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Zusammenfassung 

Obwohl die erste Version der menschlichen Genomsequenz vor zwei Jahrzehnten fertiggestellt wurde, 

bleibt das Verständnis vieler genomischer Varianten schwer fassbar. Neuartige Erkenntnisse und 

technologische Fortschritte verbessern die Fähigkeit, Positionen im Genom zu interpretieren. Klinische 

Anwendungen hinken jedoch der Grundlagenforschung hinterher, da Wissen und bioinformatische 

Werkzeuge nur eingeschränkt zugänglich sind, um Therapieansätzen und Patienten zugute zu kommen. 

In dieser Arbeit helfe ich dabei, humangenetische Varianten zu verstehen, indem ich drei voneinander 

unabhängige Ansätze weiterentwickle. 

Um Forschenden Wissen und Zugang zu Varianteninterpretationen zu bieten, entwickle ich ein Tool zur 

Aufarbeitung und Analyse der gezielten Sequenzierung genomischer Regionen für das Screening von 

Patientenkohorten am Beispiel eines etablierten Hämophilie A & B MIP-Designs aus der „My Life, Our 

Future" Initiative. In einem benutzerfreundlichen HTML-Bericht fasst „hemoMIPs“ abgedeckte, 

unvollständige oder fehlende Regionen, erfasste Varianten, und ihre vorhergesagten genetischen 

Auswirkungen zusammen. HemoMIPs ist als Open-Source-Tool auf GitHub veröffentlicht und verfügbar. 

In einem zweiten Ansatz betrachte ich genomische Strukturvarianten (SVs) und schätze ihre Auswirkungen 

auf menschliche Phänotypen mithilfe von maschinellem Lernen ab. Modelle werden mithilfe von 

Menschen und Schimpansen abgeleiteten SVs trainiert. „CADD-SV“ berechnet zusammenfassende 

Statistiken über verschiedene Variantenannotationen und verwendet Random-Forest-Modelle, um 

funktionelle SVs zu priorisieren. Die resultierenden CADD-SV-Scores korrelieren mit bekannten 

pathogenen, seltenen Varianten und somatischen Krebsvarianten. Dieser Ansatz ist als Online-Service 

sowie als Open-Source-Tool auf GitHub veröffentlicht und verfügbar. 

Vor allem die Interpretation von nicht-kodierenden Sequenzabschnitten hinkt der Interpretation von 

kodierenden Regionen hinterher. In meinem dritten Ansatz konzentriere ich mich auf nicht-kodierende 

Varianten in Bindungsstellen eines DNA-bindenden Protein (Transkriptionsfaktor CTCF). Hier entwickle ich 

einen Arbeitsablauf zur Identifizierung menschenspezifischer gewonnener oder verlorener CTCF-

Bindungsstellen unter Verwendung von Datensätzen von Affen und Menschen. Varianten werden anhand 

ihres Einflusses auf die 3D-Genomarchitektur mithilfe von umfassenden Annotationen priorisiert. Die 

resultierenden Varianten sind in genomischen Regionen angereichert, die die Gehirnentwicklung 

beeinflussen. Darüber hinaus zeigt eine unabhängige experimentelle Validierung unter Verwendung von 

Schimpansen, Orang-Utan und menschlichen Zellkulturen und Organoiden eine hohe Überlappung mit 

diesem Computer gestützten Ansatz. 



 
 

Abstract  

While the first version of the human genome sequence was completed two decades ago, the 

understanding of many genomic variants remains elusive. Novel insights and technological advances 

improve the power to interpret genetic alterations in the genome. However, clinical applications lack 

behind basic research due to reduced accessibility of knowledge and tools to benefit therapeutic 

outcomes and patients. In this thesis I help improving the interpretation of human genetic variants and 

increasing accessibility of these tools by using three independent approaches.  

To provide insights and access to variant interpretation to researchers and clinicians, I develop a tool to 

refurbish and analyze targeted sequencing of genomic regions for screening of patient cohorts on the 

example of an established hemophilia A & B MIP design from the “My Life, Our Future” initiative. In a 

user-friendly HTML report “hemoMIPs” summarizes covered, incomplete, or missing regions, called 

variants and their predicted effects. HemoMIPs is published and available as an open-source tool on 

GitHub.  

In a second approach, I look at genomic structural variants (SVs) and estimate their effect on human health 

and disease using machine learning. Models are trained on human and chimpanzee derived SVs 

contrasted with matched simulated variants, an approach that has proven powerful for short sequence 

variants. “CADD-SV” computes summary statistics over diverse variant annotations and uses random 

forest models to prioritize functional SVs. The resulting CADD-SV scores correlate with known pathogenic, 

rare population and somatic cancer variants. This approach is published and available as an online scoring 

service as well as an open-source software on GitHub. 

Especially the interpretation of non-coding variants lacks behind coding regions. In my third approach I 

focus on non-coding variants in binding sites of a widely studied DNA-binding protein (CTCF). Here, I 

develop a workflow to identify human-specific gained or lost CTCF binding sites using great ape and 

human datasets. Variants are prioritized for their impact on 3D genome architecture using a 

comprehensive set of annotations. Candidates are enriched in genomic regions mediating brain 

development. Further, independent experimental validation using chimp, orang and human NPCs and 

organoids show high overlap with this computational approach. 
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1 Introduction 
 

The vast majority of human traits have a genetic component, besides the environmental influences. From 

height to hair color, from sex to Alzheimer’s disease, genetic factors contribute. Deoxyribonucleic acid 

(DNA) stores genetic information and, like an instructional manual, describes blueprints of every living 

organism. The combined genetic information in every cell of an organism is called the genome. 

When the sequencing of the human genome was completed in 2001 many scientists regarded this as a 

revolution for basic human research as well as for human health 1. However, interpretation of genetic 

variants, in other words, understanding specific sections of the instructions to build a certain organism, is 

far more complex than initially speculated 2. This thesis focuses on interpretation of genetic variants in 

the human genome, as 20 years after the first draft of the human genome, many mysteries in basic 

genomic research remain unsolved. To better understand the scientific contributions of this work, I will 

introduce the properties of DNA and how our cells make use of it. I will explain evolutionary mechanisms 

that lead to species diversity on our planet as well as diseases. I will focus on bioinformatic principles that 

are used to grasp the enormous size and complexity of genetic datasets. So, please bear with me if you 

have not understood all terms used so far. 

In this thesis, genetic variant interpretation has been studied from three different viewpoints. Therefore, 

it is split in three general sections. In the “hemoMIPs” section 3, variants in a well-studied disease 

mechanism (hemophilia) are analyzed and prepared for clinical inspection using a targeted sequencing 

approach. In the “CADD-SV” section 4, a specific type of variant, so-called, “structural variants” which can 

span longer sections of the genome, are prioritized for their functional impact. And finally, “CTCF-

Evolution” focuses on a specific mechanism of DNA variants that have putative impact on genome 

function for a wide set of phenotypes. 

 

1.1  Deoxyribonucleic acid 
 

Deoxyribonucleic acid, more commonly referred to as DNA, is a complex molecule that contains the 

instructions to build and run all known living organisms as well as many viruses. Every eukaryotic cell 

contains DNA organized in DNA structures called chromosomes in the nuclear core. DNA is a polymer 
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composed of a double helix chain built from a backbone containing sugar (deoxyribose) linked to one 

another by a phosphate group. In the center of the double helix, protected from environmental stress, 

lies the genetic information, encrypted by four nucleobases - cytosine (C), guanine (G) adenine (A) and 

thymine (T) - that form the alphabet of the cellular instructions (see Figure 1). Both double stranded DNA 

strains store the same information as the nucleobases are mirrored, always linking pyrimidines (C,T) with 

purines (A,G). Therefore, positions in the genomic sequence are often referenced to as base pairs. A 

change in DNA sequence (mutation) may lead to altered functionality based on a variety of mechanisms 
5. 

 
Figure 1: Molecular Structure of DNA with color coded Atoms. DNA is a complex molecule build from Hydrogen, Oxygen, Nitrogen, 
Carbon and Phosphorus. Heritability derives from information encoded in the sequence of organic bases Thymine (T), Cytosine (C), 
Adenine (T) and Guanine (G) within the DNA double helix. Due to different number of hydrogen bonds formed, T and A, and C and 
G match to one another. DNA base pairings are complementary. Information is therefore encrypted twice, on each single strand 
forming the double stranded DNA double helix as well as in two copies in diploid organisms like humans. Image used from 
https://en.wikipedia.org/wiki/DNA 

 

1.2  Functional DNA 

1.2.1 Coding DNA 

 

Genetic information is stored as a sequence of nucleobases. Some stretches are transcribed by molecular 

machinery into ribonucleic acid (RNA) that itself can get translated into amino acid chains forming 
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proteins. Stretches of DNA that are translated into proteins are considered coding-DNA. Three genomic 

positions form a codon, that is then translated into an amino acid by t-RNAs (see Figure 2). Hence, 

variation in the sequence of the nucleobases can lead to variation in amino acid sequence and thus the 

3D structure and functionality of a protein. Because proteins are responsible for a wide variety of cellular 

functions such as cellular stability, metabolism and cellular communication, protein variation can lead to 

distinct biological characteristics (phenotypes) 5. For instance, genetic variants in proteins controlling the 

body’s ability to form blood clots may lead to increased risk of internal bleeding 6. This disease, known as 

hemophilia, as well as the interpretation of the variants involved, are further described in the project 

section “hemoMIPs”. 
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Figure 2: From DNA sequence to protein sequence. DNA is transcribed into messenger RNA (mRNA) that is translated into 
polypeptide chains (Proteins) by Ribosomes. This process is conducted in every cell in every organism. Proteins are very diverse in 
their function as they can be involved in metabolic processes, in cellular communication or cellular structure. Picture from 2013 
Nature Education (https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393/).  

 
1.2.2 Non-coding DNA 

 

Historically DNA was divided into coding DNA that encrypts amino acid chains, and other stretches of DNA 

originally referred to as junk DNA, long considered meaningless to cellular survival.  
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However, the function of DNA stretches beyond coding region is far more complex than originally 

anticipated. Current estimates suggest 8 to 15 % of DNA being “functional” 7. Non-coding sequences are 

functional in a wide variety of mechanisms. Cis and trans regulatory elements control the abundance 

(gene expression) of protein produced from a certain gene 8. As all cells in the human body contain the 

same genomic instructions, gene expression is crucial for individual cellular functionality and diversity. 

Certain genes get activated and deactivated during developmental processes to ensure certain function. 

Therefore, regulatory elements guarantee the correct expression in time and space of a certain gene. 

While cis regulatory elements control expression of nearby genes, trans regulatory elements can influence 

genes distant to the regulatory element. Promoters are sequences typically upstream of the coding region 

which control gene expression. Enhancers are sequence stretches that, mediated by proteins (e.g., 

transcription factors), bind to specific sequence motifs within the regulatory element and influence 

transcription levels of genes. Enhancers can be scattered throughout the genome and do not require 

proximity to the regulated gene 5. 

Further, novel research has shown that the three-dimensional structure of DNA is crucial for its function 
9–13. Therefore, elements that mediate 3D genome architecture hold function. By insulating genetic 

stretches from surrounding regulatory elements, genomic boundaries can form functional DNA 

condensates that often are composed of co-expressed genes 14. The CCCTC-binding factor (CTCF) is a 

highly conserved protein that mediates 3D genome architecture by binding to specific DNA sequence 

motifs and therefore forms loops or links DNA stretches to one another. Human variants throughout the 

genome in CTCF binding sites (BS) are discussed in more detail in the “CTCF evolution” section (see Section 

4). 

 
 

1.3  Variant effects and variant types 
 
As described above, changes in the sequence (genotype) of DNA base pairs impact function and therefore 

characteristics of an organism (phenotype). Studying this genotype-phenotype relationship is one of the 

most exciting fields in basic research today. Thousands of scientific papers contribute to the 

understanding of genetic variants, linking genotype to phenotype 15. Genetic changes mediate the 

diversity in life that we see today. Genetic variation can affect individual cells of an organisms as they only 
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occurred there (somatic variants for instance in cancer tissues) or affect the whole individual and their 

offspring (germline variants). 

1.3.1 Coding sequence 

 
Impact of a genetic variant strongly depends on the sequencing context (for instance falling within coding 

or non-coding DNA) as well as the type of variant. Single nucleotide variants (SNVs) affect a single base 

pair in the genome. Especially in coding sequences their effect can be classified depending on the effect 

they have on protein function. Missense variants lead to the replacement of one amino acid by another. 

A change in the aminoacid sequence can alter protein structure and function 16. Change in function does 

not necessarily correspond to loss of function, as some variants may alter the metabolic properties or 

location of a protein, rather than rendering it dysfunctional. Hence, altered proteins can also gain 

functionality. Nonsense variants may lead to complete loss of function. Variants introducing a stop-codon, 

three base pairs signaling a halt of amino-acid chain formation, lead to shortened proteins that may be 

non-functional. Short deletions and insertions in coding sequence may lead to frameshift mutations that 

can offset the translation of the genomic sequence, causing several altered aminoacids and introducing 

early stop-codons. As protein assembly is based on codons, formed by three base pairs, frameshifts may 

lead to largely different proteins. 

 

1.3.2 Non-coding sequence 

 
In addition to coding sequence, SNVs can affect non-coding sequence. For instance, Transcription factors 

(TF), proteins that bind to DNA, make use of a specific sequence motif to find their genomic destination. 

Certain binding sites (BS) for certain TFs are scattered throughout the genome. Variations in the motif 

may lead to a change in binding affinity leading to increased or decreased binding of the TF. Changes in 

TF composition in consequence can lead to changes in gene expression in space and time which may lead 

to phenotypic differences 17. Section 4 of this manuscript focuses on non-coding variants in a transcription 

factor (CTCF) binding motif. 
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1.3.3 Structural variants 

 

 
Figure 3: Structural Variants (SVs) in the genome. Deletions, Insertions, and Inversions of 50bp length or more are considered SVs 
Depiction adapted from Heller et al. 18. 

On top of SNVs, variants can span multiple base pairs (bp) in the genome. Structural variants (SVs) are 

arbitrarily defined as variants affecting more than 50bp. Structural variants can be deletions, insertions, 

duplications, inversions or other, more complex types of rearrangements (see Figure 3) 19. SVs in coding 

sequence can also affect protein function. Rearrangements can for instance lead to fusion proteins 

composed of previously distinct proteins into one novel protein. Further, large structural variants often 

affect the 3D genome architecture of a region, as they interfere with regulatory functional setups 20. 

Genome architecture describes the three-dimensional shape that the linear DNA molecule is structured 

in in the cellular core. Boundary regions, regions that form a shift in 3D genome architecture, can be 

deleted or shuffled around by inversions, leading to altered expression patterns of certain genes 21. 

Interpretation of SVs are the focus of section 3 of this manuscript: “CADD-SV” 

 

1.4  DNA sequencing 
 
To identify variants, the genomic sequence of nucleic bases must be determined. Sanger sequencing is an 

accurate but expensive method to determine DNA sequence that was first introduced in 1977 22. Novel 

methods, termed, “next generation sequencing methods” are faster, with higher throughput and much 

cheaper. The most widely used technique is based on reversible dye-terminators 23. In brief, purified DNA 

is attached on a flow cell, amplified and sequenced by synthesis. Commercial platform, e.g. Illumina Inc. 

exist. This procedure makes use of fluorophores attached to organic bases. The cluster of amplified DNA 

strands, fixed on a flow cell is extended base by base. After the incorporation of a base, extension is 

terminated, a camera detects the type of fluorophore and the corresponding organic base. Afterwards 

termination is reversed allowing for extension by another base. One by one the sequence is determined. 

As the human genome consists of 3,100 mega base pairs per haploid genome, shotgun sequencing is 

applied, sequencing small parts (hundreds of basepairs) of the genome in parallel. Computation software 
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is needed to assemble the generated small DNA sequence stretches (reads) back into overlapping contigs 

and finally genomes 24. A reference genome (for instance human genome build version GrCH38) is used 

to identify the location of the reads within the human genome (alignment). As sequenced DNA stretches 

might contain incorrect bases, positions are often covered by multiple reads (coverage). Therefore, 

identifying variants based on the most prevalent base at a certain position (consensus calling) leads to 

more accurate results. Overlapping reads allow for the extension of sequence information into longer 

stretches (contigs). Modern techniques also allow for targeted sequencing of regions of interest. Section 

2 of this manuscript “hemoMIPs” focuses on a targeted sequencing approach using Molecular Inversion 

Probes 3.  

 

1.5 The 3D Genome 
 
DNA in the nucleus is highly organized into chromatin structures in the form of chromosomes. Further, 

DNA is rolled around histone protein complexes to form nucleosomes, which bind approximately 146bp 

of DNA. While DNA stretches that are not tightly packed and therefore accessible to transcription factors 

are called A-compartments, B-compartments consist of highly compressed and therefore inaccessible 

DNA. On a larger scale, DNA looping brings stretches of DNA into proximity that can be millions of base 

pairs apart from one another 11. While looping was first observed in 1878, the function of DNA loops 

remained obscure for another century 25. Now, DNA loops are considered crucial to mediate complex 

expression (the amount of protein being produced in time and space) patterns, as they bring together 

functional DNA regions such as enhancer and promotor regions or insulate DNA stretches from nearby 

DNA sequence. 

1.5.1 Measuring DNA-Protein interactions 

 

Experimental measures to infer DNA-Protein interaction are used to understand gene regulation as gene 

expression is mediated by transcription factors (TFs). Chromatin immunoprecipitation (ChIP) combined 

with next generation sequencing allows for identifying binding sites of specific TFs. With this method, DNA 

is crosslinked with bound proteins, DNA is sonicated to break the double helix into short segments. Finally 

specific antibodies are used to filter for the protein of interest. Unlinking, purifying and sequencing the 

DNA and realigning the reads to the genome leads to aligned sequences peaking at regions where 
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transcription factors are located 26. The same concept applies to experiments called CUT&Tag. Among 

other slight differences, proteins bound to DNA are identified without shearing DNA via sonification. 

Instead, DNA segments are cut using Tn5 transposase enzymes 27. Datasets using these experimental 

procedures were integrated in the projects CADD-SV (Section 3) and “CTCF Evolution” (Section 4). 

 

1.6  Evolution 

 

Figure 4: Charles Darwin’s drawings of Galapagos finches illustrates the link between genetic variants and function. Due to 
heritable genetic mutations in their genome, Galapagos finches diverged into subspecies. Their beaks adapted to their 
environment as specialized beaks are favored (as in have more surviving offspring) that have increased fitness to collect seeds or 
harvest nuts. 

 
No thesis about variant interpretation should miss mentioning possibly the most influential contribution 

to science: Charles Darwin’s theory of evolution described in “On the Origin of Species” in 1859 28(see 

Figure 4). In his seminal work, Darwin describes how speciation happens through constant change and 



10 
 

adaptation that is passed on to future generations. Introducing variants into the gene pool (the set of 

existing variants in all individuals of a certain species combined) is a natural and desired part of life. The 

process of naturally occurring variants (mutations) and their heritable effect on fitness is called evolution. 

All living organisms are subject to evolution. During reproduction, naturally occurring genetic variants get 

passed on to the offspring. Darwin himself was unaware of the mechanisms of DNA heritability. As 

described above, genotypic difference may mediate phenotypic difference that may impact fitness. Most 

variants however that are accumulated are considered neutral with no effect on fitness (yet). Mutations 

are not directed as they occur mostly random through natural processes, such as through errors during 

DNA replication29. Natural selection, however, may favor or remove certain variants depending on their 

fitness effect on the carrier29.  

 

1.6.1 Natural selection 

 
All variants fluctuate in frequency in the population due to genetic drift 30. Recombination randomly 

shuffles existing variation from the parents into the offspring, therefore favoring some variants not by 

their fitness effect but by chance. Positive selection, however, favors variants that influence fitness (for 

instance reproduction rate) of their carrier. On the other hand, purifying selecting removes variants from 

the gene pool that are harmful to the fitness of that individual. Purifying selection conserves certain 

stretches of DNA, as variants decrease the fitness of the carrier and therefore are removed. Some 

stretches of DNA are so crucial for biological function that they are conserved throughout the evolutionary 

tree of life. For instance, 16S and 23S ribosomal RNA genes as well as nucleotide binding domains of ABC 

transporters are so fundamental to cellular survival that they are highly conserved between kingdoms of 

life as different as Archaea, Bacteria and Eukarya 31.  

