) of the German Aerospace Center (DLR) at a resolution of 0.4 arc seconds, which

is approximately 12m x 12m. The GUF project used 180,000 TerraSAR-X and TanDEM-X

images collected during the period of 2011 - 2012 (with some data from 2013/14 to fill gaps)

to create black and white abstractions where white pixels represent human settlements with a

true positive rate (accuracy to correctly detect human settlements) of 85 % on average, with 68

% at lowest and 98 % at heighest. GUF data for Senegal is provided as a single black and white

.tif-file with a resolution of 55568 x 39459 pixels (see Fig 3.1). All datasets used in this study

are available for research purposes under the conditions of the respective data use agreements.

3.1.3 Related work

Increasing processing capabilities have propelled the use of satellite imagery in official statis-

tics. The United Nations Department of Economic and Social Affairs (2009) recommends

using satellite imagery to prioritize and check geospatial processes such as the delineation of

enumeration areas during census preparation. It further supports the construction of population

grids as a common spatial reference system as proposed by Stevens et al. (2015) and Freire

et al. (2016). Various studies have used remote sensing, sometimes in combination with mo-

bile phone metadata, to estimate key statistical indicators such as economic growth (Henderson

et al., 2012; Chen and Nordhaus, 2011; Pinkovskiy and Sala-i Martin, 2016), population den-

sity (Leyk et al., 2019; Bonafilia et al., 2019; Harvey, 2002; Steinnocher et al., 2019) or poverty
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Figure 3.1: Settlements in Senegal provided as b/w image by the GUF project.
Lower resolution built-settlements extents data reprinted from WorldPop (2018) under a CC
BY license, with permission from WorldPop, original copyright 2018, are used in this figure
for illustrative purposes.

(Pokhriyal and Jacques, 2017; Jean et al., 2016; Weidmann and Schutte, 2017). Work in that

field most closely related to this study uses settlement information extracted from satellite im-

agery in combination with radio propagation models for application in cost-benefit analysis

concerning additional infrastructure investments (Oughton, 2019). While Oughton (2019) also

uses population counts from official statistics to estimate the latent demand for mobile ser-

vices, the author neither investigates the effects of different coverage mapping techniques on

the results nor does he use mobile phone metadata for statistical purposes.

In addition, the last decade has seen an impressive amount of research on proposing the

use of mobile phone metadata for official statistics foremost in the hope to overcome the lim-

iting relationship of sample size and data collection costs. Blondel et al. (2015) provide an

excellent overview on the use of mobile phone metadata that also covers its application for

statistical purposes. Use cases to produce more frequent, more granular and/or more timely

data on a wide range of statistical topics have been identified. For example, Deville et al.

(2014); Khodabandelou et al. (2018); Botta et al. (2015); Douglass et al. (2014) and Ricciato

et al. (2017) use mobile phone metadata to investigate population dynamics for more frequent

population and tourism statistics. Lu et al. (2012) and Gundogdu et al. (2016) apply the ques-

tion on the whereabouts of a population to the post disaster setting. Mobility aspects such

as commuting and travelling routines have been looked at in more detail by Schneider et al.

(2013); Wesolowski et al. (2013); Matamalas et al. (2016); Iovan et al. (2013); Janzen et al.

(2018) and Taylor (2016). By exploiting both mobility and (social) network characteristics of
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mobile phone metadata, Wesolowski et al. (2012); Rubrichi et al. (2018); Tizzoni et al. (2014);

Le Menach et al. (2011); Frı́as-Martı́nez et al. (2011); Lima et al. (2013) and Park et al. (2018)

and Bakker et al. (2019) use mobile phone metadata to model disease spreading and integra-

tion, respectively. Mobile usage patterns have been explored to provide fine granular insights

on socio-demographic indicators such as multi-dimensional poverty (Pokhriyal and Jacques,

2017; Blumenstock et al., 2015), literacy (Schmid et al., 2017; Sundsøy, 2016) and economic

vulnerability (Blumenstock et al., 2018; Bruckschen et al., 2019). While most of these studies

have mapped mobile phone metadata and groundtruth data using point-to-polygon allocation

or voronoi tessellation, very few studies have applied more elaborate approximation schemes.

Ricciato et al. (2017) propose a methodology based on maximum likelihood estimation that

uses cell footprints provided by one or multiple MNOs in combination with location data from

passive monitoring systems to acquire more accurate measures on the density of MS. The au-

thors run a simulation study on a 100x100m synthetic population grid to compare the proposed

methodology against voronoi-based coverage maps. However, the methodology requires very

detailed information from the involved MNOs, e.g. on the cell footprints and the signalling data

that may prove difficult to acquire in practice (see Section 3.2.1). Further, while the authors

rightly assume a multinomial distribution of the MS counts, finding appropriate distributions

for the wide range of behavioural covariates appears less trivial. In order to simplify and im-

prove the coverage mapping process, members of the European Statistical System as part of

the ESSnet Big Data project are currently developing mobloc (Tennekes, 2018) - an R package

that implements the free space path loss propagation model using technical specifications of

antennas as input parameters. However, neither Ricciato et al. (2017) nor Tennekes (2018) sys-

tematically evaluate different coverage mapping techniques on statistical modelling approaches

using real-world data.

3.2 Background

3.2.1 Mobile phone metadata

Mobile networks not only transport data for communication purposes, they also generate data

for reasons such as network auditing, billing, maintenance and service provision. Some of

this meta information is created in interaction with user equipment such as MS. There are four

main caveats of using mobile phone metadata for population statistics in general. All of them

have in common that they are active areas of current research. First, the customer base of an

MNO constitutes a non-representative population sample with unknown sampling design. The

consequences are varying sampling rates, i.e. locally changing market shares and parts of the

population being structurally excluded from the sample such as children, elderly and the very

poor. Second, the unit of observation - i.e. the MS, device, the SIM card and/or the subscriber

- does not perfectly match the unit of interest, which is the individual or household, as phone

sharing schemes or multi-SIM uses illustrate. Common approaches to account for these two

caveats are calibration and/or reconstructing the sampling design empirically. Third, mobile

phone metadata lacks the statistical concept of usual residence - a concept frequently used in

official statistics to determine the geo-location of an individual/household defined as the place
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where an individual has lived or intends to live for a period of at least 6 or 12 months (OECD,

2013). Different approaches to approximate the home location of an MS exists (e.g. night-time

home location defined as the most frequently used cell by an MS between 7pm and 7am during

a certain time window), however, the definitions do not map perfectly introducing uncertainty

in further analysis (Vanhoof et al., 2020). Fourth, coverage areas cannot be pinpointed as radio

propagation is dynamic and stochastic by nature. Propagation models of various complexity

exist to provide approximations as coverage ranges can generally vary from couple of hundred

meters to over 40km.

Most scientific studies in the context of international development and official statistics use

CDRs - logs of interactions such as calls, text messages or internet use containing attributes

of the MS, the network and the connection - as a basis for further analysis. The advantages of

CDRs compared to other mobile phone metadata such as Visitor Location Registers (VLRs)

or other signalling data are threefold: First, they provide fine-grained geographical resolu-

tion through cell-level identifiers. Second, they provide information both on the mobility and

the (social) network of the MS. Third, CDRs are fairly easy to access and to use in analysis

as the storage of essential attributes adheres to global standards such as 3gpp 32.295. How-

ever, in addition to the aforementioned general caveats of mobile phone metadata there are

important caveats specific to CDRs: Social network information extracted from CDRs are in-

creasingly incomplete due to a shift towards app-based communication (e.g. Whatsapp and

Facebook messenger). Mobility patterns are fragmented as locations are logged only during

active MS use - again a case of non-random sampling. Some MNOs are able to extract more de-

tailed information on the location of an MS and its app usage e.g. for geo-fencing purposes or

app-based pricing schemes through trilateration of signalling data and deep packet inspection,

respectively. This, however, requires specific hardware equipment and software capabilities,

which not every MNO has. Consequently, these type of information are rarely available to

researchers.

3.2.2 Radio propagation modelling

Radio propagation modelling has been subject to research for decades. Coverage mappings in

mobile networks are generally used for network planning purposes (Oughton, 2019; Oughton

et al., 2019). Looking at Phillips et al. (2013) is highly recommended as they provide an

excellent overview on coverage mapping methods. In general, radio propagation modelling

techniques in mobile networks largely focus on estimating the path loss Lp a radio signal

incurs en route between a transmitter tx and a receiver rx. Together with the output power of

the transmitter Ptx, the gains through directivity and efficiency of the involved antennas Gtx

and Grx and their respective technically-incurred losses Ltx and Lrx, it defines the link budget

- the received power Prx usually expressed logarithmically in decibel per milliwatt (dBm).

Prx = Ptx +Gtx +Grx − Ltx − Lrx − Lp (3.1)

Since all RHS parameters except Lp are either known in advance due to the choice of the

technical equipment (i.e. Gtx and Ltx) or hardly observable (i.e. Grx and Lrx), I assume

Gtx +Grx − Ltx − Lrx = 0 in the following, leading to a simplified link budget defined as:
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Prx = Ptx − Lp (3.2)

Intuitively, Eq. 3.2 thus states that the signal strength observed on a MS solely depends on

the output power of the connected antenna and the loss in signal strength that occurs along the

way between antenna and MS. Given the abundance of available models, I follow the guidance

of the European Conference of Postal and Telecommunications Administrations (CEPT) on ra-

dio propagation simulation for mobile services and opt for the widely popular extended HATA

model (Green and Wang, 2002), named after Masaharu Hata, the author of the 1980 landmark

study on the ”Empirical Formula for Propagation Loss in Land Mobile Radio Services” (Hata,

1980). It is derived from the COST-231 HATA model (Damasso, 1999), which in turn builds

on the original HATA (Hata, 1980) and Okumura model (Okumura et al., 1968). They all

have in common that they are empirical models to estimate the median path loss between a

transmitter and a receiver based on real-world measurements. The HATA model extends the

Okumura model by distinguishing between urban, suburban and rural settings, thus accounting

for different levels of mean attenuation due to obstacles and changes in terrain. The COST-

231 HATA model increases the frequency range of the original HATA model. The extended

HATA model is applicable for settings with frequencies f between 30-3000 MHz, distances d

between 0-100km, transmitter heights htx between 30-200m and receiver heights hrx between

1-10m. The general form of the extended HATA model LEH
p consists of a loss function L for

the median path loss and a path loss variation term V drawn from a log-normal distribution that

accounts for the stochastic nature of radio propagation1.

LEH
p (f, d, htx, hrx, env) = L(f, d, htx, hrx, env) + V (µ, σ, d) (3.3)

As an example, I provide the path loss function of the extended HATA model LEH
p for

distances above 0.1km outdoor in rural areas for frequencies between 150 and 1500 MHz:

LEH
p = 69.6+

46.09 ∗ log10 f−

13.82 ∗ log10 htx+

(44.9− 6.55 ∗ log10 htx) ∗ log10 d−

(1.1 ∗ log10 f − 0.7) ∗ hrx−

20 ∗ log10(hrx/10)−

20 ∗ log10(htx/30)−

4.78 ∗ (log10 f)2−

40.14+

V (12, 12)

(3.4)

1Since model parameters vary depending on the distance, the expected environment env (indoor/outdoor and
rural/suburban/urban) and the frequency, the full extended HATA model is not spelled out in this paper, but can be
accessed here: https://ecocfl.cept.org/display/SH/A17.3.1+Outdoor-outdoor+propagation
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So, for example, an MS 1m above the ground at a line-of-sight distance of 3km in a rural

area to an omnidirectional antenna that is 30m above the ground transmitting at the 900 MHz

frequency band would experience a path loss of LEH
p ≈ 118dBm. Assuming a GSM macro-

cell with an output power Ptx = 43dBm using Eq. 3.2 yields a budget for that link, also

known as received signal strength (RSS), of Prx = Ptx − LEH
p ≈ −75dBm. As a rule of

thumb, signals with RSS values above −80dBm are considered excellent, RSS values below

−110dBm point to very poor signals.

3.3 Methodology

Usually, statistical data on individuals or households are geo-located to statistical areas via their

respective places of residence. Further, unit-level data is aggregated to area-level aggregates

using some form of weighting factor such as survey weights. For example, the poverty rate of

a region can either be calculated as the share of units classified as poor among the interviewed

residents of the region multiplied by their sampling weight or via sub-regional poverty rates

weighted with the respective sub-regional population counts. However, neither the places of

residences nor the weights are generally available on the cell-level of a mobile network (as an

equivalent to the sub-region). Hence, they need to be estimated.

In mobile phone metadata analysis, the place of residence of an individual/household is

usually approximated with the night-time home location of an MS recorded at the cell-level.

To derive survey weight proxies, for example, point-to-polygon allocation assumes equal

weights for all cells point-located within a statistical area. Voronoi tessellation uses the area

size of the intersection of voronoi tile and statistical area as weighting factor, i.e. 1 km2

always conveys the same importance in aggregation, no matter whether it is 1 km2 of sparsely-

inhabited desert or 1 km2 of a densely-populated city.

In most cases, the place of residence of an individual/household (thus is approximation

alike) is linked to some form of settlement. However, neither the statistical area nor the cover-

age area of a cell account for that fact. Consequently, the underlying idea behind the proposed

methodology is to use human settlement information extracted from publicly available satellite

imagery as common geographic reference level for both statistical units such as households

and home-located MS. This allows to a) construct weights based on settlement counts and b)

refine weights in cases where MS counts, often regarded as highly sensitive information by

the MNO, are available. Further, in combination with technical information on the antenna,

it allows for an efficient coverage estimation to address the issues of holes and overlaps in a

mobile network.

