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English

The goal of this work is to deploy a primer search tool (PriSeT) suitable for taxonomically
broad, sparse, and uncurated datasets of reference sequences. I discuss the theoretical and
practical challenges when sequence datasets are large. Uncurated online reference databases
are often the only source available when designing new primer sequences, studying the effec-
tiveness, and for species identification. As a case study, two different identification methods
for planktonicmicroorganisms from freshwater samples are presented: identification via light
microscopy and DNA sequencing. The sequencing approach will replace the manual method
to a large extent, but still needs to be improved and requires many costly trial-and-error
iterations. The robust primer search tool PriSeT is here developed and designed to shorten
the optimization time and to facilitate new types of in silico analyses. I evaluate PriSeT on 18S
rRNA genes from all major plankton clades and on whole RNA genomes. The resulting primer
sequences are compared to published primer pairs. Finally, the workflow of an academic
research group planning and conducting metabarcoding experiments is critically reviewed. I
present a database schema designed to summarize key information and enable researchers to
be more productive in less time. The scheme also alleviates new types of meta-analysis that
are not possible when data are scattered, such as quantitative and qualitative comparisons
between different studies.

Deutsch

In diesem Beitrag entwerfe ich ein Primer-Suchwerkzeug (PriSeT), das sich für taxono-
misch breite, aber unkuratierte Sequenzdatensätze eignet. Ich erörtere die theoretischen und
praktischen Herausforderungen, die damit verbunden sind. Große und unkuratierte Online-
Sequenzdatenbanken sind oft die einzige verfügbare Quelle um neue Primer-Sequenzen zu
entwickeln, ihre Wirksamkeit zu untersuchen oder Arten zu identifizieren. In einer Fallstudie
betrachte ich zwei verschiedene Identifizierungsmethoden für Plankton aus Süßwasser-
proben: Identifizierung mit dem Lichtmikroskop und DNA-Sequenzierung. Der letztere
Ansatz wird die manuelle Methode weitgehend ersetzen, erfordert aber viele kostspielige
Iterationen. Das robuste Primersuchwerkzeug PriSeT wurde entwickelt, um die Zeit für die
Sequenzoptimierung zu verkürzen und neue Arten von in silico Analysen zu ermöglichen. Ich
evaluiere PriSeT an 18S rRNA-Genen aus allen wichtigen Planktonkladen und an ganzen RNA-
Genomen. Die berechneten Primer-Sequenzen werden mit veröffentlichten Primer-Paaren
verglichen. SchlieSSlich wird der Arbeitsablauf einer akademischen Forschungsgruppe, die
Metabarcoding-Experimente plant und durchführt, kritisch betrachtet. Ich stelle ein Daten-
bankschema vor, das die wichtigsten Informationen zusammenfasst und es den Forschern
ermöglicht, in kürzerer Zeit produktiver zu arbeiten. Das Schema erleichtert auch neue Arten
von Meta-Analysen, die nicht möglich sind, wenn die Daten verstreut sind.
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Chapter 1

Introduction

Quis custodiet ipsos custodes?

Juvenal (Satire VI, lines 347-348)

More than one quarter of all investigated animal and plant groups are endan-
gered according to the IPBES1 assessment report from 2019. It is estimated that
within the next decades, about one million species will become extinct. Economically
growth-driven, humans massively intervene in global ecosystems by agriculture, de-
forestation, mining, interruption of migration paths, direct exploitation of organisms,
climate change, pollution, and the introduction of invasive alien species. The ongo-
ing biological annihilation is labeled as the Anthropocene or sixth mass extinction.
Ceballos, Ehrlich, and Dirzo, 2017 studied the population sizes of 27,600 vertebrate
species (about half of the known vertebrate species) and found that 32 % are decreas-
ing in population size and geographic range. All 177 analyzed mammals have lost at
least 30 % of their geographic ranges, and more than 40 % of these mammal species
have experienced a population shrinkage of 80 % or more. Population numbers and
geographical ranges are only one aspect. As most organisms, including humans,
live in communities, there are adverse cascading effects on the shared ecosystem,
promoting further decline. Vos et al., 2014 estimated that the current extinction
rates are 1,000 times higher than natural background rates of extinction and that
future rates are likely to be 10,000 times higher.

In contrast, our effort to understand the ecosystem, its components, and dynamics
is much too slow-paced because of a chronic shortage in funding of non-commercial
research projects. Monitoring, analyzing, and understanding what covers the scien-
tific aspect and is needed to convince decision-makers. So far, proportionally less
attention has been paid to study the diversity of life – our resource.

As Edward O. Wilson put it at a commencement speech in 20112:

“It is that the 21st Century is going to be the Century of the Environment worldwide, and
in science it is going to be the Century of Biology. The reason is simply that this is the

time we either will settle down as a species or completely wreck the planet.”

1.1 Problem Definition

Metabarcoding of environmental DNA (eDNA) is a procedure to determine the species
composition of a sample. The focus is not on a single species, but the simultaneous

1Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
2The speech was held at University of North Carolina, Chapel Hill (2011). Source: https://what

rocks.github.io/commencement-db/2011-edward-o-wilson-university-of-north-c
arolina,-chapel-hill/

https://whatrocks.github.io/commencement-db/2011-edward-o-wilson-university-of-north-carolina,-chapel-hill/
https://whatrocks.github.io/commencement-db/2011-edward-o-wilson-university-of-north-carolina,-chapel-hill/
https://whatrocks.github.io/commencement-db/2011-edward-o-wilson-university-of-north-carolina,-chapel-hill/
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identification of many species. It is becoming the predominant tool in the set of
environmental monitoring methods. Water, soil, and even air can be sampled, the
DNA extracted, amplified via polymerase chain reaction (PCR), sequenced using
next-generation sequencing (NGS) methods, and computationally processed. The
metabarcoding method allows for quick assessment of species compositions in situ
and is the foundation for modeling dynamic processes of the environment over time
and space.

Environmental samples (esamples) can comprise hundreds of organisms that
may be closely or very distantly related in the taxonomic tree of life. DNA-based
identification techniques of species mixtures encounter difficulties known to single
organisms DNA analysis like repeats or high intra-species variations and problems
related to the taxonomic heterogeneity of the sample and a missing ground truth3.

Currently, we are far from having solved these challenges - human experts for
plankton identification are still irreplacable. These experts are not only consulted for
plain identification, but abundance and biomass estimation, or discovery of terato-
logical forms4, which are indicators for stress and altered environmental conditions.

If the task of identification could be accomplished by an established metabar-
coding protocol, the few available experts would have more resources to work on
tasks that will remain infeasible for metabarcoding. The identifiability of species via
metabarcoding is inherently linked to

(i) the choice of the DNA barcode5 and therefore the primer sequences,

(ii) the effectiveness of the polymerase chain reaction (PCR),

(iii) the tree of life (TOL) model as any identification method follows the hierarchical
tree structure, and

(iv) the availability of reference sequences for assigning operational taxonomic units
(OTUs) as a product of a sequence processing pipeline to a taxonomic node.

To allow a high phylogenetic resolution, ideally, each species of interest would have
a unique DNA barcode flanked by highly conserved regions that can serve as primer
binding sites. Due to the species richness, this is impossible to reach. In a sample,
we will find species being genetically indistinguishable in their barcodes and species
being so distant that no single marker-based method would be able to capture both.
So far, barcodes or new primer sequences are determined by analyzing a few genomes
or sequences manually. Alternatively, already published primer pairs are taken that
have been evaluated on similar esamples and modified. There exists no tool that
operates fully automatically on an uncurated reference data set to propose new primer
sequences occurring at high frequency.

Metabarcoding experiments are carried out by multiple groups of people for
months and even years: lab processors, department and group heads, students, and
researchers. It needs many iterations of evaluation and feedback to find a set of
primer pairs that capture best a sample’s composition. As the diversity is highly
dynamic and undergoes seasonal cycles, but is as well driven by environmental
changes, this process may always be ongoing. It is, therefore, of utmost importance
to keep feedback loops short. A significant obstacle for data analyzing researchers to

3With ground truth we delineate information provided by empirical evidence in contrast to inferred
information.

4abnormalities in the physiological development
5A DNA barcode is a short DNA segment that uniquely assigns a taxon name to an organism. A more

detailed explanation follows in Section 2.1.
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get into a productive state and deliver the urgently needed feedback is the difficulty
of overseeing a metabarcoding setting and accessing all relevant information at once.
Senior staff is involved in the LakeMüggelseemonitoring project presented in Section
2.5 for up to 20 years. In contrast, data analysts are relatively shortly involved (a few
months to a few years) and have difficulty gathering information that seems to be
obvious.

1.2 Contribution

The thesis at hand is dedicated to the challenges centered around the evaluation
and management of metabarcoding experiments on plankton samples, and the in
silico discovery of new primer sequences. Introductory, we discuss the difficulty to
find a consensus of the many species concepts, and to construct a tree of life that
reflects biological relatedness. A comparative study (Chapter 2) aims to determine
how well metabarcoding performs compared to the standard approach and where it
fails. Overall, metabarcoding is more sensitive, but it fails to identify some clades
known to be present. Motivated by the identification failure of a specific clade in
freshwater samples (Rotifera), a tool was written that allows to compute chemically
suitable primer pairs given reference sequences for that clade (Chapter 3). It is fast
enough to deal with large and permanently updated reference databases and robust
against low quality or mislabeled sequences – a requirement that is implied by the
sparse population of reference databases and the impossibility to curate sequences for
thousands of taxa. Finally, a database schema is presented to consolidate and track
data centered around metabarcoding experiments. It is intended to allow querying
past experiments and gain an overview independently of the availability of dedicated
staff. All herein presented tools are open-source and available on GitHub.

1.3 Thesis Outline

Chapter 2 – Species Identification in Environmental Samples

In Chapter 2, we introduce the problem of species identification via metabarcod-
ing. We review the problem of the tree of life (TOF) construction and how multiple
sequence alignments (MSAs) guide tree construction. We look at the problem of
primer search for metabarcoding experiments where specificity has to be balanced
against primer effectiveness. Conventional approaches are evaluated with respect to
the possibility to scale up the reference dataset in which primer pair candidates are
searched. Two distinct identification methods are presented – the historically older
and indispensable method of binocular reading and metabarcoding, a method well
known from gut microbiome studies or pathogen detection. A study, conducted at the
Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), is presented that
compares both identification methods qualitatively on freshwater plankton samples.

Chapter 3 – Primer Discovery in Large Datasets

The primer search tool PriSeT is presented whose initial motivation emerged from
the personal involvement in the ongoing monitoring project outlined in Chapter
2. When analyzing species that had not been detected via metabarcoding, but were
known to be present in the sample, it turned out that there exists in silico tools for
simulating the effectiveness of a known primer pair, but no tools for discovering
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new primer pairs given arbitrary, more extensive reference libraries. The tool gains
computational efficiency by using a FM-frequency computation on the reference
dataset, bit vectors with constant rank and select support and bit-parallelism for
sequence property checks. PriSeT is here evaluated for two very different scenarios –
taxonomically sparse plankton data sets and whole genomes of pathogenic viruses.

Chapter 4 – A Database Schema for Metabarcoding Experiments

Chapter 4 is dedicated to analyzing the workflow and data organization based on my
experiences as a member of an institute working with genetic material. A database
schema is presented that summarizes essential information that is otherwise spread
across multiple computational units or inaccessible online. Implementation of the
schemewould facilitate searching for previous experimental data, shorten the training
period of new group members, and enable new types of metastudies.

Chapter 5 – Discussion

Chapter 5 summarizes and discusses the results of the metabarcoding study (Chap-
ter 2), the primer search tool (Chapter 3), and the proposed data organization for
metagenome studies (Chapter 4).

Chapter 6 – Conclusion

Chapter 6 concludes with a summary of the contributions. We project what challenges
will persist in meta-barcoding and how software tools should address them.
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Chapter 2

Species Identification in
Environmental Samples

Die Natur kommt auf dem kürzesten
Weg zu ihrem Ziel.

Georg Wilhelm Friedrich Hegel

2.1 Introduction

Metabarcoding is a molecular batch-processing method where DNA is extracted from
an environmental sample (esample), amplified with the polymerase chain reaction
(PCR)methodwith a primer pair that targets a shortmarker region (e.g., small subunit
(SSU) of rRNA), also called barcode, and sequenced on next-generation sequencing
(NGS) platforms. The raw reads as output by the sequencer machine are then analyzed
and processed into operational taxonomic units (OTUs) using their barcodes. An
OTU represents a set of sequences that are identical or highly similar. Instead of
applying the identification process to each individual read, the OTU represented
by a common-sense sequence (and a read counter) is used instead. An OTU can
be successfully classified if there exists a highly similar and taxonomically unique
match against a labeled reference sequence in a database. Ambiguous or low-quality
matches are tackled by inferring the most probable ancestor.

Metabarcoding is the most affordable method to survey taxonomically heteroge-
neous communities quickly, but is also used in long-term monitoring projects where
regular sampling is required. In the case of environmental monitoring, metabar-
coding is complemented by morphological identification under the microscope (see
Figure 2.1) as both methods encounter limitations as discussed in Section 2.5.3. The
two methods depend on a taxonomy that might be erroneous or is more suitable for
one identification method, but not for the other (see Section 2.2). The morphological
identification for important indicator species1 may fail when they are present in
larvae or juvenile state due to indistinguishable features (see Section 2.5.2). On the
other hand, metabarcoding cannot resolve an OTU with a barcode that matches to
references assigned to more than one organism group. The inability to culture and
clone most microorganisms for whole genome sequencing complicates the search for
barcodes that would allow higher detection rates.

Overall metabarcoding detects a broader range of organisms (diversity) compared
to morphology-based identification (Morph ID), but still may under- or overestimate

1i.e. species that indicate special environmental conditions
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a sample’s richness2. Overestimation occurs when there is intraspecific and intrage-
nomic variability, i.e., individuals of the same species exhibit significant variations
in their barcodes; without that there is a morphological manifestation. This becomes
problematic if OTU richness is taken as a proxy for species richness (Ritter et al.,
2019). This phenomenon is called cryptic diversity. An indicator species frequently
found in freshwater samples which exhibits cryptic diversity is the diatom Nitzschia
palea (Rimet et al., 2014).

Figure 2.1: Complementing sample processing pipelines for monitor-
ing projects. The NASA satelite image (center) is license-free.

2.2 Tree of Life

Identificationmeans that we assign an organism or piece of DNA to themost probable
taxonomic rank and name. In case of significant uncertainty, we assign it to a higher
taxonomic group containing the unknown species. Taxonomies can be seen as trees
grouping hierarchically the set of classified organisms. Depending on the underlying
concept, an inner node may correspond to an extinct ancestor or is a virtual place-
holder in the face of lacking information. A lineage is a path from the root node –
the last universal common ancestor (LUCA) – to a species. The three domains of life
are Bacteria, Archaea, and Eukaryota (see Figure 2.2). The ranks that typically consti-
tute the lineage of an individual organism are domain, kingdom, phylum, class, order,
family, genus, and species. Many lineages are refined further by subdividing existing
ranks and indicate their relative positions with prefixes like giga-, grand-, hyper-,
infra-, magn-, micro-, min-, mir-, parv-, sub-, nan-, or super-. Non-common ranks
include division, legion, cohort, series, section, tribe, varietas, or form. The complete

2Richness refers here to the entirety of all sample-contained species, which represents the unknown
ground truth.
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Figure 2.2: Dendrogram of the tree of life showing the three domains
Bacteria, Archaea, and Eukaryota based on ribosomal RNA genes, and
linked to the last universal common ancestor. The figure is adapted
fromWoese, Kandler, and Wheelis, 1990. Organisms of separate do-
mains show more profound differences compared to organisms of

separate kingdoms within the same domain.

list contains 73 different taxonomic rank names. The taxonomies3 differ significantly
from the original five-rank Linnaean taxonomy published by Carl Linnaeus in 1758.
However, the principles are the same - the ranks are nested, and organisms of the
same group have a greater number of similarities than organisms of different groups.

Attempts to classify species go back hundreds of years, when criteria were lim-
ited to what was visible to the eye and observable within the lifespan of a human.
Therefore, the decision to call a particular group4 a phylum is highly anthropogenic.
Particularly formative, especially for higher taxonomic levels, are the differences
in body plan. The phylum of mollusks (Mollusca), for example, consists mainly of
invertebrates with shells and includes more than 100,000 species. Mollusks have
a bilaterally symmetric body plan, a complete gut, an undifferentiated main body
cavity (coelom), and are externally shelled5. The full set then of characteristics is
supposed to define each phylum uniquely, whereas single features may be shared
between phyla.

2.2.1 Identification

Most non-sequence-based identificationmethods are guided by a particular taxonomy
until no further distinction is possible. For example, we would first look for the
significant features of the body structure and reproductive system before examining
the shape of the mouthparts.

Taxonomic ranks suggest that there is something in common across all groups.
Nevertheless, even for domains and phyla, some propose six, others up to 32 kingdoms

3there are several taxonomies that are not identical, e.g., the GenBank taxonomy differs from Silva’s
taxonomy

4A group is a branch in a tree of life that groups organisms thought to include all evolutionary
descendants of a common ancestor

5from https://global.oup.com/us/companion.websites/9780195326949/student_r
esources/facts/#mollusca on 09.12.2021.

https://global.oup.com/us/companion.websites/9780195326949/student_resources/facts/#mollusca
https://global.oup.com/us/companion.websites/9780195326949/student_resources/facts/#mollusca
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(Tedersoo, 2017), there is disagreement, and for the rank of species, there are a dozen
concepts. In an overview De Queiroz, 2007 lists 14 major classes of contemporary
species definitions. A primary species concept can be based on biology (interbreeding
is possible and results in fertile offspring), ecology (sharing of the same niche), on
evolution, or phylogeny, to name a few. Mayden, 1997 states that after evaluating the
many concepts for their theoretical and operational qualities, it is essential to have a
monistic, primary concept of species, applicable to everything that is believed to be a
species. Whereas, secondary concepts should only be used as operational tools to
identify new species and employ differences in morphology, genetics, or behavior.
The primary concept, according to Mayden, 1997 is the evolutionary species concept,
which he describes as “an entity composed of organisms which maintains its identity
from other such entities through time and over space, and which has its own independent
evolutionary fate and historical tendencies” (Mayden, 1997). This concept challenges
scientists to adequately capture the temporal and spatial components of an entity, as
they cannot be experienced within a human lifespan. Similarly, evolutionary fate can
only be assessed retrospectively by examining genetic similarities and differences.

Defining microbial species is particularly difficult because some have the same
body type but genetic markers show high sequence variability, or vice versa. In
such a case, mating data would provide an indication of whether the variance is
interspecific or reflects a species difference, but they are not always available. Rimet
et al., 2014 found that there is no objective criteria for species separation and that
instead barcoding will need a consensual approach to molecular species limits.

Current models synthesize biological and phylogenetic information: subdivisions
are either based on visible biological features or genetic distances between a set of
ribosomal protein sequences or complete genomes. Hug et al., 2016 are rendering a
taxonomy based on RNA sequences or genomes and yield a different taxonomy than
those currently in use. There is also a difference in whether SSU rRNA is used or a set
of protein sequences combined with complete genomes. A preceeding study from
2016 rendered a tree of life for all three domains by aligning 16 ribosomal protein
sequences from each organism for which a high-quality draft or complete genome
was available (3,000 in total). Large parts are congruent with an SSU rRNA based tree
of life, but as expected, it yields a higher phylogenetic resolution and is not prone
to artifacts (compared to using only one gene). In this tree of life, the domain of
Bacteria contains 92 named phyla, the domain of Archaea 26 phyla, and Eukaryota
five supergroups (Hug et al., 2016). Since more sequence data have become available,
Burki et al., 2020 has presented a new eukaryotic phylogeny of life based solely on
molecular phylogenies. In this new eukaryotic tree of life, the authors identify 13
supergroups (see Figure 2.3). The former supergroup of Chromalveolata (Alveolata,
Stramenopila, Haptophyta, and Cryptophyta) was formed by the assumption that
secondary plastids were once acquired from a common algal ancestor. Given more
molecular evidence, this supergroup turned out to be polyphyletic6. In the proposed
tree of life by Burki et al., 2020, Stramenopila and Alveolata are assigned to the
supergroup TSAR (an acronym of its members: telonemids, stramenopiles, alveo-
lates, and Rhizaria), Haptophyta to the supergroup Haptista, and Cryptophyta to the
supergroup Cryptista. The new sister group of SAR is the flagellate taxon Telonemia,
currently consisting of only two species: Lateronema antarctica and Telonema subtle.
It is estimated that SAR contains half of the eukaryote species: major groups of
microbial algae like diatoms and dinoflagellates, seaweeds, free-living protozoa like
ciliates or foraminiferans, and protozoan parasites like oomycetes.

6composed of phyla that do not share an immediate common ancestor
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Figure 2.3: A dendrogram of the eukaryote tree of life proposed by
Burki et al., 2020. It is based on a consensus of recent phylogenomic
studies. Current supergroups are shown colored. Unresolved branch-
ing orders are shown as multifurcations. Individuals from half of the
supergroups (marked bold) can be found in freshwater samples.

Both studies have in common that the phylogenetic placement uncovers the
existence of new lineages and, therefore, a higher diversity as stated so far. Large parts
of this diversity are only accessible via cultivation-independent genome resolution.
There is ongoing work to draft and ratify rules for a phylogenetic nomenclature,
which will then be regulated by the International Code of Phylogenetic Nomenclature
(Cantino, De Queiroz, et al., 2020). The challenge is to pose a taxonomic model that
accurately reflects the phylogenetic distances between species but is also suitable for
traditional identification methods. Next, we will look at the methods for constructing
a tree of life.

2.2.2 Tree of Life Construction

The idea is to represent the tree of life as a graphic structure with a root node, inner
nodes and leaf nodes. The inner nodes represent the ancestors and the leaves repre-
sent the species. When classifying an unknown sequence, we would walk downstream
from the root to the leaves until no further distinction is possible. In the case of
ambiguous assignment, i.e., high sequence similarity to multiple taxa, we determine
the lowest common ancestor (LCA), i.e., the ancestor that encompasses both species
and has a maximal distance to the root. Whereas binocular identification, as used for
species identification of microplankton samples, is guided by phenotypical features
like shape or ornaments.

In DNA- and protein-based classification the times of separation from a common
ancestor are determined from sequence differences, concretely their genetic distance.
Best results are achieved when combining sequence data from different genomic
sources or loci.

For phylogenetic tree construction, identity scoring schemes should account for
all the levels of evolutionary changes that apply. A change in allele frequencies is a
microevolutional change occurring within a species. It is driven by gene flow, genetic
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drift, mutation, or natural selection. Parasite mediated selection is an example of a
microevolutionary change. In contrast, macroevolutionary changes are guided by the
selection of interspecific variations (Hautmann, 2020).

Distance-Matrix Methods

A simple and computationally fast approach is to compute amultisequence alignment
(see 2.2.4) and express pairwise distances in dependence of mismatched positions.
Sequences with small distances are arranged under the same interior node; branch
lengths reflect the genetic distances. The complete tree can be constructed via neigh-
bor joining – a bottom-up clustering algorithm (Saitou and Nei, 1987). MSA computa-
tion is not suitable for all types of genomic sources, e.g., whole genomes. Pairwise
distances can be computed in other ways like using the Lempel-Ziv complexity as the
relative information between sequences (Otu and Sayood, 2003).

Maximum Parsimony

Among the set of possible phylogenetic trees, the one minimizing the amount of
evolutionary change required is maximizing parsimony (Fitch, 1971). Alternatively
stated, a tree constructed under the maximum parsimony criterion minimizes the
number of similarities that cannot be explained by inheritance. Thereby, an opti-
mal tree minimizes homoplasy7 and is the shortest possible tree (Farris, 2008). As
there exists no algorithm to generate optimal parsimonious trees, the complete tree
space must be searched. Exhaustive search is therefore only feasible for a handful
of sequences. Otherwise, branch-and-bound or heuristic approaches are applied. A
most-parsimonious tree may underestimate the true number of evolutionary changes.

Maximum Likelihood

Another computationally expensive method is the maximum likelihood method
(Felsenstein, 1981) which estimates the overall likelihood of all trees and selects
the maximizing one. For a given configuration and nucleotide position in a branch,
its likelihood depends on whether the nucleotide is present or absent in the ances-
tor. The cumulative probabilities are computed for each component independently
and summed to yield the final score. The underlying concept assumes that each
nucleotide site evolves independently, which is certainly not always true. E.g., when
a locus encodes a protein whose higher dimensional structure preservation is crucial,
we observe that remote positions co-evolve, i.e., change simultaneously. Another
restriction arises from its computational expensiveness – it is only feasible for a
few sequences. For larger sequence sets, first, a solution is calculated on a subset.
Secondly, the solution is adjusted by adding the remaining sequences one by one.

2.2.3 About Sequence Distances

Computing a distance score based on MSAs is only one out of many ways of how to
determine the phylogenetic distance between two taxa. In order to yield stable results
for each taxon not only multiple individuals per species should be sampled, but also
multiple loci be evaluated. A survey study by Dogan and Dogan, 2016 compared 26
different scoring schemes. For macroevolution level comparison the authors conclude

7independent loss or gain of a trait in separate lineages
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that the scheme proposed by Nei, 1972 would be best (see Equation Abschnitt 2.2.3).
Nei, 1972 allows the expression of differences by genetic drift andmutations. Given
two randomly mating diploid populations, X and Y, and a set of L investigated loci,
xi and yi denote the frequencies of the i-th allele in population X and Y, respectively.
The probability for two randomly chosen loci to be identical is jX = ∑ x2

i for popula-
tion X, and jY = ∑ y2

i for population Y. Likewise, the probability for identity when
choosing from both populations is jXY = ∑ xiyi. Nei, 1972 then define the distance
DNei as the normalized arithmetic mean of the identity as shown in Equation (2.1).

DNei := − ln I (2.1)

I :=
JXY√
JX JY

JX, JY, JXY :=
1
L ∑ jX,

1
L ∑ jY,

1
L ∑ jXY

For microevolutional comparisons Dogan and Dogan, 2016 recommend distance
measures by Sanghvi, 1953 or Edwards, 1971 depending on sample size and allele
frequency ratios.

2.2.4 Multiple Sequence Alignment (MSA)

Multiple sequence alignments remain an important operation in character-based TOL
construction. Given a set of sequences S = {S1, S2, ..., Sm}, it constructs an alignment
of two or more sequences, such that a penalty function is minimized. Biologically
plausible solutions exist only for similar sequences, as explained in the next sections.
MSAs help to tackle two related areas – the detection of highly conserved regions
and the inference of an evolutionary past of their carriers. It is unnecessary to align
complete genomes, but a set of informative sequences is sufficient to construct
phylogenetic trees with high confidence.

Multiple Sequence Alignment (MSA)

Definition 2.1. A sequence Si is a string of characters from an alphabet
Σ = {σ1, σ2, ..., σl}. We can obtain an alignment between two ormore sequences
by inserting an additional gap symbol, denoted as ‘−’, such that all sequences
have the same length. For an alignment to be meaningful columns containing
only gap symbols are not allowed.
Identical non-gap symbols at an alignment position are a match, and distinct
non-gap symbols are a mismatch. Gap costs are usually assessed separately
and are often further distinguished according to whether a gap is opened or
extended (affine gap costs). Character matches are rewarded, mismatches and
the presence of gap symbols are penalized. An optimal MSA is an alignment
that minimizes the total costs with respect to a scoring scheme. An example
of a scoring scheme is the sum-of-pairs shown in Equation (2.3).

For DNA sequences with unambiguously encoded nucleotides we have ΣDNA =
{A, C, G, T}. Without restricting generality, we use the alphabet ΣDNA in all examples.
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MSA Construction

When constructing a multiple sequence alignment of two or more sequences with
various lengths, we typically seek for the optimal alignment. As the score function is
decisive for the alignment, it has to be chosen such that the biologicallymost plausible
solution is also in the set of optimal solutions. We will see later that the larger the
sequence dissimilarities are, the more solutions exist that are equally good, and the
choice becomes an arbitrary one. The operational set for transforming sequences into
aligned and annotated sequences is the insertion of gap symbols and mismatches,
corresponding to the evolutionary events insertion, deletion, and mutation. More
complex events like sequence rearrangement, replication, or inversion cannot be
considered. Instead, solutions are greedily formed from local matches or dynamic
programming approaches are used that extend prefix solutions. MSAs are best suited
for aligning relatively short and related genomic regions or closely related genomes.

There are infinitely many ways to transform one sequence into another. However,
since there is a finite amount of time passed between a population separation, and
modifications need to preserve metabolistic functioning, those modifications are
more probable that require the lowest amount of changes and have intermediate
genotypes that are not fatal.

The result of an MSA is typically displayed as a matrix M ∈ (Σ ∪ {-})n×O(m)

where n is the number of sequences and m the expected sequence length. Rows
correspond to input sequences and columns to global alignment positions containing
up to |Σ|+ 1 distinct characters. Apart from the alignment method, the scores for
mismatches, insertions, deletions, or gap opening versus extension8, significantly
influence the final shape of the alignment. For similar sequences, we expect that we
find few variations per column. Figure 2.4 shows an alignment excerpt of cytochrome
oxidase subunit I (COI) sequences computed by PRANK (Löytynoja, 2014).

pos 526 527 528 529 530 531 532 533 534

S1 A C T G C A - - - -
S2 A C T G - T G T C C
S3 A C T G C T G T C C

Figure 2.4: A multiple sequence alignment computed with Wasabi’s
PRANK (Löytynoja, 2014) of sequences S1, S2, and S3 from three dif-

ferent species.

Given an MSA, we can construct a phylogenetic tree (see Section 2.2.2) with
branches expressing spatial separation of populations, and branch lengths the time
since their separation. The series of DNAmodifying events that could be causal for our
observed sequences is shown in Figure 2.5. Though phylogenetic tree construction
(with default parameter settings) would arrange all three species as direct ancestors
of S0.

With the number of sequence variations, the number of possible insertion, dele-
tion, and substitution operations grows exponentially, thereby generating a set of
possible operations that are equally scored and equally probable from a biological
point of view. As a result, the reported alignment is only one of many, or worse,
biologically meaningless. Therefore, it is not advisable to perform MSA calculations

8Intituitively, a gap opening is less probable than extending an already existing gap and should,
therefore, be higher penalized.



2.2. Tree of Life 0013

Figure 2.5: Possible events supported by the sequences S1, S2, and S3,
transformed into a phylogenetic tree given their sequence alignment
(see Figure 2.4). Here we assume that the sequence information is
sufficient to compute the phylogenetic tree and that the events are
significant enough to support speciation. Sequence S0 is the sequence
of a common, hypothetical ancestor. One explanation is that at some
point the population carrying S0 got separated and a substitution of C
to A at position six took place resulting in the observed sequence S1.
For the second group TGTC got inserted after position five resulting in
the observed sequence S3. After a subpopulation split from carriers of
S3, a deletion event occurred at position five resulting in S2. Whether,
S1 to S3 are considered as distinct species is dependent on the concrete

model and scoring.
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for sequences that are genetically very distant.

Sum-of-Pairs Score

Assuming a length of m of the final alignment, the quality of an alignment can be
assessed straight forward by scoring each of the m sites of the alignment indepen-
dently and pair-wise – same characters are scored with 0 and different characters,
including the gap symbol, are penalized with a fixed value λ (typically λ = 1). This
approach is called sum-of-pairs (SP) score:

SP := ∑
j∈[1:m]

∑
i1/2∈[1:m]

i1 6=i2

score(Si1 [j], Si2 [j]) (2.2)

score(σ1, σ2) :=

{
0, if σ1 == σ2

γ ∈ R+, else
(2.3)

For a scoring scheme to be a metric, the axioms of identity of indiscernibles (Equa-
tion 2.4), symmetry (Equation 2.4), and triangle inequality (Equation 2.6) have to hold
for all Si, Sj, Sk ∈ Σ+.

metric(Si, Sj) = 0⇐⇒ Si = Sj (2.4)
metric(Si, Sj) = metric(Sj, Si) (2.5)
metric(Si, Sj) ≤ metric(Si, Sk) + metric(Sk, Sj) (2.6)

The triangle inequality ensures the transitivity of closeness in the distance measure.
Its introduction was motivated by the possibility of speeding up similarity searches
in large sequence databases (Stojmirović and Yu, 2009). The SP score satisfies the
triangle inequality and is widely used due to its ease of calculation.

A straight-forward approach to compute an MSA precisely on sequences S1, S2, ...,
Sn is via dynamic programming (DP). Each axis of the n-dimensional table corresponds
to one of the aligned sequences. Any point (i1, i2, ..., in) in the table stores the costs
(and backtracking information) of the best alignment of all prefixes S1[1 : i1], S2[1 : i2],
..., Sn[1 : in]. The edges are initialized with accumulated gap insertion costs. Starting
with cell (1, 1, ..., 1), the computation is carried on to neighboring cells along each
dimension by considering preceding optima and the costs to align, insert, or delete the
new character against all other. The algorithmwas first described for two sequences by
Vintsyuk, 1968 – a pioneer in speech recognition, but gained more popularity among
Bioinformaticians as the Needleman-Wunsch algorithm (Needleman and Wunsch,
1970). It can easily be expanded to be used with more than two sequences. Below is a
code snippet for three sequences and the sum-of-pairs scoring scheme with λ = 1.

For each additional sequence, another nested for-loop has to be created, resulting
inO(mn) computation steps. In each iteration step 2n− 1 neighboring cells are looked
up to compute in O(1) the costs of an optimal alignment passing through one of the
neighboring cells. The accumulated runtime costs areO(2nmn). There is no algorithm
known that substantially breaks down the exponential runtime. Practical runtime
improvements have been achieved by restricting the considered regions (Carrillo
and Lipman, 1988, Lermen and Reinert, 2000), parallelization, or GPU acceleration.
There exists heuristical approaches that build the alignment progressively likeMAFFT
(Nakamura et al., 2018), iteratively like MUSCLE (Edgar, 2004), are phylogeny-aware
like PAGAN (Löytynoja, Vilella, and Goldman, 2012), by simulating annealing (Kim,
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Algorithm 1 Optimal alignment of three sequences via dynamic programming. Mis-
match, deletion, or insertion scores follow the scoring scheme in Equation (2.3) with
λ = 1. At each step the optimum of 23 − 1 adjacent cells including insertion/deletion
and mismatch costs is carried on to cell (i, j, k).

1: procedure AlignThree(S1, S2, S3)
2: dp←int[|S1|+ 1][|S2|+ 1][|S3|+ 1]
3: dp[0][0][0]← 0
4: dp[i][0][0]← 2i ∀i ∈ [1 : |S1|]
5: dp[0][j][0]← 2j ∀j ∈ [1 : |S2|]
6: dp[0][0][k]← 2k ∀k ∈ [1 : |S3|]
7: for all i← [1 : |S1|] do
8: for all i← [1 : |S2|] do
9: for all i← [1 : |S3|] do
10: scorei,j ←(S1[i] == S2[j]) ? 0 : 1
11: scorei,k ←(S1[i] == S2[k]) ? 0 : 1
12: scorej,k ←(S1[j] == S2[k]) ? 0 : 1
13: dijk ← dp[i− 1][j− 1][k− 1] + scorei,j + scorei,k + scorej,k
14: dij ← dp[i− 1][j− 1][k] + scorei,j + 2
15: dik ← dp[i− 1][j][k− 1] + scorei,k + 2
16: djk ← dp[i][j− 1][k− 1] + scorej,k + 2
17: di ← dp[i− 1][j][k] + 2
18: dj ← dp[i][j− 1][k] + 2
19: dk ← dp[i][j][k− 1] + 2
20: dp[i][j][k]← min(dijk, dij, dik, djk, di, dj, dk)

21: return dp[|S1|][|S2|][|S3|]
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Pramanik, and Chung, 1994), or by simulating quantum computing (Nuin, Wang, and
Tillier, 2006). All of these efforts demonstrate the importance of multiple sequence
alignments as a method of analysis that allows inference of phylogeny, prediction
of protein structure (Jumper et al., 2021), or primer design in the biological domain
alone.

2.2.5 NP-Completeness of MSASP

In this section we elucidate the NP-completeness ofMSAs using the SP-score (MSASP).
Even though there exist runtime improvements, an MSA remains computationally
expensive. Greedy approaches often exploit sequence similarities, which are less
given for phylogenetically distant organisms.

The complexity class of the MSA problem depends on the score function. But
even for the simple SP-score, the MSA problem is NP-complete, i.e., MSASP ∈ NP
and any other NP-complete problem can be reduced to MSASP. The complexity class
NP describes the set of problems that are solvable by a non-deterministic Turing
machine in polynomial time (machine-definition). An equivalent way to define NP
containment is to require that a proposed solution can be verified by a deterministic,
polynomial-time algorithm (verifier-based definition). In contrast to the Halting
problem9, NP-complete problems are decidable.

NP-completeness can be proved by reducing a version of the Shortest Common
Supersequence problem (SCS) to the MSA problem. Maier, 1978 showed that the
Vertex Cover problem10 reduces to SCS over an arbitrary alphabet and Middendorf,
1994 that SCS reduces to SCS2 – the common supersequence problem over an alphabet
of size two. It is advisable to reduce SCS2 to MSASP since their representations are
very similar, which facilitates the translation between the two inputs.

Given a set of binary encoded sequences B = {B1, B2, ..., Bm} with Bi ∈ {0, 1}∗,
SCS2 poses the question ofwhat is the shortest supersequence S̃with length constraint
|S̃| ≤ m (m ∈ N), such that every sequence Bi ∈ B is a subsequence of S̃? In other
words we search a sequence from which we can construct every sequence from B
by removing symbols in B̃. In contrast to substrings, subsequences must not be
embedded consecutively in another sequence.

The equation below shows formally the supersequence B̃ over an arbitrary se-
quence set B. Let sj ∈ B be a set of disjoint substrings of B̃ ∪ {∅}, then a superstring
is:

∀Bi∈B∃sj∈S̃ s.t. S̃ = s1 ◦ Bi[1] ◦ s2 ◦ Bi[2] ◦ · · · ◦ s|Bi | ◦ Bi[|Bi|] ◦ s|Bi |+1 (2.7)

The shortest supersequence minimizes the total substring length while still fulfilling
containment of B in B̃. To give an example, assume we have B1 = 00, B2 = 11,
and B3 = 0010. A supersequence of B is B̃ = 01010. By crossing out non-relevant
letters from the supersequence all sequences can be recovered. The tabular layout
(Table 2.1) resembles already a multiple sequence alignment with the difference that
substitutions are missing – in each column we either have {0,−} or {1,−}. As we
will see later, this fact complicates the translation between MSASP and SCS2. Using
the term translate is not chosen by chance, formally, we express inputs as words of
a language L, which can either be accepted (w ∈ L) or rejected (w 6∈ L). We can
think of language L(MSASP) as the set of all accepted inputs in the format wMSA =

9Given a description of an arbitrary computer program, decide whether the program will terminate
or run forever.
10Given an undirected graph, find a minimal node set such that at least one endpoint of each edge is

covered.
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B̃ 0 1 0 1 0

B1 0 - 0 - 0
B2 - 1 - 1 -
B3 0 - 0 1 0

Table 2.1: A supersequence of B1, B2, and B3.

(S , M, cMSA) where S is the set of sequences11, M represents an optimal alignment
with score not larger than cMSA (according to definition (2.2)), and L(SCS2) as the set
of accepted inputs in the format wSCS = (B, B̃, cSCS) where B̃ is a supersequence of B
with score cSCS.

The computation of valid solutions is delegated to an oracle. The best known
exact algorithm for computing valid solutions runs in exponential time relative to the
input size. It suffices to verify an input in polynomial time and to find an invertible
translation function, called encoder from hereon, that maps words from one to words
for the other language in polynomial runtime w.r.t. to the input size, and yields the
same (non-)acceptance answers. We call the inverse function of an encoder a decoder
from hereon.

Suppose we want to show that problem Q is NP-complete given that another
problem R has been proved to be NP-complete. A typical proof by reduction follows
four steps.

(i) Show that Q ∈ NP, i.e. a solution or word can be verified in polynomial time.

(ii) Select a problem R that has been proved to be NP-complete.

(iii) Construct a polynomial-time encoder that translates words for R into words for
Q and show wR ∈ L(R)⇔ encode(wR) ∈ L(Q).

(iv) Prove that the encoder runs in polynomial time.

We are free to choose a scoring scheme satisfying triangular inequality. Table
2.1 suggests that forward and reverse mapping is straightforward. However, when
mapping alignments with columns containing substitutions, we could expand such
columns (transform a mixed column into two columns containing either {0,−} or
{1,−} in the alignment) without that the optimal score is changed. This would
result in a group of alignments that have only one supersequence correspondence
– the encoder would not be a bijective function anymore (see Example 2.1). The
Berman-Hartmanis conjecture states that the encoder has to be a bijective, invertible
function and that its runtime is polynomial in both directions (see conclusions in
Berman and Hartmanis, 1977). There is evidence for and against the conjecture. All
known NP-complete proofs, so far, respect the conjecture, and in fact, the proof of
the Berman-Hartmanis conjecture would implicate P 6= NP.

The need for the encoder to be bijective poses a challenge when reducing SCS2
to MSASP, because we have to enforce optimal alignments to contain no columns
with mixed characters. The bad news is that when using the binary alphabet alone,
there exists no scoring scheme satisfying triangular inequality that can penalize 0− 1
alignments in a way that mixed columns are suppressed, which can be easily seen
11identical to B
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in an example where we give the highest possible score for mismatches (without
violating the triangular property):

score(σ1, σ2) =



B1 = 0
B2 = 1
0, if σ1 == σ2

2, else if σ1 6= σ2 ∧ σ1, σ2 ∈ {0, 1}
1, else

resulting in two optimal alignments of cost 2. Only the second one is directly trans-
latable into a superstring.

