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Test

"Ein Spiegel ist ein Glas, das das Licht, das von uns reflektiert wird,
wieder zurückwirft."

Linus im Juni 2011
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Abstract

In this thesis, we will present algorithms to solve the following two closely related
problems:

The first problem we will consider is to detect the symmetry group of a two-
dimensional object even in the case where its representation is distorted by noise.

We will derive and analyze algorithms following different approaches in order to
solve this problem.
One approach is to use the discrete Fourier transform in order to detect the symmetry
group of the object. Here we assume the object to be represented by a gray-level
image. The discrete Fourier transform is helpful in finding periodic structures in an
input since it decomposes a signal into its fundamental frequencies. We will use this
property in order to derive an algorithm which applies the discrete Fourier transform
to the gray-level image and uses the result in order to determine the symmetry group
of the represented object. The algorithm can be used for detecting finite as well as
infinite symmetry groups.

Besides we will investigate a second method based on the probabilistic approach
which is also used for solving shape matching problems. For the algorithms based
on probabilistic methods we assume the object to be represented by a set of points,
a set of polygonal curves or a set of parametrized curves.

The basic idea of these algorithms is to randomly choose two points out of the
input set representing the object and compute the transformation (rotation or reflec-
tion) mapping the one point to the other. A vote will be generated for the computed
transformation in transformation space. This procedure is repeated sufficiently often
until dominant clusters in transformation space arise. The number of clusters with
large numbers of votes refers to the number of symmetries of the object and thus
can be used in order to compute the symmetry group of the object represented by
the input set.

Both approaches described above result in algorithms which are robust against
noise. Thus they derive the correct answers even if the symmetries of the object got
lost during the process of computing its representation by a gray-level image or a set
of geometric objects, respectively.

After detecting the symmetry group of an object represented by a point set which
might be distorted by noise another interesting problem is to find a point set which is
symmetric with respect to the symmetries in the detected symmetry group and which
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is a close approximation of the input point set. The aim is to restore the symmetries
which might have got lost during the process of representing the object in such a
way that it can be processed by a computer. We assume a symmetric point set to
be a close approximation of the input point set if each point of the (non-symmetric)
input point set lies in the ε-neighborhood of a point in the symmetric point set. We
ask this correspondence to be a bijection. This problem is called the ε-Symmetry
Detection Problem(ε-SD problem).

The ε-SD problem was already studied by Iwanowski [18] and he proved it to be
NP-complete in general. For some restricted versions of the ε-SD problem Iwanowski
proved the decision problem to be in P. For those we will present polynomial time
algorithms solving the corresponding optimization problems. Additionally we will
present polynomial time algorithms for some restricted versions which were not con-
sidered until now. One possible restriction is to only allow point sets which are
well-separated. Iwanowski proved the ε-SD problem to be in P in the case where
no two points have a distance smaller than 8ε and proved it to be NP-complete in
the case where the point set is at most ε

2 -disjoint. We will improve this result by
developing polynomial time algorithms for 4(1+δ)ε-disjoint point sets for each δ > 0.

The algorithms developed in this thesis which detect the symmetry group of an
object were implemented and tested using the programming language JAVA.



Zusammenfassung

In dieser Arbeit werden zwei eng miteinander verwandte Probleme betrachtet.
Zum Einen wird untersucht, wie die Symmetriegruppe eines zweidimensionalen

Objektes bestimmt werden kann.
Wird ein Objekt so dargestellt, dass es mit Hilfe eines Computerprogramms un-

tersucht werden kann, so kann es passieren, dass die Symmetrien des ursprünglichen
Objekts in der Darstellung des Objekts nicht mehr vorhanden sind. Die Algorithmen,
die in dieser Arbeit entwickelt werden, bestimmen die Symmetriegruppe eines Ob-
jektes auch dann, wenn die Darstellung des Objektes selber nicht mehr symmetrisch
ist. Abhängig von der Darstellung des Objekts werden verschiedene Algorithmen
vorgestellt und untersucht.

Eine Möglichkeit ist, das Objekt mit Hilfe eines Graustufenbilds (z.B. als .jpg oder
.png Datei) darzustellen. In diesem Fall wird das Bild mit Hilfe der diskreten Fourier-
Transformation analysiert und so die Symmetriegruppe ermittelt. Die Fourier-Trans-
formation zerlegt ein Signal in seine Grundschwingungen und kann daher verwendet
werden, um periodische Strukturen zu erfassen. Diese Eigenschaft wird genutzt, in-
dem die diskrete Fourier-Transformation auf das Graustufenbild angewendet und mit
Hilfe der entdeckten periodischen Struktur in diesem Bild die Symmetriegruppe des
dargestellten Objekts ermittelt wird. Der so entwickelte Algorithmus kann verwendet
werden, um sowohl endliche als auch unendliche Symmetriegruppen zu ermitteln.

Des Weiteren wird ein probabilistischer Ansatz verwendet, um die Symmetrie-
gruppe eines Objekts zu ermitteln, wobei hier von der Repräsentation des Objekts
als Punktemenge, Menge von Polygonzügen oder als Menge von parametrisierten
Kurven ausgegangen wird.
Die Grundidee dieses Algorithmus’ ist, zwei Punkte zufällig aus der Punktmenge,
die das Objekt repräsentiert, auszuwählen und dann die Transformation (Rotation
oder Spiegelung) zu berechnen, die den einen Punkt auf den anderen abbildet. Im
Raum der Transformationen wird dann eine Stimme für die ermittelte Transforma-
tion erzeugt. Dieses Vorgehen wird ausreichend oft wiederholt, so dass sich Cluster
im Transformationsraum bilden. Die Anzahl der Cluster mit einer großen Anzahl
von Stimmen entspricht der Anzahl der Symmetrien des Objekts und kann daher
verwendet werden, um die Symmetriegruppe des dargestellten Objekts zu bestim-
men.

Mit Hilfe der beiden beschriebenen Ansätze werden jeweils Algorithmen entwi-
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ckelt, die die Symmetriegruppe eines zweidimensionalen Objekts ermitteln, auch
wenn die ursprünglichen Symmetrien des Objekts durch die Darstellung als Graustufen-
bild oder als Menge von geometrischen Objekten verloren gegangen sind, da beide
Algorithmen robust gegenüber Störungen sind.

Nachdem die ursprüngliche Symmetriegruppe eines Objekts, das durch eine Punkt-
menge repräsentiert wird, ermittelt wurde, ist die Konstruktion einer Punktmenge
mit der ermittelten Symmetriegruppe ein weiteres interessantes Problem. Ist die so
erzeugte symmetrische Menge eine gute Approximation der Menge, die das Objekt
darstellt, so ist sie eine symmetrische Darstellung des ursprünglichen Objekts. Wir
betrachten eine symmetrische Punktmenge als gute Approximation einer Eingabe-
menge, falls jeder Punkt dieser Menge in der ε-Umgebung eines Punktes der sym-
metrischen Punktmenge liegt, wobei diese Zuordnung bijektiv sein muss.

Dieses Problem wurde von Iwanowski [18] untersucht und als ε-Symmetry De-
tection Problem (ε-SD Problem) bezeichnet, wobei er das Problem als Entschei-
dungsproblem formuliert. Iwanowski zeigte in seiner Arbeit, dass das ε-SD Problem
im Allgemeinen NP-vollständig ist und für eingeschränkte Varianten in P liegt. Für
einige dieser eingeschränkten Varianten werden in dieser Arbeit Polynomialzeital-
gorithmen angegeben, die das zugehörige Optimisierungsproblem lösen. Außerdem
werden bisher noch nicht untersuchte eingeschränkte Varianten betrachtet und es
werden Polynomialzeitalgorithmen entwickelt, die diese entscheiden.

Das ε-SD Problem kann dadurch eingeschränkt werden, dass nur Punktmen-
gen als Eingabe erlaubt werden, deren Punkte weit auseinander liegen. Iwanowski
zeigte in seiner Arbeit, dass das ε-SD Problem in P ist, falls keine zwei Punkte der
Menge einen Abstand kleiner als 8ε haben. In dieser Arbeit wird Iwanowkis Ergebnis
verbessert, indem Polynomialzeitalgorithmen für Punktmengen angegeben werden,
in denen keine zwei Punkte einen Abstand kleiner als 4(1 + δ)ε haben, für alle δ > 0.

Die Algorithmen für die Symmetrieerkennung, die in dieser Arbeit vorgestellt
werden, wurden mit Hilfe der Programmiersprache JAVA implementiert und getestet.
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Introduction

Symmetry arises in almost all objects in our world no matter if they are man-made
or naturally grown. In flora and fauna, most of the creatures have at least one
symmetry axis. Almost all animals exhibit mirror symmetry with respect to a plane.
One famous exception is the flatfish, which has both eyes on one side, and thus is
asymmetrical. Interestingly, the flatfish is symmetric at the beginning of its life,
since it hatches with an eye on each side. Only when it is around 8 mm long, it
starts to metamorphose and one eye moves to the other side.

Most people associate the term ”symmetry” with beauty, harmony of proportions,
regular structures and evenness. This might be the case since we are surrounded by
symmetry in all our life.

No natural object is perfectly symmetric when considering symmetry from the
mathematical point of view. Here an object is considered symmetric if the image of
a transformation (the symmetry) applied to the object is the object itself.

The human perception does not distinguish between perfect symmetry in the
mathematical sense and slightly distorted symmetry. Thus we consider the frontal
view of a person or an animal to be symmetric even if, for example, the eyes are not
exactly the same size or are not at perfectly symmetric positions.

Figure 0.0.1: Front view of a zebra is considered to be mirror symmetric. By the
mathematical definition of symmetry this is not true.

xv
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There are studies on how the attractiveness of a person correlates to the amount
of his or her physical symmetry [9].

Since humans are attracted by symmetry, it is not astonishing that symmetry
can be found in numerous man-made objects.
In his book ”Symmetry”, Weyl [40] gives many examples of how symmetry is used in
art and design throughout the ages.

The reason why man-made objects are symmetric differs depending on the pur-
pose of the objects. Symmetry is helpful for ease of construction (floor plans), ease
of recognition (trademarks) or distinction (street signs), functionality (furniture) or
beauty (art and design).

In this thesis we will present algorithms detecting and restoring symmetries of
two-dimensional objects. Since most of the objects we are surrounded by are three-
dimensional we assume the objects to be preprocessed and represented in two dimen-
sions. Most of the symmetric objects in three dimensions are symmetric with respect
to a reflection plane or with respect to rotations around a line. Representing these
objects in a way that the reflection plane is projected to a reflection line and the line
which is the center of the rotation is projected to a rotation point, the symmetry
information of the object is not lost during the projection.

This projection can be done by taking a frontal view picture if the object con-
sidered is, for example, a person or an an animal. In the case of buildings, the floor
plan is a representation of the building preserving the symmetries.

As argued above, not all objects which are considered to be symmetric by human
vision are perfectly symmetric. Even if the original object contains perfect symmetry
and even if the picture of the object is carefully taken in order to preserve the
symmetries of the object, the two-dimensional object may not be perfectly symmetric
any more due to the perspective.

In this thesis we will present and discuss algorithms detecting the symmetry group
of two-dimensional objects even if the symmetries got lost due to slight perturbations
during the process of representing them in such a way that it can be processed by a
computer. We will also present algorithms in order to reconstruct the symmetries of
the original object.

Organization of this Thesis

In Chapter 1 we will introduce and define the notion of symmetry and symmetry
groups. We will consider only point sets in the plane. A point set in the plane can
exhibit symmetries with respect to rotations, reflections or translations. We will
define those three affine transformations in Section 1.1.1 (rotations), Section 1.1.2
(reflections) and Section 1.2 (translations and glide-reflections), respectively.
The symmetry group of a point set is given by the symmetries of the set. In Section
1.1 we will define the cyclic and dihedral symmetry groups, which contain a finite
number of symmetries. The dihedral groups contain reflections as well as rotations,
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(a) Sketch of the floor plan of the pentagon.

(b) The yield sign is a regular triangle whereas the right of way signs shape is a
square. Thus they are easy to distinguish.

Figure 0.0.2: Examples of symmetric man-made objects.

whereas the cyclic symmetry groups only contain rotations. The different cyclic and
dihedral symmetry groups are distinguished by the number of rotations they contain.
In Section 1.2 we will investigate infinite symmetry groups. In the plane there are
two types of infinite symmetry groups, namely the frieze groups and the wallpaper
groups. The translations contained in a frieze group all have the same direction
whereas the translations in a wallpaper group are generated by two translations.
We will see in Section 1.2 that a pattern with infinite symmetry group consists
of a basic pattern which is repeated in one direction in the case of a frieze group
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and in two directions in the case of a wallpaper group. The different frieze groups
and wallpaper groups, respectively, are distinguished by the symmetries (half-turns,
reflections, glide-reflections) of the basic pattern.
A decision tree for determining the frieze group of a pattern is given in Section 1.2.

In Chapter 2 we will present different approaches which can be used to detect the
symmetry group of a two-dimensional object. In Section 2.2 we assume the object
to be represented by a gray-level image. We will discuss how the symmetry group of
the object can be detected by using string matching algorithms (Section 2.2.1), the
correlation (Section 2.2.1) as well as the discrete Fourier transform (Section 2.2.2).
We will also discuss the advantages and disadvantages of these methods. In Section
2.3 we will assume the object to be represented by a set of points, a set of geometric
objects, or a set of parametrized curves. We will present algorithms that are based on
the probabilistic approach which also is used for algorithms solving shape matching
problems (see [2], [38]). We will explain the modifications needed in order to use this
approach for detecting the symmetry group of the represented object.
All developed algorithms can be used to detect the symmetry group of the two-
dimensional object even if it contains noise.

The algorithms described in Chapter 2 can be used to detect the symmetry
group of a given input image, even if it does not contain perfect symmetry. In some
applications, it is interesting to know how close the input image is to a perfectly
symmetric image, or to find a perfect symmetric image that is a good approximation
of the given one. One application might be to fix an originally symmetric image,
where the symmetry got lost due to some preprocessing steps. Let for example the
input be the photography of some symmetric shape, where the perfect symmetry got
lost because of the position of the camera. Here it might be helpful to restore the
symmetry of the object, by finding the symmetric shape that is close to the input
picture. This problem is referred to as the ε-symmetry detection (ε-SD) problem. It
was studied by Iwanowski [18] in his PhD thesis. He was able to prove the problem
to be NP-complete in general and to be in P for the cyclic symmetry group C2 and
the dihedral symmetry group D1. In Chapter 3 we investigate the ε-SD optimization
problem and state polynomial time algorithms for many variants of this problem.
We will also improve some of the results of Iwanowski.

We will close this thesis by testing the algorithms stated in Chapter 2 and Chapter
3 and discussing the experimental results.



Chapter 1

Symmetry Groups

In this chapter we will introduce the notions of symmetry and symmetry groups . We
will start by defining the three basic affine transformations we will use throughout
this thesis. These three affine transformations are the rotation, the reflection with
respect to a reflection line, and the translation.

We will call an affine transformation a symmetry of a point set P , iff the image
of P with respect to the affine transformation is P itself.

The set of symmetries of a point set P forms a group and is called the symmetry
group of P . The symmetry group of a point set can be finite or infinite. Point sets
having an infinite symmetry group are always infinite themselves whereas point sets
having a finite symmetry group may be finite or infinite.

In the two-dimensional space there are two different kinds of finite symmetry
groups. The cyclic symmetry groups, denoted by Ck, only contain rotations whereas
the dihedral symmetry groups, denoted by Dk, contain rotations as well as reflections.
The index k ∈ N+ in both cases denotes the number of rotations in the symmetry
group.

Symmetry groups which contain translations are always infinite. A symmetry
group where the set of generating translations is finite is either a frieze group or a
wallpaper group. All translations in a frieze group are generated by one translation,
therefore all translations in a frieze group have the same direction. Wallpaper groups
contain two generating translations with different directions.

A point set in the plane having a frieze or wallpaper group as its symmetry
group consists of a basic pattern which is repeated infinitely often. The size of such
a pattern is given by the length of the generating translations. There is not only
one well defined basic pattern for each point set, but there may exist several basic
patterns. The dilatation of a basic pattern is one-dimensional in the case of frieze
groups and two-dimensional in the case of wallpaper groups.

There are seven different frieze groups and seventeen different wallpaper groups.
One distinguishes the different frieze groups and wallpaper groups, respectively, by
the symmetries of the basic pattern.

In the following sections we will state the definitions and theorems about sym-

1
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metries and symmetry groups needed in this thesis. A detailed introduction to affine
transformations, symmetries and symmetry groups in the plane as well as in R3 can
be found in the book “Transformation Geometry” of Martin [27].

We will only investigate symmetries of point sets in the plane throughout this
thesis.
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1.1 Finite Symmetry Groups

In this section we will investigate rotations and reflections and we will define the
notion of symmetric point sets with respect to those two affine transformations.
Furthermore, we will define the two types of finite symmetry groups, namely the
cyclic and the dihedral symmetry groups. We also will give examples of point sets
having cyclic and dihedral symmetry groups, respectively. Most of the definitions
and properties of symmetries and symmetry groups we will present in this section
can be found in the book of Martin [27].
Throughout this section we will use the following notations:

Notation 1.1.1. We denote the image of a point p ∈ R2 with respect to a rotation
or a reflection by p′ ∈ R2 .
The Euclidean distance between two points p, q ∈ R2 is denoted by d(p, q).

1.1.1 Rotations

We will start by defining the rotation of a given point p ∈ R2 around a rotation
center c ∈ R2 by an angle α. A rotation is an affine transformation and can therefore
be represented by a transformation matrix and a translation vector. For ease of
understanding, we will give a geometrical definition of a rotation and will later on
explain how the transformation matrix and the translation vector can be retrieved
from this definition.