 

1.6.2 Primate / Human evolution 

 
As human beings, some research naturally focuses on our own evolution. As part of the phylogenetic tree 

of primates, homo sapiens sapiens first occurred in Africa around 300,000 years ago 32. Various forms of 

Homo existed during human evolution, sometimes simultaneously with homo neanderthalensis and 

Denisovans as the most recent known cousins of modern humans. The split between homo sapiens and 

Neanderthals dates back to about 500,000 years ago 33. While Neanderthals and Denisovans are extinct 

today, the closest living relative of humans is the genus pan, consisting of two species: the chimpanzee 
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and the bonobo. The most recent common ancestor between homo and pan lineages existed about 5 to 

8 million years ago 34. During this time humans accumulated distinct variants of which some are 

responsible for human success in all habitats on this planet. While most variants are neutral, it remains a 

contested field of basic research to identify and interpret variants that make humans uniquely human.  

 

1.7  Variant Interpretation  
 
The interpretation of variants as described above is a diverse field of genetic research. Whether and how 

much impact a certain variant has depends on many factors. Variants are often classified into pathogenic 

and benign categories for clinical interpretation 35. Sometimes extending to likely pathogenic, unknown 

significance and likely benign. Different approaches have been taken to classify novel variants, based on 

a comprehensive set of annotations describing the variant 36, based on evolutionary conservation 37, based 

on clinical description of a certain variant 35 in individual or a set of patients or based on experimental 

readouts 38. A wide variety of tools have been proposed that make use of one or multiple of these features 

to describe novel variants still to be classified 39–41. These approaches are often biased as clinically 

validated datasets are often limited to a few well-studied genes and computational tools are limited by 

the ascertainment biases of the training datasets as well as intrinsic biases in the generation of features. 

Therefore, each approach has advantages and disadvantages. 

 

1.7.1 Challenges 

 
Why is variant interpretation still a growing field of basic research? Interpretation of genetic variants is 

not trivial. Many challenges remain when trying to understand what consequences a certain genetic 

variant has on an organism. Genetic variants in the human genome are abundant, even though inter 

species diversity is low in humans compared to most other species 42. Identification of the causative 

variant for a certain disease remains difficult. Many variants are linked to surrounding variants, meaning 

that they often occur together in various individuals of a population. To link a variant to a phenotype, 

genome wide association studies (GWAS) are used. Here, the genome of individuals with and without a 

certain trait are compared using statistical methods to identify variants specific to the group holding the 

trait 43. However, these analyses often yield multiple variants in a region that are linked (linkage 

disequilibrium). Even after associating a region to a known disease, fine mapping is needed to understand 

the specific variant effect. 



12 
 

As described above, many regulatory variants are poorly understood. Many cellular processes, such as 

DNA phase separation 44 (describing the process of structures being formed like oil in water) as well as 

DNA loop extrusion characteristics 45 (Proteins bound to the DNA at two specific locations allow the DNA 

strand in between to slide along these boundary points) , are novel concepts. Further, many regulatory 

regions such as enhancers are identified but not linked to their target gene. 

Many phenotypes are not caused by a single variant but are mediated by multiple loci of small effect sizes 
46. Only complex combinations might lead to diseases prognosis. Additionally, especially rare disease 

variants are difficult to identify and interpret as the number of patients to analyze and to understand the 

genetic background is very limited, sometimes limited to a single patient. In addition, most organisms 

(humans included) are complex systems consisting of a wide variety of specialized cell types. Variant 

effects might vary drastically in different cells of the same organism. 

 

1.7.2 Experimental variant interpretation 

 
Novel approaches have been proposed to experimentally validate classified variants. While novel 

approaches like CRISPR/Cas9 47, a genetic tool that allows for introduction of variants of interests into a 

system, revolutionize basic biological research, experimental variant interpretation is still expensive, 

resource intensive and slow. Massive parallel reporter assays (MPRAs) are set to overcome some of the 

burdens of experimental validations 48. Here, gene regulatory activity of individual variants can be 

measured in a highly parallelized fashion in vivo. Variants are introduced in a reporter construct and linked 

to a unique DNA barcode. Target gene abundance is measured by sequencing or fluorescence, giving 

experimental insights into the regulatory activity of a variant. However, this thesis focuses on 

computational approaches of variant interpretation. 

 

1.8  Computational modeling  
 

1.8.1 Machine learning 

 
More time and cost-efficient variant interpretation is performed in silico. Many computation approaches 

are based on machine learning (ML) algorithms. ML makes use of existing sample datasets to train a model 

and learn patterns that enable the model to predict novel inputs. Three approaches exist: supervised 
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learning feeds the algorithm with example inputs and their desired outputs. The goal is to learn 

generalized patterns that differentiate inputs into their desired outputs. Unsupervised learning reflects 

input data without labels. The algorithm’s task is to detect structure in the input data that are not provided 

beforehand. Reinforced learning algorithms strive towards a certain desired output by providing feedback 

to its previous approaches to do so. Playing a game against an opponent is a classic example of reinforced 

learning. The CADD-SV section highlights further aspects of machine learning such as hold-out datasets 

and overfitting.  

 

1.8.2 Software usability 

 
A major focus of this work is usability of the proposed approaches. As they consist of pipelines 

incorporating existing tools and self-made scripts, managing software dependencies is crucial. To be able 

to share and further develop existing code, applications like GitHub exist to automate the process of code 

sharing. Further, many tools require additional libraries for the software to function properly. To 

accomplish this, package managers like conda have been developed 49. Conda allows user to install 

predefined software packages to guarantee stability on various systems. Further, workflow management 

systems help developers and users alike to automate consecutive processes. Snakemake is a widely used 

software management tool developed for bioinformatic purposes 50. Rules define individual calculation 

steps to be individually run by the user or to be combined in a chain of data processing steps (pipeline). 

1.8.3 Summary 

 

Using state of the art workflow and software management tools, I provide software to automate and 

analyze genomic datasets to prioritize functional variants. I look at known disease mechanisms and 

provide a tool to analyze and refurbish raw sequencing datasets generated by targeted sequencing (see 

“hemoMIPs”) 3. I provide a tool to interpret structural variants in the human genome based on a machine 

learning model that makes use of a wide variety of comprehensive public genomic annotations (see 

“CADD-SV”) 4. Finally, non-coding variants are prioritized in a functionally focused approach, focusing on 

3D genome architecture mediated by a highly conserved transcription factor (see “CTCF-evolution”). 
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2 hemoMIPs – Automated analysis and result reporting 
pipeline for targeted sequencing data 

 

2.1  Introduction 
 
Patient specific variant detection is of importance for the diagnosis and treatment of various diseases. 

Identification of disease-causing variants is crucial to understand and suggest personalized therapies for 

individual carriers. While computational approaches exist to identify variants, an open-source tool to 

identify variants in predefined stretches of DNA using a specific technology called Molecular Inversion 

Probes is missing. 

Here, I established an automated pipeline to analyze targeted sequencing dataset for variant 

identification, molecular annotation and quality control. I applied and designed this pipeline specifically 

for targeted sequencing data from a hemophilia patient cohort. 

2.1.1 Molecular Inversion Probes 

 

DNA capture sequencing using Molecular Inversion Probes (MIPs) is a fast and efficient method for 

targeted sequencing of regions of interest and has been applied in various disease cohorts 51–53.  Targeted 

sequencing is applied when the region of interest that affects the disease outcome is known. Therefore, 

only regions of interest are being targeted for sequencing in contrast to whole genome sequencing. A 

number of protocols exist with minor deviations from the general workflow 54. The general approach 

involves designing single stranded DNA probes containing two primer sequences complementary to the 

region of interest as well as a linker, serving as the backbone to physically link the two primers 55. These 

probes are then hybridized to the target DNA and circularized upon polymerase fill-in (elongation of the 

DNA using a special enzyme called Polymerase that synthesizes chains of nucleic acids) and nick ligation 

(ligation describing the process of linking the ends of two DNA or RNA strands) (see Figure 5). Degradation 

of non-circularized molecules enriches the target DNA and sample multiplexing is enabled by using sample 

specific barcodes in the linker or during an amplification reaction linearizing the DNA and adding required 

sequencing adapters. Multiplexing using sample specific barcodes (unique identifiers attached to the 

sequence) is applied to sequence multiple individuals simultaneously and correctly identify variants in 

each of those. 
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Figure 5: Molecular Inversion Probe workflow: single stranded DNA probes containing two primer sequences (red and blue) 
complementary to the coding regions of two genes (F8 and F9) as well as a linker (grey), serving as the backbone to physically link 
the two primers. These probes are then hybridized to the target DNA and circularized upon polymerase fill-in and nick ligation. 
Degradation of non-circularized molecules enriches the target DNA and sample specific barcodes enable pooled sequencing. 
Downstream sequencing analysis conducted using the raw sequencing data generated with this approach 56. 

  

2.1.2 Hemophilia 

 

Hemophilia A and B are X-linked (describing the location of the disease on one of the 23 pairs of 

chromosomes in each human cell, in this case chromosome X) recessive disorders (in contrast to dominant 

disorders describing the characteristic if one of two “broken” copies is enough to mediate the 

disease).This results from one or multiple variants out of more than 3,000 known DNA variants in the 

genes encoding coagulation factor VIII (F8) and factor IX (F9), respectively. Determination of the causative 

genetic variant is important for the patient's reproductive planning, for use in pregnancy and neonatal 

management, and also to inform risks of neutralizing antibody (inhibitor) formation and bleeding severity. 
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Therapies targeted to specific patient variants are likely to become more common in the future 56. The 

"My Life, Our Future" (MLOF) project is a multisector collaboration developed to provide wide-scale 

access to free hemophilia genotype analysis for patients in the United States and to create a research 

repository of associated samples and data to support scientific discovery and treatment advances. For the 

MLOF initiative, a MIP-based genotyping approach was developed for the F8 and F9 genes 56 including 

more than 450 MIPs. 

 

2.2  Methods 
 
The hemoMIPs pipeline enables hemophilia screening of (typically) 384 patients (derived from 4 96-well-

plates) on a single Illumina NextSeq run (a commercial platform that applies next generation sequencing 

using sequencing by synthesis). Figure 6 outlines the general workflow and the following sections describe 

data processing and analysis in more detail. All steps are implemented in the workflow management 

software Snakemake 50 and rely on conda predefined environments to manage software dependencies 

and easy deployment. 

 

 

Figure 6: Depiction of the hemoMIPs workflow.The grey outlines describes the steps within the snakemake workflow. Orange 
boxes name the environment that the workflow is applied in (defined by the dependency software Conda and specified by the 
Config File). Fastq files generated from Illumina sequencing (containing the raw sequencing read information without location 
information) is filtered merged and trimmed into BAM files (compressed binary version of the Sequence Alignment/Map format: 
SAM). Sequenced DNA stretches within the BAM files are aligned to the human genome using an approached called BWA MEM 
(that uses Burrows Wheeler Alignment to efficiently identify positions in the human genome). From the aligned BAM files either 
Genome Analysis Toolkit 3 or 4 (GATK) are being used to identify variants compared to the reference genome sequence ultimately 
leading to variants represented in variant call format (VCF). Here, only variation to the human reference is reported. Sample Sex 
information as well as MIP Performance Statistics are calculated from the aligned BAM files to subsequently generate the 
Summary HTML together with the variant information found in the VCF files. 
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2.2.1 Primary Sequence Processing 

 

The primary inputs are raw FastQ files (containing the identified short DNA sequence (~120 bp) stretches 

without information about the location within the human genome) from the sequencing run as well as a 

sample-to-barcode assignment. In primary processing, reads are converted to BAM format (see Figure 6), 

demultiplexed (storing sample information as read group information), and overlapping paired-end reads 

(sequencing both ends of a DNA molecule: this process increases the accuracy of the identification of 

variants as individual positions within the reads might be sequencing errors and therefore incorrect 

nucleotids) are merged and consensus called 57 (identifying most common nucleotides at individual 

positions). 

2.2.2 Barcode to sample assignment 

 

A two-column tab-separated file is required with the sequencing barcode information. The sample name 

will be used throughout the processing and reporting. The barcode sequence is assumed to be in the first 

index read of the Illumina sequencing run (as reads are generated using paired end sequencing) (I1 FastQ 

read files created using the Illumina bcl2fastq tool; bcl2fastq --create-fastq-for-index-

reads --use-bases-mask 'Y*,I*,Y*'). An example for the sample assignment file is provided 

below: 

#Seq Name 
CATGCGAGA Plate_001_01A.1 
ACTGGTAGG Plate_001_01B.2 
GCTCCAACG Plate_001_01C.3 
GCGTAAGAT Plate_001_01D.4 
TGACCATCA Plate_001_01E.5 
GGATTCTCG Plate_001_01F.6 

 

2.2.3 MIP design information 

 

Information about the designed MIP probes and their location in the reference genome is needed as a 

tab-separated text file for the tool TrimMIParms.py. The default input file has the following columns: 

index, score, chr, ext_probe_start, ext_probe_stop, ext_probe_copy, ext_probe_sequence, 

lig_probe_start, lig_probe_stop, lig_probe_copy, lig_probe_sequence, mip_scan_start_position, 

mip_scan_stop_position, scan_target_sequence, mip_sequence, feature_start_position, 

feature_stop_position, probe_strand, failure_flags, gene_name, mip_name. This format is obtained from 
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MIP designs generated by MIPGEN 55, a tool for MIP probe design available on GitHub 

(https://github.com/shendurelab/MIPGEN). Alternatively, files containing at least the following named 

columns can be used: chr, ext_probe_start, ext_probe_stop, lig_probe_start, lig_probe_stop, 

probe_strand, and mip_name. It is critical, that the reported coordinates and chromosome names match 

the reference genome used in alignment. 

2.2.4 Snakemake configuration 

 

Different aspects of the project (e.g. sequencing run information, reference sequences, local paths, benign 

variants) can be defined using a central configuration file for snakemake. An example is available at 

https://github.com/kircherlab/hemoMIPs/blob/master/example_config.yml. Different references and 

annotations need to be specified in the snakemake config file such as reference genome, Burrows-

Wheeler Alignment (BWA) indexed reference genome location, inversion reference, and VEP installation 

path and cache version. As multiple Illumina lanes can be analyzed simultaneously, the respective run 

folder names in the local "input" folder and the number of lanes can be set in the "datasets" section of 

the configuration file. 

2.2.5 Known and benign variant information 

 

A list of known and benign variants can be provided in the configuration file, these variants will be shown 

in gray in the HTML output reports (see Figure 7). 

 

Figure 7: HTML reports are generated for visualization, interpretation and better access to all information collected across the 
individual workflow steps. Here, a section of report.html shows the obtained genotypes for the demultiplexed samples and 
highlights potential pathogenic variants, their location in the gene and which exon (E:) (protein coding sequence stretches) or 
intron (I:) (sequence in between exons) is affected. Additionally incomplete called sites, predefined structural variants (columns 
INT1 and INT22 referring to inversions of F8‐intron 22 and F8‐intron 1 which are common causes of severe hemophilia A) and 
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failed MIPs are reported. The multiplexed samples can be identified via their sampleID. This output is meant to give a general 
overview over the sample performances. 

2.2.6 Alignment and MIP arm trimming 

 

Processed reads are aligned to the reference genome (here GRCh37 build from the 1000 Genomes Project 

Phase II release) using Burrows-Wheeler Alignment (BWA) 0.7.5 mem 24. As MIP arm sequence can result 

in incorrect variant identification (by hiding existing variation below primer sequence), MIP arm 

sequences are trimmed based on alignment coordinates and new BAM files are created. In this step, MIP 

design files from MIPgen 55 are used by default. MIP representation statistics (text output file) are 

calculated from the aligned files. Further, reads aligning to the Y-chromosome-unique probes (SRY gene; 

corresponding sequences should only be obtained from a male individual) are counted for each sample 

and reported (text output file).  

In a separate alignment step, all reads are aligned to a reference sequence file describing only the 

structural sequence variants as mutant and reference sequences. Results are summarized over all samples 

with the number of reads aligning to each sequence contig in a text report. 

2.2.7 Coverage Analysis and Calling using GATK 

 

Coverage (amount of reads encountered at certain positions) differences between MIPs are handled by 

down sampling regions of excessive coverage. Variants are genotyped using GATK 58 UnifiedGenotyper 

(v3.4-46) in combination with IndelRealigner (v3.2-2). Alternatively, GATK v4.0.4.0 HaplotypeCaller is used 

in gVCF mode in combination with CombineGVCFs and GenotypeGVCFs. Variant annotations of the called 

(identified) variants, including variant effect predictions and Human Genome Variation Society (HGVS) 

variant descriptions are obtained from Ensembl Variant Effect Predictor, a tool to  annotate and prioritize 

genetic variants 59. 

2.2.8 Reporting 

 

Different HTML reports are generated for visualization, interpretation and better access to all information 

collected in previous steps. There are two entry points to this information, organized as two different 

HTML reports – one summarizing all variant calls and MIP performance across samples and the other 

summarizing per-sample results in an overview table.  
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The first report (report.html) provides an overview of results for each sample highlighting putative 

deleterious variants and taking previously defined common/known benign variants out of focus (see 

Figure 8, gray font). Additional information is provided about potential structural variants and 

incompletely covered regions. This table also provides an overall sample status field with information 

about passing and failing samples, as well as flags indicating outlier MIP performances. 

The second report (summary.html, See Figure 9) provides a more technical sample and variant summary, 

per region coverage and MIP performance statistics. This report across samples can be used to assess 

assay performance (e.g. underperforming MIPs could be redesigned in future assays) and allows 

identification of suspiciously frequent variants (common variants or systematic errors). 

Both reports provide links to individual report pages of each sample. The individual reports 

(ind_SAMPLENAME.html), provide quality measures like overall coverage, target region coverage, read 

counts underlying the inferred sample sex and MIP performance statistics (over- or underperforming MIPs 

in this sample), but most importantly provide detailed information on the identified variants, structural 

variant call results and regions without coverage (potential deletions).  

2.2.9 Reported Tables 

 

In additional to the HTML output files for visualization, results are also presented in computer readable 

Comma Separated Values (CSV) format files. These CSV files can be joined by either the variant or sample 

specific identifier columns. The following results are summarized in the respective table files: 

ind_status.csv outputs the sample sex inferred from SRY counts, reports outlier MIP performance, number 

of genotype (GT) calls (genotype being the DNA of an individual at a certain position) , covered sites within 

the MIP design regions, average coverage, heterozygous sites (describing positions that differ between 

chromosome pairs in one individual), incompletely covered regions, deletions as well as a textual 

summary in a sample quality flag (e.g. OK, Failed Inversions, Check MIPs).  

variant_calls.csv and variant_calls_benign.csv contain all or just benign variants, respectively, with 

location, genotype, quality scores, allelic depth, coverage and status information.  

variant_annotation.csv provides additional annotations to called variants based on reference and 

alternative allele information. These annotations include gene name, exonic location, cDNA and coding 

DNA sequence (CDS) position, HGVS Transcript and Protein information, variant rsID (unique labels to 
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identify variants), and 1000G allele frequency (frequency of variants in a worldwide human genetics 

cohort: 1000 Genomes Project 60).  

inversion_calls.csv contains count results for MIPs targeting predefined structural variants.  
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2.3  Results 
 
Here I introduce an easy-to-use pipeline to analyze highly imbalanced, targeted, next-generation 

sequencing data sets generated using MIP experiments. In a user-friendly HTML report, all analysis results 

including covered, incomplete or missing regions, called variants and their predicted effects are 

summarized (see Figure 8). 

 

Figure 8: An individual report (ind_Sample_1.html) shows general quality metrics as well as functional annotations of identified 
variants, the coverage for each targeted region (including regions missing coverage/genotype calls), the counts for MIPs designed 
to capture structural variants and highlights over- or underperforming MIPs. 

 

2.3.1 GATK3 output 

 

Using the GATK3 version (being used for variant calling and coverage analysis) of hemoMIPs, the MLOF 

initiative screened 3,000 patients for hemophilia causative variants in 2017, sequencing the F8 and F9 

genes for about 15% of the total hemophilia A and B population of the United States 56. All F8 and F9 

coding regions, splice sites, and upstream (450 bp for F8 and 300 bp for F9) and downstream (1838 bp for 
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F8 and 1417 bp for F9) untranslated sequences were captured using 458 MIP probes, each with about 111 

bp in target size. Additional eight probes were designed to capture reference or mutant sequences of 

large DNA inversions mediated through sequences in F8 intron 22 or F8 intron 1 and homologous 

sequences distal to the F8 gene, resulting in gene disruptions 61. Finally, five probes are targeting SRY 

unique sequence to detect patient sex. 

 

Figure 9: An example of the Summary Report (summary.html). This report provides the user an overview of all samples present in 
the dataset with their inferred sex, genotypes (GT), average coverage (Ave.Cov), number of heterozygous (Hets) and overall 
variants and the observed variant list with direct links to the individual sample reports. 