Multiple Optimal Solutions

Example 2.1. The sequences S1 = 0 and S2 = 1 can be aligned in
three different ways with an optimal score of 2. A2

opt and A3
opt can be un-

ambiguously translated into the supersequences S2 = 01, and S3 = 10,
respectively. It is not evident how to translate A1

opt into a supersequence.
0 0 - - 0

A1
opt = | , A2

opt = | | , A3
opt = | |

1 - 1 1 -

One way to satisfy triangular inequality and the Berman-Hartmanis conjecture
at the same time is to add two new symbols and to fix the scoring, as shown in the
subsequent proof based on Wang and Jiang, 1994. Noteworthy to mention is Elias,
2006, who also proved the intractability of the MSA with SP-score by reducing from
the Independent R3 Set12 problem. In addition, he proved that two related problems
are NP-hard: Star Alignment and Tree Alignment.

MSASP is NP-complete

Theorem 2.1. The decision version of the multisequence alignment problem
with the SP-score is NP-complete.

Proof. Wewill show that B has a supersequence B̃ of length cSCS if and only if S has an
alignment with a score of at most cMSA. For B and S we assume the same underlying
alphabet Σ = {0, 1}.

(i) MSA ∈ NP, i.e. a solution wMSA = (S ,A, cMSA) can be verified in polynomial
time by applying Equation (2.2) to the alignment A and compare the resulting
score to cMSA. For each position of the alignment of lengthmwehave to compare
(m

2 ) characters. The length of the alignment is at most ||S|| – the length of the
concatenation of all sequences, resulting in a worst-case runtime of O(||S||m2).

(ii) The SCS2 has been proved to be NP-complete by Middendorf, 1994 and we will
reduce it to MSASP.

(iii) We alter the MSASP problem by adding two new characters α, β 6∈ Σ to the al-
phabet, and form two sequences αi in the length of the number of zeros found
in the supersequence, and βj in the length of the number of ones. As addressed

12Independent Set problem with degree bounded by 3
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previously, the purpose is to suppress alignments that have ambiguous super-
sequence analoga. We show wSCS ∈ L(SCS2) ⇔ encoder(wSCS) ∈ L(MSASP).
Specifically, B has a supersequence B̃ of length cSCS iff Xi,j = S ∪ {αi, βj} has
an alignment with a score of at most cMSA. ’⇐’ describes the encoding of wMSA
to wSCS, and ’⇒’ vice versa.

’⇐’ We form sequences αi and βj for some i, j, such that i + j = m. Our new
sequence set is X = S ∪ {αi, βj}13. We define a scoring scheme, such that
among all solutions, there will be one optimal alignment in which α will be
aligned with zeros, and β with ones (see Table 2.2).

0 1 α β -

0 2 2 1 2 1
1 2 2 2 1 1
α 1 2 0 2 1
β 2 1 2 0 1
- 1 1 1 1 0

Table 2.2: Scoring scheme for proof of Theorem 2.1.

S ′ = S ∪ {αi, βj} with i + j = cSCS

A = construct_alignment(S ′)
cMSA = (m− 1)||S||+ (2m + 1)cSCS

No matter how we align the sequence set S , the score will always be (m−
1)||S||14. For example, introducing gaps (new columns) does not change the
costs as their alignment costs halfens and score(−, −) is zero. There rests
a contribution of αi and βj of at most (2m + 1)(i + j). Consequently, one
possible optimal alignment contains zeros aligned with an α and ones with
a β symbol as aligning α− β worsens the score. From such an alignment we
obtain the supersequence by simply setting B̃[i] = 0 if column i contains
α and B̃[i] = 1 if column i contains β. Its length will be i + j = cSCS. The
sequence set B equals S .

’⇒’ Given a shortest common supersequence B̃ over a set of binary sequences
B = {B1, B2, ..., Bm}, we construct an encoder function formatting input of
SCS2 to input of MSASP:

encoder : (B, B̃, cSCS) 7→ (S ,A,score, cMSA)

The encoder places each sequence fromB into a new row and its symbols are
aligned such that letters of the sequencematch letters of the supersequence.
Skipped characters relative to the supersequence are filledwith gap symbols.
Two additional sequences αi and βj with i + j = |B̃| = cSCS are aligned with
α where supersequence contains zero, and β where it contains a one. We
now have cSCS columns that either contain {α, 0,−} or {β, 1,−} resulting
in an alignment score of cMSA.

13We do not fix the values for i and j, because the only invariant known about the corresponding
supersequence is that 0s and 1s sum up to m.
14S denotes the length sum of all contained sequences
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(iv) It can easily be seen that encoder and decoder instructions operate in polynomial
time w.r.t. their number of sequences.

Conclusion

The NP-completeness of the MSASP problem also has consequences for boundaries
of approximate, heuristic approaches mentioned in the previous section. Where
possible parallelization and GPU acceleration are utilized to speed up alignment
computations. MSA and phylogenetic tree computations are related: an MSA aids in
constructing a tree, an existing phylogenetic tree can on the other hand guide the
alignment construction as done in PRANK and PAGAN (Löytynoja, 2014) and Canopy
(Li, Medlar, and Löytynoja, 2016). MSAs always conserve the sequence ordering.
Consequently, they are not able to discover optimal solutions that include larger
chromosomal reearrangements like inversion, translocation, or replication. From
this point of view, it is not advisable to align distantly related genomes, but rather a
subset of short and informative sequences.

In practice, sets of functional regions, i.e., protein-encoding sequences are con-
catenated and aligned. Hug et al., 2016 used a set of 16S ribosomal protein sequences.
Using functionally related proteins reduces the chance for phylogenetic artifacts
arising when genes are subject to different evolutionary processes. For an in-depth
introduction and overview of phylogenetic tree construction, we refer to the book
"Inferring Phylogenies" by Joseph Felsenstein (Felsenstein, 2004).

Care needs to be taken when using regions of high similarity as a guidance for a
phylogenetic tree construction because sequence similarity does not automatically
induce homology. An example are protein-coding genes that could have evolved
independently and converged.
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2.3 Polymerase Chain Reaction (PCR)

2.3.1 Principle

Given an environmental sample, theDNA is extracted through cell lysing and chemical
separation from macromolecules, lipids, proteins, or RNA. For the polymerase chain
reaction method the double-stranded DNA is mixed with DNA polymerase, primer
sequences, a buffer of a salt solution, and free deoxynucleoside triphosphates (dNTPs).
Themixture runs through a series of 25-35 thermal cycles. Each cycle undergoes three
phases. The free dNTPs serve as building blocks for synthesis. First, the reagents
are heated for denaturation, cooled down for primer annealing, and slightly heated
again for amplicon elongation. During the denaturation phase, at 94-98 °C for 20-30
seconds, the hydrogen bonds of double-stranded DNA are broken. The now single-
stranded DNA templates can serve as a primer binding site. When cooling down
to 50-65°C for 20-40 seconds, primers will bind to complementary regions on the
template DNA as this represents an energetically lower state. The optimal annealing
temperature should be 3-5 °C below the melting temperature (Tm) of the primers,
which is the state when half of the primer sequences are dissociated. It can be
altered by adding salt or changing the pH value. For a PCR to be effective, the melting
temperatures of both primer sequences should be close to each other (∆Tm≤ 5Kelvin).
The sequence synthesis is driven by DNA polymerase for which the hybridized primer
acts as a substrate. DNA polymerase promotes sequential agglomeration of freely
available dNTPs (see Figure 2.7) from 5’ to 3’15. The optimal annealing temperature
depends on the type of polymerase - Taq polymerase16 works best between 72 - 78
°C. The duration of the elongation phase is chosen in dependence on the estimated
transcript length and synthesis speed (about 1-1.5 kb/min). The programmable
apparatus that facilitates the temperature increase and decrease is called thermal
cycler (see Figure 2.6).

Figure 2.6: Thermocycler “Baby Blue”, ca. 1986.
Credits: ScienceMuseumLondon / Science and
Society Picture Library. Licensed under CC©

ba.

The final elongation phase is pro-
longed to 5-15 min to ensure that single-
stranded templates are fully extended.
The reaction is stopped by cooling down
the mixture to 4-15 °C. At this tempera-
ture; it can be stored for amore extended
amount of time until sequencing.

PCR products are usually checked
by agarose gel electrophoresis. The DNA
fragments are mixed with running buffer
and a fluorescent tag such as ethidium
bromide, which binds by intercalating
between DNA base pairs. The mixture is
inserted into pockets of the viscous gel,
placed in a tray and exposed to an elec-
tric field. The negatively charged DNA
fragments run through the gel towards
the anode. Their velocity is inverse log-
arithmic to the sequence length - smaller fragments travel faster. Into one of the
pockets, a ladder mixture with known fragment lengths (e.g., 100 bp, 200 bp, 300
bp, and so forth) runs in parallel and allows length estimation of the PCR products

15or 3’ to 5’ relative to the template
16a thermostable DNA polymerase I originally isolated by Chien, Edgar, and Trela, 1976

https://www.sciencemuseum.org.uk
https://www.scienceandsociety.co.uk/index.asp
https://www.scienceandsociety.co.uk/index.asp
https://en.wikipedia.org/wiki/Creative_Commons
https://en.wikipedia.org/wiki/Creative_Commons
https://creativecommons.org/licenses/by/4.0/deed.en
https://en.wikipedia.org/wiki/Share-alike
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Figure 2.7: First cycle of a PCR. The denaturation leads to hydrogen
bond breakage, allowing the primer sequences to bind to the single-
stranded template during annealing. For an effectively working poly-
merase, the temperature is slightly increased. The elongation time
depends on the targeted transcript length. It is interrupted by increas-
ing the temperature again to 94-98 °C for another round. In the second
round, original DNA and transcripts serve as copy templates, such that

we have nearly a duplication after each cycle.

via comparison with the ladder bands. Ideally, the mixture should form one well-
defined band under UV light. A smeared band or multiple bands indicate secondary
amplification prodcuts, DNA degradation, or the presence of PCR chimeras.

Finally, the PCR transcripts are digitized by a sequencer machine. Sequencing is
a stochastic process; confidence in a particular base is expressed by a quality score
that is output along with the sequences in what is known as FASTQ format. Most
common is the Phred score to describe the confidence of each single base with e being
the probability for a wrong base call:

Qphred = −10 log10 e

The lower the error probability, the higher the score Qphred. The quality scores are
encoded with ASCII symbols between ’!’ and ’I’ (Illumina 1.8+ format).

The most applied type of PCR for metabarcoding experiments is a PCR with paired
primers as depicted in Figure 2.7. Two distinct and chemically not interfering primer
sequences are added as reagents. They are located upstream and downstream relative
to the target region. Accordingly, the upstream located primer is called forward
primer, its counterpart the reverse primer. At the end of a PCR, we obtain overlapping
transcripts.

One of the first steps in DNA read processing is the identification and merging
of overlapping reads. Read merging improves the confidence of sequence quality,
especially near the ends of reads where errors accumulate. The degree of overlap
must be weighed against the length of the barcode. Statistically, a longer barcode
offers a higher chance of being species-specific.
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2.3.2 Primer Design

When designing primers we need to consider the chemical nature of DNA which
induces properties that must hold for all candidate primers and can be computed
independently from the DNA template(s). We would like to achieve specificity17 and
stable template binding.

Froma software engineering point of view it is helpful to split the set of constraints
into two sets: one that must hold for single primer sequences (Cs hereafter) and one
that arise from fixing the strand orientation and other primer sequence to form a
pair (Cp hereafter). The point of this separation is that on the one hand it gives us an
additional way to parallelize constraint checks, but on the other hand it also covers
other use cases like primer calculation for single-ended PCR.

While there are patterns that lead to PCR failure (e.g., TATA boxes, self-annealing
of 6-mers), there are constraints that are soft and can be partially controlled by buffer
composition, temperature settings, or cycle lengths.

The PriSeT algorithm described later in Section 3.9 will apply Cs in an early step
to reduce the tremendous amount of k-mers per sequence and avoid unnecessary
computations. Whereas Cp is checked in a subsequent combination step (see Table
2.3). Table 2.3 summarizes their recommended settings for a standard PCR. The
subsequent sections describe the chemical constraint checks implemented in PriSeT.

Primer Length

Independent of the PCR variant, the length parameter controls the specificity and
the capability to bind easily in the annealing step. A range that is considered to
be optimal is 18 to 22 bases. Though the recommendations slightly vary between
different sources and protocol variants. For example, for the reverse transcriptase
PCR a range of 18 to 24 bases is recommended (Thornton and Basu, 2011).

High specificity for a target can be achieved by choosing longer sequences. How-
ever, longer primers will take more time to hybridize and dehybridize, and therefore
produce less amplicon. The chance for secondary structures, dimerization, and inter-
action with other reagents inflates likewise.

In a heterogeneousmixture for which we would like to capture the target fragment
from as many genomes as possible, we are likely to find sequence variations even in
conserved regions. Therefore, choosing a rather short primer will allow us to amplify
more genomes, while increasing the chance for being unspecific to the target region.
One other reason for not too short primers is that the enzymes require a minimum
working temperature whichmust fit themelting temperature of the primer. As we will
see in the next section, shorter primers generally have lower melting temperatures
because there are thresholds for maximumCG content, which contributes about twice
as much to the melting temperature compared to AT.

Melting Temperature

The melting temperature in a PCR is the temperature at which half of the DNA
duplexes will be dissociated. Only when template DNA is single-stranded, primer
sequences will bind, and the enzymatically driven elongation will take place. The
temperature for the denaturation phase can be adjusted, but too high temperatures
will lead to irreversible damage to the molecular components.
17which is improved in expectation by chosing longer sequences
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The simplest and oldest method to compute melting temperatures is the Wallace
rule (Wallace et al., 1979). Irrespective of the nucleotide positions, it counts the
occurrence of GC and AT and weighs them with 2 and 4, respectively. The different
weights account for the stronger bond between cytosine and guanine (three hydrogen
bonds) compared to adenine and thymine (two hydrogen bonds).

Tm = 2AT+ 4GC (2.8)

Denaturation and annealing phase temperatures can be chemically adjusted.
However, we need to ensure that roughly the same amount of forward and reverse
primers are dissociated to produce similar amounts of transcripts by allowing not
more than five Kelvin difference in their melting temperatures. Note that, some pub-
lished primer pairs for 18S in metabarcoding experiments have excessively diverging
melting temperatures (see Table 3.11 in Section 3.12.2).

GC-Content

Another criterion for primers being not too associative to the template is their GC-
content. Not only are C-G bonds twice as strong as A-T bonds, but they are also
more prone to mispairing. The recommended range is 40 - 60 % in proportion to the
sequence length.

Mono- and Dinonucleotide Runs

Mono- or dinucleotide runs are patterns where a single nucleotide or dinucleotide is
consecutively repeated, i.e. σx (mononucleotide run) or (σ1σ2)x (dinucleotide run)
with σ ∈ {A,C,G,T}, σ1 6= σ2, and x ∈ [2 : kmax]. PCR amplification tends to alter
the mononucleotide or dinucleotide repeat length (Clarke et al., 2001). A maximal
accepted number is four. Some primer design manuals even recommend to restrict
serial runs to three.

Self- and Cross-Annealing

Self-annealing (or self-dimerization) occurs when copies of the same primer sequence
form stable dimers, and cross-annealingwhen two distinct primer sequences dimerize.
If their binding energy is relatively high, a significant amount will not be available for
the template and thereby derate template amplification. The Gibb’s free energy is a
measure of the bond strength. It relates to the energy released during bond formation
and should not be below -6 Jmol−1. The amount depends on the positions and types
of nucleotides involved, and can only be determined precisely via physicochemical
experiments.

When inspecting an alignment of two oligomers, as a rule of a thumb, there
should be no more than four self- or cross-annealing nucleotides in a row (connected
annealing pattern) as shown in Figure 2.8a and 2.8b or not more than 50 % of the
sequence (disconnected annealing pattern) be involved in bonding as shown in Figure
2.8c and 2.8d.

GC Clamps and AT Tails

GC clamp refers to the amount of GC in the 5’-end of a primer. Especially at the
5’-end where the elongation occurs, a primer should bind stably, but not too strongly.
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5-CGAAAGTCAGGGGATCG-3
||||

5-CGAAAGTCAGGGGATCG-3

(a) -/- connected self-annealing

5-TCTAGAGCTCTTCGATCC-3
||||

3-CCTAGCTTCTCGAGATCT-5

(b) -/+ connected self-annealing

5-AGCTAGATGTACTTG-3
| ||| ||| ||

5-AGCTAGATGTACTTG-3

(c) -/- disconnected self-annealing

5-ACTTAGATGTACGTGG-3
|| || || || ||

3-GGTGCATGTAGATTCA-5

(d) -/+ disconnected self-annealing

Figure 2.8: Critical self-annealing patterns: oligomers in a) and b)
have four self-annealing nucleotides in a row. In c) and d), more than
half of the nucleotides participate in bonds. The oligomer orientation

can be the same (-/-) or opposite (-/+).

Since C and G bind twice as strongly as A or T, ideally one or two nucleotides should
be C or G, but the last three bases at the 3’-end should not be exclusively A or T,
also called AT tail. For example, CGATA-3 and CGTCA-3 are not suitable, whereas
AGTCA-3 is a suitable primer tail.

Constraint Set Property Recommendation

Cs

Primer Length [16:25]
Melting Temperature [52:58]
GC-Content [0.4:0.6]
Mononucleotide Runs not more than 4 same nt in a row
Dinucleotide Runs not more than 4 dinucleotides
Self-Annealing less than four consecutive nts and

less than 50 % bond participation

Cp

∆Tm ≤ 5 Kelvin
AT Tails avoid (A|T)3 tails
GC Clamp not more than 3 out of 5 nts at 3’

end are GC
Cross-Annealing less than four consecutive nts and

less than 50 % bond participation
Transcript Length [30:800]

Table 2.3: Chemical constraints for conventional PCR. The first set of
constraints Cs applies to k-mers irrespective of their later orientation
(forward or reverse) and can be applied directly when looking up a
k-mer sequence. The second set of constraints Cp can be computed
as soon as the second primer sequence is determined. Cp checks are

applied in the final combination step.

2.3.3 Reverse-Transcriptase qPCR

Reverse-transcriptase PCR (RT-PCR) in combination with real-time PCR (qPCR) plays
an increasing role in clinical diagnostics of viral pathogens as it is not only carried
out faster, but allows for a more precise quantification, an improved sensitivity and
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reproducibility compared to the conventional approach, and also tolerates partial
RNA degradation (Bustin, 2002). The thermal cycler itself produces qualitative and
quantitative results. As additional sequencing can introduce contamination and
setting up a new bioinformatics pipeline may take days, this has a massive impact on
the quality and number of analyses that can be carried out in the same amount of
time.

The first step of a RT-PCR is to translate RNA into its DNA complement. In the
second step, real-time PCR is applied similarly to a conventional PCR, except that
the polymerization phase can be dropped due to the shorter product lengths (60-150
bp). An additional sequence recognition step is carried out at the end of each cycle.
There currently exist two methods based on fluorescence sensing – the addition of
fluorescent dye that binds unspecific to double-stranded DNA or fluorescent reporter
probes. Classical sequencing for example with Illumina is not involved.

Apart from viral pathogen detection, other application fields of RT-PCR are the
quantification of gene expression levels, e.g., in the field of oncology to detect circu-
lating cancer cells, assignment of genotypes of pathogens, or detection of genetically
modified organisms, as the modification often leads to a replicated insertion of the
transgene and therefore provides a higher level.

The shortening of cycles and reduction of unspecific binding has implications
for the optimal PCR conditions. Therefore, more extended and GC-richer primer
sequences are favored. From the conventional PCR deviating parameter recommen-
dations are listed in Table 2.4.

Property Recommendation

Primer Length [18:24]
Melting Temperature [52:58]
GC-Content [0.5:0.6]
Transcript Length [60:150]

Table 2.4: Chemical constraints for RT-PCR primers deviating from
standard settings.
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2.4 Challenges in Species Identification of Plankton Sam-
ples

We will now focus specifically on microplankton, also called net plankton, which
comprises plankton organisms with body sizes between 0.05 and 1 mm. For historic
reasons plankton was characterized by its inability to propel against a current, which
let to their name plankton from Greek πλαγκτóζ – wanderer or drifter (Thurman and
Trujillo, 2004). Despite many zooplankters having appendices that allow them to
propel, their ability to swim against currents is limited. Newer definitions include
aeroplankton to account for wind spreading of seeds, spores, and pollen (Smith, 2013).
As plankters are not defined by their phylogeny, but their niche and level of motility,
they comprise closely related, and as well very distant clades (see Section 2.5).

Given an environmental sample from an aquatic biotope, we would like to assess
the many contained species, i.e., to generate a taxonomic profile. The species are
first mechanically separated by size and either subsampled into defined volumes for
identification and counting by eye or batch-processed by extracting and processing
their DNA. Although bothmethods are fundamentally different, they rely on the same
taxonomic tree, which may be constructed based on genetic data or, more commonly,
is a hybrid model merging phenotypical feature classifications and phylogenetic
information. The challenges of both identification methods are described briefly in
the next sections. An example of a concrete sampling, identification, and counting
protocol is given in the study presented in Section 2.5.

2.4.1 Microscopic Method

While the first classified animals could be examined by eye, it took a dramatic improve-
ment in microscopes at the end of the 19th century to enter the realm of microbiomes.
When combined with an artificial light source, light microscopes illuminate the sam-
ple and allow researchers to work closer to theoretical limits (Murphy and Davidson,
2012). Today’s microscopes for plankton identification are equipped with cameras
that facilitate inspection and allow human sample processors to archive image data
instead of physical samples. At IGB, two microscopes are in use: the Nikon Diaphot
300 (see Figure 2.9) and Axiovert 135.

Figure 2.9: Nikon Diaphot 200/300 Inverted
Microscope. ©Nikon.

Classification of organisms seen un-
der the light microscope relies solely on
their body morphology. It needs year
long training of the sample processors to
allow for morphology-based identifica-
tion. The two processors at IGB special-
ize in either phytoplankton or zooplank-
ton identification. They continuously ex-
tend their knowledge base by consulting
reference literature and colleagues, par-
ticipating in specialized seminars, or col-
lecting feedback from DNA-based anal-
yses. The two preceding phytoplankton
processors were in office for about 18
years each. Before retiring, each plank-
ton processor trains his or her successor
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for one year until the variation in identification is in the same range as the paral-
lel count of the same sample by the current processor. This procedure minimizes
knowledge-based bias. The actual task is to estimate abundances and biomasses of
the most relevant organisms.

The first step of the identification routine is to create a list of all species or higher
order organisms that can be seen under themicroscope. The species list simplifies the
counting step, as the counted organisms only need to be matched with the confirmed
species.

The samples are retrieved by filtering a specified water volume from a lake or
river site with pressure18. The samples are enriched with water and fixed to stop
the movement of the organisms. Subsamples of dedicated volumes are transferred
into Utermöhl chambers (phytoplankton, see Figure 2.10) or to Sedgewick-Rafter
counting chambers (zooplankton) for subsequent counting.

Figure 2.10: Utermöhl counting chambers by
Panek. Licensed under CC© b.

Organism groups are considered rel-
evant if they contribute significantly to
biomass or play a role as indicators of
water quality. Not all organisms can be
determined to species level. Some ro-
tifer genera likeCollotheca and Syncheata
can only be identified to the genus level
because some important taxonomic fea-
tures are not visible after fixation. The
ability to identify to species level also de-
pends on the sex or juvenile state – in
the order of Cladocera (see Figure 2.11),
females are determined to species level,
whereas interspecific hybrids, males, or
juveniles without brood chamber are
identified only to genus level. Adult
specimens of copepodites are identified
to species level and sex, whereas juve-
niles stages (nauplii and copepodites)
are distinguished no further than into
cyclopoid and calanoid.

Figure 2.11: Various genera of Cladocera by
Andrei Savitsky. Licensed under CC© b.

The biomass is calculated as the prod-
uct of individual counts and biovolume
by assuming that one mm3 corresponds
to a plankton mass of one µm (Mischke
and Behrendt, 2007). Limitations are en-
countered for species that form colonies
– cell numbers are then estimated, or
for filamentous algae spanning two tran-
sects.

18detailed description of sampling protocol in method Section 2.5.2

https://commons.wikimedia.org/wiki/User:Panek
https://en.wikipedia.org/wiki/Creative_Commons
https://creativecommons.org/licenses/by/4.0/deed.en
https://en.wikipedia.org/wiki/Creative_Commons
https://creativecommons.org/licenses/by/4.0/deed.en
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2.4.2 Metabarcoding Method

Metagenomics is the study of genetic material that is directly obtained from het-
erogeneous environmental samples. Asking the obvious question about the species
composition is only one out of many. Often specific biomes are insufficiently backed
up by a reference database, and if backed up, then mostly by regions that are known
to serve as molecular clocks.

DNA metabarcoding combines polymerase chain reaction (PCR, see Section 2.3),
next-generation sequencing (NGS), and identification via DNA barcodes, i.e. am-
plicons (300-800 bp) that are matched to a reference database. A typical sample
processing pipeline is given later in Section 2.5. In contrast, single DNA probing
with genome assembly would be more precise but is for many reasons not feasible,
e.g., the majority of microorganisms cannot be clonally cultured19 – a necessity for
assembling sequences (Rappé and Giovannoni, 2003).

The evolutionary diversity of planktonic organisms presents a major challenge
for metabarcoding: On the one hand, plankton account for more than half of the
recognized supergroups in the eukaryotic tree of life, as shown in Section 2.2 and
Figure 2.3, and at the same time many closely related species co-occur. A marker-
based approach faces the challenge of finding a region that is sufficiently conserved to
provide primer binding sites but variable enough to distinguish taxa, ideally down to
the species level. Barcodes of distinct species showing a high sequence similarity, e.g.
more than 97 %, manifest in a unifying operational taxonomic unit (OTU) as a product
of the bioinformatics pipeline. In such a case the OTU represents organisms with
taxonomically distinct lineages. In combination with a sparsely populated reference
database, which is subsequently consulted for OTU labeling, the result can be an
overestimated20 taxon or a diminished resolution.

An added challenge is that most NGS platforms suitable for the analysis of large
numbers of samples have a read-length limit of ca. 300-450 bp. The read-length limit
reduces the number of nucleotides available to distinguish among closely related
lineages and hampers the application of DNA metabarcoding for studies in aquatic
biodiversity (Mohrbeck et al., 2015). This fueled the development of two approaches:
using taxon-specific primers to examine a restricted number of lineages (e.g., zoo-
plankton, diatoms) or universal primers that allow for the examination of a broader
range of taxa but that are often not able to provide taxonomic resolution to the genus
or species level (Wurzbacher et al., 2017).

The majority of DNA metabarcoding studies of plankton target the SSU RNA
gene21. The gene is present in all known eukaryotic lineages, with sufficient copy
numbers per genome to make PCR amplification feasible, and with a combination
of highly variable (i.e., species-specific) regions and highly conserved regions (i.e.,
for universal primer binding sites). Plenty of studies support the suitability of SSU
RNA as a marker: Schmidt, Rodrigues, and Mering, 2014 demonstrated that OTUs
from 16S/18S rRNA reflect the underlying ecological diversity consistently across
habitats. Even if OTUs cannot be resolved, their counts correlate to the sample’s
diversity and are roughly independent of the species composition. As a result, SSU
RNA gene sequences are well represented in reference databases (Stoeck et al., 2010,
Hadziavdic et al., 2014; Albaina et al., 2016).
19It is estimated that only 1% of all species are cultivatable.
20in terms of read abundance
21also referred to as 16S for prokaryotes and mitochondrial ribosomes in eukaryotes, or 18S for

eukaryotes
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Metabarcoding is especially prone to the non-standardization of taxonomic sys-
tems. In practice, it is not uncommon to consult more than one reference database
for OTU resolution because they specialize in different groups of organisms. In such
a case, OTUs are associated with lineages of different taxonomies that cannot be
harmonized, making comparative analyses difficult.

Finding the optimal set of primers w.r.t. coverage and resolution takesmany costly
iterations of trial and error (Elbrecht et al., 2019). Scientists encounter problems like
missing ground truth and sparsely populated reference databases. Often they would
start with primer sequences published in previous studies on similar data sets and
then compare OTU diversity between different primer sets.

However, some of these challenges may be overcome as the cost of NGS methods
continues to decline, making multi-marker approaches more attractive, and sequence
databases continue to be replenished. Altogether, metabarcoding of environmental
DNA (eDNA) is a far more sensitive method for species detection than the traditional
methods (Smart et al., 2015) provided that a suitable marker is chosen.

However, some tasks apart from identification cannot be solved by molecular
methods, but require microscopy. These tasks are description of new taxa, abundance
estimation22, differentiation of life stages, or observation of teratological forms as
indicators for environmental pollution.

A very different DNA-based method is the whole metagenome shotgun (WMGS)
sequencing. DNA is randomly sheared, sequenced, and reconstructed into consensus
sequences. However, low abundant organisms may remain unnoticed, as read assem-
bly requires a minimum of read coverage per genome position. The heterogeneity of
esamples does not allow WMGS to reconstruct whole genomes. Instead, assemblers
construct the largest reliable contigs23. Its ability to identify species is not as precise
as DNA metabarcoding, but WMGS is continuously becoming better (see Segata et al.,
2013 for further reading). A considerable advantage of WMGS is that it is useful for
species identification and reveals metabolic processes that are possible in a commu-
nity24. WMGS is not currently used as an alternative to metabarcoding in monitoring
projects due to its inferiority in species identification and high cost.

22Correlating read and individual counts in heterogeneous mixtures is currently not feasible.
23set of overlapping DNA segments representing a consensus region
24Note: only genome, not transcriptome is sequenced
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2.5 The Lake Müggelsee Long-Term Monitoring Project

The original motivation for the primer search tool (PriSeT25) presented in Chapter 3
resulted from participation in a study as part of an ongoing monitoring project con-
ducted by the Leibniz Institute of Freshwater Ecology and Inland Fisheries in Berlin,
Germany. The monitoring project was initiated in the 1970s and led to numerous
findings on the plankton dynamics of nearby Lake Müggelsee and the River Spree.

Freshwater biomes are especially diverse – they account for 0.8 % of the earth’s
surface (Gleick, 1996) and about 6 % of the global species diversity, i.e., 100,000
species out of approximately 1.8 million (Dudgeon et al., 2006). In a single sample,
we can find species originating from more than half of the supergroups depicted in
Figure 2.3.

Freshwater biomes follow distinct seasonal patterns, driven by environmental
conditions (Adrian et al., 2009), but vary between years in the same habitat and
across different ecosystems. Besides having species-specific demands concerning
abiotic resources and co-existence, plankton species also affect trophic interactions
within food webs, and thereby affect the species pool within metacommunities. For
understanding the connectedness of the ecosystem, a first and primary goal is to
track the species composition over time and space. The global decline in freshwater
biodiversity also calls for new ways to determine species distributions at a reliable
taxonomic resolution on broad spatial and temporal scales. There are plenty of
organisms that are biological indicators for specific environmental conditions like
diatoms for eutrophication caused by runoff of agricultural fertilizer or sewage, or
even sea-level change.

Identifying plankton to species level is time-consuming and requires years of
training as there are only a few non-homoplastic features visible under the light
microscope. Resolution must be weighed against spectrum width, since there is only
one human operator and new samples are collected at high frequency.26. Motivated
by the high sensitivity, and speed that could be gained by a metagenomic approach,
the study intends to comparemorphological identification under the light microscope
and metabarcoding.

Involved in this study are Katrin Preuss and Ursula Newen (plankton identification,
sample processing), and Susan Mbedi, and Sarah Sparmann at the Berlin Center
for Genomics in Biodiversity Research for library preparation and next-generation
sequencing. Tatiana Semenova-Nelson, MichaelMonaghan, and Rita Adrian initiated,
guided, and contributed significantly to this study. Justyna Wolinska, Christian
Wurzbacher, Jana Kulichová, Jan Köhler, and Sabine Hilt contributed information
about the study sites, DNA extraction, and diatoms.

2.5.1 Study Motivation

Ecological studies on plankton use mostly microscopical methods for taxonomic
identification (see Section 2.4). The resolution varies between order and species level
as for some clades features are morphologically indistinguishable.

Next-generation sequencing platforms offer an alternativemethod to characterize
plankton communities, whereby taxa are identified using specific regions of their
genomes (see Metabarcoding Method in Section 2.4.2). The batch processing of
environmental samples at a relatively low cost offers the chance to conduct elaborate

25https://github.com/mariehoffmann/PriSeT
26weekly to biweekly

https://github.com/mariehoffmann/PriSeT
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analyses that otherwise could not be implemented at a larger scale or conducted
at high frequency. As we are in the transition from traditional analysis methods to
molecular identification, it is crucial to understand in what aspects metabarcoding is
underperforming and how we compensate for it.

In the study, that is presented in the following, the compositional data of phyto-
and zooplankton species from lake and river as produced by light microscopy (LM) or
metabarcoding identification were qualitatively compared. For the metabarcoding
analysis, three different primer sets were used on the same samples. All primer sets
aim for the V4 region of 18S rRNA – a region that provides many species-specific
barcodes and reflects well the diversity of samples (Schmidt, Rodrigues, and Mering,
2014). Two of the three primer pairs were designed to assay a broad taxonomic range
of eukaryotes and one to assay diatoms, which is expected to be the most diverse
group based on morphological studies from previous years. In particular, we were
interested in the following questions:

1. How do both methods differ in their number of identifications on the genus
and species level?

2. How do species-level resolutions compare for major plankton groups?

3. How do both methods compare in their ability to differentiate lake and river
sites?

Here, we expected to recover about 68 % of the taxa that were morphologically
identified to species level and had database references, based on an in silico PCR27

of publically available plankton sequences using our primers. We additionally used
bioinformatics tools to search for explanations of diverging results. By answering
these questions, we gain insight into missed identifications. The underlying reasons
may be the choice of barcode, lack of reference sequences, or the need to adjust and
fine-tune the metabarcoding protocol and bioinformatics pipeline.

2.5.2 Materials and Methods

Study Sites

LakeMüggelsee is a polymictic28, eutrophic29 lake located on the eastern edge of Berlin,
Germany (52.4369°N, 13.6357°E). The lake has a mean depth of 4.9 m, a maximum
depth of 8.0 m, a surface area of 7.4 km2, and a water retention time of circa 100 days
(Driescher et al., 1993). Plankton communities were collected on multiple dates from
September to November 2014 (see Table 2.5). On each date, samples were collected
from five locations within Lake Müggelsee and combined for further processing. The
River Spree flows into and out of Lake Müggelsee and was sampled multiple times at
two locations ca. 40 km upstream of Lake Müggelsee (Spree Große Tränke, hereafter
SGT; 52.368603°N, 13.997045°E) and ca. 10 kmupstream (SpreeNewZittau; hereafter
SNZ; 52.392355 °N, 13.744298°E). River water travels between these sites in about
one day (in winter) to two days (in summer). At mean discharge, the river is about
20-25 m wide and 1.4 m deep.
27In an in silico PCR, we search for primer sequences matches in the reference dataset without

performing a real PCR. In case forward and reverse primer match for at least one reference sequence,
we expect the PCR to amplify the species’ barcode successfully. However, it remains open if the barcode
is sufficiently distinct for taxonomic resolution.
28A polymictic lake has mixed waters because it is too shallow to develop thermal stratification.
29with high nutrient levels
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Location Lake Müggelsee River SGT River SNZ
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Sample ID S23 S4 S6 S21 S24 S31 S7 S17 S32 S38 S8 S18

Table 2.5: Samples collected in autumn 2014 from lake and river sites.

Sampling of Plankton Communities

Plankton was collected from surface water using a 5-L Friedinger sampler (HYDRO-
BIOS Apparatebau GmbH, Kiel, Germany) as shown in Figure 2.12.

Figure 2.12: Integrated wa-
ter sampler. ©HYDRO-
BIOS Apparatebau GmbH

For morphological identification, phytoplankton was
subsampled (1-3 L, depending on plankton density), or
accumulated for zooplankton (20 L). The water samples
were filtered (5 µm mesh size for phytoplankton and
30 µmmesh size for zooplankton) before identification.
For counting and biomass estimation of phytoplankton,
smaller subsamples (50 ml) were collected and fixed with
Lugol’s solution (50 g Potassium Iodide p.a. in 100 ml
distilled water, 25 g double sublimated Iodine p.a., 250
ml distilled water, 5 ml pure acetic acid until the final
concentration is 10 %), placed in a dark bottle, and kept
cold. Zooplankton samples for counting biomass were
fixed by adding formaldehyde to a final concentration of
4 %.

Sample Processing for Morphological Identification

Phytoplankton samples were processed by transferring
the Lugol-fixed samples to an Utermöhl chamber and leav-
ing themundisturbed until plankton settled to the bottom.
The content of the chamber was then evaluated under an
inverted microscope according to the EU standardized
Utermöhl procedure (DIN EN 15204). For the biomass
estimation, cell numbers per taxon were counted along
transects using a Nikon Diaphot 300 (see Figure 2.9) or
an Axiovert 135 (Zeiss, Jena, Germany) light microscope
withmagnification factors 200, 400, or 1000. One transect
was counted across the middle of the chamber; next, the
chamber was rotated 180° for the second transect analy-
sis. A minimum of 400 individuals were counted in each
sample. The entire chamber area was screened for large
(e.g., Ceratium) and rare species. Cell dimensions were
determined via an ocular micrometer or a microscope
camera.

Zooplankton samples were processed by removing
formaldehyde from the fixed samples by filtration (mesh
size 30 µm). Depending on zooplankton density, differ-
ent aliquots (25 ml, 50 ml, or 100 ml) of the sample were
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transferred to the Sedgewick Rafter Counting Chamber. Identification and counting
were done under a light microscope (Zeiss Axio Scope.A1) at magnification factor 50
(crustaceans) or 100 (rotifers). Multiple parallel chambers were inspected until at
least 100 individuals of the most abundant species were counted. Female cladocerans
were determined to species level where possible. Males and juveniles were identified
to genus level or higher. The abundance of large and rare cladocerans (e.g., Leptodora
kindtii) was determined by flushing the complete sample into a petri dish and exam-
ining it under a dissecting microscope. Adult copepods were mostly identified to the
species level. Individuals in early development phases were distinguished into cy-
clopoid and calanoid nauplii or copepodites, but not identified to species level. Other
groups that were counted include nematodes, tardigrades, Chironomidae, Ostracoda,
and Chaoborus larvae, Dreissena polymorpha larvae, and Difflugia.

The most abundant species are given in Table 2.6. The individual abundance was
considered as abundant if at least at one date, a sample contained more than 2,000
individuals. The strong fluctuations are noteworthy: Within 14 days, some species
disappear completely or are suddenly highly abundant.
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Species

Se
p-
15

Se
p-
29

O
ct
-1
3

O
ct
-2
7

N
ov
-1
0

Se
pt
-0
2

O
ct
-1
4

N
ov
-2
5

Se
p-
02

Se
p-
16

O
ct
-1
4

N
ov
-2
5

Ankyra sp. H H L
Asterionella formosa L L H L L L L L L
Aulacoseira granulata L H H H H H H H H H H
Chlamydomonas sp. L H H L H H H H
Fragilaria acus L H L L L L H
Fragilaria ulna f. angustissima H L H H H L L
Kephyrion sp. H
Nitzschia fonticula H H
Oocystis sp. L L H H L L
Raphidocelis sp. H
Scenedesmus sp. H H H H H H
Skeletonema sp. L H H H H H H L L
Synura sp. H

Table 2.6: List of species occurring in at least one sample in high
abundance. Abundance was designated as high if more than 2,000
individuals were found in a single sample, otherwise it was designated
as low, i.e., 1 to 1,999 individuals, or left blank, i.e., zero individuals.

Sample Processing for Metabarcoding

Samples for DNA metabarcoding analysis were collected from the same plankton
samples as used for the morphological analysis. Phytoplankton DNA was obtained
by filtering a 50-500-ml subsample of water (depending on plankton density, as
estimated by eye) through a glass fiber filter (GF/F 25 mm diameter) using a vacuum
filtration at 200 mbar. Zooplankton intended for DNA metabarcoding analysis were
collected from 10 L of water by vacuum filtration at 200 mbar (30 µmmesh) followed
by filtering through a glass-fiber filter using vacuum filtration at 200 mbar. The glass-
fiber filters with the residual plankton were then freeze-dried (Alpha 1-4, Martin
Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) for 8 hours at
-45 °C and then stored at -20 °C until DNA extraction.
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Primers

We PCR-amplified all samples with three sets of primers targeting the V4 region of
the 18S rRNA gene (see Table 2.7). Two primer sets target a broad range of eukaryotes:
EUK15 by Stoeck et al., 2010 primers, which has been shown to target all groups
of Eukaryota except Excavata and Microsporidia in pelagic marine samples and has
an expected amplicon length of ∼380 nt. The primer pair EUK14 by Hadziavdic
et al., 2014 amplifies a larger fragment (∼630 nt) and has previously been used to
target marine sediment communities. The third set was designed to target diatoms
(Bacillariophyta) in freshwater ecosystems (Visco et al., 2015) and is referred to as
DIV4 with an expected amplicon length of ∼280 nt.

Marker
ID

Name Sequence (5’ - 3’) Reference

EUK15 TAReuk454FWD1 CCAGCASCYGCGGTAATTCC Stoeck et al., 2010
TAReukREV3 ACTTTCGTTCTTGATYRA

EUK14 F-566a CAGCAGCCGCGGTAATTCC Hadziavdic et al., 2014
R-1200 CCCGTGTTGAGTCAAATTAAGC

DIV4 DIV4for GCGGTAATTCCAGCTCCAATAG Visco et al., 2015
DIV4rev3 CTCTGACAATGGAATACGAATA

Table 2.7: Primers for metabarcoding on freshwater plankton samples.
For the EUK15 primers multiple sequence variants were deployed; the

ambiguous symbols are IUPAC-encoded (see Table B.1).

