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The herbal extract EPs® 7630 increases the antimicrobial airway
defense through monocyte-dependent induction of IL-22 in T cells
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Abstract The phytotherapeutic compound EPs® 7630, an extract manufactured from Pelargonium sidoides roots, is frequently
used for the treatment of airway infections. Nevertheless, the knowledge of the mode of action of EPs® 7630 is still sparse. Our
study aimed at further elucidating the underlying pharmacological mechanisms by focusing on antimicrobial defense mecha-
nisms of EPs® 7630. While investigating the influence of EPs® 7630 on lymphokine production by PBMCs, we found that
EPs® 7630 is a novel inducer of IL-22 and IL-17. This cytokine-inducing effect was most pronounced for IL-22 and clearly dose-
dependent starting from 1 μg/ml of the extract. Furthermore, EPs® 7630 pretreatment selectively enhanced the IL-22 and IL-17
production capacity of CD3/28-activated PBMCswhile strongly limiting the IFN-γ production capacity of innate lymphoid cells.
The relevance of EPs® 7630–induced IL-22 production was proven in vitro and in vivo,where IL-22 provoked a strong increase
of the antimicrobial protein S100A9 in lung epithelial cells and pulmonary tissue, respectively. A detailed analysis of IL-22
induction modi revealed no direct influence of EPs® 7630 on the basal or anti-CD3/CD28 antibody-induced IL-22 production by
CD4+ memory T cells. In fact, EPs® 7630–induced IL-22 production by CD4+ memory T cells was found to be essentially
dependent on soluble mediators (IL-1/IL-23) as well as on direct cellular contact with monocytes. In summary, our study reveals
a new immune-modulating function of EPs® 7630 that might confer IL-22 and IL-17-induced protection from bacterial airway
infection.

Key messages
& EPs® 7630 selectively strengthens IL-22 and IL-17 production of memory T cells.
& EPs® 7630 limits the IFN-y production capacity of innate lymphoid cells.
& EPs® 7630–caused IL-22 production by T cells is essentially dependent on monocytes.
& IL-22 increase antimicrobial proteins (AMPs) in airway epithelium.
& EPs® 7630 might protect against airway infection by induction of AMP-inducers.
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Introduction

Root preparations of Pelargonium sidoides, a medical herb
belonging to the Geraniaceae family, have a long history of
traditional use mainly for the treatment of diarrhea, intestinal
colic, anemia, weakness, and complications related to dysen-
tery and in rare cases also for respiratory tract infections in-
cluding tuberculosis in southern Africa [1]. More than
100 years ago, its commercialization started in the UK
resulting in the development of the standardized ethanolic root
extract EPs® 7630 (Umckaloabo®, ISO Arzneimittel,
Ettlingen, Germany), which is approved for the treatment of
acute bronchitis in Germany. Clinical effectiveness of EPs®
7630 has also been suggested for other indications such as
rhinosinusitis, tonsillopharyngitis, and common cold [2–4].
Moreover, in COPD patients, EPs® 7630 was observed to
prolong the duration between exacerbations and to reduce
their overall frequency [5]. Reduced asthma attack and cough
frequency was also reported for EPs® 7630–treated compared
with untreated asthmatic children [6].

EPs® 7630 contains several active substances including
highly oxygenated coumarin derivatives (e.g., umckalin)
and, most prominently, oligomeric proanthocyanidins (poly-
phenols), which make up about 40% of the total dry mass [7,
8]. Pelargonium preparations were reported to strengthen the
defense mechanisms of the body against different types of
pathogens.

Indeed, EPs® 7630–mediated effects include anti-infective
properties that support limitation of viral and bacterial infec-
tions without microbial resistances promoting potential [9].
These properties are based on mucokinetic effects [10] and
the ability to counteract viral adhesion and spreading as well
as bacterial adherence [9, 11–18]. Furthermore, EPs® 7630
has been shown to support the control of Candida albicans
infection in vitro by increasing the oxidative burst of human
phagocytes. Moreover, it enhanced the production of nitric
oxide and inflammatory cytokine expression in Leishmania
major–infected macrophages [17, 19–21]. Nevertheless, the
mechanisms of action of EPs® 7630 are still poorly under-
stood. The present study aimed at further elucidating the
mechanisms of antimicrobial defense mediated by EPs®
7630.