In the following, settlements are denoted as i, BTS as j, statistical areas as t, the number of

home-located MS as d, the population count as p, the number of settlements as n and metadata

covariates as R. To illustrate the value added of the proposed methodologies, Fig 3.2a and

Table 3.1 showcase a typical setup faced when one seeks to augment official statistics with mo-

bile phone metadata: statistical indicators are provided for statistical areas A, B and C. Mobile

phone metadata is provided as BTS-level aggregates with the corresponding point locations 1

and 2. To account for that, I treat each cell site that may host multiple antennas as single omni-
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directional antenna, calling it BTS subsequently. This constitutes a simplification of real mobile

networks where usually multiple directional antennas serving on various frequency bands are

co-located at the same site that does not necessarily have to be an actual (cell) tower. Although

accounting for directionality of antennas as done by e.g. Ricciato et al. (2017) is likely to affect

the overall outcome of later analysis by increasing the number of network tiles available for

mapping, the challenges for allocating them correctly (holes, non-linearities, overlaps, within-

cell heterogeneity) remain. Consequently, it is expected that results from this study also apply

to a setup based on directional antennas, thereby justifying the simplifying assumption. Further

details on Figs 3.2b - 3.2f are provided in the following subsections.

Table 3.1: Example of statistical data and mobile phone metadata.

area id poverty rate
1 0.23
2 0.11

bts id # of calls lon lat
6453 34050 43.2344 23.2342
8348 1023 50.0988 18.84217

(a) Setup (b) Point-to-Polygon (c) Voronoi

(d) Augmented Voronoi (e) BSA (f) IDW

Figure 3.2: Popular and proposed mapping schemes.
Three statistical areas (A-C), two BTS (1-2) and numerous dots representing built-up areas
illustrate how different mapping schemes affect the allocation of BTS-level data to statistical
data.

3.3.1 Point-to-polygon allocation

For purposes such as model fitting one approach to combine statistical data and mobile phone

metadata is to aggregate metadata covariates onto the same geographical level, e.g. statistical

areas. To do so, the point-to-polygon approach (p2p) treats BTS point locations as such and

allocates BTS-level metadata covariates using a binary weighting scheme (see Fig 3.2b and Eq.

3.5).

wp2p
j,t :=

1 if j ⊆ t

0 otherwise
(3.5)
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Consequently, all network traffic handled by a BTS is attributed to one statistical area exclu-

sively, no matter whether it was generated by a home-located MS actually ’residing’ in this

area or not. In the toy example, but also in the real-world application presented in Section 3.5

this leads to a situation where no metadata covariates are available for certain area, e.g. area C

- with negative effects on the final sample size in model fitting.

3.3.2 Voronoi tessellation

In contrast, voronoi tessellation (denoted by superscript v) divides the total space of interest

into perfectly disjunct tiles along the equidistant lines between points, in this case the BTS

point locations (see Fig 3.2c). The current state-of-the-art procedure is to intersect these tiles

- representing approximated coverage areas of BTS - with the statistical areas. The weights to

aggregate BTS-level metadata covariates to the respective statistical area are derived from the

size of the intersection of tiles aj and at of BTS j and statistical area t, respectively, in relation

to the total size of at, also expressed as

wv
j,t :=

aj ∩ at
at

(3.6)

In the toy example of Fig 3.2c, this would reduce to be the intersection of e.g. statistical area

A and the voronoi tile of BTS 1 divided by the total area of A. However, as mentioned above,

area sizes are used in that approach to approximate the (usually) unknown population counts

per intersection by implicitly assuming homogeneous distribution of the population within a

given statistical area.

3.3.3 Augmented voronoi tessellation

The proposed settlement-based mapping schemes relax this obviously strong assumption by

assuming a homogeneous housing structure instead, i.e. a constant population density per

settlement area within a given statistical area. Applied to voronoi tessellation, Figs 3.2c and

3.2d - with settlement areas represented as dots - illustrate the difference. Instead of using the

area sizes aj and at to calculate the weights, the ”augmented” voronoi tessellation (av) uses

the number of settlements per area, denoted as nj and nt, respectively.

wav
j,t :=

nj ∩ nt
nt

(3.7)

Consequently, statistical area-level covariates can easily be acquired for both approaches using

a weighted average (or a weighted median) on BTS-level data.

R̂t =

J∑
j=1

wj,tRj (3.8)

Going back to the toy example, while BTS 1 covers the smaller part of C in Fig 3.2c, thus

receives a smaller weight in the calculation of area-level metadata aggregates, it looks different

in Fig 3.2d when comparing the number of settlements, represented by green and purple dots.

This way, the proposed methodology accounts for within-cell heterogeneity of the population
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distribution.

Both voronoi tessellation and augmented voronoi tessellation splits the full space of inter-

est into disjunct tiles. Applied to a mobile network this means ubiquituous coverage and zero

redundancies, i.e. all dots are uniquely associated to a specific BTS in the toy example. Again

this is a strong assumption that most likely does not hold true in any real-world application. To

relax this assumption by introducing holes and overlaps in the network coverage, additional in-

formation are necessary that allow for the estimation of coverage measures such as the received

signal strength (RSS) at any given point in space. Fig 3.2e exemplifies the consequences: Some

settlements are not covered (black dots) and some settlements, even though closer to one BTS,

receive a stronger signal from a more distant BTS. Assuming coverages are correctly estimated

in Figs 3.2e and 3.2f, it demonstrates that point-to-polygon allocation tends to underestimate

the coverage of statistical areas while voronoi tessellation tends to overestimate it.

3.3.4 Propagation-based mapping schemes

Previously presented schemes follow a ’BTS-centric’ approach by first determining the respec-

tive coverage area of a BTS and then analyzing potential overlaps with other places of interest

such as settlements. In contrast, propagation-based schemes follow an ’MS-centric’ approach

by looking at the connectivity at the place of interest, i.e. the place of usual residence or the

home location first and then estimating which (group of) BTS it most likely serves. As outlined

in Section 3.2.2, multiple ways exist to estimate the ’connectivity’ of an MS, but all require at

least information on the distance to the surrounding BTS and additional technical specifica-

tions. With that, the serving BTS can be determined at each place of interest, thus allowing

for a more nuanced coverage mapping. Here, settlements can provide a common geographic

reference for the place usual residence and the home location alike.

Best server area (BSA)

In mobile networks, an MS usually connects to the antenna that offers the strongest signal.

Thus, the settlement-level weight is 1 for the BTS with the strongest signal and 0 otherwise.

wbsa
i,j :=

1 if Prx,i,j = max(Prx,i,·)

0 otherwise,
(3.9)

Links weaker than a certain threshold (e.g. a Prx value below - 110 dBm) can be discarded

as they represent ’dead’ links. This way the approach accounts for holes in the network cov-

erage. The weights wi,j express the importance of a BTS for a pixel. Similarly to Eq. 3.8,

they can be used to determine the statistical area-level covariate estimates R̂t using a weighted

average:

R̂t =

nt∑
i=1

wi,j∑nt
i=1wi,j

Rj (3.10)

Due to the binary nature of the weight,
∑nt

i=1wi,j represents the number of settlements

with mobile coverage within a given statistical area. In areas with homogeneous network
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infrastructure and full coverage, the best server approach closely resembles the augmented

voronoi tessellation with the difference that path loss increases non-linearly with the distance,

i.e. locations very close to the location of a BTS may be served by another, more distant one.

Inverse signal strength

Radio propagation is stochastic by nature. Changing environmental conditions and varying

network loads affect the RSS at a given location across time. Consequently, the strongest

signal is not always provided by the same BTS. In order to assure quality of service, mobile

networks usually exhibit a certain number of overlaps. To account for that, I calculate inverse

distance weights (IDW) for each pixel i using the median link budget Prx,i,j as non-linear

distance measure (see Eq. 3.11) to the k-nearest antennas. s denotes a tuning parameter, where

s = 0 reduces widw
i,j to a fixed weight per BTS and a large s can be used to approximate the

best server approach.

widw
i,j :=

vi,j∑ki
j=1 vi,j

with vi,j :=
1

|Prx,i,j |s
∀j ∈ ki (3.11)

Here again, widw
i,j can be used to calculate statistical area-level weighted averages of BTS-

level mobile phone metadata covariates as presented in Eq. 3.10.

3.3.5 Potential extensions

Depending on data availability, the methodology can further be extended. While MNOs often

regard MS counts as highly sensitive information since they reveal a detailed picture of local

market shares, they can be used to further refine the weights towards more accurate population

counts. Ricciato et al. (2017) presents elaborate approaches to use MS counts and advanced

technical network specifications to derive high-resolution population density estimates from

signalling data.

Further, high-resolution population grid estimates such as provided by WorldPop at 100x100m

(Stevens et al., 2015) can be used as an alternative to binary settlement data. Here, ŵi,j can be

substituted with the estimated population count p̂i per pixel directly extracted from the image.

3.4 Simulation

In order to evaluate the underlying motivation behind this methodology, i.e. more accurate

mapping schemes produce more accurate outcomes, I test the performance of the different

mapping approaches in terms of their overlap with the true coverage area and the accuracy of

the predictions in a controlled setting with groundtruth information. Therefore, I run a sim-

ulation T = 1000 times on a synthetic population grid in which I re-distribute individuals,

their poverty status, BTS locations and technical BTS specifications randomly. I observe the

geographical overlap of the true and the estimated coverage areas, the overlap in home-located

settlements and the correlation between the true and the estimated variable of interest (in this

case the poverty rate). The main challenge in this simulation is to create ”true” coverage areas

for each BTS that provide a realistic, but simplified benchmark for this study. Consequently, I
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opt for the extended HATA model. The choice is motivated by a series of propagation model

evaluations using real-world measurements, notably Sharma RK Singh (2010); Abhayaward-

hana et al. (2005) and Phillips et al. (2011). The stochastic component within the HATA model

is disabled in order to isolate the effect of interest.

3.4.1 Setup

I simulate a country including a major city, an uninhabited area such as a large lake or a national

park and rural area otherwise using a 1000 x 1000 grid where each quadratic pixel represents an

edge length of 100m. The urban area is divided into 16 equally-sized (50 x 50 pixel) small sta-

tistical areas, whereas the rural area is divided into 24 larger ones (200 x 200 pixel). I randomly

distribute one million individuals across the grid using a multivariate normal distributions with

µx = 10, µy = 10, Σx = [50, 0] and Σy = [0, 50] for the urban area (1/2 of the total pop-

ulation) and varying parameter values for the rural centers and a uniform distribution for the

remaining rural area. Pixel-level population counts are calculated from individual-level data.

Fig 3.3 shows an example of the settlement distribution across space and the corresponding

population density.

(a) Settlements (b) Population density

Figure 3.3: Simulation setup - Settlements.
(a) shows locations of the built-up areas in a hypothetical country, while (b) shows the corre-
sponding population density in these areas (the brighter the colour, the higher the population
density).

In the next step, I randomly assign a poverty rate to each pixel. First, I generate a 4x4-pixel

poverty grid for which I calculate the population density (see Fig 3.4b). In order to account

for differences in the poverty rate between urban and rural areas, I randomly draw from a

uniform distribution with values between 0 and 1 and multiply it with the inverted normalized

population density. This poverty rate serves as the mean µ for randomly assigning poverty

rates to settlements within the respective grid area using a normal distribution N(µ, σ) with

σ = 0.5. Values below 0 and above 1 are windsorized. This two-step procedure tries to limit

good predictive performances for areas not actually covered due to inference facilitated by

the same underlying data generating process. Further, I assume that every inhabitant has one

and only one MS and that there exists an indicator derived from mobile phone metadata that
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perfectly correlates with the true poverty rate of a given set of MS. Consequently, deviations in

the correlation between the poverty rate captured via the ”true” coverage area and the poverty

rate captured via the estimated coverage area exclusively originate in their coverage mismatch.

(a) Area-level poverty rates

(b) Grid-level poverty rates (c) Settlement-level poverty rates

Figure 3.4: Simulation setup - True poverty rate.

In order to create a mobile network on top of that structure, I use a clustering algorithm

based on the population density (see Fig 3.5b). BTS are distributed across the country at a ratio

of roughly 1 BTS per 5,000 inhabitants in urban areas and 1 BTS per 10,000 inhabitants in

rural areas. This results in 100 urban and 50 rural BTS in this simulation. BTS are interpreted

as omnidirectional antennas and assigned specific heights, frequencies and output powers. The

specifications vary more strongly in the urban area in order to reflect the greater complexity
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of network topology generally found in metropolitan areas. Since the HATA model requires a

classification of areas into urban, suburban and rural, I use those 50% of BTS with the smallest

number of pixels associated to them by the clustering algorithm used above as urban and those

5% of BTS with the largest number of pixels as rural, suburban otherwise. At the end, BTS

heights are between 15 - 60 m with frequencies at 900 MHz and 2100 MHz and output power

between 40 and 47 dBm. The MS height is fixed at 1m above ground level.

(a) BTS locations (b) BTS locations and settlements

Figure 3.5: Simulation setup - BTS locations.

Based on these technical specifications, the true coverage areas and the true home locations

of the settlements using the extended HATA model are calculated and used to create benchmark

estimates of the true poverty rate. The results are then compared against estimates from point-

to-polygon allocation, voronoi tessellation, augmented voronoi tessellation and BSA and IDW

approaches of a naı̈ve (’simple’) version of the extended HATA model that does not know the

exact technical BTS specifications, but makes an educated guess based on publicly available

information such as the frequencies used in the country and the location of urban centers. Fig

3.6 exemplifies how the approaches differ in terms of geographical coverage.

