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Today, most neurocognitive studies in humans employ the non-invasive

neuroimaging techniques functional magnetic resonance imaging (fMRI) and

electroencephalogram (EEG). However, how the data provided by fMRI and

EEG relate exactly to the underlying neural activity remains incompletely

understood. Here, we aimed to understand the relation between EEG and

fMRI data at the level of neural population codes using multivariate pattern

analysis. In particular, we assessed whether this relation is affected when

we change stimuli or introduce identity-preserving variations to them. For

this, we recorded EEG and fMRI data separately from 21 healthy participants

while participants viewed everyday objects in different viewing conditions,

and then related the data to electrocorticogram (ECoG) data recorded for

the same stimulus set from epileptic patients. The comparison of EEG and

ECoG data showed that object category signals emerge swiftly in the visual

system and can be detected by both EEG and ECoG at similar temporal delays

after stimulus onset. The correlation between EEG and ECoG was reduced

when object representations tolerant to changes in scale and orientation were

considered. The comparison of fMRI and ECoG overall revealed a tighter

relationship in occipital than in temporal regions, related to differences in

fMRI signal-to-noise ratio. Together, our results reveal a complex relationship

between fMRI, EEG, and ECoG signals at the level of population codes

that critically depends on the time point after stimulus onset, the region

investigated, and the visual contents used.
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Introduction

Any human cognitive function is realized by complex
neural dynamics that evolve both in time and in locus
(Haxby et al., 2014; Buzsáki and Llinás, 2017) across the
brain. No currently available non-invasive neuroimaging
technique can resolve such complex brain dynamics both
in space and time with high resolution simultaneously.
Instead, different techniques are used to pursue one goal or
the other. Specifically, BOLD-fMRI1 resolves brain activity
with high spatial resolution up to and beyond the millimeter
scale, but low temporal resolution (Gosseries et al., 2008;
Feinberg and Yacoub, 2012; Kim et al., 2020; Bollmann and
Barth, 2021). In contrast, Magneto/Electroencephalogram
(M/EEG) resolves brain activity with high temporal resolution
in the millisecond range, but its spatial resolution is limited
(Michel and Murray, 2012; Burle et al., 2015). To better
understand the brain function in humans across time and
space we require integration of non-invasively available
information from multiple brain imaging techniques.
The data provided by M/EEG and functional magnetic
resonance imaging (fMRI) have a complex and incompletely
understood relationship to the underlying neural sources. This
complicates their interpretation on their own as well as in
combination, introducing methodological uncertainty in our
knowledge of the spatiotemporal neural dynamics underlying
cognitive functions.

Interpreting the results of fMRI and EEG can benefit
from comparison with results from invasive techniques that
sample brain activity with high temporal and spatial specificity
simultaneously, such as the electrocorticogram (ECoG). A large
body of research has taken this route, relating invasive
electrophysiological recordings and EEG or fMRI, respectively.

The relationship between EEG signals and invasive
electrophysiological recordings has been investigated before
mostly in the context of seizure detection (Kokkinos et al.,
2019; Meisel and Bailey, 2019) and activity localization
(Yamazaki et al., 2012; Hnazaee et al., 2020). Further
studies have also explored frequency-band links between
the two modalities (Petroff et al., 2016; Haufe et al.,
2018; Meisel and Bailey, 2019). An emerging pattern
from these studies is that the analytical method used for
the comparison (Ding et al., 2007; Hnazaee et al., 2020)
and the signal components of EEG and ECoG selected
(Yamazaki et al., 2012; Meisel and Bailey, 2019) play a key
role in achieving a reliable correspondence between the
two modalities.

The relationship between fMRI signals and
electrophysiological recordings has been investigated in

1 Blood-oxygen-level-dependent functional magnetic resonance
imaging.

a set of seminal studies in non-human primates during
visual processing (Logothetis et al., 2001; Niessing et al.,
2005; Magri et al., 2012; Klink et al., 2021). In the visual
cortex, overall Blood Oxygen Level Dependent (BOLD)
responses reflect Local Field Potentials (LFPs) more than
the spiking output of the neurons and lower frequency
activities (Logothetis et al., 2001; Niessing et al., 2005; Magri
et al., 2012; Klink et al., 2021), but the correspondence also
varies across brain regions. Studies in humans comparing
anatomical and functional correspondence of fMRI and
invasive electrophysiological signals show frequency (Huettel
et al., 2004; Privman et al., 2007; Khursheed et al., 2011;
Engell et al., 2012; Hermes et al., 2012; van Houdt et al.,
2013), region (Huettel et al., 2004; Khursheed et al., 2011;
Sanada et al., 2021), and time-specific (Jacques et al.,
2016b) correspondence, for both task responses and resting
state activity (Khursheed et al., 2011; Hermes et al., 2012;
Hacker et al., 2017).

Common to most of the aforementioned studies is that
the links between non-invasive neuroimaging signals and
ECoG signals were established using univariate analysis.
However, the brain codes information in population codes
that cannot be captured by univariate analysis. In contrast,
multivariate analysis that assesses neural signals at the level
of activation patterns can provide complementary information
to univariate analysis with potentially higher sensitivity
(Kriegeskorte and Kievit, 2013; Cichy and Pantazis, 2017;
Guggenmos et al., 2018).

Here, we thus investigated the relationship between
EEG, fMRI, and ECoG signals at the level of population
codes using multivariate analysis techniques (Cichy and
Pantazis, 2017; Guggenmos et al., 2018). Our analyses build
on previously published ECoG data that was recorded
while participants viewed object images from five different
object categories, different scales and rotations (Liu et al.,
2009). We additionally recorded event-related fMRI and
EEG responses separately to the same object images.
This allowed for a direct content-sensitive comparison
between ECoG, EEG, and fMRI signals, detailing how
much the correspondence depends on the content
(object category) as well as variations in object scale
and orientation.

Materials and methods

Participants

Twenty-one healthy volunteers (13 females, age:
mean ± SD = 24.61 ± 3.47) with no history of visual
or neurological problems participated in this study. All
participants went through a health examination before each
session and signed a written consent form, declaring that
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their anonymized data can be used for research purposes. The
study was approved by the Iran University of Medical Sciences
Ethics Committee and was conducted in accordance with the
Declaration of Helsinki.

