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Abstract

Aging of arteries is a pathophysiological factor in the development of cardiovascular
diseases. It is a continuing and complex process, which ends in remodelling of all arterial
wall layers and increased arterial stiffness. Endothelial dysfunction, i.e. the decreased
ability to release nitric oxide (NO), is a hallmark of early vessel aging. Reduced endothelial
NO-synthase (NOS) expression and activity as well as downstream signalling may be
causal in this context. We hypothesize that aging not only affects endothelial cell function,
but also impairs the NO signalling in the vascular smooth muscle cells (VSMC). To test
the hypothesis, the second branch of mesenteric arteries from 13 weeks (juvenile) and
40 weeks (aged) mice were studied using wire myography. Contraction and relaxation
were investigated using pharmacological approaches. Further, the expression of soluble
guanylyl cyclase (sGC) subunits, NOS and phosphodiesterases (PDE) as well as the
cyclic guanosine monophosphat (cGMP) concentration was analysed. Vessel structure
was investigated by histological methods. Endothelium-dependent relaxation by
acetylcholine (ACh) was impaired in aged arteries compared to juvenile one. Pre-
treatment with L-NAME (NOS inhibitor) decreased the relaxation and abolished
differences between groups. Expression of eNOS and nNOS at the mRNA level was
similar in both groups. The NO donor SNP induced similar concentration dependent
relaxations in juvenile and aged arteries. However, the follow up after a bolus application
of SNP revealed slower relaxation speed in aged vessels. Pharmacological activation of
sGC by bolus application of runcaciguat induced slower relaxation in the aged vessels,
as well. The biggest difference between the two groups occurred 2 min after application
of runcaciguat. At this time point, cGMP concentrations were significantly lower in aged
vessels. Cumulatively applied sildenafil (PDES5 inhibitor) induced relaxation, which was
less pronounced in aged compared to juvenile vessels. The mMRNA expression of sGC
subunits a1 and a2 and of PDES was lower in aged samples. Histological study did not
show morphological changes between juvenile and aged arteries (mesenteric arteries
and aorta). Media-Lumen-ratios did not differ between groups. The results show that NO
signalling in the VSMC contributes to the impaired relaxation in aged mesenteric arteries.
The functional limitations precede the structural changes in the process of aging. Lower
MRNA expression of a subunits may be the reason for slower dynamics of cGMP

catalysis by sGC. The limited ability of sGC to catalyse cGMP generation in a short time



range (2 min) may influence cardiovascular control and contribute to the development of

cardiovascular diseases.



Zusammenfassung

Das Altern von Gefal3en ist ein pathophysiologischer Faktor bei der Entstehung
kardiovaskularer Erkrankungen. Ein Kennzeichen vaskularen Alterns ist die endotheliale
Dysfunktion, die verminderte Fahigkeit des Endothels, Stickstoffmonoxid (NO) zu
genieren. Hierfur kdnnen eine abnehmende Expression und Aktivitat der endothelialen
NO (eNOS) verantwortlich sein. Wir stellen die Hypothese auf, dass Alterungsvorgéange
aber auch in der glatten GefalBmuskulatur stattfinden und mit funktionellen
Einschrankungen einhergehen. Mesenteriale Arterien (2. Abgang der A. mesenterica)
von Mausen im Alter von 13 (juvenil) und 40 Wochen (alternd) wurden in die Studie
einbezogen und mittels Drahtmyographie untersucht. Die kontraktile und relaxierende
Funktion der GefalRe wurde mittels pharmakologischer Stimulation bewertet. Weiterhin
wurden die Expression der Untereinheiten loslichen Guanylatzyklase (sGC), der NOS,
der Phosphodiesterasen (PDE) sowie die cGMP-Konzentrationen in den Gefal3en
gemessen. Untersuchungen der Gefal3struktur erfolgten mittels histologischer Methoden.
Die endothelial-vermittelte Gefal3relaxation durch Applikation von ACh war in alternden
Arterien gegenuber den juvenilen vermindert. Behandlung mit dem unspezifischen
Inhibitor von NOS, L-NAME, verursachte eine geringe Relaxation und die Unterschiede
zwischen den Gruppen verschwanden. Expressionen von eNOS und neuronaler NOS
unterschieden sich nicht im Vergleich der Gruppen. Die Konzentration-Wirkungskurven
fur den NO-Donor SNP waren in juvenilen und alternden GefalRen gleich. Jedoch sind die
Relaxationen auf eine Bolusgabe von SNP in den alternden Geféa3en langsamer. Das
trifft auch fur die pharmakologische Aktivierung der sGC durch den Aktivator Runcaciguat
zu. Zwei Minuten nach Applikation des Bolus war der Unterschied in der
Relaxationsgeschwindigkeit zwischen den Altersgruppen am grof3ten und die cGMP-
Konzentrationen in den alternden Gefalien deutlich niedriger. Die Antwort auf Sildenafil
(PDE5-inhibitor), in steigenden Konzentrationen kumulativ appliziert, war in alternden
Gefalien geringer. Die Untereinheiten sGC-o1 und sGC-a2 sowie von PDES5 waren hier
weniger stark exprimiert. Die histologischen Studien zeigten keine strukturellen
Veranderungen. Media-Lumen-Verhéltnisse waren in beiden Gruppen gleich. Die
Ergebnisse weisen darauf hin, dass Alterung mit funktionellen Veranderungen des NO-
Signalweges in den glatten Gefallmuskelzellen einhergeht. Die funktionellen
Veranderungen gehen der strukturellen voraus. Die langsame Reaktion der sGC auf

Stimulation mit NO als auch mit dem sGC-Aktivator sind mdglicherweise auf die



verminderte Expression der a-Untereinheiten zurtickzufihren. Die verminderte Fahigkeit
der sGC in den alternden Gefallen, cGMP in einem kurzen Zeitraum ausreichend zur

Verfugung zu stellen, kann fur die Regulation des Kreislaufs und fur die Entstehung
kardiovaskularer Erkrankungen von Bedeutung sein.



1. Introduction

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. The
incidence of cardiovascular diseases and events increases with age and induces
considerable cost for the social system. By 2030, around 20% population will reach or
over 65 years old, among them, CVDs make up 40% mortality in US and occupy 61%
medical costs [2-4]. Hypertension is the most common risk factor for CVD [5]. Particularly
in industrialized and emerging countries, the incidence of arterial hypertension increases
with age. Even in the middle age population, elevated arterial blood pressure (isolated
systolic hypertension) is an independent risk predictor for death from cardiovascular
diseases in women and men [6-8]. In the long-term run, not only coronary disease, stroke,
cardiovascular death are consequences of hypertension, but many other diseases, such
as heart failure, hypertensive cardiomyopathy or peripheral artery disease [5]. Even
though abundant epidemiological evidences reflect age related damage in the
cardiovascular system, the mechanisms behind CVDs progress are not completely known.
Remarkably, the prevalence for essential arterial hypertension with unknown cause is 50%
to 88% in the population of hypertensive subjects suggesting a significant lack in

knowledge about the pathophysiology of hypertension [9, 10].

1.1. Vessel aging

Aging of vessels is due to several pathomechanisms, which vary in large and middle-
sized arteries, small arteries, and microvessels. In large and middle-sized arteries, the
media degenerates and fibrosis develops in the elderly. This goes along with loss of
elastin fibers and accumulation of collagen fibers [11]. Remodelling of the arteries
includes degeneration and apoptosis of the media. The pathomechanisms behind these
phenomena are largely unknown. Media degeneration and arteriosclerosis develop in
parallel and may share some pathways leading to vessel remodelling. Arteriosclerotic
changes, which tend to increase with age, start in the intimal layer of arteries with
thickening of this structure. In a second stage, phagocytosis of lipids by monocytes-
derived foamy macrophages occurs and inflammatory cells appear. Later, atheromatous
plaques are formed, which calcify. In the progressed stage, all arterial layers are involved
[11]. All these types of remodelling go along with increased vascular stiffness, which in
turn increases cardiac afterload and increases blood pressure amplitude. Thus, with

aging, increased blood pressure and pulse pressure, respectively, can further stimulate



arterial remodelling [12]. Therefore, aged large arteries are characterized by increased
stiffness [13]. Important pathophysiological factors in the aging are oxidative stress and
inflammation, resulting in the generation of a pro-inflammatory and pro-thrombotic
phenotype, with reduced elastic fibers, increased collagen, endothelial apoptosis and
atherosclerosis [14-17]. Another hallmark of aged large and middle sized arteries is the
endothelial dysfunction, characterized by a reduced ability to dilate. This is mainly due to
an impaired NO-system. This declined endothelial vasodilation is a first risk marker of

arterial aging.

Aging in small arteries and arterioles is partly similar to large arteries, with increased
stiffness and reduced dilation. In addition, in the distal part of the vasculature, upstream
signalling from capillaries to arterioles is important for the control of organ perfusion [18].
This upstream signalling is mainly due to hyperpolarization of endothelial cells, which
propagates upstream, but may include the NO system, as well. Aging may go along with
impaired signalling [19, 20]. Similar to the situation in large arteries, reactive oxygen
species play an important role for impaired microvascular function in aging [21].

Organic nitrates are used in clinical work to improve reduced organ perfusion and total
peripheral resistance, and to treat arterial pulmonary hypertension. However, rapid
tolerance and endothelial dysfunction restrict the application of organic nitrates [22]. In
the last decade, phosphodiesterase (PDE) inhibitors and soluble guanylyl cyclase (sGC)
stimulators and activators are increasingly applied for treatment of CVDs [23]. Although,
they are powerful in their dilatory action, their blood pressure lowering action may partly
prevent improvement of organ perfusion [24]. Further research is necessary to develop
appropriate therapeutic application based on these substances. Furthermore, efforts are
necessary for better understanding of the pathophysiology of aging in the cardiovascular

system.