The results are compared in three different ways: How much do they overlap geographi-

cally? How much do they overlap in terms of home-located settlements? How well do they

predict the true poverty rate of a given statistical area?

3.4.2 Results

Table 3.2 shows the best performing approach in each round across round for all five perfor-

mance indicators. Performance differences between voronoi tessellation versus the augmented

voronoi tessellation and the augmented voronoi tessellation versus the HATA (BSA) approach

showcase the relative contribution of settlement weighting and radio-propagation modelling,

respectively. As expected, the simple HATA model clearly outperforms the other mapping ap-

proaches in terms of overlap, both geographically with the true coverage area (see Table 3.3)

as well as concerning the home-located settlements (see Table 3.4). As the settlement-based

approaches do only affect the calculation of weights and not of the coverage area, the coverage

results are identical for voronoi tessellation and augmented voronoi tessellation and for the two

HATA approaches, respectively. However, this advantage is not reflected to a similar extent in
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(a) Point-to-Polygon (b) Voronoi tessellation

(c) HATA (BSA) (d) HATA (IDW)

Figure 3.6: Coverage areas exemplified.

the predictive performance.

Table 3.2: Best performing approach by round across rounds (in %).

Mapping
Coverage Prediction

Geography Settlements R2 Bias RMSE

Point 0.0 0.0 27.5 28.2 28.6
Voronoi

0.0 0.07
2.6 9.9 2.1

Aug. Voronoi (GUF) 35.5 33.1 36.8
HATA (GUF, BSA)

100.0 99.3
29.7 13.7 27.7

HATA (GUF, IDW) 4.7 15.1 4.8

Table 3.3: Geographical overlap with true coverage area (in %).

Mapping Total Rural Suburban Urban

Point 25.8 15.3 30.9 22.3
Voronoi 30.7 14.1 25.5 37.0
Simple HATA 55.3 80.1 62.1 46.7

Interestingly, the HATA (IDW) approach performs poorly in prediction in contrast to the
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Table 3.4: Overlap with true home-located settlements (in %).

Mapping Total Rural Suburban Urban

Point 16.9 44.3 15.9 14.9
Voronoi 54.2 56.8 60.7 48.0
Simple HATA 59.7 87.6 66.5 50.6

HATA (BSA) approach. This is due to the fact that the poverty rate in the true coverage area

is calculated based on a deterministic home location, i.e. it is calculated from a constant set of

settlements. This coincides directly with the mode-based HATA (BSA) approach, however, it

does not reflect most real-world settings, in which stochastic radio propagation and overlapping

coverage areas lead to situations where the captured poverty rate by the BTS is sourced from

varying sets of settlements. The HATA (IDW) approach addresses this setup. Consequently, it

is expected that the differences between these two approaches at least diminish in the applica-

tion with real-world data in Section 3.5. Also, deviations of the HATA (BSA) approach from

the benchmark exclusively originate in the technical misspecifications as the true coverage area

is calculated from a correctly specified HATA model. The network complexity faced in real-

world settings is expected to further undermine the accuracy of propagation-based mapping

schemes.

Looking at the performance of the two voronoi approaches in Table 3.2 the value added of

using settlement information becomes apparent. Recalling the setup, the simulation assumes

error-free human settlement identification. This, again, may not hold true in a real-world ap-

plication as some buildings may not be detected while some detected buildings may not be in-

habited. Consequently, it is expected that the difference between thee two voronoi approaches

will be less stark in the application.

Fig 3.7 shows the distribution of the three performance indicators across rounds for those

statistical areas for which every mapping scheme can provide estimates. On average, this re-

duces the underlying set of observations from 40 to 32 (see the sample sizes in Table 3.5). The

result for the true coverage area are represented as benchmark for the other approaches as it

estimates the settlement-level poverty rates actually captured by the respective BTS. Conse-

quently, the benchmark should provide the upper bound for the R2 and the lower bound for the

bias and the RMSE in each round. Deviations thereof may only be due to spurious correlation.

Table 3.5: Area-level correlation of estimated and true poverty rate & sample size.

Mapping ρ n ρRural nRural ρUrban nUrban

Benchmark 0.905 40 0.734 24 0.971 16
Point 0.930 36 0.828 20 0.940 16
Voronoi 0.873 40 0.622 24 0.966 16
Aug. Voronoi 0.896 40 0.715 24 0.966 16
Simple HATA (BSA) 0.897 40 0.717 24 0.957 16
Simple HATA (IDW) 0.885 40 0.670 24 0.962 16

The sample size difference also explains the difference between the performance of the
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(a) R2

(b) Bias

(c) RMSE

Figure 3.7: Estimating the true poverty rate for statistical areas.
Distribution of the three performance metrics adjusted R2, bias and RMSE with the estimated
poverty rate using the true coverage area, i.e. built-up areas perfectly allocated to BTS, as
’Benchmark’ across 1000 simulation runs.

point-to-polygon approach in terms of correlation in Table 3.5 vis-à-vis the performance met-

rics, especially in rural areas. Point-to-polygon allocation does not provide poverty estimates

for 8 out of 40 statistical areas, on average, as they do not host a BTS (cf. Figs 3.6b). As

both poverty rate and BTS allocation is linked to the population density by design, it can be

expected that the predictive performance for rural areas not hosting a BTS are poor as they are

generated from different underlying distributions.

However, this does not fully explain the performance differences between the approaches.

On one hand, statistical areas are quite large, thus most of the BTS experience little overlaps in

their true coverage area with other statistical areas. Consequently, the statistical area provides a
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decent approximation for the coverage. In contrast, simple voronoi tessellation with geograph-

ical weights tends to overemphasize the importance of remote areas as a) it assumes to cover

areas for which data is actually not captured and b) BTS are usually located in close proximity

to populated areas while serving remote areas further away as a side effect of it. This may

be especially relevant in situations with large between-variation among statistical areas, strong

population clusters and imperfect mobile network coverage. While b) is accounted for in the

simulation, only approx. 0.1 % of the settlements are not covered by the network. Although this

in line with the mobile network coverage in most countries, it can be expected that propagation-

based schemes that account for holes in the mobile network outperform established approaches

in setups with poor coverage.

3.5 Application

In their 2017 study on estimating literacy rates in Senegal published in the Journal of the

Royal Statistical Society Series A, Schmid et al. (2017) use point-to-polygon allocation to map

BTS point locations to statistical areas (communes). I revisit the design-based simulation of

the study and extend it with four alternative mapping schemes, notably voronoi tessellation,

satellite-augmented voronoi tessellation and the herein presented propagation-based coverage

estimation methods using the best server area approach and the inverse signal strength weights.

I compare the outcomes of all five schemes in terms of bias, root mean squared error (RMSE)

and adjusted R2.

3.5.1 Situation in Senegal

The application draws on real-world data from Orange-Sonatel for the year of 2013 (de Mon-

tjoye et al., 2014). During that time, the MNO operated mainly on the GSM 900 (2G) band

with some UMTS 2100 (3G) deployments in urban centers. A large share of on-net traffic

(approx. 91 % of overall traffic vis-à-vis a market share of approx. 57 %) during that year

suggests a high prevalence of dual SIM use. It is expected that in this setting a negligible share

of SIM cards are used by IoT devices others than MS. Coverage advantages in rural areas sug-

gest dual-SIM use to be a phenomenon of more densely populated areas. The country exhibits

little irregularities in the terrain: The highest point of Senegal being approx. 648 m above sea

level is located at its southern border. The lowest point constitutes the sea level. Urban built-up

areas with multi-storey buildings are predominantly limited to downtown Dakar. Most of the

country is dominated by savanna with sparse high-grown vegetation.

3.5.2 Original study

In their design-based simulation, Schmid et al. (2017) implement a stratified two-stage cluster

sample design similar to the one used in large-scale household surveys such as the Demo-

graphic and Health Survey (DHS) using a 10 % random sample of a pseudo-population as

sampling frame, the 431 communes of Senegal as primary sampling units (PSUs) and the 14

regions of Senegal as strata. The authors combine the constructed ’survey’ data with covariates

extracted from mobile phone metadata on the level of communes in order to evaluate different
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small area estimation techniques using the unemployment rate as target variable of choice. The

72 available covariates are calculated on the subscriber-level using the Python library Bandi-

coot (de Montjoye et al., 2016). The subscriber-level covariates are allocated and aggregated to

a BTS using the most frequently used BTS by a subscriber between 7pm and 7am as the home

location. The BTS-level covariates are then allocated and aggregated using point-in-polygon

allocation. Variable selection is performed backwards on large communes using the Bayesian

Information Criterion. The covariates are used to generate small area unemployment rate es-

timates using a transformed Fay-Herriot model. Finally, Schmid et al. evaluate the small area

estimates against the ’true’ pseudo-population aggregates in 500 simulation runs using bias and

RSME for a) communes covered by the survey (in-sample) b) communes not covered by the

survey (out-of-sample) and c) communes without covariates from mobile phone metadata. For

additional details on the setup of the original study, I refer to Schmid et al. (2017).

3.5.3 Extensions

I re-run the simulation of the original study five times thereby only varying the commune-level

matrix of covariates as inputs. Specifically, I create five distinct sets of commune-level co-

variates beforehand by applying different mapping schemes during the aggregation process of

the BTS-level data of the original study. First, I use the point-to-polygon allocation used in

the original study. Second, I apply a standard voronoi tessellation to extract spatial weights

proportional to the geographical overlap of tile and statistical area as described in Section 3.3.2

since it is used in most other studies in this field. Third, I augment the voronoi tessellation with

settlement information from GUF by taking the number of white pixels (representing (part

of) a settlement) within each section as a weight for commune-level aggregates to account for

within-cell heterogeneity. Fourth, I implement the extended HATA (BSA) model as presented

in 3.3 and GUF data. In densely populated areas, this approach closely resembles voronoi tes-

sellation, however, it allows for holes in the network and for non-linear relationships between

signal strength and distance. Fifth, I use inverse signal strength weights - HATA (IDW) - to

capture the stochastic nature of a link.

Comparing Figs 3.8c and d to the direct estimator (Fig 3.8b) shows the benefits of augment-

ing survey data with mobile phone metadata: providing estimates for small areas not originally

covered by the survey. Looking at settlements in Fig 3.8a, it is noteworthy that one commune -

Thietty in the region Kolda - does not appear to host any settlement identified as such in GUF

data. While official population numbers do not support this view, it underlines the fact that in-

formation extracted from satellite imagery, e.g. settlement classifications, are subject to some

degree of uncertainty.

3.5.4 Assumptions

In contrast to point-to-polygon allocation and voronoi tessellation, the extended HATA model

requires additional technical antenna specifications, notably the antenna and receiver height,

the frequency and the transmitter power. As additional information are not available in the

original study, I make following assumptions: I fix both the antenna height htx and the re-

ceiver height hrx at the lower bound of the extended HATA model, which is 30 m and 1 m,
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(a) Settlements (b) Direct estimate

(c) Point-to-Polygon (d) Voronoi

Figure 3.8: Commune-level coverage areas in Senegal.
Areas for which estimates of indicators of interest are available are coloured in red. Lower
resolution built-settlements extents data reprinted from WorldPop (2018) under a CC BY li-
cense, with permission from WorldPop, original copyright 2018, are used in (a) for illustrative
purposes.

respectively, both located outdoors with line-of-sight and a transceiver installed above the roof.

As most of Senegal is flat without high multi-storey buildings except in downtown Dakar and

in large parts no high-grown vegetation this assumption appears reasonable. Further, I fix the

frequency in rural areas at 900 MHz and in urban centers at 2100 MHz and I interpret BTS as

omnidirectional antennas with an output power of 45 dBm. This is clearly a simplification of

the actual network topology, especially in urban areas with a mix of directed micro and macro

cells. However, in Senegal in 2013, 4G has not yet been introduced and Orange-Sonatel was

operating 3G (on the 2100 MHz frequency band) only in urban areas. The remaining country

was served with 2G technology on the 900 MHz band. Comparing own estimates with cover-

age area estimates for 2G in 2017 published by Sonatel (2019) allows for a rough sanity check

for the assumptions.

While Senegal offers an official classification of rural and urban on the commune-level, it

is imperfect for the purposes of this study, as it takes a wide variety of non-network-specific

factors into account. This leads to a situation where places with a high population density, e.g.

Touba Mosque, are classified as commune rurale. Instead, I use BTS density per km2 as a
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proxy for urbanity with a threshold of 1. Communes with more than one BTS per km2 are

classified as urban, those 50% of the communes with the lowest site density are classified as

rural, the remaining communes are classified as suburban. This represents a more network-

oriented measure of urbanity and is also in line with the area type classification of the HATA

model.

3.5.5 Results

Similar to Table 3.2 in the simulation, Table 3.6 shows which mapping scheme performed best

across the 500 evaluation rounds. Confirming initial findings of Section 3.4, there is no clear

winner. While point-to-polygon allocation performs best in out-of-sample predictions in terms

of RMSE (54.0 % of the rounds), it performs poorest in in-sample predictions. One possible

explanation is that the lower average number of predictors used across rounds reduces the

effects of overfitting. While HATA (IDW), HATA (BSA) and the augmented voronoi approach

perform well across performance metrics, the overall difference between the approaches is

limited (see Fig 3.9 and Table 3.7).

Table 3.6: Best performing approach by round across rounds (in %).

Mapping
Adj. R2 Bias RMSE Avg. # of

predictorsin in out in out

Point 6.0 16.4 23.2 12.6 54.0 4.2
Voronoi 10.2 21.0 16.6 21.6 22.8 5.0
Aug. Voronoi (GUF) 27.2 22.6 18.0 33.2 5.2 6.5
HATA (GUF, BSA) 27.0 21.8 16.4 18.0 7.8 6.4
HATA (GUF, IDW) 29.6 18.2 25.8 14.6 10.2 6.2

Table 3.7: Correlation with true unemployment rate and sample size in Senegal.