Stimulus set

We used a publicly available stimulus set used previously
to record ECoG data in humans (for example, stimuli see
Supplementary Figure 1 in Liu et al., 2009). The stimulus set
consisted of 125 grayscale images, with 25 images from each of
five object categories: animals, chairs, faces, fruits, and vehicles.
Each set of 25 images consisted of 5 different objects under
5 different viewing conditions that were defined by rendered
object size and rotation angle: (1) 3◦ visual angle size, 0◦

depth rotation, (2) 3◦ visual angle size, 45◦ depth rotation, (3)
3◦ visual angle size, 90◦ depth rotation, (4) 1.5◦ visual angle
size, 0◦ depth rotation, and (5) 6◦ visual angle size, 0◦ depth
rotation.

Electroencephalogram experimental
design and stimulus presentation

The duration of the experiment was about one hour.
The experiment consisted of 32 runs and participants were
allowed to take rest in between every 4 runs. Stimuli were
presented on a computer screen subtending 10.69◦ of visual
angle. In each run, all 125 images were presented once in
a random order. On each trial, an image was presented for
200 ms followed by 800 ms of blank screen. A fixation cross
was presented throughout the experiment, and participants
were asked to fixate it. Participants conducted a one-back
task on object identity independent of the object’s orientation
or size, indicating their response via a keyboard button
press. The experiment was programmed using MATLAB 2016
and the Psychophysics Toolbox (Brainard and Vision, 1997;
Pelli and Vision, 1997).

Electroencephalogram acquisition

We recorded EEG signals from 64 sensors with a
g.GAMMAsys cap and g.LADYbird electrodes with a
g.HIamp amplifier using the 10-10 system. Continuous
EEG was digitized at 1,100 Hz without applying any
online filters. The electrode placed at the left mastoid
was used as the reference electrode. The forehead
(FPz) electrode was used as the ground electrode. We
further used three EOG channels to record vertical and
horizontal eye movements.

Electroencephalogram preprocessing

We used EEGLAB14 (Delorme and Makeig, 2004) for
preprocessing. In the first step, we concatenated all EEG
data from a given recording and filtered them using a low-
pass filter (FIR filter with an order of 396) with a cutoff
frequency of 40 Hz. Looking at every ms in the EEG after
filtering at 40 Hz means looking at a sliding window with
a length of 25 ms, making it more comparable to ECoG
data. In EEG, higher frequencies are difficult to measure
as the signal is attenuated more than in lower frequencies.
Consistent with this, explorative classification analysis of the
EEG data resolved in frequency showed no object-related
information above 25 Hz (Supplementary Figure 1). Further,
high-frequency neural activity overlaps strongly with the
spectral bandwidth of muscle activity (Muthukumaraswamy,
2013). Applying a 40 Hz cutoff point in EEG – rather
than the 100 Hz cutoff point as in ECoG – does not
seem to affect the results of the classification analysis.
We did not high-pass filter the data because it is known
that it creates artifacts that result in the displacement of
multivariate patterns into activity-silent periods (van Driel
et al., 2021). We then resampled the signals to 1,000 Hz,
re-referenced them to the electrode placed on the left
mastoid, and extracted epochs from −100 to +600 ms with
respect to the stimulus onset. Last, we applied Infomax
Independent Component Analysis (ICA) on each individual
dataset. Then the spatial pattern of components and their
associated timecourses were explored visually to remove eye
blink and movement artifacts. For each participant, this
procedure yielded 32 preprocessed trials for each of the 125
images.

Electroencephalogram multivariate
pattern classification

We used time-resolved multivariate pattern classification
to estimate the amount of information about object category
in EEG signals at each time point of the epoch. All analyses
were conducted independently for each participant. We
classified object categories in a one-vs.-all procedure,
which is one category (e.g., faces) vs. all others (animals,
chairs, fruits, and vehicles). We conducted the analyses
in three schemes equivalent to the ones used in Liu
et al. (2009) to evaluate the classification performance
for ECoG data: category selectivity, rotation invariance,
and scale invariance. The schemes are described in
detail below.

The scheme “category selectivity” refers to the training and
testing of the classifier during category classification using EEG
data for all versions of the stimuli independent of stimulus
variations (i.e., images with size of 3◦ visual angle, and 0◦,
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45◦, and 90◦ depth rotation, sizes of 1.5◦ and 6◦ visual angle,
and 0◦ depth rotation). The analysis was conducted separately
for each time point of the epoch and for each category.
For each category, there were 800 trials (5 identities × 5
variations × 32 repetitions) resulting in two partitions of
800 vs. 3,200 trials in the one-vs.-other classification scheme.
To compensate for the imbalanced class ratio, we randomly
selected 800 trials from the 3,200 trials belonging to the
other four categories. To increase the signal-to-noise ratio,
we randomly assigned the 800 trials into 150 sets (with five
or six trials at each set) and averaged the trials in each set
to generate 150 pseudo-trials. We further applied multivariate
noise normalization (Guggenmos et al., 2018). Then, 149 trials
were used to train the linear support vector machine (SVM)
classifier, and data from the left-out trial were used for the
testing. We repeated the above procedure 300 times, each time
with a different, random selection of 800 trials from the other
category class.

The scheme “rotation invariance” refers to classifying object
categories across orientation changes. For this, we trained the
classifier using EEG data for images with size of 3◦ visual angle
and 0◦ depth rotation and tested it with EEG data for images of
size of 3◦ visual angle and either 90◦ or 45◦ depth rotation, and
averaged the results.

Finally, the scheme “scale invariance” refers to classifying
object categories across scale changes. For this, we trained the
classifier using EEG data for images with size of 3◦ visual angle
and 0◦ depth rotation and tested it with EEG data for images
of size of 1.5◦ or 6◦ visual angle and 0◦ depth rotation, before
averaging the results.

For both the rotation and scale invariance schemes, class
ratios were imbalanced in the following way: for each category,
there were 160 (5 identities × 1 variation × 32 repetitions)
trials per participant and thus 160 vs. 640 trials in the one-vs.-
all class sets. To balance the ratio, we randomly selected 160
trials from the set of 640 trials. After applying multivariate noise
normalization, we conducted leave-one-trial-out classification.
We repeated the procedure 150 times and averaged the results.