1.2. Nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway

NO is a highly diffusible gas, which generation from L-arginine is catalyzed by NO
synthases (NOS). The endothelial NOS (eNOS) is the dominant isoform in the
endothelium [25]. NO has a “half-time” just several seconds. Its bioavailability in the
vessel wall results from the generation rate, the diffusion in the blood and the
transportation by erythrocyte haemoglobin, respectively, and from scavenging by reactive
oxygen species (ROS). Important stimulators of NO production are the shear stress at



the vessel wall (endothelial luminal site) and G-protein receptor agonists such as
histamine or acetylcholine (ACh) [26]. NO diffuses into the vascular smooth muscle cells
(VMSC) and activates the sGC thereby increasing the generation of cGMP, which in turn
stimulates the protein kinase G (PKG). The kinase influences several proteins, all of which
lead to a reduction of the cytosolic calcium concentration and vasodilation. NO may also
influences sGC expression, which can be interpreted as a regulatory effect on the NO-
sGC-cGMP system [27].

The sGC is dimer, which consists of an alpha- and a beta-subunit. Genes of o and -
subunits are doubled. On the possible combinations of proteins, the ai/p1 and o2/B2
variants are the most abundant [28]. The protein subunits have a hem group, with an iron
divalent atom (Fe?*). The NO-binding prosthetic group is located in the beta subunit [29].
Oxidative stress transforms the divalent iron atom into a trivalent iron. This can result in
loss of the hem group. Both events make the sGC insensible for NO [30]. Reduced NO
bioavailability in aged vessels as well as reduced ability of NO to activate the sGC is due
to an increase of reactive oxygen species (ROS), among them superoxide and hydrogen
peroxide [14, 31, 32]. Besides, vessel aging and hypertension, respectively, seem to go
along with reduction in sGC expression [33, 34].

1.3. Structural versus functional changes in vessel aging

Vascular aging is a complex event, characterized by structural and functional changes.
Arterial remodelling includes VSMC migration and proliferation, which contribute to intima
wall thickening, probably as an adaptation to increased wall tension. The adaptive wall
thickening is stronger in presence of hypertension and results in decreased compliance
and increased stiffness, respectively [35, 36]. However, functional impairment may
precede the structural changes as shown for vasoconstrictor responses [37, 38].
Enhanced vascular reactivity to constrictors may also be the result of endothelial
dysfunction, which precedes vessel structural change caused by NO deficiency and
impaired NO signalling [39]. Hence, age-related function and structure change in the

arterial system is worth to further research, especially at early stages of aging.

1.4. Small mesenteric arteries

Small resistant arteries (=100-300 pym) work as peripheral resistance arteries in

cardiovascular system. Large arteries transfer the heart output into a continuous distal



blood flow, while peripheral resistance arteries control peripheral blood flow and
determine total peripheral resistance [38]. Mesenteric arteries of second and higher order
belong to small resistant arteries. They are extensively investigated. This type of vessel
has been worked for decades as a model for the function of small resistance arteries and
provides insights mechanisms of vessels aging [40-43]. Functional alterations related to
aging are reduction in ACh responses, changed sensitivity to endothelin, and reduced
ability to inhibit vasoconstrictor affects [44]. Further, small mesenteric arteries serve for
investigation of vasomotion, physiology of the endothelium, the VSMC, and

pathophysiological mechanisms in a wide variety of diseases [45-50].

2. Derivation of hypothesis

The NO-sGC-cGMP system is an important vasodilator system and its components
are likely involved in the pathogenesis of arterial aging. While reduction of NO-
bioavailability and endothelial dilatory function during aging is well described, the NO
signalling in VSMC is less known. Further, it is not clear if reduction in the sGC function
contributes to the early phase of vascular functional damage in aging. We hypothesize
that reduced sGC subunit expression and impairment of sGC function, i.e. decreased
ability to catalyse cGMP production, occurs already in the early phase of aging. To test
the hypothesis, small mesenteric artery dilator function is investigated with focus on the

NO-sGC-cGMP pathway during aging.



3. Materials and methods

3.1. Mice

Experiments were performed under the Guide for the Care and Use of Laboratory
Animals of the State Government of Berlin, Germany (Landesamt fir Gesundheit und
Soziales Berlin) and in consideration of the Tierschutzgesetz. C57BL/6 mice were
provided by Charité — Universitatsmedizin, Forschungseinrichtungen fir Experimentelle
Medizin, Berlin, Germany. They were housed in cages with food and water ad libitum,
with 12 hours light-dark cycles. The ages of animal were 13-14 weeks (juvenile) and 40-
41 weeks (aged). The respective body masses were 28g to 31g (juvenile) and 34g to 41g
(aged). Only male mice were included.

3.2. Wire myography

Wire myography is an in vitro technique for functional investigation of small resistance
arteries independent of systemic influences such as blood flow or nervous control.
Arteries are held under isometric condition. Thus, contraction and relaxation can be
measured. The method allows to characterize vasoactive substances and determine half
maximal effective concentration ECso, which is a measure of the sensitivity of the given
drug. Since vessels differ in structure and size, a standard normalization is performed to
adjust the stretching force to a physiologically meaningful value. This corresponds a
transmural pressure of 100 mmHg under the assumption that the vessel is fully relaxed
[51, 52].

3.2.1. Vessel dissection

Animals were anaesthetized with isoflurane and sacrificed via cervical dislocation.
After midline incision of the abdomen, the whole mesentery was excised and transferred
into a tray with oxygenated ice-cold buffer with low calcium (in mmol L?1): 146 NaCl, 4.5
KCI, 1.2 NaH2PO4*2H20, 1 MgS04x7H20, 5.5 glucose, 0.025 Na (EDTA), 5 HEPES, and
0.1 CaCl2x2H20 (pH 7.4). Mesenteric arteries (diameter: 59 — 67 um without pressure)

were dissected and the perivascular fat was carefully removed.
3.2.2. Vessel mounting

Artery segment 2mm in length were dissected from second branch of mesenteric
artery. They were mounted on two stainless wires (40 pym). Special attention was paid not
to touch the artery wall and not to damage the endothelial cell layer while placing the



wires. The two wires were connected to two jaws and the artery was hold in the small
vessel myograph (5 ml chamber, model 410A, DMT, Denmark). Jaws were connected to
a force transducer and micrometer, respectively. To arrange optimal isometric conditions,
arterial segments were gently stretched according to the procedure of Mulvany and
Halpern (see chapter normalization) [53]. Contractile properties of small arterial
resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res
41:19-26). The experimental solution consisted of (in mmol L): 119 NacCl, 4.7 KCl, 1.2
KH2PO4, 1.2 MgSO0u4x7H20, 6.1 glucose, 25 NaHCOgs, and 2.5 CaCl2x2H20 (pH 7.4),
under carbogen bubbling at 37°C.

3.2.3. Normalization

Normalization was performed after heating to 37°C and equilibration of the vessel.
The arteries were stretched by use of the micrometer. The distending of the arterial
segment was performed stepwise. Micrometer values (distance) and the corresponding
force were converted into the internal circumference and the wall tension, respectively.
The data were used to calculate an exponential curve describing the relation between the
internal circumference and the wall tension. From the intersection of this exponential
curve with a linear isobaric curve corresponding to 100 mmHg, normalized internal
circumference was calculated [54]. To ensure that the vessels were stably equilibrated,

they were incubated for another 30 min before performing the experiments (see 3.2.5).
3.2.4. Test vessel viability

The arterial segments were tested by applying K-PSS (in mmol L?): 123.7 KCI, 1.2
KH2POg4, 1.2 MgS04-7H20, 6.1 glucose, 25 NaHCOgs, 2.5 CaCl2:2H20 (pH 7.4). Only
vessels with an immediate response and stable contraction were included. Experimental

protocols started after 10 min equilibration until a stable resting tension was achieved.
3.3. Protocols

All protocols were performed in vessels of juvenile and aged mice.
3.3.1. Assessment of endothelial function

1. Vessels were contracted with Phenylephrine (PE, 10-5 mol L-1, final
concentration).

2. After reaching a stable contraction response, ACh was applied cumulatively
(10°~10°mol L) to the bath solution. The respectively next concentration was applied

10



after reaching a stable response for the current concentration. The relaxation was

expressed as percent of the maximum pre-contraction level.
3.3.2. Assessment of role of NOS/NO for relaxation response to ACh

1. Vessels were incubated with Nw-nitro-L-arginine methylester hydrochloride (L-
NAME, 10 mol L™, final concentration for 30 min) to inhibit endothelial NO synthase.

2. PE (10 mol L-1, final concentration) was applied for pre-contraction.

3. After reaching a stable contraction, ACh was added cumulatively (10°~10° mol
LY.
3.3.3. Assessment of endothelium-independent relaxation

1. Vessels were incubated L-NAME (10™* mol L™, final concentration) for 30 min to
inhibit the endothelial NO production.

2. To pre-contract the vessel, a salt solution with 60 mmol L™ KCl was applied (in mmol
L1): 63.7 NaCl, 60 KCI, 1.2 KH2PO4, 25 NaHCOs, 1.2 MgS0a4.7H20, 11.1 glucose, 0.026
Na (EDTA), and 1.6 CaCl: 2H20, (pH=7.4). In this protocol, KCI was used to induce
contraction, because KCI (60 mmol L) induces a more stable contraction than PE. This
was necessary because of the long-term protocol for applying SNP to obtain the
concentration-response.