In Silico PCR

We first investigated the feasibility of DNAmetabarcoding for the detection of species
present in Lake Müggelsee and River Spree using an in silico PCR. The goal was to
verify that a given morphologically identified species could be detected using our
primer sets (see Table 2.7) when using the reference database to assign taxonomic
names to OTUs. We considered in silico PCR for a species to be successful if all of the
following three conditions were met:

(i) three or fewer mismatches between primer and database sequence.

(ii) a relative primer-template match of more than 80 %.

(iii) the resulting amplicon length was 30-1000 bp

We built a locally searchable database from GenBank’s nucleotide collection30

(nt dataset), and the SSU subset of SILVA31 using the makeblastdb command (ncbi-
blast tool suite version 2.6.0+). Our database was indexed by accession numbers
because indexing by species names or taxonomic IDs is not supported. In a pre-
processing step, we first collected the accession numbers for each candidate species
and then ran blastn queries for forward and reverse primer sequences. We used the
BLAST output format 6 which gives the start and end positions and the number of
mismatches. The script and setup instructions are provided on GitHub32.
30ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz, downloaded on 5 April 2017
31https://www.arb-silva.de/browser, Eukaryota branch, downloaded 28 April 2017
32https://github.com/mariehoffmann/greentools

ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz
https://www.arb-silva.de/browser
https://github.com/mariehoffmann/greentools
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DNA Extraction, PCR, Library Preparation, and Sequencing

Filters were loaded into Eppendorf tubes containing sterile metal beads, covered with
TissueLyser (Qiagen GmbH, Hideln, Germany), and shaken three times for 5 minutes
and 30 seconds each. The tubeswere then spun briefly to collect the cells at the bottom.
DNA was extracted from 0.5 g of the homogenized cells using a NucleoSplin®Plant
II extraction kit (Macherey-Nagel GmbH & Co. KG, Düren, Germany) according to
the manufacturer’s protocol. Extracted DNA was stored in TE buffer at 20 °C until
further analysis.

DNA from phyto- and zooplankton samples were first combined equimolar for
each sample. For EUK15 and DIV4 reactions, template DNA (5 ng) was combined with
5 µl reaction buffer (Q5, New England Biolabs, Ipswich, MA, USA), 0.625 µl dNTP
mixture (New England Biolabs), 1.25 µl of each primer (see Table 2.7), 0.125 µl proof-
reading polymerase (Q5 High Fidelity, New England Biosystems) and RO-filtered
water to yield a total reaction volume of 25 µl. PCR (98°C for 30 s; 25 cycles of 98°C
for 10s, 57 °C for 30 s, 72 °C for 30 s; 72 °C for 2 min) products were checked by eye
on 2 % agarose gels to ensure successful amplification. Products were cleaned with
a magnetic bead protocol (Agencourt AMPure XP, Beckman Coulter, Indianapolis,
IN, USA) in accordance with the manufacturer’s instructions. A second PCR reaction
attached unique 12-bp inline sequence barcodes (Nextera Index Kit, Illumina, San
Diego, CA, USA) to each sample. PCR was performed as above except that 5 µl of
PCR product was used as a template, and 8 PCR cycles were used. PCR products
were purified as above, and the DNA concentration was determined using a Qubit 2.0
fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). All samples were then
pooled equimolar and sequenced on a MiSeq (Illumina) using v. 3 chemistry and 600
cycles.

For EUK14 reactions, PCR was applied as written above except that we used
20 ng of the template and 25 cycles of amplification. The biotinylated PCR prod-
ucts were enzymatically fragmented by the transposase provided by the Nextera XT
Kit (Illumina), and then all fragments with intact forward ends (containing biotin)
were recaptured by Streptavidin beads (DYNAL Dynabeads™ M-270 Streptavidin,
Invitrogen™). These fragments were purified and subsequently amplified by the sec-
ond index PCRas described in theNexteraXTprotocol, which also introduces barcodes
and sequencing adapters, although with four additional cycles (16 cycles in total). A
final size-selection step was carried out to define the desired fragment length (430-
530 bp, including ∼130 bp adaptors) using an automated fragment size extraction
(BluePippin, Sage Science, Beverly MA, USA). Raw sequencing data (FASTQ files) are
available on the Sequence Read Archive (BioProject accession number PRJNA526363).

Bioinformatic Analyses

Raw sequence data were processed using Galaxy v0.0.5 with the Genome Space Ex-
porter tool33. Sequences were sorted by sample, and reads were merged using PEAR
v 0.9.10 (Zhang et al., 2013). Poor-quality ends were trimmed (based on a probabil-
ity limit of 0.02) using Geneious Pro v5.6.1 (BioMatters, Auckland, New Zealand).
Sequences were then quality filtered using USEARCH v 8.0 (Edgar, 2010) and reads
with expected error greater than 0.5 were removed (fastq_maxee 0.5). Sequences
were then trimmed to a length of 270 bp (EUK15), 290 (EUK14) or 280 (DIV4) bp
(fastq_trunclen). Reads were dereplicated (derep_prefix), merged into a sin-
gle file, and renamed according to sample ID in Geneious Pro v5.6.1. Singleton
33https://usegalaxy.org

https://usegalaxy.org
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sequences were removed, and the remaining sequences were clustered into OTUs by
the UPARSE algorithm of USEARCH with a 97 % sequence similarity threshold. Puta-
tively chimeric sequences were removed by the de novo and reference-based filtering
algorithm of USEARCH with the SILVA (Quast et al., 2012) dataset as a reference.
Taxonomic identities were initially assigned using USEARCH with the SILVA database
as a reference database. The OTUs obtained were additionally checked manually
using blastn queries against the NCBI reference database (queried in May 2017)
to ensure that the top 10 sequence hits confirm the taxonomic identity. Following
Lindeque et al., 2013, OTUs were assigned species names when they were >97 %
similar to a reference sequence and were assigned genus names when they were >95
% similar to the reference sequence. When OTUs were >97 % similar to more than
one reference sequence, the RDP (http://rdp.cme.msu.edu) classifier (Wang
et al., 2007) was used to provide a consensus taxonomic identification.

Statistical Analyses

To visualize how well the PCR captured the sample’s diversity, we carried out a
rarefaction analysis, which plots the number of reads against the obtained OTUs as a
representative for species richness. A curve that reaches a plateau correlates to the
situation where adding more sequence data, does not add to the species richness,
whereas a slope significantly larger than zero indicates insufficient DNA yield to
capture its diversity adequately.

The rarefaction analysis was carried out by Tatiana Semenova-Nelson34 using the
R package vegan (v2.5-6) by Oksanen et al., 2012 for R v3.1.2 (R Core Team 2018). As
can be seen in Figure 2.13, all curves reach a plateau, which confirms that a sufficient
amount of DNA has been extracted.

Figure 2.13: Rarefaction curves obtained for plankton OTUs for the
three primer pairs (EUK15, EUK14, DIV4) at three sampling sites (SNZ,
SNT, Lake Müggelsee). The curves reached a plateau suggesting that
most of the plankton diversity has been captured by sequencing.

To answer the third question about the ability of each method and marker to
differentiate the sampling sites based on the samples’ compositions, we split the
data sets into three major groups – diatoms, green algae, and zooplankton. Each site
represents a class and OTUs its feature set.

Non-metric multidimensional scaling (NMDS) is a suitable method to embed the
high-dimensional samples in a low-dimensional space. If the samples are separable
by their OTU composition, they are likely to form clusters even in low-dimensional
space. Similar to the principal component analysis (PCA), the high-dimensional
34co-author of study

http://rdp.cme.msu.edu
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feature space is represented by fewer linear combined axes. While a PCA ranks its
linearly combined features by eigenvalues and requires numerical constraints that are
not met35, NMDS attempts to place a few axes (typically two or three) in the feature
space, such that stress36 is minimal. The initial orientations are chosen randomly,
and axes are rotated in the direction of less stress. If multiple reruns converge to
similar solutions, the procedure stops. A further taxonomic breakdown was not
possible as it would yield group sizes with low statistical significance. For example,
the zooplankton discovered by DIV4 (29 taxa) is already too small for the NMDS
procedure to converge to a solution.

To avoid false positives, OTUs with less than four reads in all samples were re-
moved from NMDS analysis (see Lindahl et al., 2013). The dataset was subjected
to 200 iterations per analysis using the Bray-Curtis dissimilarity, two axes, and a
random starting number. The final stress values are indicated in each plot (see Figure
2.17).

The statistical difference between plankton communities of the lake and the two
river locations was assessed using a multi-response permutation procedure (MRPP)
performed pairwise on all sampling sites. Null rows were deleted before subjecting
the subsets to 500 permutations with the Bray-Curtis index as a similarity measure.
We reported the statistical significance (p-value), i.e., the fraction of shuffled data
sets with similarity scores below the originally labeled one. NMDS and MRPP were
carried out using the metaMDS and mrpp functions in the vegan package for R (see
Figure 2.17) and code in Appendix A.2.

2.5.3 Results

Morphological Identifications

There were 235 eukaryotic taxa (170 phytoplankton, 65 zooplankton) in our morpho-
logical data set (see Table 2.8 and Table S2_Morph.csv37). Of these, 146 (62 %) were
identified to species level, 60 to genus level, and the remaining 29 were identified to
higher taxonomic levels, to non-taxonomic, operational classifications, or different
juvenile life stages. The four most diverse groups were Chlorophyta with 82 taxa,
Bacillariophyta with 51 taxa, crustaceans with 36 taxa, and rotifers with 22 taxa (see
Table S2_Morph.csv).

Taxa/OTU Genus Species
Level ID Level ID

Morph ID 235 206 (88 %) 146 (62 %)
EUK15 ID 325 277 (69 %) 128 (40 %)
EUK14 ID 506 268 (53 %) 166 (33 %)
DIV4 ID 543 344 (63 %) 231 (43 %)

Table 2.8: Number of taxa (Morph ID) and OTUs (molecular ID) found
and identified to genus or species level. Note that the counters are

hierarchical, i.e. genera counts include species.

35like normalized OTU counts, low variance, or unique rows.
36Stress is here defined as differences in distances between data points before and after the transfor-

mation.
37available under https://github.com/mariehoffmann/aquamarine

https://github.com/mariehoffmann/aquamarine
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The phytoplankton communities from Lake Müggelsee and the River Spree dif-
fered in composition when considering the most abundant taxa, i.e., at least 2,000
individuals had been counted in a single sample (see Table 2.6). Ankyra sp., Asteri-
onella formosa, Nitzschia fonticula (Bacillariophyta), Kephyrion sp. (Chrysophyta), and
Raphidocelis sp. (Chlorophyta) were all abundant in one or more samples from Lake
Müggelsee, whereas Chlamydomonas sp. (Chlorophyta), Fragilaria spp. (Bacillario-
phyta), Oocystis sp., Scenedesmus sp. (Chlorophyta), and Synura sp. (Ochrophyta)
were abundant in one or more samples from River Spree. Only Aulacoseira granulata
and Skeletonema sp. (Bacillariophyta) were abundant in at least one river and lake
sample.

In Silico PCR

We used in silico PCR to examine whether the 141 morphologically identified species
in our data set could have been recovered using DNA metabarcoding with our chosen
primer sets. Specifically, we tested whether these species had a reference sequence in
the NCBI or SILVA database, contained suitable primer-binding sites that matched at
least one of our chosen primer sets, and met our fragment-length criteria. For 71 of
the 144 morphological species identified, there were no entries in either database for
the 18S rRNA gene based on a search using the binomial name (see Table 2.9). For the
remaining 70 species that could be tested, the success rate of in silico PCR was high
(≥ 96 %) for both EUK14 and EUK15 primer sets, and the DIV4 primer set performed
equally well for diatoms (95 %). DIV4 primers also recovered a large majority (85
%) of the Chlorophyta in our morphological data set. DIV4 had a low performance
when attempting to recover all taxa (68 %), but this was to be expected for primers
developed specifically for diatoms (Bacillariophyta).

Marker ID
Species in silico PCR

Morphologically Reference Success Failureidentified available/missing

EUK15 144 70/74 68 (97 %) 2 (3 %)
EUK14 144 70/74 67 (96 %) 3 (4 %)
DIV4 144 70/74 48 (68 %) 22 (32 %)

Table 2.9: Results of in silico PCR for each primer set tested. Of the
144 taxa identified morphologically to species-level (without hybrids),
70 had database entries in either SILVA or NCBI’s nt dataset. In silico
PCR success and failure rates were therefore calculated as % of the 70
species that could have been recovered. Primer DIV4 exhibits a lower
success rate on the complete species set (68 %), but performs well on

important phytoplankton groups.

DNA Metabarcoding

Sequencing yielded 20,285,523 reads, of which 6,655,909 passed our quality controls.
Clustering at 97 % similarity yielded 325 (EUK15), 506 (EUK14) and 543 (DIV4) OTUs.
The rarefaction curves reached a plateau for all samples (see Figure 2.13), suggesting
that all OTUs present in the samples were sequenced. When compared to the 235
taxa identified morphologically, OTUs resulted in increases of 1.4-fold to 2.3-fold de-
pending on the primer set (see Table 2.8). More than half of the OTUs were identified
at least to genus, and more than one-third to species level (see Table 2.8).
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We investigated further how relative abundances are represented by each method,
and accumulated read counts hierarchically until level38 four for phytoplankton, level
eight for zooplankton, and level five for fungi (see Figure 2.14). Note that many high-
abundant OTUs cannot be resolved to lower levels than indicated by the taxonomic
name (e.g., Chlorophyta, or Oomycota). Abundances below 4 % were dropped for the
sake of readability. The discs’ diameters correspond to the number of individuals
(Morph ID) or read abundances and are log10-scaled. For example, from the class
of Cryptophyta, the most dominant family is Pyrenomonadaceae, according to the
LM identification. Whereas the family of Cryptomonadaceae is most dominant for
PCR amplification primer sets EUK15 and EUK14. The diatom-specific primer set
outperforms the other two markers on the phytoplankton subset in terms of read
count number and captures well Chlorophyta and Coscinodiscophyceae. In contrast,
in terms of diversity, EUK14 recovered a broader diversity of taxa than any other
method (morphology, DIV4, EUK15) (see Figure 2.14). The EUK14 primer set also
recovered a higher richness of fungi compared to the other two markers (see Figure
2.14) and a high diversity of ciliates (89 OTUs in 42 genera) making them the group
of zooplankton with the highest taxonomic richness in our OTU dataset.

When considering the zooplankton, morphological analysis revealed that the
Panarthropoda represent the largest group in terms of biomass, as do the Rotifera and
Tintinnidae. Molecular identification revealed mostly Eumetazoa but lacked further
resolution either due to missing references or indistinct barcodes.

Fungi remain completely undetected in LM because the protocol is designed
for phyto- and zooplankters - magnification factors above 1,000 are not applied.
PCR amplification leads inevitably to the emerge of large amounts of fungi reads.
It is remarkable that all three primer pairs have matches in Oomycota and fungi,
but produce differently distinctive transcripts. DIV4 seems to be very sensitive and
effective for fungi. However, the barcode is identical for all individuals in this kingdom.
EUK14, on the other hand, provides better resolution and identified 10 oomycota and
fungi down to species level.

Besides, we accumulated individual, and OTU read counts for relevant plankton
groups like diatoms or Chlorophyta irrespective of their level in the taxonomic hierar-
chy (see Table 2.10). The DIV4 primer set recovered a ca. 1.5-fold increase in diatom
diversity and a 1.6-fold increase in green algal diversity compared to morphological
analysis (see Table 2.10). The DIV4 primer set also recovered more OTUs in these
groups compared to EUK15 and EUK14 primer sets (see Table 2.10) and also a greater
diversity of higher taxa in the groups Chlorophyta, Coscinodiscophyceae, Chryso-
phyceae, and Synurales (see Figure 2.14). Interestingly, fewer genera of diatoms were
identified using DIV4 primers (10) compared to morphology (12); however, many
more diatom OTUs could be identified to species level (see Table 2.10). In contrast,
most of the Chlorophyta OTUs could not be identified to species, and there was only a
13 % increase in the number of species identified with DNA compared to morphology
(see Table 2.10). In diatoms, 20 species in 13 different genera were found only with
DIV4, while only three taxa that were morphologically identified to genus (Diploneis
sp., Rhizosolenia longiseta, and Rhophalodia gibba) were missing, all of which were
found in low abundances in the morphological data set.

The most substantial increase in diversity when comparing morphology to DNA
was observed in the golden-brown algae (Chrysophyta), where the DIV4 primers
recovered a 16-fold increase in the number of OTUs (see Table 2.10). Only 18 of 158
taxa could be determined to species and seven others to genus (see Table 2.10). DIV4
38given NCBI’s taxonomy in April 2019, with Eukaryota assigned to level one
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sequences recovered the three species of golden-brown algae in our morphological
data set (Synura uvella, Mallomonas akromonas, and Dinobryon divergens), as well
as 15 other OTUs, identified to the species level. The other primer sets uncovered
more diversity for cryptomonads (EUK15), euglenids, and dinoflagellates (EUK14),
although DIV4 recovered the highest diversity of Charophyta and Eustigmatophyta
(see Table 2.10).

Not surprisingly, the marker-based approach yielded greater diversity. But how
are the most common species identified by morphology represented in the marker-
based approaches? In case a species showed up in the identification set of one of the
markers, we would like to know if their abundance patterns are comparable. In the
event that a species appears in the identification group of one of the markers, we
would like to know if their abundance patterns are comparable. Eight of the 12 most
abundant species could be identified with at least one marker. In the remaining three
cases, there was insufficient database backup or an indication that the reverse primer
did not match the template (see Table 2.11).

Four co-identified species could be determined by their binomial name (Asteri-
onella formosa, Aulacoseira granulata, Fragilaria acus, and Fragilaria ulna f. angustis-
sima) and we plotted their abundances plotted over time (see Table 2.6). For species
without binomial names, counts were accumulated whenever a marker identified a
species in the same genus. The full set of charts can be found in the appendix A.1.

The individual counts (Morph ID) and OTU read counts (EUK15, EUK14, and DIV4
ID) are not comparable per se, but similar shapes of their abundance distributions
would suggest a correlation and the possibility that metabarcoding could be suitable
for abundance estimation. Wewould expect that high abundant species with complete
binomial names are less prone to PCR biases, and counts, therefore, more suitable
for method-wise comparison.

As can be seen in Figure 2.15, the markers EUK15 and DIV4 which identified
Asterionella formosa follow the upward trend in the first half of November. At the river
site SGT, all markers show a downward trend, which is not given by the morphological
identification, because only one individual was counted for the specified volumes.
More water would need to be sampled to reveal the actual distribution. When looking
at Aulacoseira granulata, there is an upward trend towards the 10th of November,
whereas the markers EUK15 and DIV4 have peaks in mid of September and the 1st
of November and then start to decline. All markers exhibit a slight decrease for the
river sites, which cannot be seen for the morphological identification due to the
too-small individual count. For Fragilaria acus, DIV4 follows the shape in November;
for previously collected samples, the individual counts were too small. At the SGT
river site, marker DIV4 followed the decline in individuals but with a lag, and at the
SNZ river site the trends are slightly opposite. Fragilaria ulna f. angustissima occurs
in high abundances at both river sites in September and almost disappears around
mid-October. No individuals were found in the lake. However, marker EUK15 must
have amplified some spurious DNA of the same species as the marker exhibits the
same trend. The marker largely agrees in the species decline between September and
December (see Figure 2.15).

Classification Failures of DNA Metabarcoding

Under the assumption that a species is known to be present in a sample and has 18S
sequences in the database, there are two frequent causes for DNA metabarcoding to
miss the identification. Firstly, the genome may not provide sufficiently matching
primer binding sites. Secondly, the clustering may lead to the absorption of the
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Taxon Identification Taxa/OTU Genus Species
Method Level ID Level ID

Bacillariophyta (Diatoms)

Morph 51 12 33
EUK15 18 5 15
EUK14 22 3 15
DIV4 101 10 72

Charophyta

Morph 9 4 5
EUK15 3 2 1
EUK14 0 0 0
DIV4 11 3 8

Chlorophyta

Morph 82 12 58
EUK15 40 7 29
EUK14 23 18 20
DIV4 128 20 66

Chrysophyta

Morph 9 3 1
EUK15 41 5 7
EUK14 55 6 7
DIV4 158 7 18

Cryptophyta

Morph 3 2 1
EUK15 26 4 9
EUK14 23 3 9
DIV4 7 3 3

Dinoflagellata

Morph 5 2 2
EUK15 14 1 8
EUK14 12 2 7
DIV4 7 1 3

Euglenida

Morph 6 3 1
EUK15 0 0 0
EUK14 6 1 1
DIV4 0 0 0

Eustigmatophyta

Morph 4 2 2
EUK15 0 0 0
EUK14 1 0 1
DIV4 8 2 4

Table 2.10: Plankton community characterization usingmorphological
assessment and DNA metabarcoding with three different primer sets
(EUK15, EUK14, DIV4). For each taxonomic group, the total number
of entries (taxa for morphology and OTUs for DNA metabarcoding) is
given. In addition, we counted the number of entries that are identified
to the genus- and species-level. We considered species-level identifi-
cations for OTUs when a BLAST search of NCBI yielded a match of ≥
97 % and genus-level identifications for matches of ≥ 95 %. Methods
written boldly indicate the method resulting in the most entries/OTUs
and highest count of species-level identifications. Tatiana Semenova-

Nelson originally compiled this table.
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Species EUK15 EUK14 DIV4 Comment

Ankyra sp. 1 1 1 All markers identified Ankyra judayi.

Asterionella formosa 1 0 1 EUK14 match to unidentified Asterionella sp.

Aulacoseira granulata 1 0 1 EUK14 match to unidentified Aulacoseira sp.

Chlamydomonas sp. 1 1 1 All markers identifed multiple species.

Fragilaria acus 0 0 1 Only marker DIV4 identified this species.

Fragilaria ulna 1 - - EUK15 identified Fragilaria ulna.f. angustissima

Kephyrion sp. 0 0 0
There exists only a single partial 18S sequence
in GenBank of an unclassified Kephyrion. All
forward, but non of the reverse primers matched.

Nitzschia fonticola 0 0 0
There were four 18S sequences marked as partial.
A dozen other Nitzschia species were identified
by the markers, e.g. N. acicularis or N. longissima.

Oocystis sp. 1 1 1 All markers identified O. heteromucosa and
O. marssonii.

Raphidocelis sp. 0 0 0

More than 100 accessions are registered to the
genus Raphidocelis. In a randomly chosen
accession all forward primer sequences were
found, but none of the reverse primers.

Skeletonema sp. 1 1 1 All markers identified at least one species.

Synura sp. 1 1 1 All markers identified multiple species.

Table 2.11: Most abundant species as seen under the light microscope
and indication (1: yes, 0: no) whether one of the marker-based ap-
proaches identified the species or other species of the same genus.
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Figure 2.15: Abundance plots of four of the most abundant species
according to the morphological identification. Identical colors refer
to the same sampling site (black for the lake, red for river SGT, and
blue for river SNZ). A solid line represents individual counts from the
morphological analysis, otherwise, OTU sizes (number of reads per
OTU), i.e., a dashed line with a plus symbol to EUK15, with an x to

EUK14, and with a circle to DIV4.
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barcode carrying read by an OTU that has higher proximity to a different species or
cannot be resolved at all.

Whereas the first cause can only be solved by designing new primer sequences,
the second one may be triggered by the sparseness of the reference database, or by
the bioinformatics protocol. We were interested in reasons that lead to failure despite
18S sequences being available with primers matching. Concretely, we looked at the
35 species that had been morphologically identified, had at least one 18S sequence in
the database, but had not been recovered by metabarcoding. In silico PCR indicated
these taxa could be PCR-amplified with at least one of the primer sets (see Table 2.9).
We ensured that at least one of the three primer pairs matched with 100 % sequence
identity.

We collected reference sequences for a subset (17 randomly chosen species out
of the 35) and created for each species an MSA using PRANK v.170427 (Löytynoja,
2014). A manual comparison of interspecific and intra-specific differences revealed
that nine of these 17 species would have been identified had we used a higher clus-
tering threshold for OTU formation. For example, a 97.1 % threshold would have
distinguished Rhodomonas lens from its close relatives, and 99.1 % would have distin-
guishedMonoraphidium contortum. For the diatom Staurosira construens (also known
as Fragilaria construens), there were species-specific differences at the 5’ end of the
sequenced fragment, but a threshold approach that uses mean sequence difference
failed to separate F. construens from other species of the same genus (F. crotonensis,
F. bidens, F. capucina, F. nanana, F. vaucheriae, F. ulna). Another six of the 17 species
also had sequences highly similar to other taxa in the database (Eudiaptomus gracilis,
Scenedesmus acuminatus, S. armatus, S. dimorphus, S. subspicatus, S. ovalternus). Set-
ting the similarity threshold for clustering even higher (e.g., > 99 %) would allow
for improved resolution of Scenedesmus. For example, Scenedesmus dimorphus/acu-
tus would be distinguishable from Scenedesmus communis/accuminatus. Two of the
17 species contained poor quality or potentially misclassified sequences (Ceratium
hirundinella, Rhodomonas lens).

Among the 71 morphological species without references (see Table 2.9), there
were 39 cases in which an OTU was assigned to the same genus and a different species.
This finding suggests that identification at the genus level would be possible in > 70
% of the cases in our data. Finally, there were 32 species with no reference and no
OTUs assigned to the genus. In practice, these 32 species are likely to be assigned to
a higher taxonomic level, but could potentially be better studied with more reference
data.

Community Composition in Lake Müggelsee using Multiple Methods

We ranked the top 25 taxa by total abundance over all samples from Lake Müggelsee
(individual counts for Morph ID, otherwise OTU read counts). The ranking yielded
a surprisingly similar overview of the lake community, especially when comparing
morphological data and EUK15 OTUs, where both methods yielded similar numbers
of OTUs from most of the same higher taxa (see Figure 2.16). In many cases, the
data were not directly comparable because the classifications differ and are often less
precise for the morphological data (see Figure 2.16). According to the morphological
data, the cryptophytes Rhodomonas and Cryptomonas, two chlorophytes (Ankyra sp.
and an unclassified Chlorophyceae), and unclassified centric diatoms were the most
abundant taxa. Using the EUK15 primer set, the second and fourth most abundant
taxa were also Cryptomonas species (C. curvata and C. marssonii). One abundant OTU
could not be classified (see OTU-15 in Figure 2.16). The dominant OTU based on
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EUK15 sequencing reads was the copepod Eudiaptomus vulgaris, and for EUK14 was
the copepod Sinodiaptomus sarsi. A subsequent comparison using a multisequence
alignment of 18S rRNA V4 reference sequences (E. vulgaris NCBI accession JX945121;
S. sarsi NCBI accession KR048711) revealed only a 1-bp difference between these two
taxa (i.e., > 99 % sequence similarity). Other dominant groups for the EUK14 primer
set were also the Cryptophyta Cryptomonas curvata, the crustaceans Daphnia galeata
and Sinodiaptomus sarsi, the Ciliophora Tintinnidium fluviatile, and Colacium spp.
from the phylum Euglenozoa (discovered exclusively by EUK14). As expected, the
DIV4 primer set was biased towards phytoplankton groups. One-fourth of the reads
were assigned to Stephanodiscus sp. (Bacillariophyta), and one-third of the reads
were assigned to Chrysophyceae, most notably Mallomonas caudata. Just like the
EUK15 primer set, DIV4 detected the Chlorophyta Ankyra judayi and Desmodesmus
communis, but also Pseudopediastrum alternans, and seven more Chlorophyta within
the top 25 taxa. A notable exception to the similarity of methods was the absence
of Rotifera from all three DNA metabarcoding data sets, despite being an important
component of samples based on morphological identifications (see Figure 2.16).

Comparison of Sampling Sites

It was possible to distinguish samples from the lake and the river for at least one
major organism group (diatoms, green algae, and zooplankton) by statistical tests.
Distinguishability is indicated by spatial separation in the non-metric multidimen-
sional scaling (NMDS, see Figure 2.17 and code in Appendix A.1) or significantly small
p-values (P < 0.05) computed pair-wise via the multi-response permutation proce-
dure (MRPP, see code in Appendix A.2). In some cases, p-values were insignificant,
although the NMDS procedure succeeded in spatially separating the lake and river
samples (Morph ID for diatoms and green algae and EUK15 ID for diatoms, Figure
2.17), as indicated by stress values below 0.08 (with the exception of DIV4 for the
green algae and zooplankton subsets).

The two river sites (Spree SNZ, Spree SGT), which are 30 km away from each other,
were inseparable for all markers and subgroups when consulting the p-values, and
separable by NMDS only in two marker combinations: DIV4 on the diatom and EUK14
on the zooplankton subset. The degenerated figure (top left) from the zooplankton
data set (Morph ID) can be explained by an insufficient dataset size causing a non-
termination of the NMDS procedure.

Conclusion

The study aimed to evaluate the feasibility of DNA metabarcoding to delineate the
taxonomic richness of plankton communities in two freshwater ecosystems that are
the focus of long-term research programs. A first step in evaluating DNA metabar-
coding data is to compare the results with data obtained from the morphological
analysis. While the present study system is well suited for this purpose because of
the exceptional taxonomic expertise of the data processors. It should be noted that
morphological identification does not attempt to identify all species in a sample.
Therefore, direct comparisons of overall diversity are not meaningful, but rather
comparisons within specific groups.

In addition, identification by LM is unsuitable for some algal species. For example,
minute centric diatoms and chrysophytes (such as Paraphysomonas,Mallomonas, and
Synura) must be examined by electron microscopy. For some cryptomonad genera,
species identification is possible only with spectrophotometric or molecular sequence
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Figure 2.16: The 25 most abundant organisms and OTUs for each method: morphological identification and metabarcoding with one
of the three markers EUK15, EUK14, and DIV4. We placed organisms of the same supergroup adjacently. The figure shows that all
four methods detected organisms assigned to Chlorophyta, Chrysophyta, and Bacillariophyta. We identified two more groups via
morphological identification and the eukaryote targeting primers: Crustacea and Cryptophyta. Some top 25 organisms, however, are
present in only one of the methods: Mollusca, Rotifera in the morphological column, unclassified OTUs for EUK15, and EUK14, Colacium
(Euglenozoa) and Bactrodes (Insecta) exclusively by EUK14, and Nannochloropsis sp. (Eustigmataceae) by DIV4. Michael Monaghan

originally compiled the table.
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Figure 2.17: Statistical analysis of sample composition and sampling
site subset by three major organism groups (diatoms, green algae, and
zooplankton). The box plots show the results of non-metric multidi-
mensional scaling (NMDS) with two axes. Final stress values are noted
down in the plots. The p-values of themultiresponse-permutation pro-
cedure (MRPP) were computed pair-wise for each of the three sampling

sites and are shown below each plot.
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analyses. Many diatoms and green algae differ in their DNA sequences but are cryptic
in their morphology. Some taxa remain undescribed or occur at a life cycle stage
that cannot be revealed. These organisms are then grouped based on a few common
morphological characteristics under the morphological identification protocol. Some
of these morphological groups are polyphyletic, such as green flagellates, calanoid
and cyclopoid nauplii, or calanoid and cyclopoid copepodites.

We used three primer sets to examine the difference in coverage and potential
taxonomic resolution of different markers for plankton (Groendahl, Kahlert, and
Fink, 2017; Clarke et al., 2017). DNA metabarcoding resulted in between 325 and 543
OTUs compared to 235 taxa of the morphological screening. More than half could be
identified to genus level (one third to species level), and the diversity of most major
groups increased almost 2-fold compared to morphological identifications.

No single marker was optimal for all taxonomic groups. DIV4 showed significantly
increased diversity in diatoms, green algae and golden brown algae (with the exception
of Cryptophyta). Both EUK14 and EUK15 recovered Dinoflagellata, Cryptophyta,
Amoebae, Bicosoecida, Cercozoa, Ciliophora, Nematoda, and representatives of the
Perkinsus clade. EUK14 recovered more OTUs and representatives of all supergroups
of Eukaryota but encounters some challenges. First, the long fragment length did not
allow for merging of reads in many cases and reads needed to be trimmed. Agreement
based on in silico PCR was comparable with EUK15. A significant limitation was that
EUK14 identified the lowest proportion of OTUs to genus and species, and failed
to detect many OTUs within the Chlorophyta, an ecologically important group in
the lake. We did not control the read number, which varied among markers and,
to a lesser extent, sampling sites (see Figure 2.14), although rarefaction analysis
suggested that OTUs were fully sampled for each primer set. The data set from the
EUK15 primer also was most similar to the morphological community composition
when considering the 25 most abundant taxa.

Metabarcoding captured the compositional separation of the lake and river com-
munities at least as well as morphological screening as suggested by the results of
the NMDS and the p-values from the MRPP. Half of the species that were exclusively
identified by LM were not backed up by sequences in the reference database. De-
spite all three primer pairs produced more OTUs identified to species level than the
morphological identification, there remain unidentified groups.

The barcode analysis of a selected set of organisms showed that the barcode
differences between distinct species could be as low as one base. A bioinformatics
pipeline must account for this. Using a 97 % sequence similarity threshold for OTU
formation is standard, but inappropriate in metabarcoding. We hypothesize that for
capturing the diversity of plankton, a denoising step combined with dereplication (or
clustering with 100 % sequence identity) allows for even more taxa to be identified.

The ranking of the most abundant species (see Figure 2.16) and grouping by
their phyla revealed commonalities between the morphological counting and the
metabarcodingmethod. The fact that some species of the same genus have references
in the database and others do not, occasionally manifest in OTUs that are resolved to
particular species but may represent for real a different species that is not backed up.
When comparing organisms on a higher taxonomic level, such errors blur out.

Comparing abundances on species level (see Table 2.11, Figure 2.15) remains
difficult. We found occasionally similar trends between the binocular and molecular
methods. An open question is when the method of morphological counting under-
estimates the number of individuals due to life stages that obscure morphological
characteristics. For metabarcoding the question comes up when does the method
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overestimates abundances due to missing references of species with identical bar-
codes? Such a question can only be answered in a probabilistic manner and requires
a TOL that reflects phylogenetic distances well.

The enormous phylogenetic breadth of planktonic organisms requires the use
of multiple DNA markers as the only way to fully characterize diverse planktonic
communities (Pawlowski et al., 2012) as well as to compensate for the problem of
incomplete reference databases for a given marker. For example, at the time of
writing, no 18S sequences were available in GenBank that could be assigned to the
common rotifer genera Kellicottia, Keratella, Synchaeta, and Trichocerca. However,
identification of these taxa could still be possible using the CO1 barcode (Makino
et al., 2017). Sequencing of the tufA region in addition to 18S would result in better
species identification of the green algae Scenedesmus and Schroederia (Vieira et al.,
2016), while primers targeting the 26S region could effectively delimit species of
another green algae genus Tetraedron (Buchheim et al., 2005). Due to the continually
growing number of markers needed to identify species in diverse plankton groups
better, sequencing costs may rapidly accumulate. Therefore, whenever morphological
assessments of the plankton are available, we recommend that in silico PCR tests be
carried out prior to next-generation sequencing, to select the optimal combination of
markers for cost-effective identification of the majority of present plankton species.
The in silico PCR conducted in this study indicates that all but a few of our morpholog-
ically identified species could, in principle, be recovered using DNA metabarcoding.
Reasons for the few missing taxa include, in part, clustering thresholds that were too
low, perhaps a low abundance of DNA due to extraction bias, and PCR stochasticity
that could not be assessed here.
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Chapter 3

Primer Discovery in Large
Datasets

Neue Wege entstehen, indem wir sie
gehen.

Friedrich Nietzsche

3.1 Problem Definition

Wehave seen in the previous chapter and especially in Section 2.5 that one of themost
significant challenges in metabarcoding is the choice of the barcode. In the search for
a new barcode, we know that evolutionary pressure is not consistent within genomes.
Some regions vary even within species, or on the other extreme, are conserved for
whole clades. For example, functional regions are under higher evolutionary pressure
and tend to be more conserved. When known, these regions can serve as markers to
catch a wider taxonomic variety at the cost of a lower resolution, i.e., we may not be
able to assign OTUs to species level. In contrast, non-coding regions expose more
sequence variation and are better suited for delineating closely related species.

A barcode needs to be surrounded by conserved regions that contain suitable
binding sites for primers (see Section 2.3). Flanking conservation is needed because
we batch-process all extracted DNA at once and add only one primer pair per PCR
run1.

High variant regions seem to be good candidates for barcodes at first glance but are
unlikely to be backed up sufficiently by reference sequences. The immense diversity
and presence of closely and very distantly related organisms in combination with a
lack of complete genomes (see Chapter 2) makes it hard to find a marker (or a set of
markers) that solves two opposing goals: sensitivity and specificity. We need markers
that are effective within a broad taxonomic range for surveying and not being biased
towards a few taxa and markers that accurately resolve important indicator species.

This problem is traditionally tackled by using a combination of primer pairs that
have already been evaluated experimentally, and to alter them iteratively with the
aid of bioinformatics analysis tools. A common approach is to select a few sequences
of the clade of interest and to compute a multisequence alignment (MSA) as it helps
to identify conserved regions (see Section 2.2.4). Conserved regions are then exam-
ined to determine whether they represent chemically suitable primer targets, and
the region in between is examined for high similarity within a species. For single

1An exception is the multiplex PCR where multiple non-interfering primer pairs are added.
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sequences there exists applications like Primer3 (Untergasser et al., 2012) to detect
chemically suitable primers.

As remarked in more depth in Chapter 2, the MSA approach firstly fails when
applied to phylogenetically distant sequences, and secondly does not scale linearly
with the number of sequences. A 10-Liter freshwater sample from Lake Müggelsee
(see Section 2.5) contains hundreds of eukaryotic plankton species from all major
groups (see Figure 2.3) of the eukaryotes and besides bacteria, and fungi. The zoo-
plankton clade Crustacea has more than 50,000 sequences in GenBank. Searching for
a primer pair that aims to amplify a maximum of crustaceans is currently infeasible.
In summary, there exists no tool that

1. accepts thousands of uncurated reference sequences

2. optimizes a primer candidate towards frequency which implies

(a) a broader effectiveness when applied to high-level taxa
(b) a higher resolution when applied to low-level taxa in combination with

transcript analysis

The survey-like character of metabarcoding does not permit the restriction to a
few, but curated databases like PR2 (Guillou et al., 2012) or SILVA (Quast et al., 2012).
These databases exhibit much lower taxonomic coverages than GenBank’s nucleotide
collection (nt) and would result in more OTUs remaining unidentified. Merging of
reference libraries is also not possible, because they rely on different taxonomies.
For an optimal OTU resolution we, therefore, rely on the largest publicly available
sequence database, which yet has a relatively low coverage for microplankton taxa:
thousands of taxa contain only one or two (mostly SSU rRNA) reference sequences
assigned to it2. In the case of metabarcoding, it needs be possible to consult the
largest publicly available data sets in the search for frequent primers and markers.

Summarized, given an arbitrarily-sized set of referencesR = {R1, R2, ..., Rm}, the
problem is to find a primer set P balancing both: high taxonomic coverage and high
resolution. This goal can be captured by filtering for frequently occurring primers and
ranking by coverage or variation, i.e., the number of unique barcodes. This chapter
presents the software PriSeT (Primer Search Tool), an offline primer discovery tool
that is capable of processing large libraries and is robust against mislabeled, and low-
quality sequences as an input source. PriSeT tackles the computationally expensive
steps with linear runtimes for primer checks and space-efficient encodings. PriSeT
was presented at the BCB’21 conference (Hoffmann, Monaghan, and Reinert, 2021)
and briefly described in a cumulative publication on strategies to combat COVID-19
(Hufsky et al., 2020).

3.2 Introduction

The search for frequently occurring primer pairs conflicts with the search for marker
regions that exhibit a high variation. Solving both tasks greedily in a sequential way
is more feasible than solving them simultaneously. The two sequential approaches
are:

(a) First marker search, then primer search in the neighborhood

(b) First primer search, then marker property verification of enclosed region
2as indicated by low mean accession counts per taxon in Table 3.10
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In environmental genomics, we have to deal with missing ground truth, i.e., uniden-
tified and unknown species, and a lack of complete genomes. The marker constraints
have to deal with these uncertainties. We can, at most, require that a marker is rare
or unique to a taxon given the incomplete state of a reference database. There is no
guarantee that a marker has no co-occurrences outside the backed-up region within
the same or other species. This chance, however, decreases with the length of the
marker. To give an example of the known sequence proportion: the estimated genome
size of the diatom Skeletonema costatum is about 51 Mbp (Ogura et al., 2018), whereas
a typical reference sequence of 18S rRNA is 1,700 bp long, which corresponds to only
0.003 % of the complete genome. As stated in Section 2.1 the increase of available
microplankton genomes is steadily increasing, but slow due to difficulties in cloning.

Approach (a) is less feasible due to the database’s incompleteness. PriSeT, there-
fore, supports approach (b) and searches first for short, conserved regions serving as
primer binding sites. How the proposed primer pairs are ranked is up to the user.

k-mer

Definition 3.1. With k-mer we refer to a substring of length k ∈N as part of
a biological text T. A text of length n contains n− k + 1 k-mers (see Figure 3.1
for illustration). For an arbitrary alphabet Σ, there exists |Σ|k different k-mers,
i.e. for DNA 4k unique k-mers. Since DNA is inherently structured, we do not
expect k-mers to occur with equal probability.

Figure 3.1: Example of 6-mers contained in a text T. The text (green)
contains n − k + 1 = 19− 6 + 1 = 14 k-mers (blue). The last k − 1

symbols do not form full-length k-mers.