Mapping ρ n ρin nin ρout nout ρooc nooc

Point 0.535 431 0.765 192 0.320 210 0.355 29
Voronoi 0.542 431 0.778 196 0.313 235 - 0
Aug. Voronoi (GUF) 0.519 431 0.780 195 0.280 233 0.586 3
HATA (GUF, BSA) 0.511 431 0.770 194 0.269 232 0.670 5
HATA (GUF, IDW) 0.527 431 0.781 196 0.308 234 - 1

In contrast, urban communes do not perform significantly better than rural ones as sug-

gested by the simulation results. Table 3.8 shows, similar to Table 3.5 for the simulation, the

correlation between the actual and predicted commune-level unemployment rates. Fig 3.10

shows an orientation along the diagonal signalling overall good fit. A possible explanation

is that the structural relationship of mobile phone metadata covariates and the unemployment

rate is captured more robustly for rural areas as they constitute 385 out of 431 communes

in Senegal. To test this explanation, Tables B.1 and B.2 in the Supplementary material B.1

show the results for in-sample and out-of-sample predictions by commune status, respectively.
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(a) Adjusted R2

(b) Bias

(c) RMSE

Figure 3.9: Evaluation of poverty rate estimates for in-sample communes.
Distribution of the three performance metrics adjusted R2, bias and RMSE across 500 simu-
lation runs on a comparable set of communes. The typical trade-off between the bias and the
variance of a small area estimator vis-à-vis the direct survey estimator becomes apparent.

While urban communes outperform rural ones in in-sample prediction they fare worse for in

the out-of-sample setting, thus supporting the aforementioned hypothesis.

While settlement-based mapping schemes exhibit improvements in the model fit compared

to point allocation or voronoi tessellation, they do not translate into major efficiency gains in

terms of bias and rmse (see Fig 3.9b and c). Possible reasons are threefold: There is a signifi-

cant classification error in the settlement data. The complete absence of settlements in Thietty,

Kolda, support this assumption. As a cross-check, I re-run the analysis with an alternative

source of settlement information. Specifically, I use high-resolution population density esti-

mates from WorldPop (Stevens et al., 2015), however, it does not lead to gains in efficiency
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Figure 3.10: True vs. estimated unemployment rate by commune status for a single simu-
lation run.
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Table 3.8: Area-level correlation of estimated and true unemployment rate & sample size.

Mapping ρ n ρRural nRural ρUrban nUrban

Point 0.535 431 0.507 385 0.527 46
Voronoi 0.542 431 0.519 385 0.469 46
Aug. Voronoi 0.519 431 0.495 385 0.411 46
Simple HATA (BSA) 0.511 431 0.487 385 0.374 46
Simple HATA (IDW) 0.527 431 0.510 385 0.369 46

(cf. Table B.3 in Supplementary material B.1). Second, there is high spatial auto-correlation,

thus little structural difference between the densely and sparsely populated areas in terms of

the variable of interest - here unemployment - so even though latter are overemphasized in the

calculations, it does not affect the outcome predictions. Here, I re-run the application with

alternative variables of interest, i.e. the literacy rate and the population count (cf. Tables B.4

and B.5 in Supplementary material B.1); again, without significant efficiency gains versa point

allocation and voronoi tessellation. Third, there is little within-area variation of the popula-

tion density so that geographic weights and settlement-based weights are very similar. The

correlation coefficient between the weights of the two voronoi approaches confirm that with

ρ = 0.98. Also, I use the 100 meters x 100 meters population estimates from WorldPop to

extract commune-specific variation coefficients. For 76.8 % of the communes, the within-

commune variance is below 1, for 4 % it is above 100 with a maximum at 3553.4.

In general, the value added of using propagation-based mapping schemes appears to be

negligible in this application, even though official coverage area estimates by Sonatel (2019)

hint at the abundant presence of both overlaps and holes in the mobile network. A potential

explanation is that the simplified HATA model is misspecified to an extent where the introduced

errors cancel out the potential benefits. Looking at the specifications used in the application,

this is most likely due to an underestimation of the coverage as the augmented voronoi approach

closely resembles the upper bound for an overestimation using the HATA (BSA) within a - by

assumption - largely homogeneous network.

3.6 Conclusion

Augmenting official statistics with mobile phone metadata still faces multiple methodologi-

cal challenges, one of them is finding a common reference unit. As record-linkage on the

individual-level presents considerable privacy risks a common procedure is to combine ag-

gregates of these two disparate data sources on a geographical level. However, the stochastic

nature of radio propagation makes it difficult to pin down coverage areas of the mobile network.

Based on this study the good news is that it does not have to be complicated if supervised learn-

ing / prediction is the goal. While propagation-based models can help to refine the accuracy

of coverage area estimation, it does not greatly impact the quality of the outcome predictions.

One reason is that usually cells are located in a way that they provide a good service to as many

MS as possible. As radio signals fade over distance, this means they are in close proximity

to areas with high demand, i.e. densely populated places. Mapping schemes, in turn, mainly
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differ from each other when looking at the limits of a cell. However, most of the traffic which

is correlated with statistical data for training/prediction is generated nearby, so the differences

between mapping schemes become less relevant. Also, while geographical weights as used in

most applications in this field ignore heterogeneity occurring within the cells, the correspond-

ing statistical areas are often significantly larger. Therefore, cross-border cells, which could

actually profit from weighting schemes that take within-cell heterogeneity into account, occur

less frequent. In addition, cells and administrative (thus often statistical) areas are intimately

linked via population clusters as both tend to be centered around them.

However, this study just provided initial evidence to inform future mapping choices and

could be extended in multiple ways: First, both in the simulation and the application direc-

tional antennas are combined to omnidirectional antennas. While this is motivated by the

typical data availability in real-world applications, it is of course a strong simplification of

the actual network topology. As the lower bound of spatial heterogeneity captured is given

by the number of unique areas resulting from intersecting coverage areas and statistical ar-

eas, studies such as Ricciato et al. (2017) have shown that moving from an BTS-oriented to a

cell-oriented analysis could greatly affect analysis, especially via potential increases in sample

size. However, it needs further investigation how refined mapping schemes can add further

value, particularly in the presence of measurement uncertainty, to supervised learning setups in

cell-level analysis. Second, the study used comparatively simple empirical propagation models

based on real-world measurements largely ignoring actual environments. More advanced prop-

agation models exist, however, they require significantly more computing resources that could

limit their applicability as they take the physical surrounding via digital surface models into

account. Nevertheless, investigating this constitutes an interesting path for further research.
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Supplementary material B

B.1 Cross-checks of application results

B.1.1 Rural-urban performance differences

As stated in the application of the paper, urban communes do not perform significantly better

than rural ones as suggested by the simulation results. A possible reason could be that the

estimation of urban areas is less robust as there are less urban communes than rural ones in

Senegal. Tables B.1 and B.2 show the results for in-sample and out-of-sample predictions by

commune status, respectively.

Table B.1: In-sample area-level correlation of estimated and true unemployment rate &
sample size.

Mapping ρ n ρRural nRural ρUrban nUrban

Point 0.765 191 0.745 176 0.789 16
Voronoi 0.778 196 0.759 180 0.786 16
Aug. Voronoi 0.780 195 0.762 179 0.777 16
Simple HATA (BSA) 0.770 194 0.750 178 0.783 16
Simple HATA (IDW) 0.771 196 0.751 180 0.784 16

Table B.2: Out-of-sample area-level correlation of estimated and true unemployment rate
& sample size.

Mapping ρ n ρRural nRural ρUrban nUrban

Point 0.320 210 0.275 180 0.308 30
Voronoi 0.313 235 0.283 205 0.297 30
Aug. Voronoi 0.280 233 0.246 203 0.211 30
Simple HATA (BSA) 0.269 232 0.238 202 0.141 30
Simple HATA (IDW) 0.308 234 0.285 204 0.225 30

B.1.2 Classification error in the settlement data

Even though GUF data is supposed to have a true positive rate of 85 % on average, with

68 % at lowest and 98 % at heighest, two Senegalese communes host no settlements. This

hints at the presence of classification error in the settlement data that may lead to efficiency
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losses in the estimation process. To investigate it further, I use an alternative source of settle-

ment information. While GUF data is generated from satellite imagery only ( 180.000 single

TerraSAR-X/TanDEM-X image products) at 0.4 arcseconds, WPG data is based on Random

Forest-based dasymetric mapping approach using a wide variety of input data including land-

cover information from MERIS imagery, night-time lights, distance information to various

thematic land-cover classes etc at approx. 3 arcseconds.

Table B.3: Best performing approach for unemployment rate by round across rounds (in
%).

Mapping
Adj. R2 Bias RMSE Avg. # of

predictorsin in out in out

Point 4.6 12.4 15.2 9.0 40.8 4.2
Voronoi 6.2 13.0 10.0 12.2 15.4 5.0
Aug. Voronoi (GUF) 18.2 16.4 10.4 17.6 2.2 6.5
HATA (GUF, BSA) 17.2 16.8 10.2 9.4 4.6 6.4
HATA (GUF, IDW) 18.6 9.8 15.2 6.0 6.4 6.2
Aug. Voronoi (WPG) 12.0 11.4 13.2 13.0 7.2 6.0
HATA (WPG, BSA) 12.8 14.0 14.0 17.2 5.4 5.9
HATA (WPG, IDW) 10.4 6.2 11.8 15.6 18.0 5.0

B.1.3 Additional outcomes of interest

The following two tables provide results for two additional outcomes of interest, in this case

the literacy rate and the population count.

Table B.4: Best performing approach for literacy rate by round across rounds (in %).

Mapping
Adj. R2 Bias RMSE Avg. # of

predictorsin in out in out

Point 59.2 14.6 93.8 70.4 77.4 5.6
Voronoi 1.0 13.0 0.6 0.8 0.2 5.1
Aug. Voronoi (GUF) 4.2 10.2 1.0 10.6 19.4 5.3
HATA (GUF, BSA) 6.8 7.4 0.8 1.6 0.4 5.5
HATA (GUF, IDW) 1.0 5.4 1.8 1.8 0.8 4.9
Aug. Voronoi (WPG) 14.6 10.4 1.8 3.6 0.8 5.6
HATA (WPG, BSA) 8.2 7.2 0.2 10.8 0.8 5.5
HATA (WPG, IDW) 5.0 41.2 0.0 0.4 0.2 5.5

B.2 Replicating the simulation

The complete code for replicating the simulation can be found in the following GitHub repos-

itory: https://github.com/tilluz/geomatching_open. No additional files are

required.
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Table B.5: Best performing approach for population count by round across rounds (in %).

Mapping
Adj. R2 Bias RMSE Avg. # of

predictorsin in out in out

Point 23.4 17.8 5.4 14.6 0.0 6.1
Voronoi 0.0 0.2 85.4 0.2 3.4 3.2
Aug. Voronoi (GUF) 0.0 27.8 0.0 2.0 0.0 3.0
HATA (GUF, BSA) 0.2 10.2 0.0 39.4 0.0 3.8
HATA (GUF, IDW) 73.8 36.8 0.0 26.8 0.0 9.0
Aug. Voronoi (WPG) 1.2 4.0 0.0 15.6 5.2 5.3
HATA (WPG, BSA) 0.4 3.2 0.2 1.4 11.2 4.8
HATA (WPG, IDW) 1.0 0.0 9.0 0.0 80.2 4.2

B.3 Replicating the application

The complete code and necessary data for replicating the application can be found as well as

in the following GitHub repository: https://github.com/tilluz/geomatching_

open. The replication results may slightly differ from the results presented in this study as it

cannot be ensured that the 10%-sample of the census data provided by the statistical office of

Senegal are identical to the one used in this study. Following data sources not available in the

repository are necessary in order to run the code:

• spss car individus 10eme dr.sav: The 10% sample of the population part of the RG-

PHAE 2013. Access can be requested via the microdata portal of the statistical office of

Senegal (ANSD): http://anads.ansd.sn/index.php/catalog/51/

• SITE ARR LONLAT EXACT.csv: This file contains the exact tower locations of SONATEL

in 2013. Access can be requested as stated in the data availability statement of this study.

To facilitate replication, a file with slightly randomized antenna locations is provided

(SITE ARR LONLAT.csv). Keep in mind this may affect the final outcomes. The exact

locations have to be requested as stated in the data availability statement.