 

2.3.2 Causative variants 

 

In 98.4% (2,952/3,000) of patients, the likely causative variant was identified from our results and 

confirmed using Sanger validation 56. Of 924 unique variants observed in this hemophilia cohort, 285 novel 

variants were identified. In cases of severe hemophilia, predicted gene-disrupting variants were common 

while missense variants dominated for mild-to-moderate disease. Novel hemophilia DNA variants were 

detected continuously throughout the project, indicating that additional variation likely remains 

undiscovered 56. 

2.3.3 GATK4 

 

I have extended the pipeline to use GATK4 for variant calling and coverage analysis. Results are highly 

concordant between the two versions, but GATK4 calling is 50 times faster (see also Supplementary 

Information).  
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2.3.4 GATK3, GATK4 comparison 

 

The hemophilia datasets perform similar when run either with the GATK3 or GATK4 workflow. However, 

in low quality genotype calls the performance might vary and a different call set might be obtained. In a 

reanalysis performed on one of the hemophilia sequencing experiments, the sample specific genotype 

agreement is above 0.99 (36 different out of 64,308 genotype calls) between the two GATK versions, with 

high agreement in associated genotype qualities (reflecting the probability of a certain position in the 

genome being reported correctly) (Figure 10). Therefore, GATK4 was chosen as the standard setting for 

the workflow as this version maintains support, is 50x faster and can be more easily upgraded as it is still 

being developed. 

 

Figure 10: Comparison of GATK3 and GATK4 results. Heatmap of GATK3 vs GATK4 Genotype Quality (GQ) scores (left) and GATK3 
vs. GATK4 QD (Quality by Depth) scores (right). Both scores are on Phred-like scale, expressing the -10*log10 likelihood of an 
incorrect call. While most variants are called with both GATK versions with high confidence (left panel, top right corner), a few 
variants are missed by either tool. The sample-specific genotype agreement is above 0.99 (36 different out of 64,308 genotype 
calls). A shifted InDel explains 6 out of 36 different genotypes. Eleven out of the remaining 30 discordant calls are seen below a 
total read coverage of 3 for one of the callers. Further, among the remaining discordant calls (18 out of 19 being called by GATK3), 
14 are low quality calls (GQ < 30). 

2.3.5 Availability and Implementation 

 

HemoMIPs is available on GitHub on https://github.com/kircherlab/hemoMIPs. Its source code is open 

and available for everyone to download and modify (MIT License). A manual can be found in the main 



25 
 

repository together with example inputs and outputs to run the pipeline. All dependencies are handled 

by predefined conda environments available in the main repository. 

2.4  Discussion 
 
The importance of targeted sequencing approaches to human health is predicted to increase drastically 

in the coming years, as more and more causative variants and genes are being identified for various 

diseases 62 63. Personalized approaches consider mechanistic differences in disease causation as well as 

progression. On the example of MIP generated targeted sequencing of hemophilia relevant genes Factor 

8 and Factor 9, I show that targeted sequencing can be cost effective, and analysis completely 

automatized. 

2.4.1 Hemophilia as a well-studied example 

 

Hemophilia, as an early candidate example for personalized medicine shows the potential of this 

approach. Targeted sequencing identifies the diversity of disease-causing variants as well as might be 

indicative for individual therapies. In this example variant interpretation is directly linked to patient 

health, as medication for Factor 8 or Factor 9 deficient hemophilia patients differs 64. However, this 

approach can be extended to other genomic regions. As more and more genomic variants are being 

understood and their therapeutic potential is unleashed, targeted sequencing using MIPs might become 

a common procedure in clinical laboratories.  

2.4.2 User friendliness 

 

Further, standardization and automatization are important to provide tools of clinical relevance. I opted 

for an updated version of a widely used variant calling algorithm, GATK4, to secure future support for this 

pipeline. Additionally, GitHub, Conda and Snakemake underline the reproducibility and user friendliness 

of the pipeline as software is managed and open access as well as easy installation guidelines are 

guaranteed. 

The output is generated in a user-friendly manner as well, as CSV format as well as an HTML output 

readable by all major web browser is provided. Therefore, clinicians can share, compare, and visualize 

results from individual patients as well as bigger cohorts. 
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As an open-source and community effort, the hemoMIPs pipeline will continue to evolve with changes in 

best practice workflows (e.g. provided through GATK) as well as potential novel molecular inversion probe 

designs and the application to other diseases and genes. 

2.4.3 Conclusion 

 

hemoMIPs is an easy and efficient pipeline to analyze MIP target capture data generated on the Illumina 

sequencing platform. Using an easily adapted Snakemake workflow 50, hemoMIPs performs sample 

demultiplexing, overlap paired-end merging, alignment using BWA, MIP-arm trimming, variant calling 

using GATK, coverage analysis and HTML report generation for single end and paired end sequencing 

datasets. While hemoMIPs was developed to analyze targeted sequencing data of the MLOF Initiative, it 

can be applied to a broad set of MIP sequencing data sets. Currently various tools and individual pipelines 

are being used in the genotyping of Molecular Inversion Probe Data. While two pipelines 52,65 are publicly 

inaccessible, MIPgen tools 55 and bwa-MIPs 66, MIPWrangler 67 stops after alignment and arm trimming.  

Therefore, hemoMIPs is the first complete analysis workflow that is open source and easy to employ via 

workflow management.  
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3 CADD-SV 
 

3.1  Introduction 
 
In addition to Single Nucleotide Variants (SNVs), covering (as the name suggests) just a single position in 

the genome, structural variants (SVs) also exist. This section of this thesis focuses on the interpretation of 

SVs. These kinds of variants cover multiple base pairs (oftentimes arbitrarily defined as being at least 50bp 

in size) and are often classified as deletions, insertions, duplications, inversions and other more complex 

rearrangements 19. These various types of SVs therefore delete, insert, duplicate or invert stretches of the 

genome. 

3.1.1 Human SVs 

 

According to a set of SVs discovered in a healthy patient cohort, about 7,439 SVs can be found per 

individuum spanning a median size of 331 base pairs 19. Just as for SNVs, genomic diversity is greatest in 

African populations, decreasing with the population bottlenecks during the Out-of-Africa migration of 

Europeans and Asians and is lowest in South American ethnic groups. Different types of SVs occur at 

different frequency in the human genome with deletions being the most prominent, or better described 

as the most often detected type of SV. These numbers are influenced by the power to detect SVs, which 

is non-trivial process and is different for each type of SV 68. SV detection biases are therefore discussed 

elsewhere69. 

The sum of impacted base pairs by SVs (about 18 Mbp)70 is greater than for SNVs (about 3.78 Mbp)71 which 

is surprising, as using structural variants in the genome as a mediator for phenotypic impact and disease 

has long been overlooked. Most research and genome analyses have been focused on single nucleotide 

variants instead. Especially at the beginning of the genomics research era, many phenotypes and diseases 

could be explained by SNVs as research focused on the detection of these kinds of variants. Deriving 

mechanistic insights was often straight forward. Genes were rendered dysfunctional by frameshift 

mutations, stop codons were introduced or amino acid exchanges in protein structures occurred as 

described above. Most of these variants were SNVs in well-studied protein coding genes (like the Factor 

9 gene in hemophilia patients). However, some cases proved to be trickier, showing no SNVs in coding 

regions, but instead more complex variants in non-coding DNA. 
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3.1.2 Non-coding DNA 

 

The non-coding segments of the genomes quickly became less junky as novel assays were designed to 

capture additional layers of information in the genome 72. New fields of research emerged such as 

epigenetics, regulatory genomics and genome architecture. Here, non-coding regions proved to be 

powerful in regulating the expression levels of certain genes in time and space and establishing a diverse 

set of new potential disease mechanisms.  

The challenge of predicting whether a novel variant in the genome will impact the health of the carrier 

can be extended from SNVs to SVs. However, as these types of variants (SNVs vs SVs) are fundamentally 

different, and different types of SVs (deletions, insertions, duplications, inversions) have varying impacts, 

new tools need to be developed that capture the broad spectrum of insights that have been gathered 

about SVs up until now. 

Here I introduce a novel machine learning approach that estimates the impact of SVs on health and 

disease in the human genome. 

3.1.3 Significance of SVs  

 
SVs often span large regions of the genome, covering multiple megabases or even whole chromosome 

arms 73. Whole genes can be affected by being deleted, inverted or duplicated in their entirety or in parts 

(see Figure 11). Further non-coding segments of the genome can be influenced, altering expression levels 

or genes in time and space. Because of their size, SVs can also alter the 3D genome architecture of a region 
74, which is less affected by Single Nucleotid Variants. Breaking regulatory regimes (stretches of DNA being 

coregulated due to for instance physical proximity) and changing the distance between two functional 

regions might also influence gene expression.  
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Figure 11: Significance of SVs on human health. Unaffected genomic regions (a) can be deleted or duplicated (b). Copy number 
alterations (c) can lead to deletion or duplication of regulatory elements (hexagons) or whole or parts of genes (rectangles). 
Further positional effects, such as deleting or inverting 3D genome architecture boundaries (black). 75 

 

3.1.4 SV alignment tools and biases 

 

As mentioned above, SVs are classified in various types that differ from one another by their mechanism 

of creation as well as their mode of phenotypic impact. 

Methods primarily designed to detect SNVs were unable to capture the full spectrum of structural 

rearrangements in the genome 76. Even though SVs are much larger as SNVs, sometimes spanning multiple 

megabases, their detection turned out to be challenging due to the nature of short read datasets 

generated in shotgun sequencing. A deletion can be detected by the loss of reads aligning in the region 

(copy number loss) and therefore complete absence of alignable reads (homozygous deletions, describing 

the absence of both copies on the homologous chromosomes) or a drop in coverage (heterozygous 

deletions, describing the absence of only one of two copies) while duplications can be detected by a gain 
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of coverage (copy number gain), depending on the number of duplications. Further, reads spanning the 

break points of the SV can be used to increase the resolution of the size and exact location of the SV and 

are the only information accessible for inversions, as these SVs are copy number neutral and do not affect 

coverage 76. 

However, due to the mechanistic creation of SVs, breakpoints are often located in repetitive sequence 

that is not uniquely alignable to the reference genome. In addition, many bioinformatic pipelines discard 

reads that cannot be aligned to the reference genome due to too many errors in the alignment process, 

leading to the loss of crucial information of the breakpoint reads necessary to detect SVs 77. In recent years 

many pipelines have been developed to call SVs from short read sequencing data, each looking at 

individual signatures of the certain classes of SVs. 

However, a comparison of SV detection pipelines discovered a surprisingly small overlap of SVs called by 

all tools, showing the biases generated by weighing information about SV presence differently 69. Recent 

advances using population data and new technologies such as long read sequencing assays 78 or even SV 

detection using microscopes 79,80 greatly improved the detection of SVs and therefore catapulted SV 

interpretation into the focus of evolutionary, genomic as well as clinical researchers. 

 

3.1.5 SVs and clinical significance 

 
Just like SNVs SVs can impact phenotypes and cause diseases. Various papers already link specific SVs to 

human disease 21,74,80,81. 

SNVs are less likely to impact the 3D genome architecture of a region compared to large rearrangements. 

A prime example of human diseases mediated by SVs are limb malformations studied by the research 

group of Prof. Dr. Mundlos in Berlin. The researchers showed that deletion or inversion of a genomic 

region involved in early embryonic development of limbs can impact healthy formation of the limb even 

without affecting the implicated genes themselves. For example, Spielmann et al 20 established a model 

of SVs rearranging the regulatory regime (see Figure 12) organized in Topological Associated Domains 

(TADs). TADs are genomic segments of the genome that are held in close proximity by regulatory 

architecture proteins such as CTCF or cohesin. Aspects of the role of CTCF in human brain evolution is 

discussed in Chapter 4. Genes situated in the same TADs are often coregulated and coexpressed by a 

common set of regulatory elements such as enhancers 82. However, breaking the boundaries of TADs by 
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deletion or inversion can lead to reformation of the DNA stretch and therefore novel gene expression due 

to contact with a different set of regulatory elements. These deletions and inversions, originally found in 

human disease phenotypes (see Figure 12) that were unexplained previously were shown to be causal in 

mouse models. 

Detecting and differentiating the disease-causing variant from a variant that has no, or very little 

functional consequence remains challenging. 

 

Figure 12: Depiction of disease-causing loci in the human genome. SVs (deletion top, inversion bottom) are shown to affect 
phenotypes (left). Red triangles represent a heatmap of regions in contact to one another along the DNA sequence. Boundaries 
can be affected by SVs leading to expression changes of nearby genes, that in consequence alter phenotypes.20 

 

3.1.6 Feature set motivation 

 
To be able to comprehensively interpret novel structural variants, a set of features needs to be gathered 

that represent the wide spectrum of current biological and medical insights into putative functionality and 

pathogenic mechanisms. The following paragraphs introduce the motivation behind the selection of these 

features. Further details about the feature transformation as well as a table with all features and their 

respective categories (see Table 1) can be found in the results section.  

3.1.6.1 Integrated Scores 
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CADD-score 83 as well as LINSIGHT score 84 are widely used scores to estimate the effect of single 

nucleotide variants in the human genome. Both scores integrate a variety of features to estimate 

functionality on a base pair resolution throughout the genome. While CADD, as the small variant model 

for CADD-SV, uses evolutionary derived variants to train a machine learning model, LINSIGHT trains on 

loci under selective pressure vs neutral regions and just like CADD infers functionality, integrating a wide 

set of genomic features. Both scores summarize variant effects in a single score beyond coding variants 

genome-wide, which make them highly informative for CADD-SV. Both methods have been extensively 

tested on various datasets and were shown to be powerful in prioritizing functional variants on various 

datasets. CADD-SV calculates a max (most pathogenic) value of the scores over the span and flank of an 

SV, the sum of all present scores, as well as the amount of top 10% scores from the score distribution of 

both integrated scores over the span and flank regions of an SV. All transformations give insight into 

presence as well as abundance of functionally informative base pairs within the span of the SV (see 

Methods Section 3.2). 

 
3.1.6.2 Species conservation and constraint 

 
Conservation scores provide further information about the functionality of variants. Regions in the 

genome that undergo little change throughout an evolutionary trajectory are considered crucial for the 

general functionality of an organism. Purifying selection maintains the exact genomic sequence in species 

that diverged many million years ago as changes might render the coding or non-coding stretches 

dysfunctional. Hence, highly conserved genome stretches are a strong indication for functional sequence.  

 
3.1.6.2.1 PhastCons 

 

CADD-SV uses PhastCons (PHylogenetic Analysis with Space/Time models on CONServation) scores, a 

Hidden Markov model that estimates the likelihood of a given base pair to be part of a conserved region, 

based on multiple genome alignments 37. Three scores are used, derived from three different multiple 

genome alignments. PhastCons20way uses a multiple sequence alignment of 20 vertebrate species, 

PhastCons30way uses 30 vertebrate species, and PhastCons100way, which uses mammals, birds, fish and 

other species groups to infer conserved DNA stretches. The three different scores represent different 

evolutionary timescales of conservation.  CADD-SV summarizes these scores over span and flank of an SV 
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by extracting the max (most conserved) position as well as the sum of all top 10% scores within the 

individual score distribution (see Methods Section 3.2). 

 
3.1.6.2.2 GERP 

 
Further CADD-SV makes use of GERP (Genomic Evolutionary Rate Profiling) which uses simulations to 

estimate the strength of selection per base pair throughout the human genome by comparing the 

expected number of naturally occurring substitutions to the observed rate using multiple species 

alignments 85. GERP also represents species conservation and is powerful detecting short-lived functional 

sequence stretches that arose recently in the human genome. CADD-SV transforms the GERP annotation 

into max (most conserved) values and the sum of the top 10% scores, as well as the amount of top 10% 

conserved position within a given SV (see Methods Section 3.2). 

 
3.1.6.2.3 Syntenic regions 

 
To infer the impact of a novel SV on the conservation of gene order in its genomic context, I use 

information about syntenic information from synteny mapper 86. Synteny describes the maintenance of 

blocks of genomic regions in the same order throughout evolution. Breaking co-expressed genes apart in 

their physical proximity might interfere with the function of these genes. Purifying selection maintains the 

localization of certain genomic ensembles. CADD-SV calculates the distance or overlap of the SV to the 

next conserved syntenic block 86. 

 
3.1.6.2.4 Ultra-conserved regions 

 
Finally, CADD-SV uses ultra-conserved regions inferred from a 120 species multiple sequence alignment 

that highlights genomic stretches that are maintained by very strong purifying selection (inferred using 

GERP) throughout the entire vertebrate lineage 87. CADD-SV summarizes this annotation, which is unlike 

GERP and PhastCons not a score but represents genomic loci in a bed-format, as number of ultra-

conserved elements overlapping, number of bp overlapping, as well as fraction of SV being ultra-

conserved. 
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3.1.6.3 Epigenetic and regulatory activity 

 
Epigenetic and regulatory annotations may provide hints for several potential non-coding disease 

mechanisms and are crucial for a meaningful genome-wide score of SV pathogenicity. Epigenetics, as 

described above, are heritable genome alterations that are not encoded in the DNA-sequence itself. These 

sets of features impact functionality by changing the expression levels of genes in time and space by 

defining when and where a genomic sequence is being accessible to the molecular machinery. CADD-SV 

uses various public datasets that fall within this category. The caveat of epigenetic annotations is that 

they, unlike species constraint metrics, are variable in different cell lines and cell-types throughout the 

human body. Therefore, some experimental assay derived datasets were used from a specific cell line 

which is stated in each paragraph. 

 
3.1.6.3.1 ENCODE 

 
The Encyclopedia of DNA elements (ENCODE) was a large initiative that followed on the Human Genome 

Project, intended to identify functional elements in the human genome. In various phases datasets were 

generated and made publicly available 8. Some members of the ENCODE Consortium considered 80% of 

the human genome to be functional 8defining function from molecular activity as containing RNA 

expression, histone modifications, DNaseI hypersensitive sites or transcription factor binding sites. The 

definition of functionality however is now without controversy: expression of pseudogenes, for instance, 

is considered by many scientists as a transcribed stretch of the human genome that is not functional. 

3.1.6.3.2 DNase-seq 

 

I use DNase-seq peaks from ENCODE to infer accessibility of genomic regions. In this assay DNase I, an 

endonuclease that cuts DNA, is used to cut regions in the genome that are not tightly packed. Hence, 

these regions are considered as open chromatin, providing access to enzymes and transcription factors to 

interact with the DNA. The DNase experiments were conducted on A549, an adenocarcinoma epithelial 

cell line, widely used as a model cell line in basic research as they are well characterized and easy to culture 
88. CADD-SV uses the max values as well as the sum over all encountered ENCODE-provided accessibility 

scores. 
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3.1.6.3.3 RNA-seq 

 

To measure the presence and abundance of RNA of transcribed regions of the genome, CADD-SV uses an 

RNA-seq dataset from ENCODE conducted on GM12878 (a female fibroblast cellline). RNA-seq is an assay 

that uses reverse transcribed RNA molecules followed by next generation sequencing in biological samples 
89. The output gives insight into expression levels of genes as well as other forms of transcribed RNA 

molecules such as long non-coding RNAs. CADD-SV uses max scores as well as the sum of all values over 

the affected region. 

3.1.6.3.4 Histone modifications 

 

Molecular modifications of the tails of histones (Figure 13), molecular complexes that pack DNA like a 

spool, are an additional way for an organism to regulate DNA expression by communicating with cellular 

factors or altering chromatin structure. Various modifications are known with varying cellular 

functionality. Methylation or acetylation of various tails from the different core proteins mediate 

regulation of expression or accessibility of genomic DNA stretches. CADD-SV uses H2AFZ, H3K27ac, 

H3K27me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3 and H4K20me1 tracks from 

ENCODE 8. The number behind the H stands for one of the four core proteins that form the histone 

tetramere, the letter and number after this represents the aminoacid (K stands for Lysin) and its 

corresponding number in the aminoacid chain of the protein, while the last part stands for the 

modification itself: me1, a single methylation group; me2, demethylation; me3, trimethylation; and ac 

acetylation. I used experiments conducted on IMR90 (human fibroblasts isolated from lung tissue) or 

HepG2 (human liver cancer) cell lines. All histone modifications are integrated into CADD-SV as a max and 

sum value over the affected region. 
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Figure 13: Schematic representation of the histone complex and potential modifications 90.Individual Histone molecules are shown 
in grey, DNA bound by the histone shown in blue, histone tails (outreaching ends of the protein sequence) are represented in thin 
blue lines, being identified by the individual histone molecules (H3/H4/H2A or H2B). Putative modifications of the histon tails are 
shown in red, green, blue and brown. 