Formally, we can describe primer candidates as k-mers - DNA textitwords of
length k - that satisfy a set of sequence conditions essential for the success of a PCR.
Some of these constraints apply regardless of the second sequence of the primer
pair. Examples are range limits for melting temperature ([κmin : κmax]), GC-content,
or low probabilities for self-annealing. We will abbreviate the set of constraints
counting independently with Cs as done in Section 2.3. When combining two k-
mers to produce a primer pair, both have to fulfill secondarily a set of constraints
arising from their strand orientation and fitting like avoidance of GC clamps or low
probability of cross-annealing, abbreviated with Cp.

Note that there are additional recommendations for PCR primers and transcripts
like the spanning of exon or intron regions, which we do not consider here due to the
lack of longer, annotated sequences for microplankton clades.
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3.3 Starting with an MSA

A straightforward and naïve approach is to compute a multisequence alignment first
as it tries best to align conserved regions (see Section 2.2.4). We can calculate the
amount of conservation by measuring the entropy within a sliding window of variable
length, which corresponds to the range of possible primer lengths. In case some
entropy threshold is not exceeded within the block covered by the sliding window, and
the sequence is chemically suitable as a primer sequence, we memorize its location
and length.

In case multiple highly conserved blocks are detected, those blocks are combined,
which satisfy a distance range3. If their sequences allow the formation of a proper
primer pair, we output the primer pair as a candidate4.

Algorithm 2 Searching primer pairs by exploiting the structure of an MSA. Blocks
in the length range [κmin : κmax] with low entropy are verified to satisfy constraint
set Cs. Pairs are then formed, and the enclosed regions are scored to assess marker
suitability. δent is the entropy threshold, δsim the sequence similarity threshold, and
θ a threshold for the fraction of same-labeled OTUs.
1: procedure PrimerSearch(R, Cs, Cp, δent, δsim, θ)
2: MSA←msa(R)
3: [κmin, κmax]← Cs.get_kappa()
4: Primers← [] . accumulator for primer locations
5: for all i← [1 : |M| − κmin] do
6: for all k← [κmin : κmax] do
7: S← entropy(MSA[:, i : i + k])
8: if S ≤ δent then
9: seq← common(MSA[:, i : i + k]) . common sense sequence
10: if primer_check(seq, Cs) then
11: Primers += [(i, k)]
12: Pairs← [] . accumulator for pairs
13: for all (i1, k1)← Primers do
14: for all (i2, k2)← Primers do
15: if i1 < i2 and i2 − i1 ∈ [τmin : τmax] then
16: seqfwd← common(MSA[:, i1 : i1 + k1])
17: seqrev← common(MSA[:, i2 : i2 + k2])
18: if pair_check(seqfwd, seqrev, Cp) then
19: barcode← MSA[:, i1 + k1 : i2 − 1]
20: if BarcodeCheck(barcode,R.get_labels(), δsim, θ) then
21: Pairs += [(seqfwd, seqrev)]
22: return Pairs

To check if the transcript allows sufficient species distinction, we can repeat
the last step of a bioinformatics pipeline: sequence clustering based on a similarity
threshold δsim. A suitable barcode would result in clusters that unite transcripts from
identical taxa. In practice, we would also get clusters with mixed labels, meaning
that two or more taxa are indistinguishable. We would then use a soft approach by
limiting the fraction θ of mixed-labeled clusters with θ ∈ (0, 1].

The advantages of the MSA-based approach (Algorithm 2) are:
3a constraint that arises from the transcript length restriction of the PCR (see Section 2.3)
4Note, primer pair and primer set are synonymous.
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Algorithm 3 Barcode check by using agglomerative clustering on a set of transcripts
T to form OTUs. A dictionary tracks the centroids’ labels. The labels are the assigned
taxa of the transcripts. The hierarchical clustering routine stops when there are no
more centroids closer than the threshold parameter δsim. A cluster can be represented
by a common sense sequence and the distance between two clusters as the Hamming
distance between their common sense sequences. This test returns true if a sufficiently
large fraction (more than θ) of OTUs contain sequences of the same label.
1: procedure BarcodeCheck(T, labels, δsim, θ)
2: C← [τi]i∈[1:|T|] . centroids
3: L← {ci : {labeli}}i∈[1:|T|] . label dictionary
4: i, j← argmin

ci/j∈C,ci 6=cj

(||ci − cj||)

5: while |C| > 1 and ||ci − cj|| ≤ δsim do
6: cnew ← merge(ci, cj)
7: C← C\{ci, cj} ∪ {cnew}
8: L← L\{ci, cj} ∪ {cnew : L[ci] ∪ L[cj]}
9: i, j← argmin

ci/j∈C,ci 6=cj

(||ci − cj||)

10: purity← |[1 | L[ci]. size() == 1]i∈[1:|C|]|
11: if purity/|C| ≤ θ then
12: return True
13: return False

Procedure PrimerSearch
Subroutine MSA Low-Entropic Regions Pair Formation

Runtime O(n2l2) +O(n3l) O(nl) O(l2(κmax − κmin + 1)k)

Procedure BarcodeCheck
per block over all blocks

Runtime O(n3) O(l2(κmax − κmin + 1)n3)

Table 3.1: Theoretical runtimes for an MSA-based primer search and
barcode suitability check. Assuming n sequences and an upper limit l
of the sequence length, e.g. T-Coffee for MSA computations consumes
O(n2l2) +O(n3l) (Notredame, Higgins, and Heringa, 2000). We rep-
resent each block through a single, common sense sequence. As we
can check chemical fitness in linear time, we need O(k) time for each
block combination. k denotes the block length mean. The barcode
check for a single block of transcripts T ∈MSA runs in O(n3) due to
the need for repeated pair-wise distance computations when using a

standard clustering approach as described in Algorithm 3.
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(i) MSA aligns most conserved columns in a stacked arrangement.

(ii) The entropy calculation can be performed in one pass for all possible block
lengths in [κmin : κmax] due to the linear independence of the columns.

The disadvantages are related to the nature of MSAs and a costly barcode check
routine:

(i) The MSA calculation is interrupted if sequences of low quality (ambiguous or
wrong bases) are present or if the sequence length varies, which is the case for
most database sequences.

(ii) MSA is challenging to solve for thousands of sequences simultaneously.

(iii) MSA is meaningless for phylogenetically distant sequences (see Section 2.2.4).

Phylogenetically distant sequences underwent DNA insertions and deletions
over time, such that the relative distance between two conserved regions is altered.
Hence, we need a much more robust strategy that primarily ignores relative distances
of conserved regions, but still detects their similarity, and allows individual (i.e.,
reference-wise) testing of constrained range limits.

3.4 Limitations of Existing Primer Search Tools

There exist computer-assisted approaches, in which a manageable subset of refer-
ences of organisms that are expected to show up, is collected and serves as input to
compute amultiple sequence alignment (MSA). Then a variation or entropy score is
calculated given the nucleotide distribution for each position of the alignment. Low
entropy regions are then analyzed for serving as primer templates and regions with
high inter-species entropy as barcodes (Hadziavdic et al., 2014). As we have seen in
Section 2.2.4, MSA-based approaches are unsuitable for the planning of metabarcod-
ing experiments. In this section, we look at the available primer search tools and
discuss why they are not able to handle reference datasets for metabarcoding.

Most popular is the online tool Primer Blast/Primer35 (Ye et al., 2012). Users
provide as input a GenBank accession or a FASTA file. NCBI’s Primer-BLAST uses
Primer3 to design primer sequences and performs aBLAST search against the specified
sequence or user-supplied FASTA file. Surprisingly, Primer-BLAST does not handle
files with multiple references and is therefore not applicable in a metabarcoding setup.

The Primer Search Tool6 by Tusnády et al., 2005 uses a dynamic programming
approach inspired by Kämpke, Kieninger, and Mecklenburg, 2001. When combining
candidate sequences, Kämpke, Kieninger, and Mecklenburg, 2001 makes use of the
sequence overlap and re-use computations of the shared substring. The Primer
Search Tool is not able to discover new sequences. Instead, the user has to propose
primer sequences that are searched in about two dozen species – plankton taxa are
not covered. The tool outputs primer pairs scored by chemical fitness but does not
optimize towards coverage or amplicon variation as only single genomes are parsed.
About two dozen provided genomes can be selected for primer search. The Primer
Search Tool is therefore not a primer discovery tool for user-defined input.

PRIMEX by Lexa and Valle, 2004 is intended to provide querying as an online
service. The tool looks up k-mers derived from the query string in a prepared reference

5www.ncbi.nlm.nih.gov/tools/primer-blast
6http://bisearch.enzim.hu/?m=genompsearch

www.ncbi.nlm.nih.gov/tools/primer-blast
http://bisearch.enzim.hu/?m=genompsearch
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Tool Input Remarks

FastPCR sequences does not identify frequent pairs
GLAPD genomes LAMP (not PCR!) primer design for pathogen

detection, not optimized for surveying
Primer Search Tool primers no input of multiple sequences possible,

no primer discovery
Primer3 one sequence no support for multiple sequences
GenScript one sequence no identification of frequent primers

Table 3.2: Summary of some available primer search tools w.r.t. their
suitability for metabarcoding in the context of enviromental monitor-
ing where the reference data set is typically composed of thousands of

short sequences.

dataset and allows for mismatches. Unfortunately, PRIMEX is currently not available,
and it is not capable of discovering new primer sequences7.

One of the few standalone tools is FastPCR by Kalendar et al., 2017. It supports a
variety of PCR protocols and chemical checks. FastPCR first computes a hash table
with k-mers grouped by overlap into so-called k-tuples with k being 7, 9, or 12 bp long.
The derivation of these k-tuples is not described. In a second step, FastPCR uses
a sliding window to search for matches between k-tuples and reference sequences.
Upon a match, individual k-tuples are extended in both directions. FastPCR has
no preference for frequent k-mers – it is designed to work on single genomes. In
addition, the Java Applet does not meet the Security standards and is blocked by
default. After having added an exception and launched the applet with the clade
Rotifera (taxonomic ID 10190) dataset (1.6 MB) the program did not terminate after
70 min (compared to 40 s with PriSeT, see Appendix B.2).

Most recently, GLAPD by Jia et al., 2019 has been published. The tool searches
for primers for loop-mediated isothermal amplification (LAMP) – a type of PCR
performed in a single tube with 4-6 different primer sets to amplify 6-8 different
regions of the target gene (Notomi et al., 2000). LAMP is more robust and produces
larger amounts of DNA compared to conventional PCR. The multitude of amplified
regions per genome allows for higher precision. LAMP was primarily developed for
the detection of pathogens in medical laboratories. As the amplified regions need
to be in a close neighborhood, it is relatively difficult to identify optimal primer
combinations. GLAPD aims to support the otherwise manual search and requires
whole genomes as input to identify a combination that differentiates pathogenic
from non-pathogenic groups with high certainty. LAMP lacks much of the versatility
that a conventional PCR has, which is required for metabarcoding to be survey-like.

Most available primer search tools can only process a single sequence. We are not
aware of any primer discovery tool that targets high taxonomic coverage and barcode
variation.

3.5 Idea

We have seen in Section 2.2.4 that MSAs become arbitrary and thus meaningless for
phylogenetically very distant sequences. On top of that, even the fastest, heuristic
MSA computation algorithms cannot deal with tens of thousands of sequences. We

7attempt of accession on 24th February 2020 http://bioinformatics.cribi.unipd.it/pr
imex

http://bioinformatics.cribi.unipd.it/primex
http://bioinformatics.cribi.unipd.it/primex
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have to tackle the primer discovery problem in a very different way and think of
conservation as short regions that occur repeatedly. Primer lengths are restricted to
a relatively small range. A good starting point would be a data structure that allows
us to collect variable-length words (k-mers) so that we memorize only those k-mers
that cover a minimum set of reference sequences.

A well-known and highly optimized library8 transformation that supports k-mer
querying and frequency computation is the FM-index presented in detail in Section
3.6. An index is an auxiliary data structure built on top of a text corpus. We use the
index to filter for frequent k-mers first as computed by the submodule (GenMap by
Pockrandt et al., 2020). To obtain the actual sequences, we need to look them up in
the original library. Storing each k-mer as a character sequence (1 byte per character)
consumes unnecessarily much space and quickly limits the size of input libraries.
For example, the smallest group evaluated later in this chapter (see Section 3.11)
is Perkinsidae (taxonomic ID 27999) with a library of only 114 sequences (0.13 MB).
PriSeT identifies about 218 frequent k-mers for k in [κmin : κmax] = [16 : 25], of which
212 are chemically suitable primer sequences. Assuming a k-mer’s average length of
20, we need to store and handle 20 · 218 bytes = 5.2MB of k-mer sequences. We will
reduce the storage size by using a 2-bit compression scheme and storing up to 10
k-mers in a single 64-bit built-in datatype (64ULL). Compression is possible because
k-mers starting at the same position also share a common prefix (see Section 3.7).
The 2-bit encoding scheme also allows for bit parallelizing of chemical tests that
require parsing, accumulation, or pattern search. In short, PriSeT operates in four
steps:

1. FM-Index Step. As a preprocessing, the FM-index is computed on the complete
corpus of all references. Recomputation is only necessary when the references
change.

2. FM Frequency Step. Given the FM-index, PriSeT computes the FM frequency
for k in range [κmin : κmax] and reports all those k-mers exceeding a threshold Z.

3. Filter Step. For each k-mer, PriSeT checks the first set of constraints Cs, which
must hold independently.

4. Combine Step. The remaining k-mers are combined and checked for pair-wise
fitting of constraint set Cp.

The distinct steps are presented in detail in Section 3.9. The data structures that
facilitate fast k-mer acquisition and sequence checks are presented in the following
section.

8Note, that in this chapter, library refers to the set of reference sequences, typically obtained from
an online database, as opposed to library preparation as the first step of NGS.
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3.6 Indexing Data Structure

Index computation is the primary technique to accelerate queries over a large corpus
that is rarely updated. The index presented here supports the quick assessment of all
occurrences of a given k-mer. PriSeT uses this quantitative information to capture
only those who exceed a user-defined frequency threshold.

From hereon we denote a text over an alphabet Σ with T. An arbitrary sequence
of alphabet symbols, including the empty string, is denoted as Σ∗, and the set of all
fixed-length (k) words as Σk. The text T ∈ Σ∗ supports the random access operator
[·] : N+ 7→ Σ which maps a position index or range of indices to a slice in T. A word
w ∈ Σ∗ (or k-mer) has an occurrence at position i if T[i : i + |w|] == w.

Frequent k-mers are words whose particular lengths and sequences are unknown
yet. However, we limit the lengths to a reasonable range, i.e. k ∈ [κmin : κmax]. Since
we are interested in the occurrence of k-mers in all input sequences, we treat them as
a single text corpus and concatenate the sequences:

T = R1 ◦ R2 ◦ · · · ◦ Rm

To operate on the index, we need the provisioning of two functionalities:

1. locate(T, k-mer) which returns the set of positions where the given k-mer occurs
as a list of pairs (SeqID, SeqPos), where SeqID is the rank of the host sequence
and SeqPos the relative position, s.t. RSeqID[SeqPos : SeqPos+ k] is equal
to the searched k-mer.

2. frequency(T, k) which returns a list F denoting for each text position i the number
of occurrences of substring T[i : i + k− 1] in T.

We expect to have millions of queries on the index, both operations should be
therefore very time-efficient. We will use a more general definition allowing up to e
errors for a k-mer:
(k, e)-Frequency

Definition 3.2. The (k, e)-frequency counts for each of the n− k + 1 k-mers
in a text T of length n, their frequencies in the same text T with up to e errors.

For example, the (4, 0)- and (4, 1)-frequencies of T = AACGACGTTGCAGTAGCAT
over Σ = {A,C,G,T} are:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T[i] A A C G A C G A T G C A G T A C G A T
F4,0[i] 1 3 1 1 3 2 1 1 1 1 1 1 1 1 3 2
F4,1[i] 3 3 3 3 3 3 2 1 1 1 1 1 1 3 3 3

We will later use the frequency vector Fk,e to filter for those k-mers that exceed
the occurrence threshold parameter Z. Note that with the inclusion of more errors,
the number of k-mers reported increases dramatically (35 for F4,1 compared to 24 for
F4,0), since k-mers are counted not only for identical matches but for all k-mers with a
Hamming distance9 of one. Before we derive an index representation that allows time-
and space-efficient locate and frequency operations, there are two more important
functionalities that are used for index computation and in PriSeT’s combination step:

9The Hamming distance is the number of positions for which two sequences of equal length differ
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rank and select support. The support structures answer questions like given a text
index i how often has symbol σ occurred in the prefix T[: i] (rank1), or inversely what
is the index position until which a symbol σ has occurred a given number of times
(selectσ-support)?

If the underlying sequence remains unchanged, the rank and select support struc-
tures can be built to allow query answering in O(1) time. Concretely, we employ
rank1 and select1 support for querying efficiently k-mers located in sliding windows
(see Section 3.9.4).

rank Support

Definition 3.3.
Given a text index i, the rank of a symbol σ ∈ Σ, outputs the number of letters
equal to σ until position i, including the text position i itself.

rankσ(i) := |{j| T[j] = σ, j ∈ [0 : i]}|

For example, the rank1 support on T = 100101111010001 over Σ = {0, 1} for all
i ∈ [1 : |T|] is:

i 0 1 2 3 4 5 6 7 8 9 1011121314
T[i] 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1
rank1[i] 1 1 1 2 2 3 4 5 6 6 7 7 7 7 8

select Support

Definition 3.4.
Inverse to the rankσ function, selectσ outputs the index of the k-th occurrence
of symbol σ in the text.

selectσ(k) := argmax
i
{i|rankσ(i) = k, i ∈ [0 : n)}

For example, select1 on T = 100101111010001 over Σ = {0, 1} gives us:

i 0 1 2 3 4 5 6 7 8 9 1011121314
T[i] 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1
k 1 2 3 4 5 6 7 8
select1[k] 0 3 5 6 7 8 10 14

3.6.1 FM-Index

Arguably the most important index data structure in bioinformatics applications
is the FM index, a substring index over a text. The name stands for Full-text index
inMinute space (Ferragina and Manzini, 2005). It supports the needed locate and
frequency10 functionalities while representing the library in a compressed form.

Concretely, the FM-Index combines the Burrows-Wheeler compression algorithm
(BW, see Burrows and Wheeler, 1994) and suffix arrays (SAs) to obtain a compressible
representation.
10called count in the original paper
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Nong, Zhang, and Chan, 2009 showed that the suffix array can be constructed
in linear time. The same authors also presented one of the most influential imple-
mentations. Its practical runtime has been improved further by using DivSufSort as a
sorting routine by Yuri Mori (not documented). Despite his approach being in a slower
runtime class (O(n log n), it makes better usage of the main memory – a bottleneck
during index construction – and yields faster runtimes in practice as analyzed by
Fischer and Kurpicz, 2017.

We will now derive a basic form of the FM-index, starting with the well-known
suffix array. The notation follows the one in “Compact Data Structures” by Navarro,
2016.

Suffix Array A

Suffix arrays (SAs) have been described as an alternative to suffix trees indepen-
dently by Manber and Myers, 1990 and Gonnet and Baeza-Yates, 1992 (PAT arrays).
A suffix tree is constructed by inserting each of the |T| suffixes, i.e. T[i : n]i∈[1:n]
plus a terminal character (most often denoted as $ with $ 6∈ Σ) into a tree where
edges correspond to substrings and leaves to a terminated suffix. Patterns are then
searched, starting at the root and following edges that match the next symbol. Space
consumption and tree structure overhead are unnecessarily large. Spatially more
efficient is to use an index array in the length of the text denoting the suffix starts
relative to the original text. The array gets sorted lexicographically to facilitate
searches.

Table 3.3 shows an example of an SA constructed from the text T = ACGTACGT.
The terminal symbol $ is defined as lexicographically smaller than any other symbol
in Σ. Consequently, the last suffix is “$” and will always be the first one in the sorted
list. The next smallest suffix is “ACGT$” followed by “ACGTACGT$” and so forth. A[i]
gives us the suffix start index that has rank i in the sorted list of suffixes. We can also
ask the other way around: what is the rank of the suffix T[i : n] in the sorted list? We
denote the inverse of A that answers such questions with A−1.

Searching for a word (k-mer) in T is equivalent to searching for all suffixes starting
with that word. The lexicographical sorting of A implies that all occurrences of a
word are coalescent in A. For example, the word ACGT is the prefix of T[1 : n] and
T[5 : n] whose indices are found in direct juxtaposition: at A[2] and A[3]. If we are
able to determine the left (l) and right (r) boundaries of a k-mer occurrence in A, we
can answer locate and frequency queries very easily:

1. locate(T, kmer) := A[l : r]

2. frequency(T, k) := [ri − li + 1]i∈[1:|T|] with li, ri denoting the ranges for k-mer
T[i : i + k− 1]

A Compressable Representation Ψ of A

We will use a different ordering of the indices in A, such that we can iterate over
the suffix ranks in the order of the original text, i.e.,

Ψ := A−1[(A[i] % n) + 1] ∀i ∈ [1 : n] (3.1)
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Index 1 2 3 4 5 6 7 8 9

T A C G T A C G T $

So
rt
ed
Su
ffi
xe
s

$
A C G T $
A C G T A C G T $
C G T $
C G T A C G T $
G T $
G T A C G T $
T $
T A C G T $

A 9 5 1 6 2 7 3 8 4
T[A[i]] $ A A C C G G T T
A−1 3 5 7 9 2 4 6 8 1
Ψ 3 4 5 6 7 8 9 1 2

Table 3.3: Example of a suffix array A over the text T = ACGTACGT.
When sorting all suffixes, the index order is permuted and stored in
A. A[i] gives the start index of the suffix, which has rank i in the list
of sorted suffixes. Whereas its inverse A−1 gives the rank of suffix

T[i : n]. The last row displays the re-ordering Ψ of A.

Table 3.3 shows exemplary the re-ordering Ψ given the suffix array A over T =
ACGTACGT. Applying Ψ iteratively on its input, i.e.,

Ψk[i] := Ψ ◦ · · · ◦Ψ︸ ︷︷ ︸
k times

[i]

where i is the query rank, A[Ψk[i]] actually returns the corresponding suffix position
in T with offset k, i.e.,

A[i] = j⇔ A[Ψk[i]] = j + k (3.2)

Let us iterate, for example, over three consecutive text positions starting with
T[5]:

T[A[2]] = A

T[A[Ψ[2]︸︷︷︸
=4

]] = C

T[A[Ψ2[2]︸ ︷︷ ︸
=6

]] = G

T[A[Ψ3[2]︸ ︷︷ ︸
=8

]] = T

Ψ is a permutation of A that allows us to parse the text and retrieve each suffix’s
rank. We use A only for querying the corresponding symbols in T. As you can see
in Table 3.4 (row T[A]) the starting symbols of each sorted suffix are clustered: first
the $-symbol, then a series of As, followed by Cs, and so forth. We denote with Ψσ

the sub-range of Ψ with same starting symbol σ ∈ {$, A, C, G, T}. It is sufficient to
store locations of symbol changes either as an equally sized sparse bit vector, which
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supports rank operations in O(1) or simply the start indices of each symbol range
(see array C in the last row of Table 3.3).

Index 1 2 3 4 5 6 7 8 9

T A C G T A C G T $

A 9 5 1 6 2 7 3 8 4
T[A] $ A A C C G G T T
Ψ 3 4 5 6 7 8 9 1 2
σ $ ΨA ΨC ΨG ΨT

C[σ] 0 1 3 5 7

i 1 2 3 4 5 6 7 8 9

B$ 0 0 1 0 0 0 0 0 0
BA 0 0 0 1 1 0 0 0 0
BC 0 0 0 0 0 1 1 0 0
BG 0 0 0 0 0 0 0 1 1
BT 1 1 0 0 0 0 0 0 0
L T T $ A A C C G G

Table 3.4: Derivation of FM-index helper structures. The range indices
for suffix start symbols are stored in the array C (left). When sorting
symbols relative to their Ψ values, we get a symbol representation of
Ψ either as a set of bit-vectors Bσ or as a compact list L (right). The
subranges of Ψ corresponding to identical text symbols are called Ψσ.

Array C delimits the subarrays Ψσ.

Here, we will use array L – the compact list representation as depicted in Table 3.4
(instead of bit-vectors Bσ) with rankσ-support. When searching for words, it turns out
that searching a word backward is in practice faster. Assume, we know the occurrence
range for a symbol σm+1, say [lm+1, rm+1], we do not need to carry out binary search
for the preceding symbol σm in Ψ, but can restrict to values of Ψσ that are contained
in the interval [lm+1, rm+1]. In other words, we are narrowing down the interval of
candidate locations in each iteration. Now we have all the tools to describe a fast
search procedure. We will make use of the rankσ-support, which augments L instead
of carrying out a binary search.

Backward Search

Given the representation L of Ψ, the symbol boundaries C, and a concrete k-mer,
Algorithm 4 demonstrates the narrowing of the candidates’ range.

Algorithm 4 Backward search of a k-mer on an FM-index. The search is narrow-
ing down the left and right boundaries with each iteration. Here we use another
representation for Ψ, i.e., L with rank support for each symbol.
1: procedure BackwardSearch(L, C, kmer)
2: m← |kmer|
3: [l, r]← [C[kmer[m]] + 1, C[kmer[m] + 1]]
4: for all k← [m− 1 : −1 : 1] do
5: if l > r then
6: return ∅
7: σ← kmer[m]
8: l ← C[σ] + rankσ(L, l − 1) + 1
9: r ← C[σ] + rankσ(L, e)
10: return [l, r]

For example, searching for the 3-mer GTA in T gives us the initial range indices
[l3, r3] = [2, 3] (line 3), then [l2, r2] = [9, 9], and finally [l1, rr] = [7, 7].
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Locate Computation

Equipped with a memory-efficient k-mer search algorithm, we can specify the
location retrieval by collecting the start indices in the computed range as outlined in
Algorithm 5.

Algorithm 5 Location computation for a k-mer using BackwardSearch (see Algorithm
4).
1: procedure Locate(L, C, kmer)
2: [l, r]← BackwardSearch(L, C, kmer)
3: Locations← []
4: for all i← [l : r] do
5: Locations← Locations +[A[i]]
6: return Locations

Instead of operating on the complete suffix array A in constant time, we can
sample A and use Ψ to navigate to the next sampled position i′ ≥ i in case of a
miss. From the equivalence relationship described in Equation (3.2) follows that the
searched index can be computed by subtracting the number of steps it takes until
we find a sampled A[i′]. We choose a sampling factor ρ and sample equidistantly at
positions of A that are a multiple of ρ. The indices are stored densely in AS[1 : d n

ρ e]
with presence indicated by a set bit in an additional bit array BS of length n and size
log2 n.

The sampling factor allows us to trade off space consumption versus retrieval
time. Its adjustment should account for the computing architecture, text size, and
function call frequency.

Algorithm 6 Location computation for a k-mer with sampled suffix array AS. Instead
of accessing A directly, we compute A[i] via the offset distance to the next sampling
point.
1: procedure LocateWithSampling(Ψ, AS, BS, L, C, kmer)
2: [l, r]← BackwardSearch(L, C, kmer)
3: Locations← []
4: for all i← [l : r] do
5: Locations← Locations +[QuerySuffixArray(Ψ, AS, BS, i)]
6: return Locations
7: procedure QuerySuffixArray(Ψ, AS, BS, i)
8: k← 0
9: while BS[i] == 0 do
10: i← Ψ[i]
11: k← k + 1
12: return AS[rank(BS, i)]− k

Frequency Computation

We generate k-mers by selecting substrings of length k at each text position
from start to end. For each distinct k-mer, we then call the backward search to
retrieve its occurrence range. Reducing the search to distinct k-mers can be achieved
without memorization. Whenever a first co-occurring k-mer is located before the
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currently processed one, we abort. The reason for this is that for the preceding copy
we have already collected all simultaneous occurrences including the current one.
Alternatively, we can memorize already seen k-mers as done below.

Algorithm 7 Frequency computation for all k-mers using BackwardSearch (see Al-
gorithm 4). As a simple optimziation, we memorize already processed k-mers. The
frequency computation deployed by PriSeT uses additional optimizations as described
in 3.9.2.
1: procedure Frequency(T, L, C, k)
2: F ← []
3: mem← {}
4: for all i← [1 : |T| − k + 1] do
5: kmer← T[i : i + k− 1]
6: if kmer 6∈ mem then
7: [l, r]← BackwardSearch(L, C, kmer)
8: F[i]← r− l + 1
9: mem.insert(kmer)
10: return F

3.7 Space-Efficient K-Mer Representation

In some applications, DNA sequences contain ambiguous nucleotides (see encod-
ing in Appendix B.1). The ambiguity may stem from a base call uncertainty of the
sequencer machine, or serves as a shortcut notation for a set of sequences. The
latter is common for the notation of primer sequences, for example, the primer
CGCGGTAATTCCAGCTYC (SSU556F by Smith et al., 2017) stands for two sequences,
namely CGCGGTAATTCCAGCTCC and CGCGGTAATTCCAGCTTC. Both variants would
be added as reagents to a PCR. However, when searching for primer sequences in a
library, substrings with ambiguous nucleotides will be ignored by PriSeT to have full
control of the error or mismatch rate between primer and template. Primer-template
mismatches are critical and may lead to an amplification failure.

When computing the k-mer frequency with varying values for k, one notices that
for a specific position i in a reference R, it is likely that we will yield many k-mers
of different lengths which will successfully pass the frequency filter and start at the
same index. In fact there are up to κmax − κmin + 1 many k-mers per sequence and
position.

We introduce the TKMerID data type which is an alias for an unsigned 64 bit
integer (uint64_t or 64ULL), which primarily encodes the longest k-mer found at a
specific text position (see Figure 3.2) via the two-bit encoding scheme shown in Table
3.5. The two-bit encoding scheme has the advantage that taking the complement
of the integer produces its DNA complement. As shown later, we will exploit this
property, combined with bit parallelism, to implement a linear-time annealing test.

Given the ubiquitous word length of 64 bits, we have to trade-off between the
maximum sequence length we want to capture and its range. Given that optimal
primer sequence lengths are in [18 : 22], we can encode an even larger range, which
is here [16 : 26].

The DNA sequence encoding consumes two bits per nucleotide. A word size of 64
bits allows us to encode k-mers with up to κmax = 26 nucleotides. The part reserved
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Nucleotide Encoding 2-Bit Nucleotide
Complement Complement

A 7→ 00 11 T
C 7→ 01 10 G
G 7→ 10 01 C
T 7→ 11 00 A

Table 3.5: Two-bit encoding of single nucleotides. Note that the bit-
wise complement operator produces the complement of the nucleotide

likewise.

for the sequence consumes 2× 26 bits stored in little-endian ordering. We use the
term suffix in this context to denote the DNA code part.

To unambiguously encode the beginning of theDNA sequence, we use one extra bit
(= closure bit). Without the closure bit, preceding As (00x) would be ignored (or over-
counted) otherwise. The various lengths represented by a single TKMerID are stored
in the preceding 11 bits (= prefix). The j-th highest bit encodes length k = κmin + j− 1
(see Figure 3.2). We use masking to 0 of the fixed-length prefix to perform chemical
property checks in a bit-parallel manner. If a chemical constraint is not satisfied for
some length k′, we only delete the corresponding prefix bit. Truncation of the actual
sequence located in the suffix is not necessary. The idea is to continue processing
a TKMerID as a container with primer candidates as long as the prefix is not set to
zero.

Figure 3.2: K-mer compression scheme. Top: All k-mers with the same
starting index are prefixes of longer k-mers. Redundancy is reduced
by encoding the longest k-mer only. Bottom: In this example, we
encode the oligomer TAAGGGATCAAAGACAACCAGA with length bits
set for 16, 18, and 22 in the remaining prefix bits. Instead of handling
three sequences, we use only one integer that fits into a single 64-bit

register.

Macros

We can access prefix and suffix properties in constant time with the help of library
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functions available on all C++ compilers. In combination with masking the prefix or
suffix reserved parts in an uint64_t, we will namely use:

• ffsll for finding the first set bit and thereby the maximal encoded k-mer

• __builtin_clzll for counting leading zeros and identifying the sequence
beginning

• __builtin_popcountll for counting the number set bits in order to facili-
tate bit-parallelism for sequence checks11

We will need functionalities like splitting a TKMerID into its prefix and code part,
determining the encoded length, or resetting a specific length bit. The least error-
prone and computationally most efficient way in C++ is to define these operations
once as macros (see Listing 3.1). Macros are preprocessor directives that are named
code fragments. The compiler replaces the macro with the content wherever it is
used in the code.

For example, to identify the longest encoded length in a TKMerID, we define a
function-like macro that drops the suffix and identifies the first set bit counted from
the left end (see encoded_length in Listing 3.1). A length bit is reset by XORing
a TKMerID with a single bit shifted to the corresponding position in the prefix (see
reset_length in Listing 3.1).

Listing 3.1: Macro definitions.
1 #define WORD_SIZE 64
2 #define PREFIX_SIZE 11
3 #define PREFIX_SELECTOR ~(1 << (WORD_SIZE - PREFIX_SIZE)) - 1)
4

5 #define encoded_length(kmerID) WORD_SIZE - 1 -
6 __builtin_clzl(kmerID & ~PREFIX_SELECTOR)
7

8 #define reset_length(kmerID, l) kmerID ^
9 (1ULL << (WORD_SIZE - 1 - (l >> 1) + KAPPA_MIN))

3.8 Bit Vectors for K-Mer Location Encoding

After the FM-index computation (step 1), the original reference sequences are only
needed once to lookup and encode frequent k-mers (step 2). However, when combin-
ing k-mer candidates to form pairs (step 4), we need location information – because
k-mers need to refer to the same reference and have to be in an offset range of τmin
to τmax as the transcript lengths are constrained. A naïve approach is to parse for
each TKMerID occurrence a window of length τmax − τmin and test at each window
position if there exists another TKMerID it can be combined with. If, on the other
hand, we would know the exact locations of TKMerIDs in the search window, we
could reduce the number of queries from τmax− τmin + 1 to only |{j ∈ [i + κmin + τmin :
i + κmax + τmax] ∧ Rj = 1}| – the actual number of TKMerIDs in the search window.
This strategy takes full effect when there are only a few candidates in the search
window.

To accomplish a lower number of queries, we use two data structures to represent
the original reference sequence: a list to store TKMerIDs in order of occurrence
and a compact data structure, namely a bit vector B in the length of the last k-mer
11e.g., counting the number of C or G bases
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occurrence. A set bit indicates the presence of a TKMerID and is also the rank of the
TKMerID in the associated list.

The compact data structure is augmentedwith rank1 and select1 support data struc-
tures, which both permit querying in constant time. Concretely, we use the sdsl::-
bit_vector by Gog et al., 2014 combined with sdsl::rank_support_v5 and
sdsl::select_support_mcl. Both support data structures occupy atmost 0.0625n,
and 0.2n extra bits, respectively (Clark, 1998, Vigna, 2008).

When iterating over TKMerIDs, select1 gives us their positions relative to the ref-
erence sequence. The search window of combinable reverse primers is then accessed
by adding the transcript length range. Again we apply rank1 on the window indices to
address the associated TKMerIDs in the list (see Algorithm 11). Pairs satisfying the
constraint set Cp are collected and can be ranked by coverage or compactness. Figure
3.3 illustrates the later described k-mer combination step (see Algorithm 11) over
the transformed reference.

Figure 3.3: Encoding of TKMerID locations. In this example the bit-
vector represents a reference sequences with k-mers starting at the
indices 0, 2, 3, 6, and so forth. When searching for possible k-mer
combinations to produce forward and reverse primer pairs, we have
to parse for each forward TKmerID at a position i the window [i +
κmin + τmin : i + κmax + τmax]. We directly access set bits in the window
utilizing select support on bit-vector B, and rank support to address

the associated TKMerIDs stored in an extra container.
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3.9 Algorithm

We have seen in Section 3.6.1 how an FM-index over the set of referencesR achieves
fast runtimes for locate and frequency computations, in Section 3.7 how we use shared
prefixes of k-mers starting at same text positions to store up to 11 k-mers in a single
64-bit integer, and in Section 3.8 how k-mer candidates for primer pair formation
can be addressed using rank1 and select1 support. We now have sufficient tools to
describe the four steps of the primer discovery algorithm (see Section 3.5) in more
detail. Exemplary, we demonstrate how sequence property checks (fulfillment of Cs)
is carried out on the TKMerID datatype.

3.9.1 FM-Index Step

For indexing and k-mer report PriSeT makes use of the recently published GenMap
v1.0.1 by Pockrandt et al., 2020. As library input GenMap accepts a FASTA file or
directory of FASTA files. Given the library length in number of symbols (N), the
index is computed in O(N) using the Skew7 algorithm by Weese, 2006 based on
the known Skew algorithm (Kärkkäinen, Sanders, and Burkhardt, 2006). For index
storage and bidirectional search GenMap uses a slightly different approach than
presented in Section 3.6.1, concretely, enhanced prefix sum rank dictionaries (EPR)
occupyingO(log σn)+ o(log σ2n) bits space (Pockrandt, Ehrhardt, and Reinert, 2017).
Algorithm 8 illustrates the interface call. The procedure also calculates the absolute
frequency threshold Z for k-mers given a user-defined percentual cutoff ζ. Z will be
applied later in step 2.

Algorithm 8 FM-index transformation of the library (step 1). Based on a user-
defined percentual frequency cutoff ζ, an absolute cutoff (Z) for k-mer occurrences is
computed. Z will be applied when locating k-mers in the index (see Algorithm 9).
1: procedure FMIndexing(Library, ζ)
2: Z ← ζ · |Library|
3: FMIndex← genmap.index(Library)
4: return FMIndex, Z

3.9.2 FM Frequency Step

Having computed the FM-index over the library, frequency queries are submitted with
values of k in the range [κmin : κmax]. GenMap’s frequency computation of k-mers
is based on an algorithm described by Derrien et al., 2012. However, it introduces
runtime improvements by cutting redundant searches (Pockrandt et al., 2020) related
to the optimization in Algorithm 4, usage of optimal search schemes, and skipping of
mismatching positions. We modified GenMap’s original frequency functionality to
accept a frequency threshold parameter Z to avoid temporary storage of low frequent
k-mers (see GenMap fork12). Algorithm 8 describes the call to GenMap’s frequency
interface.

Location information of each k-mer is provided by returning the sequence iden-
tifier SeqID referring to the library sequence where a k-mer has been found and a
relative position index SeqPos. These locations are collected in a Locationsmap
(see Algorithm 9) with k-mers as keys and an occurrence vector as value.
12https://github.com/mariehoffmann/genmap

https://github.com/mariehoffmann/genmap
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Algorithm 9 K-mer frequency computation given the FM-index as lists C, L (see
Section 3.6.1), and a frequency cutoff (step 2).
1: procedure FMFreq(FMIndex, Z)
2: Locations← []
3: for all k← [16:25] do
4: Locations← Locations + genmap.freq(FMIndex, k, Z)
5: return Locations

3.9.3 K-Mer Transform and Filter Step

Each k-mer has to pass a chemical filter that checks molecular property constraints
as listed in Table 2.3 (step 3), which have to hold for single primers independent
of the second one. Applying the filter directly after the frequency step reduces the
number of k-mers by orders of magnitudes before running the combination procedure.
The constraints (Cs) that are currently checked by PriSeT are melting temperature,
GC-content, mono- or dinucleotide runs, and self-annealing patterns (see Table 2.3).
The other set of constraints (Cp) is postponed to the last step (see Section 3.9.4).

Before frequent k-mers undergo chemical filtering, we encode their DNA se-
quences into the space-efficient data structure presented in Section 3.7 which ex-
ploits the length restriction of PCR primers. Per sequence position, we reduce space
occupancy from∑κmax

k=κmin
k = O(κ2

max) bytes with the naïve approach to 4 = O(1) bytes
per location.

The chemical filters Cs are deployed on all k-mers encoded in a single TKMerID
in parallel, and each single filter processes a TKMerID in O(k). For one category
of filters, we will use optimization by stopping the processing of subsequent k-mer
positions and immediately deleting length encoding bits. Assume an encoded k-mer
fails a chemical test; then the following checks imply that all extensions will also fail
to pass the test:

1. Excess of melting temperature Tm

2. Runs and dinucleotide repeats

3. Self-annealing patterns

4. TATA-box

A test for the GC-content cannot be aborted, since an undercutting or exceeding
GC ratio can be compensated for after the subsequent bases have been taken into
account.

Filter for GC-content

The relative CG-content of a k-mer is determined by the number of cytosine and
guanine bases in proportion to its length k. In the 2-bit encoding format we need
to determine the number of 01 and 10 patterns substracted by the closure bit (01).
We can filter cytosine bases by computing the bit-wise AND of the prefix-eliminated
code and the pattern (01)26, and guanine bases with (01)26. When looking at the
example in Table 3.6 we see that selecting odd and even set bits is insufficient, since
thymine (encoded as 11) occurs in p and q. To eliminate both bits introduced by T,
we simply shift p left by one position and take the bit-wise XOR on p << 1and q.
The C++-code is shown in Listing 3.2. As leading zero count (__builtin_clzll)
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and popcount (__builtin_popcountll) also operation inO(1), the total runtime
to determine the CG-content of a single k-mer is in O(1).

sequence with closure bit 0 1 A C G T

code 0 1 0 0 0 1 1 0 1 1
p = code & (01)4 0 0 0 0 0 1 0 0 0 1
p = p << 1 1 0 0 0 1 0 0 0 1 0
q = code & (10)4 0 0 0 0 0 0 1 0 1 0
x = p XOR q 0 0 0 0 1 0 1 0 0 0

popcount(x) 2

Table 3.6: Bit-parallelized counting of cytosine and guanine bases on
the sequence ACGT.