3. Sodium nitroprusside (SNP, 107*! to 107> mol L™!) was added after reaching a stable

contraction.
3.3.4. Measurement of time-response to SNP

1. Vessels were incubated with L-NAME (10™* mol L™, final concentration) for 30 min
to inhibit endothelial NO production.
2. Vessels were pre-contracted with PE (10 mol L™, final concentration).

3. SNP was applied as a bolus (107 mol L™%) for 10 min.

3.3.5. Measurement of time-response to runcaciguat

1. Vessels were incubated with L-NAME (1074 mol L™, final concentration) for 30 min
to inhibit endothelial NO production.

2. Vessels were pre-contracted with PE (10 mol L™, final concentration).

3. After reaching a stable pre-contraction, sGC activator runcaciguat (10™° mol L™)

was applied as a bolus for 10 min.

11



3.3.6. Measurement of phosphodiesterase 5 (PDES5) inhibitor action

1. Vessels were pre-contracted with PE (10~ mol L, final concentration).
2. The PDES5 inhibitor sildenafil was cumulatively applied (10°~10° mol L1). The
application of the respective next concentration was performed in the steady state

situation of the current concentration.
3.4. Data acquisition

The wire myography chamber was connected to an interface unit for direct data
streaming. The unit contains the heat control and the calibration procedure algorithm and
works for man-unit interaction. The interface was connected to a bio-signal acquisition
system (Bio Amp from, AD Instruments Ltd. Spechbach, Germany). Data were further
processed, acquired and optically presented by the software Chart5 (ADInstruments Ltd.

Spechbach, Germany).
3.5. Pharmacological agents

Drugs ACh, PE, L-NAME (all purchased from Sigma, USA) as well as SNP purchased
from Carl Roth, Germany were dissolved in distilled water and stored at -20°C. Sildenafil
(BioVision, USA) and runcaciguat (gently provided from Bayer AG, Research &
Development, Pharmaceuticals, Germany) were solved in dimethylsulphoxide (DMSO,
Thermo Scientific, USA) and vials with stock solution were stored at -20°C. The end
concentration of DMSO in the experimental solution was lower than 0.1%. L-NAME was
dissolved in distilled water under ultrasound and stored at -20 °C. SNP powder was stored
in dark tube at room temperature and solved shortly before the experiment. All ingredients
for buffer solutions were purchased from Carl Roth, Germany and dissolved in distilled

water and stored at 4°C.
3.6. cGMP ELISA measurement

The direct cGMP ELISA kit (Enzo life Science, Lausen, Switzerland) and multi-mode
reader (BioTek Synergy HTX, Bad Friedrichshall, Germany) were used to measure
intracellular cGMP concentration according to manufacturer’s instructions. For this
purpose, mesenteric arteries were dissected and pooled to reach a minimum weight of
25 mg of tissue sample. The protocol for artery preparation corresponds to that described
in 3.3.5, however, without stretching arteries in the wire myograph. Vessels were
pretreated with L-NAME (104 mol L, 30min), pre-contracted with PE (10°mol L) and

12



then the sGC activator (10® mol L') was applied as a bolus. After 2 min, samples

(mesenteric arteries) were shock frozen using liquid nitrogen and kept at -80°C until use.
3.7. mRNA expression of key enzymes

The whole mesenteric arterial tree was dissected from each mouse and stored in liquid
nitrogen at -80°C. RNA-Bee-reagent (Biozol, Eching, Germany) was used to extract RNA.
Samples were homogenized and separated into aqueous and organic phase. The total
RNA was reverse transcribed into cDNA using High Capacity cDNA RT-Kit (Applied
Biosystems, Foster City, CA, USA). RT-gPCR was performed by Lightcycler LC480
(Roche Diagnostics, Mannheim, Germany) to detect relative amplified DNA through
hydrolysis probe fluorescent detection. Housekeeping gene RPL32 was chosen to
normalize mMRNA expression levels, the expression of interest genes (NNOS, iNOS,
eNOS, GUCY1lal, GUCY1la2, GUCY1lbl, GUCY1b2, PDE3a, PDE3b, PDE5) were
calculated by ACt method. (Primer sequences: see Table 1)
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Table 1. List of primers

Primer/

Gene Sequence (5’-3’)
Probe
NOS Forward CCCGACAGGCCAAAGAAATA

n

Reverse ACGTCCCCGCAGACATAAAT
INOS Forward AGCGGCTCCATGACTCCCA
i

Reverse GGCACCCAAACACCAAGCT

NOS Forward GACCCTCACCGCTACAACAT

e

Reverse ATGAGGTTGTCCTGGTGTCC

Forward ATTTCATGCTGGACCGAGAC
GUCY1a1

Reverse TTCCCTTGGAAGTCCCTCTT

Forward CTGGACTCACTAGGCGAAAG
GUCY1a2

Reverse GTCATGTGTATCGTCTGAGGC

Forward AGCCCTTACACCTTCTGCAA
GUCY1b1

Reverse CATTGCCACACTGAGTGACC

Forward CAGGTGTTGTGGGAGACAAG
GUCY1b2

Reverse TCCTAGAGGCCGTGTTTACG
PDE3 Forward TTCCTGGCCTCCCAAGTGT

a

Reverse CCGTGTGTAAATCCACTGTCAGA
PDE3b Forward ATGGCTACCGGGACATTCC

Reverse GGGTTGTCAAATACCAAACAGCAT
PDES Forward CCGACTTCAGCTTCAGTGACTT

Reverse GGTCAGTGAACATCCGAATTG
RPL32 Forward TTCATCAGGCACCAGTCAGA

Reverse TTGTCAATGCCTCTGGGTTT

3.8. Vessel morphometry

The second branch of the mesenteric artery as well as thoracic and abdominal aorta
samples were fixed with 4% buffered formalin (SAV Liquid Production GmbH, Germany)
for 2h at room temperature. Samples were moved to the refrigerator and stored for 24h
at 4 °C. After washing with 1x PBS with following composition (in mmol L): 137 NaCl,
2.7 KCl, 10 Na2HPO4, 1.8 KH2PO4 (pH 7.4), samples were stored in 30% sucrose solution
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at 4 °C. Dehydration was performed in rising alcohol series: 70%, 80%, 96%, 99%, 99%
(Leica TP 1020). To help visualization of blood vessels, which were dehydrated, 2 ml of
2% eosin was added into 96% ethanol. Later, xylol was used to remove ethanol to make
samples dissolving and embedding in paraffin (Modular Tissue Embedding Center EC
350). Paraffin blocks were cooled at -20 °C at least 2 hours before slicing. Samples were
sliced 4um for aorta and 6um for mesenteric arteries via microtome (Thermo Scientific
Microm HM355S) and sections were transferred to microscope slides with help of wet
paint brush. Slides were then dipped in hot-water bath to swell up the sections. After that,
sections were put in heating oven (Memmert SFP 400), 60°C, at least 6 hours or overnight
to dewax for staining. Van Gieson staining (1% acid fuchsin mixed with picric acid
according to 1:10) was used to show elastic fibers in black. Samples’ inner and outer
diameter were calculated via Image J 1.48 (digital images: Color Camera Nikon DS-Ri2
Numerical Aperture). They served for calculation of media lumen ratio (wall area: lumen

area).

3.9. Statistics

Raw data were initially stored in Excel database. The calculation of relaxation in
percent was based on the difference between stable contraction tension (T) and tension
at maximum relaxation for each dose (Rmax). Relaxation was expressed by R%=(T-
Rmax)/T x100. Functional data were presented as mean + SEM. Shapiro-Wilk test was
used to test normal distribution. In case of non-normal distribution, Brunner test, similar
to a nonparametric two-way ANOVA, was performed to test general difference in the
concentration response between two groups [55]. Mann—Whitney U test (GraphPad Prism
9.0.1) was used for post hoc comparisons. P-value <0.05 was considered significant.
ECso was calculated using concentration-response data using GraphPad Prism. Median,
box, maximal and minimum whiskers were used to present contraction power, histological

parameters, and mRNA expression.
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4. Results

4.1. Aged-related endothelial dysfunction

Isolated mesenteric artery rings were pre-contracted by PE (10° mol L!) and exposed
to ACh (10° to 10 mol L?) to test the endothelium-derived vasorelaxation in different
age groups (Figure 1A). Dilatation to ACh was reduced in aged animals (Figure 1B). To
evaluate the role of NO in the ACh-induced dilatation vessels were pre-treated with the
non-specific NOS-blocker L-NAME (10 mol L) (Figure 1C). Under these conditions,
the relaxation to ACh weakened and did not show significant differences comparing
juvenile and aged animals, suggesting a prominent role of NO for reduced relaxation in
aged animals (Figure 1D). gPCR was performed to get closer look at eNOS and nNOS
MRNA expression. The expression of NOS isoforms was similar in both groups (Figure
1E, F).

4.2. Age-related responses to sGC activation

To test the NO downstream signalling pathways in VSMC, SNP (10-!! to 10-°> mol L?)
was cumulatively applied after pre-constriction with 60mmol Lt KCI solution. In addition,
vessels were pre-treated with L-NAME (10 mol L) to block endothelial NO-production.
The concentration-responses to SNP were similar in juvenile and aged vessels (Figure
2A, B). With the aim to investigate the dynamics of sGC function, SNP or sGC activator
runcaciguat were applied as bolus for 10 minutes. Remarkably, vessel relaxation to
runcaciguat bolus application was faster in juvenile compared to aged arteries within the
first 2 min of application. SNP bolus induced dilatation was also faster in juvenile vessels
(Figure 3A, B, C, D). Since sGC exerts its effect via cGMP production, cGMP
concentrations were determined in the juvenile and aged vessels after stimulation with
runcaciguat. The cGMP-concentration was smaller in aged compared to juvenile vessels
in the time interval of 2 min after agonist application (Figure 3F). The mRNA expression
of sGC subunits a1 and a2z was lower in aged vessels than in juvenile ones. No difference

could be seen for the B1-subunit (Figure 3E).
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Figure 1. Aging affects endothelium-dependent relaxation.