Materials and methods

Preparation and properties of EPs® 7630

Dried extract of EPs® 7630 was prepared from Pelargonium
sidoides roots using aqueous ethanol (11% w/w) as extracting
agent in a 1:8–1:10 drug-to-solvent ratio. A stock solution of
3 mg/ml from the dried extract of a single batch (No.
PSc2003/L01-11/SY06-041-A) which showed a very low–

contaminating lipopolysaccharide content (< 200 EU/mg
which is equivalent to about 20 ng/mg, assessed by Limulus
amebocyte lysate (LAL) assay) was prepared as described
before [22]. We have previously shown that cellular viability
is not significantly altered by 30 μg/ml EPs® 7630 [22].

Cell isolation and culture

Human peripheral blood mononuclear cells (PBMCs) were
isolated from venous blood of healthy donors by density gra-
dient centrifugation using Ficoll (Biochrom) as previously
described [23].

The influence of EPs® 7630 on the cytokine production of
PBMCs was investigated in different settings: For the kinetic
study, PBMCs were stimulated with 3 to 10 μg/ml EPs®
7630, 100 ng/ml LPS (Escherichia coli 0127:B8 lipopolysac-
charide) or were left without stimulation (control) for 4 h, 24,
48, 72, and 96 h. To study the concentration dependency of
the EPs® 7630 effects, PBMCs were stimulated with increas-
ing EPs® 7630 concentrations ranging from 0 to 3 μg/ml for
48 h.

In a further setting, PBMCs were first cultured with in-
creasing EPs® 7630 concentrations (ranging from 0 to
3 μg/ml) only. After 24 h, anti-CD3 (Orthoclone, Janssen-
Cilag) and anti-CD28 (R&D Systems) antibodies (1 μg/ml
each), a cytokine mixture containing IL-1β, IL-2, and IL-12
(10 ng/ml each, R&D Systems) or control medium was added
for another 24 h.

To investigate the mechanisms of EPs® 7630 effects,
CD4+ memory T cells and monocytes were purified from
PBMCs by MACS system–based negative selection using
the Memory CD4+ T cell isolation kit and the Monocyte iso-
lation kit II (Miltenyi Biotec), respectively, as described pre-
viously [22, 24].

In the first setting, CD4+ memory T cells were cultured for
48 h in the absence (control) or presence of EPs® 7630 (0–
10 μg/ml). Additionally, cells were stimulated with anti-CD3/
CD28 antibody–coated Dynabeads (Thermo Fisher Scientific,
cell bead ratio 1:1) or were left unstimulated for the last 24 h of
culture.

In the second setting, CD4+ memory T cells were cultured
for 72 h in the presence of supernatants (25% dilution with
culture medium) obtained frommonocytes after a 24-h culture
period with 10 μg/ml EPs® 7630 or medium (control super-
natant, 25% dilution with culture medium). In a further set-
ting, CD4+ memory T cells and autologous monocytes were
cultured alone or co-cultured with or without (transwell sys-
tem; Costar) enabled cell-cell contact (T cell/monocyte ratio:
2:1) in the absence (control) or presence of 10 μg/ml EPs®
7630 for 72 h. Furthermore, separate cultures of CD4+ mem-
ory T cells and autologous monocytes were each pretreated or
not (control) with 10 μg/ml EPs® 7630 for 24 h and

1494 J Mol Med (2020) 98:1493–1503



subsequently washed, reseeded, and co-cultured (T cell/
monocyte ratio: 2:1) for further 72 h without any addition of
stimuli.

Inhibition of cytokine effects was investigated in 72-h cul-
tures of PBMCs using 1.5 μg IL-1RA (R&D Sytems),
3 μg/ml anti-IL-23p19 antibodies (Tremfya™, Janssen-
Cilag) or a combination thereof.