Electrocorticogram experimental
design and procedure

A detailed description of the ECoG data recording is
available in the original publication (Liu et al., 2009). Here,
we provide a short summary. The ECoG data were recorded
from 912 subdural electrodes implanted in 11 participants (6
male, 9 right-handed, age range 12–34 years) for evaluation
of surgical approaches to alleviate a resilient form of epilepsy.
Participants were presented with images of the same set as
described above in pseudorandom order. On each trial, an image
was presented for 200 ms, followed by 600 ms of blank screen.

Out of the 912 electrodes evaluated, 111 (12%) showed visual
selectivity. These electrodes were none-uniformly distributed
across the different lobes (occipital: 35%; temporal: 14%; frontal:
and 7%; parietal: 4%). The areas with the highest proportions of
selective electrodes were inferior occipital gyrus (86%), fusiform
gyrus (38%), parahippocampal portion of the medial temporal
lobe (26%), midoccipital gyrus (22%), lingual gyrus in the
medial temporal lobe (21%), inferior temporal cortex (18%), and
temporal pole (14%) (30).

Electrocorticogram multivariate
pattern classification

Liu et al. (2009) used an SVM classifier with a linear kernel
to calculate category selectivity, rotation, and scale invariance.
They built a neural ensemble vector that contained the range
of the signal [max(x)–min(x)] in individual bins of 25 ms
duration using 11 selective electrodes and the 50–300 ms
interval post stimulus onset. They tested for significance by
randomly shuffling the category labels. Here, rather than re-
analyzing the data, we reused the results as reported in Liu et al.
(2009).

Functional magnetic resonance
imaging experimental design and
stimulus presentation

Each participant completed one session consisting of 8
functional runs of data recording. During each run, the same
set of images used in EEG and ECoG was presented once in
a random order. On each trial, the image was presented for
200 ms followed by a 2,800 ms blank screen. In each run,
there were also 30 null trials during which a gray screen with
a fixation cross at the center was presented for 3,000 ms. As
in the EEG design, participants conducted a one-back task on
object identity independent of the object’s orientation or size.
The stimulus set was presented to the participants through a
mirror placed in the head coil.

Functional magnetic resonance
imaging acquisition

We recorded fMRI data using a Siemens Magnetom Prisma
3 Tesla with a 64-channel head coil. MRI head cushions and
pillows were used to comfort participants and minimize head
movements. To dampen the scanner noise, all participants
were provided with a set of earplugs. Structural T1-weighted
images were acquired at the beginning of the session for all
participants (voxel size = 0.8 mm × 0.8 mm × 0.8 mm,
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slices = 208, TR = 1,800 ms, TE = 2.41 ms, flip angle = 8◦).
We obtained functional images using an EPI sequence with the
whole brain coverage (voxel size = 3.5 mm × 3.5 mm × 3.5 mm,
TR = 2,000 ms, TE = 30 ms, flip angle = 90◦, FOV
read = 250 mm, FOV phase = 100%).

Functional magnetic resonance
imaging preprocessing and regions of
interest extraction

SPM8 (Penny et al., 2011) and MATLAB 2016 were used
to preprocess functional and structural magnetic resonance
images. The slices of the functional images were temporally
realigned to the middle slice. Then, the volumes of the whole
session were aligned to the first volume and co-registered to the
structural images.

We used a General Linear Model (GLM) to estimate
condition-specific activations. For each run, the onsets of image
presentation entered the GLM separately as regressors of interest
and were convolved with a canonical hemodynamic response
function. We included motion regressors as regressors of no
interest. This procedure yielded 125 parameter estimates per
run, indicating the responses of each voxel to the 25 different
objects presented.

We used Freesurfer package (Dale et al., 1999) with
Destrieux and Desikan-Killiany atlases to extract six regions of
interest (ROIs) from surface-based parcelations derived from
the T1 images. We used 6 visual ROIs: occipital-inferior,
fusiform, lingual, parahippocampal, inferior temporal, and pole
temporal cortex. We constructed a binary mask for each region
based on the individuals’ structural image parcelation. We then
selected voxels’ beta values resulting from fMRI GLM analysis
overlapping with the binary mask for further ROI-specific
analysis.

Functional magnetic resonance
imaging multivariate pattern
classification

We used multivariate pattern classification to estimate
category selectivity, rotation invariance, and scale invariance
at each participant and ROI. Equivalent to the EEG and
ECoG analysis, we conducted three analysis schemes: category
selectivity, scale invariance, and rotation invariance. We thus
do not describe the general setup again, but restrict ourselves
to particulars to the fMRI analysis.

In the “category selectivity” scheme, we employed a
leave-one-run-out cross-validation procedure to train and test
the classifier. There were eight repetitive functional runs of
data recording. For each category, there were 175 trials (5
identities × 5 variations × 7 repetitions) in the training set,

resulting in two partitions of 175 vs. 700 trials in the one-vs.-
other classification scheme. To compensate for the imbalanced
class ratio, we randomly selected 175 trials from the 700 trials
belonging to the other four categories. We tested the classifier
with the left-out run to discriminate between each category and
all other four categories. We repeated the random selection of
trials 300 times. The classification performances reported here
are the average values across the repetitions.

In scale and rotation invariance analyses, for each category
and participant, there were 40 (5 identities × 1 variation × 8
repetitions) trials and thus 40 vs. 160 trials in the one-vs.-other
class sets. To balance the number of trials for two classes (one
category vs. the other four categories) in the training set, we
randomly selected 40 trials from the other four categories (160
trials). We tested the classifier using a one-trial-out procedure,
repeated these steps 300 times, and averaged the results.

Relating electroencephalogram,
functional magnetic resonance
imaging, and electrocorticogram data

We used two principled ways to relate EEG, fMRI, and
ECoG data to each other: in terms of classification performance
resulting from multivariate pattern analysis, and in terms of
similarity relations between multivariate activation patterns
using representational similarity analysis (RSA). We detail
each approach below.