Acetylcholine (ACh)-induced, relaxation after pre-contraction with phenylephrine (PE,
105 mol L) was weaker in aged vessels. A: Original traces from a juvenile and aged
vessel. B: Concentration-response curves (mean = SEM) for ACh. C: Representative
original traces for relaxation of L-NAME (10% mol L%) pre-treated vessels. D:
Concentration-response-curves for juvenile and aged vessels after L-NAME pre-
treatment (mean + SEM). Relaxation did not differ between both groups. E and F: mRNA
expression of eNOS and nNOS, respectively, in juvenile and aged vessels (juvenile: n=23;
aged: n=17) (# p < 0.05, Brunner test, ** p < 0.01, Mann-Whitney test). This figure was
cited from [1].
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Figure 2. Age-related endothelium-independent vasorelaxation.

A: Representative original traces showing the effect of 60 mmol L KCI and the vessel
response to cumulative sodium nitroprusside application (SNP, 10-1!- 10> mol L?) after
L-NAME (10* mol L) pre-treatment. B: Concentration-response curve for SNP for

juvenile and aged vessels (mean + SEM). This figure was cited from [1].
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Figure 3. Dynamics of sGC activation.

A: Representative original traces for the response to runcaciguat (bolus, 10 mol L)
after L-NAME (104 mol L?) pre-treatment and phenylephrine (PE, 10> mol L)-pre-
constriction. B: Response to runcaciguat bolus application (mean + SEM) in juvenile and
aged vessels: C: Representative responses to sodium nitroprusside (SNP, 10 mol L)
after L-NAME (104 mol L) pre-treatment and phenylephrine (PE, 10 mol L) pre-
constriction. D: Response to SNP (mean + SEM). E: Expression of sGC subunits a:
(GUCY1A1), a2 (GUCY1A2), and B1 (GUCY1B2) (juvenile: n=16; aged: n=10). F: cGMP

concentration in mesenteric vessels after 2 min stimulation with runcaciguat (juvenile:
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n=17 mice, 2 pooled samples; adult: n=9 mice, 2 pooled samples) (# p < 0.05, ## p <
0.01, Brunner test, * p < 0.05, ** p < 0.01, Mann-Whitney test). This figure was cited from
[1]

4.3. Age-related effects of PDE5 inhibition

Inhibition of the cGMP specific PDE5 using sildenafil in cumulative concentrations
resulted in a concentration dependent relaxation in PE (10° mol L?) pre-contracted
vessels. The relaxation was stronger in juvenile compared to aged vessels (Figure 4A,
B). PDE3a and PDE5 mRNA-expression were lower in aged vessels, as it was for the
PDE3a (Figure 4C, E). In contrast, the PDE3b expression was higher in aged vessels
(Figure 4D).
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Figure 4. Age-related responses to PDES inhibition.

A: Representative original traces showing the response to sildenafil (10°-10° mol L) after
pre-contraction with phenylephrine (PE, 10° mol L?). B: Concentration response curves for
juvenile and aged vessels (mean £ SEM). C, D, E: Expression for PDE3a, PDE3b, and PDES5,
respectively, on the mRNA level (juvenile: n=16; aged: n=10) (#, p < 0.05, Brunner test, * p <
0.05, ** p <0.01, Mann-Whitney test). This figure was cited from [1].
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4.4. Vessel histology

Vessel histology was investigated to check if development of vascular dysfunction
during aging goes along with structural changes (remodelling). Neither resistance arteries
(small mesenteric arteries) nor the aorta (large conduit artery) showed significant changes
in their structure (Figure 5A, B, C, D). The media-to-lumen ratios remained similar in
aged vessels compared to juvenile vessels. There were no signs of atherosclerosis or
fibrosis (Figure 5E).
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Figure 5. Histology in mouse mesenteric artery and aorta.

A, B: Van-Gieson staining of two small mesenteric arteries from juvenile and aged
animals (magnification x120). C, D: Van-Gieson staining of two aortas from juvenile
and aged animals (magnification x23). E: Media-lumen-ratio of aorta and small
mesenteric arteries in juvenile and aged vessels (juvenile: n=26; aged: n=31 in

mesenteric arteries; juvenile: n=20; aged: n=19 in aorta). This figure was cited from

[1].

4.5. PE induced contraction

With the aim to investigate the ability of vessels to react to PE, we calculated the mean
of all phenylephrine (PE, 10-° mol L) induced contractions for juvenile and aged vessel.
PE induce contraction were normalized to the response of the vessel to potassium
chloride solution (K-PSS, 123.7 mmol L) in the beginning of the experiment The
response to PE was similar in juvenile and aged vessels (118.56 + 7.92% (juvenile, n =
37) vs. 120.61 £ 5.64 (aged, n = 31), Mann—-Whitney test, p > 0.05) (Figure 6. A). After
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pre-treatment with the eNOS inhibitor (L-NAME, 104 mol L, 30 min), PE induced

contractions were increased by 24% in juvenile samples (Mann—Whitney test, p < 0.001),
but reduced 21% in aged ones (Mann-Whitney test, p < 0.05), (146.62 + 6.71 (juvenile,
n=18) vs. 99.71 + 7.60 % (aged, n=13), Mann-Whitney test, p < 0.001) (Figure 6. B).
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Figure 6. Age-related vessel contraction to PE.
A: Small mesenteric artery response to phenylephrine (PE, 10> mol L) in juvenile and
aged vessels. B: Small mesenteric artery response to PE (10° mol L) in juvenile and

aged vessels after L-NAME (104 mol Lt) pre-treatment for 30 min.
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5. Discussion

The results of the study show an impaired dilatory function in small mesenteric arteries
during aging, which precedes the appearance of histological changes. Data suggest that
the affected dilatory capacity is due to an impaired sGC function in the vascular smooth

muscle cell.
5.1. Endothelium-dependent vasorelaxation during aging

The NO-sGC-cGMP-axis is the main dilator system in large and small arteries.
Reduced dilatation, which can be measured by increasing the blood flow through the
vessel (flow mediated dilation) is a marker of endothelial dysfunction and a predictor of
cardiovascular diseases [56-58]. Aging and development of endothelial dysfunction are
associated. Oxidative stress and inflammation are important pathophysiological factors in
the process of vessel aging [59]. In our study, we observed a reduced ACh induced
endothelium-dependent relaxation already at age of 40-41 weeks (aging animals).
Inhibition of NOS-isoforms resulted in similar relaxation in juvenile and aging vessels.
This finding points at an important role of the NO-sGC-cGMP-axis in the course of aging.
The mRNA expression for eNOS did not differ between juvenile and aging arteries,
suggesting that eNOS expression may not be responsible for reduced dilatation in our
study. The finding is in agreement with that in soleus arterioles of 22-month-old Fischer
344 rats, where eNOS mRNA expression did not change with aging. However, in the cited
study, the eNOS protein was enhanced in the older rat [60]. In WKY rats, aortic eNOS
expression did not change significantly until an age of 63 weeks, while INOS mRNA and
protein expression increased [61]. Further, the eNOS content in abdominal aorta, iliac
artery and femoral artery was not different comparing 4- and 20-months-old Fisher 344
rats, although relaxation was impaired in old animals [62]. Other studies showed reduced
NO bioavailability going along with decreased eNOS expression [63]. Interestingly,
enhanced eNOS mRNA expression has been seen in old human saphenous veins and in
the aging brain in rats [64, 65]. These observations indicate that aging affects eNOS
MRNA and protein expression differently in the animal models and in human.
Posttranscriptional modification of NOS that occur with aging may be accountable for the
inconsistent results concerning mMRNA and protein expression. We studied all NOS
subtypes. The eNOS is the dominant isoform in the endothelial cells, while nNOS is

predominantly expressed in the central nervous system and contributes to neuronal
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function. The expression of INOS depends on the cytokine level and is low under
physiological conditions [66]. In our study, nNOS expression was very low and iNOS was
not detectable. The missing INOS expression fits to the observation of no atherosclerosis

in the mesenteric arteries at age of 40 weeks.
5.2. Impaired signalling pathway in smooth muscle cell with aging

In the process of vascular aging, endothelial cells and VSMC reorganize to adapt to
the changed requirements. These are increased blood pressure, changed metabolite
composition including lipids and other more. Endothelial dysfunction is a hallmark of
vessel aging and goes along with decreased NO-bioavailability [67]. Remarkably, NO is
not only a vasodilator, it can also protect cells from proliferation [68]. Reduced ACh
induced dilatation in aged vessels our study point at decreased endothelial and/or VSMC
function. Data about the impairment of VSMC function are rare for the period of aging
until the 40 weeks. To clarify the mechanisms, we investigated the sGC-cGMP pathway
in VSMC and tested the hypothesis of a reduced function in mouse during aging. The
relaxation response of juvenile and aged vessels to the cumulatively applied NO-donor
SNP was similar, i.e. concentration-response curves did not differ. Thus, sGC and
downstream pathways have similar sensitivity to the natural agonist of sGC. However, a
test of the dynamic behaviour of sGC activation by bolus application and follow up of
vessels tone over minutes, revealed a faster response in juvenile arteries compared to
age vessels. The difference was strongest 30 sec after NO application. We interpret this
response as a reduced action of sGC or downstream pathways in VSMC. Treatment of
arteries with the artificial SGC activator runcaciguat led to the same result, namely a faster
relaxation in juvenile vessel. The maximum difference was at 2 min after bolus application.
At this time point, we determined the sGC concentration in the vessel and found higher
values in the juvenile group. It seems that the sGC rather than the downstream pathways
are responsible for the slower response to the NO or runcaciguat. However, a changed
cGMP-specific PDE activity has also to be taken into consideration. Endothelium-
independent, SNP-induced relaxation is rarely examined during aging. In a study in
human elderly arterioles, SNP-induced vasodilatation of gastric submucosal arterioles
was significantly decreased compared with that from young patients [69]. Aging impaired
the endothelium-independent vasorelaxation induced by sGC activator YC-1 in old
spontaneously hypertensive rats, while relaxation was normal in old WKY rats [34]. The

protein expression of a- and B-subunits did not differ between 6 weeks- and 17 month-

24



old WKY rats. Surprisingly, the cGMP content in aortas of WKY rats was higher in older
rats after sGC stimulation with YC-1. This phenomenon has been interpreted as an
adaptive mechanism compensating the reduced endothelium dependent vasodilatation

in aged vessels [34].