All immune cell cultures described above were performed
using RPMI culture medium (tested for very low endotoxin
content), supplemented with 10% fetal bovine serum and
2 mM L-Glutamin (Biochrom). In all groups that served as
control for EPs® 7630–stimulated groups, ethanol diluted in
RPMImediumwas used as solvent control (0.01% ethanol for
3 μg/ml EPs® 7630 groups; 0.033% ethanol for 10 μg/ml
EPs® 7630 groups). All blood samples were approved by
the clinical institutional review board of the Charité
Universitätsmedizin Berlin, and written informed consent
was obtained from all participants. The study was conducted
according to the Declaration of Helsinki Principles.

A549 human lung epithelial cells were obtained from
DSMZ (Deutsche Sammlung von Mikroorganismen und
Zellkulturen, Braunschweig, Germany) and cultured in
DMEM supplemented with 10% fetal bovine serum and
2 mM L-Glutamin (both from Biochrom). To test the in-
fluence of IL-22 compared to IL-17 and IFN-γ on the
expression of antimicrobial peptides (AMPs), A549 cells
were pre-cultured for 24 h with or without EPs® 7630
and treated afterwards with 10 ng/ml IL-22, 200 ng/ml
IL-22BP, 10 ng/ml IL-17A, 10 ng/ml IFN-γ, combina-
tions thereof, or they were left untreated (control) for
48 h.

Flow cytometry–based analyses

The purity of isolated monocytes and memory CD4+ T cells
was assessed by flow cytometry as described previously [22].
The mean (± SEM) purity of isolated monocytes and CD4+

memory T cells was 91.31 ± 1.13% and 96.62 ± 0.41%,
respectively.

To characterize EPs® 7630–dependent IL-22 producers,
an IL-22-specific secretion assay (Miltenyi Biotec) was per-
formed using PBMCs according to the manufacturer’s proto-
col. Briefly, PBMCs were cultured in RPMI in the absence
(solvent control) or presence of 10 μg/ml EPs® 7630 for 72 h
followed by labeling with IL-22 catch reagent. Subsequently,
cells were cultured for 3 h in the presence of 10 μg/ml EPs®
7630 under slow continuous rotation using a MACSmix de-
vice (Miltenyi Biotec). Afterwards, cells were labeled using a
biotinylated IL-22 detection antibody followed by a
phycoerythrin-coupled anti-Biotin antibody. All data acquisi-
tions and analyses were performed using a FACSCalibur de-
vice and Cell-Quest software (BD Biosciences).

Mice

Male BALB/c mice at an age of 14 weeks were i.p. injected
with 1 μg recombinant murine IL-22 (R&D Systems) or a
respective volume of PBS (control). After 1, 3, 24, 48, and
72 h past injection, mice were sacrificed, and lung tissue was
harvested and snap-frozen for later qPCR analysis. Lung tis-
sue from sacrificed mice that did not receive any i.p. injection
served as control (0 h value). All experimental protocols have
been approved by the regional authorities (Landesamt für
Gesundheit und Soziales) and were conducted according to
the German Animal Protection Law, as well as provisions on
labor, health, and technical safety.

ELISA

Quantification of cytokines in cell culture supernatants was
performed by ELISA according to the manufacturer’s recom-
mendation. All detection kits were purchased from R&D
systems.

RT-qPCR

Homogenization of murine lung tissue, isolation of cellular
RNA from these tissues as well as from cultured A549 cells,
and quantitative PCR analysis on reverse-transcribed mRNA
(RT-qPCR) were performed as described previously [25]. For
the quantification of S100A9, LCN2, andMX1mRNA levels,
ready-to-use systems, purchased from Thermo Fisher
Scientific, were used, whereby the quantification of HPRT
mRNA was included for normalization of data. All samples
were analyzed in triplicates using ABI Prism 7700 Sequence
Detection System or the Stepone plus system and associated
software (Applied Biosystems, Darmstadt, Germany).