 

3.1.6.3.5 chromHMM 

 
chromHMM is a software that utilizes a multivariate Hidden Markov Model to characterizes the chromatin 

state of DNA. Based on various feature annotations chromHMM91. provides a genome-wide biological 

characterization of genomic regions into 25 functional categories such as active promotor, strong/weak 

enhancer or heterochromatin 91.  

 

3.1.6.3.6 ReMap 

 

To specifically look at proteins that interact with the DNA to modulate transcription (so-called 

transcription factors) CADD-SV uses a summary statistic from the ReMap project 92. Here, manually 

curated public datasets derived from ChIP-seq or DAP-seq experiments are used to infer presence of one 

or more transcription factors on DNA stretches. For an introduction into the experimental procedures see 

section 4.2.5.  
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3.1.6.3.7 GC content 

 

The amount of Guanine and Cytosine (GC) pairing in the DNA is informative about the binding energy and 

stability of the DNA double strands. It further correlates with biological function, for example gene bodies 

contain a higher proportion of GC compared to the genomic background. Further CpG islands, particularly 

GC rich regions, are shown to have regulatory activity and are often found in promotor regions 93.  

 
3.1.6.4 Population and disease constraint 

 

Conservation scores give insight into sequence constraint over long evolutionary time spans. However, 

shorter timespans are better represented by human derived population metrics. Purifying selection within 

human populations, for instance, can be inferred by the absence of variation in a given genome position 

in large, putative healthy population cohorts such as gnomAD19. In addition, linking variants to human 

diseases can be informative. 

 

3.1.6.4.1 pLi 

 

The absence of loss of function variants in a gene in large, putative healthy human datasets is indicative 

of the essentiality of this gene. In contrast, the presence of loss of function variants in a gene in a healthy 

individual might indicate non-functionality. CADD-SV uses pLi (Probability of being loss of function 

intolerant) 94, a gene-based score that characterizes genes on a score from 0 to 1, with 1 meaning highly 

intolerant to loss of function variants. 

 
3.1.6.4.2 Constrained Coding Regions 

 
Havrilla et al. use 123,136 genomes from putative healthy individuals to identify human coding regions 

under purifying selection 95. Unlike pLi this score is not a per gene metric but identifies highly constrained 

(absence of variation) regions within genes. The score ranges from 0 to 100, with 0 representing the 

presence of a variant in at least one healthy individual and 100 representing the most constrained regions.  
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3.1.6.4.3 Haploinsufficiency 

 
Due to the diploid structure of the genome, all genes are present with at least two copies in every cell. 

However, for some genes, maintaining one functional copy is not sufficient (haploinsufficiency). This 

mechanism describes for example dominant genetic diseases where rendering one allele dysfunctional is 

enough to mitigate a disease phenotype. The Deciphering Developmental Disorders study has published 

a score that estimates the likelihood per gene to be haploinsufficient based on a large cohort of children 

with developmental disorders and their parents 96.  

 

3.1.6.4.4 Missense badness, PolyPhen-2, and Constraint (MPC score) 

 

An additional exonic score based on a human population dataset (ExAC) that is integrated in CADD-SV is 

the Missense badness , PolyPhen2 97 and Constraint metric (MPC), ranging from 0 to 5, with higher values 

expressing increasing deleteriousness98. MPC estimates the expected variation in exonic sequence using 

sequence specific mutation rates and compares this from the observed variation in ExAC 98.  

 
3.1.6.5 3D Genome organization 

 
The 3D architecture of the genome is crucial for maintaining its function. Especially structural variants can 

interfere with the genome organization as large stretches of DNA are affected. I utilize various 

independent metrics of 3D genome architecture described in this section. 

 

3.1.6.5.1 CTCF binding sites 

 

The CTCF protein plays a crucial role in defining DNA loops and therefore often functions as a 

“communication” mediator or boundary for regulatory elements 99. SVs overlapping CTCF binding sites 

might disrupt gene regulation by rewiring enhancer contacts or changing the proximity of co-regulated 

genes. Here, I use a ChIP-seq assay dataset from 19 cell lines that describes binding sites of CTCF 100. ChIP-

seq is an experimental approach to determine protein occupancy on DNA. CADD-SV integrates this dataset 

by using the number of binding sites encountered, the number and fraction of base pairs defined as 
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binding sites as well as the distance of the next binding site to the breakpoints of the SV (being 0 when a 

CTCF binding site is present within the SV). 

 

3.1.6.5.2 Directionality Index 

 

Directionality index is a term derived from Hi-C experiments, i.e. proximity ligation experiments unveiling 

DNA segments that are close in physical space. In brief, directionality index values represent the 

directionality of DNA contacts in a given region of the genome. With very high or very low values 

representing this position to be specifically contacting regions in a specific direction along the DNA strand, 

suggesting the presence of a contact boundary in the other direction. This index provides information 

about the structure of a given genomic region. Extreme values may indicate highly structured DNA 

stretches, where maintaining the 3D architecture might be crucial for functionality 101. CADD-SV uses max 

and min values of processed datasets from GENOMEGITAR that summarizes Hi-C experiments from 

multiple cell lines 102.  

 

3.1.6.5.3 Enhancer-Promotor Links 

 

Many regulatory elements like enhancers communicate with the Transcription Start Site (TSS) by getting 

into close proximity. FOCS (FDR-corrected OLS with Cross-validation and Shrinkage), a method to identify 

enhancer promotor contacts, uses variable sources of experimental input datasets to infer links based on 

correlated activity patterns of promotors and enhancers 103. Breaking this link might lead to misregulation 

of genes in time and space. CADD-SV integrates this score by calculating the overlap of an enhancer-

promotor link as well as the distance from the breakpoints to an existing link. 

 

3.1.6.5.4 Frequently Interacting Regulatory Elements (FIRE) 

 

I use a dataset from Schmitt et al. that defines frequently interacting regulatory elements (FIRE) that, as 

the name suggests, are often in close contact with each other 104. This metric is derived from contact maps 

of 14 human tissues and seven cell types. CADD-SV uses max and min scores from five cell lines: GM12878 
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(a lymphoblastoid cell line), MSC (human mesenchymal stem cells), MES (embryonic stem cells), IMR90 

(fibroblast cell line) and h1 (embryonic stem cells). 

 
3.1.6.6 Gene and element annotation 

 
Most annotations that were previously described are genome-wide scores that emphasize the mission of 

CADD-SV to provide features that extend beyond the coding sequence of the genome. The function of 

some non-coding DNA stretches, previously considered junk DNA in its entirety, is still challenging to 

predict. However, I also provide CADD-SV with gene and element annotation to add information about 

coding sequence specifically. I use human gene model annotations from ENSEMBL 105, containing the 

coordinates of genes, transcripts, exons, start codons, stop codons, 3- and 5-prime untranslated regions 

as well as coding sequence (CDS).  

 

3.1.7 Machine Learning 

 
“Machine learning describes the capacity of systems to learn from problem-specific training data to 

automate the process of analytical model building and solve associated tasks.”106 One example is the 

classification of variants as pathogenic or benign. Training datasets can be used to infer the status of novel 

data points (generalization). In Classification models are trained to correctly predict labels from pre-

assigned labeled datasets. Problems are often described by minimization of a loss function on a training 

example. Optimizing this loss function improves the model and therefore the accuracy of the predictions.   

One of the main problems of machine learning approaches is to stop the trained model from overfitting. 

Here, the model learns intrinsic features of the labelled training sets by heart to near perfection but is 

unable to predict new datasets well. To estimate model performance, a hold-out set of the original 

training dataset is held back to test the model on the same type of labels using  an unseen dataset (from 

the model's point of view). This set is often referred to as holdout or test set. In addition, to validate the 

capacity of the model beyond biases in the existing dataset, an additional, independent validation set can 

be used that, for instance, is a labelled dataset where the labels derive from a different kind of assay 107. 
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3.1.7.1 Supervised learning (clinically labelled) 

 
Using supervised learning approaches has its advantages as insights are easier to interpret as the outcome 

measures the distance to existing, known labels. However, biases in the labelled dataset will be learned 

by the model and therefore propagate into the predicted results. Classic examples are image classifiers 

distinguishing horses from dogs where all horse imagines were retained from a labelled dataset containing 

the imprint of the horse farm and therefrom dog pictures with imprints being classified as horses. Or 

certain images primarily taken at night make a classifier distinguish between day and night pictures 

instead of the signatures of horses and dogs. 

Choosing an unbiased dataset is therefore crucial to maintain meaningful interpretations. CADD-SV uses 

an unbiased evolutionarily motivated approach that was first developed for SNVs to score the impact of 

deletions, insertions and duplications in the human genome. 
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3.2  Methods 

 
The following pages describe the methodology behind CADD-SV, a machine learning approach that 

classifies putative pathogenic and benign SVs. 

3.2.1 Training dataset 

 

Using an unbiased training dataset is crucial to get meaningful insights into a problem instead of 

propagating a bias into the results. Existing datasets that label pathogenicity of SVs exist, however they  

are heavily biased towards very large SVs, towards coding regions in the genome and particularly towards 

well studied genes. In addition, these datasets are sparse, even though having increased in size during the 

timeline of this project as research turned towards improved detection and interpretability of SVs. ClinVar 

provides a reference dataset composed of 3,262 deletions, 82 duplications and 78 insertions that are 

labelled as “pathogenic” and few SVs labelled as “benign”. These SVs are particularly large, compared to 

SVs in the general population, enriched in transcription start sites as well as having a high proportion of 

well-studied genes with high gene-pathogenicity scores. This is due to researchers and clinicians tending 

to focus on certain well understood mechanisms, diseases, or their favorite genes (see Figure 14). 

Especially small SVs, impacting non-coding functional sequence segments as well as genes not in the 

research focus could be wrongly classified using a classifier trained on labeled pathogenic and benign 

ClinVar annotations. 

3.2.1.1 Evolutionary set 

 

Instead of relying on labelled datasets from ClinVar, I opted for an evolutionarily motivated dataset. A 

related approach was first applied by Kircher et al. for short variants called CADD – Combined Annotation 

Dependent Depletion. Here, evolutionarily fixed variants between chimpanzee and humans are 

considered to be non-disease causing and therefore benign or neutral as millions of years of purifying 

selection would have removed variants that are disadvantages for the carrier. In contrast to CADD for 

shorter sequence variants, I do not only use fixed variants in humans but also consider fixed SVs in the 

chimpanzee genome (see Figure 15). The motivation behind this is, that evolutionary deleted sequence in 

the human genome is not present in the reference genome and therefore absent in experimental read 

outs as well. However, sequence deleted in the chimpanzee can be mapped back to the human genome 
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containing all possible information over the sequence span. These variants are spread over the entire 

genome while being slightly more common in repetitive regions around the telomeres. 

 

Figure 14: Ascertainment bias in labeled deletion datasets. To make accurate predictions using machine learning it is crucial to 
have an unbiased dataset to train on. ClinVar pathogenic or benign labelled deletions are hand curated and individually verified 
but are biased towards very large deletions and are clustering around well-studied genes (as shown in the excess of high pLI and 
Haploinsufficiency scores). Our evolutionary derived dataset however does not suffer from these kinds of ascertainment bias and 
is similar to the occurrence of deletions discovered in a population cohort (gnomAD-SV v2.0) 



44 
 

These regions, for reasons explained above, are in the following named as proxy-neutral, as I consider 

them a representative unbiased example of neutral variants. 

 

Figure 15: Motivation of Training Dataset for the CADD-SV framework. Human and chimpanzee derived Structural Variants are 
considered to be neutral or beneficial if they reached fixation. Therefore, previously identified human and chimpanzee derived SVs 
108 are used as proxy-neutral training dataset. Top panel describes the evolutionary relationship between Orang Utan (Pongo), 
Gorilla, Chimp and Humans, with Chimps being humans closest relative. Left Panel depicts DNA sequences from all species with 
Insertions being described as triangle-structures while Deletions are faded in grey. Centered below the human depiction are 
genome variants shown as present in the human genome build. Human DEL: are sequence stretches absent in the human genome 
and therefore are interpreted as inserted sequence in all ape genomes. Chimp DEL is depicted as absent sequence in chimp 
genomes while being present in the other species. Human INS: present in the human genome build but described as deletions in 
all other apes; Chimp INS: insertion in the chimp genome while being absent in humans. Each set of SVs is used to train an individual 
model that uses either Flank or Span or Insertion Site as training data. 

 
3.2.1.2 Proxy-deleterious set 

 
To provide the classifier with an unbiased set of putative pathogenic variants, I use simulated variants 

randomly distributed throughout the sections/parts/regions in the genome where the proxy-neutral set 

is derived from. Therefore, encountering variants by chance that contain functional DNA. This set will be 

referred to as proxy-deleterious. The simulated set is matched in size and length distribution to the proxy-

neutral set for all used deletion and insertion sets. 

The mislabeling in both datasets should not be neglected as many proxy-deleterious variants do not fall 

within functional sequence and some proxy-neutral variants are putatively functional, as humans and 

chimpanzees do show some phenotypic differences. However, the depletion of functional variants in such 

neutral sets has proven sufficient to powerfully predict the effects of short variants83. 
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3.2.2 Model 

 
As mentioned above, various methods exist in machine learning, each powerful for certain tasks and 

having potential pitfalls. Here, I use Random Forrest classifiers using the R Package “randomforest" as well 

as the standard implementation of linear regression. 

 
3.2.2.1 Random Forest Classifier 

 
Random forest classifiers are named after a forest of decision trees bundled together to have a multitude 

of potential paths leading to the desired classification. Apart from classifying they can also be used for 

non-binary outputs. 

 
3.2.2.2 R Package 

 
I used the R package (v3.5.1) “randomforest” to train the random forest models contrasting proxy-neutral 

and proxy-deleterious sets. I followed the best practices of the manual adjusting the parameters as 

recommended 109. 

 
3.2.2.3 Parameters 

 
Random Forest models can be optimized by adjusting the depth and number of trees in the forest. I 

optimized the model using a hyper parameter search for the number of trees (ntree) and the depth using 

(maxnodes) and (nodesize). I considered up to 1000 trees and nodesize and maxnode parameter values 

of 10, 50, 100, 250, 500, 1000 each. Parameters were optimized individually using fixed values of 100 for 

the other parameters. 

 
3.2.3 Feature transformations and annotation 

 
CADD-SV uses a wide variety of coding and non-coding genomic features to make predictions on SV 

pathogenicity genome-wide. All features need to be summarized, as most of them have base pair 

resolution while SVs span by definition at least 50 bp, sometimes megabase pairs. The CADD-SV 

framework relies on custom shell and R scripts, wrapped in snakemake rules, that query annotation files, 
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extract regions of interest using tabix, and summarize features using AWK or BEDtools 110. Feature values 

are stored in BED (Browser Extensible Data) format.Further, information about the pipeline is provided 

below. All features and their respective transformations are summarized in Table 1. 

 

3.2.4 Implementation 

 

CADD-SV is implemented in Snakemake, using conda for dependency management. CADD-SV was 

designed to be applicable for bioinformaticians and clinicians alike. The source code for the framework is 

available for download on GitHub (https://github.com/kircherlab/CADD-SV/). Conda and Snakemake 

guarantee easy installation procedures as well as stability through dependency management. Further, I 

implemented CADD-SV to be time and memory efficient, while being highly parallelizable for application 

on a cluster-network. A set of 1,000 short SVs can be scored on a regular laptop in 13 minutes using 600MB 

of memory. However, in contrast to all competing tools, CADD-SV jobs are highly parallelizable, strongly 

improving time-performance. In addition to the source code, a webservice (https://cadd-sv.bihealth.org/) 

allows for online scoring of SVs in a BED-like format as well as for obtaining results for different human 

genome builds (GRCh38; NCB16 & GRCh37 through automated coordinate liftover). In addition, pre-

scored variants from cohorts such as gnomAD or ClinVar can be queried online including all feature 

annotations. For better interpretability, feature outlier values are color-coded based on their Z-scores. 

 
3.2.5 Model Performance Assessment 

 
To assess the performance of machine learning algorithms it is important to define test and validation 

sets. As many approaches suffer from overfitting, a hold-out dataset can be used to measure model 

performance. Here, I randomly withheld 10% of the annotated SVs as holdout-set. Validation sets are 

independent datasets not used in training of the model. To validate CADD-SV performance I use a wide 

variety of independent datasets. 

Model performance was estimated using Area under the Receiver Operator Characteristic Curve using the 

R Package PRROC 111. 
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3.2.6 Validation sets 

 

CADD-SV was designed to not use curated SV sets in training, it does not derive features from clinical 

datasets such as ClinVar or OMIM, and it does not use gnomAD-SV allele frequencies as features either. 

Therefore, CADD-SV can be validated using those datasets. 

 
3.2.6.1 ClinVar 

 

Pathogenic and benign annotations for clinical SVs 35 were downloaded from ClinVar 

(https://www.ncbi.nlm.nih.gov/clinvar) on June 24th, 2021. Only variants with pathogenic or benign 

labels, of at least 50bp length and annotated as deletion (pathogenic n = 3262, benign = 33), duplication 

(pathogenic n=82, benign n = 4) or insertion (pathogenic n = 78, benign n = 18) are considered. Further, 

to increase the number of pathogenic insertions, unique pathogenic insertions (n = 39) reported by Hancks 

et al.112 and Gardner et al. 113 were added. Area Under the Receiver Operating Characteristic (AUROC) 

metrics are calculated using the PRROC R-package 111. 

To show the clinical benefit of prioritization of SVs using CADD-SV, I use genotyped SVs from the 1000 

Genomes project 114 and add one (randomly selected) labelled pathogenic SV found in ClinVar into the 

reported set of individual specific SVs. From the 1000 Genomes' SV events, I consider Alu and Line1 SVs 

to be insertions. I report the rank of the pathogenic SVs within the complete SV set. 

 
3.2.6.2 Putative healthy population cohorts 

 

Germline SVs identified from healthy individuals over various populations 19 were downloaded from 

gnomAD-SV release v2.0 (https://gnomad.broadinstitute.org/downloads). Allele frequency values of 

common and ultra-rare SVs are determined across all available populations. Common variants are defined 

as minor allele frequency greater 0.05, ultra-rare variants are defined as singletons.  

3.2.6.3 Non-coding SVs 

 

To assess CADD-SVs ability to prioritize functional stretches of DNA, I use healthy population SVs from 

gnomAD-SV containing a genome wide association study (GWAS) linked SNV. I assume that presence of 

https://www.ncbi.nlm.nih.gov/clinvar
https://gnomad.broadinstitute.org/downloads
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an association with a functional trait can be seen as a proxy for functional SVs. The GWAS catalog was 

downloaded from https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/gwasCatalog.txt.gz. 

Further, I use deletions and insertions reported to be associated with changes in gene expression patterns 

as well as SVs under natural selection 115, both hinting towards functional stretches of DNA that are 

beyond coding effects. 

 
3.2.6.4 Cancer 

 

Somatic SVs (n = 95,749) from cancer patients were obtained from the International Cancer Genome 

Consortium 116 at 

https://dcc.icgc.org/api/v1/download?fn=/PCAWG/consensus_sv/final_consensus_sv_bedpe_passonly.i

cgc.public.tgz. In addition, insertions reported in cancer genomes were taken from Qian et al. (n = 18) 117. 

To assess the performance of CADD-SV beyond coding regions, I use non-coding SVs (n = 687) that are 

known to impact human gene expression in data from the GTEx consortium 118. 

 

3.2.7 Tool comparison 

 

CADD-SV performance on various validation sets was compared to existing tools SVScore 119, AnnotSV 120, 

StrVCTVRE 121, and the TAD-fusion-score 122 using standard parameters. TAD-fusion only scores deletions 

and was primarily developed to identify 3D genome alteration. As SVScore and TAD-Fusion scores were 

not available for the current genome build GRCh38, UCSC liftover 123 was used to transfer SV coordinates 

and respective scores. 