The sCG is a protein heterodimer consisting of o and B subunits, both of them with
doubled genes giving a1, a2, B1, and B2 subunits. The enzyme is abundantly expressed in
kidney, lung, liver, cerebrum, heart, and muscle [70, 71]. Combinations of a1, and a2,
respectively, with 1 are most frequent [28, 71]. The B1 subunitis crucial for sGC function,
because_p1 deficiency leads to complete loss of function. Deficiency of au- or a2- subunit
reduces the sGC function [72-76]. The sGC aa/p1 variant is important for blood pressure
modulation in mice [77]. We found reduced mRNA expression of a1- and a2-subunits in
the aged mice and this could explain the reduced sGC function in our aging model. The
B1-mRNA did not differ comparing juvenile and aged vessels. In 17 months old rats,
MRNA expression of a1 and 1 were lower than young aortic tissue [33], while sGC
expression was increased in the aorta of aging rats in another study [34]. The results also
differ when comparing rat lung, where the expression increased during aging, with the
heart showing decrease of sGC expression [78]. Reduced sGC expression may
contribute to the development of salt-sensitive hypertension. The sGC 1 mRNA
expression was reduced and the sGC B2 was increased in kidneys of Dahl salt-sensitive
rats. Consequently, the NO-insensitive sGC ai/f2 was stronger represented [79].
Altogether, the expression studies suggest an important role of sGC for vascular dilatory
function in physiology and pathophysiology.

The cGMP-specific PDE5S is abundantly expressed in vascular smooth muscle cells
[80, 81]. The cGMP-hydrolysing activity of PDE5 is an important factor in the control of
cellular cGMP concentration [82]. In addition, PDE3 with its mixed specificity for cAMP
and cGMP contributes to the modulation of cGMP levels [83]. We found a similar
expression on the mRNA level for PDE3A, B, and PDE5, respectively, in juvenile
mesenteric arteries. During aging, PDE5 and PDE3A expression decreased; that of
PDES3B increased. The decrease in PDE5 and PDE3A expression could be an adaptive
reaction to the decreased sGC activity during aging. The concentration-response to
sildenafil (PDES5 inhibitor) was less in aging compared to juvenile animals. This
observation supports the idea or decreased sGC function in aged animals, however, it

may also be a consequence of the lower PDE5 expression. There are not many studies

25



about PDE5 expression during aging. In senescent human VSMC, PDE5 mRNA
expression was 2.3-fold elevated [84]. PDE5 expression was increased in older human
Leydig cells [85]. The few studies available do not allow conclusions concerning the effect

of aging on PDE5 expression in VSMC.
5.3. Vascular morphology in aging

Our study reveals a decreased endothelial induced dilatation already at age of 40-41
weeks. Data suggest that this reduction is due to an impairment of the NO-system function
with aging. The observation agrees with several other studies in animal models and in
humans [86-88]. An endothelial dysfunction seems to contribute to this behaviour.
However, we observed an impaired function of the NO signalling in VSMC, too. The
finding points at a decreased dilatory ability in aging vessels, which is due to functional
deficiencies in the endothelial as well in VSMC. At the same time, structural changes were
not detectable with classical histological methods in aging small mesenteric arteries and
aorta. Thus, functional impairment precedes the structural changes during aging. i.e. the
transition from a “contractile to synthetic” type of arteries [35]. The remodelling of arteries
in older ages is characterized by proliferation of VSMC and vessel calcification resulting
in increased arterial stiffness [35]. Thickening of the intima accompanies the remodelling
of the media and increases the susceptibility to atherosclerosis [89-92].

5.4. Contractile properties during aging

In this study, PE (10> M) induced similar contractile responses (in % of maximum KCI
induced contraction) in juvenile and aged arteries. However, after inhibition of NOS by L-
NAME vessels PE contraction was stronger in juvenile group compared to in the aged
group. This indicates a reduced NO-bioavailability, which refers to endothelial dysfunction
with aging, and suggest a reduced contractile ability of aged vessels to PE. Phenylephrine
(PE) induces vasocontraction through selective stimulation of ai-adrenoceptors in
vascular smooth muscle cells. Receptors activate phospholipases (PLC, PLA2, PLD). In
addition, calcium channels, sodium/proton and sodium/calcium exchanger are activated.
Signalling modulates potassium channels [93]. The main response to PE is an increase
in cytosolic calcium levels. There are differences in the expression of ai-adrenoceptor
subtypes and the efficiency in response to agonists [94]. The reduced contractile
response to adrenoceptor agonists can be due to decreased receptor density, changed
signalling, or alterations in the contractile apparatus [95]. Studies show a changed
calcium homeostasis [96, 97]. Reduced activity of the sodium/potassium pump may
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contribute to reduced contractile responses in aged animals [98]. Further, reduced L-Type
calcium channel expression [99], impaired interaction of voltage-dependent Ca?* channel
Cav3.2 and the RyR channel contribute to age related reduction in the contractile function
[100]. It has also been shown that calcium spark generation depends on Cavl.2 and
Cav3.2 channels and that latter do not contribute to spark generation in old mice [100,
101]. All these structures may play a role for the decreased adrenoceptor mediated

contractions in the aging animal.
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6. Conclusion

Our investigation of endothelial and endothelial independent vasodilation point at a
reduced function of the sGC, which may contribute to the impairment of endothelial, ACh
induced relaxation in aging vessel (40-41 weeks). The data show that, signalling
pathways via the sGC are less functional in a relatively early stage of aging compared to
juvenile vessels. The slower relaxation response to exogenously applied NO as well as
to the sGC activator runcaciguat within 2 min after application may influence
cardiovascular regulation in the aging animal. In addition, we observed decreased
responses to PE, suggesting an aging process for signalling pathways for PE and
probably other agonists. It is worthy of note that these functional changes do not go along
with structural changes in the vessels in this period of aging, supporting the finding that
endothelial dysfunction precedes the vessel remodelling. Our study adds the finding of

reduced sGC function to the pathophysiology of aging arteries.
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Abstract: Endothelial dysfunction (ED) comes with age, even without overt vessel damage such as
that which occurs in atherosclerosis and diabetic vasculopathy. We hypothesized that aging would
affect the downstream signalling of the endothelial nitric oxide (NO) system in the vascular smooth
muscle (VSM). With this in mind, resistance mesenteric arteries were isolated from 13-week (juvenile)
and 40-week-old (aged) mice and tested under isometric conditions using wire myography. Acetyl-
choline (ACh)-induced relaxation was reduced in aged as compared to juvenile vessels. Pretreatment
with L-NAME, which inhibits nitrix oxide synthases (NOS), decreased ACh-mediated vasorelaxation,
whereby differences in vasorelaxation between groups disappeared. Endothelium-independent va-
sorelaxation by the NO donor sodium nitroprusside (SNP) was similar in both groups; however, SNP
bolus application (10~¢ mol L) as well as soluble guanylyl cyclase (sGC) activation by runcaciguat
(10 mol L") caused faster responses in juvenile vessels. This was accompanied by higher cGMP
concentrations and a stronger response to the PDES inhibitor sildenafil in juvenile vessels. Mesenteric
arteries and aortas did not reveal apparent histological differences between groups (van Gieson
staining). The mRNA expression of the a1 and &2 subunits of sGC was lower in aged animals, as
was PDE5 mRNA expression. In conclusion, vasorelaxation is compromised at an early age in mice
even in the absence of histopathological alterations. Vascular smooth muscle sGC is a key element in
aged vessel dysfunction.

Keywords: aging; mesenteric artery; nitric oxide; soluble guanylyl cyclase; soluble guanylyl
cyclase activator

1. Introduction

Aged arteries contribute to cardiovascular disease [1,2]. Age-related decline in arterial
function includes reduced vasorelaxation and increased vasoconstriction, which compro-
mise organ perfusion and function. The decrease in endothelium-dependent vasodilatation
that comes with age is not necessarily accompanied by structural changes in the arterial
wall [3]. Disturbances in the generation or breakdown of endothelium-derived vasoactive
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autacoids play an important role. What is typical is the attenuated response to vasodila-
tors or to the blockade of the nitric oxide (NO) system, as shown by numerous studies
in humans, rats, and mice [3-7]. The NO system, prostacyclin-derived metabolites, and
the endothelium-derived hyperpolarizing factor (EDHF) are major components of the
endothelial dilatory function.