Listing 3.2: GC-content computation in O(1).
1 float GC(TKmerID const kmerID, uint64_t const mask)
2 {
3 auto [prefix, code] = split_kmerID(kmerID);
4 uint8_t enc_l = encoded_length(kmerID);
5 uint8_t target_l = KAPPA_MIN;
6 target_l += (prefix & !mask) ? __builtin_clzll(prefix) :
7 __builtin_clzll(mask);
8 code >>= (enc_l - (target_l << 1));
9 uint64_t p = 0x5555555555555ULL;
10 uint64_t q = 0xAAAAAAAAAAAAAULL;
11 uint64_t x = ((code & p) << 1) ^ (code & q);
12 return __builtin_popcountll(x) - 1;
13 }

The relative amount of cytosine and guanine is then retrieved by dividing the
absolute count by the sequence length (see Listing 3.3).

Listing 3.3: GC-filter based on the GC-content computation in Listing
3.2.

1 float GC_percent(TKmerID const kmerID, uint64_t const mask)
2 {
3 uint8_t target_l = KAPPA_MIN;
4 auto [prefix, code] = split_kmerID(kmerID);
5 target_l += (prefix & !mask) ? __builtin_clzll(prefix) :
6 __builtin_clzll(mask);
7 return float(GC(kmerID, mask))/float(target_l);
8 }

In order to filter a TKMerID encoding up to (κmax − κmin + 1) k-mers, we simply
iterate over set bits in the prefixing length mask as shown in Listing 3.4.

Listing 3.4: GC-filter based on the GC-content computation in Listing
3.2.

1 void GC_filter(TKmerID & kmerID, float const GC_min,
2 float const GC_max, uint8_t const kappa_min,
3 uint8_t const kappa_max)
4 {
5 uint64_t mask = 1ULL << 63;
6 float GC_content;
7 for (uint8_t k = kappa_min; k <= kappa_max; ++k)
8 {
9 if (mask & kmerID)
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10 {
11 GC_content = GC_percent(kmerID, mask);
12 if (GC_content < GC_min || GC_content > GC_max)
13 kmerID ^= mask;
14 }
15 mask >>= 1;
16 }
17 }

Filter for Melting Temperature Tm

A simple and approximate method for calculating the melting temperature is the
linear combination of AT- and CG-counts according to Wallace’s rule (Wallace et al.,
1979):

Tm := 2AT+ 4GC

We employ the GC-count function (Listing 3.2) to determine the number of guanine
and cytosine bases. The difference between currently processed k-mer length and GC
content will give us the number of adenine and thymine bases. If for a given k-mer
length, say k′, the melting temperature falls below TMmin, the corresponding length
bit in the TKMerID is reset. In case Tmmax is exceeded, PriSeT resets all length bits
corresponding to lengths larger or equal to k′ because Tm grows monotonously with
the length of the sequence. Hence, Tm will remain in an exceeding range.

Listing 3.5: Melting temperature computation in O(1) according to
the Wallace rule.

1 uint8_t Tm(TKmerID const kmerID, uint64_t const mask)
2 {
3 uint8_t target_l = KAPPA_MIN;
4 target_l += (prefix & !mask) ? __builtin_clzll(prefix) :
5 __builtin_clzll(mask);
6 uint8_t GC_content = GC(kmerID, mask);
7 return ((target_l - GC) << 1) + (GC << 2);
8 }

Listing 3.6: Tm filter based on the Tm computation in Listing 3.6.
Note the short-cut when Tm exceeds Tm_max in lines 13-17. re-

set_length_leq is a macro.
1 void Tm_filter(TKmerID & kmerID, uint8_t const Tm_min,
2 uint8_t const Tm_max, uint8_t const kappa_min, uint8_t const kappa_max)
3 {
4 uint64_t mask = 1ULL << 63;
5 uint8_t Tm_wallace;
6 for (uint8_t k = kappa_min; k <= kappa_max; ++k)
7 {
8 if (mask & kmerID)
9 {
10 Tm_wallace = Tm(kmerID, mask);
11 if (Tm_wallace < Tm_min)
12 kmerID ^= mask;
13 else if (Tm_wallace > Tm_max)
14 {
15 reset_length_leq(kmerID, encoded_length_mask(mask));
16 return;
17 }
18 }
19 mask >>= 1;
20 }
21 }
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Filter for Runs and Dinucleotide Repeats

PriSeT discovers patterns like mono- or dinucleotide runs by comparing tailing
bits of the code with the two-bit encoded patterns. These prohibited patterns can be
infixes of a k-mer at any position. We, therefore, apply a right shift and comparison
iteratively until 10 bits remain. Similarly, we proceed for dinucleotide runs (see
Listing 3.7).

Listing 3.7: Filter for runs and dinucleotide repeats.
1 void filter_repeats_runs(TKmerID & kmerID)
2 {
3 auto [prefix, code] = split_kmerID(kmerID);
4 uint64_t const tail_selector_10 = (1 << 10) - 1;
5 uint64_t const tail_selector_20 = (1 << 20) - 1;
6 kmerID = code; // save trimmed kmer-code part
7 uint64_t const k = (63 - __builtin_clzl(code)) >> 1;
8 uint64_t offset;
9 for (uint64_t i = 0; i < k - 4; ++i)
10 {
11 uint64_t tail_10 = tail_selector_10 & code;
12 if ( (tail_10 == 0b00000000) ||
13 (tail_10 == 0b01010101) ||
14 (tail_10 == 0b10101010) ||
15 (tail_10 == 0b11111111))
16 {
17 offset = 64 - (max((uint64_t)KAPPA_MIN, k - i) - KAPPA_MIN);
18 prefix = (offset == 64) ? 0 : (prefix >> offset) << offset;
19 }
20 if (k - i > 9)
21 {
22 uint64_t tail_20 = code & tail_selector_20;
23 if ( (tail_20 == 0b00110011001100110011) ||
24 (tail_20 == 0b11001100110011001100) ||
25 (tail_20 == 0b00010001000100010001) ||
26 (tail_20 == 0b01000100010001000100) ||
27 (tail_20 == 0b00100010001000100010) ||
28 (tail_20 == 0b10001000100010001000) ||
29 (tail_20 == 0b01100110011001100110) ||
30 (tail_20 == 0b10011001100110011001) ||
31 (tail_20 == 0b01110111011101110111) ||
32 (tail_20 == 0b11011101110111011101) ||
33 (tail_20 == 0b10111011101110111011) ||
34 (tail_20 == 0b11101110111011101110))
35 {
36 offset = 64 - (max((uint64_t)KAPPA_MIN, k - i) -
37 KAPPA_MIN);
38 prefix = (offset == 64) ? 0 : (prefix >> offset) << offset;
39 }
40 }
41 if (!prefix)
42 break;
43 code >>= 2;
44 }
45 kmerID |= prefix;
46 }

Filter for Self-Annealing

Self-annealing, as described in Section 2.3.2, may occur if there exists an alignment
of a DNA oligomer against a same-sequence copy, which may lead to the formation
of a stable dimer. We consider an annealing pattern as critical if more than four
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bases in a row anneal (connected annealing pattern), or more than 50 % of the bases
participate in bonds (disconnected annealing pattern). PriSeT determines the presence
of annealing patterns by checking the sequence’s shiftings against itself (-/-) and its
reversed copy (-/+). Cross-annealing is handled analogously, except that PriSeT has
to test more shiftings due to lack of symmetry. Given the rule of thumb, there are at
most 2κmax− 2 · 8 possible alignments, and for each alignment, we apply the bit-wise
XOR-operator to translate complementary nucleotides into 0b11-blocks (see Table
3.7 and Table 3.8).

p · · · T A C G T C · · ·
11 00 01 10 11 01

| | | |
01 11 10 01 00 01

q · · · C T G C A C · · ·
p XOR q 01 11 11 11 11 00

Table 3.7: Closed or connected annealing patterns produce blocks
of set bits for some alignment position when XORing the sequence
against itself (see self-annealing in Figure 2.8) or against another
(cross-annealing). A block of eight set bits or more corresponds to a

critical pattern.

Connected self-annealing patterns correspond to eight consecutive set bits start-
ing at an even position (see Table 3.7), and disconnected patterns to occurrence
counts of 0b11-blocks exceeding k/2. We can count 0b11-blocks at even positions
in parallel with a combination of masking, right-shift and substraction. The goal is
to transform 0b11-blocks into single bits and to eliminate 01- and 10-blocks which
are the result from XORing T with C or G. An example is shown in Table 3.8 and a
code excerpt in Listing 3.8. The check has to be done with same and opposite strand
orientations, i.e. we also have to reverse one sequence and process it the same way.

p · · · G G A T C G · · ·
10 10 00 11 01 10

| | | |
00 01 11 00 00 01

q · · · A C T A A C · · ·
x = p XOR q 10 11 11 11 01 11
x’ = (x » 1) & (01)26 01 01 01 01 00 01
x -= x’ 01 10 10 10 01 10
x &= (10)26 00 10 10 10 00 10
popcount(x) 4

Table 3.8: Bit-parallelized counting of self- or cross-annealing base-
pairs in two fragments.

Listing 3.8: Code fragment for bit-parallelized counting of annealing
bases. Note that we need tomask out bits outside of the overlap region.

1 x = (code1 ^ code2) & overlap_mask;
2 x = x - ((x >> 1) & 0x1555555555555);
3 x &= 0xAAAAAAAAAAAA & overlap_mask;
4 auto annealings_x = __builtin_popcountll(x);
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Encoding and Filter Procedure

Algorithm 10 puts together the encodings of k-mers and their locations. The pro-
cedure builds for each reference sequence a list of TKMerIDs in order of occurrence
and a bit vector B in the length of the last TKMerID occurrence (see Section 3.8). We
first have to collect positional indices of k-mers (set bits in B), and lengths occurring
at a specific position (encoded in a prefix as described in Section 3.7). Finally, the
sequence of the longest k-mer per location is looked up, 2-bit encoded, and the
consolidated TKMerID checked for primer acceptability (see Cs in Table 2.3). In Sec-
tion 3.9.4, it is explained how the location encoding structure B is used to address
TKMerIDs efficiently.

Algorithm 10 Lookup and encoding of DNA k-mers and references (step 3). First, the
last k-mer occurrence for each reference sequence is determined, and a new bit vector
instance is resized accordingly. Each location L from the input map is associated
with a fixed value for k and a list of occurrences represented as tuples of sequence
identifiers and positions. We refer to the number of bit vector transformed references
as n. In the first loop (lines 4-6), PriSeT sets bits for each k-mer occurrence. The
second loop (lines 8-12) composes the prefix by accumulating the length bits. In
the third loop (lines 13-24), PriSeT looks up sequences for the longest k occurring
at a specific position. If at least one k-mer encoded in a KMerID passes the filtering,
the KMerID is appended to the list associated with the bit vector B. Otherwise, the
related bit in B has to be reset.
1: procedure Filter(Locations, Text)
2: B ←[~0]n . initialize bit vectors
3: KMerIDs← [[]]n
4: for all L← Locations do
5: for all SeqID, SeqPos← L.occurences() do
6: B[SeqID][SeqPos]← 1 . set bit for k-mer occurrence
7: Loc2k← {} . dictionary to collect values of k per position
8: for all L← Locations do
9: k← get_k(L)
10: for all SeqID, SeqPos← L.occurences() do
11: prefix← Loc2k[(SeqID, SeqPos)]|(1� (63− k + κmin))
12: Loc2k[(SeqID, SeqPos)]← prefix . update length bits
13: for all SeqID← [1 : |B|] do . lookup when bit set
14: for all r← [1 : rank1(B, |B[SeqID]|)] do
15: SeqPos← select1(B, r)
16: prefix← Loc2k[(SeqID, SeqPos)]
17: kmax ← κmax - ffs(prefix� 54) + 1 . identify largest k
18: dna← lookup(Text, SeqID, SeqPos, kmax)
19: code← encode(dna) . encode DNA seq
20: KMerID← prefix | code . concatenate prefix and code
21: if Cs(KMerID) then
22: KMerIDs← KMerIDs+[KMerID] . store
23: else
24: B[SeqPos]← 0 . drop KMerID and reset bit if not passing
25: return B, KMerIDs
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3.9.4 Combining K-mers into Pairs

In the final combining step, we form pairs of two k-mers if they satisfy the second
chemical constraint set Cp (see Table 2.3). In a PCR with paired primers, we need to
restrict the transcript regions to ensure overlap of reads and guarantee a common
minimum length for all transcripts. This is because reads are usually trimmed to the
same length in the bioinformatics pipeline - a requirement for most OTU clustering
algorithms.

The strategy for pair-forming is to determine one k-mer to be the forward primer
on the minus strand from 5’ to 3’ direction, and the second k-mer the reverse primer
on the plus strand. Since k-mers with the same starting positions are encoded in a
single TKMerID, for each forward and reverse TKMerID pair we have to iterate over
all encoded k-mer combinations as shown in Figure 3.4 and Algorithm 11.

Note that FASTA libraries usually store sequences from 5’ to 3’ direction. There-
fore, when choosing a second primer to be the reverse primer, the GC clamp and
AT tail tests have to be applied to the prefix of a k-mer. A translation into the DNA
complement is not necessary, since all chemical tests, except for the annealing, treat
A and T, and C and G substitutionally.

Figure 3.4: Possible combinations of k-mers encoded in two TKMerIDs.
A single TKMerID encodes up to 11 different k-mers. When form-
ing pairs at most, 121 unique combinations have to be considered,
which can be stored in a fixed-length std::bitset<121> as part of
a primer pair data structure (see CombinePattern.hpp in source code).

Filters for Primer Pairs

Two k-mers encoded in two distinct TKMerIDs represent a sound primer pair if in
addition to Cs they satisfy the constraint set Cp. Concretely, we have to check for
cross-annealing, GC clamps, (A|T)3 tails, and ∆Tm (see Table 2.3). We can re-use the
code of the self-annealing test for testing cross-annealing, except that we cannot
exploit symmetry and have to test almost 2k offset positions. GC clamps and (A|T)3
tail tests are carried out by comparing the tails against a fixed number of possible
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Algorithm 11 Combine k-mers sequence-wise (step 4). For each position referring to
a TKMerID in the bit vector transformed reference, we fix the search window indices
using select1. Then for each forward and reverse k-mer combination encoded by
TKMerID1 and TKMerID2, we evaluate chemical fitting and report them.
1: procedure Combine(B, KMerIDs)
2: Pairs← [[]]n
3: for all B← B do
4: for all r1← [1:rank1(B, |B|)] do
5: idx1← select1(B, r1)
6: w_beg← idx1 + κmin + τmin
7: w_end← idx1 + κmax + τmax
8: for all r2← [rank1(B, w_beg) : rank1(B, w_end)] do
9: TKMerID1← TKMerIDs[r1]
10: TKMerID2← TKMerIDs[r2]
11: for all (kmer1, kmer2)← [TKmerID1, TKMerID2] do
12: if Cp(kmer1, kmer2) then
13: Pairs← Pairs + [(kmer1, kmer2)]
14: return Pairs

tail patterns, and for computing ∆Tm, we re-use the bit-parallel GC count function
shown in Listing 3.2.
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3.10 Theoretical Runtimes and Space Occupation

For the FM-index transformation of a library with a total size of N symbols we need
O(N) time and O(log |Σ|n) + o(log |Σ|2n) bits space as described in more detail in
Section 3.9.1. The FM frequency computation performs a single k-mer look-up in
O(k) where k is the length of the k-mer to be looked up. Additionally, all occurrence
locations need to be gathered, which depend on the number of occurrences occ and the
total library size N. This can be done inO(k + occ) by exploiting the lexicographical
ordering (Ferragina and Manzini, 2000) and subsampling the suffix array. The space
thereby occupied is O(N) thanks to the k-mer compression scheme described in
section 3.7 compared to O(N(κmax − κmin + 1)) when storing all k-mers separately.
Taking into account at most N − k + 1 different k-mers, the runtime is in O(N(k +
occ)) (see Table 3.9).

All chemical filters in the filtering step analyze the encoded sequences (TKMerID)
in a bit-parallel or single-pass fashion. Some require simple counting (Tm, GC-
content) or pattern match (dinucleotide runs, (A|T)3 tails). The most complex one is
the annealing filter in which a k-mer is shifted at most 2k times and XORed against its
complement or reverse complement. The identification of a connected self-annealing
pattern of size four, which corresponds to a 0b11111111 pattern, can be made in
constant time per shift position by using bit parallelism (see Listing 3.8). Filtering is
applied to at most N k-mers, giving us a total runtime of O(κmaxN). For storing the
bit vector transformed sequences, and the ranked TKmerIDs PriSeT requires O(N)
space.

Pairing information of k-mers needs to be stored in addition to the list ofTKMerIDs
and the asscociated bit vector. A single reference has an expected length of N

n bases.
For each forward k-mer we search with an offset of τmin a candidates’ window of size
τmax− τmin. Hence, we have at mostO((N

n − τmin)(τmax− τmin)) pairs per reference13.
For each pair, a match test is performed that is linear to the expected length of the two
k-mers14, i.e., inO(k). In total, we have n references, giving us a combination runtime
of O(nk(N

n − τmin)(τmax − τmin)). The theoretical upper bounds are summarized in
Table 3.9.

FM-Index FM Frequency

Runtime O(N) O(N(κmax + occ))

Space O(log |Σ|N) + o(log |Σ|2N) O(N)

Filter & Transform Combine

Runtime O(κmaxN) O(nκmax(
N
n − τmin)(τmax − τmin))

Space O(N) O(n(N
n − τmin)(τmax − τmin))

Table 3.9: Runtime classes and space occupation module-wise with N
as the total library size, |Σ| is four, because of the underlying alpha-
bet being {A, C, G, T}, n the number of references per library, κmax the
largest k-mer length, ω the window width, and τmin/max the amplicon
length limits, and occ the expected number of k-mer occurrences.

13κmin, κmax are dropped here due to their relatively smaller size
14i.e. application of filter set Cp
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3.11 Example Applications

In this section, we evaluate two different scenarios. In the first use case the library
is an explicitly uncurated plankton data set. The sequences are of short length and
cover primarily 18S. The plankton dataset is taxonomically broad as outlined in the
study of Section 2.5. The task is to compute de novo primer pairs exhibiting a broad
coverage in terms of taxa. The second scenario is diametrically opposite. We are
given a few complete viral genomes (SARS-CoV-2) to compute primer pairs producing
species-distinctive amplicons.

Put in front is a proof of concept test, inwhich the primer pairs computed by PriSeT
are searched for primer pairs that have been published in previous metabarcoding
studies. Lastly, the experimental runtime is measured on the plankton data set.

3.12 Plankton

Plankton clades are taxonomically very heterogeneous, as shown in Figure 2.3. The
phylogenetic diversity is challenging for identifying new primer pairs in common, and
in addition, the sparsity of the reference database limits the search options severely. In
the subsequent experiments, we apply PriSeT to identify frequent pairs and compare
the sequences with published primer pairs. We further compared taxonomic coverage
and barcode suitability.

3.12.1 Data Set for Plankton

As a reference library, NCBI GenBank’s nucleotide collection (Benson et al., 2012)
was sampled15 with tactac16, which contains non-human sequences from various
sources. The prevalent sequence length range is between 400 to 2500 bases. We
picked nineteen clades that include eukaryotic groups typically found in freshwater
plankton samples ranging from phytoplankton to zooplankton and fungi. For each
taxon within a clade that contained at least one accession assigned to it, we sampled
at most three accessions to remove the sequence bias introduced by highly populated
taxa. Table 3.10 lists the numerical identifier, clade names, their number of taxa,
taxa with at least one accession (Covered), total number of accessions, and library
sizes in megabytes (MB). We sampled between 1.38 (Rotifera) to 2.5 (Charophyceae)
accessions per covered taxon (Accs/Covered), which illustrates the sparseness of
plankton clades.

3.12.2 Verification of Published Primer Pairs

Bacillariophyta (diatoms) and green algae (mostly Chlorophyta) are among the most
diverse and abundant organisms in freshwater and marine plankton communities.
Bacillariophyta are small (2 - 200 µm), and their characteristic silica cell walls allow
morphological identification by trained experts. They contribute approximately 20 %
of global oxygen production and represent nearly half of the organic material in the
oceans. We use the DIV4 primer pair described in Section 2.5.2 which was specifically
designed for Bacillariophyta by Visco et al., 2015 (see Table 2.7). Hadziavdic et al.,
2014 optimized primers towards a broad coverage of Eukaryota (universal eukaryotic
primers) by aligning all sequences from the SILVAdatabase and computing the entropy

15accessed on 29.03.2019
16https://github.com/mariehoffmann/tactac

https://github.com/mariehoffmann/tactac
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Clade Name Taxa Covered Accs Lib Size

Ph
yt
op
la
nk
to
n

33849 Bacillariophyta 2,060 1,724 3,474 4.98 MB
304574 Charophyceae 153 138 350 0.42 MB
3041 Chlorophyta 10,490 9,466 15,377 31.79 MB
2825 Chrysophyceae 428 339 507 0.89 MB
3027 Cryptophyta 396 344 653 1.97 MB
2864 Dinophyceae 6,147 4,630 7,151 6.24 MB
33682 Euglenozoa 1,912 1,710 3,254 19.29 MB
5747 Eustigmatophyceae 250 215 344 1.4 MB

Zo
op
la
nk
to
n

554915 Amoebozoa 3,211 2,817 3,898 4.63 MB
33651 Bicosoecida 101 79 119 0.15 MB
28009 Choanoflagellata 131 88 186 0.28 MB
136419 Cercozoa 1,221 953 1,562 2.34 MB
5878 Ciliophora 4,101 2,977 4,868 6.94 MB
6657 Crustacea 45,058 25,643 50,163 38.85 MB
6231 Nematoda 13,954 12,086 20,975 82.44 MB
27999 Perkinsidae 81 75 114 0.13 MB
10190 Rotifera 1,429 1,254 1,727 1.57 MB

Fu
ng
i 451864 Dikarya 141,097 129,254 209,449 518.44 MB

112252 Fungi i. s. 7,169 5,948 9,149 10.21 MB

Table 3.10: Data set used for the primer verification test (Section
3.12.2), the de novo search (Section 3.12.3), and the runtime analysis
(Section 3.12.4). Taxonomic identifiers in the clade column follow
NCBI’s nomenclature, Taxa refers to the total number of nodes (in-
cluding virtual ancestors), Covered to the number of taxa having at
least one accession assigned to it, Accs to the total number of collected
accessions and Lib Size to the size of the FASTA file containing all

accessions.
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at each alignment position. The authors identified eight forward and six reverse
primer candidates from the low-entropic regions. Here we used F-566a as forward,
and R-1200 as a reverse primer (EUK14 from Table 2.7 and E14 hereafter).

Other tested primers are 23S by Yoon et al., 2016 developed for marine phyto-
plankton (23S hereafter), ChloroF/R by Moro et al., 2009 for Chlorophyceae and
Bacillariophyceae (CHL hereafter), CVfor/rev by Boscaro et al., 2017 for freshwater
ciliates (CV hereafter), D512for/D978rev by Zimmermann, Jahn, and Gemeinholzer,
2011 for diatoms (DIA hereafter), TAReuk454FWD1/TAReukREV3 by Stoeck et al.,
2010 (EUK15 from Section 2.5 and E15 hereafter) for the V4 rRNA region of ma-
rine Eukaryota, EUKAF/R by Moreno et al., 2018 for the 18S region of Protozoa (EA
hereafter), G18S4/22R by Blaxter et al., 1998 for Nematoda (nSSU hereafter), and
SSU556F/SSU911R by Smith et al., 2017 for Dinoflagellata (SSU hereafter). Some of
these primers had been designed for a specific organism group. However, we expect
that they are also effective in other clades.

Primer ID Name Sequence (5’ - 3’) Tm [°C] GC [%]

23S A23SrVF1 GGACARAAAGACCCTATGβ 54.9 47.2
A23SrVR1 AGATCAGCCTGTTATCCα 52.6 47.1

CHL ChloroF TGGCCTATCTTGTTGGTCTGTα 63.8 47.6
ChloroR GAATCAACCTGACAAGGCAAC 63.8 47.6

CV CVfor CCAGCASCCGCGGTAATWCC 71.6δ 65.0γ

CVrev TCTGRTYGTCTTTGATCCCYTA 62.8δ 43.2

DIA D512for ATTCCAGCTCCAATAGCGα 60.9δ 50.0
D978rev GACTACGATGGTATCTAATC 50.7δ 40.0

DIV4 DIV4for GCGGTAATTCCAGCTCCAATAGα 65.8δ 50.0
DIV4rev3 CTCTGACAATGGAATACGAATA 58.7δ 36.4γ

E14 F-566a CAGCAGCCGCGGTAATTCCα 70.2δ 63.2γ

R-1200 CCCGTGTTGAGTCAAATTAAGCγ 64.7δ 45.5

E15 TAReuk454FWD1 CCAGCASCYGCGGTAATTCCα 70.8δ 62.5γ

TAReukREV3 ACTTTCGTTCTTGATYRA 53.3δ 33.3γ

EA EUKAF GCCGCGGTAATTCCAGCTCα 69.2δ 63.2γ

EUKAR CYTTCGYYCTTGATTRA 55.2δ 41.2

nSSU G18S4 GCTTGTCTCAAAGATTAAGCCα 60.0δ 42.9
22R GCCTGCTGCCTTCCTTGGAγ 70.3δ 63.2γ

SSU SSU556F CGCGGTAATTCCAGCTYCαγ 64.8 58.3
SSU911R ATYCAAGAATTTCACCTCTGACαε 60.2 38.6γ

Table 3.11: Selected primer sequences for the verification experiment.
Sequences are noted in 5’ to 3’ direction. Melting temperatures were
computed using a modified nearest-neighbor method described by
Breslauer et al., 1986, assuming a primer concentration of 0.5 µm and
salt 50mM. For ambiguous encodings, the average of both extremawas
taken. Sequence parameters violating primer design recommendations
are written boldly. Critical structures are marked: self-annealing (α),
mononucleotide runs (β), GC clamps (γ), exceeding ∆Tm (δ), (A|T)3

tails (ε), and exceeding CG-content ranges (γ).

Table 3.11 lists the ten selected primer pairs targeting 18S that we searched for in
the reference library. Remarkably, not a single pair has chemically optimal properties:

• At least one sequence of each primer pair shows a self-annealing pattern.
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Parameter Verification De Novo

k [16 : 25] [16 : 25]
τ [nt] [30 : 800] [30 : 800]
Tm [°C] [50 : 60] [52 : 58]
GC [%] [35 : 65] [40 : 60]
4-Runs of C or G no no
Self-Annealing off on

∆Tm [K] 10 5
Cross-Annealing off on

Table 3.12: Filter settings in PriSeT for the primer verification experi-
ment and the de novo primer discovery on the plankton data sets.

• Seven pairs differ significantly in melting temperatures (independent of the
computation method, i.e., Wallace rule or nearest-neighbor method).

• Three sequences have GC clamps at their 3’ ends.

• Eight sequences have a GC-content that exceeds the recommended range.

• Primer A23SrVF1 contains a run of five adenine bases (R substitutes A or G).

• Primer SSU911R has an (A|T)3 tail.

Therefore, we relaxed the chemical constraints for the verification experiment by
allowing a broader melting temperature range and difference ∆Tm, a larger GC-
content range, and we deactivated the self-annealing filter (see settings in Table
3.12).

Given the sampled library, we first computed the ground truth by searching the
library for the known primer sequences via a linear text search. All data sets were
marked that had at least one accession with forward and reverse primers matching
as indicated by a presence (1) or absence (0) bit in the denominator of each cell in
Table 3.13. Then PriSeT was run with the relaxed constraints listed in the Verifica-
tion column of Table 3.12, and we searched the result set for the published primer
sequences listed in Table 3.11. Presence or absence in the result set is indicated in
the numerator.

As a result, we could recover all those primer sequences that satisfied the relaxed
constraints. The forward primer of DIV4 and both primers of CV did not pass the
relaxed Tm filter setting (Tm > 65 °C). The primer pairs E15 and EA failed for Cp
because of their excessive differences in melting temperatures (more than 8 Kelvin).

3.12.3 De Novo Computation

We reset the primer constraints to the recommended ranges (see Table 2.3 in Section
2.3.2) to yield chemically uncritical primer pairs. The 50 most frequent k-mer pairs
of each clade were then reported17. Moreover, to compare PriSeT’s de novo pairs
with the published ones, we computed frequencies, coverage rates, and amplicon
variations. The computation was performed via text search (see Table 3.14).

The de novo and published primer result sets were either ranked by taxon coverage
(see left side of Table 3.14) or by amplicon variation (see right part of Table 3.14). From
17labeled by hashing forward and reverse sequence
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Clade 23S CHL CV∗ DIA DIV4∗ E14 E15∗∗ EA∗∗ nSSU SSU

Ph
yt
op
la
nk
to
n

33849 1/1 0/0 0/0 1/1 0/1 1/1 0/1 0/1 1/1 1/1
304574 1/1 0/0 0/0 0/0 0/0 1/1 0/1 0/1 0/0 1/1
3041 1/1 1/1 0/0 1/1 0/0 1/1 0/1 0/1 1/1 1/1
2825 0/0 0/0 0/0 1/1 0/1 1/1 0/1 0/1 1/1 1/1
3027 1/1 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 1/1
2864 1/1 0/0 0/1 1/1 0/1 1/1 0/1 0/1 1/1 1/1
33682 1/1 0/0 0/0 0/0 0/0 1/1 0/1 0/0 0/0 0/0
5747 1/1 1/1 0/0 1/1 0/0 1/1 0/1 0/1 1/1 1/1

Zo
op
la
nk
to
n

554915 0/0 0/0 0/1 0/0 0/0 1/1 0/1 0/1 1/1 1/1
33651 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 1/1
28009 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 1/1
136419 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 1/1
5878 0/0 1/1 0/1 0/0 0/0 1/1 0/1 0/1 1/1 1/1
6657 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 1/1
6231 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 1/1 0/0
27999 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 0/0 1/1
10190 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1 0/0 0/0

Fu
ng
i 451864 0/0 0/0 0/1 0/0 0/1 1/1 0/1 0/1 1/1 1/1

112252 0/0 0/0 0/1 1/1 0/0 1/1 0/1 0/1 1/1 1/1

Table 3.13: Primer presence test for established primer pairs. x/y
refers to whether a pair was found by PriSeT (x = 1) or not (x = 0)
versus the pair was found in the library (y = 1) or not (y = 0). Primer
pairs that were not discovered by PriSeT either did not pass the first
chemical filter set Cs (labeled with ∗) or the pair filter set Cp (labeled

with ∗∗).
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the de novo set and the published primers set, we reported only the top-ranked ones.
For example, for Charophyceae (clade 304574), the top-ranked primer by coverage is
d8d47dc9b873d02b– a de novo computed primer, and the highest-ranked published
primer is EUK14. In the common set, however, there are more de novo primer pairs
that have a higher rank than EUK14 but are not reported here for the sake of briefness.
When ranking by coverage, for 11 out of 19 clades a de novo primer outperformed all
published primers.

Since coverage optimizes towards broadness and variation towards amplicon
distinguishability, one expects that the top primers for the two ranking methods
may differ. In 14 out of 38 cases, the top primer pairs of the de novo or published
sets were identical, i.e., the ranking method had no influence. In 24 cases, a higher
variation was traded against a lower coverage and vice versa. When ranking by number
of unique amplicons (variation), we identified seven de novo primers that performed
equally well (see Table 3.14).

The result is surprising in light of the well-known sparsity problem in planktonic
clades and the apparent fact that the GenBank reference sequences are from PCR
amplicons with previously published primer sets. However, with PriSeT we were able
to identify new primer pairs having a broader coverage or variation for some clades.

Published primers outperformed de novo primers by at most 7 %, and de novo the
published ones by at most 70 % for coverage. Nonetheless, other performant primer
pairs may exist for specific clades that the author is not aware of – themost promising
ones were chosen from the PR2 database18. Furthermore, EUKA/B from Medlin et al.,
1988, Cerc479F/Cerc750R by Harder et al., 2016, and DimA/DimB by Cannon et al.,
2018 were tested, which either did not show up or occurred with very low frequencies.

From the published primers E14 and EUKA are certainly versatile primer pairs.
However, they do not satisfy Cs or Cp and might require more lab experience when
applied in a PCR. The complete list of top-performing primers is available onGitHub19.

3.12.4 Performance on Plankton Data Set

For each clade, we measured the step-wise runtimes excluding the FM-index compu-
tation (see Figure 3.5). The index computation needs to be done only once and upon
updates of the original library. The FM-index on the plankton data set consumed
about 4.2 times more space than the library it is computed on20.

We set the relative frequency cutoff for k-mers to 5 %. The number of k-mer
locations grows, therefore, linearly with the library size. We have chosen not to show
the performance on a synthetic data set because k-mer frequencies and dropout rates
are defined by inherent sequence properties (entropy, repeats, and other), which are
not homogeneous for all clades. A single clade or synthetic data set would produce
non-representative, and even misleading results. For example, clade 6657 has a
library which is 7 MB larger than the one of clade 3041. Surprisingly, clade 6657
produces only 4.83 million k-mers, compared to 43,9 million k-mers of clade 3041
(see Figure 3.6). For the largest data set (clade 451864 of Dikarya), the frequency
cutoff had to be raised to 10 %. Otherwise, the vast amount of k-mers causes memory
issues on a laptop with 16 GB RAM (see Discussion).

Data sets sizes (abscissa) are plotted against the runtimes (ordinate). Both axes
are log2-scaled for readability. The total runtime for the smallest data set Perkinsidae

18https://pr2-database.org
19https://github.com/mariehoffmann/PriSeT_denovo
20theoretical complexity class for space occupation is O(N log |Σ|)

https://pr2-database.org
https://github.com/mariehoffmann/PriSeT_denovo
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Figure 3.5: Runtimes for all clade data sets broken down to FM fre-
quency computation, filter, and combine step. We set the k-mer fre-
quency cutoff was set to 5 % w.r.t. the number of references per clade.
The results for Fungi (clade 451864, 500 MB large) are omitted here
due to the necessity of setting the cutoff to 10 %, which results in run-
times comparable with clade 6231 (82 MB). Both axes are log-scaled.

The runtimes are listed in tabular format in Table B.2.

(clade 27999 with 0.13 MB) is ≤ 1 second, for fungi (clade 112252 with 10.21 MB) 33
seconds, and a large dataset like Nematoda (clade 6231 with 82.55 MB) 70 minutes.

The FM frequency computation contributes the most to the total runtime. This
is due to the large number of possible k-mers within a library. For each separate
call of FM frequency with a fixed value for k, all O(N) k-mers have to be held in
main memory until the location gathering has terminated and low-frequent k-mers
can be permanently dropped. The low-frequency cutoff reduces the number of k-
mers drastically, such that the contribution of the expensive combine step remains
relatively low.

The dropout rate during the filter and combination steps depends strongly on the
sequence structure within the clades, as shown by the strongly varying run times of
the filter and combination steps in proportion to the original library size. Theoretical
runtimes were analysed in Section 3.10 (see Table 3.9).

In general, if the number of suitable primers is sufficiently low, it may be worth-
while to pre-calculate primer sequences and use the FM index only to search for
location and abundance. The k-mer counts in Figure 3.6 suggest that the remaining
amount is infeasible to precompute: about one-third of the frequent k-mers (FM Fre-
quency Step) is chemically suitable. Between 212 and 218 k-mers remain as candidates
(Transform & Filter Step) for pairing.
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Figure 3.6: K-Mers for all clade data sets counted after the FM fre-
quency computation, filter, and combine steps. For the combining
step, we counted pairs, not k-mers. The settings were the same as in

Table 3.5.

3.13 SARS-CoV-2

The problem of data sparseness of plankton clades does not hold for viral pathogens.
Contrarily, a lot of effort is spent to sequence as many genomic variants as possible.
The data abundance allows for correct phylogenetic placement and understanding
of their evolution or functional deviation from related species. Now, given a set
of complete genomes, we wish to obtain primers that produce sequences that are
guaranteed to have no matches outside a specific taxon. When looking at the current
SARS-CoV-2 outbreak, such primers can be used for processing saliva samples of
patients with flu-like symptoms. These samples contain hundreds of bacteria, fungi,
and virus species. Needless to say that a recall of 100 % is of uttermost importance –
an unrecognized SARS-CoV-2 infection will impede efforts to contain the outbreak.
On the other hand, a false-positive diagnosis imposes an unnecessary burden on the
patient and the healthcare system.

For this experiment, we searched for primers on complete SARS-CoV-2 genomes21.
We then filtered for those having distinct transcripts from their closest relatives
within the Orthocoronavirinae, a subfamily within the Coronaviridae. Online BLAST
searches against the complete nt/nr dataset from GenBank showed that in addition,
no sequence matches outside the coronavirus family occurred.

3.13.1 Genome and Functional Units

The SARS-CoV-2 virus belongs to the family of coronaviruses. Its genome is a single
linear, positive-sense RNA sequence (+ssRNA) with a length of 29,727 bases. It is the
seventh known coronavirus to infect humans (Zhu et al., 2020). Notable outbreaks of
other coronaviruses occurred in 2002-2004 of SARS-CoV (Forgie and Marrie, 2009);
MERS-CoV22 in 2012, 2015, 2018.

The known open reading frames (ORFs) are shown in Figure 3.8. SARS-CoV-
2 viruses can enter cells by binding to two types of cellular receptors, which are
21A virologist might exclude some regions.
22https://www.who.int/csr/don/24-july-2019-mers-saudi-arabia/en/

https://www.who.int/csr/don/24-july-2019-mers-saudi-arabia/en/
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ACE2 (angiotensin-converting enzyme 2) and DPP4 (dipeptidyl peptidase 4) via the S
protein (Song et al., 2019). In the cell’s cytoplasm, the ORFs 1a and 1b are translated
and cleaved into an RNA replicase-transcriptase complex, which promotes replication
and transcription of more RNAs, first into negative-sense, then into positive-sense
RNA. The copies are encapsulated by N proteins (from ORF10) and released through
exocytosis.

3.13.2 Dataset for SARS-CoV-2

19 complete SARS-CoV-2 genomes23 were selected from the subgenus Sarbecovirus
for PriSeT to compute primer pairs satisfying the RT-PCR constraints listed in Table
3.15. To filter for primer pairs producing amplicons with no co-occurrences in other
Orthocoronavirinae genomes, we downloaded all available genomes from GenBank –
24 Alphacoronavirus, 5 Betacoronavirus (excluding Sarbecovirus), and 2 Gammacoro-
navirus genomes (see Figure 3.7).

Figure 3.7: Taxonomy of Orthocoronavirinae to subgenus level. The
numbers indicate howmany complete genomes we used for the primer
de novo search of each subgenus. From the Sarbecovirus subgenus, all
19 genomes are assigned to the species SARS-CoV-2. Their proximity
to Bat SARSr-CoV (another Sarbecovirus) was revealed by a BLAST

search of amplicons of de novo primer pair candidates.

3.13.3 De Novo Computation

Since we have RNA as a template, a different protocol needs to be applied that first
produces a complementary DNA sequence with reverse transcriptase, which is then
PCR-amplified (see RT-PCR in Section 2.3.3). The settings are narrower compared to
a PCR for plankton samples. The optimal primer length is 20 bp, the amplicon length
between 60 to 150 bp, and the GC-content between 50 to 60 %.

PriSeT produced 286 primer pairs given the settings listed in Table 3.15. We
filtered for pairs producing amplicon sequences that have no co-occurrences in one of
the other 39 coronavirus genomes (based on a 100 % sequence identity). For the 114
remaining primer pairs, we ensured amplicon distinction by launching two BLAST
23Downloaded from GenBank on 3rd April 2020. Accessions can be requested from the author.
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Parameter Settings SARS-CoV-2

k [18 : 24]
τ [nt] [60 : 150]
Tm [°C] [55 : 63]
GC [%] [50 : 60]
4-Runs of C or G yes
Self-Annealing on

∆Tm [K] 5
Cross-Annealing on

Table 3.15: Filter Settings in PriSeT for de novo primer discovery on
SARS-CoV-2 genomes. Properties not listed follow the properties of

the standard protocol.

queries for each of the 114 amplicons against GenBank’s nucleotide collection (nt/nr)
online24. We ran the first query on the complete nt/nr data set and the second on the
complete nt/nr data set except SARS-CoV-2 (taxonomic ID 2697049) to ensure that
we did not miss relevant matches with non-SARS-CoV-2 entries.

None of the primer pairs produced amplicons with 100 % identity and 100 % cov-
erage simultaneously for non-Sarbecoviruses. Of the 114 primer pairs, five had 100 %
sequence identity with a single accession of a Sarbecovirus isolated from the pangolin,
but no other relevantmatches. There were 109 primer pairs producing amplicons with
no co-occurrences. Out of the 109 primer pairs, we found 12 with amplicons distant
from even closely related viruses. Concretely, the sequence identity was below 97 %,
and 97 had proximity (but not identity) to at most two other accessions, namely, two
Sarbecovirus species isolated from a bat and the pangolin. The first one is associated
with the recent pneumonia outbreak (Zhou et al., 2020).

The complete list of primer sequences and amplicons can be found in the Appendix
B.4. None of the primer sequences is identical to the published coronavirus (2019-
nCoV) real-time RT-PCR primers25, which are 2019-nCoV_N1-F/R, 2019-nCoV_N2-
F/R, 2019-nCoV_N3-F/R, and RNAse P (RP-F/R) (see sequences in Appendix B.3).
However, the forward primer 2019-nCoV_N2-F occurred in transcripts of three de
novo primer pairs computed by PriSeT.

The approximate amplicon locations relative to the genome are shown in Figure
3.8. Most notable is the cluster of more than 60 barcodes around the 3’ end. Each
cluster corresponds to a region that contains changes unique to the newly evolved
SARS-CoV-2 virus.