Comparison using classification performance
Relating EEG and ECoG, in general, we compared their

signals by comparing their classification time courses over time
with each other. To enable this step, for EEG, we averaged the
EEG classification time courses across all participants, yielding
one classification time course for each analysis scheme. For
ECoG, we used the classification time courses as provided by Liu
et al. (2009).

In detail, we compared EEG and ECoG signals for each
classification scheme in two ways. In the first analysis, we
calculated the correlation (Spearman’s R) between the complete
accuracy time courses. The second analysis was more fine
grained in that it was time-resolved and depended on category-
specific time courses. For every time point, we aggregated the
classification accuracies for each of the five categories into a 1
(time point) × 5 (category) vector. We did so independently
for ECoG and EEG and then compared the vectors using
correlation (Spearman’s R). This yielded one correlation value
at every millisecond.

Relating fMRI and ECoG, we considered each classification
scheme and ROI separately. To enable this step, for fMRI, we
averaged the classification results across participants. For ECoG,
we again used the classification time courses as provided by Liu
et al. (2009).
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Comparison using representational similarity
analysis

We used RSA (Edelman, 1998; Kriegeskorte et al., 2008;
Carlson et al., 2013) to relate fMRI, EEG, and ECoG to
each other. RSA abstracts from the incommensurate signal
spaces of the neuroimaging modalities into a similarity space
defined through representational similarity of activation
patterns between experimental conditions in each modality.
As the 125 experimental conditions were the same in
fMRI, EEG, and ECoG, their similarity space is directly
comparable. RSA uses dissimilarity rather than similarity
by convention which otherwise leaves the rationale of the
procedure untouched. Dissimilarities between conditions
are stored in representational dissimilarity matrices
(RDMs). RDMs are indexed in rows and columns by
the experimental conditions compared, are symmetric
across the diagonal, and the diagonal is undefined. Here
defined by our stimulus set, the RDMs are of dimensions
125 × 125.

We constructed RDMs using 1-Spearman’s R as a
dissimilarity measure in each case. For each participant,
for each condition, we averaged trials across repetitions and
used the resulting averages to compute dissimilarity matrices
(RDMs). In detail, for EEG, for every millisecond of the
epoch separately, we constructed one RDM from sensor-level
activation patterns per subject. We used the mean RDM
across subjects to compare the results of EEG/fMRI and
ECoG modalities. For ECoG, we calculated two different
RDM versions. The first version we call “ECoG RDMs”:
for every time point, we used data aggregated across all
participants in all electrodes (Supplementary Figure 2)
to calculate pairwise dissimilarities between experimental
conditions. The second we call “ECoG regional RDMs.” Here,
we differentiated between electrodes by ROIs, calculating
RDMs separately for each ROI rather than across all electrodes.
In the fMRI analysis, for each participant and ROI, we
constructed only one RDM based on ROI-specific beta
activation patterns resulting from a GLM using a classical
hrf (hemodynamic response function). The fMRI analysis
thus collapses over time – all time resolution comes from the
ECoG or EEG signal.

Assessing how functional magnetic
resonance imaging signal-to-noise
ratio affects the correspondence
between functional magnetic
resonance imaging and
electrocorticogram

In fMRI recordings, the signal-to-noise ratio (SNR) is
known to differ across the brain. For example, due to artifacts

related to the closeness of the ear canal, temporal brain regions
often suffer from SNR loss (Murphy et al., 2007; Triantafyllou
et al., 2011; Welvaert and Rosseel, 2013; Sanada et al., 2021). We
therefore explored if there is a significant relation between the
SNR in a given ROI and the relationship between ECoG and
fMRI in the classification performance-based analysis. To this
end, we computed fMRI SNR by averaging the correlation of
each participant’s RMD with the group mean RDM. Then for
fMRI, we averaged classification accuracies across participants
in each region. Then, we calculated Spearman’s correlation
between mean classification accuracies for ECoG and MRI. This
gave one correlation coefficient per region (i.e., a 1 × 6 vector).
Finally, the relation between ECoG-fMRI correlation and SNR
was obtained using Spearman’s correlation. We used the upper
bound of the noise-ceiling as defined in (Nili et al., 2014) as a
proxy for SNR in the fMRI data.

Inferential analysis

We used non-parametric statistics that do not make
assumptions about the distribution of the data for
inferential analysis.

Peak latency
The time for peak decoding accuracy was defined as the time

where the decoding accuracy was the maximum value.
We used bootstrap resampling of participants (21

participants with 10,000 repetitions) to examine whether
peak latencies between EEG and ECoG classification time
courses were significantly different.

Onset latency
We defined onset latency as the earliest time where

performance became significantly above chance for at least 15
consecutive time-points. We used the non-parametric Wilcoxon
signrank test (one-sided) across participants to determine time-
points with significantly above chance decoding accuracy. To
adjust p-values for multiple comparisons (i.e., across time), we
further applied the false discovery rate (FDR) correction.

We further used bootstrap resampling of participants (21
participants with 10,000 repetitions) to examine whether onset
latencies between EEG and ECoG classification time courses
were significantly different.

To assess the statistical significance of RDM-to-RDM
Spearman’s R correlation, we used a random permutation test
based on 10,000 randomizations of the condition labels; where
required, the results were FDR-corrected at p < 0.05.

Overall correlation coefficients across time
We used bootstrap resampling of participants (21

participants with 10,000 repetitions) to investigate whether
EEG-ECoG RDM correlations were significant.
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Classification performance
We used bootstrap resampling of participants (21

participants with 10,000 repetitions) to examine if decoding
accuracies in fMRI were significantly higher than chance level.

Results

Comparing time courses of
electroencephalogram and
electrocorticogram-based object
category classification

We determined similarities and differences with which
EEG and ECoG reveal the temporal dynamics of visual
category representations in the human brain. For this,
we investigated time-resolved object category sensitivity in
neural signals and their robustness to changes in viewing
conditions using multivariate pattern analysis. In particular,
we classified object category in three different classification
schemes (Figures 1A–C). In the first analysis, we classified
the object category based on neural signals lumped together
for objects of all sizes and rotations, indexing overall object
category selectivity of the neural signals (analysis from here
on termed “category selectivity”). In the second and third
analyses, we classified the object category across changes
in rotation and scale of the objects. This indexes category
selectivity of the neural signals tolerant to changes in viewing
conditions.