Statistical analyses

Statistical analysis was performed using SPSS software
(IBM). Testing for possible differences between treatment
groups was performed using Wilcoxon matched-pairs
signed-rank test. A p value of < 0.05 was considered to indi-
cate significance.

Results

EPs® 7630 provokes production of lymphocytic
cytokines in human immune cells

Lymphocytes of both the adaptive (T cells) and innate (e.g.,
innate lymphoid cells, ILCs) immune system are known to
play a crucial role in the antimicrobial host defense of epithelia
through production of mediators, such as IL-22, IL-17, and
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IFN-γ [26–28]. To shed further light on mechanisms under-
lying the anti-infectious action of Pelargonium-derived
phytomedicals, we asked whether EPs® 7630, a standardized
Pelargonium sidoides root extract, is able to induce the pro-
duction of those cytokines by human lymphocytic cells.

We addressed this question by first analyzing a kinetic
in vitro approach for up to 96 h using human immune cells
stimulated with 3 μg/ml of EPs® 7630. Indeed, EPs® 7630
was able to time-dependently induce the lymphocytic cyto-
kines IL-22, IL-17, and IFN-γ (Fig. 1a). This induction was
most evident for IL-22 that was detectable already after 24 h of
EPs® 7630 stimulation. In contrast, induction of IL-17 and, in
particular, of IFN-γ was much less pronounced and consider-
ably delayed, starting 48 h after stimulation. Interestingly,
compared with the bacterial component lipopolysaccharide
(LPS), an indirectly acting inducer of these cytokines [29],
EPs® 7630 was much more potent in terms of lymphocyte
cytokine induction (Fig. 1a). A closer look at the concentra-
tion dependency of the cytokine-inducing effect of EPs®
7630 during a 48-h stimulation period revealed an effectivity
of the root extract starting from 1 μg/ml (Fig. 1b).

EPs® 7630 selectively strengthens IL-22 and IL-17
production of activated T cells

Next, we aimed at gaining insights into the cytokine-inducing
effects of EPs® 7630 in the context of immune activation
according to the frequent use of this drug in clinical practice,
i.e., as infection preventive measure. In the first step, we

investigated the effect of EPs® 7630 pretreatment on the ac-
tivation of lymphocytes. PBMC cultures were treated with the
root extract for 24 h followed by addition of T cell–stimulating
anti-CD3 and anti-CD28 antibodies for a further 24-h period.

As demonstrated in Fig. 2a, EPs® 7630 induced a clear,
concentration-dependent increase of IL-22 and IL17, starting
from a concentration of as low as 0.1 μg/ml. At the highest
concentration (3 μg/ml), EPs® 7630 provoked an increase in
IL-22 and IL-17 production of 3.9 ± 0.5- and 7.3 ± 2.0-fold,
respectively, compared with stimulated cultures without
EPs® 7630 pretreatment (Fig. 2a). In contrast, EPs® 7630
did not influence the production of IFN-γ by activated T cells
(Fig. 2a), excluding its action as a general amplifier of T cell
cytokine responses.

EPs® 7630 has no effect on IL-22 and IL-17 production
by innate lymphoid cells but strongly limits their
IFN-γ production capacity

Besides activated T cells, ILCs of the innate immune reper-
toire also play an essential role in the host defense against
infections by production of IL-22 and IL-17 [28]. Therefore,
we next investigated the effect of EPs® 7630 pretreatment on
the activation of these cells, which can be achieved by stimu-
lation with specific cytokines. Thus, PBMC cultures were
treated with EPs® 7630 for 48 h with addition of IL-1β, IL-
2, and IL-12 for the last 24 h of culture.