Definition 1.1.2. Let p ∈ R2 and c ∈ R2 be points in the plane and let α ∈ R be
an angle. The counterclockwise (ccw) rotational image of p is the unique point p′,
such that d(p, c) = d(p′, c) and the angle in ccw direction between pc and p′c is α.

The clockwise rotation is defined analogously. An illustration of Definition 1.1.2
can be found in Figure 1.1.1.

c

p

p′

α
c p′

p

α

Figure 1.1.1: The clockwise (left) and counter clockwise rotation (right) of the point
p around c by the angle α yields p′, respectively.

The rotational image of a point p with respect to the rotation center c and angle
α can be computed as follows:
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Lemma 1.1.3. Let a point p ∈ R2, a rotation center c ∈ R2 and an angle α ∈ R be
given. The counter clockwise rotational image of p rotated around c by α is given by:

p′ = Rα(p− c) + c,

where Rα denotes the rotation matrix

Rα =

(
cosα − sinα

sinα cosα

)

The proof can be found in the book of Martin [27].
We will abbreviate the rotation as follows:

Notation 1.1.4. The transformation of rotating a point p counterclockwise around
a rotation center c by an angle α is denoted by ραc (p).

The transformation of rotating a point p clockwise around a rotation center c by
an angle α is denoted by ρ−αc (p).

Let P be a point set in the plane, then ραc (P ) = {ραc (p)|p ∈ P} denotes the point
set containing all rotational images with respect to c and α of points in P .

Using the definition and properties of rotations stated above, a point set having
rotational symmetry is defined as follows:

Definition 1.1.5. Let P ⊂ R2 be a point set in the plane. Let c ∈ R2 be a rotation
center and α ∈ R be a rotation angle. The rotation ραc is a symmetry of P iff
P = ραc (P ). We call P rotational symmetric with respect to ραc .

An important property of the set of symmetries of a point set is that they form
a group.

Lemma 1.1.6. Let P be a set of points in the plane. Let P be symmetric with respect
to the rotation ρ

2π
k
c for a rotation center c ∈ R2 and a number k ∈ N+ and let k be

maximal with this property. Let furthermore P be not symmetric with respect to any
reflection or translation.

Then the set of symmetries of P is Ck = {ρj
2π
k

c |0 ≤ j ≤ k−1}. The set Ck forms

a cyclic group with respect to composition with generator ρ
2π
k
c and is called cyclic

symmetry group of P .

For the proof we refer to Martin [27].
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Example 1.1.7. Consider the example depicted in Figure 1.1.2:

p1

p3
p2

p4

p7

p5

p6

p8

Figure 1.1.2: Example of a rotational symmetric point set with rotation center c and
rotation angle π

2 .

Figure 1.1.2 shows the point set P = {p1, . . . , p8} which has rotational symmetry
group C4. The rotation center is denoted by c and the generator of the cyclic group
is in this case π

2 . Some of these pairs are marked in Figure 1.1.2, e.g. p7 = ρ
π
2
c (p1)

and p2 = ρ
π
2
c (p4).

We see in this example that the point set P can be divided into two sub-
sets PO = {p1, p3, p5, p7} and PE = {p2, p4, p6, p8} each containing four elements.
Both sets on their own are symmetric with respect to the rotations in the set
C4 = {ρj

π
2
c |0 ≤ j ≤ 3}.

A point set |P | = n with symmetry group Ck is always the union of n
k sets of

size k where the elements of these subsets are the vertices of a regular k-gon and all
k-gons have the same rotation center. A point sets containing infinitely many points
and having symmetry group Ck is the composition of infinitely many regular k-gons
all having the same rotation center (see Figure 1.1.3).
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(a) C5-symmetric finite point set. (b) C3-symmetric infinite point set. Some sub-
sets of size three are marked with different col-
ors.

Figure 1.1.3: Examples of point sets with cyclic symmetry group.
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1.1.2 Reflections

In this section we will define and investigate reflections with respect to a reflection
line l. The reflection is an affine transformation and can therefore be represented
by a transformation matrix and a translation vector. As for the rotations, we will
first give a geometrical definition of a reflection and state lateron the transformation
matrix and the translation vector representing the reflection. Furthermore, we will
define the notion of a mirror symmetric point set and introduce the dihedral symmetry
groups Dk, which contain rotations as well as reflections.

We define a reflection as follows:

Definition 1.1.8. Let a point p ∈ R2 in the plane and a line l ⊂ R2 be given.
Then p′ ∈ R2 is the image of p with respect to the reflection given by l iff l is the
perpendicular bisector of the line segment pp′.

One can geometrically construct p′ from p and l by first constructing l⊥ as the
line through p and perpendicular to l. Let c be the intersection point of l and l⊥.
The mirror image p′ of p with respect to l is then the intersection point of l⊥ and the
boundary of the disk D, where D has center c and radius d(c, p). This construction
is illustrated in Figure 1.1.4.

l

p

p′

D

c

Figure 1.1.4: The construction of the mirror image of the point p with respect to the
reflection line l.

The transformation matrix and translation vector which define a reflection are
given by Lemma 1.1.9.
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Lemma 1.1.9. Let p ∈ R2 be a point in the plane and let l(x) = mx + c be a line
in the plane. The mirror image of p w.r.t l is given by the following transformation
matrix and translation vector:(

p′x
p′y

)
=

(
cosα − sinα

sinα cosα

)
︸ ︷︷ ︸

Rα

(
1 0

0 −1

)
︸ ︷︷ ︸

Sx

(
cosα sinα

− sinα cosα

)
︸ ︷︷ ︸

R−α

(
px

py − c

)
︸ ︷︷ ︸

t−c

+

(
0

c

)
︸︷︷ ︸
tc

where α = arctanm

Proof. A formal proof can be found by applying the affine transformation to p and
verifying that l is the perpendicular bisector of p and p′. We only give the basic
idea of the proof. The transformation matrix defining the reflection w.r.t the x-axis
is given by the matrix Sx. In order to align the reflection line l with the x-axis,
the scenery is shifted and rotated by applying the translation vector t−c and the
rotation matrix R−α. Applying the matrix Sx gives the mirror image with respect
to the x-axis which corresponds to the line l. The scenery is rotated and shifted back
by applying the inverse rotation and translation Rα and tc, respectively.

Notation 1.1.10. The reflection with respect to the reflection line l is denoted by
σl.

The product of two reflections σl1 and σl2 is either a rotation in the case where
the two lines intersect or a translation in the other case where the two lines are
parallel.

Lemma 1.1.11. Let two lines l1 ⊂ R2 and l2 ⊂ R2 be given.
The affine transformation σl2 ◦ σl1 is the rotation ρ2αc iff l1 and l2 intersect in

point c and α is the angle in counterclockwise direction between l1 and l2.
For two parallel lines l1, l2 the affine transformation σl2 ◦ σl1 is a translation in

direction perpendicular to l1 and l2 of length 2d(l1, l2), where d(l1, l2) is the distance
between l1 and l2.

For the proof we refer to the book of Martin [27].

For illustrations of Lemma 1.1.11 see Figure 1.1.5.
The composition of a rotation and a reflection is a reflection again if the reflection

line passes through the rotation center:

Lemma 1.1.12. Let a reflection σl and a rotation ραc be given. The product σl◦ραc is
a reflection σl′ , iff c lies on l. The line l′ also passes through c and the angle between
l and l′ is α

2 .

For the proof we again refer to the book of Martin [27].
For illustration of Lemma 1.1.12 see Figure 1.1.6.

A mirror symmetric point set is defined as follows:
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α

l2

l1

p′

p

c

(a) The product σl2 ◦σl1 is the rotation ρ2αc .

d

l1 l2

p p′p′′m1 m2

−→v1 −→v2

(b) The composition of two reflections
where the reflection lines are parallel is a
translation.

Figure 1.1.5: Illustration of Lemma 1.1.11.

c l

p

σl(p)

ραc (σl(p))

α
α
2

l′

Figure 1.1.6: Illustration of Lemma 1.1.12.

Definition 1.1.13. Let P ⊂ R2 be a point set in the plane and l ⊂ R2 be a line.
We call P mirror symmetric with respect to the reflection line l, iff P = σl(P ).

Lemma 1.1.14. Let P be a point set which is symmetric with respect to ρ
2π
k
c , k ∈ N

for some rotation center c ∈ R2 and with respect to σl for some reflection line l passing
through c and let k be maximal with this property. Then the set of symmetries of P
is Dk = {ρj

2π
k

c |0 ≤ j ≤ k − 1} ∪ {σlj |lj = ρ
j π
k
c (l), 0 ≤ j ≤ k − 1}.
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Dk forms a group and is called the dihedral symmetry group of P .

A proof can be found in the book of Martin [27].
The only finite symmetry groups in the plane are the cyclic and the dihedral

symmetry groups. For a proof we refer to Martin [27].

Example 1.1.15. As an example of a point set P = {p1, . . . , p12} with symmetry
group D4 see the point set depicted in Figure 1.1.7.

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11
p12

Figure 1.1.7: Example of a D4-symmetric point set. The dashed lines are the four
reflection lines.
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1.2 Infinite Symmetry Groups

In this section we will introduce the two types of infinite symmetry groups in the
plane, namely the frieze groups and the wallpaper groups. Frieze groups as well as
wallpaper groups always contain translations which are defined as follows:

Notation 1.2.1. Let a point p ∈ R2 in the plane and a vector v ∈ R2 be given. We
denote by p′ = τv(p) the image of the translation τv, iff p′ = p+ v.

Definition 1.2.2. The translation τv is a symmetry of a point set P ⊂ R2, iff
τv(P ) = P . We call P translational symmetric w.r.t τv.

Some point sets are symmetric w.r.t the product of a translation and a reflection,
although they are not symmetric w.r.t. the reflection itself:

Definition 1.2.3. Let a reflection σl and a translation τv be given. The product
γl,v = σl ◦ τv is called a glide-reflection.

1.2.1 Frieze Groups

In the case where the translations in the set of the symmetries of a point set P all
have the same direction, the symmetry group is called frieze group. There are seven
frieze groups in the plane. They are distinguished by the rotations and reflections
which are contained additionally to the translation in the symmetry group.

The only rotations and reflections that are contained in a frieze group are half-
turns and reflections where the reflection line either has the same direction as the
translation vector or is perpendicular to it. A proof of these properties can be found
in the book of Martin [27].

In the case where the symmetry group of a point set P is a frieze group, P consists
of a basic point set PB ⊂ P which is translated with respect to the translations in
the symmetry group. The length of the basic pattern is given by the length of the
generating translation of the frieze group. The symmetry group is defined by the
symmetries of PB.

The scheme depicted in Figure 1.2.1 for determining the frieze group of a point
set P is taken from the book of Martin [27].
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halfturn?

yesno

horizontal
reflection?

horizontal
reflection?

yesyesno no

vertical
reflection?

vertical
reflection?

F1
2F1

1

no yes no yes

F2
2F2F2

1

F1

glide
reflection?

no yes

F3
1

Figure 1.2.1: Scheme for determining the frieze group of a point set in the plane. The
frieze group of a point set P can be determined by the symmetries of the basic point
PB. By the terms “horizontal reflection” and “vertical reflection” we mean reflection
at a line parallel to the direction of the translation vector and reflection at a line
perpendicular to the direction translation vector, resp.

We give an example for each of the seven frieze groups in Figure 1.2.2.
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(a) Point set having frieze group F1. The symmetries are given by the translation.

(b) Point set having frieze group F 1
1 . The symmetries are given by the translation and a

reflection at a line parallel to the direction of the translation.

(c) Point set having frieze group F 2
1 . The symmetries are given by the translation

and reflections at lines perpendicular to the direction of the translation.

(d) Point set having frieze group F 3
1 . The symmetries are given by a glide-reflection.

Figure 1.2.2: Examples of the seven frieze groups.
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π

(e) Point set having frieze group F2. The symmetries are given by the translation
and a halfturn.

(f) Point set having frieze group F 1
2 . The symmetries are given by the translation,

a halfturn and the reflection at a line parallel and at lines perpendicular to the
direction of the translation .

(g) Point set having frieze group F 2
2 . The symmetries are a translation, a halfturn

and reflections at lines perpendicular to the direction of the translation.

Figure 1.2.2: Examples of the seven frieze groups (cont.).
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1.2.2 Wallpaper Groups

A pattern having a wallpaper group as its symmetry group has the property that
the dilatation of its basic pattern is two-dimensional. There are seventeen different
wallpaper groups. We will not consider wallpaper groups in detail in this thesis. We
refer to the book of Martin [27] for further reading on wallpaper groups.
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Chapter 2

Symmetry Detection

In this chapter we will develop algorithms which analyze real world images and detect
the symmetry group of the objects depicted. We will present algorithms detecting
finite as well as infinite symmetry groups.

In Section 2.2 we will explain how methods used in image processing such as the
cross-correlation and the discrete Fourier transform can be used in order to detect
the symmetry group of an image.

In Section 2.3 we will assume the image to be preprocessed in a way that the
object depicted in the image is represented by polygonal curves. To this representa-
tion we will apply probabilistic algorithms in order to detect the symmetry group of
the object. We will apply techniques known from pattern matching, which is used
to determine a transformation from a set of given transformations which maps best
the one object to the other (see [2]). One approach is to randomly choose a certain
number (dependent on the degree of freedom of the transformation) of sample points
from each object and compute the transformation mapping the one point set to the
other. A vote for this transformation is generated in transformation space. After
taking sufficiently many votes, clusters arise in transformation space. The cluster
with the largest number of votes is the one representing the transformation which
best maps the one object to the other. In Section 2.3 we will explain how this ap-
proach can be used in order to detect the symmetry group of an object represented
by a polygonal curve.

Both approaches can be used even if the input images contain noise.

17
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2.1 Related Work

The problem of determining the symmetry group of an object is well studied. There
are many algorithms solving this problem using different approaches. Some of them,
especially earlier works ([41],[6]), assume the input points to be in exact symmetric
positions.

Wolter et al. [41] present algorithms for exact symmetry detection in two and
three dimensions: In order to determine the finite symmetry group of a point set
in R2, they first sort the points in the set by their polar coordinates around the
centroid. Points with the same distance to the centroid are grouped together in a
subset. For each subset the points are represented by the difference between the
polar angle coordinate of the point and its successor. For each subset the result
is a string A =< s0, . . . , sn−1 > consisting of numbers representing the differences
between the angles. The number of rotational symmetries of a subset is the number of
positions where pattern A occurs in text AA minus one. Computing this number for
all subsets separately by using a string matching algorithm and taking the greatest
common divisor of all these numbers supplies the number of rotational symmetries
of the whole point set. In order to decide if the point set is symmetric with respect
to a reflection line, a similar algorithm is used.

In contrast, Atallah [6] concentrates on detecting symmetry axes. He also encodes
the point set in the same way as Wolter et al. [41] by a string and asks whether the
letters of the string can be shifted so that the string is a palindrome. The number of
possible palindromes generated by the shift operation then is the number of symmetry
axes.

The drawback of the algorithms of Wolter et al. [41] and Atallah [6] is that the
input has to be precise, since a point set where only one point is shifted slightly
will not be considered symmetric anymore. Thus for realistic inputs where the exact
symmetry of a real-world object might get lost by the process of transferring it into
a point set they are not viable.

Zabrodsky et al. [42] approach this problem by not considering symmetry to be
a binary feature of an object (it either has a certain symmetry or not), but as a
continuous feature. They introduce a "Symmetry Distance" (SD) which states the
amount of a certain symmetry the object has. They consider a space Ω of shapes
of a given dimension where each shape P ∈ Ω is represented by a sequence of n
points {Pi}ni=0 and define the metric d : Ω × Ω 7→ R, d(P,Q) =

∑n
i=0 ||Pi −Qi||2.

The "Symmetry Transform" (ST) of a shape P for a certain symmetry group is the
symmetric shape Q ∈ Ω closest to P w.r.t d and the "Symmetry Distance" (SD) of
P then is the distance to its ST. They use the ST and SD of a shape in order to
reconstruct the symmetry of an object which might have got lost during the process
of transferring its representation into a point set.
We will investigate a similar problem in Chapter 3: For a point set P we want to
construct a symmetric point set Q which is a good approximation of P . The distance
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measure we will consider is min
1≤i≤n

{||Pi −Qi||}.
Zabrodsky et al. [42] assume the symmetry group of symmetry transform of the

input shape to be given. However, if one wants to use this algorithm in order to
restore the symmetry of an originally symmetric object which was lost during the
process of representing it by a point set, one needs algorithms which detect the
symmetry of a point set even if its representation is distorted by noise. This setting
is a realistic one. Thus there are many algorithms detecting the symmetry group of
an object even if its representation contains noise.

One way to represent the object is by an image, e.g. as a .jpg or .png file. Those
files mostly originate either from a picture taken by a camera or are created by a
drawing program. In both cases it is likely that the original symmetries got lost
during this process, either because of the perspective of the camera or because of the
impreciseness generated while handling the drawing utility.

Detecting the symmetry of an object represented by an image belongs to the
area of image processing and thus it is not astonishing that approaches used in
image processing algorithms are also used for symmetry detection algorithms.

Matsuyama et al. [29] use the discrete Fourier transform in order to analyze the
texture given in a gray-level image. They detect the placement rule of the texture
elements. They assume that the texture results from the repetition of a basic pattern
and determine the translation vectors.