We begin the comparison of EEG vs. ECoG signals at
a coarse level by inspecting the shape of the grand average
classification results from the above-mentioned classification
schemes. We found that object category was classified from
neural signals in all three analysis schemes, with the highest
classification accuracy of 64% in category selectivity for EEG
and 60% in rotation invariance for ECoG (Figures 1A–C). In
each case, we observed a rapid rise of classification accuracy
after image presentation to a peak followed by a gradual
decline, with no significant differences in the onset latencies for
EEG and ECoG (bootstrap test of 21 participants with 10,000
repetitions and signrank test, all p> 2e−1). This shows that both
measurement techniques equally reveal the swift emergence of
object category signals in the visual system.

Based on this finding, we quantitatively compared the
dynamics with which object category signals become visible
in EEG and ECoG for similarity. For this, we correlated their
respective time courses across time for each analysis scheme
separately. There was a significant relationship in all three cases
(Figure 1D), being highest in the general category selectivity
analysis and reduced for the scale-and rotation tolerant analysis
(bootstrap test of 21 participants with 10,000 repetitions; for
detail see Supplementary Table 1).

Besides similarities, we also observed two marked
differences between the classification curves for EEG and
ECoG. For one, the peak latency for ECoG was significantly
shorter than that of EEG in all three analysis schemes (bootstrap
test of 21 participants with 10,000 repetitions; for details, see
Supplementary Table 2). Second, peak classification accuracy
was significantly higher for EEG than for ECoG in the category
selectivity analysis (Figure 1A; bootstrap test of 21 participants
with 10,000 repetitions, p < 9.9e−4), but lower in the rotation
and scale invariant analysis (Figures 1B,C; difference not
significant, p > 9.3e−1). This refines the point that neural
signals recorded with ECoG and EEG differ in that the ECoG
signals reflect visual object representations tolerant to changes
in visual processing proportionally more strongly than the EEG
signals.

We continue the comparison of EEG vs. ECoG signals
at a finer level by inspecting the shape of the classification
results for each object category separately (Figure 2) to refine
the conceptual resolution of the analysis. Consistent with the
previous analyses, we observed that each single category was
classified in all three analysis schemes from both EEG and ECoG
data with the highest classification accuracy of 74 and 80%
in face category, respectively (Figure 2A). Further consistent
with the previous analysis, we found significantly shorter peak
latencies for ECOG than for EEG signals for all categories
except fruits in the category selectivity scheme, but the difference
was not significant for category selectivity under rotation and
scale changes (bootstrap test of 21 participants with 10,000
repetitions; for details, see Supplementary Table 3).

With respect to onset latencies, ECoG had a significantly
earlier onset compared to EEG for all object categories under
the category selectivity scheme; but this was not the case
under scale and orientation variations (bootstrap test of 21
participants with 10,000 repetitions; p-values are given in
Supplementary Table 4). However, in the grand average analysis
(Figures 1A–C), there were no significant differences between
ECoG and EEG onset latencies in any of the three schemes.

The finer level of inspection at the level of single categories
allowed us also to compare time courses of classification between
different categories. We found that in both EEG and ECoG
and across all the three classification schemes, the face category
was discriminated earlier and had a significantly higher peak
amplitude compared to other categories (Figure 2A; bootstrap
test of 21 participants with 10,000 repetitions, all ps < 1e−3).
This shows that the consistency between ECoG and EEG also
depends on the content, i.e., the category used to probe the visual
system.

To further quantitatively determine similarities between
EEG and ECoG at this finer level, we conducted two analyses.
First, analogous to the analysis above, we correlated the
respective time courses for each category and analysis scheme
separately (Figure 2B). We found a positive relationship in all
cases (bootstrap test of 21 participants with 10,000 repetitions;
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FIGURE 1

Electroencephalogram and ECoG average classification performance (one category vs. rest) assessing (A) category selectivity, (B) rotation
invariance, and (C) scale invariance over time. The sketches in the top row visualize the rationale of the three classification schemes (i.e.,
determining category selectivity, rotation invariance, and scale invariance) by showing example images for data entering the classifications. The
bottom row shows the classification results. The red curves show EEG classification performance averaged over five categories and participants
(N = 21). The blue curves show the mean ECoG classification performance over 5 categories using 11 selective electrodes and IFP (intracranial
field potential) power in bins of 25 ms. The horizontal lines above the curves indicate significant time points [EEG: bootstrap test of 21
participants with 10,000 repetitions, FDR-corrected at p < 0.05; ECoG: as in the Liu et al. (2009), i.e., permutation test over stimuli, not
corrected, for details on peak latency comparison, see Supplementary Table 1]. (D) Correlation between EEG and ECoG classification time
courses. Stars show significance, and the values above the bar charts indicate the p-values of the differences between the correlation
coefficients (bootstrap test of 21 participants with 10,000 repetitions, for more details, see Supplementary Table 2).

for details, see Supplementary Table 5). Our results show that
after introducing changes in size and orientation, the correlation
between EEG and ECoG decoding accuracies was significantly
reduced for the chair and the vehicle category (Figure 2B;
bootstrap test of 21 participants with 10,000 repetitions, all
ps < 4e−3). Second, we related EEG and ECoG by correlating
the vector of category-specific classification results for each
time point separately. Again, we found positive relationships in
all cases. Highest similarity and shortest onset latencies were
observed in the general category selectivity analysis compared
to the scale and rotation tolerant analyses (bootstrap test
of 21 participants with 10,000 repetitions; for details, see
Supplementary Tables 6, 7). Consistent with the grand average
analysis (Figure 1D), we see that the similarity between EEG
and ECoG is reduced and delayed after introducing variations
in object scale and orientation.

Comparing electroencephalogram and
electrocorticogram by
representational similarity

In the previous sections, we compared EEG to ECoG
in terms of object category classification time courses in
classification schemes that assess the effect of changes across
scale and invariance.

Here, we use RSA (Edelman, 1998; Kriegeskorte et al., 2008;
Carlson et al., 2013) to compare EEG and ECoG representations
across time and selected brain regions, regardless of the object
category and changes in scale and orientation.