24on 3rd of April 2020
25https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probe

s.html

https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html
https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html
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Figure 3.8: Top: Genome organization and functional domains of
SARS-CoV-2 based on GenBank MN908947.3 and NCBI’s ORFfinder.
Bottom: Transcript positions for de novo primers. Note that transcript
lengths are scaled up relative to genome length for readability.
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Chapter 4

A Database for Metabarcoding
Experiments

Ordnung ist die Verbindung des Vielen
nach einer Regel.

Immanuel Kant

4.1 Problem Statement

Metabarcoding experiments are highly sophisticated procedures involving many
actors and technical components. They are usually conducted over months or even
decades, as in the long-term monitoring project presented in the study (see Section
2.5). Here we look at the workflow of a research group with access to lab services like
sample collection, microscopic analyses, and molecular services like DNA extraction,
PCR, and sequencing. The fundamental task to advance research in environmental
monitoring and understanding freshwater ecosystems is the iterative improvement of
all methods that contribute to the species identification of heterogeneous mixtures.

The current state at the institute’s lab is that data and information are physically
scattered over servers, workstations, email accounts, and individuals. In order for new
entrants to reach an informed and contributing state, they must contact a list of indi-
viduals, require access to at least one server, and must evaluate multiple documents.
If entrants intend to reproduce a metabarcoding pipeline, they have to comprehend
the digital remains in terms of scripts and intermediate data products. There are no
standards for protocolling and documentation. Individual group members who have
key information are a bottleneck because they may be vacant or ill.

When looking at typical digital service providers that are being facedwithworkflow
issues for decades, we can identify and transfer some of their methods to a lab
environment to alleviate data management. Service providers have three major
concerns:

1. Reliability

2. Scalability

3. Maintainability

A service is reliable if it tolerates the faults of components. It is scalable if the
system can deal with growing data volumes, network traffic, or more complex com-
putations, and it is maintainable if engineers can work productively over multiple
generations. Maintainability is especially an issue for software that is in use 24 hours.
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Bug fixing and features development are handled by a globally distributed team
(Follow-the-sun model, see Carmel, Dubinsky, and Espinosa, 2009). A remote devel-
oper can take over the task of his predecessor immediately. Something impossible
without strict coding style guidelines, and documentation.

Maintainability and scalability are major concerns of research labs but are solved
insufficiently. While missing maintainability is pressing, scalability will become an
issue soon as sequencing costs drop faster than storing a base on a hard disk. In this
section, we address maintainability by proposing a database scheme that captures
relevant components and relationships. When given access to the hosting database
server, the entrant reaches a productive state faster, is admonished to document, and
stores a result in a consistent way for co-workers and successors. The schema intends
to answer typical entrants’ questions like

• How frequently are all sites sampled?

• Which primer pairs have been tested so far?

• Where is the data set used in study X?

• Which tools have beenused in previous studies to build a bioinformatics pipeline?

• How many different DNA extraction kits have been in use since last year?

Also, the consolidation of data and analysis results allows for new types of meta-
analyses that are, at the moment, hard to solve, or even infeasible. However, these
meta-analyses are important for iterative method improvement as they provide a
form of feedback both for sampling and bioinformatics analysis. For example, having
experimental data consolidated, we will be able to answer questions like:

• What was the average number of OTUs a primer pair produced given identical
sample treatment?

• Which primer pair is most effective on Cryptophyta’s group?

• Which plankton samples underwent both microscopic and metabarcoding anal-
ysis?

• What is the average number of reads produced when using freeze-drying versus
airdrying as a sample treatment?

Consolidating trial data allows users to analyze results from previous trials, calculate
statistics, identify study-related records without delay in human-to-human commu-
nication, or restart entire metabarcoding pipelines. A data schema can also be used
for much simpler but common tasks to identify institution-specific terminology that
cannot be looked up via web search. The concern of scalability is addressed in the
final discussion (Section 5.3).

In this section, we refer to data as raw, unorganized facts, as opposed to informa-
tion that refers to processed, organized, and structured data. In the following, we will
use the more general term data to refer to unstructured and structured data for the
sake of brevity.
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4.2 Motivation

For lake monitoring, researchers at the IGB apply more and more DNA metabar-
coding as it allows for higher precision (see Section 2.4.2) and can be executed at a
higher pace compared to manual sample evaluation. The constant improvement of
marker efficiency and bioinformatics pipelines contributes to this trend. The cost
of sequencing a base has halved roughly every five months, whereas the costs for
storing a byte are only halving every 14 months (Stein, 2010). According to Stein,
2010, the prediction is that in a not too distant future, sequencing a base will cost
less than storing it on a hard disk. The accumulation of sequence and experimental
data is merely beginning.

Wewant to structure trial-related data by defining a database schema that captures
the relevant and frequently queried data. Structured and merged data would allow
entrants to work more self-independent in contrast to waiting for documents to be
shared. Worse, there were situations where scripts and analysis results were lost
because the researcher had left the lab.

Another motivation is the increase in remote work in light of the ongoing pan-
demic. Before the pandemic, about 5 % of North Americans worked remotely; by
2020, 37 % were working full-time from home (Yang et al., 2022). Those not directly
involved in sampling and sequencing are particularly affected. Remote work does not
only change the communication habits, but also uncouples the timewindows in which
work is done. Yang et al., 2022 found a decrease in synchronous communication and
an increase in asynchronous communication. Without a compensation, it is more
difficult to exchange information over the network. A database management system
for experimental data could provide a minimal basis to accommodate this change.

While working out a database schema, it became evident that structuring the
data and information would also enable new kinds of meta-analyses. The IGB has
the unique possibility to sample the same sites over decades. It is of increasing
importance that lab operators and researchers query past and new data sets without
memorizing server locations and folder structures. Soon, the only way to manage
massive amounts of data will be a data store that structures, relates, and minimizes
data.

A normalized database schema tackles many of the herein described problems
– the reduction of data redundancy and reflection of data relationships. It allows
the formulation of constraints and enforces new data entries to comply with these
rules. This chapter describes a schema for a relational database management system
(RDBMS, or short DBMS) that allows consistent, non-redundant, and persistent
data storage for metabarcoding experiments. The data and data relationships are
accessible via virtualization and require just a user account and intranet access. An
administrator assigns user roles that allow graduations in their rights to read or write
to specific data partitions. Schema definitions are available on GitHub1.

4.2.1 Short- and Long-Term Staff

The particular situation for researchers at the institute’s lab poses challenges on
top of the organization of experimental data. Researchers like doctoral students,
postdocs, guests, or interns stay relatively short compared to lab operators and
department heads: typically three months to four years. These are the ones analyzing
sequence data or building tools that improve the workflow in one way or another.

1https://github.com/mariehoffmann/metabarcoding_database

https://github.com/mariehoffmann/metabarcoding_database
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Whereas department heads, group leaders, senior researchers, and lab operators stay
for many years and even decades. They are so familiar with the lab organization
that many details are self-evident and insufficiently communicated. On the other
side, it is tedious for long-term staff to communicate repeatedly the same pieces of
information.

The communication situation is complex through the geographical remoteness
of the data analysts. They are located remotely and visit the lab facilities only on
occasion. In a non-remote situation, open questions are often solved effortlessly
during coffee breaks with colleagues or stand-up meetings. Instead, questions must
be collected and communicated via emails, which may be overwhelming to the inter-
viewee. From our own experience, we know that whenmultiple questions are posed in
the same email, rarely all get answered, and often answers raise new questions. The
whole interview process may take days and weeks. If parts of the trivial facts would be
available in a consolidated, digitalized form, confusion and communication overhead
is reduced drastically. The goal is not to avoid human-to-human interaction, but to
reduce them for the sake of high-level questions.

Apart from the difficulty of knowledge transfer between the various staff groups,
data, and knowledge itself is cluttered over servers, accounts, and colleagues. Many
steps have to be taken until the actual research work can begin. A data analyst has to
reconstruct sample origin, molecular procedures, and previous pipelines and their
outcomes to create a starting point fromwhich to improve the status quo. For example,
the current system does not allow querying all experiments with some primer pair
X. All these relationships have to be decrypted from file names, stored scripts, and
by inquiring tabular sheets from a few technicians available. It is a fragile system
with many points of failure, like erroneous data deletion, language barriers, and
inconsistent data copies. There exists no digital description of how data sets are
related. Concretely, I experienced the following workflow blocking situations:

(i) Important information was known only to one co-worker

(ii) Redundantly stored data resulting in inconsistent data copies

(iii) Information residing on personal accounts

(iv) Software dependencies and updates

(v) Unfamiliar terms and abbreviations

(vi) Language barrier

Environmental studies are so complex that they are build-up and improved it-
eratively. There exists no one-fits-all pipeline. The iterative approach relies on
constructive feedback. It is challenging to establish an ongoing feedback loop be-
cause lab operators rely on the qualitative results of subsequently involved operators
and analysts. Many analyses are performed by researchers staying as short as for a
single experiment. They cannot compare two data sets with the same bioinformatics
pipeline. From a laboratory operator’s point of view, it is not transparent who has just
joined the group and what their responsibilities are. This makes the communication
barrier for lab operators higher than the other way around.

With the departure of researchers contracted on short term, insights and experi-
ence are lost, slowing the optimization and refinement of a metabarcoding analysis
pipeline. Most often, the only work document is a scientific publication. The short
stay of PhD students, trainees and postdocs will remain a fact, but a simplified access
to information would facilitate new research.
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4.2.2 Text Documents

Text documents are the primary communication tool that implies the copying, modi-
fication, and content divergence of documents. Synchronizing content that diverged
is time-consuming, and most often omitted. As a result, researchers lose work.

With data cluttered over many types of documents in various formats (free text,
tabular sheets, emails, etc.) also compatibility issues come into play. Some are
commercial, exclude important operating systems like macOS or Linux, or are not
backward compatible. For example, not all features of an MS Excel sheet are con-
vertible into OpenOffice Calc2. The macOS text edit software Pages is not downward
compatible, but a software update is often enforced3. With more data transferred
into a single system that undergoes low-frequent update cycles and speaks a single
language, incompatibilities are less frequent.

Entrants are confronted with plenty of abbreviations and technical terms that are
specific in their semantics to the institute. For example, one of the river sampling
sites Spree Neu-Zittau is abbreviated differently in protocols or label naming: SNZ
and NZ. It is not evident that those are aliases for the same site. In another situation,
a bioinformatician has to evaluate how many organisms were identified to species
level. When given a list of hundreds of unknown organisms, it is infeasible to look
them all up to gather taxonomic information. Instead, one is guided by binomial
names4. However, some organism groups comprise multiple taxa and carry collective
names written in the same format5. They are then easily counted as species falsifying
any statistics based on species count. More researchers are to come and will need
species lists augmented with taxonomic information. For example, it would save a
lot of work and avoid misunderstandings if organism names and taxonomies were
linked once.

4.2.3 Workflow and Goal

Figure 4.1 illustrates on a high level the steps where data is generated and further
processed. A technician takes an esample from a sampling site and prepares it for
storage and analysis. Samples can be analyzed by light microscopy or DNA metabar-
coding. The results are forwarded to the study designer or data analyst. The analyst
may request more documents or give feedback. Analysis results are consolidated as
OTU resolutions, statistical tests, or scientific publications.

2Some macros and formulas need to be rewritten.
3see discussion thread here: https://discussions.apple.com/thread/8627934, accessed

on 03.01.2022
4e.g., Scenedesmus maximus
5E.g., Cyclopoid nauplii

https://discussions.apple.com/thread/8627934
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Figure 4.1: Data transfer between lab operators and bioinformaticians.
Samples are collected from dedicated locations, processed, and pre-
pared for storage by the first lab operator. Some samples undergo
light-microscopic (LM) analysis, and the results are forwarded to the
study conductor or bioinformatician. Some samples undergo PCR and
sequencing conducted by the second lab operator. Sequences are sent
to the bioinformatician. There is plenty of bidirectional exchange
(light green arrows) about protocol details or biological questions on

organism groups.
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4.3 Aspects and Principles

In the next sections, we will describe how data and information are stored and com-
municated. We highlight those parts of the communication steps that we consider
inefficient and error-prone and could profit from a data consolidation. The aspects
we examined are immediacy of data, consistency, and consolidation. The immediacy
of data transmission describes how many steps are necessary before information
reaches the recipient. Data inconsistency occurs when data is replicated and changed,
for example, by sending and changing result sheets at the same time. Write access to
sensitive data should only be granted to a few maintainers to reduce the chance for
erroneous modifications. Another aspect is the control over data changes, e.g. via
version control.

Efficient retrieval of records is only possible if they are consolidated in the same
format and managed by the same system. Furthermore, it should be impossible to
store inconsistent data and it should be possible to correct human-made errors.

Principle Example
Immediacy Data should be communicated as directly as possible.

Consistency Data should be self-consistent.

Consolidation Data that is linked should be consolidated in the same
format and management system.

Access and Versioning Data and information should be modifyable by an
exclusive group of people, and be revertible.

4.4 Entities and Workflow

We now describe in continuous text format the most relevant artifacts (entities) that
are handled in the lab, their representation, and how they relate to each other: sam-
ples,morphological andmetabarcoding analyses, and the bioinformatics pipeline. Entity
properties relevant for documentation and analysis steps are displayed underlined.
We also mark pieces of information that allow us to constrain their data type.

4.4.1 Samples

Temporal patterns of species occurrence are recorded by sampling throughout the
year. The frequency of sampling is adjusted to the seasonal turnover rates of the
lake and river. At most one sample is taken per site and date. Freshwater sampling
procedures are described in protocols intended for either phyto- or zooplankton.
The set of sampling sites is fixed and can be described by their GPS coordinates. In
protocols, the sample collectors use various names for the sampling sites. E.g., the
site Spree Neu-Zittau is occasionally abbreviatedwith SNZ or simplyNZ. Depending on
what to catch primarily, different filter types are used – glass fiber (GF) or cellulose
nitrate (CN). Glass fiber filters have a mesh width or pore size of 0.7 µm and are
used for catching phytoplankton. The mesh width is large enough to exclude most
picoplankton. Cellulose nitrate filters have a pore size of 3 µm and are used for
catching zooplankton. This filter excludes smaller phytoplankter and larvae below
3 µm; larger plant parts are removed manually from the filter. The sample volume
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is chosen based on the seasonal plankton density and the plankton type. Samples
are labeled and stored until they undergo further analysis via light microscopy or
metabarcoding.

4.4.2 Morphological Analysis

Some samples are destined to be analyzed under a light microscope with different
magnification factors by a trained plankton specialist. Phyto- and zooplankton are
treated differently in terms of chemicals and subsampling for identification or count-
ing, as described in more detail in Section 2.5.2. In a first screening all identifiable
species or organism groups6 are noted down. In a second step defined volumes are
subsampled and the most abundant groups are counted in Utermöhl or Sedgewick-
Rafter chambers. In addition, the biomass is estimated given the individual count
and the geometry of an individual. The analyst notes the results in MS Excel sheets.
MS Excel is used not only to store information, but also to visually organize data
and create simple statistics, such as accumulation of counters. The analyst uploads
the sheets to a server for long-term storage and sends copies or grants access to
researchers who request them.

4.4.3 Metabarcoding Analysis

Samples that undergo metabarcoding are cooled until DNA extraction. The DNA
extracts then become labeled like MPS_15_9_Phy_300_GF_fd_Q, which can be
decoded into:

• Sampling site: Müggelsee MPS

• Sampling date: 15th of December

• Plankton type: Pythoplankton

• Volumina: 300 ml

• Filter type: glass fibre

• Drying method: freeze-drying

• DNA extraction kit: Qiagen (manufacturer)

We can recover the most relevant details from the label to relate sequenced DNA and
the original freshwater sample. However, these details are incomplete: the year is
missing, the mesh width of the glass fiber unknown, and Qiagen is a manufacturer
of NGS-related products that produces many different types of extraction kits. DNA
from phyto- and zooplankton samples are mixed equimolar and split depending on
how many PCRs are scheduled (one for each primer pair). The technician adjusts the
PCR cycler settings to the primer sequences. The PCR products are then sequenced
and stored on a dedicated server under the project name in compressed FASTQ format.
One specific lab member conducts the PCRwhomust not be identical with the sample
collector. A PCR is usually completed within one day.

6which comprise multiple taxa
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4.4.4 Bioinformatics Pipeline

When being notified about sequenced samples, the first goal is to transform the raw
reads into a few OTUs and possibly assign them to organisms or higher-order taxa.
Typical read processing steps involve quality filtering guided by the quality scores
given per base in the originating FASTQ file, merging of forward and reverse reads,
denoising, trimming, and clustering based on a defined sequence similarity threshold.
A cluster is represented by a common sense sequence (algorithm-dependent) and a
read count size. OTUs can be resolved if there exist labeled references in the database
that are sufficiently similar. For later inquiry, it is essential to associate an owner to
the pipeline.

These first results are the foundation for further studies that, e.g., compare effi-
ciency between different primers or identification methods (as shown in Section 2.5),
reveal statistical correlation of sampling sites, or reveal seasonal patterns. These
further findings may result in a publication.

4.5 Data and Knowledge Flow

4.5.1 Organizational Structure

Directly involved in a study are three groups, each having their separate area of
operation: lab operators for sample collection and morphological identification, lab
operators for NGS methods, and researchers that conduct the study, process and
evaluate the sequence data. The first two groups work directly at the institute near
the sampling sites, whereas the last group works in part remotely. In practice, more
people contribute to the forthcoming of an experiment: colleagues, including all
types of students and guest researchers, and former members. In total, we have:

1. Group or department heads

2. Researchers, interns, students, visiting researchers

3. Lab Operators

4. Former members

The group and department heads oversee the long-term study goals, have a vast
knowledge base covering all significant processing steps, and, most importantly,
know how to redirect more detailed inquiries. Colleagues like students or postdocs
are consulted regularly to advise on specific tools or common pitfalls. Lab operators
are contacted mainly for protocol requests and sometimes ask for feedback like the
quality of a sequence data set7 or to confirm the presence of a particular organism.
The most critical point is the necessity to contact members who are no longer part of
the lab. In my experience, former members were usually contacted to ask for details
about the processing of samples or sequences that were not adequately documented.

4.5.2 Sample Data

The metadata (date, location, plankton type, and other) is encoded in a sample label
and listed additionally in an MS Excel sheet (see Figure 4.2a) by the lab operator in
charge of sample collection and preprocessing. They send the sheets upon request.

7as they try out different sampling processes
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There are text documents (MS Word) describing detailed sampling protocols, tabular
sheets (CSV or MS Excel) listing sample assignments, or primer sequences. For each
piece of information, the sequence analyst has to maintain an additional document.

(a) Sample metadata captured in an MS Excel sheeet.

(b) Filenames of processed sequences encode metadata of the original sample.

Figure 4.2: Example of how sample metadata is documented and com-
municated. Notice the mixture of languages: the first document was
created by a native German speaker and contains column names writ-
ten in German, whereas a foreign researcher created the second docu-
ment in English. The same researcher adopted the sample encodings

for naming the FASTA files but is not forced to do so.

Since samples from different sites are not pooled for sequencing, their names are
used as identifiers for the sequence data and the data intermediates (see Figure 4.2b).
Other possibilities are to take the sample number listed in column A of Figure 4.2a or
to introduce a new key. Note the repetitive column entries in the second document.
The researcher has redundantly noted all the metadata of the samples – they are
already included in the first file and its naming. Manual replication of metadata is an
often observed pattern. It is time-consuming and error-prone, and should, therefore,
be omitted. All text documents are permanent and are used by researchers for further
studies. The files are neither read-only nor versioned. Later it will be impracticable
to handle and remove ambiguities, if they are detected at all.

As shown in Figure 4.2a, the label gives us incomplete information (e.g., filter
pore width unknown). The current state is that usually, only a single lab operator
can complete the missing information. Based on personal experience, co-workers
not directly involved in an analysis redirect to the colleague in charge. Hence, in case
of further inquiry, one is dependent on the availability of the lab operator.

4.5.3 Morphological Analysis

Analysts store organism identification and counting results in MS Excel sheets. Re-
sults ofmultiple samples are grouped on the same sheet (see Figure 4.3). The graphical
arrangement serves to orient the reader, but makes it impossible to rearrange the
rows and columns for statistical analysis because they contain data from different
experiments.
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For each morphological experiment, the sample processor lists a sample name,
metadata, lab operators’ names, and finally, the organism groups and their sizes
(individuals per liter), and biomasses. Percentages are listed in the last two columns
(after the counting results), and below (not shown) as group accumulations. Most
likely, all percentages and group totals were calculated manually because the cells
did not contain formulas. There are at least two significant drawbacks:

1. Impossibility to detect wrong calculations, or copy-paste errors if not redone
given the original document

2. Corrections or updates on counting data requires recalculation of all affected
statistics (here: row-wise and group-wise percentages)

The first type of error often remains unnoticed; the second one allows easily in-
troduction of new errors when not all affected statistics are updated. Whereas, a
registered formula can be double-checked, and updates its associated tabular cell
value automatically.

Figure 4.3: Working document for storing counting results. The sample
names (highlighted yellow) contain the project name and a sample
number, as listed in Figure 4.2a. Repeatedly, metadata of the samples
are noted down. Below are the taxa and their counts per liter and
biomass estimates. Percentages are computed manually per taxa and

accumulated per group (not shown).

Documents, as shown in Figure 4.3 are sentwithoutwrite protection to researchers
upon their requests. The recipient either edits the received copy or copies content
into a new sheet for further processing. Typically, more than one researcher holds a
copy of the original sheets and processes it in his way. Regularly, typos are introduced
(or corrected), leading once more to inconsistent copies. In the best case, work is
done redundantly, but often it is infeasible to synchronize changes in themany copies
leading to data inconsistencies.

4.5.4 Metabarcoding Analysis

A workflow implication is that the lab operators are closer to the sample collectors
than the analysts are. Lab operators and collectors have well-established workflows
that should not be interfered with. The primary task of lab workers is to conduct the
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PCR and provide the sequencing results. Some PCRs are non-standard like multiplex
PCR where multiple primers run in a single PCR or the usage of biotinylated primers
(like the forward primer of EUK14 used in the study of Section 2.5.2). Such information
needs to be forwarded to the analysts, as it cannot be guessed given the raw data.
Read data from experiments with biotinylated primers must be processed differently.
The biotinylation information should therefore be stored together with the primer
sequences themselves. PCR multiplexing is another variation of PCR experiments
and should be associated with the experiment itself.

Two types of DNA extraction kits are currently in use: the NucleoSplin Plant
II Extraction Kit from Macherey-Nagel GmbH & Co. KG, and the Qiagen DNeasy
Plant Mini Kit. For this reason, the labels of the treated samples only bear the
abbreviations MN for the first and Qiagen for the second kit. However, this is only
obvious to initiated personnel. Detailed kit information is often requested, e.g. when
a researcher wants to compare or publish a study.

4.5.5 Bioinformatics Pipeline

There are a variety of tools for each single processing step in a bioinformatics pipeline.
Indeed, one of themost time-consuming tasks is the translation between the different
input and output formats.

Many researchers working in ecology are somewhat self-taught programmers.
It is not advisable to fix a scripting language or specific toolchain for the sake of
reproducibility. On the contrary, it is beneficial for researchers to start with tools
they are familiar with to reach a productive state faster. This adds uniqueness to each
analysis. In addition, there are multiple versions of each tool and a large number of
possible parameter combinations, noteworthy to be documented for the purpose of
reproduction.

4.5.6 Additional Requirements

We can solve most of the herein described conflicts by a consolidated data scheme
that enforces constraints where it is meaningful and beneficial. Apart from the data
availability, we would like to devise queries over data portions that are inherently
related to each other. Therefore, we need an intuitive and simple model and a query
language that is easy to learn.

To maintain privacy and consistency, we would like to provide users with tiered
permissions. For example, an intern does not need to have write access if their task is
to analyze historical data. In the event that a supervisor with write privileges makes
a mistake, it would be helpful to roll back the database to a previous checkpoint. The
database should also be accessible online and connected to the IT infrastructure. An
obvious solution is to install a relational database management system that provides
all the means to formulate a logical model, grows automatically as more data is
entered, and processes queries asynchronously.

4.5.7 Why a Relational Database System?

For decades relational database management systems (RDBMS) had been the working
horses for data-intensive applications. RDBMS undergo fewer release cycles and are
one of the most sophisticated software systems available. A key feature is its declara-
tive query language SQL, which follows the structure of relational algebra closely, and
has an English-sentence style. In a declarative language, we specify the pattern that
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a piece of data has to satisfy8. In contrast, an imperative language describes how to
compute the result. The declarative property of SQL makes it independent of physical
schema and automatic query automation; implementation details of the database
engine and optimizer remain hidden.

Besides data consolidation, a DBMS ensures data consistency by making it impos-
sible to insert mistyped or incomplete entries. The key is to capture only relevant
information and eliminate redundancy by moving attributes with small and limited
domain sizes into separate tables. This process is called normalization (Codd, 1970).

Since we expect the number of queries and insertion requests to be low over time, a
solid-drive stored relational database is sufficient. Figure 4.4 relates data temperature
and media for data storage. Only the top-tier online services that receive thousands
of requests per second have to move to in-memory databases or distributed key-value
stores.

Figure 4.4: Data temperature and storagemedia. Storagemediumcosts
are traded off against low latency. High-performance applications
require data to be stored on low-latent, but costly media. Data that
is accessed infrequently is stored on less expensive hard disk drives
(HDD), optical media, magnetic tapes, or glass libraries. The expected
number of I/O operations, the amount of data and the location of the

users determine which medium is optimal.

The internal organization of a database management system is shown in Figure
4.5. There are two types of clients: remote and self-service. A remote client accesses
the database through the server process. Whereas a self-service client runs on the
same machine as the master database process (broker) and accesses the database
directly through sharedmemory. The broker coordinates all the requests, manages the
shared memory, and blocks the database. The shared memory is used for physically
storing process handles, locks, and other data structures needed for interprocess
communication. The actual transaction is performed by background processes (writer,
reader, cleaning processes) with access to the physical database.

A relational database organizes its data into relations (also called tables). A table
reflects the abstract concept of an entity, a location, or primer pair, for example, that
exists independently. Columns of a table correspond to attributes of an entity. A
relation is an unordered set of tuples (also called rows). The relational model for

8and possible data transformation like sorting or agglomeration
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Figure 4.5: Components of a full RDBMS. A full database management
system is a multi-threaded management system with at least one
server process for managing access, and a client software to allow

users to sign in for access.

database management was first described by Codd, 1970. Rapid implementations
came already into existence in the early 1980s.

Furthermore, each row must be uniquely addressable by declaring a column or set
of columns as the primary key (PK); alternatively, we can introduce an enumerator to
generate a series of numerical identifiers. The value or value combination of the key
column(s) forms a unique identifier. It is crucial to link rows of different tables. For
faster row access, an index is created on primary keys if not defined otherwise.

A relational database would use SQL as a primary programming language. The
command set is divided into data definition (DDL), data control (DCL), data manipu-
lation (DML), and data querying (DQL) languages matching the different roles that
users can be assigned to (see Table 4.1).

Syntax Set Description Commands Role

DCL Allow users to perform specific tasks
or remove their access

GRANT
REVOKE

Admin A

DDL
Create, delete, and alter tables; define
column constrains and trigger rules

CREATE
DROP
ALTER

Admin B

DML
Insert, modify or delete rows of a table
without altering the schema

INSERT
UPDATE
DELETE

User A

DQL Query and analyse stored data SELECT User B

Table 4.1: Categories of SQL commands and associcated user roles.

The purpose of roles is to restrict access for specific groups of users in order to
maintain integrity or hide sensitive or irrelevant data. It is usually an administrator
(Admin A) who is responsible for granting or revoking access to users. Changes that
affect the schema structure should only be made by users (Admin B) who understand
the dependencies between tables or functions, as the privileges of this user group
allow the database to be left in an inconsistent state. Insertion rights may be granted
to collaborators generating data such as protocol results, a new primer pair for a
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PCR experiment, or renaming of species due to changes in official nomenclature.
Researchers who work on a bioinformatics pipeline or statistical analysis may not
produce data to be captured in the database but rely on detailed information about
previous experiments. The last user group would primarily need read access to tables
storing past experiments and be able to link information from different tables to pose
complex queries.

In contrast to other programming languages, SQL has various dialects like Mysql
(Widenius, Axmark, and DuBois, 2002), PostgreSQL (Stonebraker and Rowe, 1986),
or DB2 (Chamberlin, 1998). As RDBMs had originally been intended for consistency
and long-term storage, update cycles are in the range of years and never enforced.

For every read or write transaction on a database, the DBMS guarantees the ACID
properties, which are atomicity, consistency, isolation, and durability (Gray, 1981). A
command set to be executed on the database is grouped into atomic transactions. The
reason for this is that the interweaving of concurrent processes could otherwise lead
to data inconsistencies.

Atomicity guarantees that all commands within the same transaction are executed
as if they were one. Either all commands or none gets executed. Consistency describes
that the data constraints are respected and that it is impossible to enter data that
violates these rules. The isolation property guarantees that concurrently executed
transactions leave the database in the same state as if they were executed sequen-
tially. The durability property guarantees that each successfully executed transaction
remains once and forever executed even in case of a blackout. The last property favors
non-volatile storage media. Conclusively, DBMS, which are not explicitly in-memory,
have relatively slow response times. For e-commerce or social media applications,
this may be prohibitive, but for the lab described here, we want consistency and
durability above all else.

4.6 Database Schema

When the process of deciding what to store is complete, the database schema is
normalized. The goal is to reduce redundant attributes and ensure data integrity
where appropriate. For example, assume metabarcoding experiments have three
properties we would like to store: primer pair, experiment, and date. We could store
them in a single table with three columns, and use a combination of primer and
experiment name as a unique identifier. The state shown in Table 4.2 would be legal:
the composite keys (DIV4, exp1), (EUK15, exp1), (EUK-15, exp1) are unique.
One of the primer names is mistyped, or has an alias name:

Primer_Name (PK) Experiment_Name (PK) Datetime

DIV4 exp1 2020-01-09 12:11:04
EUK15 exp1 2020-01-09 12:51:42
EUK-15 exp1 2020-01-09 12:51:42

Table 4.2: Unnormalized experiment table with primer and experiment
names as a composite primary key.

By putting primer pairs in their own table and define a foreign key constraint on the
primer name (syntax shown later), we can avoid the inconsistent state shown in Table
4.2. Trying to insert the tuple (EUK-15, exp1, ’2020-01-09 12:51:42’) into
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the table would fail as EUK-15 is not known as a primary key in the table Primer
(see Table 4.3).

Primer_Name (PK) Forward_Sequence Reverse_Sequence

DIV4 GCGGTAATTCCAGCTCCAATAG CTCTGACAATGGAATACGAATA

EUK15 CCAGCASCYGCGGTAATTCC ACTTTCGTTCTTGATYRA

Table 4.3: A table storing primer sequences.

The challenge is to balance constraints and degrees of freedom. Values that are im-
portant for linking data across multiple tables (thus allowing more complex queries)
should be restricted. Restricting free-text fields that contain human-readable infor-
mation, on the other hand, is not useful. Columns (or combinations of columns) that
are highly redundant or require naming enforcement could potentially be normalized.
The following entities should go in separate tables:

• Experiment

• PCR experiments as a specialization of Experiment and with redundant
attributes in their own tables:

– Primer Pair for storing name, sequences and reference publication
– Sequences for storing meta data like server address of the sequenced
amplicons

– DNA Extraction Kit to store the manufacturer and product version of
the kit

• Morphological Experiments as a specialization of Experiments

– Organism Group to capture polyphyletic groups corresponding to a set
of taxa

• Samples with redundant features in their own tables:

– Location to name the fixed set of sampling sites and add geographic
information

– Dry Method to name one of the fewmethods (freeze-drying, oven-drying,
bluegel, air-drying)

– Filter Method to describe the filters applied during sampling
– Plankton Type to name the major group that was caught

• Pipeline which processes a sequence data set

• Publication which refers to an experiment analysis

• OTU as a result of a pipeline

• Taxon as a possible assignment to an OTU with redundant attributes in their
own columns:

– Rank name
– Taxon Names to store synonyms
– Lineage from associated taxon to root node of the registered taxonomy
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– Taxonomy Source for naming the origin (e.g. NCBI GenBank) and give
an URL

In the center of the schema, we have the Experiment table. An experiment can
be a morphological or a PCR experiment. The results of a morphological experiment
are expressed as a list of taxa of all organisms seen (without counts). Optionally, there
is a census table that contains individual counts and bodymass estimates for indicator
groups. Some organism groups are categorized into size groups. The introduced
table organism group count captures this additional information and is tied to
a one-to-one correspondence with an already registered organism group.

Within an experiment, at least one environmental sample is processed. The
composition (primarily phyto- or zooplankton) is controlled via the filter type and
its mesh width (stored in table Filter Method). The sample is taken at a special
sampling point assigned to a stratum and a geographic location (table location).
It is then conserved for later processing (table Dry Method). When the sample is
subjected to PCR analysis, it can be divided into subsamples and treated with different
sets of primers. There are relatively few primer pairs, so extraction into a separate
table is useful. The sequenced PCR products are output as compressed FASTQ files.
These files are stored on an external server for the long term. The location (server
address) and sequence metadata are noted in the Sequences table, but not the raw
sequence files, since these contain highly redundant reads and are several gigabytes
in size.

In contrast, it would be advantageous to store the instructions, i.e., the processing
steps and utilities of the bioinformatics pipeline in an additional table (Pipeline).
A pipeline can be stored as a free text description, or if serializable, in a serialized
format.

One of the final steps in a bioinformatics pipeline is to cluster reads to form OTUs
which hypothetically have a corresponding taxon. OTUs are described by at least one
representative sequence and a read count. The most likely taxon can be determined
using BLAST searches and tools that estimate the lowest common ancestor in cases of
ambiguous matches. A taxon (table Taxon) has a unique scientific name and aliases,
a taxonomic rank, a lineage, and metadata about the origin of the taxonomy9.

4.6.1 Table Definitions and Relations

The following subsections detail the properties of the tables shown in the overview
Figure 4.6 and provide PostgreSQL table definitions. We define the tables and func-
tions as part of a schema that we will call lake_monitor. In a relational database,
each row of a table must be uniquely identifiable, that is, each row of a table has
an attribute or combination of attributes that is unique. We declare a column or a
combination of columns as a key by adding the constraint PRIMARY KEY (PK). By
default, indices are built on primary keys.

When a column should have unique values, but not necessarily serve as an identi-
fier, we use the UNIQUE constraint (U). It is not recommended to use an attribute of
the VARCHAR type – a character sequence of variable length – as a primary key. The
reason for this is that the VARCHAR type is used to add information that is significant
outside the database system. This type of attribute tends to be changed more fre-
quently in the future, leading to updates in all copies and references. Such actions
cause write overhead and carry the risk of inconsistencies (see p. 33 in Kleppmann,
2017).

9For example, the taxonomies provided by GenBank and Silva are not identical.
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Figure 4.6: Database schema for storing and relating experiments
on plankton samples. Fields about small domains such as sample
location or drying method are part of the sample metadata, but are
stored in separate tables to avoid redundancy and allow constraints
to be defined. For example, a new sample cannot be registered that is

associated with a non-existent location.
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Also, the VARCHAR data type allows spaces, which can be crucial for some indexing
algorithms. Instead of using an attribute VARCHAR as a primary key, we add an
identifier of type SERIAL and add uniqueness constraints to the column VARCHAR.

Columns that refer to primary keys of other tables will have a FOREIGN KEY
constraint that forces an inserted identifier to refer to an existing entry. Another
useful PostgreSQL constraint is NOT NULL, which specifies that the field must not
be empty when inserted. All data types and constraints applied to the lake database
schema are listed in Table 4.4 and Table 4.5, respectively.

Type Range/Size Description

INTEGER [−231 : 231 − 1] Integer stored in four bytes
Variants: SMALLINT (two bytes),
BIGINT (eight bytes)

SERIAL [1 : 231 − 1] Autoincrementing integer for primary key
generation
Variants: SMALLSERIAL (two bytes),
BIGSERIAL (eight bytes)

REAL [−231 : 231 − 1] Floating point stored in four bytes
Variable precision

POINT (REAL, REAL) Geometric type storing two floating points
CHAR(k) up to 1 GB Fixed-length character string

Tailing and unused positions are padded
VARCHAR up to 1 GB Variable-length character string, no padding

Optional check for length restriction
TEXT up to 1 GB Variable-length character string

No length restriction check
DATE [4713 BC : 5874897 AD] Stores date in eight bytes

Formattable into, e.g., dd/mm/yyyy
Resolution: 1 day

TIMESTAMP [4713 BC : 294276 AD] Stores date and time in four bytes
Formattable into yyyy-mm-dd hh:mm:ss
Resolution: 1 µs

Table 4.4: PostgreSQL datatypes used in the schema defintion.

Command Description

PRIMARY KEY Unique record identifier not null
FOREIGN KEY Value matches primary key of record in another table
UNIQUE Value must be unique
NOT NULL Constrain record value to be not empty

Table 4.5: PostgreSQL constraints used in the schema definition.

The subsequent sections address table details of the schema shown in Figure 4.6.
Tables or entities are depicted as rounded boxes, and edges between them represent a
relation. Concretely, a row of table PCR Experiment can be related to a row in table
Primer Pair by having an extra field in PCR Experiment that stores the identifier
of a specific primer pair. The relationships are specified into:

(i) one-to-one

(ii) one-to-many

(iii) many-to-many
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In a one-to-one relationship between two tables A, B, a row of table A refers to at
most one row of table B. As PCR experiments are a specialization of an experiment,
their relationship is one-to-one. In such a case, we can transfer the primary key of
Experiment to PCR_Experiment. In a one-to-many relationship, a single row of
table A can be associated with many rows in table B. For example, a single OTU is
resolved to at most one taxon, but the same taxon can be assigned to many OTUs.
The foreign key has to be stored in table OTU to avoid redundancy. In amany-to-many
relationship, a single row of table A can relate to multiple rows in table B and vice
versa. For example, in an experiment, one or more samples are processed. On the
other hand, a single sample may be assayed for more than one experiment. In this
case, we can put the foreign key in either table.

We initialize a database schema as shown in Listing 4.1. As a name we choose
lake_monitor. Multiple schemas can live on the same database server. We address
a table by first calling the schema name followed by a dot and the table name.

Listing 4.1: Define a database schema named ‘lake_monitor’.
1 CREATE DATABASE lake_monitor;

Table Sample

Experiments process environmental samples. These samples are collected on a
specific date and location. Since sampling locations are fixed to a few and should
be supplemented with additional information such as GPS coordinates and a loca-
tion description, we store only a reference to the location in the table. We require
that its identifier refers to a location already registered in a special location table.
When samples undergo PCR treatment, they get labeled and listed with a generic
name: Plankton_IGB_<year>-<no>, e.g., Plankton_IGB_2014-14, which
states that the sample was collected in 2014 and is the 14th in a series of PCR treated
samples. The actual sampling location, precise date, volumes, PCR extraction kit,
and others, are listed in the working sheet. These identifiers are not sufficient to
serve as the primary key for all samples, regardless of their subsequent treatment.
Therefore, we choose to auto-generate a primary key (Sample.id) but enforce the
uniqueness of sample names that can follow the previously described format.

A plankton sample is the solid parts that remain after filtering a specific water vol-
ume with dedicated filters. We link this information by storing only the references to
entries in specific tables for filtering methods, drying methods, and plankton species.
In contrast, sampled volumes and collection dates are stored directly in the table.

Sample
PK id SERIAL
U sample_name VARCHAR
FK location_id
FK filter_method
FK dry_method
FK plankton_type

volume REAL
collection_date DATE
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In PostgreSQL, we can auto-generate the primary keys of an integer type by declar-
ing a column type as SERIAL. A SERIAL is stored in four bytes and can represent
identifiers between 1 and 231 − 1. In case a much smaller range is sufficient or a
larger range required, PostgreSQL offers SMALLSERIAL (two bytes) or BIGSERIAL
(eight bytes). Since the Sample table is the first one to be created, we can use the
foreign key constraints earliest after the referred tables have been created as
well. Concretely, we have to postpone the foreign key declarations for location_id,
filter_method, dry_method, and plankton_type. However, it is mandatory to
specify a column type for foreign keys as well, which must be identical to the type
of the primary key they refer to. In the case of SERIALs, we have to depict the alias
INTEGER type.

Listing 4.2: Define table Sample.
1 CREATE TABLE Sample(
2 id SERIAL PRIMARY KEY,
3 sample_name VARCHAR NOT NULL,
4 location_id CHAR(3) NOT NULL,
5 filter_method SMALLINT NOT NULL,
6 dry_method SMALLINT NOT NULL,
7 plankton_type SMALLINT NOT NULL,
8 volume REAL,
9 collection_date DATE NOT NULL
10 );

Table Location

Samples are taken from the River Spree at Große Tränke (SGT), Neu-Zittau (SNZ),
and at several sites of the Lake Müggelsee (MPS, MS3, MPO, and MPU). For all sites,
there exists a three-letter abbreviation, which we will use as an identifier. There
are more abbreviations: for example, the sampling site in Spree Neu-Zittau may be
referred to as Spree NZ, SNZ, or NZ. The aliases column captures the synonyms.
Each site has known GPS coordinates and prescribes seasonal sampling of specific
strata. The description field allows a free text description of how the freshwater
sampling will be approached and performed.

Location
PK short_name CHAR(3)
U, NN long_name VARCHAR

aliases VARCHAR[]
NN gps_coordinates POINT

stratification_layer VARCHAR
description TEXT

The Location table has no columns referring to other tables but is used by the
above-defined Sample table. We can now add the foreign key constraint on the
location_id of a sample to refer to the primary key of a location.

Listing 4.3: Define a Location table and add foreign key constraint
on Sample.location_id.