Liu and Collins [26] use the autocorrelation in order to extract meaningful build-
ing blocks from a repeated pattern. Furthermore, they use the theory of frieze and
wallpaper groups in order to find a small set of candidate motives that exhibit local
symmetry. They apply their algorithms in [25] in order to detect the wallpaper group
of a pattern even if it is only a part of the input image or if it is given by an imperfect
real-world image.

The Fourier transform and its relatives are also used to detect the finite symmetry
group of an object depicted in a real-world image. Keller and Shkolnisky [23] use the
angular correlation which is computed by using the pseudo-polar Fourier transform in
order to detect the rotational and reflectional symmetries of two-dimensional objects.

Johansson et al. [20] also determine rotational as well as reflectional symmetry
of a gray-level image. They do not apply the normalized convolution directly to
the image, but use a preprocessing step in order to extract local orientation, and
afterwards they apply normalized convolution to the orientation image where they
use rotational symmetry filters as basis functions.

Shen et al. [39] use generalized complex moments in order to detect the number of
reflection axes as well as the number of rotational symmetries of an object represented
by a gray-level image.

Derrode and Ghorbel [12] use the analytical Fourier-Mellin transform in order to
compute motion parameters between two gray-level images depicting objects with
the same shape but distinct scale and orientation. Using the same image twice as
input for the algorithm, they are able to detect symmetries of the object depicted in
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the image.
Another approach is to represent the object by a point set, a set of edges and

vertices or a set of parametrized curves.
Mitra et al. [33] assume a two- or three-dimensional object to be represented by

a set of points. For randomly chosen pairs of points they compute the reflection line
or rotation mapping these points together and vote for this affine transformation in
transformation space. Cluster of votes arise in transformation space and the cluster
with the largest number of votes corresponds to the symmetries of the object. Using
this method, the authors present algorithms for detecting symmetries of the object.
The presented algorithms are used to find local symmetries, meaning parts of the
object where the reflected or rotated image also is part of the input. The algorithms
are not used for detecting the symmetry group of the object.

In [34] this method is used to reconstruct the symmetry of an object or to "sym-
metrize" an non-symmetric object.

Imiya and Fermin [16] use a randomized voting method for testing planarity of
a two-dimensional object in R3 and detecting the motion of this object in three-
dimensional space. In [17] they use the presented algorithms in order to detect
reflectional and rotational symmetries of a polygon.
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2.2 Symmetry Detection Using the Fourier Transform

In this section we will present algorithms that analyze realistic input images given,
for example as .jpg files and detect the symmetry group of the pattern depicted
in these images. We will present algorithms detecting infinite symmetry groups as
well as finite symmetry groups. We will explain the algorithms for frieze patterns
extensively and explain later on how these methods can also be used in order to
analyze patterns having finite symmetry group.

A frieze pattern is given by an infinite number of repetitions of a basic pattern.
The symmetry group of the frieze pattern is defined by the symmetries of this basic
pattern, as explained in Section 1.2.1. The first task in order to detect the symmetry
group of a frieze pattern is therefore to determine the basic pattern. Since in real
world applications the input cannot be infinite, the input frieze pattern is a finite
part of an infinite frieze. In this section we assume that the input frieze pattern is
given by an integer number of repetitions of the basic pattern. We also assume the
basic pattern to be repeated significantly often.

One way to extract the basic pattern of the frieze is to analyze how often it is
repeated in the frieze pattern. In the following sections we will explain how the
number of repetitions of the basic pattern in the frieze pattern can be determined
by using either string matching algorithms or correlation or the discrete Fourier
transform. We will state and analyze algorithms for each method and also discuss
the advantages and disadvantages of the different approaches.

2.2.1 Analyzing Frieze Patterns Using String Matching

In string matching theory the task is to find all occurrences of a pattern P in a text
T . Here P and T are supposed to be words over some finite alphabet Σ.

We will use string matching algorithms in order to determine the number of
repetitions of the basic pattern in the input frieze pattern. The approach is similar
to the one of Wolter et al. [41]. The difference is that Wolter et al. [41] determine
the finite symmetry group of a point set, whereas we analyze objects with infinite
symmetry group which are given by an m × n gray-level pixel image. Moreover,
Wolter et al. [41] assume the input to be symmetric, whereas we allow the input to
contain noise.

Formulation as String Matching Problem

Let us assume that the input image is a gray-level image with values between 0

(black) and 255 (white). Let furthermore the image consist of m rows R1, . . . , Rm
and n columns. Thus we can define the alphabet to be Σ = {0, . . . , 255} ⊂ N. We
can also assume each row Ri of the input frieze pattern to be a text Ti ∈ Σ∗ on its
own where 1 ≤ i ≤ m.

Suppose the frieze pattern is defined by a basic pattern B of length l. We denote
the m rows of B by RB1 , . . . , RBm. Again, we interpret each row RBi , 1 ≤ i ≤ m as a
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word TBi ∈ Σ∗. Since we assume the basic pattern to be repeated an integer number
of times in the input frieze pattern, TBi can be found at n

l positions in Ti, where
1 ≤ i ≤ m. More precisely, the positions where the word TBi is placed in Ti are given
by the set {lj + 1|0 ≤ j ≤ n

l − 1}. We could determine the length li of the basic
pattern TBi by applying a string matching algorithm to the text T̃i = TiTi and the
pattern Ti. The second position where Ti occurs in T̃i gives the length of the text
TBi , see Wolter et al. [41]. The number of repetitions of the basic pattern in the
frieze pattern is then given by ki = n

li
.

The number of repetitions of the global basic patterns for all rows is given by the
greatest common divisor k of the values k1, . . . , km. The length of the global basic
pattern is given by l = n

k .
There are several algorithms solving the string matching problem. A famous one

is the one by Knuth et al. [24], which runs in time O(|T | + |P |), where |T | is the
length of the text and |P | is the length of the pattern.
A basic idea of the string matching algorithm of Knuth, Morris, and Pratt is to
compute the prefix function of the pattern. The prefix function reflects how well
the pattern matches itself. Thus we can directly use the prefix function in order to
determine the length of the basic pattern of the frieze pattern.
The prefix function of a pattern P is defined as follows (see Cormen et al. [11]):

π[q] = max{k|k < q and Pk = Pq}, 1 ≤ q ≤ |P |

where Pl denotes the prefix of P of length l and Pk = Pq means that Pk is a suffix
of Pq.

Lemma 2.2.1. Let T , |T | = n be a text representing a frieze pattern and let π be
the prefix function of T . Let B, |B| = l be the text representing a basic pattern of the
frieze pattern and let l be minimal with this property. The length of B is then given
by l = n− π[n].

Proof. T represents a frieze pattern whose basic pattern is represented by B. Thus
T = Bk, where k = n

l . Therefore Tn−l = Bk−1 = Tn = Bk and thus π[n] ≥ n− l ⇔
l ≥ n− π[n].
For l′ = n − π[n] assume l > l′. Then Tπ[n] = Tn and thus T [i] = T [i + l′], for all
1 ≤ i ≤ n − l′ and thus T would contain a basic pattern B′ of length l′, which is
a contradiction to the assumption that B represents the basic pattern of the frieze
represented by T with minimal length. Thus l ≤ n− π[n].
This proves that l = n− π[n].

Computing the prefix function for a pattern of length n takes O(n) time, thus
we can determine the length of the basic pattern of the frieze pattern represented by
T , |T | = n in time O(n).
Asymptotically the running time remains the same even if we apply the whole string
matching algorithm of Knuth, Morris, and Pratt since in our case the pattern has
length n and the text has length 2n and thus the algorithm runs in time O(n).
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The greatest common divisor of two numbers c1 and c2 can be computed in time
O(log n) by using the algorithm of Euclid where log n is the number of bits needed
to represent c1 and c2. This algorithm has a total running time O(m(n + log n)) =

O(mn) since the string matching algorithm is applied to m rows and the greatest
common divisor of m numbers, all smaller than n, is computed.

The algorithm explained above can only be applied if the input does not contain
noise and if the basic pattern is repeated an integer number of times. In that case,
the basic pattern can be found as exact copies in the frieze pattern and the algorithm
based on the string matching approach gives the correct answer. This situation is
given in artificially constructed input patterns but not in realistic inputs. We need
to adapt the algorithm in order to allow noise and distortion to be contained in the
input.

One possibility would be to add a tolerance threshold δ to the string matching
algorithm that allows two gray-level values to be considered as equal if they differ
by at most δ. This approach also fails for realistic inputs. Consider e.g. an input
image with a white background where at one position in the background there is a
black pixel. At this position the comparing method of the string matching algorithm
would not return the two pixels to be equal unless δ = 255. The problem of the
string matching approach is that the question if the pattern is found in the text is
decided locally at each pixel and not globally over the whole text.

A more convenient possibility is to compute all differences between the positions
compared and to compute their average. Thus for each position j, 1 ≤ j ≤ n where
we apply the pattern T to the text T̃ = TT we compute the value

cj =
1

n

n∑
i=1

|T [i]− T̃ [i+ j]|.

For position j we say that the pattern T is found in the text T̃ if the value cj
does not exceed the threshold δ. This is more convenient for the problem we are
considering, but the running time increases to O(n2) since we need O(n) time for
each index j and 1 ≤ j ≤ n.

Solving the String Matching Problem Using Correlation

The string matching problem can also be solved by using correlation. Correlation
is used in image processing algorithms, e.g. in order to compare two images or to
locate objects in an image. Various applications can be found in textbooks concerning
image processing and pattern recognition. A survey of image registration techniques
is given by Brown [8].

Definition 2.2.2 (Correlation). Let two vectors a = (a0, . . . , an−1) and b = (b0, . . . , bn−1)
over a field K be given. The correlation of a and b is the vector c = (c0, . . . , c2n−2),
where
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ck =

{∑k
i=0 aibn−1−k+i k < n∑n−1
i=k−n+1 aibn−1−k+i k ≥ n

In order to use correlation for algorithms solving the string matching problem
one needs to assure that the correlation value ck is high if the pattern P is found at
position k in the text T and low otherwise.

This can be achieved by using normalized cross-correlation.
Let P ⊂ Σ∗ and T ⊂ Σ∗ consist of m and n letters, respectively. Let P [i] and T [i]

denote the ith letter of P and T , respectively. The vector (d1, . . . , dn−m) is given by

dj =

∑m−1
i=0 P [i]T [i+ j]√∑m−1
i=0 (T [i+ j])2

, 1 ≤ j ≤ n−m

If the pattern is found at position j, the value dj is the maximum of all val-
ues d0, . . . , dn−m, for a proof see Rosenfeld and Kak [36]. The normalized cross-
correlation is invariant under multiplication with a constant. This means, that it
is possible, that dj is the maximum but that the pattern P is not exactly found at
position j in text T . In this case however, P can be scaled by a constant and this
modified pattern is found at position j at T . This is convenient in the case where P
and T are representing gray-level images. The fact that P is allowed to be scaled by
a constant factor only means, that the image represented by P is found in the image
represented by T , even if it is lighter or darker as T .

We can write the fraction defining dj as follows:

dj =
dnumj√
ddenj

,

where

dnumj =
m−1∑
i=0

P [i]T [i+ j] (I)

ddenj =
m−1∑
i=0

(T [i+ j])2 (II)

Defining

cnumk =

{∑k
i=0 a

num
i bnumn−k+i−1 k < n∑n−1

i=k−n+1 a
num
i bnumn−k+i−1 k ≥ n

and

cdenk =

{∑k
i=0 a

den
i bdenn−k+i−1 k < n∑n−1

i=k−n+1 a
den
i bdenn−k+i−1 k ≥ n

, where

anum = (P [0], . . . , P [m− 1], 0, . . . , 0︸ ︷︷ ︸
n

), bnum = (0, . . . , 0︸ ︷︷ ︸
m

, T [0], . . . , T [n− 1]),
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P[0] P[1] P[2] 0 0 0 0 0 0 0

0 0 0 T[0] T[1] T[2] T[3] T[4] T[5] T[6]

P[0] P[1] P[2] 0 0 0 0 0 0 0

0 0 0 T[0] T[1] T[2] T[3] T[4] T[5] T[6]

P[0] P[1] P[2] 0 0 0 0 0 0 0

0 0 0 T[0] T[1] T[2] T[3] T[4] T[5] T[6]

P[0] P[1] P[2] 0 0 0 0 0 0 0

0 0 0 T[0] T[1] T[2] T[3] T[4] T[5] T[6]

P[0] P[1] P[2] 0 0 0 0 0 0 0
0 0 0 T[0] T[1] T[2] T[3] T[4] T[5] T[6]

c2 = P [0]T [4] + P [1]T [5] + P [2]T [6] = dnum4

c3 = P [0]T [3] + P [1]T [4] + P [2]T [5] = dnum3

c4 = P [0]T [2] + P [1]T [3] + P [2]T [4] = dnum2

c5 = P [0]T [1] + P [1]T [2] + P [2]T [3] = dnum1

c6 = P [0]T [0] + P [1]T [1] + P [2]T [2] = dnum0

Figure 2.2.1: Illustration of the computation of dnumj using correlation.

aden = (1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
n

) and bden = (0, . . . , 0︸ ︷︷ ︸
m

, (T [0])2, . . . , (T [n− 1])2)

gives dnumj = cnumn−1−j and d
den
j = cdenn−1−j , f.a. j ∈ {0, . . . , n−m}.

As in the previous section we consider each row separately and apply the string
matching algorithm which uses correlation to the text T̃i = TiTi and the pattern Ti.

In the case where the pattern T [0] . . . T [n] is found in the text T̃ [0] . . . T̃ [2n]

at position j the value of dj is dj =
√∑n

t=1 (T̃ [t+ j])2 by definition of d. Since
we assume the input image to contain noise, we allow the value dj to differ from√∑n

t=1 (T̃ [t+ j])2 by some small value δ and still consider the pattern T to be
found in T̃ at position j.

For the text in each row we are able to compute the number ki, 1 ≤ i ≤ m, which
denotes the number of appearances of Ti in T̃i, by computing the correlation of the
two vectors as explained above. Again, the length l of the basic pattern is given by
l = n

k , where k is the greatest common divisor of k1, . . . , km.
The running time of the algorithm using correlation is given by the time needed

to compute m times the correlation of two vectors of size n and the running time
needed to compute the greatest common divisor of the numbers k1, . . . , km. As stated
in Section 2.2.1 computing the greatest common divisor of the numbers k1, . . . , km
takes O(m log n) time. Computing the correlation of two vectors of size n takes time
O(n log n) by using the fast Fourier transform. This is due to the fact that the cor-
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relation correlates to the convolution which correlates to the problem of multiplying
two polynomials. The product of two polynomials of degree n can be computed
in time O(n log n) by using the fast Fourier transform (see [11]). Determining the
number of repetitions of the basic pattern in a frieze pattern using correlation can
be done in O(mn log n) time.

2.2.2 The DFT and Infinite Symmetry Groups

The Fourier transform (FT) is an operation which transforms a function of time into
a function of frequency.
The Fourier transform has applications in signal processing where a signal is de-
composed into its frequencies. The discrete Fourier transform (DFT) is the discrete
equivalent to the Fourier transform. In signal processing it is used whenever the
signal is given by a number of discrete values rather than a continuous function.
The DFT is also used in many algebraic algorithms as e.g. algorithms computing
the product of two large numbers or two polynomials. A survey of the DFT and its
application in algebraic algorithms is given by Mateer [28].
In image processing, the image can be considered to be a discrete signal. The DFT
can be used in order to analyze the structure of this image. The DFT decomposes
the image into its “frequencies”. Thus the result of the DFT applied to an image
provides information about the periodic structure of the image (see [29], [23]).

In this section we will explain how the discrete Fourier transform can be used in
order to extract the basic pattern of a frieze pattern.

Prior to explaining the algorithm we take a closer look at the DFT:

Definition 2.2.3. Let a vector a = (a0, . . . , an−1) ∈ Cn be given. The DFT of a is
the vector y = (y0, . . . , yn−1) ∈ Cn, where

yk =

n−1∑
j=0

aje
i2πjk
n

The fast Fourier transform (FFT) computes the DFT of a vector of length n

in time O(n log n) (see [10]). Similar to the correlation of two vectors, the com-
plex number yk indicates whether the two vectors a = (a0, . . . , an−1) and ek =

(e0, e
i2πk
n , . . . , e

i2π(n−1)k
n ) are similar or not. The magnitude of yk is large if both

vectors are equal and small if they differ at many positions. The values of the vector
ek, 0 ≤ k ≤ n− 1 are derived from the periodic function eixk, x ∈ R, with period 2π

k

which is sampled at n equidistant angles 2πj
n , 1 ≤ j ≤ n− 1. Thus in the case where

the magnitude of the value yk is large, the input vector is similar to a function with
period 2π

k and therefore we assume to find a vector of length n
k in the input vector

which is repeated k times.
As in the previous sections, we consider the input frieze pattern to be represented

by a gray-level pixel image. For the ith row Ri we consider the values to be given
by the vector Ti. As described above, we expect to find a basic pattern Bi of length
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n
k repeated k times in Ti if the magnitude of the value yk is large or, to be more
precise, the largest of all values y0, . . . , yn−1.
The basic idea of the algorithm can be described as follows:

1. Compute the discrete Fourier transform by using FFT of the vector Ti.

2. Find the entry yk in the vector y = (y0, . . . , yn−1) with the largest magnitude.

3. The length of the basic pattern is n
k and it is repeated k times.

4. The basic pattern is given by the first n
k columns.

In order to determine the number of repetitions of the basic pattern for the whole
input frieze we first compute the number of repetitions of the basic pattern for each
row separately and then compute the greatest common divisor of all these numbers.

Algorithm 2.2.1 states the procedure for determining the number of repetitions
of the basic pattern in an input frieze pattern by directly using the discrete Fourier
transform.