  

https://dcc.icgc.org/api/v1/download?fn=/PCAWG/consensus_sv/final_consensus_sv_bedpe_passonly.icgc.public.tgz
https://dcc.icgc.org/api/v1/download?fn=/PCAWG/consensus_sv/final_consensus_sv_bedpe_passonly.icgc.public.tgz
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3.3  Results 

 
3.3.1 Training dataset 

 
Machine Learning methods strongly rely on the quality of training datasets to yield meaningful 

predictions. Using clinical databases such as CinVar or HGMD to curate an annotated training dataset is 

challenging for SNVs or small indels, where it requires a careful matching of pathogenic and benign 

variants in genomic regions and effect classes 36,84. This seems currently impossible for SVs. The ClinVar 

dataset 35 is very sparse for SVs, i.e. only few (3,262 deletions, 82 duplications and 78 insertions) and 

mostly very large SVs (mean size of 106 kb for deletions) are being annotated. This is insufficient for an 

insightful training dataset, especially as population-derived SVs are much smaller in genomic size (mean 

of 7.4 kb). Further, when compared to large population SV sets 19 strong biases towards high effect 

variants and clustering around well studied genes are apparent (Figure 14). Therefore, I opt for an 

unbiased evolutionary set of SVs obtained from comparisons in the great ape lineage 108. A key strength 

of this approach is that the model is trained on a larger training set of 19,113 deletions and 26,823 

insertions and duplications that does not suffer from the ascertainment bias inherent to curated sets. 

3.3.1.1 Combined Annotation Dependent Depletion 

This is motivated by the Combined Annotation Dependent Depletion (CADD) framework, an approach that 

has proven powerful in the interpretation of SNVs and short indels 83. In CADD-SV, I assume that millions 

of years of purifying selection removed SVs that are deleterious, i.e. have a negative impact on human or 

chimpanzee reproductive success. Thus, fixed SVs in humans or chimpanzees can be classified as proxy-

neutral. In contrast, variants of the same size randomly drawn from the human genome are likely to 

contain a significant number of deleterious variants by chance. While many of the random variants will be 

neutral, an unknown but considerable fraction would likely be deleterious. For simplicity, I refer to these 

variants as proxy-deleterious. The contrast between the proxy-neutral and proxy-deleterious variant sets, 

i.e. the relative paucity of deleterious, phenotypically influential genome alterations in the proxy-neutral 

set and the resulting differences in their annotation features, is the core characteristic of what I then 

model as SV deleteriousness 
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3.3.2 Feature Annotation 

 

A diverse set of annotations (see Methods and Table 1) was integrated to gain predictive, genome‐wide 

models for prioritizing structural variants of phenotypic effect. While many annotations are readily 

available for SNVs, informative and computational efficient statistics need to be created to summarize 

annotations over the span of SVs. Further, distance measures can retain information about the vicinity of 

the impacted DNA sequence. For this purpose, I developed an automated SV annotation pipeline using 

the workflow management system Snakemake 50 that combines BEDtools110 and tabix 124 with customized 

bash and R scripts 109. I integrate not only coding information such as gene models but also a wide variety 

of regulatory annotations retrieved from ENCODE 8, such as histone modifications or DNA accessibility. In 

addition, I make use of functional and evolutionary scores 36,37,84,85 as well as information about the 3D 

architecture of the genomic region derived from Hi-C experiments 102,104,125. 

 

Table 1: Features used in the CADD-SV model and their respective transformations. All features are 
categorized into 6 categories: "Integrated scores", "Species conservation and constraint", "Population and 
disease constraint", "Epigenetic and regulatory activity", "3D genome organization", "Gene and element 
annotation" 

Feature Transformation Category 
CADD max,sum 10% top quartile distribution Integrated score 

PhastCons100 max,sum 10% top quartile distribution 
Species conservation and 
constraint 

PhastCons30 max,sum 10% top quartile distribution 
Species conservation and 
constraint 

PhastCons20 max,sum 10% top quartile distribution 
Species conservation and 
constraint 

CCR sum Population & disease constraint 
chromHMM_1-25 sum Epigenetic & regulatory activity 
nr_ctcf_BS sum of BS, BP, fraction, distance  3D genome organization 
Directionality Index, 
FIRE max, min 3D genome organization 
DNase-seq max, sum Epigenetic & regulatory activity 
H2AFZ max, sum Epigenetic & regulatory activity 
H3K27ac max, sum Epigenetic & regulatory activity 
H3K27me3 max, sum Epigenetic & regulatory activity 
H3k36me3 max, sum Epigenetic & regulatory activity 
H3K4me1 max, sum Epigenetic & regulatory activity 
H3K4me2 max, sum Epigenetic & regulatory activity 
H3K4me3 max, sum Epigenetic & regulatory activity 
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H3K79me2 max, sum Epigenetic & regulatory activity 
H3K9ac max, sum Epigenetic & regulatory activity 
H3K9me3 max, sum Epigenetic & regulatory activity 
H4K20me1 max, sum Epigenetic & regulatory activity 
RNA.seq max, sum Epigenetic & regulatory activity 
Enhancer Promotor 
links distance, fraction 3D genome organization 
FIRE max, min 3D genome organization 
Percent GC fraction Epigenetic & regulatory activity 
Exon fraction, count bp, distance Gene & element annotation 
Transcript fraction, count bp Gene & element annotation 
Gene fraction, count bp, distance Gene & element annotation 
Start codons fraction, count bp, distance Gene & element annotation 
Stop codons fraction, count bp Gene & element annotation 
3' UTR fraction, count bp Gene & element annotation 
5' UTR fraction, count bp Gene & element annotation 
CDS fraction, count bp Gene & element annotation 

GERP max, fraction, sum top 10% quantile 
Species conservation and 
constraint 

A549 Hi-C 
nested, unnested, distance, boundary 
overlap 3D genome organization 

Caki2 Hi-C 
nested, unnested, distance, boundary 
overlap 3D genome organization 

escTAD distance, boundary overlap 3D genome organization 

microsyn_intra distance, boundary overlap 
Species conservation and 
constraint 

pLI max Population & disease constraint 
remapTF max Epigenetic & regulatory activity 
f5_enhancers count bp, fraction Gene & element annotation 
DDD_HaploInsuf max Population & disease constraint 
deepC saliency max 3D genome organization 
ultra conserved 
regions nr of elements, count bp, fraction  

Species conservation and 
constraint 

LINSIGHT max Integrated score 
MPC max Population & disease constraint 

 

 

3.3.2.1 Span and Flank Annotation 

 

All SVs are annotated over the full span of the event as well as 100 bp up- and downstream (Figure 16). 

For insertions, the span of novel SVs only contains the site of integration and CADD-SV does not derive 
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features from the inserted sequence. While deletions directly remove putatively functional sequence, 

insertions and duplications interfere with molecular function by integration of additional sequence, e.g. 

disrupting regulatory interactions by increasing distance126 or introducing frameshifts into coding 

sequence. I incorporate this in the CADD-SV modelling by deriving features from the deleted sequence 

(span), annotating the context of the SV (flank) and including distance features in the model. Across SV 

ranges, I mostly annotate max values, mean values and the amount of high impact values above the top 

90th percentile of an annotation. Additionally, span and flank models use genomic distances to certain 

feature coordinates (e.g. genes, exons, and enhancers). All features and their transformation are 

described in Table 1.  

 

 

Figure 16: Depiction of implementation of the four models generated from the proxy-neutral and proxy deleterious variant sets. 
Deletion model predicting the span shown in orange, predicting the flank shown in green. Insertion model prediction the insertion 
site shown in turquoise, prediction the insertion flank shown in blue. While deletion of a novel sequence provides information 
about the deleted sequence in the human genome build, insertions rely more on site of integration. Therefore, flanking regions to 
the SVs are taken into account. Informative stretches are shown as hexagons (regulatory), gene annotations or Insulators (blocks). 
Genomic distances are considered for all models, depicted as red arrows. 

3.3.2.2 Feature normalization 

 

To ease later interpretation of feature impact, all features are Z-score transformed (mean 0, standard 

deviation of 1) using the annotation value distributions of the same type of SV from healthy individuals 
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reported in gnomAD 19. This transformation serves primarily the interpretability of the model and does 

not negatively affect model training or create issues with using gnomAD variants for model validation, as 

the same transformation is applied for both training class labels. 

 
3.3.3 Model Training 

 
3.3.3.1 Parameters 

 

For the random forest models, I limit the number and depth of the decision trees based on a 

hyperparameter search (Figure 17; explored ranges for ntree = {25, 50, 75, 100, 200, 500, 1000}, nodesize 

= {10, 50, 100, 250, 500, 1000}, maxnodes = {10, 50, 100, 250, 500, 1000}, while one parameter was 

optimized, the other parameters were set to 100).  
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Figure 17: Hyperparameter search for all Random Forest models. I explored the mean of squared errors for a random subset of 
1000 SVs for the parameters "nodesize" and "maxnodes" for both values of n= {10, 50, 100, 250, 500, 1000} and chose parameters 
minimizing error and overfitting (by inferring validation performance). The number of trees (ntree = {25, 50, 75, 100, 200, 500, 
1000}) for each model was chosen based on observing no further improvement of error by increasing the number of trees. CINS: 
Chimp Insertions, CDEL: Chimp Deletions, HINS: Human Insertions, HDEL: Human Deletions 

 
SV mediated pathogenicity depends on the type of SV. I implement separate models for deleted (DEL), 

inserted (INS), or duplicated (DUP) sequence. Due to the lack of training data for inversions and 

translocations, I can currently do not train models for these variant types. Using the described training 

data sets, I train four types of models (Figure 15). I train models of human-derived deletion (human DEL) 

and insertion events (human INS) against respective sets of equally sized events drawn across the genome. 
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Further, models based on chimp insertion (chimp INS) and deletions events (chimp DEL) are trained. Here, 

I project the events onto the human reference sequence and use the human annotations. While the 

human events are also manifested in the human reference, the chimp events allow us to use human 

annotation unaffected by an actual SV event. Hence, chimp DEL models are similar to how I would score 

new events observed in an individuals' genome aligned to the human reference sequence. In contrast, no 

human annotation for human derived deletions can be obtained over the span of the deletion as 

experimental readouts and conservation score are not available for the missing sequence. Similarly, chimp 

INS provide an insertion model based on events that did not impair human annotations or biochemical 

readouts.  

3.3.4 Model implementation 

 

To score novel SVs in the human genome, I exploit this relationship by training the span of novel deletions 

with the chimp DEL set and train the sequence 100bp up- and downstream of the breakpoints using the 

human DEL set. As the inverse applies for insertions and duplications, i.e. chimpanzee insertions do not 

span sequence in the human genome build while human derived insertions do, I use the chimp INS set for 

the insertion site and the human INS set for the up- and downstream sequence. Duplications are scored 

using the full sequence span of the duplicated locus, hence using the chimp DEL model for the span and 

human INS model for the up- and downstream sequence. The final score is calculated from the maximum 

(more deleterious) value of both models. See Figure 18 for the CADD-SV workflow. 

 

Figure 18: CADD-SV workflow. Evolutionary SVs (proxy-neutral) contrasted with Size and length matched simulated variants  used 
as proxy deleterious training dataset. Next, various informative features are annotated and transformed (see Methods and Table 
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1) across span or flank of the variants to train multiple Random Forest classifiers. Models are used to score user provided novel 
SVs. For this purpose, variants are annotated, features transformed, and models applied. The maximum value of the flank and 
span model scores is used as the raw model score.  

3.3.5 Logistic Regression compared to Random Forest Models 

 

I trained both logistic regression models as well as random forest models. The latter show increased 

holdout performance as well as validation set performance (Figure 19) and I only describe the random 

forest models further.  

 

Figure 19: Model comparison of Random Forrest (RF) classifiers and generalized linear models (GLM) trained using the R GLM 
package. I validated the performance of both classifiers using 10% randomly sampled holdout data (left) as well as one of the 
validation sets (labelled pathogenic SVs from ClinVar vs. common SVs in gnomAD, right) CINS: Chimp Insertions (blue), CDEL: 
Chimp Deletions (orange), Human Insertions (turquoise), Human Deletions (green).  

I opted for holdout performance validation over cross validation as the choice of training data allows for 

a sufficiently large training set. The holdout shows that all four model types differentiate between the 

proxy-benign and proxy-pathogenic sets (Fig 2A). Considering the anticipated mislabeling in our training 

data, specifically in the randomly drawn SVs as described above, the holdout performance will however 

not be representative for our models' performance in scoring actual pathogenic versus benign variants. 
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Here, I only look for a non-random model performance and the relative ranking of the INS, DEL and DUP 

models. 

 

Figure 20: All four models show a non-random separation of the two classes in a random 10% holdout. Performance is measured 
as sensitivity over false positive rate (FPR). Note that all training datasets contain a high amount of mislabeled SVs, as a majority 
of proxy-deleterious SVs is likely to be neutral. Human Deletion Model shown in green, Human Insertion Model in turquoise, 
Chimp Deletion Model in orange, Chimp Insertion Model in blue. 

3.3.5.1 Performance of Random Forest Models 

 

The model score distribution for the holdout data as depicted in a ROC-Curve is available in Figure 20 for 

the proxy-pathogenic and proxy-benign SV sets. I see a significant shift (see Figure 21) with a bimodal 

distribution in the proxy-pathogenic variants, with the smaller mode corresponding to the potentially 

pathogenic variants in the randomly drawn set. 
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3.3.6 Phred Scoring 

 

For better interpretation, I also provide a Phred-scaled transformation of the model score relative to a 

healthy population cohort, i.e. a log10 score derived from the proportion of variants with a greater or equal 

score in the genomAD-SV set. The CADD-SV scores on the Phred scale range from 0 (potentially benign) 

to 48 (potentially pathogenic), indicating the position of the novel variant within the gnomAD-SV score 

distribution. For example, a score above three corresponds to the top 50%, 10 corresponds to the top 

10%, 20 to the top 1% and 30 to the top 0.1% of scores observed from gnomAD-SV. 

 
Figure 21: Model prediction scores of the chimpanzee deletion model are shifted towards high impact SVs in the simulated set of 
chimpanzee deletions (grey) in the hold-out dataset. 

3.3.7 Feature importance 

 

I analyzed feature contributions in our random forest models using the R package randomForest 127. To 

ease interpretation, I categorized model features into six groups ("Integrated scores", "Species 

conservation and constraint", "Population and disease constraint", "Epigenetic and regulatory activity", 
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"3D genome organization", "Gene and element enrichment"; Table 1). Models benefit highly from 

features in the groups of "Species conservation and constraint" (incl. GERP, PhastCons, phyloP scores) and 

"Integrated scores" (i.e. summaries of CADD SNV and LINSIGHT scores) in differentiating between the 

contrasted SV sets. Regulatory annotations as well as 3D genome architecture features contribute to a 

smaller extent but are present within the top 20 most important features of all models (e.g. ReMap 

transcription factor occupancy, TAD annotations, enhancer-promotor links and ChromHMM states). 

Distance features (such as distance to coding sequence) are particularly prevalent in the human DEL flank 

model, where for a reference altered by the deletion event these features become informative. Major 

feature contributions for all models are available Figures 22-25. 
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Figure 22: Feature contributions of the human deletion (HDEL) flank model. Features are grouped and color coded respectively. 
Conservation scores (orange) are most informative to the HDEL model 
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Figure 23: Feature contributions of the chimpanzee deletion (CDEL) span model. Features are grouped and color coded 
respectively. Conservation features are most informative to the CDEL model. 
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Figure 24: Feature contributions of the human insertion (HINS) flank model. Features are grouped and color coded respectively. 
PhastCons Score (conservation, yellow) are most informative to the model. 
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Figure 25: Feature contributions of the chimpanzee insertion (CINS) span model. Features are grouped and color coded 
respectively. Conservation scores (PhastCons, yellow) as well as Integrated scores (LINSIGHT and CADD, blue) are most 
informative to the CINS model 
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3.3.8 Validation set performance 

 

To validate the general applicability of the framework, I use multiple lines of evidence (Figure 26A) to 

substantiate the results of the holdout performance. I look at known pathogenic variants from ClinVar 

(Figures 26B, 26D-F), I show that SVs occurring in healthy populations are under negative selection and 

therefore high CADD-SV scores enriched for singletons events (Figure 26C), I analyze variants from the 

International Cancer Genome Consortium (Figures 26D-F), and SVs affecting gene expression (Figures 

26D-F). Thereby, I show that CADD-SV can be used to prioritize both pathogenic germline and somatic 

structural variants. 

 

Figure 26: Validation set performance of the Random Forest models. A) Summary of the performance of CADD-SV scores compared 
to SVScore, AnnotSV and TAD-Fusion scores across three validation sets (pathogenic variants, cancer variants and putative eQTL 
SVs) for deletions, duplications and insertions. B) Rank of ClinVar pathogenic SVs added to SVs of healthy individuals from the 
1000 Genomes Project. CADD-SV prioritizes the pathogenic SVs over the other SVs in a single simulated patient, scoring pathogenic 
variants in the top fifth percentile of deletions, duplications and insertions for 65.9%, 74.7% and 100% of simulated variant sets, 
respectively. C) CADD-SV score distribution as a function of gnomAD allele frequency. Higher CADD-SV values represent an 
increased likelihood to be deleterious. In the deleterious tail of the score distribution, there is an excess of singletons (shown in 
red; bin size 0.025), which hints at negative selection against deleterious deletions. D-F) CADD-SV performance of various 
validation sets compared to common gnomAD SVs (AF ≥ 0.05). Performance is measured as sensitivity over false positive rate 
(FPR). CADD-SV is able to identify ClinVar pathogenic SVs (n=3262 deletions, 82 duplications and 78 insertions, pale red) as well 
as SVs reported in the ICGC cancer cohort (n=52,677 deletions, 42,972 duplications and 18 insertions, dark red) from common SVs 
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in gnomAD. Further, CADD-SV can identify non-coding SVs that are associated with differences in gene expression (turquoise). 
CADD-SV scores (solid lines) are compared to SVScore (dashed lines), AnnotSV (dotted lines) and TAD-Fusion (dashed and dotted 
lines) for deletions (D), duplications (E) and insertions (F). 

 
3.3.8.1 Clinvar 

 
I collected pathogenic SVs from ClinVar (n=3262 deletions, 82 duplications and 78 insertions). To look at 

how CADD-SV prioritizes pathogenic variants among all SVs identified in single individuals (including rare 

and singleton events). I applied this dataset in two separate analysis steps. 

3.3.8.1.1 Relative rank of ClinVar Variant within Individuum 

 

I added each one clinically characterized SV from ClinVar into sets of structural variants found in presumed 

healthy individuals from the 1000 Genomes Project 128. I assessed the performance of CADD-SV by looking 

at the pathogenic variants' rank among all observed SVs. I found that in 65% of cases the ClinVar deletion 

is within the top fifth percentile of all ranks (Figure 26B). Clinically labelled insertions and duplications 

were even more enriched among the top candidates. In 100% of individuals for insertions and 75% of 

individuals for duplications do these events fall within the top fifth percentiles of scores. 

3.3.8.1.2 Prioritization of clinical variants in cohort 

 

Further, I contrasted the complete sets of pathogenic SVs from ClinVar with a matched number of 

common SVs from gnomAD (AF ≥ 0.05, Figures 26D-F). CADD-SV correctly identifies a vast majority of the 

known pathogenic SVs with an Area Under the ROC Curve (AUROC) of 0.944 for deletions (Fig 3D). CADD-

SV performs comparable to the existing tools SVScore 119 with an AUROC of 0.915 and AnnotSV 120 with an 

AUROC of 0.949. It outperforms TAD-Fusion score 122, which has an AUROC of 0.692, but was primarily 

designed to detect 3D-architecture alterations. Finally, I compared to StrVCTVRE 121, which was designed 

to score exonic variants specifically, and cannot score all of these variants. However, CADD-SV 

outperforms StrVCTVRE on prioritizing exonic ClinVar deletions from a background of exonic gnomAD-SV 

deletions (Figure 27). 
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Figure 27: CADD-SV (purple) and StrVCTVRE (yellow) performance compared on ClinVar exonic sequences vs gnomAD-SV common 
exonic SVs. Shown is a ROC-Curve for the exonic SVs only. CADD-SV slightly outperforms StrCTVRE in correctly identifying 
pathogenicly-labeled SVs (n=3183).  

 
3.3.8.2 Healthy population cohort 

 
Variants reported in the gnomAD-SV database are considered largely benign as this cohort consists of 

healthy individuals, not excluding potential complex or late-onset diseases 19. While being devoid of 

embryonal lethal variants, healthy datasets can contain pathogenic or haploinsufficiency variants that are 

expected to be under purifying selection and are therefore rare in allele frequency 

 
3.3.8.2.1 Purifying selection in CADD-SV pathogenic tail 

 

I assessed the distribution of CADD-SV scores in SVs from the gnomAD SV call-set. Allele frequency (AF) 

values are significantly decreased in the pathogenic tail of the CADD-SV score distribution compared to 

the benign tail (top/bottom fifth percentile CADD-SV scores, two-sided Wilcoxon rank sum test, p-value < 

10-16). I reason that CADD-SV is able to prioritize deleterious variants in healthy individuals as these 

variants would be under negative selection and removed from the gene pool. Accordingly, the proportion 

of singleton deletions amongst the top fifth percentile CADD-SV scores (pathogenic tail) is 1.3 times higher 

than the average of the full SV set (Figure 26C). This observation is striking for deletions but less 
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pronounced in the insertion and duplication SV sets (Figure 28). I note that in the top fifth percentile, 35% 

of deletions are coding variants classified as "Loss of Function" by the gnomAD consortium19 compared to 

0.3 % of variants scored in the remainder of the CADD-SV score distribution. 