• sen ppp 2013.tif : This file contains the population density estimates of Senegal for the

year 2013. The data can be downloaded at the WorldPop website: https://www.

worldpop.org/doi/10.5258/SOTON/WP00645

• senegal.tif : This file contains the GUF data for Senegal at 0.4 arcseconds. Access can

be requested for scientific, non-commerical purposes via the website of the German

Aerospace Center DLR: https://www.dlr.de/eoc/en/PortalData/60/Resources/

dokumente/guf/DLR-GUF_LicenseAgreement-and-OrderForm.pdf

The application is written in Python and R. The file and folder names indicate the required

order of execution. Files 04 - 07 may not be run unless access to individual-level CDRs is

available. It may be necessary to align directory paths to make the code run properly. Please

ensure that more than 20GB RAM is available for this analysis. If needed, please contact the

corresponding author for support.
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Chapter 4

Releasing survey microdata with exact
cluster locations and additional
privacy safeguards

4.1 Introduction

Since almost hundred years, sample surveys are dominating knowledge generation in empir-

ical research. The advantages of survey sampling are obvious: with an appropriate sampling

design representative results for a population can be collected by surveying only a fraction of

it. With computer assistance, the time from collecting data to publishing results can be sped

up significantly (Granello and Wheaton, 2004). Two trends, however, increasingly challenge

the way data is collected via surveys. On the one hand, the growing demand for fast and gran-

ular information drives up sample size and thus costs. As a response, recent years have seen

a large amount of academic research on augmenting surveys with secondary data from non-

traditional data sources such as social networks, mobile phones or remote sensing in order to

overcome shortcomings in coverage, frequency and granularity with applications in fields as

diverse as population dynamics (Stevens et al., 2015; Leasure et al., 2020), socio-demographic

analysis (Pokhriyal and Jacques, 2017; Schmid et al., 2017; Subash et al., 2018; Fatehkia et al.,

2020; Chi et al., 2022), policy targeting (Blumenstock, 2018; Aiken et al., 2022), environmen-

tal mapping (Grace et al., 2019) and health research (Brown et al., 2014; Arambepola et al.,

2020). This augmentation is usually done via geographic matching, i.e. combining area-level

averages (Koebe, 2020). Since the number of matched areas corresponds to the sample size for

subsequent supervised learning tasks, finding the smallest common geographical denominator

is essential to avoid running into small sample problems. However, this is not always trivial as

sample surveys usually provide data only for a fraction of small geographic areas. On the other

hand, digital transformations across various sectors such as health care have led to an explosion

of digital personal data. It is the abundance of secondary data that amplifies re-identification

risks in published surveys as some of the information could be used to link pseudoanonymized

survey responses back to the actual respondents (Armstrong et al., 1999; Kroll and Schnell,

2016; West et al., 2017). Together with new privacy regulations such as the European General
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Data Protection Regulation (GDPR) this calls for additional precautionary measures to safe-

guard the individual’s privacy. For aggregated data releases, the introduction of differential

privacy has provided a solid mathematical framework to manage re-identification risks inde-

pendent of a potential attacker’s capabilities or prior knowledge (Dwork, 2008). With regard to

microdata dissemination strategies, a common de-identification practice today is a combination

of deletion and perturbation procedures, which include removing (unique) identifiers such as

first and last name and replacing the individual’s true location with aggregated (i.e. area-level)

and randomized information (see e.g. Andrés et al. (2013); Templ (2017); de Jonge and de

Wolf (2019)).

For example, in the Demographic and Health Survey (DHS), a major global household sur-

vey program, urban survey clusters are re-located within a 2km-radius and rural clusters within

a 5km-, sometimes even 10km-radius (Burgert et al., 2013). This location privacy procedure

has two main advantages: it does not affect the quality of the remaining (non-spatial) survey

information and it reduces the need for other privacy safeguards, e.g. deleting or perturbing

sensitive information. However, it does not provide a similar rigorous measure for privacy pro-

tection as already small sets of attributes can quickly increase the chances of re-identification,

even in incomplete, pseudonymous datasets (Rocher et al., 2019). In addition, it obviously

affects the utility of the published data when it comes to matching with auxiliary data as this

type of analysis relies on the congruence of its geographic links (Elkies et al., 2015; Warren

et al., 2016; Blankespoor et al., 2021; Hunter et al., 2021).

In that regard, advances in synthetic data generation have introduced new ways to narrow

the void between information loss and privacy protection. These methods allow for the genera-

tion of synthetic records that resemble the real data by reproducing relationships learned from

the latter. While all approaches have in common that they try to capture the joint distribution

in the original data, the ways to do so vastly differ. For example, Drechsler et al. (2008) and

Heldal and Iancu (2019) use imputation processes to decompose the multidimensional joint dis-

tribution into conditional univariate distributions. Alfons et al. (2011) and Templ et al. (2017)

use parametric models in combination with conditional re-sampling to synthesize hierarchical

relationships. As an alternative to these fully parametric approaches, Reiter (2005) and Wang

and Reiter (2012) make use of classification and regression trees (CART), while more recently,

Li et al. (2014); Zhang et al. (2017); Rocher et al. (2019); Sun et al. (2019); Torkzadehmahani

et al. (2019); Xu et al. (2019) and others have used Bayesian networks, Generative Adversarial

Networks or copulas to capture the underlying linear and non-linear relationships between the

attributes.

The challenge for data producers is to define adequate microdata dissemination strategies

that allow users to satisfy their needs, i.e. release survey microdata that can be used for sta-

tistical analysis and that are compatible with other sources of information allowing to answer

new and more detailed research questions and – at the same time – it must be ensured that the

identities of the respondents are protected.

In that regard, the Spatial Data Repository of the DHS program (Burgert-Brucker et al.,

2018) is a good example for facilitating new types of research by combining survey microdata

with geospatial covariates and gridded interpolation surfaces. However, also those products are

97



based on perturbed cluster locations, thus incurring a certain information loss.

In this paper, we propose an alternative microdata dissemination strategy that leverages the

utility of the original microdata with additional privacy safeguards through copula-generated

synthetic data. Specifically, we propose to adopt a strategy of publishing two sets of micro-

level survey data: first, the original microdata stripped of geographic identifiers below the

strata-level. Second, synthetic microdata including the true cluster locations. We show in an

experiment using Costa Rican census data from 2011 and satellite-derived auxiliary informa-

tion from WorldPop (WorldPop, 2018) that we can reduce the re-identification risk vis-à-vis

common spatial perturbation procedures, while maintaining data utility for non-spatial analy-

sis and improving data utility for spatial analysis.

From the plethora of options, we choose copulas as our synthetic data generation approach.

Copulas facilitate fine-tuning as they allow us to model the marginal distributions separately

from the joint distribution. Dating back to 1959 (Sklar, 1959) with diverse applications since,

their theoretical properties are well understood. In comparison with alternatives like GANs,

copula-based synthetic data generation has lower computational cost (Sun et al., 2019) and it is

easier to interpret (Kamthe et al., 2021). Furthermore, the procedure is in general less cumber-

some, in comparison with the steps followed by Alfons et al. (2011) to generate the synthetic

population data AAT-SILC (Artificial Austrian Statistics on Income and Living Conditions. Fi-

nally, copulas are also attractive for data producers such as National Statistical Offices as only

new nationally representative margins are required to update the synthetic microdata file (cf.

Koebe et al. (2021)). In addition, well-documented open-source tools such as the Synthetic

Data Vault (MIT Data To AI Lab, 2022) are available to users with important features such as

data transformation and constraints specification.

4.2 Results

4.2.1 Geomasking to obfuscate true survey locations

We consider a survey D as a random sample with sample size nD from a given population C.

Our unit of observations are individuals i living together in a household h. Each individual is

described by a set of attributes denoted asX1, X2, . . . Xd. While different sampling designs are

possible, we assume a commonly used complex design for larger household surveys such as the

DHS: a stratified two-stage cluster design. In the first stage, the primary sampling units (PSUs)

- usually enumeration areas from the latest census denoted as j - are selected for each stratum s

with a probability proportional to (population) size πj . In the second stage, households within

each selected PSU are sampled with a fixed probability πh|j . Consequently, the sampling

weights defined as the inverses of the household-level inclusion probabilities are given for each

stratum separately by:

whj =
1

πhj
, πhj = πh|j ∗ πj with πj =

ns
Ns

. (4.1)

PSUs, called clusters in the following, are geo-located as point locations rj via their ge-

ographic centroids. In the following, we describe the original survey attributes together with
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the original geo-locations of the clusters as our true survey. The true survey builds our starting

point for further anonymization approaches, notably the geomasking approach and the copula-

based synthetic data generation approach. We follow the geomasking methodology outlined in

Burgert et al. (2013) by perturbing the centroids of the selected clusters within a given larger

administrative area l using a rejection sampling procedure described in Algorithm 1:

Algorithm 1: Geomasked survey: DHS cluster displacement algorithm

for j ∈ D do
while rmasked

j /∈ lrj do
angle← U[0,360] ∗ π

180 ; /* Random displacement angle */

if j is Urban then
dist← U[0,2000] ; /* Random displacement distance (in

meters) for urban clusters */

end
if j is Rural then

if j is selected as 1% of rural clusters then
dist← U[0,10000] ; /* Random displacement distance for

1% of rural clusters */

else
dist← U[0,5000]

end
end
rmasked
x,j ← rx,j + dist ∗ cos(angle) ; /* Displaced x-coordinate */

rmasked
y,j ← ry,j + dist ∗ sin(angle) ; /* Displaced y-coordinate */

end
end

We denote the masked point locations of the selected clusters with the superscript masked.

As the overall inclusion probability for a household is not affected by geomasking, direct es-

timates and corresponding variances for area-level aggregates l and above remain the same.

However, this does not hold for area-level aggregates smaller than l. In the following, we de-

scribe the original survey attributes together with the masked locations of the clusters as our

geomasked survey.

For our experiment using Costa Rican census data from 2011, point locations for the cor-

responding enumeration areas are not available. Therefore, we randomly sample them from

the smallest available area denoted with k - in our experiment the districts (at the same time

the zip codes) in Costa Rica. The zip code therefore corresponds to the smallest geographic

identifier available in the survey. Through the displacement procedure, roughly 30% of the

clusters are assigned to a new zip code, representing approx. 30% of the sampled individuals

in each simulation round.

4.2.2 Copula-based synthetic data generation

As an alternative to geomasking, we use synthetically generated survey attributes for protect-

ing the respondents’ privacy while keeping the true point locations of the selected clusters. To

do so, we fit a Gaussian copula model on the original survey attributes Xd and sample from
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the learned joint distribution for each cluster individually with the originally sample size nj .

A copula allows to describe the dependence structure - also called association structure - in-

dependently from the marginal distributions (also called allocation structure). Several copula

families are available. We focus on the Gaussian copula that allows us to represent the associ-

ation structure of random variables irrespective of their true distribution through a multivariate

standard normal distribution (Patki et al., 2016). Since we also assume the marginals to be

normally distributed, which may certainly constitute a mis-specification for some of the vari-

ables, we regard the results rather as a lower bound in terms of goodness-of-fit. Further, a

copula is uniquely defined only for continuous variables (Jeong et al., 2016), meaning that in

principle, copulas cannot model non-continuous variables. Since socio-economic surveys are

largely made up of categorical variables, data transformation, e.g. via one-hot encoding, is

needed. In addition, we impose constraints on the marginals to account for censoring (e.g. to

avoid negative synthetic age records) or between-variable dependencies (e.g. female and male

household members need to add up to the total household size) via rejection sampling.

Thus, the process to generate synthetic data from a survey dataset D̃ with transformed

categorical attributes (details of the data transformation are described in Algorithms 3 and 4 in

Section 4.4) using a Gaussian copula model is summarized in Algorithm 2:

Algorithm 2: Synthetic survey: Copula-based synthetic data generation algorithm

Input D̃ = (X̃1, . . . , X̃d)
Output S̃ = (Ỹ1, . . . , Ỹd)

for s ∈ D̃ do
Ψ← Estimated marginal distributions of X̃ with ψd ∼ N (µ, σ2)
Σ← Estimated covariance matrix of Ψ
U ← F (Ψ) ; /* Probability integral transforms */

CG
Σ (u1, . . . , ud)← ϕΣ

(
ϕ−1
1 (u1), . . . , ϕ

−1
d (ud)

)
; /* d-dimensional

Gaussian copula */

for j ∈ D̃s do
for i← 1 to nDj do

while y{i} not meets constraints do
v ∼ N (µ,Σ)
ỹ{i} ← F−1

(
ϕ1(v1), . . . , ϕd(vd)

)
; /* Convert back to

original space */

end
end

end
end

ϕΣ is the cumulative distribution function (cdf) of a multivariate normal distribution with

N (µ,Σ) and ϕd the cdf of a standard normal distribution. By fitting our model to the true

survey, it learns the parameters of both the allocation and association structure, i.e. of the

marginal distributions Ψ and the multivariate Gaussian copulaCG
Σ (u1, . . . , ud). Based on these

learned relationships, new synthetic records ỹ{i} are sampled from the multivariate probability

function cGΣ(u) using the inverse probability integral transform for each component F−1
d (ud)

(cf. Janke et al. (2021)). Since we sample in our experiment for each cluster individually to
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ensure a synthetic cluster-level sample size of exactly nj , we use the parameters of a conditional

multivariate normal distribution. In case no conditions are applied, the scenario is simplified

to drawing from a multivariate standard normal distribution. In the following, we call the

synthetic attributes together with the true cluster locations our synthetic survey. Further details

about the copula-based synthetic data generation procedure can be found in the Section 4.4 and

in Nelsen (2007).

Figure 4.1 provides a first impression on the overall goodness-of-fit of the three different

survey datasets. Specifically, Figures 4.1a - 4.1c show the normalized KL divergence ZKL of

the survey attributes y from the true census attributes x ∈ C defined as

ZKL(Fd,k(Xd,k)||Fd,k(Yd,k)) =
1

1 +DKL(Fd,k(Xd,k)||Fd,k(Yd,k))
(4.2)

averaged across simulation runs for each attribute d and zip code k, respectively.
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(c) Synthetic survey

Figure 4.1: Normalized Kullback-Leibler divergence (in bits) from the true census distri-
bution for each attribute and zip code, averaged across 100 simulation rounds.
The attributes on the y-axis are ordered by their respective number of classes, the zip codes
on the x-axis are ordered by their average sample size across simulation rounds. Values close
to one (yellow) represent little divergence from the true census distribution and therefore in-
dicate a high goodness-of-fit. The number of attribute classes range from two to 111. Across
attributes and zip codes, the true survey scores best with ZKL = 0.76 in total, followed by the
synthetic survey with ZKL = 0.74 and the geomasked survey at ZKL = 0.73.