Algorithm 2.2.1 Computing the number of repetitions of the basic pattern of a
frieze pattern using the DFT.

ExtractPatternFourier(I)
// The two-dimensional array representing the image is denoted by I. I[i] repre-
sents the ith row of the image.
for i = 1 to I.NumberOfRows() do
C[i]= FFT(I[i]);
M [i] = Magnitudes(C[i]);

end for
//For each row M [i], 1 ≤ i ≤ m compute the index where M [i][j], 1 ≤ j ≤ n is
maximal. The array MVR contains that index for each row.
for i = 1 to I.NumberOfRows() do

maximum = M [i][1];
for j = 2 to I.NumberOfColumns() do
if maximum < M [i][j] then

maximum := M [i][j];
MVR[i] = j;

end if
end for

end for
//Compute the greatest common divisor of the values in MVR.
gcd = GCD(MVR);
return gcd;
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Computing the discrete Fourier transform ofm vectors of size n takes O(mn log n)

time. The greatest common divisor of m numbers smaller than n can be computed
in time O(m log n). The overall running time of Algorithm 2.2.1 is O(mn log n).

Remark 2.2.4. For real world inputs, it depends on the amount of noise contained in
the input if the algorithm extracts the correct basic pattern. The Fourier transform
is a quite fault-tolerant transform, but still there are input images where we need to
be careful by interpreting the results or even where the approach fails.

In the remaining part of this section we will give an example in order to visualize
how Algorithm 2.2.1 works.

Example 2.2.5. We consider the finite part of a frieze pattern given in Figure 2.2.2
(a).

(a) Example of a frieze. The basic
pattern is repeated six times.

(b) The extracted basic pattern.

Figure 2.2.2: The input pattern and the extracted basic pattern.

The basic pattern is an arrow (see Figure 2.2.2 (b)) which is repeated six times.
The magnitudes of the value computed by the fast Fourier transform applied to each
row separately is depicted in Figure 2.2.3 (a). Figure 2.2.3(b) shows a close-up of
the magnitudes of Figure 2.2.3(a). The gray-values represent the magnitudes of the
complex numbers computed by the fast Fourier transform. The larger the magnitude
the lighter is the pixel. Dominating frequencies are the ones that are represented by
light gray pixels or even white ones. When taking a close look at the close-up depicted
in Figure 2.2.3(b) we see that for many rows the largest number of light pixels can
be found in the sixth column (highlighted in Figure 2.2.3). Thus we can conclude
that for these rows the length of the basic pattern is n

6 .
Applying the procedure described above we would compute the length of the base

pattern for each row separately and afterwards compute the greatest common divisor
of all these numbers. The input frieze in this example has rows which completely
consist of white pixels. For these rows, the highest value of the Fourier transform is
achieved at y0 since the input function is constant. In fact for each row the magnitude
of the value y0 is high. This is due to the fact that the input is finite.

Getting back to the example, we see that for all rows where the index of the value
with highest magnitude is greater than two, this index is equal to six and therefore
the basic pattern is indeed repeated six times in the frieze. Thus we can extract the
basic pattern from the frieze pattern by taking the first n

6 pixels of each row.
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(a) The image of all the magnitudes.

(b) A close-up and a part of the image of
the magnitudes.

Figure 2.2.3: The image of the magnitudes of the discrete Fourier transform applied
to the rows of the image given in Figure 2.2.2.
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2.2.3 The DFT and Finite Symmetry Groups

In this section we will explain how to detect the finite symmetry group of a given
input figure by using the procedures explained above. Basically, we will explain how
to transform the input figure which depicts a shape with symmetry group Ck or Dk

into a frieze pattern. Additionally, we will explain how the algorithms detecting the
length of the basic pattern can be used in order to find the symmetry group of the
input shape. Again we assume the input shape not to be perfectly symmetric but
possibly to be distorted by noise. In the previous sections we assumed the input to
be given in a reasonable way. We will assume the same for the inputs we consider in
this section. First, we assume the input to be given as a gray-level pixel image and
since we search for cyclic or dihedral symmetry groups, we assume the input to be
quadratic. The number of rows and the number of columns is denoted by n. Second,
we assume the rotation center to be in the middle of the picture, more precisely
around the pixel in row n

2 and column n
2 .

Cyclic Symmetry Groups

Assume we are given an input shape which has cyclic symmetry group Ck. Rotating
the shape around its rotation center c by a multiple of 2π

k yields the same shape
again.
We can sweep the image by a ray through c that is rotated around c. Let Si be
the square pixels which are intersected by the ray after the rotation by the angle iα.
The value of α will be determined later. Since the shape has symmetry group Ck,
Si = Si+ 2π

k
.

We can interpret each Si as a column of a gray-level pixel image. The result is a
frieze pattern where the basic pattern is repeated k times.
We can solve the problem of finding the rotational symmetry group of an input shape
by applying algorithms determining the number of repetitions of a basic pattern in
a frieze pattern.

Example 2.2.6. Consider the example depicted in Figure 2.2.4. The scanning al-
gorithm explained above results in the frieze pattern depicted in Figure 2.2.5.

It might be the case that the input shape is the composition of several shapes
with different cyclic symmetry groups. Considering the corresponding frieze pattern,
the length of the global basic pattern is given by the greatest common divisor of the
lengths of the basic patterns defined by the rows of the frieze pattern. Computing
the number of repetitions of the basic pattern supplies the cyclic symmetry group
number of the input shape.

Detecting the number of rotational symmetries of an input shape can be done
by Algorithm 2.2.2. We assume the image to be given as a gray-level image of size
n× n and the gray values to be stored in an n× n array I.
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Figure 2.2.4: Example of an input shape for finite symmetry detection.

Figure 2.2.5: Frieze pattern generated from the input shape in Figure 2.2.4.

Dihedral Symmetry Groups

After generating a frieze pattern from the input shape and determining the number
of repetitions of the basic pattern, we know the number of rotational symmetries in
the symmetry group. In order to decide if the symmetry group additionally contains
reflections, we need to investigate the basic pattern. In the case where we started
the cyclic scan at an axis of reflection, the constructed basic pattern itself contains
an axis of reflection. Since we neither know if the shape contains an axis of reflection
nor where it is located, it is not likely that we start the scan accidentally at an axis
of reflection.

Example 2.2.7. An example of a D7-symmetric figure is given in Figure 2.2.6.
Applying the scanning algorithm explained above gives the frieze pattern depicted
in Figure 2.2.7.

The basic pattern of the generated frieze pattern is depicted in Figure 2.2.8.
Observe that the basic pattern depicted in Figure 2.2.8 does not contain an axis

of symmetry although the original input shape depicted in Figure 2.2.6 does contain
an axis of symmetry. Nevertheless we can use the basic pattern in order to decide
if the original input shape contains mirror symmetry. We only need to consider
the basic pattern repeated twice (see Figure 2.2.9 (a)) and the reverse of the basic
pattern (see Figure 2.2.9 (b)). We then apply a string matching algorithm in order
to determine if the reverse of the basic pattern is found in the doubled basic pattern.
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Algorithm 2.2.2 Detecting the number of rotational symmetries of an input shape.

RotationalSymmetries(I)
Generate a frieze pattern from I by using a rotational scan.
Use Algorithm 2.2.1 in order to determine the number of repetitions k of the basic
pattern.
return k;

Figure 2.2.6: Example of an input shape for finite symmetry detection.

In this case the original input shape is symmetric with respect to a reflection line
and thus has symmetry group Dk, in the other case it has symmetry group Ck.

Algorithm 2.2.3 detects the finite symmetry group of a given input shape. It first
applies Algorithm 2.2.2 to the input in order to determine the number k of rotational
symmetries in the symmetry group. Afterwards it uses the above described algorithm
in order to decide whether the input shape has cyclic symmetry group Ck or dihedral
symmetry group Dk.
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Figure 2.2.7: Frieze pattern generated from the input shape in Figure 2.2.6.

Figure 2.2.8: Basic pattern of the frieze in Figure 2.2.7.

(a) The doubled basic pattern. (b) The re-
versed basic
pattern

(c) The reversed basic pattern is
found in the doubled basic pat-
tern.

Figure 2.2.9: Deciding whether the original input shape is symmetric with respect
to a reflection line.

Algorithm 2.2.3 Detecting the finite symmetry group of an input shape.

FiniteSymmetryGroup(I)
Generate a frieze pattern from I by using a rotational scan.
Use Algorithm 2.2.1 in order to determine the number of repetitions k of the basic
pattern.
Extract basic pattern B;
Generate reversed basic pattern BR;
Generate doubled basic pattern B2;
if BR is found in B2 then
return Dk;

else
return Ck;

end if
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2.3 The Probabilistic Approach

In this section we will explain how probabilistic methods can be used in order to
determine the symmetry group of a given shape.
The algorithms we will develop in this section work on a finite number of simple
objects such as straight lines or smooth curves. Thus we need the input shape to be
represented in such a way.
Real world objects are often given by image files. Following the arguments given
in the last section, the original symmetry of the object might have got lost during
the process of representing it by an image file. In order to transform an image file
representing the original input shape into a representation by a set of simple objects,
image processing techniques such as edge detection are needed. It is most likely that
even if the original symmetry of the object was maintained while representing it by
an image file, it will get lost due to the image processing techniques used to represent
it as a finite set of simple objects.
The algorithms we will develop in this section are robust against noise contained
in the input. Thus they can be used to determine the symmetry group of a real
world input even if the original symmetry of the shape got lost during the process of
representing it as a finite set of simple objects.
The probabilistic approach we will use is also used and well investigated in shape
matching theory. In shape matching theory one considers the question how alike two
given shapes are under a set of transformations like similarity maps, shear transfor-
mations or general affine maps. Shape matching algorithms using the probabilistic
approach were described and analyzed by Scharf [38]. The basic idea is to randomly
choose a certain number (depending on the degree of freedom of the transformation)
of points from each set and compute the corresponding transformation between these
two points. In transformation space, a vote for this particular transformation is gen-
erated. After choosing sufficiently many random points, clusters of votes will arise in
transformation space. The cluster with the largest number of votes will provide with
high probability a transformation which is close to the best transformation between
the two input sets.

We will use the probabilistic approach in order to detect the finite symmetry
group of a given input shape. For the symmetry detection problem, only one input
shape is given and the question is how alike it is to itself under rotation and re-
flection. We will therefore choose randomly a pair of points from the point set and
compute the rotation around a given rotation center or reflection mapping one point
to the other. As in the algorithms used in shape matching theory, clusters will arise
in transformation space. Each cluster represents a rotation or reflection, respectively,
that maps a large number of point pairs together. An input shape having symme-
try group Ck, even if it is not perfectly symmetric but contains noise, will generate
clusters in transformation space with a large number of votes at the rotations with
rotation angles 2π

k ,
4π
k , . . . ,

(k−1)2π
k . The problem of finding the symmetry group can

therefore be solved by counting the number of clusters with a large number of votes.
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This number is the order of the symmetry group. In order to decide if the shape has
a cyclic or a dihedral symmetry group, one needs to check the clusters representing
the reflections computed between randomly chosen pairs of points. We will give all
the details in the following sections.
Since clustering is a crucial point in probabilistic algorithms, we will start by intro-
ducing and explaining the notion of clustering algorithms. In Section 2.3.1, we will
state the probabilistic algorithm for detecting rotational symmetry. Afterwards, we
will show that the order of the symmetry group can indeed be computed out of the
clusters with a large number of votes and how this can be done. In Section 2.3.2 we
will give all the details of the algorithm detecting reflection lines in a point set using
the probabilistic approach.

Clustering

After generating sufficiently many votes, one needs to find clusters arising in trans-
formation space. The topic of clustering a set of objects is well studied and is used
whenever a large set of data is supposed to be segmented into sets of similar objects.
Applications can be found, for example, in computer graphics or pattern matching.
One part of computer graphics is the segmentation of images into parts with the
same property, for example with the same color. In pattern matching, one wants to
group patterns with similar shapes into a cluster in order to distinguish them from
those patterns that have a different appearance. A good and detailed discussion of
clustering algorithms and their applications is given by Jain et al. [19].
As there are many different applications for clustering, there are many different
approaches for clustering algorithms. The main difference between the different ap-
proaches is whether the algorithm works top-down or bottom-up. In the first case,
the whole set is considered as one cluster at the beginning and is divided into smaller
sets in each iteration step. This is done until a predefined number of clusters is ob-
tained or a given threshold is passed. In contrast, clustering algorithms working
bottom-up first assume each single object to be a cluster by itself and join two or
more clusters to one larger cluster in each step. When using a bottom-up approach,
the desired number of clusters or a threshold must be given in order to terminate
the process before all clusters are united in one large cluster containing all objects.
The objects are modeled as points in a d-dimensional vector space where d is the
number of features of the object. In order to compare two objects and compute their
alikeness, a distance measure on the vector space needs to be given.
We will explain the concrete implementation of the clustering algorithms used for
the rotational and reflectional symmetry detection in Sections 2.3.1 and 2.3.2, re-
spectively.
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2.3.1 Rotational Symmetry

In this section, we will explain how the cyclic symmetry group of a given input shape
can be determined by using the probabilistic approach. As indicated above, the basic
idea is to choose two points randomly and compute the rotation mapping these two
points together. Unfortunately, there is not only one well-defined rotation with this
property, but infinitely many. This is the case since for two given points p1 and p2
there is one rotation mapping p1 to p2 for each rotation angle between 0 and 2π. The
rotation centers differ for each angle, but all rotation centers lie on the perpendicular
bisector of p1 and p2, see Figure 2.3.1.

p1

p2

Figure 2.3.1: For two points p1 and p2, there exists a rotation mapping p1 to p2 for
each angle in [0, 2π]. All rotation centers lie on the perpendicular bisector of p1, p2.

Since we need one well-defined rotation for each pair of points, we will fix a
rotation center and compute the unique rotation mapping p1 to p2 with respect to
the chosen rotation center. We will use the center of mass of the input shape as
the rotation center, since it can be computed easily from the input set and it is a
good approximation of the real rotation center of the input shape, as we will see in
Chapter 3.

The general idea of the algorithm detecting the cyclic group of a given point set
by using probabilistic methods is stated in Algorithm 2.3.1.

Algorithm 2.3.1 Probabilistic algorithm for cyclic symmetry group detection.

DetectRotationalSymmetryGroup(Shape S)
Compute the center of mass of S.
repeat
Choose two points pi and pj from the input shape S.
Compute the rotation αi,j mapping pi to pj w.r.t. the center of mass.
Vote for αij in transformation space.

until enough samples taken
Cluster the votes in transformation space.
Compute symmetry group from the clusters with large number of votes
return Computed symmetry group;

We will give the details of the algorithm in the following part of this section.
For some statements in the algorithm we will need to distinguish between different
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variants of the problem in order to give the concrete answer. For example, the way
of randomly choosing two points pi and pj depends on the way how the input shape
is given. Also, the number of random sample pairs of points needed depends on
the given shape. If the shape is given by a finite set of points, it may not even be
necessary to choose the pairs randomly, but one could simply compute all rotations
defined by all possible pairs of points. We will investigate the possible variants of the
problem and how to adopt the algorithm later on in this section. We will start by
explaining how to randomly choose pairs of points, depending on the way the shape
is represented.

Input Shape is Represented by a Finite Set of Points

First, we will consider the case where the input shape is given by a finite set of points.
As stated in Algorithm 2.3.1 we use the center of mass as the rotation center. For
two arbitrary points, however, the center of mass will not be the center of a rotation
mapping the two points together since the distances between the two points and the
center of mass may not be the same (see Figure 2.3.2).

(a) A pair of points al-
lowing the computation
of a rotation.

(b) No appropriate rota-
tion can be computed.

Figure 2.3.2: A rotation can only be computed if the distances to the rotation center
are nearly the same.

For this reason we alter the process of randomly choosing two points. For a given
value δ, we partition the point set into subsets Si = {p ∈ S|(i− 1)δ ≤ d(p, c) ≤ iδ}
where c is the center of mass and d(p, c) denotes the Euclidean distance between p
and c. We divide the point set into subsets where the points of Si lie in an annulus
with width δ and distance (i− 1)δ to the center of mass (see Figure 2.3.3).

We want to choose valid pairs of points, where both points lie in the same sub-
set and we want the distribution to be uniform. Let m be the number of subsets
S1, . . . ,Sm. Consider the interval [0,

∑m
j=1 |Sj |2]. By choosing a ∈ [0,

∑m
j=1 |Sj |2]

randomly, we get a subset Si, where
∑i−1

j=1 |Sj |2 < a ≤ ∑i
j=1 |Sj |2. Thus the prob-

ability of choosing a certain subset Si is |Si|2∑m
j=1 |Sj |2

. from the chosen subset Si we
choose two points uniformly at random. The property for such a pair to be chosen
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Figure 2.3.3: Point set and its partition using annuli of width δ

is therefore |Si|2∑m
j=1 |Sj |2

1
|Si|2 = 1∑m

j=1 |Sj |2
.

Thus by applying the above described procedure, we choose a valid pair of points
uniformly at random from the

∑m
j=1 |Sj |2 valid pairs.

The number of subsets can be computed by δ and the maximum distance between
the center of mass and a point in P . Algorithm 2.3.2 states how to choose two random
points, so that their distance to the center of mass differs by at most a small value
δ.

Algorithm 2.3.2 Choosing two random points of a shape represented by a finite
set of points.