 

Figure 28: Proportion of singleton insertions and duplications in the gnomAD-SV data set of putative healthy individuals. The 
pathogenic CADD-SV score tail (≥20, being the top 1% most pathogenic) is enriched in singletons, suggesting purifying selection 
against SVs with high CADD-SV scores. However, this effect is less pronounced in insertions and duplications compared to the 
deletions. 

3.3.8.2.2 Length effect 

 

Further, the average deletion length of gnomAD-SV variants in the top 5% of scores is six times longer 

compared to the rest of the distribution, suggesting that longer deletions are more likely to be functional 

as they affect more sequence. However, short (less than 100bp) and high scoring (top fifth percentile) 

deletions are 1.1 times more likely to be singletons compared to short deletions, suggesting that CADD-

SV prioritizes SVs beyond length. In addition, I detect high frequency deleterious variants in the 

pathogenic tail, speculating that these variants could be phenotypically functional variants and potentially 

beneficial for carriers. 

3.3.8.2.3 GWAS associations in pathogenic tail 

Table 2: Top 10 CADD-SV scores in gnomAD-SV with number of overlapping GWAS SNVs. Chr, start, end 
describe the genomic location. Phred scaled CADD-SV Score in “score”, raw and span score of the model 
as well as number of overlapping GWAS SNVs labelled. 

chr start end Score raw score raw span raw flank GWAS  
13 25165903 25531417 45 0.994923027 0.994923 0.028845 8 
13 50567002 51538041 45 0.994706653 0.994707 0.169125 105 
17 30657307 33838598 48 0.995145249 0.995145 -0.08501 291 
17 34812000 36251000 44 0.994688107 0.994688 -0.19966 262 

2 85889000 87236000 44 0.994688107 0.994688 -0.01483 80 
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2 119820000 123792000 45 0.994706653 0.994707 0.070122 247 
2 130754220 133138212 48 0.995145249 0.995145 -0.01371 30 

20 8105854 23795733 48 0.995145249 0.995145 0.004245 1223 
5 159698170 166152496 44 0.994688107 0.994688 -0.12854 262 
8 82680857 87501720 48 0.995145249 0.995145 -0.00586 146 

I showed that rare variants are strongly enriched in the most pathogenic tail of the CADD-SV distribution 

(Figure 26C). Further, the tail of the CADD-SV pathogenic score distribution is strongly enriched in SVs 

containing GWAS identified SNVs, suggesting the presence of functional genomic regions (Figure 29). 

Containing a GWAS hit is not equal to being a potentially pathogenic SV, as many recorded associations 

are towards non-disease traits such as body height or longevity. However, it provides evidence that CADD-

SV is able to prioritize functional stretches of sequence in the genome without using the GWAS catalog as 

an input itself. The top ten gnomAD-SV variants contain an average of 265 GWAS associated SNVs (Table 

2). I further investigated the shortest (mean length of 225,336 bp) five top scoring variants (CADD-SV 

Phred score ≥ 35) and found all of them to be ultra-rare (AF ≤ 0.0009), with three out of five being 

singletons (Table 3).  
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Figure 29: CADD-SV score distribution as a function of number of GWAS identified SNVs per deletion from gnomAD-SV. The 
average number of GWAS associated SNVs increases drastically especially among high scoring SVs, suggesting an enrichment of 
functional variants in the pathogenic tail of the CADD-SV score distribution. Note that CADD-SV is a Phred-scaled score distribution 
(log10 scale) with high values corresponding to high pathogenicity. 

Table 3: CADD-SV score outliers from gnomAD-SV (length < 200kb) with GWAS overlap, ClinVar SNV 
overlap and allele frequency 

Chr start end score GWAS  ClinVar  GnomAD-SV  
10 96394432 96633999 36 9 none 1 
16 21594700 21748000 35 8 pathogenic 20 
16 28353000 28610100 35 96 pathogenic 2 

4 73004055 73231324 35 18 pathogenic 1 
7 106922194 107171638 35 13 none 1 
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3.3.8.2.4 ClinVar associations in pathogenic tail 

 

Further, three out of five variants overlap multiple ClinVar curated pathogenic variants, belonging to two 

autosomal recessive disease genes and one autosomal dominant disease gene.  

3.3.8.2.5 Recessive pathogenic variants 

 

The two recessive diseases are Batten disease mediated by mutations in CLN3 129, see Figure 30, and 

hearing loss mediated by mutations in OTOA 130, see Figure 31.  
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Figure 30: UCSC Genome Browser tracks of a region (chr16:28353000-28610100) deleted in two individuals present in the 
gnomAD-SV cohort. Various genes are affected, with CLN3 being identified as causing Batten disease, a fatal disease of the nervous 
system. Various positions of this SV are highly conserved among 100 Vertebrate Genomes, giving CADD-SV power to detect this 
SV with a high score. This SV is not a singleton, suggesting a recessive disorder. In some cases, Batten disease can also have a late 
onset of disease symptoms, potentially explaining the presence of this SV in a healthy cohort. 
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Figure 31: UCSC Genome Browser tracks of a region (chr16:21594700-21748000) deleted in 20 individuals present in the gnomAD-
SV cohort. Two genes are affected, with OTOA being identified as autosomal recessive disease causing severe hearing loss, when 
rendered dysfunctional by ClinVar annotated SNVs within the OTOA gene body. Further, various positions of this SV are highly 
conserved among 100 Vertebrate Genomes, giving CADD-SV power to detect this SV with a high score. Unlike other putative 
pathogenic SVs, this SV is not a singleton, suggesting a recessive disorder or reduced purifying selection on phenotypes such as 
hearing loss 

3.3.8.2.6 Autosomal dominant pathogenic variant 

 

The one autosomal dominant neurodevelopmental disorder is Chopra-Amiel-Gordon syndrome, 

mediated by mutations in ANKRD17 131, see Figure 32. 
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Figure 32: UCSC Genome Browser tracks of a region (chr4:73004055-73231324) deleted in one individual present in the gnomAD-
SV cohort. Two genes are affected, with ANKRD17 being identified as autosomal dominant disease-causing Chopra-Amiel-Gordon 
syndrome (CAGS) with various pathogenic ClinVar SNVs being annotated within the gene body of this gene. CAGS patients are 
characterized by developmental delay and intellectual disability ranging in severity from moderate to severe. Various positions of 
this SV are highly conserved among 100 Vertebrate Genomes, giving CADD-SV power to detect this SV with a high score. 

3.3.8.2.7 Additional Healthy Cohort Dataset 

 

Further, CADD-SV is able to prioritize an additional set of SVs 115 associated with expression changes (see 

Figure 33A and 33C) as well as SVs under natural selection (see Figures 33B and 33D), with most Phred 

scores exceeding a value of 10 (top 10%) and many above 20 (top 1%) or even 30 (top 0.1%). This all 

supports that CADD-SV is able to prioritize functional stretches of DNA genome-wide and beyond exonic 

regions. 



74 
 

 

Figure 33: Functional deletion and insertion SVs annotated in Ebert et al. 2021. CADD-SV prioritizes both SVs under natural 
selection as well as expression associated SVs in this data set. Shown are score distributions for the functional set (deletions in 
blue, insertions in green) against the same number of randomly drawn SVs from 1000Genomes. Note that CADD-SV is a Phred 
scaled score distribution with high values corresponding to high pathogenicity. 

 
3.3.8.3 SVeQTLs 

 
To test the ability to prioritize functional variants beyond coding regions, I use a set of non-coding SVs 

known to alter the expression of genes. Here, I look at 387 deletions and 300 duplications that were shown 

to affect expression levels of nearby genes and are therefore considered eQTLs by the GTEx consortium 
118. I compare them against common variants (AF ≥ 0.05) from gnomAD in a ROC curve analysis (Figures 
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26D-F). Even though less pronounced compared to ClinVar or the cancer-derived SVs, CADD-SV is able to 

differentiate the two classes of SVs (AUROC 0.598 for deletions and 0.635 for duplications, respectively) 

outperforming existing methods SVScore (AUROC 0.467 for deletions and 0.534 for duplications), AnnotSV 

(AUROC 0.459 for deletions and 0.402 for duplications) and TAD-Fusion score (AUROC 0.425 for deletions). 

 
3.3.8.4 Somatic Cancer variants 

 
I assessed the performance of CADD-SV on somatic variants and the power to identify deleterious 

cancerogenous variants (n=52,677 deletions, 42,972 duplications and 18 insertions) using SV variants from 

cancer patients in the International Cancer Genome Consortium 116 as well as insertions reported in Qian 

et al. 117. I find an enrichment of SVs detected in cancer patients in the pathogenic tail of the distribution 

compared to SVs from a healthy cohort (two-sided Wilcoxon rank sum test, p-value <10-16). CADD-SV 

enriches the cancer-derived SVs from common gnomAD-SVs in a ROC Curve analysis (Figures 26D-F, 

AUROC values of 0.848, 0.933, and 0.975 for deletions, duplications, and insertions, respectively), 

outperforming available tools on this task and supporting the claim that CADD-SV prioritizes functional 

somatic SVs. 

 
3.3.9 Implementation and Interpretation 

 
3.3.9.1 Phred Scaling and Z-score transformation 

 

To make scores easier to interpret and as outlined above, I Phred-scale CADD-SV raw scores among all SVs 

reported in gnomAD-SV. For example, a value of 30 represents that 99.9% of variants reported from 

healthy individuals are scoring lower than the variant under consideration. In addition, all feature 

annotations are used and reported after Z-score transformation according to the features' value 

distribution observed for gnomAD-SV variants. This allows users to inspect the individual features for 

extreme values easily (additionally color coded for visual inspection on the webserver). For instance, a 

conservation feature value of four represents an outlier value of four standard deviations away from the 

gnomAD mean of that specific annotation.  
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Figure 34: The CADD-SV webserver can score custom SV sets, but it can also be used for direct lookup of pre-scored deletions, 
duplications and insertions from gnomAD, ClinVar, as well as call-sets from Abel et al. 132 and Beyter et al. 133. For a given SV, the 
website provides the combined model scores as well as annotation values normalized to the range in the healthy gnomAD cohort 
(Z-score). This enables users to identify interesting variants from color-highlighted extreme feature values and not just by the 
combined CADD-SV score. Further, the website provides direct links for each SV to external resources like gnomAD, Ensembl or the 
UCSC Genome Browser. 
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3.3.9.2 CADD-SV webserver 

 

Such noticeable values are highlighted by color-coding on the CADD-SV website (Figure 34) for the pre-

scored variant sets. Generally, CADD-SV scores with or without annotation information are available from 

our command line tool as well as on the webserver for direct variant interpretation. Our online services 

include region lookups of existing SV datasets, coordinate transfers between human genome builds, the 

download of pre-scored datasets and annotations, a simple API for the retrieval of pre-scored variants as 

well as the online scoring of novel SV datasets. Coordinate ranges and variants of other genome builds 

(i.e. GRCh37/hg19 and NCBI36/hg18) can be used on the webserver and are automatically lifted to 

GRCh38 coordinates (providing the original coordinates in the variant's name field). 

 

3.3.9.3 CADD-SV command line tool 

 

The CADD-SV framework can be cloned and used from GitHub (https://github.com/kircherlab/CADD-SV/) 

and is available as a Supplemental Code file. All external data sets used are publicly available under the 

locations specified in the Methods. 
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3.4  Discussion 
I present the CADD-SV framework, an unbiased and powerful tool for the annotation and prioritization of 

deleterious structural variants 4.  

3.4.1 Biases 

 

Various biases can affect the outcome of SV interpretation. In the following section I discuss putative 

biases to the CADD-SV framework and SV detection. SV-calling algorithms affect the detection of SVs and 

therefore their correct interpretation, ClinVar validation sets are under ascertainment biases as, among 

other biases, well studied genes are overrepresented. 

3.4.1.1 SV calling 

 

Structural variant calling is prone to biases towards certain types of SVs, as for example the signal to detect 

deletions is vastly different compared to signals of duplication or inversions 134. Further, the exact 

annotation of SV breakpoints is often limited, e.g. due to their frequent positioning in repetitive sequence 
76. Apart from these universal limitations, changes in the application of arrays and sequencing 

technologies over the last decades have affected available SV sets.  

3.4.1.2 Ascertainment biases 

 

In previous works it seems underappreciated how much the historic and functional ascertainment 

imprinted on potential training and validation sets affects machine learning. Specifically, the ClinVar-

annotated SVs are comparably large and clustered around well-studied genes. Using an alternative source 

for the training data, the CADD-SV approach is not confounded, and performance can be evaluated 

broadly, as no allele frequency features nor ClinVar annotations are included in the features or otherwise 

considered when building the training sets. The number of labelled SVs to validate the performance of 

CADD-SV is still limited though. Assessing the performance on duplications and insertions is limited 

though, as the number of known pathogenic events is small and strongly biased towards coding sequence. 

I anticipate that future datasets will provide a better opportunity to test and interpret models for 

duplications and insertions. 
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3.4.2 Mechanistic diversity 

 

Estimating functional effects of SVs is highly complex due their size (involving different molecular targets) 

but also due to different mechanistic types of SVs (e.g. deletion, insertion, duplication or inversion of 

sequence). Thus, deleteriousness effects cannot just result from the sequence alteration, but also from 

interactions with the sequence context. For example, sequences shielding gene regulation (e.g. TAD 

boundaries) can be deleted between coding sequences or non-functional sequence can be inserted, 

interfering with an existing regulatory unit. Therefore, I model each SV type (deletions, insertions and 

duplications) separately, and I use the sequence span as well as the flanking sequence regions to capture 

putative pathogenic effects comprehensively. Further, I integrate distance features and a large set of 

annotations covering both coding and non-coding effects. This allows CADD-SV high predictive 

performance on known disease variants from ClinVar, which often cover coding sequence and stand-out 

by their gene model annotations and gene scores such as pLI 94 or Deciphering Developmental Disorders' 

Haploinsufficiency score96. Extending this to other previously described disease mechanisms for 

pathogenic non-coding variants 20, CADD-SV makes use of sequence conservation 37, enhancer element 

annotations 92,135 and enhancer links 103, molecular assay readouts such as RNase-seq or ChIP-seq, as well 

as information about 3D interactions from the Hi-C directionality index 102,104 or computational predictions 

such as deepC 125.  

3.4.3 Limitations 

 

CADD-SV aided SV interpretation is limited in various ways. Mechanistically SV occurrence and 

interpretation is very diverse as multiple types of SVs exist. Further, annotated datasets are limited by 

their experimental layouts as well as their human influence. 

3.4.3.1 SV types 

 

Inversions and translocations are particularly hard to assess as they are copy number neutral and their 

impact is often mediated by proximity of certain functional elements to one another or functional entities 

such as TADs being broken or reshuffled rather than deleting or inserting functional sequence directly. To 

our knowledge, there is no training dataset sufficient in size and curation to capture the complexity of 

these events. Therefore they are currently not part of the CADD-SV framework and can not be scored. As 

no single model could capture the mechanistic diversity of the three currently considered SV types 
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(insertions, deletions, and duplications), CADD-SV reports normalized model scores and features through 

relative ranks as well as Z-scores (i.e. values reported as standard deviation away from the mean) based 

on SVs from a large cohort of healthy individuals.  

3.4.3.2 Aided Interpretation 

 

Mechanism of deleteriousness can vary widely within and between SV types as SVs often influence big 

portions of the genome. To summarize this diversity in a single score can mislead as the same score within 

and between SVs can feature widely different modes of pathogenicity. Therefore, Phred-scaled model 

scores aid by providing an intuitive interpretation and feature normalization enables users to inspect 

extreme values for the different annotations directly, visually highlighting certain annotations and hinting 

at potential pathogenic mechanisms beyond the final CADD-SV score.  

3.4.3.3 Labelled datasets used for validation 

 

Especially for rare variants, clinical databases like ClinVar or OMIM have incomplete coverage. CADD-SV 

does not use these databases to derive features as I do not want it to be intrinsically limited to previously 

known disease genes or to reflect the historic ascertainment that imprints on these databases 136,137. I 

recognize that computationally distinguishing functional variants from pathogenic variants is difficult and 

that available curated data sources like ClinVar and OMIM can still be used in downstream interpretation 

of the results. Evaluating SVs experimentally will provide insights into disease mechanisms that are 

currently not represented. 

3.4.4 SV size 

 

In contrast to other tools, length is not a feature of CADD-SV. However, I assume that SV length would be 

a good indicator of SV impact, as long SVs are more likely to affect coding regions or generally functional 

annotations. SV length itself might be a confounder too, as long benign SVs might be misinterpreted solely 

for their length and not for their actual genomic signatures. As the contrasting datasets used in training 

the CADD-SV framework are matched in SV length, length as a feature does not contribute to the model. 

However, some genomic feature transformation such as the sum of all intersected annotation values or 

the number of bases above a certain threshold, correlate inevitably with length but are bound to 

functional annotations being present across the span. With increased length there is an increased 

(random) chance to overlap annotations.  
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3.4.5 Existing tools 

 

AnnotSV 120 is powerful and efficient in annotating novel SVs with a wide set of annotations. However, 

validation of AnnotSV on ClinVar is biased as AnnotSV uses overlap of novel SVs with labelled SVs from 

ClinVar as a feature. Further, it categorizes SVs in five bins from benign to pathogenic instead of a 

continuous score. CADD-SV is powerful in detecting functional SVs. Across multiple data sets, I highlight 

the increased predictive power of CADD-SV compared to AnnotSV, SVscore 119 and TAD-Fusion 122. I could 

only provide a limited comparison to StrVCTVRE 121, which is designed to score only exonic variants. A 

comparison of SVFX 138 was not possible, as the package is not easily deployed and explicitly normalizes 

features on a specific training data set. Its released ClinVar variant models are based on a model trained 

on the same variant set used in our validation assessment.  

3.4.6 Outlook 

 

The feature integration implemented by CADD-SV can easily be extended using additional annotations. 

Currently, I use features derived from experiments conducted in specific cell-types (e.g. GM12878, H1, 

A549, CAKI2). More comprehensive or additional cell-types can be included in updated versions. Further, 

CADD-SV does not make us of the inserted sequence itself. Therefore, future versions of CADD-SV could 

make use of sequence-based prediction models in addition to reference annotations, e.g. to predict open 

reading frames, repeat content, presence of transcription factor binding sites or the likelihood of the novel 

inserted sequence being of open or closed chromatin. This might be powerful in assessing inserted 

sequence function beyond the surrounding genomic context of the insertion event. In addition, specific 

mechanistic events such as gene-fusion predictions are not part of our features. CADD-SV can only 

estimate the effect of such events based on already considered feature values like the distance to genes. 

3.4.7 Conclusion 

 

In summary, CADD-SV integrates rich sets of annotations in predictive models of SV effects. CADD-SV is 

built from machine learning models with an unbiased training using evolutionary-derived and putative 

benign variants that underwent millions of years of purifying selection. These variants are contrasted with 

a background set of the same size and length, encountering deleterious events by chance. I show that our 

approach is able to model and score deletions, insertions as well as duplications. CADD-SV is available as 

open-source resource as well as webservice application for direct online scoring. CADD-SV provides a 
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userfriendly interpretation of obtained annotations by normalizing all feature values using the gnomAD 

putative healthy population cohort. I validate the CADD-SV models using clinically annotated, non-coding 

or population germline SVs as well as somatic SVs reported in cancer patients. To highlight the potential 

of CADD-SV, I applied our tool to functional SVs identified from selection screens, QTL studies or variants 

identified across many, supposedly healthy individuals. Most of the top-scored variants in the healthy 

population dataset are singletons, suggesting purifying selection on these SVs, and I was able to pinpoint 

pathogenic variants in multiple cases. 
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4 CTCF Evolution 
 

4.1  Introduction 
 

4.1.1 Mechanistic focused variant interpretation 

 
Variant interpretation plays a large role in personalized medicine. In this section I will focus on mechanistic 

insights of variant interpretation and how variants can be assessed depending on their function. To do so, 

I look at a transcription factor, CCCTC-binding factor (CTCF), that is mainly known for its role in 3D genome 

architecture mediation 139. 