Clearly visible is a gradient from the top left to the bottom right indicating that the overall

goodness-of-fit of the sample distributions improve the larger the underlying sample sizes and

the lower the number of classes per categorical attribute. In addition, as expected, attributes

with high levels of non-response (visible through the white spots across the horizontal axis)

are stronger affected by sampling and anonymization compared to attributes with little or no

non-response.

4.2.3 Population uniqueness of survey respondents

To approach the utility-risk trade-off in (pseudo)-anonymized microdata, we define two risk-

related measures: the population uniqueness of the survey respondents and the re-identification

risk of a sensitive attribute in the original data using the perturbed data. We define population

uniqueness Ξx as the share of survey respondents being unique in the population C for a given
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set of attributes x = (X1, . . . , Xd):

Ξx =
1

nD

nD∑
i

1x{i} with 1x{i} =

1, if x{i} unique in C(x)

0, otherwise
(4.3)

Figure 4.2 shows how Ξx changes with the increasing number of attributes across 100 sim-

ulation runs. Naturally, the share constantly increases for the true survey. For the geomasked

survey, the population uniqueness increases to a level of roughly 70%. Recalling that the

only difference between the geomasked survey and the true survey is the perturbed zip code,

the remaining 30% corresponds to the average number of survey respondents assigned to a

new zip code due to the spatial anonymization process. Thus, not considering the zip code in

the re-identification effort would let the population uniqueness of the geomasked survey also

converge towards 1 similar to the true survey, even though requiring further knowledge on ad-

ditional attributes. For the synthetic survey, the curve remains almost flat. The initial bump

can largely be explained by the probability of a random combination of attributes represent-

ing an actual population unique in a small (area) sample size setting. Besides this theoreti-

cal argument, synthetic data always provides plausible deniability to the survey respondents.

Similarly to our definition, Rocher et al. (2019) use a Gaussian copula model to estimate the

empirical likelihood of population uniqueness in incomplete datasets such as D by assuming

Ξx ∼ Binomial(1x{i} , nD) with x{i}i.i.d.. While this approach is an excellent alternative to

measure the re-identification risk in micro-level survey data when no validation data (in our

experiment the 2011 Costa Rican census) is available, it assumes that the individual records

are independent and identically distributed, which may be contestable in the presence of hier-

archical dependencies and complex sampling designs.

Figure 4.2: Population uniqueness across survey types.
Share of population-unique survey respondents for 100 simulation runs. The thick lines repre-
sent the average population uniqueness across the 100 simulation runs, the thin lines individual
simulation runs. In the true survey, no attribute is perturbed. In the geomasked survey, the
cluster identifier is perturbed. In the synthetic survey, all variables but the cluster identifier
are perturbed. In the re-identified survey, the synthetic survey is used to predict the ”private”
attribute – i.e. the cluster – in the original dataset along the lines of the proposed microdata
dissemination strategy. The re-identified original survey is then used to calculate population
uniqueness. Both the re-identified and the synthetic survey provide significant privacy gains
vis-à-vis the other survey types.

Therefore, Figure 4.2 gives a strong indication that geomasking provides little additional
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safeguards for the respondents’ privacy compared to the true survey in the presence of third-

party information on a subset of the contained attributes. Hence, we consider an alternative mi-

crodata dissemination strategy: instead of publishing original microdata with perturbed cluster

locations, we investigate the option of publishing two datasets - original microdata stripped of

geographic identifiers below the level of strata and synthetic microdata with the original cluster

locations. The choice is motivated by adopting a user-centric perspective: official household

survey publications predominantly report on results up to the strata-level as results below are

usually considered not representative. Analysis that benefits from below strata-level data often

investigates proximity-related questions such as distances to certain locations and surround-

ing habitat. For the former, cluster locations are of minor importance, for the latter, however,

the perturbation procedure introduces significant levels of uncertainty to the analysis (Warren

et al., 2016). The alternative microdata dissemination strategy obviously conserves data utility

for analysis on the representative level via the first dataset, while the second dataset allows for

the accurate capture of proximity-related information. However, two potential shortcomings

need to be considered: first, can we use the synthetic dataset to predict the ‘private’ attribute

in the original dataset, i.e. the small area identifier, thus bypassing the privacy protection mea-

sures? Second, is the uncertainty we introduce by synthesizing the non-spatial attributes for

spatial analysis smaller than the uncertainty from perturbing the cluster locations?

4.2.4 Risk of re-identifying private geocodes

To investigate the first shortcoming, we train a random forest model on the small area identifier

- the zip code - in the anonymized surveys for each stratum separately. We use the trained

models on the original data to predict the zip code for each record. Finally, we evaluate our

predicted label against the original label. In addition, we compare the outcomes to randomly

guessing the correct label in order to account for the number of small areas within each stratum.

Figure 4.3 shows the median accuracy of the approaches across 100 simulation runs. While we

are able to successfully re-construct the original zip code in most cases for the geomasked

survey, it does not work much better for the synthetic data than for the random guess.

In our experiment, only one stratum consequently hosts more than ten small areas across

all simulation runs, with one stratum hosting only two small areas in some simulation runs,

giving the random guess also a good chance to predict correctly. Recalling from Figure 4.2 that

roughly 70% of the displaced clusters stay within the same zip code in the geomasked survey,

even predicting the sensitive attribute for strata hosting as little as two small areas, average

population uniqueness in the synthetic data would not exceed much the 50/50-chance of the

random guess%, thus providing better privacy protection in the re-identified original survey

than the geomasked alternative.

4.2.5 Utility for survey augmentation

To give an indication about the utility of the different anonymization approaches, we use a setup

common in recent academic literature (cf. Pokhriyal and Jacques (2017); Leasure et al. (2020);

Schmid et al. (2017)): we augment the surveys with auxiliary information from geospatial

(big) data. Specifically, we construct zip code-level aggregates from gridded satellite-derived
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Figure 4.3: Re-identification of the zip code as private attribute in the true survey for each
stratum across 100 simulation runs.
Accuracy is measured by the share of successfully re-identified zip code labels in the true sur-
vey. A random forest model is trained on perturbed data, i.e. the geomasked and the synthetic
survey, respectively. We evaluate the results against the true zip code labels in the true survey
and compare them against random guesses of the private attribute.

features available from the WorldPop repository (WorldPop, 2018) and combine them with

zip code-level survey aggregates to provide predictions, especially for areas not sampled in

the survey. As our target variable, we select the Unsatisfied Basic Needs index (Necesidades

Básicas Insatisfechas (NBI)) - a composite indicator similar to the multidimensional poverty

index (MPI) (Méndez and Bravo, 2011; Alkire et al., 2019) used as a key statistical indicator in

Costa Rica. Details on the index can be found in the Supplementary Information. We evaluate

our predictions against the census in terms of adjusted R2, bias and the Mean Squared Error

(MSE). Figures 4.4a - 4.4c show the performance along these three evaluation criteria across

100 simulation runs.

Surprisingly, the synthetic approach not only outperforms the geomasked survey, it also

provides predictions more in line with the census results than the true survey. A possible

explanation could be that the copula approach reduces the impact of outliers on the zip code-

specific NBI sample averages. This explanation is supported by Figure 4.4d that shows the

distribution of zip code-level NBI averages grouped into quartiles for one simulation run as both

the synthetic survey and the census showcase smaller tails in their distributions, respectively.

We run additional experiments to compare the directly synthesized NBI and its underlying

indicators with their counterparts computed from synthetic survey variables (see Supplemen-

tary Table C.2 and Supplementary Fig. C.4).

4.3 Discussion

In this paper, we proposed and evaluated an alternative data dissemination strategy for micro-

level survey data that improves the trade-off between privacy risk and data utility. Specifically,

we showed that by publishing two datasets, namely the original survey data with limited geo-

graphic identifiers and a synthetically-generated survey dataset with the true cluster locations,

re-identification risks can be reduced significantly vis-à-vis popular geomasking approaches

without incurring additional losses in terms of data utility for survey augmentation. This could
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Figure 4.4: Performance metrics of survey-based NBI estimates on the zip code-level.
(a) Adjusted R2 is based on the in-sample zip codes. (b) and (c) are based on the full sample
and predictions are evaluated against the census across 100 simulation runs. (d) compares zip
code-level NBI averages for a single simulation run.

help mapping initiatives such as WorldPop or GRID3 to improve their products as more ac-

curate spatial data is available. In addition, by separating the marginals from the dependence

structure, it provides data producers such as National Statistical Offices also with a useful tool

to update the respective synthetic microdata files for the following years by updating the mar-

gins with nationally representative new data as sub-nationally representative surveys may only

be conducted every few years. In the Supplementary Information, we further investigate the

stability of our results by alternating the experiment design.

First, while we chose the strata for the main analysis as they provide ’large-enough’ sample

sizes at the same time explicitly accounting for at least high-level regional variation, we study

in further experiments whether fitting on smaller or larger geographic levels may better capture

local variation at the expense of running into the risk of small sample problems or vice versa.

Supplementary Fig. C.1 summarizes the results for our copula model being fitted on the whole

survey, the twelve strata and the zip code-level, respectively. It shows that by selecting the

strata as our fitting level, we strike a balance between the underlying sample size (usually the

larger the better) and capturing regional variation (usually the more disaggregated the better)

both in terms of utility and risk. In addition, by using subsets of the full microdata for model

fitting, the approach becomes computationally tractable also for larger surveys.
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Second, since generative models allow us to sample an arbitrary number of synthetic ob-

servations, we look at the impact of the synthetic sample size on the outcomes of the survey

augmentation experiment, notably the adjusted R2 and a measure of confidence in the direct

survey estimates of the Fay-Herriot model (cf. Section 4.4.2) - the shrinkage factor γ. Supple-

mentary Fig. C.2 shows that with an increasing sample size, γ increases as well, thus shifting

more weight to the direct estimate. Even though intuitive as the sampling variance naturally de-

creases in nD, at some point it may become misleading with potentially negative effects on the

model performance as the synthetic data generating process still relies on the same information

conveyed in the true survey with sample size nD. However, in our experiment the adjusted R2

does not exhibit a bump, but increases monotonically, thus hinting at little additional explana-

tory power of our satellite-derived covariates vis-à-vis the area-level direct survey estimate for

the in-sample areas.

Third, since our target variable NBI is a composite indicator, we compare the different

composition levels of the synthetic NBI with the NBI constructed from synthetic data. While

the divergence measure shows an overall good fit for the underlying indicators (see Supplemen-

tary Table C.2 and Supplementary Fig. C.4), correlations are low, especially for higher-level

compositions as the dimensions or the NBI itself.

Lastly, we test alternative encoding schemes for the transformation of categorical data.

Also, we relax our assumption of the normally distributed margins by opening up to a wider

group of parametric copulas (such as beta, gamma or uniform distributions) selected for each

margin individually based on the two-sample Kolmogorov-Smirnov (KS) statistic to study the

effect of the specification choice on the normalized KL divergence. Supplementary Fig. C.3

shows that neither the encoding scheme nor the specification of the marginal distributions have

large effects on the quality of the synthetically generated data.

Nevertheless, our approach is not without limitations. The copula-based approach towards

synthetic data generation largely fails to correctly capture lower-level hierarchical relationships

such as individuals - line numbers - households - houses from the original data. As said before,

since we see our analysis using a naı̈ve Gaussian copula model as providing somewhat a lower

bound for improving the utility-risk trade-off by adopting the proposed microdata dissemina-

tion strategy vis-à-vis common geomasking approaches, there is much room for improvement.

To name a few, latent copula designs can be considered to avoid data transformations, marginal

distributions can be modelled non-parametrically, hierarchical structures can be accounted for

more rigorously by either modelling the hierarchies separately as suggested by Templ (2017)

or by modelling the relationships explicitly.

In addition, synthetic data may - under some circumstances - leak private information, e.g.

through the generated value ranges. As a response, differentially-private implementations of

existing generative models have been proposed such as PrivBayes (Zhang et al., 2017), PrivSyn

(Zhang et al., 2021) and PATE-GAN (Jordon et al., 2019).
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4.4 Methods

4.4.1 Fitting Gaussian copulas to survey attributes

As an alternative to geomasking, we use synthetically generated survey attributes for protect-

ing the respondents’ privacy while keeping the true point locations of the selected clusters. To

do so, we fit a Gaussian copula model on the original survey attributes x and sample from the

learned joint distribution for each cluster individually with the originally sample size nj . There-

fore, consider our surveyD, whereX1 represents a random variable with a continuous marginal

cumulative distribution function (cdf) denoted by F1(x1) = P (X1 ≤ x1). For the multivariate

case, the joint cdf can be generalized to F1,...,d(x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd).
A copula, firstly introduced in the work of Sklar (1959), is a cumulative density function

with uniform marginals between [0,1]. Thus - based on Sklar´s theorem (Sklar, 1959) - when

all variables are continuous, the d-dimensional random vector X1, . . . , Xd can be defined in a

uniform space [0, 1]d, creating a random vector U1, . . . , Ud via the probability integral trans-

form ud = Fd(xd). In this case, a unique d-dimensional copula C(ud) exists:

C(u1, . . . , ud) = F
(
F−1
1 (u1), . . . , F

−1
d (ud)

)
(4.4)

As motivated in Section 4.2.2, we account for the fact that household surveys largely con-

sist of categorical variables by applying data transformation. Among the plethora of possible

encoding schemes, the most common encoding scheme is one-hot encoding, where for each

class of a categorical variable a binary dummy variable is created (Benali et al., 2021).