Interestingly, in the context of cytokine-stimulation, EPs®
7630 had no effect on IL-22 and only a minimal enhancing
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Fig. 1 EPs® 7630 stimulates IL-22 and IL-17 secretion of human
PBMCs. a Human PBMCs were stimulated in a kinetic approach with
3 μg/ml EPs® 7630, 100 ng/ml LPS, or were left untreated as indicated. b
Dose-response analysis was performed by treatment of human PBMCs
with increasing concentrations (0–3 μg/ml, as indicated) of EPs® 7630

for 48 h. Quantification of IL-22, IL-17, and IFN-γ in culture superna-
tants was performed by ELISA. Data from 3 (a) or 12 (b) independent
experiments are given as mean ± SEM. Significant differences among
treatment groups are indicated (*p < 0.05; **p < 0.01, Wilcoxon
matched-pairs signed-rank test)
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effect on IL-17 production. However, it strongly and
concentration-dependently inhibited IFN-γ production, with
an average fold inhibition at the highest concentration of
EPs® 7630 (3 μg/ml) of 6.0 ± 0.7 compared with cytokine-
stimulated cultures without EPs® 7630 pretreatment (Fig. 2b).
These data hint to T cells as the source of IL-22 and also IL-17
in EPs® 7630–treated or pretreated immune cells.

The EPs® 7630–induced cytokine IL-22 increases the
antimicrobial airway defense

In previous studies, we have demonstrated that IL-22 is a potent
inducer of the cutaneous antimicrobial defense [30, 31], with IL-
17 frequently enhancing this IL-22 effect [32, 33]. As EPs®
7630 is used for the clinical indication of airway infections, the
relevance of EPs® 7630–induced IL-22 was tested using respec-
tive in vitro and in vivo models.

As demonstrated in Fig. 3a, IL-22 stimulation of cultured
airway epithelial A549 cells strongly enhanced the production
of the AMP S100A9, a known IL-22 downstream target [31].
This effect was found to be specific, as blocking of IL-22
action by its natural soluble inhibitory receptor, IL-22 binding
protein (IL-22BP) [34–37], abrogated the IL-22-caused induc-
tion of S100A9.

In line with these data, in vivo intraperitoneal application of
recombinant murine IL-22 provoked a strong increase in pulmo-
nary S100A9 expression compared with PBS-treated mice (Fig.
3b). Notably, in consideration of the limited half-life of IL-22 and
the single application mode, the S100A9 inducing effect was
quite long-lasting, being still measurable after 72 h (Fig. 3b).
Of note, EPs®7630 did not have an influence itself ormodulated
the IL-22-induced S100A9 or IL-17-induced LCN2 expression
in A549 cells (Fig. 3c). Furthermore, IL-22 did not induce the
expression of the antiviral protein MX1 in contrast to its known
inducer IFN-γ, confirming the target specificity of IL-22 in this
setting. However, in contrast to IL-22, IFN-γ did not modulate
expression of S100A9.

EPs® 7630–induced IL-22 production by T cells is es-
sentially dependent on monocytes

Next, we aimed to study the EPs® 7630–induced cytokine pro-
duction by T cells in more detail. For this purpose, we purified
CD4+ memory T cells from freshly obtained PBMC. When
stimulating these cells with EPs® 7630 using the protocol ap-
plied for PBMC cultures before (Fig. 1a), we surprisingly did not
detect any IL-22, IL-17, and IFN-γ in respective culture super-
natants (Fig. 4a). Furthermore, EPs® 7630 had no relevant influ-
ence on the cytokine production of CD4+ memory T cells
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stimulated via CD3/CD28 (Fig. 4b). These data raised the hy-
pothesis that other immune cell types or their mediators might be
involved in the effects of EPs® 7630 on T cell cytokine
production.