ChooseRandomPoints(P = {p1, . . . , pn}, δ)
c = 1

n

∑n
i=1 pi;

d = max{d(c, p)|p ∈ P};
m = d

δ ;
for i = 1 to m do
Si = {p ∈ P |(i− 1)δ ≤ d(c, p) ≤ iδ};

end for
Choose a random value a ∈ [0, . . . ,

∑m
j=0 |Sj |2];

i = 1;
sum = |S1|2
while a > sum do
i = i+ 1;
sum = sum +|Si|2;

end while
Choose p1 and p2 randomly from Si;
return (p1, p2);
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Input Shape is Represented by a Finite Set of Smooth Curves

In contrast to the case where the input shape is given by a finite set of points, we will
now consider inputs consisting of infinitely many points. We assume that the shape
is represented by a parametrization of a curve C. The curve is allowed to be split up
into a finite set C of n segments of smooth curves such as straight lines, circular arcs
etc. The shape does not need to be connected. In the case where the shape itself or
parts of it enclose a region, we only consider points on the boundary of that region.
For examples see Figure 2.3.4.

(a) A C4-symmetric shape con-
sisting of circular arcs and splines.

(b) A C4-symmetric shape consist-
ing of straight lines.

Figure 2.3.4: Two examples of shapes given by a finite number of segments of smooth
curves.

In the experiments we will do later on in order to evaluate the presented algo-
rithms, the input shape will be represented by a set L = {l1, . . . , ln} of n straight
line segments. Let the straight line segment li be defined by li = piqi, thus li =

{λpi + (1 − λ)qi}|0 ≤ λ ≤ 1}. The set L of straight line segments can be repre-
sented by a parameterized curve C : [0, 1] 7→ R2 where for each straight line segment
li ∈ L, 1 ≤ i ≤ n we define a parameterized curve Ci : [ai−1, ai] 7→ R2 where

ai =
∑i
j=1 |lj |∑n
j=1 |lj |

and

Ci(λ) =

(
λ− ai−1
ai − ai−1

)
pi +

(
1− λ− ai−1

ai − ai−1

)
qi, λ ∈ [ai−1, ai].

The parameterized curve C : [0, 1] 7→ R2 is then defined by:

C(λ) = Ci(λ), for λ ∈ [ai−1, ai].

By using this parameterization we can choose a point uniformly at random from
the set of straight line segments by choosing a value λ ∈ [0, 1] uniformly at random.
The randomly chosen point is then given by C(λ).
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In the case where the input shape was represented by a finite number of points,
we used the center of mass as rotation center. For an input shape represented by an
infinite number of points, we will compute the center of mass of all the points on the
curve C.

Observation 2.3.1. Let a set L = {l1, . . . , ln} of straight line segments be given,
where li = piqi, 1 ≤ i ≤ n. The center of mass of all points on the straight line
segments in the set L is given by:∑n

i=1
pi+qi

2 d (pi, qi)∑n
i=1 d (pi, qi)

.

For a shape represented by a finite set of straight line segments, the process of
randomly choosing two points is given in Algorithm 2.3.3, where pi and qi denote
the endpoints of the line segment li, f.a. 1 ≤ i ≤ n.
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Algorithm 2.3.3 Choosing two random points of a shape represented by a finite
set of straight line segments.

ChooseRandomPoints(L = {l1, . . . , ln})
d =

∑n
i=1 d(pi, qi);

c = 1
d

∑n
i=1

(pi+qi)d(pi,qi)
2 ;

Choose a value λ ∈ [0, 1] uniformly at random.
//Determine the line segment which is given by the value of λ. Find index i so
that ai−1 ≤ λ < ai
i = 1;
//preLength represents ai−1 · totalLength
preLength = 0;
//length represents ai · totalLength
length = |l1|;
totalLength =

∑n
j=1 |lj |;

while λ > length
totalLength do

i = i+ 1;
preLength = length;
length = length +|li|;

end while
//λ ∈ [ai−1, ai] needs to be true.
λ = λ− preLength;
//Compute the coordinates of the randomly chosen point p1.
p1 =

(
λ−preLength

length− preLength

)
pi +

(
1− λ−preLength

length− preLength

)
qi;

Compute the disk D = (r, c) where r = d(p1, c);
//Compute P as the set of all points of the intersection of the input shape with the
disk D.
P = {λpi + (1− λ)qi|λ ∈ [0, 1] ∧ i ∈ {1, . . . , n} ∧ d(p, c) = r};
Choose random point p2 ∈ P ;
return (p1, p2);
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Computing the Rotation Angle

The two procedures explained above assure the two randomly chosen points to have
approximately the same distance to the center of mass. In fact, in the case of a shape
represented by an infinite number of points, the two points do have exactly the same
distance to the rotation center c, which is assured by Algorithm 2.3.3. The angle
of the rotation mapping these two points together with respect to a given rotation
center can be computed as follows:

Observation 2.3.2. For two given points p1 and p2 and a rotation center c, the
angle α between the two line segments p1c and p2c is given by

α = arccos

(
d(p1, c)

2 + d(p2, c)
2 − d(p1, p2)

2

2d(p1, c)d(p2, c)

)
Applying the above arguments, we derive a more concrete version of Algorithm

2.3.1 which is stated in Algorithm 2.3.4. We will no longer distinguish between the
different representations of the shape, but use a procedure corresponding to the rep-
resentation in order to randomly choose two points of the shape with approximately
the same distance to the center of mass.

Algorithm 2.3.4 Probabilistic algorithm for rotational symmetry group detection

DetectRotationalSymmetryGroup(Shape S, δ)
c :=CenterOfMass(S);
repeat
Choose two random points p1, p2 using Algorithm 2.3.2 or Algorithm 2.3.3;
α := arccos

(
d(p1,c)+d(p2,c)−d(p1,p2)

2d(p1,c)d(p2,c)

)
;

Vote for α in transformation space;
until enough samples taken.
Cluster the votes in transformation space;
Compute symmetry group from the clusters with large number of votes;
return Computed symmetry group;
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Transformation Space and Clustering

In the case of rotational symmetry group detection, the transformation space is the
one dimensional interval [0, 2π] since we vote for angles between 0 and 2π. Prior to
stating the clustering algorithm we use for clustering the rotation angles, we will ex-
plain why it is possible to compute the cyclic symmetry group from the cluster. What
needs to be proven is that the angles representing the cluster with the largest number
of votes are indeed the rotation angles of a cyclic symmetry group. So, for an input
set having symmetry group Ck, we need to show that the angles 0, 2πk ,

4π
k , . . . ,

(k−1)2π
k

represent the k clusters with largest number of votes.
Suppose for a moment that the input point set S yields perfect symmetry. Then
S can be decomposed into a set of regular k-gons all having the same rotation cen-
ter. The angle computed by two points of the same regular k-gon is in the set
{2πik |0 ≤ i ≤ k − 1}. There may also be angles computed that are not in this set,
since it is possible for two regular k-gons to have the same distance to the center of
mass. In that case two points not belonging to the same k-gon might be chosen. The
angle between the corresponding line segments might be any angle in the interval
[0, 2π]. However, after taking sufficiently many sample points, the majority of votes
will be at the angles {2πik |0 ≤ i ≤ k− 1}. We will prove this by the following lemma
where we assume the point set to be finite.

Lemma 2.3.3. Let P , |P | = n = mk, m, k ∈ N be a finite point set with symmetry
group Ck. Consider the rotation angles between all pairs of points having the same
distance to the center of mass. Then each angle of the set {2πik |0 ≤ i ≤ k− 1} arises
n times. Each angle in [0, 2π] \ {2πik |0 ≤ i ≤ k − 1} arises at most (n− k) times.

Proof. We start by proving the angle 2πi
k to be computed n times. Since P has

symmetry group Ck, rotating an arbitrary point p ∈ P around the center of mass
c by 2πi

k results in another point in P . Since P contains n points, this angle is
computed n times. This is true for each angle 2πi

k , 0 ≤ i ≤ k − 1.
Since we assume P to be Ck-symmetric, there exists a partition of P into m regular
k-gons Q1, . . . , Qm which all have the same rotation center c, which is the center of
mass of P . Let Q = {Q1, . . . , Qm} denote the set of these regular k-gons. The only
case where two points are considered that do not belong to the same regular k-gon
arises when the vertices of at least two regular k-gons, Qi and Qj have the same
distance to the center of mass.
Suppose q(i,1) = ραc (q(j,1)) for two vertices q(i,1) and q(j,1) of Qi and Qj respectively.
We can assume that α < 2π

k , otherwise we can renumber the vertices of Qi and Qj .
In the case where q(i,1) = ραc (q(j,1)) this is also true for all the other vertices of the
two regular k-gons, so q(i,t) = ραc (q(j,t)) f.a. 1 ≤ t ≤ k. Thus the angle α occurs k
times. The same is true for the angles {α+ 2πi

k |0 ≤ i ≤ k − 1}.
In the case where there are l regular k-gons Q1, . . . , Ql ∈ Q so that there exist l
regular k-gons Q′1, . . . , Q′l ∈ Q so that Qi = ραc (Q′i) there are overall l ·k votes for the
angle α. Since l · k = n ⇔ l = n

k , there are n votes for the angle α iff for all points
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q ∈ P there is a point q′ ∈ P , so that q = ραc (q′). In this case, P has symmetry
group 2π

α > k since α < 2π
k .

Thus l ≤ m− 1 and therefore α arises at most lk ≤ (m− 1)k =
(
n
k − 1

)
k = (n− k)

times.

In the proof for the perfectly symmetric case, we divided the computed angles into
two sets, namely A1 = { i2πk |0 ≤ i ≤ k − 1} and A2 = [0, 2π] \A1. When considering
not perfectly symmetric point sets, the computed angles will not be in the sets A1 or
A2, but in the union of the intervals

⋃
α∈A1

([α− ε, α+ ε]) or
⋃
α∈A2

([α− ε, α+ ε])

for some small ε. This is due to the fact that the input set may be perturbed.
Therefore, two computed angles that would be the same in the perfect symmetric
case differ in the case where noise is added by at most some value ε. The counting
argument, however, as given in Lemma 2.3.3 stays the same.

In a setting where the input sets are perfectly symmetric, no clustering would be
necessary. The next step after computing the rotation angles would be to compute
the symmetry group from the angles with largest number of votes. For real world
inputs, however, the computed angles are distributed around the angles belonging to
the regular k-gon. The clustering algorithm in our approach is used to bundle those
angles together that actually represent the same angle, but differ slightly due to the
noise in the input data. However, for an input set containing a tenable amount of
noise, we expect the votes representing the same rotation angle to lie close to that
angle.

A convenient clustering algorithm to solve this problem is a bottom-up approach.
We use a hierarchical clustering algorithm as described by Johnson [21]. In this ap-
proach, a distance measure is given for the objects to be clustered. In the first step,
each element is seen as a cluster for itself. The distance between each pair of objects
is computed. The two clusters with the minimum distance are joined to one cluster
and all distances between this new cluster and all the remaining clusters are com-
puted. This procedure is iterated until the minimum distance between two clusters
exceeds a given threshold.
The transformation space we need to consider in the application of detecting rota-
tional symmetry is the one dimensional interval [0, 2π].
We start by sorting the votes representing the computed rotation angles in increasing
order.

Before we start to cluster the votes representing the computed rotation angles, we
can think of them as points on the line segment representing the interval [0, 2π]. For
the clustering algorithm we always merge the two clusters with minimum distance,
thus we only need to compute the distances between two consecutive clusters. The
distance of two clusters is defined as the difference between the average value of the
elements in the clusters. We first search for the minimum distance value between two
clusters. If that value is smaller than a given threshold, we unite these two clusters.
We only need to recompute the distance to the clusters to the left and to the right
of the new cluster. We iterate this procedure until all distances between clusters are
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greater than the given threshold.
We first give the notations used in the clustering algorithm and afterwards we

state the algorithm itself:

Notation 2.3.4. The ith cluster is denoted by Ci and for each cluster we store the
following values:

Representative: The representing angle is denoted by αi.

Number of elements: The number of angles in the cluster is given by |Ci|.

Distance: The distance to the next cluster is given by di, where di := αi+1−αi.

Note that we need to compute the distances between the representing angles in a
circular fashion, since an angle of 2π − ε for a small ε is close to 0. We therefore
compute the distance dn = 2π + α1 − αn.

For a cluster Ci containing the angles αi1 , . . . , αi|Ci| we use the arithmetic mean

as the representing angle αi. Therefore, we compute this angle as αi = 1
|Ci|
∑|Ci|

j=1 αij .
In the case where we merge two clusters Ci and Cj we can compute the new repre-
sentative of the cluster Ci,j = Ci ∪ Cj by using the representatives and numbers of
elements of Ci and Cj .

Observation 2.3.5. Let two clusters Ci and Cj be given. After merging the two
clusters, the new representative is given by

αi,j =
1

|Ci|+ |Cj |
(|Ci|αi + |Cj |αj)

and can be computed in constant time.

Merging two neighboring clusters Ci and Ci+1, results in a new cluster which
we denote by C ′i. The two former clusters are deleted from the set of clusters and
replaced by the new cluster C ′i. We only need to update the two distance values
defined by the cluster Ci−1 and Ci+2. This can be done by computing d′i−1 = α′i−αi−1
and d′i = αi+1−α′i, where α′i is the representative of the new cluster C ′i as computed
in Observation 2.3.5.
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Algorithm 2.3.5 Clustering algorithm

Cluster({α1 . . . αn})
//Initialize the clusters:
for i := 1 to n do
//Each angle itself forms a cluster.
Ci.Representative = αi;
//Compute the distance to the successive angle.
di = αi+1 − αi;
Ci.Distance = di;
Ci.NumberOfElements = 1;
//Add the new generated cluster to the set of clusters.
C := C ∪ {Ci}

end for
//Find the index of the smallest distance value.
i = IndexMinDistance(C);
while Ci.Distance ≤ δ do
//Unite the two clusters.
//Compute the representative of the new cluster as given in Observation 2.3.5.
αi := 1

di+di+1
(diαi + djαj)

//Update the distances to the new representative.
di−1 := αi − αi−1;
di := αi+2 − αi;
Ci.Distance = di;
Ci.Representative = αi;
Ci.NumberOfElements = Ci.NumberOfElements +Ci+1.NumberOfElements;
//Delete the assimilated cluster Ci+1 from the set of cluster C .
Delete(C , Ci+1);
i = IndexMinDistance(C);

end while

We will now analyze the running time of the clustering algorithm given by Algo-
rithm 2.3.5.
The clusters are organized in a doubly linked list and the distance values di, 1 ≤ i ≤ n
are organized in a priority queue. Each cluster has a pointer to its distance value and
each distance value in the priority queue has a pointer to its cluster. If, for example,
a heap is used to implement the priority queue, one step of finding the minimum
distance and merging two clusters can be done in Θ(log n) time. Computing the new
values αi, di and di−1 can be done in Θ(1) time as described in Algorithm 2.3.5. Up-
dating the values di and di−1 can be done in Θ(log n) time by deleting the elements
from the heap and inserting new ones with the new values.
The overall running time is dependent on the number of clusters that are merged to-
gether. Thus it is dependent on both the input and the value δ. An upper bound for
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the clustering algorithm is O(n log n) since at most n clusters can be merged together
until the input set forms one cluster for itself. Since we already need Ω(n log n) time
in order to sort the clusters and insert the distance values into the heap, the running
time of the clustering algorithm given by Algorithm 2.3.5 is Θ(n log n).

Remark 2.3.6. Until now, we left open how to choose the value of δ. The choice
of δ is dependent on the input. If the input set is highly distorted, but the order of
the cyclic group is small so that there is a large gap between two rotation angles, a
large value of δ is necessary to cluster the different angles produced by the distorted
input data. If the distortion of the set is only slight and the order of the cyclic group
is large, we will lose rotation angles in the case where the value of δ is not small
enough. Finding a good value for δ is a balance between smoothing the contained
noise and distinguishing between the different rotation angles.
By testing this symmetry detection algorithm on real world input images of the
MPEG7 database, δ to be between 5◦ and 10◦ turned out to be a good choice. Since
we are computing with radians instead of degree, δ = 2π

72 ≈ 0.087 is used in our
implementation of the algorithm.

Computing the Order of the Symmetry Group

What remains to be done is to explain how the order of the cyclic symmetry group
can be computed from the clustered rotation angle votes. We will start by explaining
how the algorithm works for perfect symmetric input set and state later on how the
presented algorithm needs to be modified in order to work for input sets containing
noise.

Suppose we computed a sufficiently large number of rotation angles and voted in
transformation space. After applying the clustering algorithm (see Algorithm 2.3.5),
we obtain a list of rotation angles sorted in decreasing order by the number of votes.
By Lemma 2.3.3 we expect the point set to have rotational symmetry with respect
to the first k rotation angle values. Let us consider the case where the input set P
is finite and we compute the rotation angles between each pair of points where the
points have equal distance to the center of gravity. Let A = {αi|1 ≤ i ≤ k} be the
set of angles, so that P is rotational symmetric with respect to each α ∈ A. The
number of votes is the same for each angle α ∈ A by Lemma 2.3.3. Furthermore,
the number of votes for all the other angles that might be computed in the voting
process is strictly smaller, which also is given by Lemma 2.3.3. We visualize this
behavior using the following example:

Example 2.3.7. Suppose we are given the finite and Ck-symmetric point set P =

{p1, . . . , p12} as depicted in Figure 2.3.5. This point set is the union of the ver-
tex sets of two regular hexagons which have the same rotation center and whose
smallest enclosing disks have the same radii. The first hexagon has the vertices
P1 = {p2i−1|1 ≤ i ≤ 6} and the second hexagon has the vertices P2 = {p2i|1 ≤ i ≤ 6}.
Let P1 be the counter clockwise rotated image of P2 w.r.t the common rotation cen-
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ter which is the center of mass of P and the rotation angle which we denote by β.
Suppose we compute the rotation angles between all pairs of points in P . Since
P1 is a regular hexagon, for each angle j2π

6 , 1 ≤ j ≤ 6 there is a pair of points(
p2i−1, p(2(i+j) mod 12)−1

)
for each 1 ≤ i ≤ 6 that generates the rotation angle j2π

6 .
The same is true for the point set P2. Thus each angle j2π

k , 1 ≤ j ≤ 6 arises 12 times.
Since P1 is the rotational image of P2 with rotation center β, the angle jβ, 1 ≤ j ≤ 6

is computed by the pair (p2i−1, p2(i+j−1) mod 12), 1 ≤ i ≤ 6. Thus each angle
jβ, 1 ≤ j ≤ 6 arises only 6 times.

p1
p2

p3

p4

p5

p12

p6
p7

p8

p9

p10

p11

β

(a) The finite input set consists of two reg-
ular sixgons.