We conducted two analyses defined by the way ECoG data
were aggregated in RDMs. In the first analysis (Figure 3A),
ECoG RDMs were calculated from data of all ECoG electrodes
(called here “ECoG RDMs”), giving a spatially unspecific large-
scale statistical summary of representational relations in the
ECoG signal. We observed two time periods at which EEG and
ECoG representations were significantly similar (i.e., 154–222
and 274–376 ms) (Figure 3A). We note that the first time period
overlaps with both EEG and ECoG peak decoding accuracies at
182 and 172 ms, respectively (Figure 1A).

In the second analysis (Figure 3B), we limited the analysis to
electrodes in predefined visual ROIs, yielding ECoG RDMs that
enable spatially specific assessment of the ECoG data per region
(called here “Regional ECoG RDMs”).

We observed a significant representational similarity
between EEG and ECoG in occipital-inferior, lingual, fusiform,
parahippocampal, and inferior-temporal regions (Figure 3B).
Comparison of the results in Figures 3A,B suggests how
each region may have contributed differently to the overall
EEG-ECoG correlation across time. Occipital-inferior and
lingual regions are the regions that show the first significant
correlation value at 100 and 106 ms, respectively. Then the
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FIGURE 2

Electroencephalogram and ECoG category-specific classification performances over time. (A) Classification performances across all channels
of EEG averaged over 21 participants, and ECoG classification performances using 11 selective electrodes and IFP (intracranial field potential)
power in bins of 25 ms. The horizontal lines above the curves indicate significant time points (EEG: bootstrap test of 21 participants with 10,000
repetitions, FDR-corrected at p < 0.05, ECoG: permutation test over stimuli, not corrected). (B) EEG–ECoG category-wise overall correlation.
Bar charts show the correlation coefficients between the classification time courses performances of EEG and ECoG for each category
separately for the two modalities. The bars are color-coded, and the stars indicate significance (bootstrap test of 21 participants with 10,000
repetitions). (C) EEG–ECoG time-resolved point-by-point category-wise correlation. For each time point, we compared classification
performance across categories between EEG and ECoG. At each time point, accuracies for categories were compared between EEG and ECoG.
The horizontal lines above the curves indicate significant time points (bootstrap test of 21 participants with 10,000 repetitions, FDR-corrected at
p < 0.05). For ECoG, the results are presented as reported in Liu et al. (2009). We did not analyze the data; we reproduced the figures
in Liu et al. (2009).

fusiform region shows first significant correlations at 119 ms,
followed by the parahippocampal and temporal-inferior regions
at 177 and 230 ms. Furthermore, we find that there were
significant differences between the regions’ latencies of the
first peak; occipital-inferior and lingual peaked at 118 and
116 ms, followed by the fusiform (178 ms), parahippocampal

(142 ms), and temporal-inferior region (186 ms) (bootstrap
test of 21 participants with 10,000 repetitions; for details,
see Supplementary Table 8). Together, this suggests that the
fusiform region contributes to the overall pattern of results more
than the other regions investigated here (Figure 3A vs. red curve
in Figure 3B).
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FIGURE 3

Comparison of EEG and ECoG by representational similarity. We compared the EEG RDM (mean over participants) to (A) the ECoG RDM,
constructed using all electrodes from all participants and (B) the regional ECoG RDM, constructed from electrodes limited to specific ROIs. The
horizontal lines above the curves indicate significant time points (permutation test over stimuli, 10,000 iterations, FDR-corrected at p < 0.05).
The ROIs include occipital-inferior (O-Inf), fusiform (T-LFus), lingual (T-MLing), parahippocampal (T-MTPhip), inferior-temporal (T-IT), and
pole-temporal cortex (T-Pole).

Comparing functional magnetic
resonance imaging and
electrocorticogram through object
category classification performance

We began the comparison of fMRI with ECoG signals by
evaluating the results of category classification in the same
three classification schemes as used previously. We focused the
analysis on the same six ROIs as in the ECoG-EEG comparison:
occipital-inferior, fusiform, lingual, parahippocampal, inferior-
temporal, and pole-temporal cortex. Focusing on spatial rather
than temporal specificity, for ECoG, we used the classification
performance in the time range of 50–300 ms after stimulus onset
as calculated in Liu et al. (2009), as this period captures the
visual systems first response to external stimuli as detected by
electrophysiological modalities.

The results (Figure 4) revealed a nuanced picture showing
both similarities and differences between fMRI and ECoG,
depending on category classified, region, and analysis scheme.

First, decoding accuracies in ECoG were significantly
higher than that of fMRI for all categories and for all
three classification schemes (bootstrap test of 21 participants
with 10,000 repetitions, FDR-corrected at p < 0.05). Further,
compared to ECoG, fewer categories could be decoded in
fMRI in the orientation and scale invariance scheme, suggesting

that some of the information relevant for invariant object
recognition was captured less well by the fMRI signal in our
experiment. Second, in all three analysis schemes, animal, chair,
face, fruit, and vehicle categories were decoded significantly in
both fMRI and ECoG in the occipital-inferior region. Third, in
the fusiform region, when examining results for the rotation and
scale invariance analysis schemes, we observed that all categories
could be decoded using fMRI, but in ECoG, the chair category
could not be decoded.

This complicated picture across regions led us to ask
about underlying factors that could explain those results. We
hypothesized that the differential signal-to-noise ratio (SNR) of
fMRI across regions might play a role. To investigate this, we
plotted SNR in fMRI against the similarity in result patterns
for fMRI and ECoG for each region and classification scheme
(Figure 4, last column). Correlating SNR with fMRI-ECoG
similarity values we observed strong positive relationships
(bootstrap test of 21 participants with 10,000 repetitions, all
ps < 0.01): regions with low SNR in fMRI such as the ventral
occipital temporal and inferior lateral temporal region showed
low correlation in classification results patterns with ECOG,
whereas regions with high SNR in fMRI such as the occipital
inferior and temporal fusiform region showed high correlations.
This shows that SNR differences in fMRI across regions strongly
contribute to whether positive relationships with ECoG can be
established.
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FIGURE 4

Classification performance (one category vs. rest) for the classification schemes (A) category selectivity, (B) rotation invariance, (C) and scale
invariance. First column: cartoon visualization of stimuli for data used to train and test the classifier in each analysis scheme. Second column:
region-specific classification results for (average performances across 21 participants). Third Column: region-specific classification results for
ECoG. Error bars indicate one standard deviation, and stars above bars indicate statistical significance (fMRI: bootstrap test of 21 participants
with 10,000 repetitions, FDR-corrected at p < 0.05. ECoG: permutation test over stimuli, not corrected). Fourth Column: correlation between
signal-to-noise ratio in fMRI and ECOG classification results in the category selectivity scheme across regions. The ROIs include
occipital-inferior (O-Inf), fusiform (T-LFus), lingual (T-MLing), parahippocampal (T-MTPhip), inferior-temporal (T-IT), and pole-temporal cortex
(T-Pole).