We therefore performed EPs® 7630 stimulation of CD4+

memory T cells co-cultured with autologous monocytes. As
demonstrated in Fig. 5a, EPs® 7630 in fact provoked a strong
production of IL-22, whereas this effect was absent in the
separately cultured cell populations. Next, we tested whether
cell-cell contact is sufficient for EPs® 7630–induced IL-22
production in T cells. The use of EPs® 7630–pretreated
monocytes and autologous CD4+ memory T cells, which were
subsequently co-cultured without EPs® 7630, however, did
not result in IL-22 production (Fig. 5b). These data imply that

cell-cell contact with monocytes alone is insufficient or even
not relevant to provoke IL-22 production in T cells and sug-
gest that soluble mediators produced bymonocytes might play
a role here. Therefore, we investigated whether supernatants
obtained from EPs® 7630–stimulated monocytes would pro-
voke IL-22 production by CD4+ memory T cells.
Surprisingly, the transfer of monocyte culture supernatant
had no relevant effect on the IL-22 production by CD4+ mem-
ory T cells either (Fig. 5c). These data show that cytokines
produced by monocytes and the presence of EPs® 7630 alone
are also not sufficient to induce IL-22 in T cells. We therefore
hypothesized that a dependency on soluble mediators as well
as direct cell-cell contact with monocytes in the presence of
EPs® 7630might be necessary for EPs® 7630–induced IL-22
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Fig. 3 IL-22 strengthens the antibacterial defense of airway epithelial
cells. a A549 human lung epithelial cells were cultured in the presence
or absence (control) of IL-22, its inhibitor IL-22BP, or a combination of
IL-22 and IL-22BP for 48 h. b BALB/c mice were i.p. injected with PBS
(control) or IL-22. At the indicated time points after injection, mice were
sacrificed and lung tissue was taken for analysis of S100A9 expression by
RT-qPCR. Data of 4 (0 h control and PBS) or 3 (IL-22) mice per group
are given as mean ± SEM. c A549 human lung epithelial cells were

pretreated or not with 3 μg/ml EPs® 7630 for 24 h followed by stimula-
tion with IL-22, IL-17A, IFN-γ, or the combination of IL-17A and IL-22
for 48 h or were left unstimulated (control). a, c Expression of S100A9,
LCN2, and MX1 was analyzed by RT-qPCR. Data of 7 (a) or 3–4 (c)
independent experiments are given as mean ± SEM. Significant differ-
ences among treatment groups are indicated (*p < 0.05, Wilcoxon
matched-pairs signed-rank test)
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production by CD4+ memory T cells. To test this hypothesis,
we compared co-cultures of CD4+ memory T cells and autol-
ogous monocytes in the presence of EPs® 7630 with or with-
out the use of a transwell culture system. As demonstrated in
Fig. 5d, the EPs® 7630–induced IL-22 production was
prevented by 70.8 ± 15.5% in transwell co-culture conditions
(contact between monocytes and T cells is impossible) com-
pared with co-culture with enabled cell-cell contact. These
data indicate that both soluble mediators produced by mono-
cytes and direct contact with these cells are necessary for the
EPs® 7630–induced IL-22 production by CD4+ T cells.

To identify the soluble mediators involved in IL-22
induction in T cells by EPs® 7630, we next analyzed
the supernatants of EPs® 7630–stimulated PBMC cul-
tures for the presence of T17/T22 lineage–supporting
cytokines. In fact, a strong upregulation of IL-1β and
IL-23 but not IL-2 was detected in culture supernatants
ea r ly a f te r EPs® 7630 s t imula t ion (Fig . 5e ) .
Importantly, blocking of IL-1 by IL-1 receptor antago-
nist and IL-23 by anti-IL-23p19 antibody (guselkumab)
strongly reduced IL-22 production in the co-culture sys-
tem of CD4+ memory T cells and autologous monocytes
with enabled cell-cell contact (Fig. 5f). Although less
prominently induced by EPs® 7630, expression of IL-
17 was observed to underlie regulatory mechanisms
similar to those detected for IL-22 (Fig. S1).