Angle Votes
0 12
2π
6 12
2π
3 12
π 12
4π
3 12
5π
3 12
β 6

β + 2π
6 6

β + 2π
3 6

β + π 6
β + 4π

3 6
β + 5π

3 6
2π
6 − β 6
2π
3 − β 6
π − β 6
4π
3 − β 6
5π
3 − β 6
2π − β 6

(b) The correspond-
ing number of votes
per angle.

Figure 2.3.5: Illustration of 2.3.7

As we consider a perfectly symmetric input set in Example 2.3.7, the symmetry
group of the input set can be determined by counting the number of angles with the
maximal number of votes. In the more realistic case where the input set is disturbed
by noise or in the case where we consider an infinite input set and need to compute
the votes by choosing random pairs of points, this clear distribution of the votes
is not guaranteed. As we will see in the experimental results, it is often the case
that the first k clusters in the list of clusters ordered by the number of votes in
decreasing order indeed represent the angles 0, 2πk , 2

2π
k , . . . , (k− 1)2πk . In most of the

examples, there is even a large gap between the number of votes created by these
angles and the next highest number of votes. But this property is not given in all
cases. Thus to determine the order of the symmetry group by simply counting the



2.3. THE PROBABILISTIC APPROACH 49

number of clusters until the number of votes is decreased by a constant fraction does
not always suffice. We therefore combine the two following strategies of determining
the order of the symmetry group:

Strategy 1. The first strategy is to traverse the list of clusters sorted in decreasing
number of votes until the number of votes of two successive clusters differs by a factor
of at least 2. Suppose such a significant jump in the number of votes is detected after
k clusters. We conjecture the symmetry group of the input set to be Ck and verify
this by checking that the angles representing the k located clusters are exactly the
ones in the set {i2πk ± δ|0 ≤ i ≤ k − 1}, where we allow an appropriate error δ for
each angle.

It might be the case that Strategy 1 fails since the gap between the clusters
defining the order of the symmetry group and the other clusters is not large enough.
In this case we use the following strategy in order to detect the symmetry group of
the input set.

Strategy 2. Let α be the representing angle of the cluster with the largest number
of votes. In the case where this angle is zero, we consider the representing angle
of the cluster with the second largest number of votes. Since α is supposed to be
a rotation angle of a cyclic symmetry group Ck for some k ∈ N which is to be
determined, α = i2πk for some i ∈ {1, . . . , k − 1}. Since 2π = k 2π

k , 2π
k is the greatest

common divisor of both 2π and α if i and k are coprime. For two values x, y ∈ R
we call z ∈ R the greatest common devisor of x and y, iff x = az and y = bz, where
a, b ∈ N and z is maximal with this property. The well-known Euclidean algorithm
for computing the greatest common divisor can also be used to compute the greatest
common divisor of two real numbers as defined above. The modulo operation used
in the Euclidean algorithm is extended to the real numbers by defining

xmod y := x−
⌊
x

y

⌋
y

Let us assume for a moment, that α = i2πk and that i and k are coprime.
By computing β = gcd(2π, α) we get the angle of the rotation which generates the
group. Therefore the order of the symmetry group is given by 2π

β .
The angles we use in order to compute the order of the symmetry group are com-
puted by the clustering algorithm described above. These angles will not exactly be
a multiple of 2π

k due to the facts that we assume the input not to be exact and that
the value representing the cluster is the arithmetic mean of all values in the cluster.
Let α̃ be the representing angle of the cluster with largest number of votes. We
have to deal with the problem that α̃ is used to determine the order of the symmetry
group but is not equal to the exact value α of the angle of a rotation in the symmetry
group. Suppose α̃ = α+ δ where δ ∈ R is the value of the error made.
We will now explain how to adapt the Euclidean algorithm for computing the great-
est common divisor of 2π and α even if the second parameter is not the exact value
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of α but is the value of α̃. In order to do so we take a closer look at the Euclidean
algorithm for computing the greatest common divisor of two numbers:
For two numbers a0 and a1 the Euclidean algorithm produces a sequence of values
a0, a1, a2, . . . , an, where ai = ai−2 mod ai−1 and an = 0. The greatest common divi-
sor of a0 and a1 is then an−1.
Consider the sequence produced by a0 = 2π and a1 = α. Assuming that an = 0, the
order of the symmetry group is given by k = a0

an−1
by the above arguments.

Using the extended Euclidean algorithm we can not only compute the greatest com-
mon divisor of a0 and a1, but also two values si, ti ∈ Z, so that ai = sia0 + tia1, and
|ti| ≤ a0

ggt(a0,a1)
1 ≤ i ≤ n .

Lemma 2.3.8. Let α̃ = α+ δ, where α = j2π
k , 1 ≤ j ≤ k−1 and |δ| < 2π

k2
and j and

k are coprime. Let ã0, ã1, . . . , ãm be the sequence produced by ã0 = 2π and ã1 = α̃.
Then

1. ãi = ji2π
k + ciδ, ji ∈ N, ci ∈ Z

2. There exists m ∈ N, so that jm = 0 and ji > 0, for all 1 < i < m.

3. |cm| = k, where m is the index defined in 2.

Proof. 1. We use induction in order to proof the claim.
Basis:
ã0 = 2π = k 2π

k + 0δ, so j0 = k and c0 = 0 and
ã1 = j2π

k + δ, so j1 = j and c1 = 1.
Thus the claim holds for i ∈ {0, 1}.
Inductive Step:

ãi = ãi−2 mod ãi−1

= ãi−2 −
⌊
ãi−2
ãi−1

⌋
ãi−1

= 2π
ji−2
k

+ δci−2 −
⌊

2π ji−2

k + δci−2

2π ji−1

k + δci−1

⌋
︸ ︷︷ ︸

di∈N

(
2π
ji−1
k

+ δci−1

)

=
2π

k
(ji−2 − diji−1)︸ ︷︷ ︸

ji∈N

+δ (ci−2 − dici−1)︸ ︷︷ ︸
cj∈Z

2. Note that di ≥ 1, for all 2 ≤ i ≤ m. Therefore ji < ji−2 and jm = 0 for some
m ∈ N.

3. Let m ∈ N be the index where jm = 0 and ji > 0, for all 0 ≤ i ≤ m. Then
ãm = δcm and ãm = smã0 + tmã1, where sm, tm ∈ Z can be computed by the
extended Euclidean algorithm. It is always possible to find values sm and tm
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with the properties ãm = smã0 + tmã1, where sm, tm ∈ Z and |tm| ≤ k.

δcm = 2πsm + tm

(
j2π

k
+ δ

)
=

2π

k
(ksm + jtm) + δtm

|δtm| ≤ 2π
k , since |tm| ≤ k. Therefore, (ksm + jtm) = jm = 0.

This implies

(sm, tm) =

{
(j,−k) δ < 0

(−j, k) δ ≥ 0

and therefore |cm| = k.

In order to assure that the algorithm computes the correct order of the symmetry
group, we need to bound the order of symmetry groups we consider. Assume that
we only want to detect the symmetry groups C1, . . . , CK−1, K ∈ N. If δ < 2π

K2 ,
then am < 2π

K . Thus testing am < 2π
K is a correct break condition for the algorithm

computing the greatest common divisor of 2π and α̃.

Lemma 2.3.9. Let a number K ∈ N be given. For an angle α̃ Algorithm 2.3.6
computes the smallest number k < K, so that the symmetry group Ck contains a
rotation with rotation angle α, where α̃ = α + δ, δ ∈ R and 0 ≤ |δ| ≤ 2π

K2 , if such a
k exists.

Proof. The extended Euclidean algorithm computes the values x, y, lastX, lastY (see
Algorithm 2.3.6), so that a = lastX2π + lastY α̃ and b = x2π + yα̃ holds after each
iteration step. Suppose α = j2π

k , where j and k are coprime.
By Lemma 2.3.8 k = |y|, if xk + yj = 0.
The value |y| is returned by Algorithm 2.3.6, if the condition b > 2π

K does not hold
anymore. This is only possible if xk + yj = 0 since (xk + yj) ≥ 0 and yδ ≥ 0 by
Lemma 2.3.8 and therefore b = (xk+yj)2πk +yδ ≤ 2π

K only holds if (xk+yj) ≤ 0.

Assume we consider an input set with symmetry group Ck. Let again α̃ = j2π
k +δ

be the angle representing the cluster with the largest number of votes. If j and k

are not coprime, then there exists a number l ∈ N, so that k = lk′ and j = lj′ and
k′ and l′ are coprime. Thus α̃ = j′2π

k′ , where j
′ and k′ are coprime and Algorithm

2.3.6 will return k′ instead of k. It therefore computes the order of a subgroup of the
symmetry group of the input set.

Since it is likely to happen that the computation of the order of the symmetry
group returns the order of a subgroup of the symmetry group of the input figure, we
repeat the procedure of verifying the symmetry group not only for the computed order
of the symmetry group but also for a finite number of multiples. In the experimental
results it turns out to be sufficient to check the computed order of the symmetry
group and the multiples 2, 3 and 4.
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Algorithm 2.3.6 Algorithm for computing the order of the symmetry group given
by an angle α̃. A modified version of the extended Euclidean algorithm for computing
the greatest common divisor of two real numbers is used.

OrderOfSymmetryGroup(α̃)
//Assume α̃ = 2π

k + δ, where 0 ≤ |δ| ≤ 2π
K

a = 2π;

b = α̃;

x = 0;

y = 1;

lastX = 1;

lastY = 0;

//For each iteration a = lastX2π + lastY α̃ and b = x2π + yα̃ holds.
while b > 2π

K do
q = a÷ b;
a′ = b;

b = a mod b;
a = a′;
x′ = lastX − q · x;

lastX = x;
x = x′;
c = a mod b;

y′ = lastY − q · y;

lastY = y;
y = y′;

end while
return |y|;

We will see in the next example how the algorithm explained above works on an
input shape given as polygonal curve.

Example 2.3.10. The following polygonal curve is the input of the probabilistic
symmetry detection algorithm for cyclic groups.

Choosing random pairs of points, and computing clusters of these votes gives the
following array of rotation angles and number of votes:

Since the representation angle of the cluster with the largest number of votes is
zero, Algorithm 2.3.6 takes the representation angle of the cluster with the second
largest number of votes which in this case is α′ = 73. The algorithm proceeds as
illustrated in Table 2.2:
When considering angle α′ = 73 we need to allow an error δ ≤ 1. Thus K ≤ 18

needs to be true since δ < 360
K2 must hold. When only considering symmetry groups

with maximal order 18, the algorithm terminates after the third step since b = 5 <
360
18 = 20. It returns the value |y| = 5.
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angle number of votes angle number of votes

0 344 269 202

73 344 52 166

289 323 123 159

216 321 196 133

144 317 340 133

297 284 228 126

81 282

154 260

224 212

Table 2.1: List of rotation angles and corresponding number of votes.

step q a b x y lastX lastY

1 360 73 0 1 1 0

2 4 73 68 1 -4 0 1

3 1 68 5 -1 5 1 -4

Table 2.2: Illustration of the steps executed by OrderOfSymmetryGroup(73).
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2.3.2 Reflectional Symmetry

As we saw in Section 1.1.2, an input figure has symmetry group Dk iff it has both
rotational and reflectional symmetry. We explained how to detect rotational symme-
try by using the probabilistic approach in the previous section. What remains to be
done is to state how to detect reflectional symmetry with the probabilistic approach.

For two given points, the reflection line mapping the one point to the other
is the well-defined perpendicular bisector of the line segment which connects the
two points. Since the reflection lines of a Dk-symmetric figure all pass through the
rotation center, we only need to consider those pairs of points whose reflection lines
pass through the chosen rotation center, which is the center of mass in our case.

Observation 2.3.11. Let two points p1 and p2 be given. The perpendicular bisector
of the line p1p2 passes through a point c, iff p1 and p2 lie on the boundary of a disk
with center c.

Since we consider input shapes that are not perfectly symmetric, but disturbed
by noise, we need to make sure that the two randomly chosen points indeed have the
same distance to the rotation center which is the center of mass in our algorithms.
It depends on the way how we choose the two points whether the two randomly
chosen points have equal distance to the rotation center. In the case where the input
shape is represented by a finite set of parametrized curves, as for example straight
line segments, and we compute the two random points using Algorithm 2.3.3, the
two points have the same distance to the rotation center by construction. In the
case where the input shape is represented by a finite set of points, it is unlikely to
find two points with exactly the same distance to the rotation center. With the
arguments given while we developed Algorithm 2.3.2 we consider two points whose
distance to the rotation center only differ by some small value δ. Since the distances
to the rotation center are allowed to differ by δ, the perpendicular bisector of the line
segment p1p2 will not pass through the rotation center in general. In the following
we will explain what kind of problems may arise and how to deal with them.
Let again c denote the center of mass of the input point set P and let p1 and p2 be
two points of P . Let d(c, p1) − d(c, p2) = ε. We need to define a line given by the
two points p1 and p2 which passes through c and which tends to the reflection line
defined by p1 and p2 as ε tends to zero. For ε 6= 0 the perpendicular bisector of the
two points p1 and p2 is not a good choice since it does not pass through c in general,
see 2.3.6(a). In the case where the three points p1, p2 and c lie on a line where c does
not lie between p1 and p2, the angle between this line and the perpendicular bisector
is π

2 , see Figure 2.3.6(b). In the case where ε tends to 0, the two points p1 and p2
coincide, and we want the computed line to tend towards the line through p1 = p2
and c. When using the perpendicular bisector of the two randomly chosen points p1
and p2, this property is not achieved.



2.3. THE PROBABILISTIC APPROACH 55

p1 p2

c

(a) The reflection line defined by p1
and p2 might not pass through the
point c.

p1
p2

c

(b) The computed reflection line is perpendic-
ular to the expected line which contains the
three points p1, p2 and c.

Figure 2.3.6: Two reasons why the perpendicular bisector of the line segment p1p2
is not a good choice.

A better way is to compute two points p′1 and p′2 which lie on the boundary of
a disk with center c and radius r = d(c,p1)+d(c,p2)

2 . The two points are defined to
be the intersection of the line segments cp1 and cp2 with the boundary of that disk,
respectively. The reflection line defined by the two points p′1 and p′2 fulfils the two
required properties: It passes through the point c and it tends to the perpendicular
bisector of the line segment p1p2 if ε tends to zero. Figure 2.3.7 gives an illustration
of these two properties.
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p1 p2

c

p′1

p′2

(a) The reflection line defined by p′1
and p′2 passes through the point c.

p1
p2

c

(b) The computed reflection line equal to the
expected line which contains the three points
p1, p2 and c.

Figure 2.3.7: The perpendicular bisector of the line segment p′1p′2 is a good choice.

Observation 2.3.12. Let two points p1 and p2 and a rotation center c be given. Let
r1 = d(p1, c) and r2 = d(p2, c) be the distances between p1, p2 and c, respectively. Let
r = r1+r2

2 be the average of the radii of the disks defined by p1, p2 and c, respectively.
The intersection point of the line defined by p1 or p2 and c and the disk defined by
c and r is the point p′1 = r

r1
p1 +

(
1− r

r1

)
c or the point p′2 = r

r2
p2 +

(
1− r

r2

)
c,

respectively.

Algorithm 2.3.7 Computing the two averaged points p′1 and p′2 from the randomly
chosen points p1 and p2

AveragePoints(p1, p2, c)
r1 = d(p1, c);

r2 = d(p2, c);

r = r1+r2
2

p′1 = r
r1
p1 +

(
1− r

r1

)
c

p′2 = r
r2
p2 +

(
1− r

r2

)
c

return p′1 and p′2
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Representing the Reflection Line

From Section 1.1.2 we know that a Dk-symmetric shape has 2k reflection lines which
all pass through the rotation center and that the angle between two reflection lines
is a multiple of half the rotation angle. It is therefore convenient to represent a
reflection line by the angle α between the line and the x-axis. In contrast to the
angles computed for the rotational symmetry detection in the previous section, the
computed angle α which represents the reflection line is in the interval [0, π]. This
is due to the fact that the reflection line represented by α is the same as the one
represented by α+ π.

The two points p′1 and p′2 computed by Algorithm 2.3.7 by using the randomly
chosen points p1 and p2 lie on a circle with center c. The perpendicular bisector of
p′1p
′
2 is the angle bisector of the lines cp′1 and cp′2. The angle between the perpendic-

ular bisector of the line segment p′1p′2 and a line parallel to the x-axis and passing
through c is given as follows:

Observation 2.3.13. Let two points p′1 = (p′1x, p
′
1y), p

′
2 = (p′2x, p

′
2y) ∈ R2 with equal

distance r to a rotation center c be given. Let lx be the line parallel to the x-axis and
passing through c, let l1 be the line segment cp′1 and let l2 be the line segment cp′2.
Let α1 be the angle between l1 and lx and let α2 be the angle between l2 and lx. The
angle α between the perpendicular bisector l of the line segment p′1p

′
2 and lx is given

by α = α1+α2
2 , where

α1 =

arccos
(
p′1x−cx

r

)
if p′1y ≥ 0

arccos
(
p′1x−cx

r

)
+ π if p′1y < 0

and

α2 =

arccos
(
p′2x−cx

r

)
if p′2y ≥ 0

arccos
(
p′2x−cx

r

)
+ π if p′2y < 0

Algorithm 2.3.8 states the procedure of calculating the angle representing the
perpendicular bisector of the line segment defined by two points p′1 and p′2.