 
 

4.1.2 Role of CTCF 

 
CTCF is a transcription factor that is involved in regulation of gene expression, though it is best known for 

its contribution to regulate genome architecture. CTCF was originally discovered as a negative 

transcriptional regulator of the c-myc gene in chicken 140. Its binding motif was described as three spaced 

repeats of CCCTC. Upon binding to this motif CTCF mediates the formation of DNA loops. Further CTCF 

can anchor DNA to laminar structures 141. CTCF forms homodimers, which, colocalized with cohesin, a ring-

structured Protein, loops the DNA in the form of a “loop extrusion” mechanism 142. Cohesin functions as 

a circular structure around one or two double stranded DNA regions halted by bound CTCF (see Figure 

35). CTCF binding can be inhibited by CpG methylation of the core motif CCGCGNGGNGGCAG 99. CTCF 

therefore brings functional stretches of DNA like enhancers and promotors into proximity which can 

increase or decrease transcription of RNA molecules and therefore regulate gene expression. CTCF binding 

affinity and functionality depends on motif conservation. Genetic variants can increase or decrease 

binding affinity and therefore impact chromatin looping and ultimately gene regulation. There are 

estimated to be an average of 55,000 CTCF bound motifs in various human cell lines 100. Assessing the 

function and importance of these motifs therefore requires bioinformatic guidance. 
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Figure 35: Role of CTCF in 3D genome architecture. CTCF (green) bound to specific sequence (red) along the DNA (blue). Aided by 
a ring-shaped Protein (Cohesin), bound CTCF- DNA complexes are locked within the cohesion ring structure, stopping DNA from 
extrusion through the ring. A loop is formed. 143 

 
 
4.1.3 Archaic derived variants. 

 
As described above, variants occur randomly at varying rates over time and are kept or discarded from 

the gene pool by natural selection depending on their functional impact. In the CADD-SV section of this 

manuscript I used derived chimp and human structural variants. Here I focus on human derived SNVs and 

InDels that arose on the human lineage after the split from the chimpanzee and bonobo, as well as variants 

that occur after the split from archaic humans i.e. Neanderthals and Denisovans. These are extinct species 

(or subspecies) of the homo lineage that split from the modern human line about 500,000 years ago. Both, 

Neanderthals and Denisovans contribute (on average 1-4 %) DNA to each modern human genome from 

ancient interbreeding events 33. What is known about these modern human cousins stems from 

archeological findings as well as genome sequences from fossils. Behavioral and cultural information is 

sparse. Further, the reason for extinction is unknown with researchers speculating about climatic events 

as well as modern human competition and replacement 144. One of the unsolved questions about modern 

human success is the contribution of our cognitive abilities and how those compare to archaic humans. 
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Neanderthals are shown to have similar (or slightly larger) sized skulls 145 and therefore brain volume. 

Denisovan brain size is unknown due to lack of archeological findings (see Figure 36). 

 

Figure 36: Modern Human (left) and Neanderthal (right) skulls. Image via Wikimedia Commons/DrMikeBaxter 

 

4.1.4 Brain evolution 

 
Human success is often described as a consequence of our unique brain properties. Human evolution led 

to highly increased brain volumes as well as cognitive function. Various genes have been described that 

underwent rapid evolution since divergence to other primates such as MCPH1, ASPM 146 or NOVA1 147. 

While MCPH1 and ASPM contribute to larger brain volumes and accumulated many DNA changes after 

the split from chimpanzees, the human NOVA1 variant emerged after the split from archaic humans. 

Modern human variants in NOVA1 influence synaptic activity, glutaminergic signaling as well as 

electrophysiological properties in human organoids compared to archaic versions of the same gene 147. 

The same study showed that genetic variants in brain developing genes show effects in human organoids. 

However, the effect of CTCF to mediate phenotypic changes in the human lineage is unknown. Further, 

the role of CTCF for human evolution in general, and in particular on brain evolution, is not well 

understood. To shed some light on human specific CTCF evolution I use human derived variants (SNVs and 

Indels) and apply various filtering steps to prioritize brain relevant functional CTCF gain or loss variants. In 
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this project I use comprehensive annotations to prioritize CTCF peaks that play a role in human specific 

brain evolution. 

4.2  Methods 

4.2.1 Identification of human derived changes 

 
As I focus on variants that are important for human specific brain evolution, I use variants reported to 

have arisen throughout human evolution. I use variants (SNVs and InDels) identified from fixed differences 

from chimpanzees to identify human specific changes in the genome 83. The set contains 14.9 million 

variants and can be downloaded from (https://krishna.gs.washington.edu/download/CADD-

development/v1.6/training_data/GRCh37/). These variants arose since the split from chimpanzee in the 

human lineage and are therefore target of about 4.1 million years of natural selection 148. 

 

4.2.2 Recent human derived changes 

 

To further differentiate variants in the human lineage that arose more recently, I use archaic human 

genomes from Neanderthals 149 and Denisovans 150 as outliers. Variants that differ from archaic human 

genomes as well as outgroups are considered under natural selection for less than 700,000 years. This set 

contains 321,820 variants. Variant sets were downloaded from 

(cdna.eva.mpg.de/neandertal/altai/catalog/). In the following sections I refer to candidate lists derived 

from archaic genome variants as “recent human” evolutionary candidates. 

 

4.2.3 Prioritizing functional CTCF sites 

 

The variant lists described above are considered mostly neutral variants as variants would be removed by 

purifying selection if they are harmful for the carrier. To identify variants relevant for CTCF mediated brain 

evolution, I further filter all variants in various steps. These steps are designed to prioritize functional 

variants with a high likelihood to affect genome architecture mediated by CTCF binding. 
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4.2.4 Open Chromatin 

 

Variant lists were filtered for accessibility to the genomic machinery by using DNase hypersensitive sites 

(see 3.1.6.3.2) downloaded from ENCODE (https://www.encodeproject.org/files/ENCFF788SJC/). BED 

files were intersected using BEDtools intersect from BEDtools 110. All files used were transferred to the 

human genome build GRCh37 where necessary using liftOver 123. 

 

4.2.5 CTCF ChIP-seq peaks 

 

To identify variants overlapping functional CTCF sites, human, great ape and macaque CTCF ChIP-seq 

peaks were used (see Figure 37). Filtering was conducted differently for CTCF gain and CTCF loss 

candidates. While CTCF gain variants are required to overlap a CTCF peak in the human but not in the ape 

datasets, CTCF loss variants are required to be present in at least one outgroup dataset while missing in 

the human CTCF ChIP-seq peak annotation. 
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Figure 37: Differential CTCF sites in an evolutionary comparison. Depiction of evolutionary relationship of great apes and maccaca 
mulatta (Rhesus). Archaic CTCF peaks are not available. Human CTCF loss variants are considered when presence of CTCF loci in 
outgroup species is observed while the same locus shows no peak in human CTCF abundance. Human CTCF gain is defined as 
presence of human CTCF while no CTCF peak can be observed in outgroup species. 

 
4.2.5.1 Human CTCF peaks 

 

Human CTCF binding sites were inferred using ChIP-seq peaks from experiments conducted in 19 different 

human cell lines (downloaded from 

http://genome.cshlp.org/content/suppl/2012/08/28/22.9.1680.DC1/Table_S2_Location_of_ChIP-

seq_binding_positions_in_19_cell_lines.txt).  

The original set of 77,811 peaks was further filtered for CTCF binding sites to be present in at least 3 cell 

lines 100.  
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4.2.5.2 Ape CTCF peaks 

 

To infer presence or absence of CTCF binding sites in the evolutionary past, I use great ape ChIP-seq 

datasets to compensate for the absence of biological experiments in archaic genomes. Datasets were 

downloaded from EBI 151 for Pongo pygmaeus pygmaeus (Orang) lymphoblast cells 

(https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-1511/E-MTAB-

1511.processed.21.zip/do1256_CTCF_LCL_07729upstate_ppyEB185JC_CRI01.fq.sam.bam), chimpanzee 

troglodytes lymphoblast cells (https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-1511/E-MTAB-

1511.processed.18.zip/do1285_CTCF_LCL_07729upstate_ptr18359_CRI01.fq.sam.bam) as well as 

Macaca mulatta (Rhesus) lymphoblast cells (https://www.ebi.ac.uk/arrayexpress/files/E-MTAB-1511/E-

MTAB-1511.processed.26.zip/do1279_CTCF_LCL_07729upstate_mml173-02_CRI01.fq.sam.bam). Peaks 

were called using best practice guidelines for the JAMM ChIP-seq alignment and peak calling pipeline. 

(https://github.com/mahmoudibrahim/JAMM/wiki/ChIP-Seq-Alignment-and-Processing-Pipeline). All 

files were lifted to the human genome build GRCh37.  

 

4.2.6 Motif Scan 

 

To identify the impact of derived variants on the CTCF core motif (see Figure 38), I use FABIAN21 from 

GeneCascade (https://www.genecascade.org/FABIAN21/). This tool estimates the impact of a variant on 

binding affinity to the position weight matrix (PWM). PWMs represent importance of individual base pairs 

for the binding affinity of factors to specific sequences. Therefore, variants are prioritized that increase or 

decrease binding affinity of CTCF to the novel sequence. Human gained variants were filtered for presence 

of increased binding affinity, while lost variants were filtered for decreased binding affinity. 

 

Figure 38: CTCF binding motif (Position Weight Matrix [PWM] representation). Nucleotide bases are represented as A, C, G, T, with 
their respective size representing importance of individual bases at certain positions within the motif. 
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4.2.7 Coding Proximity 

 
To further filter candidate variants for functionality, I require variants to be in 75 kb proximity to coding 

sequence. Gene coordinates 105 were downloaded from ftp://ftp.ensembl.org/pub/release-

96/gff3/homo_sapiens/Homo_sapiens.GRCh37.96.chr.gff3.gz. 

 

4.2.8 3D Genome Structure 

 
To infer presence of genome structure, I use annotation of A/B compartments 152 from GM12878 cell lines 

(ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE63nnn/GSE63525/suppl/GSE63525%5FGM12878%5Fsubcomp

artments%2Ebed%2Egz). Compartmentalization of the genome hints towards gene regulation by 

architectural properties. Candidates are filtered to be present in 75 kb proximity to a compartment border 

to specifically enrich in CTCF sites that mediate 3D genome architecture. 

 

4.2.9 Candidate lists 

 
I apply the listed filtering steps to human variants derived after the split from the chimp as well as human 

variants derived after the split from archaic humans. Further, two filtering workflows are applied to both 

derived variant lists to account for the potential functional mechanism of losing or gaining CTCF binding 

sites. Therefore, CTCF gain variants are filtered for absence of CTCF peaks in the great apes and presence 

of CTCF peaks in humans as well as increased predicted CTCF binding affinity by FABIAN21. CTCF loss 

variants are filtered for presence of CTCF peaks in the apes, absence in humans as well as decreased 

predicted binding affinity. The workflow is shown in Figure 39. 

 
4.2.9.1 Annotating prioritized CTCF sites 

 
In addition to the filtering steps, I annotate the candidate lists with information that provides further 

insight into the potential candidates. 
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Figure 39: Depiction of the workflow of the CTCF prioritization pipeline. CTCF gain workflow on top (dark green), CTCF loss 
workflow bottom (dark red). CTCF gain and loss sites are identified using logic depicted in Figure 37. In addition, presence of open 
chromatin is required for the CTCF gain site. The four sets of derived variant lists (shown in yellow; human gain, human loss, human 
recent gain, human recent loss) are intersected with the CTCF gain/loss sites respectively to identify mutations within differential 
CTCF sites. Further annotations are used to prioritize CTCF gain mutations (yellow). Finally additional annotations (blue) are 
obtained for further inspection.  

 
4.2.9.1.1 Conservation 

 

I also include information of the general conservation of the 100bp region centered on the candidate 

variant. I calculate the mean PhastCons score 37 as a proxy for functionality as elements of crucial function 

tend to fall in highly conserved genomic sequence. 

4.2.9.1.2 Transcript information 

 

In addition to filtering for proximity to coding sequence, I also include names of all transcripts within the 

75 kb up or downstream of the candidate site. Genes were further inspected for links to brain 

development or evolution from the literature. 
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4.2.9.1.3 gnomAD Allelefrequency 

 
To give information about presence and abundance of variants in the human population, I annotate all 

candidate lists with gnomAD allele frequency, if applicable 153. 

 
4.2.9.1.4 Presence of Fantom5 enhancer 

 
Enhancer annotations derived from Fantom5 154 were used to infer regulatory activity of the region. 

Fantom5 enhancer coordinates were downloaded from Zenodo 

(https://zenodo.org/record/556775#.Xkz3G0oo-70). Files were lifted using UCSC liftOver 123 and 

intersected using BEDtools 110. Presence or absence of known enhancers are encoded in the candidate 

output table as 1 or 0, respectively. 

 
4.2.9.2 Gene Ontology Enrichment Analysis 

 
All genes from all four final candidate sets were tested for Gene Ontology enrichment using tissue-specific 

expression analysis (TSEA) as well as cell-type specific expression analysis (CSEA)-tools version 1.0 155. A 

list of gene symbols (HUGO) was uploaded to the webservice (http://genetics.wustl.edu/jdlab/tsea/ and 

http://genetics.wustl.edu/jdlab/csea/). Candidate lists are intersected with tissue and cell-type 

expression lists and tested for enrichment using Fisher’s Exact test with Benjamini-Hochberg correction 

for multiple testing. 

 
4.2.9.3 Validation using NPC and brain organoid CTCF peaks 

 
In addition to the computational prioritization of functional, brain relevant CTCF variants, experiments 

were conducted by collaboration partners at the University of San Francisco (UCSF) to validate the 

prioritized variants. CUT&Tag 27 experiments to identify activate CTCF binding sites in brain development 

were carried out in Neural Progenitor Cells (NPC). NPCs are model cell lines derived from pluripotent stem 

cells that resemble human brain characteristics 156. NPC CUT&Tag was carried out on human and chimp 

derived NPCs. Further, CTCF peaks in chimp, orang and human brain organoids were acquired using 

CUT&Tag. Data processing was conducted at UCSF on respective reference genomes (sample information 

is provided in Table 4). All CTCF peak files were lifted to human GRCh37 coordinates using UCSC liftOver. 
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Table 4: Sample Information for CUT&Tag experiments conducted on human, chimp and gorilla NPCs and 
organoids 

Name Species Source Genome reference 
humanNPC human NPCs GRCh37 
chimpNPC chimp NPCs Clint_PTRv2/panTro6 

humanOrganoid human 
NPCs dissociated from 
organoids GRCh37 

chimpOrganoid chimp 
NPCs dissociated from 
organoids Clint_PTRv2/panTro6 

orangOrganoid orangutan 
NPCs dissociated from 
organoids ponAbe2 
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4.3  Results 

4.3.1 CTCF gain variants 

 
Out of 14.9 million variants, 34,528 intersect with a CTCF peak found in at least 3 cell lines (73,732 peaks). 

The vast majority of those are found in open chromatin (33,769). Out of 321,820 variants arising after the 

split from archaic humans, 1,223 fall within a CTCF peak in 3 cell lines. 1,202 of those intersect with regions 

of open chromatin. After applying filters described above for motif impact, 75 kb coding and 3D genome 

architecture boundary proximity, 211 and 6 candidates remain in the human derived gain variant sets 

after the split from chimp and archaic humans respectively (see Figure 40). 

 
Figure 40: Depiction of evolutionary relationships of chimps, archaics and modern humans. Modern human variants were 
identified using either chimp or archaic humans as outgroups. Therefore, variants arising in the more recent human past can be 
identified (light blue). 
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4.3.2 CTCF loss variants 

 
660 variants derived from chimpanzees fall within CTCF peaks in apes while showing no CTCF binding in 

human cell lines. 25 recent human evolutionary variants fulfill this criterion. After applying filters 

described above for motif impact, 75 kb coding proximity 527 and 18 candidates remain in the human 

derived loss variant sets after the split from the chimp-human ancestor and archaic humans, respectively. 

 

4.3.3 Validation 

 
4.3.3.1 CUT&Tag experiments 

 
CUT&Tag results show high overlap with existing CTCF datasets suggesting experimental success. The 

number of peaks per cell are further consistent with expected numbers (29,451 CTCF sites in human NPCs, 

17,584 in chimp NPCs, 31,510 in human organoid NPCs, 28,804 in chimp organoid NPCs, 19,228 in orang 

organoid NPCs).  

11,925 human NPC CTCF binding sites are human specific, while 9,160 human organoid peaks are human 

specific (see Figure 41). On the contrary, 11,682 peaks are absent in human NPCs but present in Chimp or 

Orang. 7,031 peaks are absent in human organoids compared to great ape organoids (see Figure 42).

 

Figure 41: Results from the CUT&Tag experiments, highlighting human gain variants (green). Circles represent all variants 
obtained from experiments in human-, chimp-, orang- Neural Progenitor Cells (NPCs) or organoids. 
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4.3.3.1.1 Gain candidates 

 

Further, CTCF CUT&Tag experimental results support our computational approach. Peaks are enriched in 

the human recent gain set (0.83 % of candidate variants show peaks in human experiments compared to 

0.39 % peaks in apes) and the human gain set (0.53 % peaks vs. 0.44 % in apes). All of these values are 

significant (p <0.05) using a one sample t-test. 

Only considering variants that show a CTCF peak in human NPCs and organoids while being absent in all 

ape experiments, 8 out of 211 candidates remain in the human CTCF gain candidate list (see Table 5). No 

recent human variant fulfills the strict criteria. 

Table 5: Candidate list of human CTCF sites that were gained after the split from chimpanzee. 

chr start End alt ref enhancer gnomadAF PhastCons 
chr15 98964963 98964964 C T 1 0.000574 0.178319 
chr15 98965131 98965132 G T 0 . 0.048224 
chr3 48315198 48315199 C G 0 . 0.20499 
chr3 48315253 48315254 T G 0 . 0.388409 
chr3 48315261 48315262 G A 0 . 0.409313 
chr3 58810075 58810076 G C 0 . 0.175747 
chr4 40982541 40982542 GAGCCAACTGCAG G 0 . 0.013988 
chr9 71175209 71175210 C T 1 . 0.0025 

 

4.3.3.1.2 Loss candidates 

 

Peaks are depleted in the human recent loss (0.33 % compared to 0.65 %) and human loss sets (0.23 % vs 

0.31 %). All of these values are significant (p <0.05) using a one sample t-test. In other words: CUT&Tag 

experiments confirm that gain sets are enriched with human-specific CTCF peaks, and the loss sets are 

depleted with human-specific CTCF sites. 
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Figure 42: Results from the CUT&Tag experiments, highlighting Human loss variants (orange). Circles represent all variants 
obtained from experiments in human-, chimp-, orang- Neural Progenitor Cells (NPCs) or organoids. 

Taking experimental readouts into account, 21 prioritized loss candidates show CTCF binding in chimp 

NPCs as well as chimp and orang organoids, while absent in human experimental readouts (see Table 6). 

Table 6: Candidate list of human CTCF sites that were lost after the split from chimpanzee. 

chr start end alt ref enhancer gnomadAF PhastCons 
chr10 5952519 5952520 T C 0 . 0.003037 
chr11 69521299 69521300 A G 0 . 0.290729 
chr15 43622270 43622271 C G 0 . 0.3332 
chr17 73893726 73893727 C CT 0 . 0.197172 
chr17 73893787 73893788 C T 0 . 0.00275 
chr17 73893842 73893843 C G 0 . 0.019202 
chr5 1.31E+08 1.31E+08 A C 0 . 0.170924 
chr5 1.31E+08 1.31E+08 A G 0 . 0.164691 
chr5 1.31E+08 1.31E+08 A G 0 . 0.190525 
chr8 1.02E+08 1.02E+08 T G 0 . 0.179167 
chr1 15586145 15586146 C T 0 . 0.352513 
chr1 15586172 15586173 C CT 0 . 0.315178 
chr1 2.28E+08 2.28E+08 G A 0 . 0.07116 
chr1 2.28E+08 2.28E+08 GGAGC G 0 . 0.07116 
chr1 2.28E+08 2.28E+08 G C 0 . 0.079073 
chr10 43704791 43704792 A G 0 3.19E-05 0.017816 
chr10 1.02E+08 1.02E+08 T G 0 . 0.07833 
chr12 1.1E+08 1.1E+08 A G 0 . 0.072849 
chr12 1.22E+08 1.22E+08 T C 0 . 0.047422 
chr19 8461735 8461736 T C 0 . 0.004179 
chr5 1.51E+08 1.51E+08 A G 0 . 0.134286 

 
One variant fulfils the criteria for the recent human loss prioritized variant list:  
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Table 7: Candidate list of recent human CTCF sites that were lost after the split from archaic humans. 

chr start End alt ref enhancer gnomadAF PhastCons 
chr12 1.1E+08 1.1E+08 A G 0 . 0.072849 

 

4.3.4 Annotations 

 
4.3.4.1 Gene Ontology Enrichments 

 
No molecular or biological function was enriched in the analysis. The combined gene list is enriched for 

genes expressed in the developing brain (using CSEA tool 157, Bonferroni corrected p= 0.001). Genes 

overlapping developing brain expression patterns are: CA12, SLCO3A1, ABCG1, LPAR1, BTG2, CPS1, 

PPP3CA, GRIK4, LANCL1, DMRT2, SLC9A5, HTR6, RAP1GAP, CAPN13, HRH2, CA2, GLTP, RBM20, ACVR1C, 

FGF1, FOSB, TBC1D12, BBX, GSN, SNAI3, TFEC, ABCC5, PRKCB, CDC14B, GCH1, WIPF3, FAM124A 

 
4.3.4.2 Enhancer overlap, Allelefrequency, Conservation 

 
Eleven prioritized human gain variants and 28 prioritized human loss variants overlap known Fantom5 

enhancers. Both equal 5% of prioritized variants. No enhancers are found in the recent evolutionary 

variant sets. The vast majority, 179 (85 %) prioritized human gain variants and 449 (85 %) prioritized 

human loss variants are absent in the gnomAD population cohort. Most variants are rare with one variant 

(chr2:121438101_TGCGCGCGCATGTGCGTGTGT>T) however reaching a global allele frequency of 33 %. 