EPs® 7630 induces IL-22 secretion by different CD4+

memory T cell subsets

Within the CD4+ memory T cell (CD4+ CD45RO+ T cell)
compa r tmen t , c l a s s i c a l CD4+ memory T ce l l s
(CD3+CD4+CD56−) as well as CD4+ NKT cells are described
as IL-22 producers [38–44]. Using a novel IL-22-specific se-
cretion assay (Fig. 6a), we therefore analyzed the IL-22 pro-
duction capacity of CD4+ T cells in the context of EPs® 7630
stimulation. As shown in Fig. 6b and Fig. S2, EPs® 7630
stimulation provoked IL-22 production in CD3+CD4+CD56−

cells as well as in a cell population showing an NKT-like
phenotype (CD3+CD4+CD56dim). Although the frequency of
IL-22 producers was found to be less pronounced among
CD3+CD4+CD56− compared with CD3+CD4+CD56dim cells,
the considerably higher frequency of CD3+CD4+CD56− cells
among blood immune cells implies an equal biological rele-
vance of both populations for the EPs® 7630–induced IL-22
production (Fig. 6c).

Discussion

Pelargonium root extract EPs® 7630 is clinically used for the
treatment of acute bronchitis. However, despite the long
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history of its medical use, the immunomodulatory effects of
EPs® 7630 are still poorly understood.

In the present study, we have identified a new immunoregu-
latory property of EPs® 7630. In fact, we found that EPs® 7630
selectively enhances adaptive T22 and T17 immune responses
by increasing the constitutive and activation-dependent T cell
production of IL-22 and IL-17. Both of these cytokines are key
players in the host defense to combat bacterial and fungal infec-
tions through induction of AMPs [30–33]. Accordingly, we
could show that IL-22 strongly enhanced the expression of
S100A9 in lung epithelial cells in vitro. EPs7630 thereby neither
had an influence itself nor influenced the IL-22-induced S100A9
expression in A549 cells. Furthermore, a pulmonary increase of

S100A9 expression was observed in vivo after a single applica-
tion of IL-22. S100A9 is a member of the S100 family of pro-
teins that exerts its antimicrobial effect, which is directed against
bacteria and fungi, through metal ion sequestration [45].

Interestingly, the IL-17 and IL-22-inducing effect by EPs®
7630 was not clearly observed with respect to innate lymphoid
cells. In these cells, however, EPs® 7630 had a strong inhibitory
effect on IFN-γ production. These data hint to a role of EPs®
7630 in limiting IFN-γ-dependent tissue damage during EPs®
7630 therapy of airway infection.

The course and duration of viral bronchitis is frequently com-
plicated by secondary bacterial infections (superinfections),
which require antibiotic treatment in severe cases. However,
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antibiotic treatments also involve undesired effects to the pa-
tient’s microbiome, not only affecting the gut but also cutaneous
andmucosal outer body barriers [46]. Furthermore, antibiotic use
entails the risk of developing resistances by the microbes against
the drug. A relevant factor promoting superinfections is the virus-
induced downregulation ofAMPs [47]. Notably, by upregulating
the AMP-inducers IL-22 and IL-17, EPs® 7630 might counter-
act this AMP deficiency, suggesting a protective role of EPs®
7630 against superinfections of respective patients. However,
future in vivo studies are needed to prove this hypothesis.

We found monocytes to be an essential factor for
mediating the EPs® 7630 effects on T cell responses.
This observation is in line with our previous study
showing that monocytes are directly targeted by EPs®
7630, resulting in MAP kinase activation [22]. We now
could show that induction of IL-22 in T cells is essen-
tially dependent on three factors: a direct cell-cell con-
tact with monocytes, the permanent presence of EPs®
7630, and soluble mediators produced by monocytes.
By specifically blocking cytokine activity, we indeed
found IL-1 and IL-23 to be those mediators essential
for IL-22 induction by T cells.

There are currently no clear data regarding the bio-
availability of EPs® 7630. For anthocyanins, a group of
polyphenols that also display the main constituents of
EPs® 7630, a bioavailability of ~ 1–12% was observed
in several studies [48]. Assuming a comparable

bioavailability for EPs® 7630, the dosages of 0.1–
10 μg/ml used in this study are within the estimated
range of drug serum levels after ingestion of a single
recommended dose of 20 mg EPs® 7630 [48]. Overall,
our study suggests a new protective role for EPs® 7630
against bacterial airway superinfections by induction of
the AMP-inducers IL-22 and IL-17.
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