Clustering

Using this representation of the reflection lines, the transformation space again is a
one-dimensional interval. Since a line represented by an angle α > π is the same line
as the one represented by α − π, we can restrict the transformation space for the
reflectional symmetry detection to the interval [0, π]. We do this by subtracting π
from each computed angle greater than π. Thus we can use the same clustering algo-
rithm stated in Algorithm 2.3.5, as for the rotational symmetry detection algorithm
the only difference is the upper bound of the interval.
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Algorithm 2.3.8 Computing the angle representing the perpendicular bisector of
the line segment p1p2.

ComputeReflectionLine(p1, p2, c)
α1 = arccos

(p1x−cx
r

)
;

if p1y < 0 then
α1 = α1 + π;

end if
α2 = arccos

(p2x−cx
r

)
;

if p2y < 0 then
α2 = α2 + π;

end if
α = α1+α2

2 ;
return α;

Computing the Symmetry Group

Suppose we already computed the cyclic symmetry group Ck of the given input shape
as described in Section 2.3.1. What remains to be done is to decide whether the input
shape has reflectional symmetry w.r.t. some reflection line l. As stated in Chapter 1,
if a shape has reflectional symmetry w.r.t. a line l, it also has reflectional symmetry
w.r.t the lines li, 1 ≤ i ≤ 2k − 1, where li passes through c, and the angle between
l and li is 2πi

2k , where k is the order of the cyclic symmetry group of the considered
shape.
In contrast to the algorithm for detecting the rotational symmetry group, we are
lucky that we already know the order k of the symmetry group. Thus we need to
check if there are 2k angles representing reflection lines among the clusters with large
number of votes. As for the detection of the rotational symmetry group we sort the
clusters in a decreasing number of votes and consider the first 2k entries in this
ordered list. We sort the 2k representing angles in this list in increasing order. After
subtracting the minimum angle in this list, we test if the difference between angle
αi and i360◦

2k is smaller than a given threshold. In our experiments 3◦ turned out to
be a good threshold. If this is the case for all 2k angles, the symmetry group of the
given input shape is the dihedral group Dk, otherwise it is the cyclic group Ck.

The algorithm for deciding whether the given input shape has symmetry group
Dk is given in Algorithm 2.3.9.
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Algorithm 2.3.9 Algorithm for deciding whether a given shape has symmetry group
Dk for given set of clusters C of the transformation space and order k of the cyclic
symmetry group.

ReflectionalSymmetry(Cluster C, k)
Sort the clusters in C by decreasing number of votes;
for i := 0 to 2k do
αi := Ci.Representative();

end for
Sort the angles in increasing order;
//Use boolean variable to check if the distance between two successive angles is
360◦

2k ± 3◦.
b = TRUE;
for i := 0 to 2k − 1 do
αi = αi − α0

b = b ∧
(∣∣∣∣αi − i360◦

2k

∣∣∣∣ ≤ 3◦
)
;

end for
return b;

Number of Votes Needed

The algorithm for determining the symmetry group by using a probabilistic approach
terminates after sufficiently many votes are generated.
Scharf [38] developed and proved bounds for the number of votes needed in order to
determine a transformation which approximates w.r.t. a given value ε the optimal
transformation with probability larger than a predefined probability. The optimiza-
tion is done with respect to the size of the set of pairs of points, one of each set,
which are mapped by the transformation to each other within a δ-neighborhood.
The sufficient number of votes is than given dependent on δ, ε and the predefined
probability.
The theoretically determined bounds for the number of votes that suffice differ sig-
nificantly from the number of votes that turned out to be sufficient in order to obtain
good results in the experiments made by Scharf.
We therefore will not state theoretical results for the number of votes we need in our
algorithm but rely on the results we got by experiments made. It turned out that
500 to 1000 votes suffice in order to detect the symmetry group of the given input if
the distortion of the input is moderate.
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The Algorithm

We are now ready to state the complete algorithm for detecting the symmetry group
of a given input shape. The algorithm combines all techniques for detecting rotational
and reflectional symmetry stated in this section in order to determine the symmetry
group.

Algorithm 2.3.10 Probabilistic algorithm for symmetry detection

DetectSymmetryGroup(Shape S)
c :=CenterOfMass(S);
repeat
Choose two points p1 and p2 randomly from the input shape S either by Algo-
rithm 2.3.2 or by Algorithm 2.3.3.
//Compute the rotation angle defined by p1 and p2.
αrot := arccos

(
d(p1,c)+d(p2,c)−d(p1,p2)

2d(p1,c)d(p2,c)

)
;

Vote for αrot in transformation space Trot;
//Compute two points p′1 and p′2 with the same distance to c and positive y-
coordinates by using Algorithm 2.3.7.
p′1, p

′
2 = AveragePoints(p1, p2, c);

αrefl = ComputeReflectionLine(p′1, p
′
2);

Vote for αrefl and (αrefl + 180◦) in transformation space Trefl;
until enough samples taken//See "Number of Votes Needed" Remark
Cluster the votes in transformation space Trot by using Algorithm 2.3.5 resulting
in clusters Crot;
Cluster the votes in transformation space Trefl by using Algorithm 2.3.5 resulting
in clusters Crefl;
Compute the rotational symmetry group Ck from the clusters in Crot by using a
combination of Strategy 1 and Strategy 2;
//Decide whether S is reflectionally symmetric by using Algorithm 2.3.9;
if ReflectionalSymmetry(Crefl,k) then
return Dk;

else
return Ck;

end if



Chapter 3

ε-Symmetry Detection

In the last chapter we discussed how to determine the symmetry group of a given
point set, even if the point set, due to noise or other perturbation, is not exactly
symmetric. In this case, it is interesting to ask how symmetric (or asymmetric) the
point set is, meaning how large the distance between this set and a symmetric point
set is.

In this chapter, we will define the ε-Symmetry Detection problem, which is the
problem of finding for a given input set P and a given symmetry group S an S-
symmetric point set Q which is a close approximation of P . We will only consider
finite symmetry groups, thus S ∈ {Ck, Dk|k ∈ N+}.

The ε-SD decision problem was already studied by Iwanowski [18]. He proved it
to be NP-complete in general and to be in P if certain restrictions are added to the
problem definition.

In this chapter, we will investigate the ε-SD decision problem as well as the
ε-SD computational problem. We will reproduce some of the results already given
by Iwanowski [18], but we will use different methods. In contrast to the proofs given
by Iwanowski [18], our proofs are more geometrical and therefore we are able to
produce algorithms which can be implemented without much effort.

In Section 3.1 we will start by defining the ε-SD problem. Afterwards, we will list
several variations of the problem. In the remaining sections of this chapter we will
state the algorithms and prove their complexity and running time for each variant
of the ε-SD problem introduced in Section 3.1.

61
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3.1 Complexity of the ε-Symmetry Detection Problem

Let us assume we are given a finite set of points P and a symmetry group S, where
S ∈ {Ck, Dk|k ∈ N+}. We will now state the problem of finding an S-symmetric
point set Q which is a close approximation of P . Prior to the definition of the ε-
SD problem, we will give a formal definition of our notion of “close approximation”,
which we take from Iwanowski [18]:

Definition 3.1.1 (ε-Approximation). Let two finite point sets P ⊂ R2 and
Q ⊂ R2, both containing n points and a real number ε ≥ 0, be given. We say that Q
ε- approximates P , iff there exists a bijective function f : P → Q, so that |p−f(p)| ≤
ε, for all p ∈ P .
Using this definition, we can define the ε-SD decision problem as follows:

Problem 3.1.2 (The ε-SD decision problem)

Given: A set P ⊂ R2 of n = mk points, a symmetry group S, where S is either Ck
or Dk, k ∈ N+ and a real number ε ≥ 0.

Question: Is there a set Q ⊂ R2 having symmetry group S, which ε- approximates
P?

The corresponding computational problem is defined as follows:

Problem 3.1.3 (The ε-SD computational problem)

Given: A set P ⊂ R2 of n = mk points and a symmetry group S, where S is either
Ck or Dk, k ∈ N+.

Task: Compute the smallest ε ≥ 0, so that there is a set Q having symmetry group
S, which ε- approximates P .

Solving the ε-SD decision problem for a given point set P , a symmetry group S and
an ε is at most as complicated as solving the ε-SD computational problem for P
and S since the solution εopt of the computational problem gives an answer to the
decision problem by simply checking if εopt ≤ ε.
In figures illustrating examples for the ε-SD decision problem, the given value ε ≥ 0

will be indicated by disks of radius ε centered at the points of the input set P . The
solution of the ε-SD decision problem is then given by a symmetric point set Q, so
that each point of Q lies in exactly one disk.

In the case where we consider the ε-SD computational problem, the input is
given by a point set P and the solution is the smallest possible value εopt ≥ 0, so
that there is a point set Q where each point of Q lies in exactly one disk with radius
εopt centered at a point of P .
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The ε-SD decision problem is NP-complete in general, which was shown by
Iwanowski [18]. However the ε-SD problem becomes easier and solvable in polyno-
mial time if we either restrict it to certain symmetry groups or add more information
about the point sets P and Q, respectively, to the problem definition.

In this section we will introduce and define some of those special cases of the ε-
SD problem and state the complexity of each of them. Furthermore, we will use one
section for each of these variants of the ε-SD problem in order to state an algorithm
solving the problem considered, prove its correctness and analyze its running time.

The ε-SD Problem for the Symmetry Group C2

The first restriction on the ε-SD problem we make is on the considered symmetry
group. Iwanowski [18] proved the ε-SD decision problem to be in P if only the
symmetry groups D1 and C2 are allowed. In Section 3.2 we will state a polynomial
time algorithm solving the ε-SD computational problem for symmetry group C2. As
stated above, this also gives another proof for the ε-SD decision problem to be in P .
In contrast to the proof of Iwanowski [18], our proof leads directly to a polynomial
time algorithm which can be implemented quite easily.

p1

p2

p3

p4

p5

p6

(a) The input to the ε-SD computa-
tional problem for symmetry group
C2.

p1

p2

p3

p4

p5

p6

q6

q5

q4

q3

q2

q1

(b) The solution is given by the value of
εopt and the C2-symmetric point set Q.

Figure 3.1.1: Illustration of the definition of the ε-SD computational problem for
symmetry group C2.
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Problem 3.1.4 (The ε-SD computational problem for symmetry group C2)

Given: A set P ⊂ R2, |P | = n = 2m,m ∈ N.

Task: Compute the smallest ε ≥ 0, so that there is a point set Q having symmetry
group C2, which ε- approximates P .

The ε-SD Problem for the Symmetry Group D|P |
Another possibility is to restrict the symmetry group depending on the size of the
point set P . For a point set of size |P | we ask for a D|P |-symmetric point set Q,
|Q| = |P | which approximates P . This variant of the ε-SD problem where the
symmetry group is directly given by the number of points in P can be decided in
polynomial time, as we will see in Section 3.3.

This variant of the ε-SD decision problem is defined as follows:

Problem 3.1.5 (The ε-SD decision problem for symmetry group D|P |)

Given: A point set P ⊂ R2 and a value ε ≥ 0.

Question: Is there a D|P |-symmetric point set Q which ε- approximates P?

p1

p2 p3

p4

(a) The input to the ε-SD decision prob-
lem in this example is a set P of size
|P | = 4 and a value ε.

p1

p2 p3

p4
q1

q2 q3

q4

(b) The solution is given by the C4-
symmetric point set Q.

Figure 3.1.2: Illustration of the definition of the ε-SD decision problem for symmetry
group D|P |.
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Solving this problem becomes easier if Q has to have a predefined rotation center
which is part of the input.

Problem 3.1.6 (The ε-SD computational problem for symmetry group D|P | and
rotation center c)

Given: A point set P ⊂ R2 and a rotation center c.

Task: Compute the smallest value ε ≥ 0 so that there is a D|P |-symmetric point set
Q with rotation center c which ε- approximates P .

p1

p2 p3

p4

c

(a) The input to the ε-SD computa-
tional problem in this example is a
set P of size |P | = 4 and a rotation
center c.

p1

p2 p3

p4

q1

q2

q3

q4

c

(b) The solution is given by the value of
εopt and the C4-symmetric point set Q.

Figure 3.1.3: Illustration of the definition of the ε-SD computational problem for
symmetry group D|P | and given rotation center.

Both problems can be solved in polynomial time. We will state the algorithms and
the proofs of correctness and running time in Section 3.3. The definitions of Prob-
lem 3.1.5 and Problem 3.1.6 only differ in the fact that in Problem 3.1.6 the rotation
center of Q is part of the input of the problem. Since more information is given, it is
easier to solve this variant of the ε-SD problem. We are able to present a polynomial
time algorithm for the ε-SD computational problem for symmetry group D|P | in the
case where the rotation center of Q is given, and a polynomial time algorithm which
decides the ε-SD decision problem for symmetry group D|P | if the rotation center of
Q is not given. We will give an example of each variant of the ε-SD problem. Figure
3.1.2 gives an example of the case where the rotation center of Q is not given. Since
it is a decision problem, the value of ε is part of the input which is indicated by the
disks centered at the points of the input set P . Figure 3.1.3 shows an example of
the case where the rotation center of Q is part of the input.
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The ε-SD Problem for Given Partition of P .
If we do not want to restrict the considered symmetry group in order to be able to
state polynomial time algorithms, we can add more knowledge about P to the input
of the problem.
This leads to another restricted version of the ε-SD problem which we are able to
solve in polynomial time.
We demand the input of the ε-SD problem for symmetry group Ck to be a partition
of the point set P where all partition sets P1, . . . , Pm have size k.
We then can state polynomial time algorithms solving the ε-SD problem for sym-
metry group Ck in polynomial time by applying the algorithms solving the ε-SD
problem for symmetry group D|Pi| to each partition set separately and combining
the results.
The problem is then defined as follows:

Problem 3.1.7 (The ε-SD computational problem for given partition of P and a
given rotation center c.)

Given: A set P ⊂ R2, |P | = mk, a symmetry group Ck, a partition of P into m
subsets P1, . . . , Pm of size |Pi| = k, 1 ≤ i ≤ m each and a rotation center c.

Task: Compute the smallest value ε ≥ 0, so that there exists a Ck-symmetric point
set Q and a partition of Q into m subsets Q1, . . . , Qm all of size k, all subsets
having symmetry group Dk and rotation center c, so that Qi ε-approximates
Pi, for all 1 ≤ i ≤ m.

Without the knowledge of the rotation center c, we will consider the following decision
problem:

Problem 3.1.8 (The ε-SD decision problem for given partition of P )

Given: A set P ⊂ R2, |P | = mk, a symmetry group Ck and a partition of P into m
subsets P1, . . . , Pm of size k each and a value ε ≥ 0.

Question: Is there a Ck-symmetric point set Q and a partition of Q into subsets
Q1, . . . , Qm all of size k, all having symmetry group Dk, and all having the
same rotation center so that Qi ε- approximates Pi for all 1 ≤ i ≤ m?

Examples of the ε-SD problem where the partition of P into subsets of size k each
is given are depicted in Figure 3.1.4 for the computational case where the rotation
center is known and in Figure 3.1.5 for the decision problem where the rotation center
is not known. The points in different partition sets are indicated by different shapes.
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(a) The input to the ε-SD computational
problem for symmetry group C4 with given
partition of P and a rotation center c.

p(1,1)

p(1,4)

p(1,3)

p(1,2)

q(1,1)

q(1,2)

q(1,3)

q(1,4)

p(2,1)

p(2,2) p(2,3)

p(2,4)

q(2,1)

q(2,2)

q(2,3)

q(2,4)

c

(b) The solution is given by the value of ε,
indicated by the disks of radius ε and the
C4-symmetric point set Q.

Figure 3.1.4: Illustration of the definition of the ε-SD computational problem for
given partition of P and given rotation center.
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(a) The input to the ε-SD decision prob-
lem for symmetry group C4 with given par-
tition of P and value ε.
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(b) The solution is given by the C4-
symmetric point set Q.

Figure 3.1.5: Illustration of the definition of the ε-SD decision problem for given
partition of P and given ε.
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We will present algorithms with polynomial running time for Problem 3.1.7 and
Problem 3.1.8 and prove their correctness in Section 3.4. There we will see that we
can reduce the ε-SD problem with given partition of P to solving the ε-SD compu-
tational problem for symmetry group D|Pi| on each partition set Pi. We will show
how to combine the solutions of the partition sets in order to get a solution for the
whole set P .

The ε-SD Problem for γ-Disjoint Point Sets
In Section 3.5 we will present a polynomial time algorithm deciding the ε-SD problem.
Here we need no restriction on the symmetry group and no further input information
like a partition of P or a rotation center of Q. The only assumption we make is that
the input point set is well separated. This means that the points do not lie too close
together with respect to the given ε. Prior to giving the definition of this variant of
the ε-SD problem we define the meaning of “not too close together”, which we take
from Iwanowski [18]:

Definition 3.1.9 (γ-Disjoint Point Set). Let P = {p1, . . . , pn} be a set of points in
the plane. We call P γ-disjoint, iff d(pi, pj) > γ, for all pi, pj ∈ P, pi 6= pj , where
d(pi, pj) denotes the Euclidean distance between the points pi and pj .