Comparing functional magnetic
resonance imaging to
electrocorticogram by
representational similarity

We further studied the relationship between fMRI and
ECoG in a region-specific way using RSA (Figure 5) in a similar
way as delineated above for the relationship between EEG and
ECoG (Figure 3). In detail, we compared regional fMRI RDMs
with regional ECoG RDMs across time.

We found representations as measured by fMRI and
ECoG to be similar in occipital-inferior and fusiform
regions (Figure 5). The correlation time courses indicating
representational similarity showed two peaks around 100
and 250 ms for the occipital-inferior region and around
100 and 300 ms for the fusiform region (for details see
Supplementary Table 9). This suggests that two temporally
distinct neural processes occur in those regions, possibly related
to feed-forward and feedback processing.

Comparing functional magnetic
resonance imaging to
electroencephalogram by
representational similarity

Finally, aiming to reveal neural dynamics in humans
resolved both in space and time using non-invasive techniques
only, we used fMRI-M/EEG representational fusion (Cichy
et al., 2014, 2016; Cichy and Oliva, 2020). In detail, we compared
regional fMRI RDMs with EEG RDMs across time (Figure 6).

We found significant correlations between EEG-fMRI
RDMs from about 100 ms onward, in occipital-inferior,
fusiform, and lingual regions, and from about 130 ms
onward in inferior-temporal and pole-temporal regions (for
details, see Supplementary Table 10). We also observed
later representational correspondence between EEG and fMRI
starting from about 280 to about 420 ms in the fusiform
region, from about 190 ms to about 430 ms in the lingual,
and 530–560 ms in the inferior temporal region. These results
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FIGURE 5

Comparison of fMRI and ECoG in representational similarity by cortical regions. For each participant, fMRI RDMs were calculated using
1-Spearman’s correlation. We then compared the mean fMRI RDM to the ECoG regional RDMs. The horizontal lines above the curves indicate
significant time points (permutation test over stimuli, 10,000 repetitions, FDR-corrected at p < 0.05). The ROIs include occipital-inferior (O-Inf),
fusiform (T-LFus), lingual (T-MLing), parahippocampal (T-MTPhip), inferior-temporal (T-IT), and pole-temporal cortex (T-Pole).

provide an important coordinate to consider how integration
methods based on non-invasive EEG and fMRI results perform
in comparison to ECoG. For example, we found that occipital
inferior, fusiform and lingual were among the first regions to
emerge in both ECoG (Supplementary Figure 3) and EEG-
fMRI fusion. According to the ECoG results, parahippocampal
cortex was the last region that showed selectivity. However, this
region showed no significant time point in EEG-fMRI fusion.
Moreover, the temporal pole had the longest onset latency
in ECoG. This was consistent with EEG-ECoG results which
showed that the temporal pole and inferior temporal cortex had
longer onset latencies compared to the other regions.

Discussion

Summary

In this study, we investigated the correspondence between
EEG and fMRI and ECoG data recorded during object
vision in humans at the level of population codes using
multivariate analysis methods. Our findings are threefold.
First, the EEG-ECoG comparison revealed a correspondence
that drops when viewing-condition invariant representations

are assessed. Second, using multivariate pattern analysis, we
showed that fMRI-ECoG relation is region dependent; in
regions with lower fMRI signal-to-noise-ratio, fMRI-ECoG
correlation decreases. Last, comparing the results of EEG-
fMRI fusion with that of EEG-ECoG and fMRI-ECoG,
we observe both consistencies and inconsistencies across
time and region.

Correspondence between
electroencephalogram and
electrocorticogram significantly drops
after introducing variations to the
stimuli

Our study adds to the large body of research investigating
the relationship between EEG and ECoG signals by
detailing the relationship in the context of invariant object
representations (Eger et al., 2005; Cichy and Oliva, 2020).
We observed that when assessing object representations
independent of size and orientation, the correlation between
EEG and ECoG decoding accuracies was significantly
reduced for the chair and the vehicle category. This drop
suggests that invariant object representations are located
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FIGURE 6

Comparing fMRI and EEG by representational similarity. For each participant, EEG and fMRI RDMs were calculated using 1-Spearman’s
correlation. We then compared the mean fMRI RDM to the mean EEG RDM. The horizontal lines above the curves indicate significant time
points (permutation test over stimuli, 10,000 repetitions, FDR-corrected at p < 0.05). The ROIs include occipital-inferior (O-Inf), fusiform
(T-LFus), lingual (T-MLing), parahippocampal (T-MTPhip), inferior-temporal (T-IT), and pole-temporal cortex (T-Pole).

in brain areas that are less accessible by EEG compared to
ECoG (Figure 2). This conjecture is further corroborated
by the observation that after changing the size and
orientation of the objects, the EEG classification accuracy
decreased, but the ECoG classification accuracy did not
(Figure 1).

The impact of signal-to-noise ratio in
functional magnetic resonance
imaging on the similarity between
functional magnetic resonance
imaging and electrocorticogram

Previous studies on fMRI signal quality comparing different
brain regions suggest that fMRI has low SNR in temporal
regions (Murphy et al., 2007; Triantafyllou et al., 2011;
Welvaert and Rosseel, 2013; Sanada et al., 2021). Consistent
with the results, here we observed that in temporal areas of
the brain (pole temporal and inferior temporal), the fMRI-
ECoG correlation is lower, whereas in regions with higher
SNR, such as occipital-inferior and fusiform, the fMRI and
ECoG correlation is higher. Together this further highlights
the importance of taking the specific sensitivities of different

imaging modalities into account when relating and interpreting
their results.