Although all of these systems contribute to endothelial dysfunction with age, NO is
the main dilatory factor in many vascular beds such as those of the kidney, the mesentery,
and the retina [8,9]. NO, produced by endothelial NO synthase, diffuses into smooth
muscle cells to activate its receptor, soluble guanylyl cyclase (sGC), which catalyses cyclic
guanosine monophosphate (cGMP) production. cGMP activates phosphoglycerate kinase
(PGK), which in turn modulates the function of various channels and enzymes resulting
in reduced cytosolic calcium levels and muscular relaxation [10]. Potential mechanisms
behind age-related decline in NO system functioning comprise reduced endothelial NO
synthase (eNOS) expression and function on top of increased NO scavenging by reactive
oxygen species (ROS) [11-13]. Both mechanisms diminish endothelial NO bioavailabil-
ity. Furthermore, the remodelling and functional decline of vascular smooth muscle
(VSM) components, eventually leading to increased vessel stiffness, affect endothelial
dilatation [14].

In contrast to the widely investigated role of the endothelial compartment, there is
very limited knowledge regarding NO-induced signalling in aged VSM cells. Studies do
report decreased cGMP levels and reduced sGC expression in old animals as compared
to young ones [15,16], which suggest the role of sGC in the age-related dysfunction of the
NO system. To test the hypothesis that sGC function is reduced with age, we investigated
the mesenteric arteries of juvenile (~13-week-old) and aged mice (~40-week-old). Aged
animals, not old, were included in the study to exclude atherosclerosis and vascular
remodelling, which commonly occur in old mice and markedly influence vascular function.
Resistance mesenteric arteries were used, as this is a preferred model for the study of
arterial function [17].

2. Results
2.1. Vessel Activity and Pre-Contraction

The activity of juvenile and adult vessels was tested using a high-potassium phys-
iological solution (K-PSS, 123.7 mmol L~! KCl, Carl Roth, Karlsruhe, Germany). Aged
vessels showed a 14% reduced response to K-PSS as compared to the juvenile vessels
(3.16 £ 0.12 (n = 48) vs. 3.66 += 0.13 mN (n = 52), Mann-Whitney test, p < 0.01). Phenyle-
phrine (PE, 107> mol L) was used to pre-contract the vessels for the vasorelaxation
experiments. The responses to PE, which were normalized to the respective KCl-induced
contraction, were similar in both groups (120.61 =+ 5.64 (aged, n = 31) vs. 118.56 + 7.92%
(juvenile, n = 38), Mann-Whitney test, p > 0.05).

2.2. Aging Impairs Endothelium-Dependent Relaxation

Vascular aging is accompanied by endothelial dysfunction [3]. To test endothelium-
dependent vasorelaxation, resistance mesenteric arteries from mice were pre-contracted
with PE (10~° mol L™!) and treated with cumulatively increasing concentrations of ACh
(1077 to 1075 mol L") (Figure 1A). Both juvenile (1 = 10, ECsg = (8.03 £ 2.05) x 10~ ¥ mol L)
and aged (n = 11, EC5p = (5.60 + 0.35) x 108 mol L) vessels showed concentration-
dependent relaxation in response to Ach, with comparable sensitivity (ECsp: Mann—
Whitney U test, p > 0.05). However, aged vessels showed a significantly smaller maximum
response to ACh than juvenile vessels (Figure 1B). To test the contribution of the endothelial
NO system in this context, vessels were pre-treated with a non-selective inhibitor of NO
synthases, Nw-nitro-L-arginine methylester hydrochloride (L-NAME, 10~% mol L™1), for
30 min [8]. The responses to ACh decreased more strongly in the juvenile group after
L-NAME treatment as compared to the aged group, which resulted in similar concentration—
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response curves. This observation suggests that NO bioavailability is reduced in aged
vessels (Figure 1C,D).
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Figure 1. Age-related differences in relaxation to acetylcholine (ACh). (A) Representative traces and (B) concentration—
response curves showing the relaxation induced by 10 °~10° mol L~! ACh in juvenile and aged mesenteric arteries.
Vessels were pre-contracted using 10~ mol L~! phenylephrine (PE). Juvenile vessels showed a higher maximum response
to ACh compared to aged vessels (* p < 0.05 Brunner test, ** p < 0.01 Mann-Whitney test). Both aged and juvenile vessels
had a similar sensitivity to ACh (ECsg: (5.60 =+ 0.35) x 1078 mol L™! (aged), (8.03 & 2.05) x 1078 mol L™! (juvenile)).
(C) Representative traces and (D) concentration-response curves showing the relaxation induced by 107~10~® mol L™!
ACh in juvenile and aged vessels. Vessels were pre-treated for 30 min with L-NAME (10~* mol L~?, indicated as
“+L-NAME”), a non-selective NOS inhibitor, and pre-contracted with PE. L-NAME largely reduced ACh-mediated relaxation
in both aged and juvenile vessels. There were no differences between the aged and juvenile groups.

2.3. Endothelium-Independent Relaxation

To assess whether NO signalling in VSM contributes to the reduced relaxation in aged
vessels, their response to the endothelium-independent vasodilator, sodium nitroprusside
(SNP, 10~ to 107> mol L), was measured. Vessels were pre-treated with L-NAME
for 30 min, followed by a pre-contraction with 60 mmol L~ KCI (Figure 2A). The sen-
sitivity of both juvenile (n = 12, ECs = (1.73 £ 0.46) x 1077 mol L™!) and aged (n =9,
ECsg = (7.85 £ 4.71) x 1077 mol L™1) vessels to SNP were similar (Mann-Whitney U test,
p > 0.05). SNP also induced similar maximum responses in juvenile and aged vessels
(Figure 2B). Remarkably, bolus application of SNP for 10 min revealed a faster relaxation
in juvenile vessels as compared to aged vessels, which was most prominent during the first
2 min after NO-application (Figure 2C,D).
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Figure 2. Effect of the NO donor, sodium nitroprusside (SNP), on mouse mesenteric arteries. (A) Representative traces
and (B) concentration-response curves showing the relaxation induced by 10~'"-10% mol L~ SNP in juvenile and aged
mesenteric arteries. Vessels were pre-treated with L-NAME (10~ mol L ') and pre-contracted using potassium chloride
(KCl, 60 mmol L™1). Juvenile and aged mesenteric arteries showed similar sensitivity (ECsq: (3.52 4 3.34) x 10" mol L™}
(juvenile), (7.85 = 4.71) x 107¢ mol L™! (aged)) and maximum response (Brunner test, p >0.05, Mann-Whitney test,
p > 0.05) to SNP. (C) Representative traces and (D) time-response curves showing relaxation induced by SNP (103 mol L™ 1)
in juvenile and aged vessels over time. Vessels were pre-treated with L-NAME and pre-contracted with phenylephrine (PE).
SNP caused faster relaxation in juvenile as compared to aged mesenteric arteries in the physiologically important range of
up to 3 min (¥ p < 0.05 Brunner test, ** p < 0.01 Mann-Whitney test).

In addition to NO, which is a natural agonist of sGC, the artificial activator runcaciguat
(BAY60-2770, Bayer AG, Wuppertal, Germany) was tested. Runcaciguat activates sGC in
its haem-free configuration of NO (Figure 3A) [18]. This pharmacological activation of sGC
provided additional information about its function. Runcaciguat was applied as a bolus at a
maximal concentration of 107 mol L~! for 10 min. It induced a faster response in juvenile
vessels as compared to aged vessels, most prominently at 2 min post application (Figure 3B).
At this time point, cGMP levels were lower in aged vessels (Figure 3C). Furthermore, the
pharmacological inhibition of PDES, which degrades cGMP, induced stronger relaxation in
PE-pre-contracted juvenile vessels than in aged vessels (Figure 4A,B).
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Figure 3. Effects of the soluble guanylate cyclase (sGC) activator runcaciguat. (A) Representative traces and (B) time-
response curves showing relaxation induced by runcaciguat (10-° mol L) in juvenile and aged mesenteric arteries. Vessels
were pre-treated with L-NAME (10~ 4mol L™1) and pre-contracted with PE. Juvenile vessels showed a significantly faster
relaxation in response to runcaciguat (107 mol L") as compared to aged vessels in the physiologically important range of
up to 3 min (*# p < 0.01 Brunner test, * p < 0.05, ** p < 0.01 Mann-Whitney test). (C) A direct cGMP ELISA was performed on
tissue lysates obtained from L-NAME-treated and PE-pre-contracted arteries 2 min after bolus application of runcaciguat
(107 mol L™1). Juvenile vessels had higher cGMP levels than aged vessels (juvenile: 7 = 2 pooled samples, each with
mesenteric arterial tissue from at least 5 mice; adult: n = 2 pooled samples, each with tissue from 3 mice).
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Figure 4. Effects of the PDES5 inhibitor, sildenafil. (A) Representative traces and (B) concentration-response curve showing

the relaxation induced by 10~°~10° mol L~ sildenafil in juvenile and aged vessels. Vessels were pre-contracted with PE.

Juvenile vessels showed a higher maximum response to sildenafil as compared to aged vessels (* p < 0.05 Brunner test,

** p < 0.01 Mann-Whitney test). The sensitivity of both groups to sildenafil was not significantly different

(ECs0: (5.99 + 1.64) x 1078 mol L~! (juvenile), (4.93 £ 1.14) x 1078 mol L~! (aged)).
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2.4. Vessel Histology Is Similar between Juvenile and Aged Mice

In old mice (>12 months), vessel dysfunction is accompanied by irreversible histologi-
cal changes characterized by atherosclerotic plaques and vascular wall remodelling [19].
In the present study, a relatively early advanced life span was investigated. Interestingly,
ACh-induced vasorelaxation was already reduced in aged mice (40 weeks) as compared
to juvenile mice (13 weeks). Histological investigations of mesenteric arteries and aortae
showed no visible changes in the vessel structure (Figure 5A-D). Furthermore, the media-
to-lumen ratios of mesenteric arteries as well as aortae were not different between the aged
and juvenile groups (Figure 5E).
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Figure 5. van Gieson-stained cross sections of mouse mesenteric artery and aorta. Vascular walls of both (A) juvenile and
(B) aged mesenteric arteries showed no structural differences and had a similar number of elastic fibres. Neither (C) juvenile
(n = 36) nor (D) aged (1 = 19) aortae showed atherosclerotic alterations. (E) The media lumen ratios of juvenile mesenteric
arteries (1 = 26) and aortae (1 = 20) were not significantly different from aged mesenteric arteries (1 = 31) and aortae (n = 19),
respectively (p > 0.05, Mann-Whitney test).