1 CREATE TABLE Location(
2 short_name CHAR(3) PRIMARY KEY,
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3 long_name VARCHAR UNIQUE NOT NULL,
4 aliases VARCHAR[],
5 gps_coordinates POINT NOT NULL,
6 stratification_layer VARCHAR,
7 description TEXT
8 );
9

10 ALTER TABLE Sample ADD FOREIGN KEY (location_id)
11 REFERENCES Location (short_name);

Table Plankton Type

Standard abbreviations in result sheets or sample labels for the two types of plankton
are phyto, and zoo, respectively. We enforce unique naming by adding the UNIQUE
constraint.

Plankton_Type
PK id SMALLSERIAL
U, NN short_name CHAR(10)

designation VARCHAR

Listing 4.4: Define table Plankton_Type and add foreign key con-
straint on Sample.plankton_type.

1 CREATE TABLE Plankton_Type(
2 id SMALLSERIAL PRIMARY KEY,
3 short_name CHAR(20) UNIQUE NOT NULL,
4 designation VARCHAR
5 );
6

7 ALTER TABLE Sample ADD FOREIGN KEY (plankton_type)
8 REFERENCES Plankton_type (id);

Table Filter Method

For the mechanical separation of phyto- and zooplankton we store a filter method
name, the mesh width, and a free text field for a more detailed description. The
description field allows to store information about the material or the manufacturer,
which is needed for study reports.

Filter_Method
PK id SMALLSERIAL
U, NN name VARCHAR
NN mesh_width REAL

description TEXT

After defining the Filter_Method table we can add a foreign key constraint for
the filter method column of the Sample table.
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Listing 4.5: Define table Filter_Method and add foreign key con-
straint on Sample.filter_method.

1 CREATE TABLE Filter_Method(
2 id SMALLSERIAL PRIMARY KEY,
3 name VARCHAR UNIQUE NOT NULL,
4 mesh_width REAL NOT NULL,
5 description TEXT
6 );
7

8 ALTER TABLE Sample ADD FOREIGN KEY (filter_method)
9 REFERENCES Filter_Method (id);

Table Dry Method

Several drying or preserveration methods are being tested by laboratory operators.
Using feedback from PCR analysis, they can evaluate the relative efficiency of a drying
method. The goal is to obtain as much DNA as possible, resulting in a larger number
of PCR reads. We use an automatically generated identifier of type SMALLSERIAL
since there are only a handful of preservation methods, a short name common on
sample labels, and a free text field to describe the drying method in more detail. The
most commonmethod to date is freeze-drying for phytoplankton and ethanol fixation
for zooplankton. Other tested methods are air drying, blue gel drying, or oven drying.
Other parameters that can be varied are the temperature and the duration.

Dry_Method
PK id SMALLSERIAL
U short_name CHAR(10)

temperature REAL
duration_hours REAL

NN description TEXT

Since some methods are performed at room temperature, the temperature and
duration fields may be left blank for new entries. We will also add the last foreign key
constraint on the Sample table.

Listing 4.6: Define table Dry_Method for sample conservation meth-
ods and add foreign key constraint on Sample.dry_method.

1 CREATE TABLE Dry_Method (
2 id SMALLSERIAL PRIMARY KEY,
3 short_name CHAR(10) UNIQUE NOT NULL,
4 temperature REAL,
5 duration_hours REAL,
6 description TEXT NOT NULL
7 );
8

9 ALTER TABLE Sample ADD FOREIGN KEY (dry_method) REFERENCES Dry_Method (id);

Table Experiment

Two types of analyses can be conducted on a set of plankton samples: identification
and counting based on morphological features under the light microscope, or DNA
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extraction for a metabarcoding experiment. Both have common features but later
differ in their protocols and types of results. Thinking object-oriented, the table
experiment concentrates common features, and the morphological and metabar-
coding experiments are specializations of a generic experiment. Common to all
experiments is the processing of a set of samples, a start date, a principal investigator
(or collaborator), and an optional description of the objective.

Note that an array data type (INTEGER[]) is used here for storing the associated
samples, which cannot be augmented with a foreign key constraint, so referential
integrity is not automatically maintained. There are two ways to implement a foreign
key constraint for a list: either by normalizing, i.e. using only the primitive data type
INTEGER and inserting as many rows as there are different samples, or by adding a
function that is triggered when new experiments are inserted. This trigger checks
whether each identifier listed in the samples_ids field matches an existing primary
key in the sample table. Upon success, the insertion is completed, otherwise aborted
(see Appendix C.1). Since 2012 there exists a patch that adds syntax to declare foreign
key constraints on array datatypes10, but its acceptance for PostgreSQL (version 11)
is pending.

Experiment
PK id SERIAL
NN sample_ids INTEGER[]
NN date TIMESTAMP
NN lab_staff VARCHAR
NN description TEXT

Listing 4.7: Define table Experiment for general experiments. The
trigger on sample_ids is listed in Appendix C.1

1 CREATE TABLE Experiment (
2 id SERIAL PRIMARY KEY,
3 sample_ids INTEGER[] NOT NULL,
4 date TIMESTAMP NOT NULL,
5 lab_staff VARCHAR NOT NULL,
6 description TEXT NOT NULL
7 );

Table Morphological Experiment

One specialization of an experiment is the morphological experiment, in which
species are identified under the microscope, counted in Utermöhl or Sedgewick-
Rafter chambers, and biomass is estimated for some common groups of organisms.
Because abundance and biomass estimates are not made for all organism groups, the
table definition does not enforce a NOT NULL constraint.
10https://commitfest.postgresql.org/17/1252/

https://commitfest.postgresql.org/17/1252/
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Morph_Experiment
PK, FK experiment_id
FK, NN organism_group_id

individuals_liter INTEGER
biomass_mg_m3 REAL
size_category REAL

Listing 4.8: Define table Morph_Experiment for morphological ex-
periments as a specialization of Experiment and reference its pri-

mary key to Experiment.
1 CREATE TABLE Morph_Experiment(
2 experiment_id INTEGER PRIMARY KEY,
3 organism_group_id INTEGER NOT NULL,
4 individuals_liter INTEGER,
5 biomass_mg_m3 REAL,
6 size_category VARCHAR
7 );
8

9 ALTER TABLE Morph_Experiment ADD FOREIGN KEY (experiment_id)
10 REFERENCES Experiment (id);

Table PCR Experiment

The other type of experiment is a metabarcoding experiment with all the properties
listed in Experiment and data about the PCR: primer pairs, DNA extraction kit, and
optional indices. As only a handful of different primer pairs and extraction kits are in
use, we extract these into dedicated tables and relate here only their keys.

PCR_Experiment
PK, FK experiment_id
FK, NN primer_pair
FK, NN extraction_kit

description TEXT

Listing 4.9: Define table PCR_Experiment for metabarcoding experi-
ments and reference its primary key to Experiment.

1 CREATE TABLE PCR_Experiment(
2 experiment_id INTEGER PRIMARY KEY,
3 primer_pair SMALLINT NOT NULL,
4 extraction_kit SMALLINT NOT NULL,
5 description TEXT
6 );
7

8 ALTER TABLE PCR_Experiment ADD FOREIGN KEY (experiment_id)
9 REFERENCES Experiment (id);
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Table Extraction Kit

The DNA extraction kit is another element that affects the overall efficiency of PCR
and must be mentioned in linked publications in the methods section. There are
mainly two manufacturers in use: the NucleoSplin Plant II extraction kit and one
from Qiagen. The extraction kit names are frequently abbreviated for sample labels
with MN or Qiag. We use these as identifiers instead of auto-generating keys. The
full name of the extraction kit, as specified by the manufacturer, can be noted in the
designation field.

Extraction_Kit
PK id SMALLSERIAL
U, NN short_name CHAR(10)
NN manufacturer VARCHAR

designation VARCHAR

Listing 4.10: Define table Extraction_Kit for storing DNA extrac-
tion kits and add foreign key constraint to PCR_Experiment.

1 CREATE TABLE Extraction_Kit(
2 id SMALLSERIAL PRIMARY KEY,
3 short_name CHAR(10) UNIQUE NOT NULL,
4 manufacturer VARCHAR NOT NULL,
5 designation VARCHAR
6 );
7

8 ALTER TABLE PCR_Experiment ADD FOREIGN KEY (extraction_kit)
9 REFERENCES Extraction_Kit(id);

Table Primer Pair

A primer pair is unique by its combination of forward and reverse primer sequences.
Often there are no consistent designations across multiple publications. Here we
allow to define a ten-character identifier as the name for the pair and to require names
for the forward and backward sequences. In the metabarcoding study presented in
Section 2.5, we used EUK15 to address the pair, but its constituting sequences are
TAReuk454FWD1 for the forward primer, and TAReukREV3 for the reverse primer
as named in the original paper by Stoeck et al., 2010. When combining the forward
primer with another reverse primer for a study, we force the registration of a new
pair.

Usually, primers are either designed and experimentally evaluated for a specific
group of organisms, such as the DIV4 primer used in the study (section 2.5), or they
are universally applicable, i.e. they cover a broad range of phylogenetically diverse
groups. The target group and the region are therefore known in advance and must
be specified for new entries. Whereas, the product length may be unknown due to a
lack of referential data or vary a lot due to the universality of the primer pair. The
reference field allows the specification of the DOI of the originating publication, and
a free text field (description) further remarks.
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Primer_Pair
PK id SMALLSERIAL
U pair_name CHAR(20)
NN name_fwd VARCHAR
NN name_rev VARCHAR
NN sequence_fwd CHAR(40)
NN sequence_rev CHAR(40)
NN target_group VARCHAR
NN target_region VARCHAR

product_length INTEGER
reference_doi VARCHAR
description TEXT

A single primer sequence rarely exceeds 25 base pairs – we can restrict the se-
quence type to hold at most 32 characters. If known, we allow the addition of target
groups (e.g., diatoms) or target regions (e.g., 18S rRNA), and an expected PCR product
length. This data comes from related publications or previous studies and is extremely
useful when evaluating the PCR efficiency and building the bioinformatics pipeline.

Listing 4.11: Define table Primer_Pair for primer pairs and add
foreign key constraint to Experiment.

1 CREATE TABLE Primer_Pair(
2 id SMALLSERIAL PRIMARY KEY,
3 name CHAR(20) UNIQUE,
4 name_fwd VARCHAR NOT NULL,
5 name_rev VARCHAR NOT NULL,
6 sequence_fwd CHAR(40) NOT NULL,
7 sequence_rev CHAR(40) NOT NULL,
8 target_group VARCHAR NOT NULL,
9 target_region VARCHAR NOT NULL,
10 product_length INTEGER,
11 reference_doi VARCHAR,
12 description TEXT
13 );
14

15 ALTER TABLE PCR_Experiment ADD FOREIGN KEY (primer_pair)
16 REFERENCES Primer_Pair (id);

Table Sequences

Storing raw DNA sequences as output by the sequencer machine in a database schema
would be wasteful as they are accessed only 1-2 times in their lifetimes. They are large
(several gigabytes), compressed, and contain highly redundant data. In the event that
we need to repeat a bioinformatics pipeline using a different toolchain, we need to be
able to query the dataset at the location. As can be seen in Figure 4.6, an instance of a
bioinformatics pipeline is related to a sequence data set and a publication. By joining
the three tables Publication, Pipeline, and Sequences, we get all publications
related to a specific sequence data set and vice versa.
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Sequences
PK experiment_id SERIAL
U data_set_name VARCHAR
NN read_count INTEGER
NN server VARCHAR
NN path VARCHAR

description TEXT

Sequences are the product of a single PCR experiment. We use its primary key
directly to identify sequence data sets.

Listing 4.12: Define table Sequences for locating sequence data sets
and add foreign key constraint on primary key.

1 CREATE TABLE Sequences(
2 experiment_id INTEGER PRIMARY KEY,
3 data_set_name VARCHAR UNIQUE,
4 read_count INTEGER NOT NULL,
5 server VARCHAR NOT NULL,
6 path VARCHAR NOT NULL,
7 description TEXT
8 );
9

10 ALTER TABLE Sequences ADD FOREIGN KEY experiment_id
11 REFERENCES PCR_Experiment (experiment_id);

Table Pipeline

There is no standard pipeline for processing sequence data. The PCR is a stochastic
method, and therefore, leads to different results in terms of efficiency and read qual-
ity. The sequence intermediates are monitored with tools like FastQC and MultiQC
that collect statistics. These statistics impact the tooling of the subsequent steps.
Therefore, it is plausible to allow the registration of more than one pipeline for the
same set of sequences. We force a sequence record to be registered in the Sequence
table before it is referenced. In this version, the log is stored as free text. We chose
to store the resulting OTU data as this allows for elaborate meta-studies such as
calculating common OTUs between two different pipelines or datasets.

Pipeline
PK id SMALLSERIAL
FK sequences_id
NN protocol TEXT
NN lab_staff VARCHAR

otu_ids SERIAL[]
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Listing 4.13: Define Pipeline table for associating sequence data
sets and bioinformatics pipelines.

1 CREATE TABLE Pipeline (
2 id SMALLSERIAL PRIMARY KEY,
3 sequences_id INTEGER,
4 protocol TEXT NOT NULL,
5 lab_stuff VARCHAR NOT NULL,
6 otu_ids INTEGER[]
7 );
8

9 ALTER TABLE Pipeline ADD FOREIGN KEY (sequences_id)
10 REFERENCES Sequences (experiment_id);

Table Publication

It is commonpractice that researchers tasked to build a pipelinewould ask for previous
studies conducted at the lab on the same type of samples. Because the individuals
who conducted the earlier study may no longer be part of the laboratory, it is useful to
correlate a publication and the underlying pipeline. We are aware that the methods
section of a paper is intended to name all tools, parameters, and versions, but it
is often incomplete because some parameter settings may not be relevant to the
reader, and it is not forced by publishers to be complete or in a particular format. The
purpose of assigning a publication to a specific pipeline is to thereby uniquely assign
an experiment and the data.

Publication
PK id SERIAL
FK pipeline_id
U doi VARCHAR

date DATE
N description TEXT

Listing 4.14: Define table Publication to associate publications and
analyses.

1 CREATE TABLE Publication(
2 id SERIAL PRIMARY KEY,
3 pipeline_id INTEGER NOT NULL,
4 doi VARCHAR UNIQUE,
5 publication_date DATE NOT NULL,
6 description TEXT
7 );
8

9 ALTER TABLE Publication ADD FOREIGN KEY (pipeline_id)
10 REFERENCES Pipeline (id);

Table OTU

OTUs are the end product of a specific bioinformatics pipeline, and can therefore be
identified via the field pipeline_id. A single OTU is a group of sequences that have
high sequence similarities and can be represented with very little data. Namely, a
common-sense sequence to clarify their identity, and a reading count. These two data
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DB Lineage

A
lg
ae
Ba
se

Plantae Viridiplantae Streptophyta Charophyta Zygnematophyceae
G
en
Ba
nk

Viridiplantae Streptophyta Streptophytina Zygnemophyceae Zygnematophycidae

Si
lv
a

Archaeplastida Chloroplastida Charophyta Phragmoplastophyta Zygnematophyceae

Table 4.6: Each of the three databases uses a different taxonomy. As
a result the species Closterium acerosum has three distinct lineages.
For the sake of brevity, only the first five levels below Eukaryota are

shown.

points are sufficient, for example, to investigate the efficiency of different toolchains
or to execute the OTU resolution step on a different library.

OTU
PK id SERIAL
FK pipeline_id

read_count INTEGER
sequence VARCHAR

FK taxon_id

Listing 4.15: Define table OTU to store computed OTUs of a bioinfor-
matics pipeline.

1 CREATE TABLE OTU(
2 id SERIAL PRIMARY KEY,
3 pipeline_id INTEGER,
4 read_count INTEGER,
5 sequence VARCHAR,
6 taxon_id INTEGER
7 );
8

9 ALTER TABLE OTU ADD FOREIGN KEY (pipeline_id) REFERENCES Pipeline (id);

Table Taxon

The biggest challenge in metabarcoding on plankton samples lies in the immense
biodiversity. As plankton is part of more than half of the supergroups, taxonomic re-
arrangements likely affect the OTU resolution. The Taxon table allows the capture
of different taxonomies using the taxonomic identifier in combination with the
taxonomy source as a composite key. This way, taxonomies are separable despite
being stored in the same table. To give an example, the species Closterium acerosum
has different lineages in two important databases: Silva and GenBank.

Not only does the taxonomic structure vary between different sequence databases,
but the naming of taxa is also ambiguous. For example, Chloroplastida and Viridiplan-
tae are synonyms. The group of freshwater green algae (Charophyta) is sometimes
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treated as a division, a superdivision, or an unranked group.
To clarify the ancestry, we can store either only the parent taxon or the full list of

ancestors. In the first case, lineage resolution requires a recursive query of the taxon
table; in the second case (as implemented here), we offload the unrolled lineage at
the expense of more memory.

Taxa have at least one scientific name and oftenmany aliases, and since taxonomic
nodes of different taxonomies usually refer to the same organism (group), we extract
the taxon name into another table (see Taxon_Names below). Currently, there are
at most 73 rank designations, of which only a dozen are frequently used. Again,
incorrect input is prevented by forcing the use of a registered rank from the rank
table.

Taxon
PK id SERIAL
CU taxid INTEGER
FK,CU taxon_src_name
FK taxon_names_id
FK lineage_id
FK rank_id

Listing 4.16: Define table Taxon as a node of a specific taxonomy with
rank and lineage associations.

1 CREATE TABLE Taxon(
2 id SERIAL PRIMARY KEY,
3 taxid INTEGER NOT NULL,
4 tax_src_id INTEGER NOT NULL,
5 tax_names_id INTEGER NOT NULL,
6 rank_id INTEGER NOT NULL,
7 lineage_id INTEGER NOT NULL,
8 UNIQUE(taxid, tax_src_id)
9 );
10

11 ALTER TABLE Lineage ADD FOREIGN KEY (parent_taxon_id) REFERENCES Taxon(id);
12 ALTER TABLE OTU ADD FOREIGN KEY (taxon_id) REFERENCES Taxon(id);

Table Rank

Rank names like phylum, order, family, or species are stored separately to avoid
misspelling. An alias field allows the listing of synonyms or Latin designations.

Rank
PK id SMALLSERIAL
U, NN name VARCHAR

aliases VARCHAR[]

Listing 4.17: Define the taxonomic Rank table and add foreign key
constraints to a taxon.
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1 CREATE TABLE Rank(
2 id SMALLINT PRIMARY KEY,
3 name VARCHAR UNIQUE NOT NULL,
4 aliases VARCHAR[]
5 );
6

7 ALTER TABLE Taxon ADD FOREIGN KEY (rank_id) REFERENCES Rank (id);

Table Taxon Names

Storingmultiple taxa in the Taxon table will introduce redundant taxon namings. For
example, the species Closterium acerosum has the taxonomic id 130971 in GenBank,
but a different one in Silva. We add a field for listing alias names.

Taxon_Names
PK id SERIAL
NN taxon_id INTEGER
NN taxon_name VARCHAR

aliases VARCHAR[]

Listing 4.18: Define table Taxon_Names for scientific names and
aliases of taxonomic nodes and add a foreign key constraint to Taxon

table.
1 CREATE TABLE Taxon_Names(
2 id SERIAL PRIMARY KEY,
3 taxon_id INTEGER NOT NULL,
4 taxon_name VARCHAR NOT NULL,
5 aliases VARCHAR[]
6 );
7

8 ALTER TABLE Taxon ADD FOREIGN KEY (tax_names_id)
9 REFERENCES Taxon_Names (id);

Table Lineage

As described above, we decided to unroll lineages and store them as a list of taxa.
Taxonomic trees are widely and flatly organized, meaning that hundreds of organisms
share the same parental lineages.

Lineage
PK id
FK parent_taxon_id

grand_taxon_ids SERIAL[]
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Listing 4.19: Define table Lineage for taxonomic lineages and add
foreign key constraints to Taxon.

1 CREATE TABLE Lineage(
2 id INTEGER PRIMARY KEY,
3 parent_taxon_id INTEGER,
4 grand_taxon_ids INTEGER[]
5 );
6

7 ALTER TABLE Taxon ADD FOREIGN KEY (lineage_id) REFERENCES Lineage (id);

Table Taxonomy Source

The second part of the composite key in the Taxon table is the taxonomy source
identifier that we store here. The main non-synchronized taxonomies are from
GenBank or Silva, but phylogenetic trees based on alignment studies from Hug et
al., 2016 or Burki et al., 2020 can also be entered. We use a small integer to auto-
generate an identifier and enforce a named source and an URL. Since taxonomies
are periodically updated based on recent findings or committee decisions, we add
a field for the last update performed in the format DATE11 and an optional field
description.

Taxonomy_Source
PK id SMALLSERIAL
NN name VARCHAR
NN url VARCHAR
NN last_update DATE

description TEXT

Listing 4.20: Define table Taxonomy_Source for storing metadata of
taxonomic source files.

1 CREATE TABLE Taxonomy_Source(
2 id SERIAL PRIMARY KEY,
3 name VARCHAR UNIQUE NOT NULL,
4 url VARCHAR NOT NULL,
5 last_update DATE NOT NULL,
6 description TEXT
7 );
8

9 ALTER TABLE Taxon ADD FOREIGN KEY tax_src_id
10 REFERENCES Taxonomy_Sources (id);

Table Organism Group

The study described in section 2.5 has shown that resolving the composition of a
sample to species level is not feasible for all clades and not always useful. Organisms
are therefore grouped by life forms, life stages, or lowest common ancestors by either
method. The most narrowing taxonomic description is to assign a common ancestor.
However, there are examples of polyphyletic groups. We therefore enforce the listing
of taxa that belong entirely to this group.
11one-day resolution is sufficient since taxonomies are never updated more than once per day
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Organism_Group
PK id SERIAL
U name VARCHAR

aliases VARCHAR[]
NN taxon_ids INTEGER[]

description TEXT

To ensure that listed taxa in taxon_ids correspond to existing taxa in table
Taxon, we can add a trigger as done for the Experiment table (see Appendix C.1).

Listing 4.21: Define table Organism_Group for storing collective
groups.

1 CREATE TABLE Organism_Group(
2 id SERIAL PRIMARY KEY,
3 name VARCHAR UNIQUE NOT NULL,
4 aliases VARCHAR[],
5 taxon_ids INTEGER[] NOT NULL,
6 description TEXT
7 );
8

9 ALTER TABLE Morph_Experiment ADD FOREIGN KEY (organism_group_id)
10 REFERENCES Organism_Group (id);

4.6.2 Roles

In a lab environment, there are three main roles with different privileges: a database
administrator with the dual ability to create a schema, but also to grant or revoke
access to users. Account management can be separated from schema modification
tasks, as it does not require a deeper understanding of the schema. Laboratory staff
and researchers make up the group that generates experimental data or processes
data. All their introduced modifications must comply with the rules to ensure the
sound state. For visiting scientists, interns, or students who access only historical
data, it is sufficient to grant read access as discussed in more detail in Section 4.5.7.

Role Name Actors Rights

Admin Long-term employers Create and modify the schema for structur-
ing data; create user accounts and granting
access with different sets of privileges

User A Lab operator, long-term
researcher

Needs to manipulate data by inserting or
correcting result

User B Visiting researcher, stu-
dent

Needs to query historical data, but does
not need or is not trusted to manipulate
data

Table 4.7: Proposed role assignment of lab members.

With the database schema in hand, we can answer our initial questions. See C.2
how these translate into SQL queries. A broader discussion follows in Section 5.3.
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Chapter 5

Discussion

5.1 Metabarcoding

In Chapter 2, we have discussed the fundamental challenges that metabarcoding is
facing: a missing consensus among biologists about the tree of life structure, compu-
tational challenges when deducing phylogenies from a set of DNA sequences, and
the unavoidable trade-off between taxonomic breadth and low-level resolution of
barcode-based identification. These problems have not yet been solved and compli-
cate identification because it is impossible to consult separately curated sequence
databases.

5.1.1 Taxonomic Sparseness of Sequence Libraries

A well-covered database allows statistically more reliable identification, and the
discovery of new barcodes and primer sequences. For many taxonomically described
species, there is no or only a single reference sequence from a short genomic region.
DNA metabarcoding must capture species diversity that spans more than half of
the eukaryotic supergroups, as shown in Figure 2.3 of Section 2.2. The difficulty in
cloning and whole-genome sequencing microplankton challenges the search for new
barcodes additionally.

In practice, primers are searched on a few, taxonomically related sequences. How
large the actual primer coverage is can only be determined by practical experiments.
The primer pair DIV4, for example, was originally designed on a set of Sellaphora1

genomes. Zimmermann, Jahn, and Gemeinholzer, 2011 discovered a 400 bp segment
of the 18S rRNA that would allow distinction of the genus Sellaphora from closely
related genera. For distinction they tested the primer set on 123 sampled diatom
sequences2. However, practical tests on samples revealed an exceptionally high
discrimination and detection rate for other phytoplankton clades. OTU resolution
was only possible because most reference sequences cover the ribosomal 18S region.
To make barcode searches truly unbiased, more genomic regions or even whole
genomes need to be sequenced.

Ribosomal subunits like 16S or 18S have long been considered important marker
regions. The decreasing cost of sequencing, the advent of affordable 454 pyrose-
quencing (Margulies et al., 2005), and PhyloChip (a microarray for 16S surveys) are
leading to a flood of 16S data (DeSantis et al., 2007) and therefore contribute to the
majority of online submissions.

Nevertheless, the standard for classifying new lineages is the clone and sequence
approach. Only complete genomes allow accurate phylogenetic placement in the

1a diatom genus
2via in silico PCR
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tree of life and enable comprehensive searches for unique barcodes. The cost of se-
quencing and assembling whole genomes is slowing the pace of taxonomy refinement.
Nevertheless, the number of additions to GenBank is increasing daily. Figure 5.1
shows the growth in terms of number of nucleotides and sequences since their intro-
duction. The number of nucleotides last doubled four years ago, and the number of
sequences ten years ago (GenBank). Since 2005, even more data, in terms of number
of bases, has come from whole-genome sequencing (WGS).
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Figure 5.1: Growth of nucleotides and sequences in GenBank and
its WGS component between 1982 and 2021. Accumulated release
statistics retrieved from https://www.ncbi.nlm.nih.gov/gen

bank/statistics on 14.02.2022.

Weneed tools that allow in silico primer searchwith the few genomes and sequence
fragments available. It is questionable whether clades that have no direct impact
on the human species will ever achieve such sequence coverage that they can be
studied by more holistic approaches. Scalable in silico PCR tools would allow us to
predict the universal effectiveness of a primer pair. Thereby, the costs for exploring
a potential universal primer are reduced. K-mer based approaches, in contrast to
MSA-based approaches, are capable of solving the primer discovery problem because
k-mers are searched location-independent and do not require similarity between
sequences. Frequent k-mers as potential primer sequences can be identified quickly
in FM-indices.

5.1.2 Tree of Life Construction

Another difficulty for barcode-based identification is due to the history of taxonomic
placement. Large parts of the phylogenetic tree of life are structured based on features
that are observable by the eye, such as morphology or other biological characteristics.
These commonalitiesmay not be reflected in the chosen barcode. The arbitrary nature
of the classification means that there are no uniform division criteria for all groups
of life, and is the cause of disagreement. For the most crucial rank – species – there
exist plenty of concepts. Apart from the reproduction- or phylogenetic-based criteria,
there exist concepts based on isolation (no interbreeding), recognition (of mates),
occupation of ecological niches, evolution, genealogy, genotypic clustering, etc. (see
Table 1 in De Queiroz, 2007). All those concepts represent important abstractions and
reductions of the many underlying DNA changes. Some only measure the biological
and behavioral impact, what mostly matters for survival, and may also explain the
pressure and direction of changes.

https://www.ncbi.nlm.nih.gov/genbank/statistics
https://www.ncbi.nlm.nih.gov/genbank/statistics
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Most organisms that are visible to the human eye already have their place in the
family tree of life. In the era of NGS, we can identify previously unseen microorgan-
isms and classify them primarily based on their molecular properties. This trend is
opportune for barcode-based identification and will make metabarcoding an even
more meaningful and robust tool. It also has a corrective impact on the existing
taxonomy. Just recently major clades have been rearranged given new molecular
evidence as proposed by Burki et al., 2020.

As reported by Nakov, Beaulieu, and Alverson, 2018, genome comparison of the
20 most abundant marine planktonic diatom genera revealed that their ages ranged
from 4 to 134 million years. In other words, some same ranked diatom genera have,
in fact, an evolutional lead of 130 million years. When looking at the diatom order
Thalassiosirales, one of its contained genera, Thalassiosira, is more a polyphyletic
set of species. Besides, four of the eight Thalassiosirales genera are nested within
Thalassiosira with a common ancestor that dates back more than 63 million years.
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5.2 PriSeT

In Chapter 3, we presented PriSeT, a primer discovery tool that reliably identifies pairs
of sequences suitable as PCR primers. PriSeT is robust concerning the quality of the
sequence sources. The k-mer-based approach overcomes computationally expensive
multiple sequence alignments and makes PriSeT independent of the sequence quality.

Given the current state of the largest publicly available sequence database, Gen-
Bank has low sequence coverage for plankton taxa. It was more than surprising
that PriSeT found for some clades new primer pairs offering a broader coverage or
barcode variation than published ones and are at the same time chemically suitable
for a classical PCR (see Table 2.3). PriSeT correctly output primer pairs known to
be present in the library if and only if they pass the constraint sets Cs and Cp (see
Table 3.13). When having complete genomes available for primer discovery too many
candidates are produced, and it is necessary to narrow down the primer sequence
constraints or filter in a post-processing step, e.g., for pairs producing amplicons
that are distinctive or span exons in case annotations are available.

The experiments in Section 3.11 have shown that when searching for primer
pairs for metabarcoding experiments, it is appropriate to use frequency as an initial
filtering heuristic. Only k-mers occurring with a minimum frequency will later satisfy
sufficient coverage or amplicon variation. The FM-index is a transformation that
supports frequency queries with lower costs than a seed-and-extend approach as
used in FastPCR by Kalendar et al., 2017, or an MSA-based approach, which requires
manageable data sets to identify conserved regions serving as primer binding sites.

None of the existing primer search tools we examined was capable of processing
multi-sequence libraries and optimizing for high-frequent primer pairs simultane-
ously. We built PriSeT to satisfy this need. Given the declining cost of NGS, databases
are getting larger, making curation impossible at all, and given the low coverage of
plankton clades, we cannot afford to exclude resources.

GenBank does not stipulate the annotation format for labeling sequences by
their origin (e.g., as 18S or COI). Conclusively, the sampling approach also collected
non-18S sequences, explaining the relatively low values for coverage and amplicon
variation. When users evaluate PriSeT’s computed primer pairs, they have to consider
the heterogeneity of the originating regions.

The PriSeT version at hand does not include coverage or amplicon variation
criteria into the filtering for not limiting the users’ options – the benefit of a higher
coverage is in many cases paid with a lower number of distinct reads (see results in
Table 3.14). It should remain in the users’ hands to decide when coverage is favored
over amplicon variation. The recent SARS-CoV-2 outbreak has demonstrated the
importance of scenarios where the goal is to recover barcodes as distinguishing clades.
In the case of SARS-CoV-2, it was sufficient to ensure uniqueness from its closest
relatives in the same subfamily (Orthocoronavirinae); the identified barcodes had no
matches outside its group. Yet, because many taxa were not classified according to
phylogenetic criteria, these findings cannot be generalized.

By then, we mostly have to rely on partial sequences for primer discovery. PriSeT
can handle both situations: taxonomically wide-spread and sparse sequence libraries,
but yields more primer candidates when longer sequences are available as in the case
of pathological complete viral genomes. With more candidates available, additional
requirements can be implemented, like barcode specificity.
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5.2.1 Open Source Code

It is common knowledge that software systems improve substantially upon publica-
tion of underlying algorithms and source code. The exposure allows a large community
of hackers and enthusiasts to depict errors. For example, the code exposure of widely
used cryptographic schemes made them robust over time. When looking at other
areas, it is not common to publish code. For example, some of the primer check tools
used for debugging purposes displayed occasionally faulty behaviors.

Users tend to be more confident with online tools than with unhandy command-
line tools. For none of the online primer search tools, their source code is provided,
and even worse, there is no description available of the underlying algorithms (see
Blast/Primer3 by Ye et al., 2012, Primer Search Tool by Tusnády et al., 2005, Multiple
Primer Analyzer by Thermo Fisher Scientific, or the standalone tool FastPCR by
Kalendar et al., 2017). All associated publications remain vague in their algorithmic
sections. An undetected self-annealing pattern in one of the primer sequences may
result in a costly and ineffective PCR.

To give an example PCR Primer Stats3 failed to identify a self-annealing or cross-
annealing 4-mer pattern and Thermo Fisher Scientific’s online tool Multiple Primer
Analyzer4 detects self-annealing 4-mers, but fails to discover a disconnected self-
annealing pattern and does not check for cross-annealing when providing multiple
sequences (see Figure 5.2).

5-GTAGGATCAGGGGATCG-3
|||||

5-TCTGCACCGGCTAGTT-3

(a) -/- connected cross-annealing pattern uniden-
tified by PCR Primer Stats.

5-ACTTAGATGTACGTGG-3
|| || || || ||

3-GGTGCATGTAGATTCA-5

(b) -/+ disconnected self-annealing unidentified
by Thermo Fisher Scientific’s Multiple Primer Ana-

lyzer.

Figure 5.2: Critical annealing patterns missed by two online tools.

An openly available specification clarifies whether a behavior is faulty or intended.
In this spirit, we host PriSeT in a public repository such that users pinpoint errors or
request additional features.

5.2.2 Performance

The sequence data set sizes of important plankton clades do not exceed a half gi-
gabyte5. For very large datasets we recommend not to create an FM-index over the
whole library, but to split the library and calculate FM-indices independently. This
also impacts the runtime of the k-mer frequency computation as it does not grow
linearly with the library size (see theoretical runtimes in Table 3.9 of Section 3.10).

PriSeT operates step-wise, i.e., all k-mers with frequencies exceeding a threshold
are collected at once into a single data structure, filtered, and combined reference-
wise. To give an example, Dikarya from the fungal kingdom (clade 451864) produces
119.4 million k-mers. The main memory occupation of the location map received
fromGenMap represents the current bottleneck of PriSeT. Processing libraries beyond

3https://www.bioinformatics.org/sms2/pcr_primer_stats.html accessed in January
2020.

4https://tinyurl.com/ybj4aqbc
5An FM-index is by a factor of 4.2 larger than the original library.

https://www.bioinformatics.org/sms2/pcr_primer_stats.html
https://tinyurl.com/ybj4aqbc
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500 MB is currently only feasible when increasing the k-mer frequency cutoff, s.t. not
more than roughly 120 million k-mers (≈ 1 GB) are produced6.

The temporary space occupation can be tackled by interweaving k-mer frequency
and filtering: a frequent k-mer immediately undergoes filtering and is only collected
when satisfying the frequency threshold and constraint set Cs. Input libraries com-
posed of multiple reference sequences would additionally profit from the reference-
wise partitioning approach. We can apply this strategy to the combination step since
k-mers are pairable only if they refer to the same sequence; each of the references
can be processed in parallel. The current version of PriSeT is v1.0 and does not use
any sort of thread or process parallelism. Some obvious parallelization options are:

• k-wise for FM frequency calls: given sufficient main memory, all calls for k ∈
[κmin : κmax] are executed in parallel

• sequence-wise for k-mer pairing: multiple threads process distinct sequences

• position-wise for k-mer pairing: multiple threads process distinct search win-
dows

The computationally most expensive step is the combination step. Its time com-
plexity is dominated by the product of the library size and the search window, which
is the targeted transcript length range (see Table 3.9 in Section 3.10). It is therefore
critical to constrain free parameters as much as possible.

Stable dimerization of primer and template DNA is crucial for the success of a
PCR. A single mismatch, especially at the 3’-end, may result in an ineffective PCR. On
that account PriSeT is using the (k, 0)-frequency to gather only k-mer locations with
100 % sequence identity. Users can configure PriSeT to allow for up to four errors e
(mismatches) for primer sequences. When allowing errors, a single k-mer occurrence
adds to all location collections referring to k-mers with Hamming distances less or
equal to e. The relaxation of sequence identity impacts the size of the candidate set
and must be carefully selected.

6exemplary for a desktop computer with 16 GB RAM
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5.3 A Database for Metabarcoding Experiments

In Chapter 4, we analyzed the workflow of a research laboratory that performs DNA
metabarcoding formonitoring freshwater biomes. We identified stumbling blocks that
slow down productivity and iterative feedback through inefficient and error-prone
data transmission. We proposed the implementation of a database management
system as a laboratory-specific solution. We hope that the proposal will encourage
biological laboratories to adapt and optimize their data management and workflows
early enough.

An RDBMS reduces data movement and complex infrastructure maintenance. It
allows data consistency to be enforced as needed through user-defined restrictions
and allows roles to be assigned with graduated permissions. The customized scheme
does not cause additional costs, unlike commercial laboratory management software.
Set up in a minimal form, it does not disrupt the usual workflows of long-time
laboratory operators. Existing laboratory data management software (Laboratory
Information Management System, LIMS) includes workflows, data tracking, and
interfaces for data exchange. Companies that sell LIMS as software are Accelrys,
Illumina, Siemens, ThermoFisher Scientific, etc. The reasons why such systems are
not considered by research groups in general are

• Critically small number of group members

• High initial and constant maintenance costs

• Data privacy

LIMSs are laid-out for fast-paced, commercial environments like manufacturing or
medical laboratories, where tracking needs to fulfill a minimum set of standards like
ISO/IEC 170257 or ISO 151898 for Medical laboratories. Such management systems
are too elaborate for institutional research groups, and have high purchase and
maintenance costs. Many of these systems are cloud-based, which would require
additional contracting because of data compliance. Research groups are typically
small9 and so is the expected number of queries or modifications per day.

Graphical user interfaces or automized routines for data input and querying can be
implemented in any language that provides interfacing libraries like MS Excel readers
or database connectors. The proposed scheme is intended as a starting point, e.g.,
the protocol steps in the Pipeline table are currently a free text field. Alternatively,
we could require that only registered sequence processing tools are listed or that a
serialized pipeline is uploaded. A serialized pipeline does not have to be reconstructed
from a text description but can be drawn, deserialized, and executed.

In fact, with the implementation of the database scheme proposed here, the
workflows of the laboratory technicians can remain untouched, as they have been
part of the institute for many years and have developed and refined their methods
of logging. The content of counting results, for example, can easily be transferred
in an automized manner into a database – Python offers libraries to parse MS Excel
sheets10 and access PostgreSQL databases11.

7General requirements for the competence of testing and calibration laboratories
8Requirements for quality and competence
9A study about group sizes of biology research groups in the UK revealed an average group size of 7.3

with a standard deviation of 4.5. The average composition is 3.0 doctoral students, 2.1 postdocs, 0.5
technicians, and 0.68 other staff like research associates (Cook, Grange, and Eyre-Walker, 2015).
10MS Excel and OpenOffice supporting libraries: openpyxl, xlsxwriter, or xlwt
11PostgreSQL supporting libraries: psycopg2 or py-postgresql



0134 Chapter 5. Discussion

The schema definitions are provided on GitHub12. We recommend refining or
simplifying the schema where needed. The workflow difficulties examined here are
from the perspective of a sequence data analyst – amore comprehensive requirements
analysis is needed for all user groups involved.

5.3.1 What to Keep

The purpose of a database is not to store all the data generated in the laboratory for all
time, but to capture the essentials to understand experimental steps and enable new
types of analyses. The goal is to reduce the inherent complexity of metabarcoding
studies, allow participants to reach a productive state more quickly, have assured
data and pipelines for replication, and enable cumulative surveys.

The here presented database scheme scales perfectly with the number of experi-
ments. It is not intended for storing raw data, which is the only unit of considerable
size. However, the physical location should be reasonably static. In section 4.2 we
indicated that sequencing a base is faster than storing a byte, and we, therefore, ex-
pect to encounter memory problems. Currently, server capacities are bought in when
needed. The costs are relatively high relative to the lab’s total budget – alone the
management service for a server is e3,000 as offered by the university’s computing
center13.

A first and frequently used approach to reduce the extra storage space for se-
quencing data is lossless text compression. On read access, the compressed files are
unzipped and later deleted. A zipped FASTQ file consumes about 25 % of the original
file size. Another technique is referential compression. This technique can be applied
to large, highly similar sequences such as genomes of the same species (e.g., Liu et al.,
2017). For example, in the human genome, there are about 4 million variations from
a reference genome that could be represented by only a few megabytes (Baker, 2010).

We can reduce the storage size by orders of magnitude by saving only derepli-
cated high-quality reads. However, this would demand agreeing on a minimal data
processing pipeline. A single cluster can then be represented by a unique sequence
and the size of the cluster. Additionally, compression would be possible.

At the IGB, steps have been taken to digitize all analytical results in the form
of microscopic images or spreadsheets. Spreadsheets can be uploaded to an IGB
internal server, while sequencing data are often stored on servers that are part of the
university infrastructure. These systems are physically and digitally separated, and
many users only have access to a single system.

The most radical approach is to delete the reads from the lab’s server and keep
only the OTU data. It is a de facto standard to archive sequencing data associated
with publications databases such as GenBank at the National Center for Biotechnol-
ogy Information (NCBI, Benson et al., 2012), the EMBL database of the European
Bioinformatics Institute (Catherine, Cameron, and Janet, 2010), or the DNA Data
Bank of Japan (DDBJ, Sugawara et al., 2008). In such a situation, laboratory copies
are redundant, but research groups are reluctant to delete them.

Instead, laboratories tend to retain sequencing data in the form of assembled
genomes, raw reads, and data intermediates. Data products quickly occupy terabytes
of storage space, for which additional servers are rented. Some labs may have already
reached the limit of what they can afford. Deciding what to keep and how to compress
what needs to be kept is becoming unavoidable.