Reliability of
electroencephalogram-functional
magnetic resonance imaging fusion
across time and brain regions

When conducting EEG-fMRI representational fusion, i.e.,
correlating the whole-brain EEG RDMs with the regional fMRI
RDMs (i.e., EEG-fMRI fusion; Cichy et al., 2014, 2016), we
find that consistent with EEG-ECoG RDM correlations across
time, occipital-inferior and lingual cortex are among the first
regions that emerge around 100 ms. The EEG-fMRI fusion
results further suggest that in regions closer to the skull and thus
to the EEG electrodes, EEG-fMRI fusion may give more reliable
results than in regions further away.

Comparing EEG-fMRI fusion with fMRI-ECoG, we find
that pole temporal and temporal inferior fMRI RDMs both had
a significant correlation with EEG around 150 ms. However,
there was no significant correlation between fMRI and ECoG
RDMs for these regions. Pole temporal and temporal inferior
are regions typically reported to have lower SNR and more
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difficult for fMRI to read from (Sanada et al., 2021), which may
explain the inconsistency between fMRI-ECoG (Figure 5) and
fMRI-EEG (Figure 6) results with regard to these regions.

While ECoG provides high density coverage over a limited
cortical region, EEG and fMRI can provide broad coverage
over all cortical areas, including deep brain structures in fMRI.
This is a key consideration when comparing EEG-fMRI fusion
and ECoG results. For areas and time points where EEG and
fMRI have reliable readings from the brain and we have enough
electrodes from ECoG to read out data, we can expect the best
between-modality consistency.

Limitations and future studies

One of the study’s limitations is that the EEG-fMRI data
were from a different set of participants, compared to that of
the ECoG data. Thus, subject-specific signal components could
not be assessed. While challenging, future studies may attempt
to record EEG, fMRI, and ECoG data from the same participants
to be able to do a more direct comparison of the modalities at the
level of single individuals.

While EEG and ECoG both measure neural signals,
there are significant differences between the signals’ SNR,
noise factors, and coverage of brain areas. Due to these
differences, the modalities require different preprocessing
and processing steps. First, while EEG can provide whole-
brain coverage, and thus participant-specific data are used
in EEG (Karimi et al., 2022; Moon et al., 2022; Xu et al.,
2022), ECoG has very limited brain coverage as electrode
coverage is dictated by medical reasons for each individual;
as such usually, the data are pooled across subjects from
different participants to provide a wider coverage (Sellers
et al., 2019; Yang et al., 2019; Ahmadipour et al., 2021).
Second, single trial ECoG data can provide reliable information
(Jacques et al., 2016b; Haufe et al., 2018); however, it is
typical to average several trials in EEG to reduce noise
and acquire higher SNR. The process of averaging across
trials is a common preprocessing step in EEG studies to
increase signal-to-noise ratio (Wardle et al., 2016; Guggenmos
et al., 2018; Kong et al., 2020; Ashton et al., 2022), and to
obtain a more reliable signal. When the study design and
duration of recording allow, it is preferred to have more
repetitions so one can average across. Here, the EEG category
selectivity results had possibly higher SNR, compared to
rotation and scale invariance analysis, given there were more
repetitions.

Third, we used a different statistical test (i.e., bootstrap
resampling of participants) for EEG results compared to the
permutation test (permutation of labels) that was used in ECoG.
The way ECoG data was collected did not allow for an equivalent
analysis. Instead, Liu et al. chose selective electrodes across
several subjects, creating a super subject. In EEG, having more
subjects and comparable data across subjects enabled us to

run random effect analysis across them, which is the preferred
method for analyzing the EEG data (Jacques et al., 2016a; Karimi
et al., 2022).

Last, the data were averaged in different ways in ECoG
and EEG/fMRI following the recommended optimized method
of analysis in each modality. In ECoG, the data from all
subjects were pooled across subjects and the average trial across
repetitions was used to construct RDMs. However, in EEG,
for each subject, we calculated RDMs separately. Combining
all EEG electrodes from all subjects together before creating
RDMs would have been possible, but it would not make the
analysis more comparable. It is not desirable to apply the same
pipeline for both EEG and ECoG; instead, the modality-specific
processing steps are best suited here to bring out reliable results
with high sensitivity. In sum, due to the above differences
mentioned, we used different preprocessing pipelines to prepare
the data for classification and RSA.

We appreciate that each of those analysis choices and steps
can influence the results to an unknown degree, for example,
the category selectivity analysis and the rotation/scale invariance
analyses can be affected by differences in EEG/ECoG’s SNR, due
to the trial averaging in EEG, or using mixed subject electrodes
in ECoG. Similarly, EEG-ECoG comparisons regarding the
onset latencies could have been affected by different statistical
procedures run in each modality. Our general approach in
this study was to follow the best way of analysis for each
modality. Alternatively, one could have forced equating the
pre-processing steps in ECoG and EEG. In that case, one
still needs to decide whether to follow a procedure that is
optimized for ECoG data or the EEG data or otherwise a
neutral procedure that is optimized for neither of the two.
Each of those decisions will have implications on the results
and interpretations. Future work systematically investigating
the influence of analysis choices on the results in ECoG and
EEG is required to solve these open questions. That would be
more achievable in non-human primates, where EEG is being
established, and ECoG can be placed more freely. For example,
similar cut-off frequencies were used in Sandhaeger et al. (2019)
to compare EEG, ECoG, and MEG signals in monkeys.

Conclusion

Our findings of a spatiotemporal correspondence between
patterns of category-selective responses across ECoG and
fMRI/EEG are in line with previous human studies reporting
on between-modality correspondence in visual areas (Puce
et al., 1997; Parvizi et al., 2012; Jacques et al., 2016b; Haufe
et al., 2018). However, these studies did not investigate
how the correspondence changes under variations in object
size and/or orientation. Here, we highlighted key differences
between EEG-ECoG and fMRI-ECoG, both temporally and
spatially, when object variations are introduced. Our study
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guides interpretation of neuroimaging studies of invariant
object recognition when using M/EEG and fMRI by showing
when and where we can be more confident about the results.
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