2.5. Differential Expression of mRNA of sGC Subunits and PDE5

To examine the effect of aging on the NO-sGC pathway on a molecular level, we
quantified the mRNA expression of the enzymes involved in the mesenteric arteries of
juvenile and aged mice. Relative expression levels were determined using the ACt method
and expressed as a ratio of the target gene’s expression level to that of the housekeeping
gene (Figure 6). While there were no differences in the expression levels of nNOS and
eNOS between the two groups, nNOS was expressed at extremely low levels in both
groups. Expression of iNOS was below the detection level in both groups (data not shown).
The a1 (GUCY1A1) and a2 (GUCY1A2) subunits of sGC were expressed at significantly
lower levels in aged vessels as compared to juvenile vessels. The $1 subunit (GUCY1B1),
however, was expressed at comparable levels in both groups. PDE5 expression levels in
aged mice were also lower than in juvenile mice (Figure 6). PDE3A expression levels were
lower and PDE3B levels were higher in aged as compared to juvenile vessels (Figure 6).
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Figure 6. mRNA expression of sGC subunits and isoforms of PDE and NOS. Expression levels of the alpha subunits
GUCY1A1 and GUCY1A2 of soluble guanylyl cyclase (sGC) were significantly higher in juvenile mesenteric arteries
(n =16) compared to aged vessels (1 = 10). The expression of the beta subunit GUCY1B1, however, was not significantly
different. Juvenile mesenteric arteries (1 = 16) showed a significantly higher expression of PDE3A and PDES5 compared to
aged vessels (1 = 10); however, the expression of PDE3B was significantly lower. Expression levels of both eNOS and iNOS
were not significantly different between the two groups (juvenile: n = 23, aged: n = 17). Data are represented as box and
whisker plots of mMRNA expression levels normalized to the housekeeping gene RPL32 (* p < 0.05, ** p < 0.01, **** p < 0.0001,

Mann-Whitney test).

3. Discussion

In the present study, we demonstrated that the age-dependent decline in the relaxing
ability of mesenteric resistance arteries of male mice is associated with an impaired sGC
function. Aged vessels relaxed slower than juvenile arteries in response to the native
dilatator NO and to the NO-independent sGC activator, runcaciguat. In addition, the
mRNA-expression of two sGC alpha subunits was significantly lower in aged compared to
juvenile vessels. The data suggest the important contribution of NO-related pathways in
VSM cells to the impaired dilatory vessel function during aging.

A decrease in endothelium-dependent vasodilatation is a main and well-known
feature of vessel aging, and it has been demonstrated in numerous studies in animals as well
as in humans [3-7]. Defects in the NO pathway, deficits in EDHF-mediated responses, and
changes in the function of the prostaglandin system contribute to endothelial dysfunction
in the process of aging [3,20]. Endothelial dysfunction is characterized by reduced flow-
mediated dilatation [21]. Furthermore, agonist-induced dilatation is impaired [22]. In the
present study, ACh-induced vasorelaxation was reduced in aged animals as compared
to young ones, in agreement with previous observations in rats and humans [4,15,23].
However, the non-selective inhibition of NOS using L-NAME did not only decrease the
overall response of both juvenile and aged vessels to ACh, but also abolished the difference
between the group responses. This strongly suggests the critical role of the NO system in the
dilatation of small mesenteric arteries of C57BL6 mice and in the age-related reduction in
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the dilatory capacity of these vessels, which is in line with previous studies demonstrating
impaired NO-mediated relaxation in large arteries, resistance vessels, and arterioles [24-27].

Endothelium-independent vasorelaxation was tested by the cumulative application
of the NO donor, SNP. The concentration-dependent relaxations did not differ between
juvenile and aged vessels, suggesting that NO signalling pathways were not impaired
in VSM cells. In the literature, results regarding endothelium-independent relaxation
are inconsistent. For example, endothelium-independent NO-mediated relaxation in
three to four-month-old rats was similar as compared to 20-month-old rats [15], while it
was reduced in 45-week-old rats as compared to 12-week-old rats [16]. These contrary
observations may reflect different aging models. Furthermore, it cannot be excluded that
differences in the nutrition, motor activity, and environmental conditions of the animals
contribute to the inconsistent observations. For a more detailed investigation of NO
signalling in VSM cells, endothelium-independent relaxation in response to the bolus
application of NO was followed up for 10 min. This experimental design enabled a closer
view of the dynamics of NO signalling in VSM cells. The experiment revealed prompt
relaxation in juvenile vessels in contrast to sluggish relaxation in older vessels. More
notably, this difference could be seen in the physiologically important range of up to
2 min. Several mechanisms of vascular adaptation to metabolic demands and vessel-based
autoregulation of organ perfusion include NO signalling via sGC. Most of these dynamic
adaptations of local and systemic circulation work within a time period that lasts from
seconds to minutes; one example is the myogenic response [28]. The NO-system modulates
this important mechanism for the control of organ perfusion. It has also been shown that
NO release varies with the frequency of the fluctuations of blood pressure and blood flow,
respectively, and dampens blood pressure variations in a low-frequency range. The latter
may be an antihypertensive effect [29,30]. Thus, studying these dynamics is important for
understanding age-related differences in cardiovascular control.

To support the assumption that the age difference in relaxation dynamics is related
to a change in sGC activity, cGMP concentrations in the vessels were measured. For this
purpose, the NO- and haem-independent sGC activator, runcaciguat, was applied as a
bolus. Again, the relaxation was slower in aged vessels as compared to juvenile vessels.
More importantly, the slower relaxation was accompanied by lower cGMP levels 2 min
after runcaciguat was applied. Thus, both the natural as well as the pharmacological
stimulation of sGC point to a decline in its activity with increasing age. The smaller effect
of PDES5 inhibition in aged vs. juvenile mice is in agreement with this conclusion. However,
the lower PDE5 mRNA expression in aged animals also has to be considered in this context.

sGC is a heterodimeric haemoprotein, consisting of an alpha and a beta subunit, each
of which has two isoforms in vertebrates (x1, a2, and 1, $2) [31]. The «1/p1 heterodimer
is probably most widely expressed in mammals. However, the «2/f1 variant has also
been found in several tissues [32]. Thus, sGCx1/p1 and sGC«2/p1 isoforms seem to be
the physiologically active heterodimers [33]. Mice lacking the «1 subunit of sGC show
decreased ACh-induced vasodilation and are prone to hypertension, while the deletion of
the 31 subunit in smooth muscle induces a complete loss of sGC function [34-37]. Experi-
ments with mice deficient in either «1- or a2-sGC underscore the functional importance of
both sGC«1/1 and sGCx2/B1 heterodimers in aortic relaxation [38]. In mice, sGCx1/31
is mainly responsible for the modulation of renal blood flow and systemic blood pressure.
Interestingly, sGCx2/p1 can replace sGCx1/B1 function [37]. In the present study, mRNA
for a1 (GUCY1A1), a2 (GUCY1A2), and B1 (GUCY1B1) was detected in resistance mesen-
teric vessels, with the lowest expression for GUCY1A2, which agrees with observations
in the rat aorta [38]. GUCY1A1 and GUCY1A2 were expressed at lower levels in aged
as compared to juvenile vessels, which might explain the decline in sGC function. The
cGMP-degrading enzyme, PDE5, was also differentially expressed when juvenile and aged
vessels were compared. We assumed a compensatory decrease in PDES5 due to reduced
c¢GMP levels. In contrast to the findings of the present study, an upregulation of PDE5
has been observed in the iliac arteries of middle-aged rats and in senescent human VSM
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cells [39,40]. PDE5 expression seems not to be influenced by sGC, because sGCa1/p1-
deficient mice show comparable PDES5 expression to that in wild-type mice [41]. We also
observed a significant reduction in the mRNA expression of the functionally less significant
PDE3A isoform in aged mice compared to juvenile mice. The activation of sGC in rat
pulmonary artery smooth muscle cells upregulates the protein expression and activity of
PDE3A, an effect reversed by sGC inhibitors [42]. A similar effect is seen in sGC knock-out
mice, which have a 50% reduction in the expression and activity of PDE3A compared to
that found in wild-type mice [43]. Taken together, GUCY1A1, GUCY1A2, PDE3A, and
maybe PDE5 mRNA expression patterns correspond with the decline in the dynamics
of sGC activity shown here and support the notion of altered NO signalling and cGMP
metabolism, respectively, in old VSM cells. Protein expression data are not shown because
the specificity of antibodies for the sGC subtypes and PDEs is lower than that for qPCR
probes. Therefore, mRNA data may reflect gene expression better than protein expression
data in this case. In order to exclude a possible significant contribution of eNOS to an age-
related decrease in relaxation, its expression was analysed. Results revealed no difference
in eNOS mRNA levels between groups. The nNOS expression was also investigated. It was
expectedly very low and may not reach biological significance. The expression of iNOS was
below the detection level, which suggests an absence of inflammatory processes in aged
vessels and is in agreement with the histological finding that there is no atherosclerotic
remodelling of aged vessels. The observation corresponds with the literature and reflects
the comparatively lower contribution of NO from nNOS to vasorelaxation [44,45]. Studies
on the effect of age on eNOS expression do not provide a uniform picture and report either
unaltered or decreased eNOS mRNA and protein expressions [46-50]. Other studies have
also found increased eNOS mRNA expression [50,51]. Although the majority of the results
may point to the contribution of eNOS to a decreased endothelial relaxing function in old
vs. young animals, further studies on the contribution of eNOS to vasorelaxation in general
as well as with respect to age are warranted.