A disadvantage of this option is that it may become computationally challenging and prone

to multicollinearity in the presence of variables with a high cardinality, i.e. with a large number

of classes, since each possible class creates a new variable (Bourou et al., 2021). Interestingly,

there is – to the best of our knowledge – little comprehensive, comparative and conclusive sci-

entific evidence on the properties and performance of different categorical encoding schemes.

Therefore, we explore two other well-known alternatives with more favourable computation

times: ordinal and frequency encoding. Ordinal encoding uses integers to represent each

classes, e.g. from 0 to v, the number of classes in a categorical variable. Assigning an unreal

order to nominal variables is the main pitfall of this alternative (Jiang et al., 2020). Frequency

encoding – as used in medical imaging (Mansfield and Maudsley, 1977) and similar to the con-

cept of term frequency in Natural Language Processing (Aizawa, 2003) – assigns an interval in

[0,1] to each class based on and ordered by its proportion of occurrence. Then, it uses the mid-

dle point of each interval as float representative of the respective class. Back-transformation is

done by assigning a new point to a class via the respective interval it falls into. In this sense,

this alternative conveys information of the importance of each class (Sabharwal and Agrawal,

2021). Based on the results of the different encoding schemes shown in Supplementary Fig.

C.3, we opt for the frequency encoding scheme in the following. Algorithms 3 and 4 provide

details on the chosen scheme.
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Algorithm 3: Transform cate-

gorical variables
Input D = (X1, . . . , Xd)

Output D̃ = (X̃1, . . . , X̃d)

for Xd ∈ D do
if Xd is Continuous then

X̃p ← Xd

end
if Xd is Non-continuous then

X̃q ← T(Xd)

end
end
D̃ ← (X̃p, X̃q) ∀ p ∈
P and q ∈ Q

Algorithm 4: Back-transform

frequency encoded variables

Input S̃ = (Ỹ1, . . . , Ỹd)

Output S = (Y1, . . . , Yd)

for Ỹd ∈ S̃ do
if Ỹd is not indexed as variable

in Q then
Yp ← Ỹd

end
if Ỹd is indexed as variable in

Q then
Yq ← T−1(Ỹd)

end
end
S ← (Yp, Yq) ∀ p ∈ P and q ∈
Q

Thus, the d-dimensional Gaussian copula CG
Σ (u) is defined as the cdf of a multivariate

normal distribution N (µ,Σ) with Σ ∈ Rdxd represented on the unit cube [0, 1]d:

CG
Σ (u1, . . . , ud) = ϕΣ

(
ϕ−1(u1), . . . , ϕ

−1(ud)
)

(4.5)

The density of a Gaussian copula is then defined as:

cGΣ(u) =
1√

det Σ
exp
(
− 1

2
ϕ−1(u)T · (Σ−1 − I) · ϕ−1(u)

)
(4.6)

with u ∈ [0, 1]d, I ∈ Rdxd being the identity matrix, and ϕ−1 being the inverse cumulative

distribution function of a standard normal distribution. Σ is a positive semi-definite covariance

matrix that we estimate based on Pearson’s correlation coefficient ρ (Li et al., 2014).

As noted in Section 4.2.2, we sample for each cluster individually with a sample size of nj .

While rejection sampling could be an option for ensuring only synthetic rows with the respec-

tive cluster identifier are selected, it proves computationally inefficient. With copulas being

multivariate cdfs, we introduce conditions instead. Hence, we sample from a multivariate nor-

mal distribution conditional on cluster j. Thus, our transformed dataset D̃ with one conditional

variable becomes D̃ = (X̃a|X̃b) with X̃a := X̃1, . . . , X̃d−1 being the transformed attributes to

be synthesized and X̃b := X̃d being the transformed cluster identifier. The parameters of the

respective multivariate normal distributions are thus partitioned into:

D̃ =

[
X̃a

X̃b

]
,xµ =

[
µa

µb

]
andxΣ =

[
Σaa Σab

Σba Σbb

]
(4.7)

with µa ∈ Rd−1 and µb ∈ R1 and Σaa ∈ R(d−1)×(d−1), Σab ∈ R(d−1)×1, Σba ∈ R1×(d−1),

and Σbb ∈ R1×1 being the means and positive semi-definite covariance matrices, respectively.

Following Algorithm 2, the parameters of our estimated marginal distributions Ψ and of the
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copula CG
Σ (u) need to be adapted to mirror the conditionality such that Ψa|b(X̃a|X̃b) and

CG
Σ (ua|ub).

Consequently, we sample from ∼ N (µ̄, Σ̄) with:

µ̄ = µa +ΣabΣ
−1
bb (Xb − µb) ∈ Rd−1 (4.8)

and

Σ̄ = Σaa − ΣabΣ
−1
bb Σba ∈ R(d−1)×(d−1). (4.9)

We iterate the copula-based fitting and sampling procedure for every stratum separately

as it allows to better capture sub-national variation using representative sub-samples and as

it proves computationally more tractable. For sampling designs with varying household- or

individual-level inclusion probabilities (e.g. in the DHS, women - in comparison to men - are

usually oversampled), Templ (2017) suggests to sample a synthetic population and re-iterate

the sampling procedure to produce valid synthetic sampling weights. As in our design sam-

pling weights are identical across households for a given PSU due to the systematic sampling

approach in the second stage, the original sampling weights remain valid. The virtue in our

model choice is the relative simplicity, little requirements in terms of ex-ante knowledge about

the individual distributionsXd and its computational efficiency. For further experiments on the

robustness and sensitivity of our modelling choices, we refer to the Supplementary Informa-

tion.

4.4.2 Area-level survey augmentation methods

Survey data can be augmented with the use of area-level models, e.g. the Fay-Herriot model

(Fay and Herriot, 1979) by linking direct estimators gathered from survey data to relevant aux-

iliary information. Both, direct estimators, and auxiliary data are aggregated on k = 1, . . . , D

areas. Traditionally, these auxiliary covariates xk are obtained from recent censuses, admin-

istrative records or other geospatial (big) data sources. In this paper, we make use of satellite

imagery features as area-level covariates. The Fay-Herriot is a two-level model, the first part is

composed by the sampling model:

θ̂Dir
k = θk + ek, ek ∼ N(0, σ2ek), (4.10)

where the sampling error is represented by ek and θ̂Dir
k is the direct estimator of θk (e.g.

sample mean). The linking model provides the second part, where relevant area-level covariates

are considered:

θk = x′kβ̂ + uk. (4.11)

Here, the random area effects uk are assumed to be independent with mean 0 and variance

σ2u. The empirical best linear unbiased predictor (EBLUP) estimator is given by:

θ̂FH
k = γkθ̂

Dir
k + (1− γk)x′kβ̂ = x′kβ̂ + ûk, ............ (4.12)
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with γk = σ̂2
u

σ̂2
u+σ̂2

ek

denoting the shrinkage factor for each area k. The parameter estimates of

this model can be obtained via maximum likelihood (ML) or restricted ML (REML). Note that

the shrinkage factor allows to weight in favor of the direct estimator when sampling variances

are small; on the contrary the synthetic estimator x′kβ̂ receives more weight when the sampling

variance is larger. Results on an experiment studying the sensitivity of the shrinkage factor and

adjusted R2 for varying synthetic sample sizes are shown in Supplementary Fig. C.2. Further

details on the Fay-Herriot model can be found in Rao and Molina (2015).
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Supplementary material C

C.1 Data description

As our reference dataset in this project, we use data from Costa Rica – notably the Xth Popula-

tion and VIth Housing Census of Costa Rica, 2011 (Censo Nacional de población y Viviendas

de Costa Rica 2011) – to produce three different data file types: First, we draw survey samples

from a census population using a stratified two-stage cluster sample design without applying

any statistical disclosure control mechanisms. We use these survey samples (called true surveys

in the study) as starting point for creating file types two and three: By re-assigning clusters to

new zip codes based on the displacement algorithm described in Algorithm 1, we perturb the

zip code identifier in the true surveys, thereby creating the geomasked surveys. Again based

on the true surveys, we apply the copula-based synthetic data generation algorithm described

in Algorithm 2 to generate synthetic data for each attribute except the zip code, which keeps it

original structure. In addition, in order to test the robustness of our specifications, we create ad-

ditional datasets with alternating data generating process designs. The censuses are carried out

every ten years by the national statistic office of Costa Rica (INEC) and collect information of

people, households, and dwellings on topics such as access to education, employment, social

security, technology necessary for the planning, execution, and evaluation of public policies

(Méndez and Bravo, 2011).

Administratively, Costa Rica had in 2011 four disaggregation levels: two zones, six plan-

ning regions, 81 cantons and 473 districts (municipalities). The sampling design used for the

main National Household Survey (Encuesta Nacional de Hogares, ENAHO) specifies twelve

strata - each planning region divided by urban and rural areas. In this case, the strata coincide

with the study domains. For our experiment, we use a 10% random sample of the original 2011

census, which can be obtained from the Instituto Nacional de Estadistica y Censos (2022) as a

pseudo-population. The smallest geographical information available in this dataset are the 473

districts. In the first stage, we select districts as our PSUs for each stratum separately with a

selection probability proportional to population size. In the second stage, we select a minimum

of 10 households in each PSU by using simple random sampling without replacement. PSUs

with less than 10 households are discarded from this procedure, affecting roughly 4% of all

PSUs.

As auxiliary information, we use covariates derived from satellite imagery. Specifically,

we use features derived from satellite imagery provided by WorldPop (2018) in our survey

augmentation setup. The advantages of using satellite imagery here are five-fold: Data with
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NC nD # of PSUs in C # of PSUs in D # of attributes
427830 [7638; 11914] 767 123 106

Table C.1: Descriptive statistics on the census-derived data across 100 simulation runs

virtually global coverage at high spatial resolutions for frequent time intervals on human-made

impact provided in a structured format enables us to extract covariates for all administrative

areas in Costa Rica at the time of the census. Therefore, we can use area-level survey augmen-

tation (cf. Section 4.4.2) to provide estimates, especially for areas not covered by the respective

survey. WorldPop data are provided in the tagged image file format (TIFF) with a pixel repre-

senting roughly a 100m × 100m grid square in an open data repository under CC4.0 licence

(WorldPop, 2018). Pixel values are aggregated to the administrative areas of Costa Rica via

their centroids. Specifically, we generate area-level averages for the distances to different types

of natural areas (e.g. cultivated, woody-tree, and shrub areas, coastlines etc.) and to infrastruc-

ture such as roads and waterways, the intensity of night-time lights, topographic information

and information on the presence of human settlements.

C.2 Sensitivity of copula vis-à-vis geographic fitting level

In order to study the effect of the geographic level on the copula modelling performed for

synthetic data generation, we run Algorithm 2 on the whole survey (‘Country), the twelve strata

(‘Strata’) and the roughly 110 zip code areas (‘Zip Code’), respectively. Results are provided

in Supplementary Fig. C.1. It appears that fitting the copula model on the whole survey limits

the ability of the approach to capture regional variations. On the other hand, model fitting on

the zip code-level does neither increase the re-identification risk of the zip code identifier as

a private attribute and nor affect the overall prediction performance of the outcome variable,

hinting at overfitting not being a problem on that level. Striking a balance between underlying

sample size and a certain level of disaggregation shows better results. Also, it allows to scale

computations to settings with larger samples and more attributes.

C.3 Effects of synthetic sample size on prediction outcomes

Generative models can be used to create synthetic samples of an arbitrary size regardless the

amount of underlying data. While the advantages of that are similar to those of other resampling

procedures such as bootstrapping (i.e. to estimate the precision of the sample statistics or

to perform cross-validation), it can also mislead modelling approaches that ‘borrow strength’

from auxiliary data by overestimating the strength of the synthetic direct estimates eventually

resulting in losses of explanatory power of the model. In our survey augmentation setup, the

shrinkage factor γ indicates whether final estimates rather rely on the direct estimates from the

synthetic survey or on the satellite-derived covariates for the in-sample predictions depending

on the sampling variance. Supplementary Figure C.2 shows that larger sample sizes lead to

increasing gamma values (via decreasing sampling variances of the direct estimator), however,

not incurring losses in the goodness-of-fit of our estimation model. This hints at the fact that
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Figure C.1: Evaluation metrics for different geographical copula fitting levels.
(a) - (c) The copula model is fitted on the whole survey (‘Country’), for each of the twelve strata
(‘Strata’) and for each of the roughly 110 zip codes (‘Zip Code’) separately. As a reference,
the metrics for the geomasked and the true survey are provided as well. (d) The accuracy to
successfully re-identify the zip code as a private attribute in the original data using a random
forest model trained on synthetic data across fitting levels remains similar. (e) The share of
population-unique survey respondents is virtually not affected by the copula fitting level.

the contribution of the auxiliary information to the explanatory power of the model for the

in-sample predictions is negligible.