All candidates show increased PhastCons scores compared to the background distribution (randomly 

shuffled variants undergoing the same filtering procedure) (see Figure 43). This observation is particularly 

strong in sites of recent human evolution. 
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Figure 43: Evolutionary constraint on human gain (dark green), human recent gain (light green), human loss (red) and human 
recent loss (orange) compared to their respective background distributions. Median values are shown as white dots. 
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4.4  Discussion 
 
Here I prioritize and further interpret functional variants with a specific focus on a DNA binding factor 

(CTCF) involved in 3D genome architecture 11,20,139. Variants disrupting or creating CTCF binding motifs 

potentially alter genomic 3D structure and therefore gene regulation 143. I focus on variants arising during 

human-specific evolution since the split from Chimpanzee and archaic humans. Human evolutionary 

success remains poorly understood, while many researchers point towards modern human extraordinary 

brain capacities 145,158. The role of 3D genome architecture, and especially human-specific CTCF binding 

sites, on human brain development and evolution remains elusive. With this computational approach, I 

show that public datasets can shed light on human-specific evolution. 

By prioritizing variants that show differential CTCF binding profiles and showing proximity to 3D genomic 

boundary regions as well as coding sequence, I obtain 4 variant lists of human evolutionary relevant CTCF 

binding sites containing a total of 762 CTCF binding site gain (217) and loss (545) mutations. 

I show that using publicly available datasets is valuable, even if datasets are not specifically focused on 

brain evolution. Experimental results from human NPCs as well as organoids show that prioritized lists of 

gain and loss candidate CTCF binding sites are enriched in brain-specific gained or lost CTCF binding sites. 

These specific experiments are able to further filter candidate lists, resulting in 8 experimental validated 

gain variants, and 22 experimental validated loss variants. I recommend prioritizing computationally 

prefiltered variant lists further into CTCF gain variants showing complete absence in all ape experiments 

and presence in all human experiments while filtering loss variants for complete absence in human read 

outs and presence in the apes. 

4.4.1 Conservation 

 

Candidates show increased conservation for all four variant lists. This observation is especially striking in 

the recent evolutionary candidate sets, potentially because numbers for these sets are small. 

Conservation hints towards functional genomic regions, as variants disrupting sequence function are 

being removed by purifying selection. This observation is not surprising though as filtering requires 

presence of CTCF binding in apes or humans, prefiltering for functional DNA stretches. 
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4.4.2 Candidate genes 

 

Candidate lists contain promising targets for further analysis. Enrichment analyses show that especially 

genes expressed in the developing brain are encountered. These lists, however, are incomplete, as various 

additional genes show brain expression while not being part of specific expressed “brain development” 

genes. For instance, a human specific A to G CTCF gain variant upstream of AKAP6 arose after the modern 

human split from archaic humans. AKAP6 is highly expressed in the brain and is associated to brain 

relevant disease phenotypes 159 such as schizophrenia 160. Rewired 3D genome structure mediated by an 

additional CTCF binding site could potentially alter gene expression of AKAP6 in time or space. 

Three G to A variants leading to disruption of a CTCF binding motif in ACLS6 arose since the evolutionary 

split from chimpanzees. ACLS6 is crucial for acyl-CoA creation from fatty acids in the brain 161,162. Finally, a 

small insertion on chromosome 4 position XX (G to GAGCCAACTGCAG) in the transcript of APBB2 creates 

a novel CTCF binding site. Here, experimental CTCF binding is completely absent in the great apes while 

being present in human NPCs and organoids. APBB2 is potentially relevant for brain development as it is 

associated with abnormally large and dysfunctional axons 163 as well as Alzheimer’s disease 164. 

4.4.3 Experimental validation 

 

Validating the computational filtering approach using NPC and organoid CTCF binding sites as well as 

individual examples mentioned above shows the potential of the prioritized candidate lists. Few variants 

remain that fulfill all criteria when taking CUT&Tag experimental results into account (8 human gain, 21 

human loss, 1 human recent loss variant). Criteria are strict and result in a conservative set of highly 

prioritized variants. However, as experimental validation is cost and labor intensive, few candidates can 

be tested in vitro. Functional validation is needed to further understand the role of CTCF and therefore 

3D genome architecture on human brain evolution. Proposed candidate lists can be used to 

experimentally validate individual targets by introducing gain or loss variants into chimpanzee cell lines, 

organoids or mouse models using CRISPR systems. Experimental readouts such as RNA-seq can be used 

to infer expression changes due to the altered CTCF binding or Hi-C and other assays to identify alterations 

to the genomic compartments. In addition computational approaches like deepC125 can be used to infer 

the validity computationally. Phenotypic readouts such as axon length or mouse behavior can be 

measured in brain organoids or mouse models. 
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4.4.4 Computational validation and limitations 

Computational validation of these candidate lists is limited as comprehensive datasets naturally correlate 

with the input data and filtering steps. Independent CTCF datasets, such as computationally predicted 

CTCF binding sites, will be enriched in the candidates by design. Further limitations include the limitation 

of public human and great ape brain tissue derived datasets such as CTCF peaks or open chromatin. Even 

though validation using NPCs and organoid derived CTCF peaks show high overlap with existing datasets. 

More refined projects will require higher quality and more specific datasets to be used in filtering. The 

workflow of this pipeline can be easily extended using different datasets or by focusing on novel 

evolutionarily relevant mechanisms. 

4.4.5 Conclusion 

In conclusion, in this project I prioritize genetic variants for their impact on 3D genome architecture 

mediated by CTCF. I show that variants can be filtered comprehensively using public datasets. I report 

four lists of human-specific gained or lost CTCF binding sites using great ape and human datasets. 

Candidates were validated using experimental CTCF peaks from chimp, orang and human NPCs and 

organoids. Further validation can be applied using various experimental readouts, including directed 

editing of alleles in human and chimpanzee cells using CRISPR technologies. 

  



103 
 

5 Discussion 
 

5.1  Contributions to Variant Interpretation 
 
In this thesis, I outline three approaches to help understand human genetic variants. I look at targeted 

sequencing datasets and provide a pipeline for clinicians as well as researchers that helps interpret 

variants from data generated using molecular inversion probes (MIPs) 3. I provide a comprehensive 

framework to estimate the deleterious effects of structural variants in the human genome 4. And finally, I 

link variant interpretation to human specific brain development, focusing on CTCF mediated changes in 

the recent human evolutionary past. All projects accomplish a better understanding of human genomic 

variants and contribute novel insights to the genomics research community. 

 

5.1.1 hemoMIPs 

 

While individual pipelines exist to analyze MIP-derived next generation sequencing datasets, none is open 

source and published. Providing a pipeline that is version controlled, uses state-of-the-art software 

management, is well described in a publication and is free to use and to extend with additional features, 

makes MIP data generation more accessible to the genetics community. In addition, MIP-targeted 

datasets can be compared to one another using standardized pipelines. MIP applications for other cohorts 

can be easily designed and clinically validated by non-bioinformatic researchers with the fully automated 

processing pipeline. Variants of interest for hemophilia can be further extended as well as individually 

designed and added into the pipeline for other disease cohorts. Therefore, hemoMIPs provides a 

framework to easily analyze and compare targeted sequencing datasets in a fully automated manner that 

has not been available before. 

 

5.1.2 CADD-SV 

 
Computational frameworks to estimate the functional impact of structural variants have been developed 

over recent years 119–121,138. Many pipelines have been published recently or are currently in development 

to prioritize SVs. However, most frameworks suffer from certain ascertainment biases intrinsic to their 

training datasets. For instance, AnnotSV is a powerful tool that is easy to install and fast and efficient in 
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annotating and prioritizing variants. However, many of its annotation features rely on clinical 

interpretation such as presence in clinical databases such as ClinVar. Therefore, rare disease phenotypes 

or poorly studied mechanisms might be underestimated. CADD-SV on the other hand was designed to be 

as free as possible from known ascertainment biases. It does not make use of clinical, hand-picked 

annotations or training data. Instead, it uses evolutionary fixed SVs in chimps and humans which are 

presumably free of biases intrinsic to human annotated SV sets. Therefore CADD-SV is the first framework 

that identifies functional SVs while not suffering from common ascertainment biases. Additionally, CADD-

SV is the first framework designed to capture the diversity of potential SV effects by providing users the 

full annotation set in a normalized and easy to interpret manner. All SV annotations are Z-transformed 

using SVs of the same type from a healthy cohort. This novel approach enables users to directly observe 

outliers in individual categories or annotations beyond an aggregated score value. 

 

5.1.3 CTCF evolution 

 
Finally, non-coding DNA still strongly lacks interpretability compared to coding DNA. Genes within 

regulatory domains are often co-expressed and in proximity. Variants influencing these domains (for 

instance in enhancer sequence or sites influencing 3D genome architecture) can impact expression 

patterns and therefore functionally affect individuals. One comparatively well understood mechanism is 

changes in binding affinity due to variants in transcription factor binding motifs 165. However, no 

comprehensive framework exists to prioritize variants in this manner. Further, no framework exists that 

specifically looks at CTCF occupancy changes, mediated by heritable (germline) variants in the human 

lineage. This novel approach therefore combines public datasets with human variant lists to specifically 

prioritize non-coding variants that affect CTCF mediated 3D genome architecture for the first time. 

 

5.2  The future of the developed approaches 
 
As genetic research never sleeps and continuously develops, all approaches have been designed to be 

extendable for potential future usage. 
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5.2.1 hemoMIPs 

 
hemoMIPs, as the name suggests, was designed using data generated for a hemophilia cohort conducted 

by the “My Life Our Future” Project consortium. However, targeted sequencing using MIPs is very 

powerful and can be easily extended for further disease cohorts. The pipeline is limited to sequencing 

data generated from Illumina machines using molecular inversion probes as it was tuned to handle specific 

characteristics of this type of datasets, such as strong coverage imbalance and adaptor trimming. 

However, as hemoMIPs is public and open source, it can be easily used and extended by users. For 

example, tailoring hemoMIPs for other disease cohorts such as BRCA1 sequencing for breast cancer 

screenings is feasible 65,166. MIP targets can be designed for new diseases as well as extended for 

hemophilia to additional loci/genes inferred from clinically described variants. To conclude, the 

hemoMIPs pipeline is well equipped to be used in future projects due to its usage of workflow 

management tools as well as its open-source approach. 

 

5.2.2 CADD-SV 

 
The CADD-SV framework is not just easy to use due to its documentation, open-source approach and web-

based scoring feature, the tool can easily be extended to future aspects of SV scoring. The framework can 

be used to annotate new training datasets as they emerge. The CADD-SV annotation rules are not limited 

to evolutionarily motivated training datasets but can also be used for other types of training sets. For 

instance, a model trained on gnomAD rare versus common SVs could be explored using the CADD-SV 

annotation pipeline. For instance, additional models for inversions can be handled with minor additions 

to the code, once a training dataset of sufficient size is available. One future improvement of CADD-SV 

could be its current limitation to insertion site annotations. CADD-SV does not make use of the inserted 

sequence itself but only infers deleteriousness from the insertion site its proximity to certain annotations. 

However, sequence models exist to estimate the functionality and the direct impact of the inserted 

sequence itself 167. Incorporation of such information into a set of CADD-SV models could be a useful 

addition to the current framework. Further, CADD-SV scores could be ranked depending on certain feature 

groups. For instance, variants could be ranked with SVs of similar size, allele frequency or gene density. 

The employed approach does not do that. Instead, SVs are ranked relative to the biggest and least biased 

population SV call set currently available (gnomAD-SV). Exploring relative ranking based on all or individual 

features mentioned above could be included in future CADD-SV versions. 
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Further, the set of annotations used in CADD-SV can be easily extended. CADD-SV is based on a snakefile 

containing individual rules that annotate each SV using datasets containing features and their respective 

genome coordinates. It is already designed to be able to handle various data formats, such as BED files or 

GFF files. Further feature sets and transformations can be easily added to the annotation pipeline and 

included in future models. CADD-SV is limited by the limitations of SV detection itself. This is especially 

the case for SV breakpoints as they tend to be in highly repetitive regions and are sometimes unreliable, 

with intervals rather than exact location. CADD-SV uses 100bp up- and downstream of the SV of interest. 

More refined methods to detect SVs might benefit the current approach. Alternative definitions of the 

up- and downstream regions could be explored for training, potentially optimizing the exact number of 

base pairs used. 

To conclude, the approach does hold limitations for scoring breakpoints and is unable to score inversions 

as well as making use of inserted sequence. Due to the open-source approach, the aforementioned 

limitations can be addressed in future updates, using extended training datasets as well as additional or 

updated models for inversions as well as inserted sequence. 

 

5.2.3 CTCF-pipeline 

 
The pipeline to identify and prioritize human specific CTCF gain, or loss mutations can be easily extended 

to additional datasets, species comparisons or transcription factors. The approach uses experimental CTCF 

binding sites to identify evolutionary differences in transcription factor occupancy mediated by germline 

variants. Currently the experimental data was generated in ape fibroblast cell lines. However, as this 

project focuses specifically on 3D architecture changes in brain development, CTCF CUT&Tag datasets 

from more relevant cell-types or organoids could be used in the future. 

 
This approach can be further extended to all kinds of transcription factors and evolutionary relationships. 

Other TFs with known binding sites can be incorporated into the framework, identifying gain and loss 

sites. Human lineage derived variant lists would be untouched. Additional datasets such as information 

on open chromatin regions as well as distance to coding sequence would be identical if differences are to 

be identified for human.  

Variant lists for other species are available, or could be easily generated, using state of the art alignment 

tools. Therefore, CTCF or other transcription factor differences could be identified in other species 
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comparisons as well. Non-coding DNA is still a mystery to many clinicians 168 even though disease causing 

variants might be found in non-coding DNA stretches. This approach is well suited to shed light on variants 

impacting transcription factor binding. 

On top of the computational approach, future work on human specific CTCF evolution must include 

experimental validation. Organoid or mouse models can be generated to validate the effect of variants 

prioritized with this framework. 

The CTCF pipeline is currently not open source or publicly available. Releasing the approach on GitHub 

would be needed in the future to make the framework available to the community. 

5.3   Future of variant interpretation 
 

5.3.1 Diverse population sets  

 
All three projects contribute novel insights into interpretation of human genetic variants. However, 

challenges to correctly identify and interpret variants beyond the power of a single PhD student remain. 

Diverse populations may improve fine mapping to overcome the challenges introduced by linked variants 

to better identify causative variants that can be prioritized. Currently, a majority of existing genetic 

databases rely on data from European ancestry 169. Further increased population cohorts can increase the 

resolution for association studies and therefore help identify functional variants. Increased number of 

individuals also increases the resolution to fine map variants. It is assumed that among the nearly 8 billion 

human individuals any SNV compatible with life can be observed 170. 

5.3.2 Improved Computational Frameworks 

 

As outlined in this manuscript, computational approaches are key to handle complex and large datasets 

for variant interpretation. Recent advances in computational protein structure predictions show the 

potential of computational approaches to predict variant effects. Billions of known protein sequences 

cannot be experimentally assessed for their structure. AlphaFold introduces a state-of-the-art neural 

network-based model to predict structures to atomic accuracy that might excel experimental approaches 
171. Strategically employed training datasets combined with powerful models and advances in the field of 
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deep learning algorithms 172 have the potential to revolutionize research fields beyond protein structure 

predictions. 

5.3.3 Functional Characterization 

 

Experimental variant characterization has many limitations because functions act through a wide set of 

molecular and cellular processes. Often a limited set of variants can be tested in a limited number of cell 

types. High throughput assays pave the way forward. Genome perturbations become increasingly 

common with new technologies such as MPRAs 38, CRISPR/Cas9 47, single cell technologies or new 

approaches to synthesize whole genomes 173 currently under development and being further improved. 

Ever increasing numbers of variants will become feasible to be tested in parallel for an ever-increasing 

number of cellular or organismal systems. Organoid models are already used to functionally characterize 

complex diseases such as Alzheimer’s disease174. Many traits are difficult to assess in cell culture due to 

their phenotypic complexity. Methods to further improve functional characterization have the potential 

to revolutionize our understanding of genomic variants in the near future. This thesis provides 

computational approaches to prioritize variants for further functional characterizations. 

 

5.4  Accessibility 
 
The accessibility and availability of basic research tools is often overlooked. I find accessibility crucial for 

future developments, to continue to build upon the foundations laid down by previous researchers. 

Therefore CADD-SV and hemoMIPs are both open-source, use workflow and dependency management 

and are released on GitHub. CADD-SV is further available as an online scoring resource, enabling 

researchers or clinicians without bioinformatic knowledge to prioritize variants themselves. Access to 

resources especially for clinicians is still far from universal for software in variant interpretation. Some 

disease phenotypes might be well described in cell lines or mouse models but lack clinical applications 

and therapies that benefit human patients directly. Some clinical impact is limited due to availability of 

computational frameworks. A webserver for variant interpretation is therefore crucial to link basic 

research to clinicians for instance in university hospitals. The CADD-SV webserver further provides direct 

links to additional resources for SVs of interest. gnomAD-SV 19, USCS genome browser 123 tracks and region 

details available from ENSEMBL 175, are just one click away. 
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GitHub manuals for CADD-SV and hemoMIPs were thoroughly laid out and tested accordingly. All 

additional steps to run the software are described in detail on each tool’s respective GitHub page. 

Additional steps to prepare the datasets to be ready for usage in the pipelines are also described. 

 

5.5 Conclusion 
I present three approaches to shed light on the function of human genomic variants. I aid variant 

interpretation by providing a workflow implementation of software to analyze targeted clinical 

sequencing datasets. I introduce CADD-SV, a framework to predict the deleterious effects of structural 

variants in the human genome. And finally, I interpret non-coding variants in a novel approach, prioritizing 

differential CTCF binding, prioritizing regions of evolutionary derived expression changes in human brain 

development genes for experimental follow-up. 

Using Snakemake workflows 50, hemoMIPs performs sample demultiplexing, overlap paired-end merging, 

alignment using BWA, MIP-arm trimming, variant calling using GATK, coverage analysis and HTML report 

generation for single molecule and paired end sequencing datasets. While hemoMIPs was developed to 

analyze targeted sequencing data of the MLOF Initiative, it can be applied to a broad set of MIP sequencing 

data sets for direct visualization of clinically relevant disease variants. 

CADD-SV integrates rich sets of annotations in predictive models of SV effects. CADD-SV is built from 

machine learning models with an unbiased training using evolutionary-derived and putative benign 

variants that underwent millions of years of purifying selection. Clinical interpretation of structural 

variants is improved by CADD-SV due to its comprehensive score design, online scoring as well as 

provisions for clinicians with the respective annotations to identify outlier SVs. 

Finally, in the CTCF evolution section I prioritize genetic variants for their impact on 3D genome 

architecture mediated by CTCF. I show that variants can be filtered comprehensively using public datasets. 

I report four lists of human-specific, gained or lost CTCF binding sites using great ape and human datasets. 

Candidates were validated using experimental CTCF peaks from chimp, orang and human NPCs and 

organoids. While having no direct functional link yet, putative CTCF-mediated expression changes may 

play a role in Alzheimer’s disease, schizophrenia and many more diseases.  

Hence , my thesis projects improve our understanding of non-coding variants, the identification of disease 

variants as well as structural variants and their contribution to human evolution and health. 
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