12https://github.com/mariehoffmann/plankton_database
13https://www.zedat.fu-berlin.de/ManagedServer, (accessed on 01.06.2020)

https://github.com/mariehoffmann/plankton_database
https://www.zedat.fu-berlin.de/ManagedServer
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Chapter 6

Conclusion

With a background in bioinformatics and computer science, I started working at an
ecology working group with the primary goal of analyzing sequencing results. The
originating samples were freshwater plankton samples, which exhibit an enormous
diversity. I identified multiple stumbling blocks that we need to address. A profound
one was the consolidation of data centered around environmental experiments to
enable efficient and timely analyses. Chapter 4 presents the outcome – a no-budget
solution in the form of a database schema for PostgreSQL, which consolidates the
most relevant parts.

The other challenge was to identify species in heterogeneous samples using DNA
barcodes. The computationally ideal solution would require that the genomes of all
indicator species are complete. We could, for example, compute a combination of a few
barcodes that guarantee unambiguous species assignment. However, whole-genome
sequencing is not feasible for most plankton species (see Chapter 2). Therefore,
we have to deal with the available sequences that mainly cover the SSU region. In
addition to a missing ground truth1, we encounter underrepresented taxa even in the
largest available sequence database: GenBank (Benson et al., 2012). Primer pairs
have to be optimized iteratively, with only partial knowledge of the ground truth.
At the same time, primer pairs must be sensitive and unbiased to well-covered taxa.
The reason is that there might be yet unidentified species in the sample, or species
exhibiting volatile occurrence patterns. A combination of universal and clade-specific
markers is usually chosen.

Practical challenges aside, biologists disagree on a unifying species concept, re-
sulting in noncongruent trees of life (TOLs) associated with different databases. The
availability of more sequence data fosters a particular concept: that of phylogenetic
distances. Currently, TOLs are synthesized from taxonomic and phylogenic infor-
mation (Chapter 2). Nevertheless, metabarcoding needs complementation by light
microscopy (LM) for cryptic or unknown species or measurement of phenotypical
parameters.

Most indices or metrics that describe the quality status of a biotope use species
richness, composition, and abundance of indicator species (see Birk et al., 2012).
While richness could be well captured via metabarcoding, an abundance estimation
of high-abundant organisms is currently only feasible via light microscopy. The
direct comparison of individual counts and read abundances of high abundant and
well-defined species demonstrated (see Figure 2.15) that metabarcoding does not
replace the manual method. Section 2.4.1 described the limitations of LM for some
critical and high abundant organisms that are indistinguishable when present in a
specific state (larvae, juvenile, male) and can, therefore, be only assigned to some
higher-order taxon. In such a case LM underestimates these species.

1here: knowledge of all contained species in the sample
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On the contrary,metabarcodingmeasuresDNAabundance independent ofwhether
the originating material is dead, alive, or in a morphologically indistinguishable state.
Therefore, we would expect species records from metabarcoding before and possibly
after they are seen under the LM in a time series. Dead organisms tend to sink and
get enriched in marine sediments. Even though all samples were taken from surface
water, Lake Müggelsee is a shallow lake with boat traffic and layers most often not
stratified. Water is whirled up, and a significant amount of dead material may also be
contained in surface water.

The iterative optimization of primer pairs for a better sample resolution needs
to be supported by search tools that deal with hundreds of thousands of reference
sequences that are phylogenetically close or distant. Chapter 3 presented the C++-
tool PriSeT, which discovers new primer sequences exceeding a frequency threshold.
PriSeT uses a k-mer-based approach to tackle scalability and robustness towards the
reference data set. Concretely, PriSeT employs a bidirectional FM-index based on
EPR2-dictionaries (see Pockrandt, Ehrhardt, and Reinert, 2017) and optimal search
schemes for k-mer retrieval. PriSeT is fast enough in practice to process millions of
primer candidates within seconds or minutes (see Section 3.12.4). In combination
with transcript information, primers can be determined that not only serve as barcodes
but also generate unique barcodes. Clade discrimination is particularly important for
pathogen detection.

We evaluated PriSeT on reference sequences (mostly 18S rRNA genes) from 19
clades covering eukaryotic organisms typical for freshwater plankton samples. PriSeT
has found several published primer sets as well as additional primer sets that are
more chemically suitable. We compared frequency, taxon coverage, and amplicon
variation with published primer sets for these new sets. One result was that for 11
clades, we found de novo primer pairs that cover more taxa than the published ones,
and for six clades de novo, primers resulted in higher sequence (i.e., DNA barcode)
variation (Table 3.14). Second, we applied PriSeT to 19 SARS-CoV-2 genomes and
114 new primer pairs were calculated, with sequences not allowed to occur in other
taxa to avoid reporting false-positive results (Figure 3.8). These primer sets would be
suitable for empirical testing. These findings show that although the search space is
very limited, it still contains unknown primer pairs that could potentially improve
the sensitivity or specificity.

PriSeT is available under https://github.com/mariehoffmann/PriSeT.
The repository contains example applications and documentation. Supplementary
result data shown in Section 3.11 can be also found in tabular format under https:
//github.com/mariehoffmann/PriSeT_denovo.

2Enhanced Prefixsum Rank

https://github.com/mariehoffmann/PriSeT
https://github.com/mariehoffmann/PriSeT_denovo
https://github.com/mariehoffmann/PriSeT_denovo
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Appendix A

Species Identification in
Environmental Samples

A.1 Abundance Plots

Figures A.1 and A.2 show the set of high abundant species identified under the micro-
scope and by at least one marker (EUK15, EUK14, or DIV4). In case a morphological
species could only be given the genus name (sp.), we accumulated OTU counters
whenever an OTU could be resolved to that genus or a related species.

Figure A.1: Species abundances as individual (Morph) or read count
abundances (part 1).
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Figure A.2: Species abundances as individual (Morph) or read count
abundances (part 2).

A.2 R Code for Statistical Analyses

The scripts and data sheet (Plankton_ID.ods) are available under https://gith
ub.com/mariehoffmann/aquamarine. Each analysis is done on three major
groups:

1. Diatoms

2. Green Algae

3. Zooplankton

The data is read out from the tabular file using the R library readODS. An extra
column contains the above group labels for subsetting. In a first step, the OTU data is
transformed into the following layout: for each sample from one of the three sites
(Lake MPS, or River SGT/SNZ) cntx,y ∈N0 denotes the OTU size (or the number of
individuals for morphological identification) in terms of read counts (see Table A.1).
Only OTUs of the same identificationmethod andmarker are comparable. That is why

Site OTU1 OTU2 · · · OTUn

MPS1 cnt1,1 cnt1,2 · · · cnt1,n
MPS2 cnt2,1 cnt2,2 · · · cnt2,n
...

...
...

...
...

MPS5 cnt5,1 cnt5,2 · · · cnt5,n
SGT1 cnt6,1 cnt6,2 · · · cnt6,n
SGT2 cnt7,1 cnt7,2 · · · cnt7,n
SGT3 cnt8,1 cnt8,2 · · · cnt8,n
SNZ1 cnt9,1 cnt9,2 · · · cnt9,n
...

...
...

...
...

Site SNZ4 cnt12,1 cnt12,2 · · · cnt12,n

Table A.1: Layout for statistical analyses.

the non-metric multidimensional scaling (NMDS) and multi-response permutation

https://github.com/mariehoffmann/aquamarine
https://github.com/mariehoffmann/aquamarine
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procedure (MRPP) are carried out marker-wise. The transformed data is then subset
into one of the three organism groups listed above.

A.2.1 NMDS in R

Listing A.1: NMDS on all subsets and identification methods.
1 library(dplyr)
2 library(readODS)
3 library(papeR)
4 library(pracma)
5 library(stringr)
6 library(vegan)
7

8 fname <- "Plankton_IDs.ods"
9

10 sheets <- list(list(method = "Morph_ID", table_idx = 2,
11 last_row_idx = 235),
12 list(method = "EUK15_ID", table_idx = 3, last_row_idx = 325),
13 list(method = "EUK14_ID", table_idx = 4, last_row_idx = 506),
14 list(method = "DIV4_ID ", table_idx = 6, last_row_idx = 543))
15

16

17 cols_MPS_Morph_ID <- c( "S23_MPS_140915",
18 "S04_MPS_140929",
19 "S06_MPS_141013",
20 "S21_MPS_141027",
21 "S24_MPS_141110")
22 cols_MPS_NGS_ID <- c(
23 cols_MPS_Morph_ID, c("S09_MPS_141027",
24 "S46_MPS_141110"))
25 cols_SGT <- c( "S31_SGT_140902",
26 "S07_SGT_141014",
27 "S17_SGT_141125")
28 cols_SNZ <- c( "S32_SNZ_140902",
29 "S38_SNZ_140916",
30 "S08_SNZ_141014",
31 "S18_SNZ_141125")
32

33 organism_groups <- c("Diatoms", "Green Algae", "Zooplankton")
34

35 # Group label colors
36 colvec <- c("gray27", "gray90", "gray57")
37 pchvec <- c(21, 21, 21)
38

39 # for plot display
40 sysname = (Sys.info()[’sysname’])
41 switch(Sys.info()[[’sysname’]],
42 Darwin = {quartz()}, # X11()
43 Linux = {quartz()},
44 Windows = {windows()})
45

46 for (sheet in sheets)
47 {
48 print(sheet)
49 cols_MPS <- cols_MPS_NGS_ID
50 if (sheet$table_idx == 2)
51 {
52 cols_MPS <- cols_MPS_Morph_ID
53 }
54
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55 # Subset of columns to select per sheet given by header name
56 cols <- c(c("Subset_MRPP_NMDS"), cols_MPS, cols_SGT, cols_SNZ)
57

58 # iterate over table indices
59 data <- read_ods( fname,
60 sheet$table_idx,
61 col_names = TRUE,
62 formula_as_formula = FALSE)
63 # Crop until last row
64 data <- data[1:sheet$last_row_idx, cols]
65 for (organism_group in organism_groups)
66 {
67 # Delete rows not matching group labels and discard first column
68 data.organism <- data[data$Subset_MRPP_NMDS == organism_group,]
69 print(data.organism)
70 data.organism <- data.organism[, -1]
71

72 # transpose and accumulate sampling sites into MPS, SGT, or SNZ
73 data.organism <- t(data.organism)
74

75 #print(head(data.organism))
76 data.organism <- transform(data.organism, site =
77 ifelse(str_detect(row.names(data.organism), "MPS"), "MPS",
78 ifelse(str_detect(row.names(data.organism), "SGT"), "SGT",
79 "SNZ")))
80

81 # delete rows containing only null values
82 data.organism <- data.organism[rowSums(data.organism[,
83 1:ncol(data.organism)-1]) != 0, ]
84

85 # extract row names and site IDs as columns
86 data.sites <- as.data.frame( data.organism$site,
87 rownames(data.organism))
88 colnames(data.sites)[1] <- "site"
89 data.sites <- tibble::rownames_to_column(data.sites, "sample")
90 data.sites <- transform(data.sites,
91 sampleID = unlist(
92 strsplit(data.sites$sample, c(’_’)))
93 [seq(1, 3*nrow(data.sites), 3)])
94

95 # delete tailing ’sites’ column
96 data.organism = data.organism[, 1:ncol(data.organism) - 1]
97 data.rel <- decostand(data.organism, method = "log")
98 print(data.sites)
99

100 # NMDS with bray-curtis index as distance measure
101 data.nmds = metaMDS(data.rel, distance = "bray", k = 2)
102 stress <- paste("Stress: ", sheet$method, ", ",
103 organis m_group, ": ", data.nmds$stress, sep = "")
104 print(stress)
105 goodness(data.nmds)
106

107 # stress plot
108 png(filename = paste("./nmds_plots/", sheet, "_", organism_group,
109 "_stress.png", sep = ""))
110 stressplot(data.nmds)
111 dev.off()
112

113 # nmds sites plot with labels
114 # save as svg to edit label positions later with graphic program
115 svg(filename = paste("./nmds_plots/", sheet, "_", organism_group,
116 ".svg", sep = ""), width = 5, height = 5) #, units = ’in’,
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117 res = 300)
118 plot(data.nmds, display = "sites", ann=FALSE)
119

120 # plot convex hull
121 ordihull(
122 data.nmds,
123 data.sites$site,
124 display = "sites",
125 draw = c("polygon"),
126 col = NULL,
127 border = colvec,
128 lty = c(3, 3, 3),
129 lwd = 2.5
130 )
131

132 # plot colored
133 with(data.sites,
134 points(data.nmds,
135 display = "sites",
136 col = "black",
137 pch = pchvec[data.sites$site],
138 bg = colvec[data.sites$site],
139 cex = 2))
140

141 # annotate sites
142 text(data.nmds, "sites", labels = data.sites$sampleID, cex = 1.2,
143 pos = 3, offset = 0.8, col = "gray50")
144

145 # display stress value
146 text(0, 0, labels = c(paste("R^2 = ", round(data.nmds$stress, 3),
147 sep = "")), cex = 1.25)
148 dev.off()
149 }
150 }
151

152 # Reduce digits after comma for terminal display
153 digits <- function(nvec, precision)
154 {
155 return(lapply(nvec, "format", digits = precision, nsmall = precision))
156 }

A.2.2 MRPP in R

Listing A.2: MRPP on all subsets and identification methods.
1 library(dplyr)
2 library(readODS)
3 library(pracma)
4 library(stringr)
5 library(vegan)
6

7 fname <- "Plankton_IDs.ods"
8

9 # Sheets to read, 2: "Morph_ID", 3: "EUK15_ID", 4: "EUK14_ID", 5: "DIV4_ID"
10 sheets <- list(
11 list(method = "Morph_ID", table_idx = 2, last_row_idx = 235),
12 list(method = "EUK15_ID", table_idx = 3, last_row_idx = 325),
13 list(method = "EUK14_ID", table_idx = 4, last_row_idx = 506),
14 list(method = "DIV4_ID ", table_idx = 5, last_row_idx = 543))
15

16 # columns to pool for MPS
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17 cols_MPS_Morph_ID <- c( "S23_MPS_140915",
18 "S04_MPS_140929",
19 "S06_MPS_141013",
20 "S21_MPS_141027",
21 "S24_MPS_141110")
22

23 # add technical replicates for NGS
24 cols_MPS_NGS_ID <- c(cols_MPS_Morph_ID,
25 c( "S09_MPS_141027",
26 "S46_MPS_141110"))
27

28 cols_SGT <- c( "S31_SGT_140902",
29 "S07_SGT_141014",
30 "S17_SGT_141125")
31

32 cols_SNZ <- c( "S32_SNZ_140902",
33 "S38_SNZ_140916",
34 "S08_SNZ_141014",
35 "S18_SNZ_141125")
36

37 # we apply mrpp pairwise
38 site_combinations <- c(’MPS|SGT|SNZ’, ’MPS|SGT’, ’MPS|SNZ’, ’SNZ|SGT’)
39

40 organism_groups <- c("Diatoms", "Green Algae", "Zooplankton")
41

42 results <- list()
43

44 for (sheet in sheets)
45 {
46 print(sheet)
47 cols_MPS <- cols_MPS_NGS_ID
48 if (sheet$table_idx == 2)
49 {
50 cols_MPS <- cols_MPS_Morph_ID
51 }
52

53 # Subset of columns to select per sheet given by header name
54 cols <- c(c("Subset_MRPP_NMDS"), cols_MPS, cols_SGT, cols_SNZ)
55

56 # iterate over table indices
57 data <- read_ods(fname, sheet$table_idx, col_names = TRUE,
58 formula_as_formula = FALSE)
59

60 # Crop until last row
61 data <- data[1:sheet$last_row_idx, cols]
62 for (organism_group in organism_groups)
63 {
64 print(paste("organism group = ", organism_group))
65

66 # Delete rows not matching group labels and discard first column
67 data_o <- data[data$Subset_MRPP_NMDS == organism_group,]
68 data_o <- data_o[, -1]
69

70 # transpose and accumulate sampling sites into MPS, SGT, SNZ
71 data_o <- t(data_o)
72 data_o <- transform(data_o, sites =
73 ifelse(str_detect(row.names(data_o), "MPS"), "MPS",
74 ifelse(str_detect(row.names(data_o), "SGT"), "SGT", "SNZ")))
75

76 # iterate and filter over all combination sets > 1
77 for (site_combination in site_combinations)
78 {
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79 data_o_s <- dplyr::filter(data_o,
80 grepl(site_combination, sites))
81 # delete rows containing only null values
82 data_o_s <-
83 data_o_s[rowSums(data_o_s[,1:ncol(data_o_s)-1])!=0, ]
84 sites_factor <- as.factor(data_o_s[, ncol(data_o_s)])
85 mrpp_list <- mrpp( data_o_s[, 1:ncol(data_o_s) - 1],
86 sites_factor,
87 permutations = 500,
88 distance = "bray")
89 result <- list(sheet$method, organism_group,
90 site_combination, mrpp_list$n,
91 mrpp_list$classdelta, mrpp_list$Pvalue,
92 mrpp_list$E.delta, mrpp_list$delta)
93 results <- append(results, list(result))
94 }
95 }
96 }
97

98 # Reduce digits after comma for terminal display
99 digits <- function(nvec, precision)
100 {
101 return(lapply(nvec, "format", digits = precision, nsmall = precision))
102 }
103

104 # Display results
105 cat("/n----------------------\tRESULTS\t----------------------\n\n")
106 cat("| Method |\tOrganism Group |\tSites |\t\tNum Observ |\tClass delta |")
107 cat("\t\t\t\t\tp-value |\t\tE.delta |\tdelta |\n")
108 cat("|--|--|--|--|--|--|--|--|")
109 cat("\n")
110 for (result in results)
111 {
112 cat("| ")
113 cat(paste(result[1]))
114 cat(" |\t")
115 cat(paste(result[2]))
116 cat(" |\t\t")
117 s <- paste(result[3])
118 s <- str_replace_all(s, "\\|", ",")
119 cat(s)
120 cat(" |\t")
121 for (site in result[4])
122 {
123 cat(paste(site))
124 }
125 cat(" |\t\t")
126 cat(paste(digits(result[5], 2)))
127 cat(ifelse(lengths(result[5], use.names = TRUE) == 3,
128 " |\t", " |\t\t\t"))
129 cat(paste(digits(result[6], 4)))
130 cat(" |\t\t")
131 cat(paste(digits(result[7], 2)))
132 cat(" |\t\t")
133 cat(paste(digits(result[8], 2)))
134 cat("\n")
135 }
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Appendix B

Primer Discovery in Large
Datasets

B.1 One-Letter Encodings of Nucleotides

Symbol Base Representation

A A
C C
G G
T T
U U
M A C
R A G
W A T
S C G
Y C T
K G T
V A C G
D A G T
H A C T
B C G T
N A C G T

Table B.1: One-letter encodings for (ambiguous) DNA bases.
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B.2 Runtimes for Plankton Datasets

Clade Runtimes [ms]
Taxid Name Size [MB] FM Freq Transform & Filter Combine

304574 Charophyceae 0.42 1366 271 73
3041 Chlorophyta 31.79 127249 18575 6362
2825 Chrysophyceae 0.89 2844 728 311
3027 Cryptophyta 1.97 7309 1475 443
33849 Diatoms 4.98 14189 4259 961
2864 Dinophyceae 6.24 16321 5341 1682
33682 Euglenozoa 19.29 69457 8157 862
5747 Eustigmatophyceae 1.40 4498 536 234

554915 Amoebozoa 4.63 14609 3369 729
33651 Bicosoecida 0.15 757 183 110
28009 Choanoflagellata 0.28 1186 137 53
136419 Cercozoa 2.34 7276 1627 420
5878 Ciliophora 6.94 19749 6877 1899
6657 Crustacea 38.85 118194 2415 91
6231 Nematoda 82.44 400836 3756957 1411
27999 Perkinsidae 0.13 648 103 48
10190 Rotifera 1.57 3579 357 8
451864 Dikarya 518.44 3052423 98212 3191
112252 Fungi 10.21 27853 4066 500

Table B.2: Runtimes separated by major computation steps: FM fre-
quency, transform and filter of k-mers, and pair formation.
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B.3 Published SARS-CoV-2 Real-time RT-PCR Primers

Primer Name Sequence (5’ - 3’)

2019-nCoV_N1-F GACCCCAAAATCAGCGAAAT
2019-nCoV_N1-R TCTGGTTACTGCCAGTTGAATCTG

2019-nCoV_N2-F TTACAAACATTGGCCGCAAA
2019-nCoV_N2-R GCGCGACATTCCGAAGAA

2019-nCoV_N3-F GGGAGCCTTGAATACACCAAAA
2019-nCoV_N3-R TGTAGCACGATTGCAGCATTG

RNAse P (RP-F) AGATTTGGACCTGCGAGCG
RNAse P (RP-R) GAGCGGCTGTCTCCACAAGT

Table B.3: Published Real-time RT-PCR primers for SARS-CoV-2 (Rei-
jns et al., 2020).
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B.4 Primer Pairs computed by PriSeT for SARS-CoV-2

primer ID primer fwd primer rev

4b81c574f92f5b6b TGTGGGCTCAATGTGTCC AGAAATGCTGGACAACAGGG
fb9e459a5fd403d0 TGTGGGCTCAATGTGTCC CAACAGGGCAACCTTACAAG
d77312094faec94a TGTTGGGTGTTGGTGGCA TGTGGGCTCAATGTGTCCA
20cdc3951a8444e3 AAGGCTGGTGGCACTACTG CACTGTAGAGGAGGCAAAGA
fd353b662018da72 AAGGCTGGTGGCACTACTG CACTGTAGAGGAGGCAAAG
8172266d6ee0d285 ATTCGTGGTGGTGACGGT CTGGACTTCCCTATGGTG
11d43e7c3ecd6a99 TTGTTGGGTGTTGGTGGCA TGTGGGCTCAATGTGTCC
5995c9f26e0676d3 TTGTTGGGTGTTGGTGGCA TGTGGGCTCAATGTGTCCA
29b1f4099511af84 TTGTTGGGTGTTGGTGGCA TGTGGGCTCAATGTGTCCAG
48a672e138679875 TGTTGGGTGTTGGTGGCA TGTGGGCTCAATGTGTCC
1892c93190392948 ATTCCCACCAACAGAGCCT CTGTGACTCTTCTTCCTGC
159f2e139785ffbe ATTCCCACCAACAGAGCCT GTGACTCTTCTTCCTGCTGC
96805f79c2a0e052 ATTCCCACCAACAGAGCCT TGACTCTTCTTCCTGCTGC
7aaa108589efa2b2 TTCCCACCAACAGAGCCT CTGTGACTCTTCTTCCTGC
1206442a59c1402e TTCCCACCAACAGAGCCT GTGACTCTTCTTCCTGCTG
bc18299b71ff09b3 TTCCCACCAACAGAGCCT TGACTCTTCTTCCTGCTGC
2a9b62341d175dd3 TGTGGGCTCAATGTGTCC ACAGGGCAACCTTACAAGC
fde205d091dbf5c6 AAGGCTGGTGGCACTACTG ACTGTAGAGGAGGCAAAGAC
4baddf7c639182bd TGTGGGCTCAATGTGTCC AACAGGGCAACCTTACAAGC
6f50a4785eea571e ATTCGTGGTGGTGACGGT CTGGACTTCCCTATGGTGC
401ba718965a2358 AAGGCTGGTGGCACTACTG AGGAGGCAAAGACAGTGCTT
808a6ec19b1fa754 AAGGCTGGTGGCACTACTG AGGAGGCAAAGACAGTGCT
39f016cd1cf70709 ATTCGTGGTGGTGACGGT ATGGTGCTAACAAAGACGGC
cf8f8ca6678946c0 ATTCGTGGTGGTGACGGT TGGACTTCCCTATGGTGCTA
aad2a480277c9caa ATTCGTGGTGGTGACGGT TGGACTTCCCTATGGTGCT
46ba4fda4b07809f ATTCGTGGTGGTGACGGT TGGACTTCCCTATGGTGC
aaccdd3959e4527 AAGGCTGGTGGCACTACTG GAGGAGGCAAAGACAGTGCT
913be450fe26d09c AAGGCTGGTGGCACTACTG GAGGAGGCAAAGACAGTGC
f55da99ba5adaf67 GCTGCTGCTTGACAGATTG GAAATCTGCTGCTGAGGC
25eedfb2945a69ab ATTCGTGGTGGTGACGGT TGGTGCTAACAAAGACGGC
6942e5c76ceb030f AAGGCTGGTGGCACTACTG AGAGGAGGCAAAGACAGTGC
2153ca4cdd8250d5 AAGGCTGGTGGCACTACTG AGAGGAGGCAAAGACAGTG
3861c9f4dc028f97 GTCCAGAACAAACCCAAGG GCTTCAGCGTTCTTCGGA
596418188191cecc AAGGCTGGTGGCACTACTG TAGAGGAGGCAAAGACAGTG
995b13e0fc05d365 GTCCAGAACAAACCCAAGG GCTTCAGCGTTCTTCGGAA
d5a535fd1a44041a AAGGCTGGTGGCACTACTG GTAGAGGAGGCAAAGACAGT
1ffc143ae28fdb18 AAGGCTGGTGGCACTACTG GTAGAGGAGGCAAAGACAG
785db585374bf1c5 GTCCAGAACAAACCCAAGG GCTTCAGCGTTCTTCGGAAT
f44b6842efd9edbb ACAGGCAAACAGCACAAGC GACAGGTGGTTTCTCAATCG
120b36b16368d3e5 GCTTGTGTTTTGGCTGCTG GAAAGTTTACGCCCTGACAC
3de2c61dcbe9ef19 ATTCCCACCAACAGAGCCT GTGACTCTTCTTCCTGCTG
d3c5486ddf1d1cec CAGGCAAACAGCACAAGC GACAGGTGGTTTCTCAATCG
b71cdb9247230ee7 ATTCGTGGTGGTGACGGT AGGGAGCCTTGAATACACCA
13c180b2898140fc ATTCGTGGTGGTGACGGT AGGGAGCCTTGAATACACC
5a60bfd1673126f7 ATTCGTGGTGGTGACGGT TGGTGCTAACAAAGACGGCA
9603b7faf904bfab CTTGCTTTGCTGCTGCTTG AAGAAATCTGCTGCTGAGGC
ec5a867fc3a7b57b CTTGCTTTGCTGCTGCTTG AGAAATCTGCTGCTGAGGC
ab4d63965beacadd CTTGCTTTGCTGCTGCTTG AGAAATCTGCTGCTGAGGCT
d8d6d128b0fbbfa8 CTTGCTTTGCTGCTGCTTG GAAATCTGCTGCTGAGGC
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primer ID primer fwd primer rev

bc11be2f542428d3 CCTTACCGCAGAGACAGA AGACCACACAAGGCAGATG
2f8186519877510 GCCTTGTCCCTGGTTTCA TCCGTGGAGGAGGTCTTA
47547a832a425d71 CCTTACCGCAGAGACAGA CAGACCACACAAGGCAGA
753a121c64e12362 CCTTACCGCAGAGACAGA CAGACCACACAAGGCAGAT
c79a3c0bca11e8c GCCTTGTCCCTGGTTTCA TCCGTGGAGGAGGTCTTAT
ae069f7176fa016e CTACAGTGTTCCCACCTAC TGGATACCACTTCAGAGAGC
1b6899a98e69cbeb CCGCAGAGACAGAAGAAAC CACAAGGCAGATGGGCTA
da0fb36d836d8cd9 CTACAGTGTTCCCACCTAC GGATACCACTTCAGAGAGC
46676cb30e959c1b CCTTACCGCAGAGACAGA GACCACACAAGGCAGATG
a783fac1bd05c637 CCTTACCGCAGAGACAGA GACCACACAAGGCAGATGG
3a10f162d16e7001 CCTTACCGCAGAGACAGA ACCACACAAGGCAGATGG
f065169979c313af CAAGCCTTACCGCAGAGAC AGACCACACAAGGCAGATG
e94ddb81c38e38f6 CAAGCCTTACCGCAGAGAC AGACCACACAAGGCAGATGG
fdabc47cd437dab4 CTCTACAGTGTTCCCACCT TGGATACCACTTCAGAGAGC
74cfaed3fd8a877a CTCTACAGTGTTCCCACCT GGATACCACTTCAGAGAGC
f4074f98460c112e CAAGCCTTACCGCAGAGAC GACCACACAAGGCAGATGG
818cc24f947313f7 CCTTACCGCAGAGACAGA ACCACACAAGGCAGATGGG
56a49f74320e52ab CAAGCCTTACCGCAGAGAC ACCACACAAGGCAGATGGG
bc45f67fe01820c5 CCGCAGAGACAGAAGAAAC CACAAGGCAGATGGGCTAT
8bc807ff2b7245e5 CAAGCCTTACCGCAGAGAC CACAAGGCAGATGGGCTAT
f8e5c9a2c1cf4de4 CCTTACCGCAGAGACAGA GCAGACCACACAAGGCAGA
8381ab5256f9c4a CCTTCGTGGACATCTTCGT GTAGCAGGTGACTCAGGTT
f8c4c2eadd355907 CCGCAGAGACAGAAGAAAC ACCACACAAGGCAGATGG
d8dc5c165aa3e9b9 CCGCAGAGACAGAAGAAAC GACCACACAAGGCAGATGG
3739c465ddef266a CCTTCGTGGACATCTTCGT GTAGCAGGTGACTCAGGT
42939198c8de99f1 CCGCAGAGACAGAAGAAAC ACCACACAAGGCAGATGGG
df6cd6ebf5846227 CCGCAGAGACAGAAGAAAC GCAGACCACACAAGGCAGA
b6cebc57418e2c96 CCGCAGAGACAGAAGAAAC GACCACACAAGGCAGATG
5fb65bd3e1e24571 CCGCAGAGACAGAAGAAAC GCAGACCACACAAGGCAGAT
4d6e1bd61daee5d9 CCGCAGAGACAGAAGAAAC CAGACCACACAAGGCAGA
13b955fb4a5f939e CCGCAGAGACAGAAGAAAC CAGACCACACAAGGCAGAT
5561fe18bab71084 CCGCAGAGACAGAAGAAAC CAGACCACACAAGGCAGATG
3b234e91b23a2bda CCGCAGAGACAGAAGAAAC AGACCACACAAGGCAGATG
9fe99fafb93761e9 CCGCAGAGACAGAAGAAAC AGACCACACAAGGCAGATGG
2f1d6e5af859ccba GGTGTGACCGAAAGGTAAG TCCGTGGAGGAGGTCTTATC
e0d0082a500aa4ef GGTGTGACCGAAAGGTAAG TCCGTGGAGGAGGTCTTAT
cca886c3334684c6 GGTGTGACCGAAAGGTAAG TCCGTGGAGGAGGTCTTA
c811b6a14f804d28 CCGCAGAGACAGAAGAAAC ACACAAGGCAGATGGGCTAT
5d1d86286104193e CCGCAGAGACAGAAGAAAC ACACAAGGCAGATGGGCTA
ceef8450fb2dca51 CCGCAGAGACAGAAGAAAC ACACAAGGCAGATGGGCT
ca93d3c4faa1b9b4 TCAAGCCTTACCGCAGAG AGACCACACAAGGCAGATG
5ad419d2177a1aa8 TCAAGCCTTACCGCAGAG CAGACCACACAAGGCAGAT
8a99ac42437987df TCAAGCCTTACCGCAGAG CAGACCACACAAGGCAGA
77e26c50492741a5 TACTGCCGTTGCCACATAG TCTGCGGTATGTGGAAAGG
d9351aa64f98162 TACTGCCGTTGCCACATAG CGTCTGCGGTATGTGGAAA
48d9a9de8128f216 TCAAGCCTTACCGCAGAG GCAGACCACACAAGGCAGA
b73b0135194882b3 TACTGCCGTTGCCACATAG CGTCTGCGGTATGTGGAA
b9ceaeac1bc8b0ed TACTGCCGTTGCCACATAG TTGTGCTAATGACCCTGTGG
f558e43b7cabd547 CAAGCCTTACCGCAGAGAC CAGACCACACAAGGCAGAT
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primer ID primer fwd primer rev

8896eef4f7641d17 CTTCGTATTGCTGGACACC AGCGTGTAGCAGGTGACTCA
fd2cedb6abf2db7e CTTCGTATTGCTGGACACC AGCGTGTAGCAGGTGACTC
89624fee01dbb45b CTTCGTATTGCTGGACACC AGCGTGTAGCAGGTGACT
3383b86f2565d058 CCTTCGTGGACATCTTCGT GTGACTCAGGTTTTGCTGC
3250b5e3a3495748 CAAGCCTTACCGCAGAGAC CAGACCACACAAGGCAGATG
75d8b0106f385015 CCTTCGTGGACATCTTCGT GTAGCAGGTGACTCAGGTTT
f31935d74b63fcb6 CAAGCCTTACCGCAGAGAC GCAGACCACACAAGGCAGAT
bf78371688c47748 CAAGCCTTACCGCAGAGAC GCAGACCACACAAGGCAGA
2a07aeaac84c9576 CCTTCGTGGACATCTTCGT GGTGACTCAGGTTTTGCTG
3dddc7fb9f8e35a4 TCAAGCCTTACCGCAGAG CACAAGGCAGATGGGCTAT
8bde0e8917e7305f CCTTCGTGGACATCTTCGT GGTGACTCAGGTTTTGCTGC
31b0c856466f7d5f TCAAGCCTTACCGCAGAG GACCACACAAGGCAGATG
d11ecc9c7bdc5645 TCAAGCCTTACCGCAGAG GACCACACAAGGCAGATGG
bfd7573827850f81 TCAAGCCTTACCGCAGAG ACCACACAAGGCAGATGG
10ca2d9422ab2af5 TCAAGCCTTACCGCAGAG ACCACACAAGGCAGATGGG
91337f498097e9d9 TCAAGCCTTACCGCAGAG CACAAGGCAGATGGGCTA
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Appendix C

A Database for Metabarcoding
Experiments

C.1 Trigger Definition

Listing C.1: Trigger on insertion into table Experiment.
1 CREATE OR REPLACE FUNCTION sample_check() RETURNS trigger
2 AS $sample_check$
3 DECLARE
4 sample_id int;
5 BEGIN
6 FOREACH sample_id IN ARRAY NEW.sample_ids LOOP
7 IF sample_id NOT IN (SELECT id FROM Sample) THEN
8 RAISE EXCEPTION
9 ’sample_id % not registered in Samples’, sample_id;
10 END IF;
11 END LOOP;
12 END;
13 $sample_check$ LANGUAGE PLPGSQL;
14

15 CREATE TRIGGER sample_check
16 BEFORE INSERT OR UPDATE
17 ON Experiment
18 FOR EACH ROW EXECUTE PROCEDURE sample_check();

C.2 Example Queries in SQL

How frequently are all sites sampled?

1 SELECT location.long_name as site, collection_date as date
2 FROM sample, location
3 WHERE sample.location_id = location.short_name
4 ORDER BY site ASC

Which primer pairs have been tested so far?

1 SELECT * FROM primer_pair, pcr_experiment
2 WHERE primer_pair.id = pcr_experiment.primer_pair

Where is the data set located that was used in study X?
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1 SELECT sequences.server, sequences.path
2 FROM publication, pipeline, sequences
3 WHERE publication.pipeline_id = pipeline.id
4 AND pipeline.sequences_id = X

Which tools have been used in previous studies to build a bioinformatics
pipeline?

1 SELECT publication.description, publication.doi, pipeline.protocol
2 FROM publication, pipeline
3 WHERE publication.pipeline_id = pipeline.id

How many different DNA extraction kits are in use since last year?

1 SELECT DISTINCT(T.exkit) FROM
2 (
3 SELECT extraction_kit.id as exkit, date_part(’year’, experiment.date)
4 as year
5 FROM experiment, extraction_kit, pcr_experiment
6 WHERE experiment.id = pcr_experiment. experiment_id
7 AND experiment.id = pcr_experiment.experiment_id
8 ) as T
9 WHERE T.year >= 2019

What was the average number of OTUs a primer pair X produced given identical
sample treatment?

1 SELECT sample.filter_method, sample.dry_method,
2 AVG(CARDINALITY(pipeline.otu_ids))
3 FROM sample, experiment, pcr_experiment, sequences, pipeline
4 WHERE sample.id = ANY(experiment.sample_ids)
5 AND pcr_experiment.experiment_id = experiment.id
6 AND pcr_experiment.primer_pair = X
7 AND sequences.experiment_id = experiment.id
8 AND pipeline.id = sequences.experiment_id
9 GROUP BY sample.filter_method, sample.dry_method

Which primer pair is most effective on the group of Cryptophyta in terms of
the number of OTUs?

1 SELECT primer_pair.name, COUNT(otu.id) as otu_count
2 FROM pcr_experiment, primer_pair, sequences, pipeline, otu, taxon, lineage
3 WHERE pcr_experiment.primer_pair = primer_pair.id
4 AND sequences.experiment_id = pcr_experiment.experiment_id
5 AND pipeline.sequences_id = sequences.experiment_id
6 AND otu.id = ANY(pipeline.otu_ids)
7 AND otu.taxon_id = taxon.id
8 AND 3027 = ANY (lineage.grand_taxon_ids)
9 GROUP BY pcr_experiment.experiment_id, primer_pair.id
10 ORDER BY otu_count
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Which plankton samples underwent both microscopic and metabarcoding
analysis?

1 SELECT sample.id
2 FROM sample, experiment, pcr_experiment
3 WHERE sample.id = ANY(experiment.sample_ids)
4 AND experiment.id = pcr_experiment.experiment_id
5 AND sample.id = ANY
6 (
7 SELECT sample.id
8 FROM sample, experiment, morph_experiment
9 WHERE sample.id = ANY(experiment.sample_ids)
10 AND experiment.id = morph_experiment.experiment_id
11 )

What is the average number of reads produced when using freeze-drying versus
airdrying as a sample treatment?

1 SELECT sample.dry_method, AVG(CARDINALITY(pipeline.otu_ids)) as avg
2 FROM sample, experiment, pcr_experiment, sequences, pipeline, dry_method
3 WHERE sample.id = ANY(experiment.sample_ids)
4 AND sequences.experiment_id = experiment.id
5 AND pipeline.sequences_id = sequences.experiment_id
6 AND dry_method.id = sample.dry_method
7 AND dry_method.short_name = ANY(’{fd, ad}’)
8 GROUP BY sample.dry_method
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Zusammenfassung

Die vorliegende Arbeit behandelt einige wichtige Herausforderungen von Metabar-
coding-Experimenten von Umweltproben. Diese haben ihren Ursprung in der phylo-
genetischen Heterogenität der Probe, der grundsätzlichen Unwissenheit der darin
enthaltenen Organismen und der nur mäßigen Verfügbarkeit von Referenzsequenzen
zur Identifizierung. Grundsätzliches Ziel ist es möglichste viele Organismen genau
zu identifizieren, d.h. bis auf die Ebene von Spezies.

Konkret handelt Kapitel 2 von der Schwierigkeit eine verlässliche Taxonomie
aufzustellen, sowohl auf der Grundlage von morphologischen Merkmalen, als auch
auf der Grundlage von DNA-Sequenz-Ähnlichkeiten. Dies hat Implikationen für
jede Art von Identifizierungsmethode, da sie entlang der hierarchisch organisierten
Taxonomie stattfindet. Es wird beispielhaft eine Studie ausgeführt, die im Rahmen
eines Monitoring-Projektes entstanden ist. Zu den Aufgaben des Projektes gehört,
die Plankton-Zusammensetzung eines nahe gelegenen Frischwasser-Biotops zu be-
stimmen.

In Kapitel 3 wird das Primer Search Tool PriSeT vorgestellt, für welches die
einführende Studie der Katalysator war. PriSeT berechnet neue Primerpaare auf
beliebigen, nicht-kuratierten DNA-Referenz-Biobliotheken, indem es häufig vor-
kommende k-mere auf Primer-Tauglichkeit testet und diese zu Paaren kombiniert.
Die errechneten Primerpaare sind sortierbar nach dem Kriterium taxonomischer Ab-
deckungsrate oder Barcode-Variabilität. Es gibt aktuell kein quelloffenes Programm,
was hierzu in der Lage wäre. Alle bekannten Primersuch-Werkzeuge sind ungeeignet
für ein Metabarcoding-Setting, d.h. sie sind beschränkt auf eine oder sehr wenige
Referenzen als Eingabe und in keinem Fall in der Lage hochfrequente Paare erken-
nen – eine erste Notwendigkeit, um eine hohe taxonomische Abdeckungsrate zu
erzielen. PriSeT ist derart robust, dass es nicht-kuratierte Datensätze bestehend
aus mehreren hunderttausend Referenzen oder auch komplette Genome zur Suche
verwenden kann. Die hohe Rechen- und Speicherintensität wird reduziert durch
Indizierung der Bibliothek, Speicherung von mehreren k-meren in einem einzigen 64-
bit Datentypen, Bit-Parallelisierung bei der Verifizierung chemischer Eigenschaften,
und Transformation der Referenzen zu Bitvektoren mit Rank- und Select-Support in
O(1).

Kapitel 4 stellt einen Lösungsvorschlag zur Optimierung des Arbeitsflusses zwi-
schen den an Metagenomik-Experimenten teilnehmenden Forschern vor. Es werden
die Schwierigkeiten aus der Sicht einesDatenanalysten analysiert, der vergleichsweise
kurz in ein Projekt involviert ist und schnell einen Überblick gewinnen muss, um pro-
duktiv arbeiten zu können. EinDatenbank-Schema inwird vorgestellt, das diewichtig-
sten Daten konsolidiert und Meta-Analysen erlaubt, die bisher nahezu unmöglich
waren. Es löst die häufigsten Probleme im Zusammenhang mit Daten-Beschaffung,
Redundanz, Nicht-Versionierung und Übergabe von Projekte an nachfolgende Wis-
senschaftler. Ein Prototyp wurde den involvierten Arbeitsgruppen vorgestellt.
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