Figure C.2: Sensitivity of model performance on changes in synthetic sample size.
Samples are drawn from a synthetic population. The synthetic population is generated using
the copula-based approach described in Section 4.2.2. Sample sizes are determined by the
sampling rate (shown on the x-axis). Results are evaluated against the true census population.
The shrinkage factor γ is averaged across zip codes. The thick lines represent the metric
averages across the 100 simulation runs, the thin lines individual simulation runs.
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C.4 Choosing marginal distributions & encoding schemes

As already mentioned in Section 4.2.2, assuming normally-distributed margins may represent a

misspecification of the true univariate distribution ofXd. In addition, computationally tractable

alternatives to one-hot encoding exist. We compare two different ways to model the marginal

distributions together with two different encoding schemes. The results are presented in Sup-

plementary Fig. C.3. Measured by the normalized KL divergence averaged across 100 sim-

ulation runs, frequency encoding produces slightly better goodness-of-fit of the synthetic data

(ZKL = 0.74 for frequency encoding versus ZKL = 0.72 for ordinal encoding with gaussian

marginals). Surprisingly, the naı̈ve assumption of normally distributed marginals outperforms

the KS-based parametric marginals with ZKL = 0.74 and ZKL = 0.70, respectively.
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Figure C.3: Effect of encoding schemes and marginal distribution choice on the overall
goodness-of-fit of the synthetic data measured by the normalized KL divergence ZKL (in
bits).
The attributes on the y-axis are ordered by their respective number of classes, the zip codes on
the x-axis are ordered by their average sample size across simulation rounds. Values close to
one (yellow) represent little divergence from the true census distribution and therefore indicate
a high goodness-of-fit.
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C.5 Detailed analysis of the NBI as composite indicator

The NBI is a composite indicator computed from approx. 20 underlying survey variables

grouped into four dimensions (i.e. access to decent housing (Acceso albergue digno), access

to a healthy life (Acceso a vida saludable), access to knowledge (Acceso al conocimiento) and

access to other goods and services (Acceso a otros bienes y servicios)) using 19 indicators in

total. All indicators and dimensions are binary (yes/no). An identified need in one of the indi-

cators leads to a positive needs status in higher dimensions. The sensitivity for false positives

is thus assumed to be high for the NBI as a small change (e.g. one year age difference) in one

of the 19 underlying variables can turn a NBI-negative to a NBI-positive survey respondent.

Generally, two strategies for computed indicators exist to create synthetic counterparts: a)

directly synthesize the computed indicators or b) re-construct the indicator based on synthetic

survey variables. While the former is more likely to reflect the original distribution, it may not

be consistently decomposable into its underlying indicators; vice-versa holds for the latter. The

strength of these effects are largely determined by the complexity and sensitivity of the com-

posite indicator and the overall goodness-of-fit of the synthetic data. Thus, if both approaches

produce similar compositions, it can be regarded as a strong indication that the underlying syn-

thetic data also successfully captures relationships across multiple variables in the dataset, not

only the composite index. Supplementary Table C.2 shows that this not fully holds for the NBI.

Indicators # of indicators Pearson’s ρ ZKL Incidence
1.x 5 0.42 0.99 100
Dimension 1 0.24 0.98 647
2.x 5 0.22 0.98 85
Dimension 2 0.19 0.98 455
3.x 2 0.02 0.89 507
Dimension 3 0.02 0.84 1845
4.x 7 0.02 0.99 60
Dimension 4 0.03 1.00 622
Composite NBI 19 0.07 0.97 3253

Table C.2: Relationship between synthetic and computed NBI indicators across 100 sim-
ulation runs.
Indicator-level results (e.g. 1.x) are averaged across indicators. The incidence describes the
average number of respondents across 100 simulated surveys with unsatisfied needs in the re-
spective indicator/dimension.

Although the overall number of survey respondents with unsatisfied needs are captured

with a high accuracy as measured by the normalized KL divergence ZKL for binary data, the

NBI status on the individual level strongly diverges following Pearson’s ρ (cf. Supplementary

Table C.2). Supplementary Figure C.4 shows that the lack of linear correlation is mainly due to

improperly captured relationships in the underlying variables than in the synthetic NBI as the

former is outperformed by the latter for survey augmentation expressed in terms of adjusted

R2, bias and MSE. However, it remains on par with the geomasked survey at lower privacy

risks.
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Figure C.4: Performance of the synthetic vs. computed composite NBI.
(a) - (c) show of the different survey types in our survey augmentation experiment across 100
simulation runs. (d) shows the densities of the composite NBI by quartiles for one simulation
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Vivienda. Catálogo central de datos. http://sistemas.inec.cr/pad5/index.

php/catalog/113.

Iovan, C., A. M. Olteanu-Raimond, T. Couronné, and Z. Smoreda (2013). Moving and calling:
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Summary

Summary in English

Abstract: Constructing socio-demographic indicators for National Statistical In-
stitutes using mobile phone data: estimating literacy rates in Senegal

Modern systems of official statistics require the accurate and timely estimation of socio-demo-

graphic indicators for disaggregated geographical regions. Traditional data collection methods

such as censuses or household surveys impose great financial and organizational burdens for

National Statistical Institutes. The rise of new information and communication technologies

offers promising sources to mitigate these shortcomings. In this paper we propose a unified

approach for National Statistical Institutes in developing countries based on small area esti-

mation that allows for the estimation of socio-demographic indicators by using mobile phone

data. In particular, the methodology is applied to mobile phone data from Senegal for deriving

sub-national estimates of the share of illiterates disaggregated by gender. The estimates are

used to identify hot spots of illiterates with a need for additional infrastructure or policy adjust-

ments. Although the paper focuses on literacy as a particular socio-demographic indicator, the

proposed approach is applicable to indicators from national statistics in general.

Keywords: Indicators, Model-based estimation, Official statistics, Small area estimation.

Intercensal updating using structure-preserving methods and satellite imagery

Censuses are fundamental building blocks of most modern-day societies, yet collected every

ten years at best. We propose an extension of the widely popular census updating technique

Structure Preserving Estimation by incorporating auxiliary information in order to take ongo-

ing subnational population shifts into account. We apply our method by incorporating satellite

imagery as additional source to derive annual small-area updates of multidimensional poverty

indicators from 2013 to 2020 for a population at risk: female-headed households in Senegal.

We evaluate the performance of our proposal using data from two different census periods.

Keywords: Multidimensional poverty, Official statistics, Small area estimation, SPREE.

Better coverage, better outcomes? Mapping mobile network data to official statis-
tics using satellite imagery and radio propagation modelling

Mobile sensing data has become a popular data source for geo-spatial analysis, however, map-

ping it accurately to other sources of information such as statistical data remains a challenge.
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Popular mapping approaches such as point allocation or voronoi tessellation provide only crude

approximations of the mobile network coverage as they do not consider holes, overlaps and

within-cell heterogeneity. More elaborate mapping schemes often require additional propri-

etary data operators are highly reluctant to share. In this paper, I use human settlement infor-

mation extracted from publicly available satellite imagery in combination with stochastic radio

propagation modelling techniques to account for that. I show in a simulation study and a real-

world application on unemployment estimates in Senegal that better coverage approximations

do not necessarily lead to better outcome predictions.

Keywords: Mobile networks, Remote sensing, Official statistics, Radio propagation, Interna-

tional development.

Releasing survey microdata with exact cluster locations and additional privacy
safeguards

Household survey programs around the world publish fine-granular georeferenced microdata

to support research on the interdependence of human livelihoods and their surrounding envi-

ronment. To safeguard the respondents’ privacy, micro-level survey data is usually (pseudo)-

anonymized through deletion or perturbation procedures such as obfuscating the true location

of data collection. This, however, poses a challenge to emerging approaches that augment sur-

vey data with auxiliary information on a local level. Here, we propose an alternative microdata

dissemination strategy that leverages the utility of the original microdata with additional pri-

vacy safeguards through synthetically generated data using generative models. We back our

proposal with experiments using data from the 2011 Costa Rican census and satellite-derived

auxiliary information. Our strategy reduces the respondents’ re-identification risk for any num-

ber of disclosed attributes by 60-80% even under re-identification attempts.

Keywords: Generative models, Statistical disclosure control, Geomasking, Copula, Official

statistics, Satellite imagery.

Kurzfassungen in Deutsch

Zusammenfassung: Berechnung sozio-demografischer Indikatoren mittels Mobil-
funkdaten für Statistische Ämter: Schätzung von Alphabetisierungsraten in Se-
negal

Moderne Systeme der amtlichen Statistik erfordern die genaue und zeitnahe Schätzung sozio-

demografischer Indikatoren für disaggregierte geografische Regionen. Herkömmliche Datener-

hebungsmethoden wie Volkszählungen oder Haushaltserhebungen bedeuten für die nationalen

statistischen Ämter große finanzielle und organisatorische Belastungen. Die Etablierung neuer

Informations- und Kommunikationstechnologien bietet vielversprechende Quellen, um diese

Herausforderungen zu überwinden. In diesem Aufsatz schlagen wir einen einheitlichen Ansatz

für nationale statistische Ämter in Entwicklungsländern vor, der auf einer Schätzung kleiner

Gebiete basiert und die Schätzung soziodemografischer Indikatoren unter Verwendung von

Mobiltelefondaten ermöglicht. Die Methodik wird insbesondere auf Mobilfunkdaten aus dem
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Senegal angewendet, um subnationale Schätzungen des Anteils von Analphabeten nach Ge-

schlecht aufzuschlüsseln. Die Schätzungen werden verwendet, um lokale Häufungen von An-

alphabeten zu identifizieren, woraus infrastrukturelle oder politische Anpassungen abgeleitet

werden können. Obwohl sich der Aufsatz auf die Alphabetisierungsrate als einen bestimmten

soziodemografischen Indikator konzentriert, ist der vorgeschlagene Ansatz auf Indikatoren aus

nationalen Statistiken im Allgemeinen anwendbar.

Stichworte: Indikatoren, Modellbasierte Schätzung, Amtliche Statistik, Kleinräumige Schätzung.

Zusammenfassung: Zensusdaten aktualisieren mittels strukturerhaltender Me-
thoden und Satellitenbildern

Volkszählungen sind grundlegende Bausteine der meisten modernen Gesellschaften, werden

aber bestenfalls alle zehn Jahre erhoben. Wir schlagen eine Erweiterung der weit verbreiteten

Technik zur Aktualisierung von Volkszählungen Structure Preserving Estimation vor, indem

wir Hilfsinformationen einbeziehen, um laufende subnationale Bevölkerungsverschiebungen

zu berücksichtigen. Wir wenden unsere Methode an, indem wir Satellitenbilder als zusätzliche

Quelle einbeziehen, um jährliche kleinräumige Aktualisierungen multidimensionaler Armut-

sindikatoren von 2013 bis 2020 für eine gefährdete Bevölkerungsgruppe abzuleiten: von Frau-

en geführte Haushalte im Senegal. Wir bewerten den Mehrwert unseres Vorschlags anhand von

Daten aus zwei verschiedenen Zählperioden.

Stichworte: Mehrdimensionale Armut, Amtliche Statistik, Kleinräumige Schätzung, SPREE.

Zusammenfassung: Besserer Empfang, bessere Ergebnisse? Mobilfunknetzdaten
mit amtlichen Statistiken verbinden anhand von Satellitenbildern und Funkwel-
lenmodellierung

Mobile Sensing-Daten sind zu einer beliebten Datenquelle für Geodatenanalysen geworden,

aber die genaue Zuordnung zu anderen Informationsquellen wie statistischen Daten bleibt ei-

ne Herausforderung. Beliebte Ansätze für die räumliche Zuordnung wie Punktallokation oder

Voronoi-Tessellation liefern nur grobe Annäherungen an die Mobilfunknetzabdeckung, da sie

Löcher, Überlappungen und Heterogenität innerhalb der Mobilfunkzellen nicht berücksichtigen.

Ausgefeiltere Mapping-Schemata erfordern oft zusätzliche proprietäre Daten, die Netzanbieter

selten extern zur Verfügung stellen. In diesem Aufsatz verwende ich deswegen Informationen

über menschliche Siedlungsgebiete, die aus öffentlich zugänglichen Satellitenbildern extra-

hiert wurden, in Kombination mit stochastischen Modellierungstechniken für die Funkwellen-

ausbreitung, um die vorangegangenen Punkte zu berücksichtigen. Ich zeige in einer Simulati-

onsstudie und einer realen Anwendung zu Arbeitslosenschätzungen im Senegal, dass bessere

Annäherungen an die Netzabdeckung nicht unbedingt zu besseren Ergebnisvorhersagen führen.

Stichworte: Mobilfunknetzwerke, Fernerkundung, Amtliche Statistik, Funkwellenausbreitung,

Internationale Entwicklungszusammenarbeit.
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Zusammenfassung: Amtliche Mikrodaten veröffentlichen mit genauen Datener-
hebungsstandorten und zuätzlichem Privatsphärenschutz

Haushaltsumfrageprogramme auf der ganzen Welt veröffentlichen detaillierte georeferenzierte

Mikrodaten, um die Forschung über die Abhängigkeit der menschlichen Lebensumständen und

ihrer Umgebung zu unterstützen. Um die Privatsphäre der Befragten zu schützen, werden Um-

fragedaten normalerweise (pseudo-)anonymisiert, indem Lösch- oder Störungsverfahren wie

die Verschleierung des wahren Ortes der Datenerhebung durchgeführt werden. Dies stellt je-

doch neue Ansätze, die Erhebungsdaten mit Hilfsinformationen auf lokaler Ebene ergänzen,

vor eine Herausforderung. Hier schlagen wir eine alternative Veröffentlichungsstrategie für

Mikrodaten vor, die den Nutzen der ursprünglichen Mikrodaten weitestgehend erhält und mit

zusätzlichen Datenschutzvorkehrungen durch synthetisch generierte Daten unter Verwendung

generativer Modelle schützt. Wir untermauern unseren Vorschlag mit Experimenten unter Ver-

wendung von Daten aus der Volkszählung von 2011 in Costa Rica und von Satelliten abgelei-

teten Hilfsinformationen. Unser Vorschlag reduziert das Reidentifikationsrisiko der Befragten

für eine beliebige Anzahl von offengelegten Merkmalen um 60-80%, selbst nach Reidentifika-

tionsversuchen.

Stichworte: Generative Modelle, Statistische Offenlegungskontrolle, Geomasking, Copula,

Amtliche Statistik, Satellitenbilder.
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