In conclusion, altered NO signalling in VSM impairs the age-related vasorelaxation of
resistance arteries in male mice. Blunted sGC activity in the VSM compartment hallmarks
vascular aging, which occurs early in life, in the absence of overt histopathological changes.

4. Materials and Methods
4.1. Experimental Animals

Male mice (C57BL/6) were maintained at the animal facility of the Charité—
Universitatsmedizin Berlin under a 12 h light/dark cycle in enriched cages. Juvenile
(age: 91-97 days ~13 weeks, n = 65) and aged (age: 280-288 days ~40 weeks, n = 45) were
fed with standard pellet food sniff (ssniff-Spezialdidten GmbH, Soest, Germany, sodium
content: 0.24%) and allowed access to tap water ad libitum.

4.2. Chemicals and Drugs

The drugs used in this experiment—acetylcholine (ACh), phenylephrine (PE),
L-NAME (N w-nitro-L-arginine methylester hydrochloride)}—were purchased from Sigma,
St. Louis, MO, USA; SNP was purchased from Carl Roth, Karlsruhe, Germany; sildenafil cit-
rate from BioVision, Milpitas, CA, USA. Runcaciguat was provided by Bayer AG, Research
& Development, Pharmaceuticals (Wuppertal, Germany). All salts, glucose and HEPES
used to prepare buffer solutions were purchased from Carl Roth, Karlsruhe, Germany. PE
and ACh were dissolved in distilled water and stored at —20 °C. The SNP solution was
prepared in distilled water immediately before use and stored in an amber tube. L-NAME
was dissolved using ultrasound in distilled water. Runcaciguat was initially prepared in
dimethylsulphoxide (DMSO, Thermo Scientific, Bellefonte, PA, USA) and stored at —20 °C.

4.3. Vessel Function

Mesenteric arteries with the size of resistance arteries (diameter of non-pressurized ar-
teries: 59-67 pum) were used in the present study. To isolate the vessels, the mice were killed
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by cervical dislocation under isoflurane. The intestines were removed and placed in ice-cold
and oxygenated buffer (146 mmol L~! NaCl, 4.5 mmol L~ KCl, 1.2 mmol L~ NaH,PO,-2H,0,
1 mmol L' MgS04-7H,0, 5.5 mmol L' glucose, 0.025 mmol L~! Na (EDTA),
5 mmol L~! HEPES, and 1.6 mmol L~ CaCl,-2H,0; pH 7.4). The mesenteric arte-
rial network was isolated from the tissue and 2 mm long segments in the size of re-
sistance arteries were cut. The segments were then mounted onto two stainless steel wires
(diameter: 40 um) in a small vessel myograph (model 410A, Danish Myo Technology A/S,
Hinnerup, Denmark), under isometric conditions. The vessel segments were allowed to
equilibrate in carbogenated (95% O,, 5% CO,) experimental solution (119 mmol L1 NaCl,
4.7 mmol L~! KCl, 1.2 mmol L~! KH,POy, 1.2 mmol L~ MgSO,-7H20, 6.1 mmol L~ glucose,
25 mmol L~! NaHCO3, and 2.5 mmol L~! CaCl,-2H,0; pH 7.4) at 37 °C. The resting tension
of the arteries was set according to Mulvany’s normalization procedure [52]. The diameter
of the vessel was set to 90% of that calculated for a transmural tension of 100 mm Hg, as
described by Mulvany and Halpern [53].

To test the activity of the mounted and equilibrated vessels, the chamber solution was
changed to K-PSS (123.7 mmol L~1KCl, 1.2mmol L~! KH,PO4, 1.2 mmol L~} MgSOy4-7H,0,
6.1 mmol L~! glucose, 25 mmol L~ NaHCOj3, and 2.5 mmol L~ CaCl,-2H,0; pH7.4).
After maximum contraction was reached, the K-PSS was washed out and replaced with
an experimental solution. To measure the relaxing ability of arteries, they were pre-
contracted with phenylephrine (PE, 10~° mol L™!) or 60mM KCl (63.7 mmol L™! NaCl,
60 mmol L~! KCl, 1.2 mmol L~! KH,POy, 25 mmol L~! NaHCOj;, 1.2 mmol L~! MgSO,-7H,0,
11.1 mmol L~! glucose, 0.026 mmol L~! Na (EDTA), and 1.6 mmol L~! CaCl,-2H,0).
Endothelium-dependent relaxation was measured by applying ACh in cumulative concen-
trations (10~2~10~% mol L', each concentration for 50 s), and endothelium-independent re-
laxation was measured by the application of sodium nitroprusside (SNP, 10~1'~10~% mol L1,
each concentration for 30 s). Vessels were pre-incubated with L-NAME (104 mol L™ 1) in
the chamber for 30 min to estimate the contribution of the NO system. The PDES5 inhibitor
sildenafil (107°~10~° mol L™ each concentration for 30 s) was used to characterize the
NO-sGC—GMP axis. The NO- and haem-independent sGC function was tested using the
sGC activator, runcaciguat (1076 mol L™1).

4.4. Direct cGMP ELISA

Mesenteric arteries were isolated. After normalization and KCl-testing, arteries
were incubated with L-NAME (10~* mol L) for 30 min and pre-contracted with PE
(1075 mol L™!). Then, runcaciguat (10~¢ mol L~!) was applied as bolus. After 2 min, the
arteries were shock-frozen and stored at —80 °C until cGMP concentration was measured
using a direct cGMP ELISA kit (Enzo life Science, Lausen, Switzerland) according to the
manufacturer’s instructions.

4.5. Gene Expression Analysis

Isolated mesenteric arteries were frozen and stored at —80 °C. RNA was isolated
with RNA-Bee-reagent (Biozol, Eching, Germany) and reverse transcribed with the High-
Capacity cDNA RT Kit (Applied Biosystems, Foster City, CA, USA) according to the
manufacturer’s protocols. qPCR was performed using a Lightcycler LC480 (Roche Diagnos-
tics, Mannheim, Germany) according to the manufacturer’s protocol using the hydrolysis
probe fluorescent detection of the DNA generated during PCR. The expression levels of
mRNA were normalized to the housekeeping gene RPL32 (primer sequences: see Table 1)
and relative expression levels were calculated by ACt method.

4.6. Morphometric Analysis

Aortae (thoracic and abdominal) and small branches of mesenteric arteries were
dissected and placed in 4% buffered formalin (SAV Liquid Production GmbH, Flintsbach,
Germany) for fixation. The fixed vessels were embedded in paraffin, sliced (4 um for aorta
and 6 um for mesenteric arteries), and stained using van Gieson’s solution (1% acid fuchsin
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and saturated aqueous solution of picric acid mixed 1:10) for elastic fibres. Image ] 1.48
was used to measure arterial dimensions and to calculate the media lumen ratio (digital
images: Color Camera Nikon DS-Ri2 Numerical Aperture) [54].

Table 1. Sequences of primers and probes used for gene expression analysis.

Gene Forward Primer (5'-3') Reverse Primer (5'-3') TagMan Probe (5'-3')

nNOS CCCGACAGGCCAAAGAAATA  ACGTCCCCGCAGACATAAAT  GCTGGCCGAGTCTGTGTACCGCGCCC

iNOS AGCGGCTCCATGACTCCCA GGCACCCAAACACCAAGCT ATGCGGCCTCCTTTGAGCCCTTT

eNOS GACCCTCACCGCTACAACAT  ATGAGGTTGTCCTGGTGTCC AGGATGTGGCTGTGTGCATGGATCT
GUCYlal ATTTCATGCTGGACCGAGAC  TTCCCTTGGAAGTCCCTCTT  TAACGGCATCAGAAGGCTGGTGAAC
GUCYla2  CTGGACTCACTAGGCGAAAG GTCATGTGTATCGTCTGAGGC CAGCCTCCTGACGGCGCCCTT
GUCY1b1 AGCCCTTACACCTTCTGCAA  CATTGCCACACTGAGTGACC CCTTTTCACATCATATTTGACCGGAACC
GUCY1b2  CAGGTGTTGTGGGAGACAAG TCCTAGAGGCCGTGTTTACG CCCGGTACTGCCTGTTTGGTGACAC

PDE5 CCGACTTCAGCTTCAGTGACTT GGTCAGTGAACATCCGAATTG TGTCTGATCTGGAAACAGCGCTGTG

RPL32 TTCATCAGGCACCAGTCAGA  TTGTCAATGCCTCTGGGTTT TGTGAAAATTAAGCGAAACTGGCGG

4.7. Statistics

Mean, standard error of the mean (SEM), and EC50 were calculated using GraphPad
Prism 9.0.1 (GraphPad software, San Diego, CA, USA). Data for time and concentration-
dependent vessel responses are presented as mean + SEM. Data were tested for normal
distribution using the Shapiro-Wilk test. However, most data sets were not normally
distributed. Therefore, non-parametric tests were used for all of the comparisons. Time and
concentration-dependent differences between groups were tested by the Brunner test, a
non-parametric counterpart of the two-way ANOVA, which tests the hypotheses of a global
difference between the two groups and a global effect of change [55]. The Mann-Whitney
U test (GraphPad Prism 9.0.1) was used post hoc to analyse the differences between the
vessel responses of the two groups at individual time points and concentrations, as well as
the EC50. Morphometry and mRNA expression data are presented as median, box, and
whiskers (min., max.), and differences were tested using the Mann-Whitney U test.
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