We consider the following variant of the ε-SD problem for disjoint point sets:

Problem 3.1.10 (The ε-SD decision problem for tε-disjoint point set P for some
fixed constant t)

Given: A symmetry group Ck, a value ε ≥ 0 and a tε-disjoint point set P ⊂ R2,
|P | = n = mk.

Question: Is there a Ck-symmetric point set Q which ε- approximates P?

Iwanowski [18] proved the ε-SD decision problem to be in P in the case where the
input point set P is 8ε-disjoint. In Section 3.5 we will prove that the ε-SD decision
problem for an input set P can be solved in polynomial time if P is 4tε-disjoint. The
factor t results from a rotation center c where c can be computed dependent on P
in polynomial time. Furthermore the solution of the ε-SD computational problem
for P , restricted to the rotation center c has to be a t-approximation of the solution
of the ε-SD computational problem for P . Using this general proof, we will give
polynomial time algorithms for t = 2 and t = 2√

3
.

In the case where the rotation center c of the Ck-symmetric point set Q is given,
we are able to decide the ε-SD decision problem in polynomial time if the input point
set P is 4ε-disjoint. We will also prove that, for each value δ > 0, the ε-SD decision
problem for symmetry group Ck can be solved in time O

((
1
δ2

) (
n3k + n2k3

))
if the

point set P is 4(1 + δ)ε-disjoint.



3.2. THE ε-SD PROBLEM FOR SYMMETRY GROUP C2 69

3.2 The ε-SD Problem for Symmetry Group C2

The ε-SD problem can be solved in polynomial time if it is restricted to the symmetry
group C2.
For the decision problem, Iwanowski [18] stated an algorithm which solves the ε-SD
decision problem for the symmetry group C2 in time O(n6) where n is the size of the
point set.
In this section, we will state an algorithm solving the ε- SD computational problem
for the symmetry group C2 and an input point set P, |P | = 2m in time O(m8).
Since the algorithm is based on simple geometric calculations, it can be implemented
without much effort.

We will consider the following problem, which we already defined in Section 3.1:

Problem 3.1.4 (The ε-SD computational problem for symmetry group C2)

Given: A set P ⊂ R2, |P | = n = 2m,m ∈ N.

Task: Compute the smallest value ε ≥ 0, so that there is a point set Q having
symmetry group C2, which ε- approximates P .

A C2-symmetric point set Q has the property that it is invariant under a rotation
by π around a rotation center c. This implies that Q can be partitioned into m = n

2

subsets Q1, . . . Qm, each of size 2, with the property that q(i,1) = ρπc (q(i,2)) and
q(i,2) = ρπc (q(i,1)), for all Qi = {q(i,1), q(i,2)}, 1 ≤ i ≤ m.
For a given, not necessarily symmetric, point set P the crucial steps in order to solve
the ε-SD problem for the symmetry group C2, are

1. to find the partition of P into m = n
2 subsets, each of size 2, that results in the

smallest possible ε.

2. to find the rotation center of the C2-symmetric set Q.

Once the partition and the rotation center are known, the smallest value ε ≥ 0,
so that there exists a C2-symmetric point set Q that ε-approximates P , can be com-
puted easily.

3.2.1 Partition of P Known

We will start our investigation by concentrating on how to find the rotation center
c for the C2-symmetric point set Q, so that the value ε is minimized. As we already
indicated in Section 3.1, the task to find c becomes easier if the partition of P into
subsets of size 2 is given.
Since we consider the symmetry group C2 in this section, we ask for a partition of
P into m subsets of size 2 each.
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Problem 3.2.1 (The ε-SD computational problem for symmetry group C2 and a
given partition of P .)

Given: A set P ⊂ R2 of n points, n = 2m,m ∈ N, and a partition of P into subsets
P1, . . . , Pm, |Pi| = 2, 1 ≤ i ≤ m.

Task: Find the smallest value ε, so that there is a C2-symmetric point set Q which
ε- approximates P , and Q can be partitioned intom subsets Q1, . . . Qm, so that
Qi ε-approximates Pi, 1 ≤ i ≤ m and all Qi have the same rotation center.

In order to solve the ε-SD computational problem for symmetry group C2 and given
partition of P , we need to consider the following two tasks:

The first task is to solve the problem locally by determining the smallest pos-
sible εi, so that Qi εi-approximates Pi, for each 1 ≤ i ≤ m and all Qi have the
same rotation center c.

The second task is to determine a value ε so that the whole setQ ε-approximates
the whole set P .

Suppose we already computed the optimal values of εi, for all 1 ≤ i ≤ m for the
partition sets P1, . . . , Pm. We can then solve the ε-SD computational problem for
the set P as follows:

Observation 3.2.2. Let a point set P of size |P | = 2m, m ∈ N, a partition of P
into subsets P1, . . . , Pm of size 2 and a rotation center c ∈ R2 be given. Let εi be the
solution of the ε-SD computational problem for symmetry group C2, input set Pi and
rotation center c. Let Qi be the C2-symmetric point set which εi-approximates Pi.
Then the point set Q =

⋃
1≤i≤m

Qi is C2-symmetric and Q ε-approximates P , where

ε = max{εi|1 ≤ i ≤ m}.
Remark 3.2.3. One partition set Pi = {pi1 , pi2} on its own is always C2-symmetric,
since the point ai =

pi1+pi2
2 is the rotation center of the C2-symmetric point set Pi.

By Remark 3.2.3 we see that each subset for itself is C2-symmetric. This is only
true for the whole set P if the rotation centers a1, . . . am of the subsets P1, . . . , Pm
coincide. In general, for an arbitrary point set, this is not true (see Figure 3.2.1).
The following Lemma3.2.4 relates the optimal solution for the ε-SD computational
problem for a given rotation center c and input set Pi to the distance between c and
ai.



3.2. THE ε-SD PROBLEM FOR SYMMETRY GROUP C2 71
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p1+p2
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(a) A point set containing two
points is C2-symmetric

p1

p3

p2

p4

(b) Two subsets have different
rotation centers in general.

Figure 3.2.1: Illustration of Remark 3.2.3

Lemma 3.2.4. Let Pi = {p(i,1), p(i,2)} be a subset of the partition of P and ai be the
rotation center defined by Pi. Let a rotation center c be given. Let εi be the solution
of the ε-SD computational problem for given rotation center c and input set Pi. Then
εi = d(ai, c).

Proof. In order to prove the lemma, we need to show that there is a point set
Qi = {q(i,1), q(i,2)} where q(i,1) = ρπc (q(i,2)) and d(q(i,1), p(i,1)) ≤ d(ai, c) = εi and
d(q(i,2), p(i,2)) ≤ d(ai, c) = εi and εi is minimized.

d(q(i,2), p(i,2)) ≤ d(ai, c) = εi is equivalent to d(q(i,1), ρ
π
c (p(i,2))) ≤ d(ai, c) = εi,

since q(i,1) = ρπc (q(i,2)).
Thus solving the ε-SD computational problem for symmetry group C2 and input

set Pi with respect to the rotation center c is equivalent to computing a point qi, so
that the distance between qi to p(i,1) and ρπc (p(i,2)), respectively is minimized. This
point is the center of the smallest enclosing disk of the two points p(i,1) and ρπc (p(i,2))

which in this case is the midpoint of the line segment defined by these two points.
Thus, q(i,1) = 1

2

(
p(i,1) + ρπc (p(i,2))

)
and q(i,2) = ρπc

(
q(i,1)

)
. What remains to be done

is to show that d(pi, qi) = d(ai, c). Since ai is the midpoint of p(i,1)p(i,2) and c is the
midpoint of the line segment p(i,2)ρπc (p(i,2)) we can apply the intercept theorem and
get d(p(i,1), q(i,1)) = d(ai, c)
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By Lemma 3.2.4 we can compute the solution for the ε-SD computational problem
for symmetry group C2, if the partition of P and the rotation center of Q are given:

Corollary 3.2.5. Let a point set P , |P | = 2m, a partition of P into m subsets
P1, . . . , Pm of size 2 and a point c be given. Let Pi = {p(i,1), p(i,2)}, 1 ≤ i ≤ m.
The solution of the ε-SD computational problem for symmetry group C2 and known
rotation center c for the input set P is then given by:

ε = max{d(ai, c)|1 ≤ i ≤ m}, where ai =
p(i,1) + p(i,2)

2
.

The value ε can be computed in time O(m).

Proof. This follows directly from Lemma 3.2.4 and Observation 3.2.2.

p1

p3

p2

p4

c

(a) Two partition sets and their
rotational images from c.

p1

p3

p2

p4

c

q1

q2

q3

q4

(b) The optimal solution for P is
given by the point set Q.

Figure 3.2.2: Example of the ε-SD computational problem for symmetry group C2

with given partition and rotation center.

In the definition of the ε-SD computational problem for symmetry group C2 and
given partition of P , the rotation center is not given beforehand. In order to find
a solution for the considered variation of the ε-SD problem we need to search for a
point c, so that the maximum distance between this point c and all points ai, where
1 ≤ i ≤ m is as small as possible. This follows directly from Corollary 3.2.5.

The following lemma characterizes the point c, so that max{d(ai, c)|1 ≤ i ≤ m}
is minimized and therefore gives the solution for the ε-SD computational problem
for symmetry group C2 and given partition of P .
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Lemma 3.2.6. Let P be a set of n = 2m points and P1, . . . , Pm be a partition of P
into m subsets each of size 2. Let Pi = {p(i,1), p(i,2)} and ai be the midpoint of the
segment p(i,1)p(i,2), 1 ≤ i ≤ m. Furthermore, let A = {a1, . . . , am} denote the set of
midpoints of the partition sets. Let D(c, r) be the smallest enclosing disk of A, where
c denotes its center and r denotes its radius. Then r is the solution of the ε-SD
computation problem for symmetry group C2 and given partition of P . The center c
of D is the rotation center of the C2-symmetric point set Q which r-approximates P .

Proof. Let D(c, rc) be the smallest enclosing disk of the set A from a fixed rotation
center c. Then the radius of D(c, rc) is rc = max{d(c, a)|a ∈ A} where d(c, a) is
the Euclidean distance between the two points c and a. The radius of the smallest
enclosing disk D(copt, r) of A is then r = min{rc|c ∈ R2}, and the center copt ∈ R2

of D is the point where the minimum radius is achieved.
For the partition of P into sets Pi, 1 ≤ i ≤ m, let εc,i be the solution for the ε-SD

computational problem for symmetry group C2 and given rotation center c for the
input set Pi. As seen in Lemma 3.2.4, εc,i = d(c, ai). The solution εc for the whole
set P is εc = max{εc,i|1 ≤ i ≤ m} = max{d(c, ai)|ai ∈ A} as shown in Corollary
3.2.5. In order to find the minimum possible value ε for the set P , we need to find
the point c ∈ R2 that minimizes the value εc. Therefore, ε = min{εc|c ∈ R2}.

By setting rc = εc and r = ε we see that the two problems, namely finding the
smallest enclosing disk of A and finding the the solution of the ε-SD computational
problem for symmetry group C2 and given partition of P , are equivalent. We there-
fore get the solution for the ε-SD computational problem for symmetry group C2

and given partition of P by computing the radius of the smallest enclosing disk of
A.

Algorithm 3.2.1 Algorithm for the ε-SD computational problem for symmetry
group C2 and given partition of P .

SDC2Partition(P = {P1, . . . , Pm})
1 A = ∅;
2 //Compute the set A of midpoints defined by P1 . . . , Pm.
3 for i = 1 to m do
4 A = A ∪ {ai =

p(i,1)+p(i,2)
2 };

5 end for
6 //Compute the smallest enclosing disk of A.
7 D = (c, r) =SmallestEnclosingDisk(A);
8 return r;
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Theorem 3.2.7. Algorithm 3.2.1 solves the ε-SD computational problem for sym-
metry group C2 and given partition of the input set P , |P | = n in O(n) time.

Proof. The correctness of the algorithm follows directly from Lemma 3.2.6. What
remains to be done is to analyze the running time.
Let n be the number of input points, so n = 2m. For each partition set Pi we need
to compute the midpoint ai, where 1 ≤ i ≤ m. The computation of each midpoint
takes constant time. Therefore, the computation of the set A of all midpoints can
be done in O(m) time.

The smallest enclosing disk of a set of m points can be computed in O(m) time,
as was shown by Megiddo [30].

Therefore Algorithm 3.2.1 has linear running time.

3.2.2 Partition of P Not Known

In the previous section, we explained how to solve the ε-SD computational problem
for symmetry group C2 if a partition into n

2 subsets is given. Different partitions
will result in different values of ε. One approach to solve the ε-SD computational
problem for symmetry group C2 would be to iterate over all possible partitions of P
into subsets each of size 2, computing the value of ε for each partition and taking
the minimum. This approach does not lead to a polynomial time algorithm, since
the number of partitions of a set P containing n elements into subsets of size 2 is
not polynomial in n.
In order to find a polynomial time algorithm for the ε-SD computational problem for
symmetry group C2, it is necessary to look at the relationship between two different
partitions of the point set P more closely. As mentioned above, in order to compute
the smallest possible ε for a given partition, we compute the smallest enclosing disk
of the set A where A is the set of midpoints defined by the given partition.

Suppose we are given two different partitions of P into sets of size 2. This leads
to two different sets of midpoints, A1 and A2. If A1 ∩A2 6= ∅, then the two smallest
enclosing disks, D1 and D2 intersect. It can also be the case, that D1 and D2 are
the same although A1 6= A2, as shown in Figure 3.2.3.

Thus different partitions may lead to the same smallest enclosing disk. Using
the approach of examining all possible partitions would make us compute the same
smallest enclosing disk again and again. We will therefore save a lot of time by
considering only all possible smallest enclosing disks instead of examining all possible
partitions of P .

In the case where the partition of P was given, we computed the smallest enclosing
disk from the set of midpoints defined by that partition. We now will look at the
problem the other way around and find the partition which defines the solution of
the ε-SD computational problem for symmetry group C2 from the set of all possible
smallest enclosing disks.
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Figure 3.2.3: Two different partitions of P that result in the same smallest enclosing
disk D since D is only defined by the midpoints of the two subsets {p3, p8} and
{p4, p7}
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Lemma 3.2.8. Let a point set P , |P | = n be given. Let P be the set of all possible
partitions of the point set P into subsets of size 2.
Let D be the set of all smallest enclosing disks defined by the partitions in P. Then
|D| = O(n6).

Proof. Let A∗ be the set of the midpoints of all possible pairs of points in P . So
A∗ = {p1+p22 |p1, p2 ∈ P and p1 6= p2}. Since P contains n points, A∗ contains∑n−1

i=1 (n− i) = n(n+1)
2 = Θ(n2) points. A smallest enclosing diskD ∈ D is defined by

either two or three points in A∗. Thus there are O(n4) disks defined by two midpoints
and O(n6) disks defined by three midpoints. Altogether we need to consider O(n6)

different disks.

Each disk which is a smallest enclosing disk of midpoints defined by some partition
of P contains a set A ⊆ A∗ of m = n

2 midpoints corresponding to that partition.
Additionally, it may contain some other midpoints as can be seen in Figure 3.2.4.

p1 p2

p3

p4

p5p6

p7

p8

Figure 3.2.4: The smallest enclosing disk contains the midpoints of the depicted
partition (green) and additional midpoints.
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Since each disk D containing a subset A ⊆ A∗ is defined by either two or three
points of A, we can compute all disks containing a subset of A∗ by enumerating all
pairs and triples of points of A∗. Let D∗ be the set of all possible disks for the set of
midpoints A∗. For each disk D ∈ D∗ we need to check if it corresponds to a smallest
enclosing disk of a set of midpoints A ⊆ A∗ which corresponds to a partition of
P . Let D ⊆ D∗ be this set of disks. The disk D ∈ D having the smallest radius
therefore corresponds to the partition of P which induces the solution of the ε-SD
computational problem for symmetry group C2.

The crucial point is to determine if a disk D ∈ D∗ contains a set of midpoints
corresponding to a partition of P into subsets of size 2. Each set of midpoints
A = {a1, . . . , am} that corresponds to such a partition has the property that no
point of P contributes to more than one midpoint of A. This means that a1 ∈ A
and a2 ∈ A is true only if a1 = p1+p2

2 and a2 = p3+p4
2 for some p1, . . . , p4 which are

distinct.
We can regard the point set P as the vertex set V of an undirected graph

G = (V,E). Each midpoint defined by a pair of points of p1, p2 ∈ P defines an
edge {p1, p2} of the edge set E. Let D ∈ D∗ be a disk defined by two or three points
of A∗. Let AD = D ∩ A∗ be the set of midpoints that are contained in the disk D.
The disk D induces a graph GD = (V,ED) on the point set P , where V = P and
ED = {{p1, p2}|p1, p2 ∈ P and a = p1+p2

2 ∈ AD}, see Figure 3.2.5.

We can use the graph GD in order to determine if the disk D contains a subset
A ⊆ A∗ which corresponds to a partition of P as the following lemma shows:

Lemma 3.2.9. Let P be a point set and let A∗ be the set of midpoints of all pairs of
points in P . Let D be a disk defined by two or three points in A∗. Let AD = D∩A∗.
Let GD = (P,ED), where ED = {{p1, p2}|p1, p2 ∈ P and a = p1+p2

2 ∈ AD}. Then D
contains a disk DP which is the smallest enclosing disk of the set of midpoints AP

corresponding to a partition P of P iff GD contains a perfect matching.

Proof. GD contains a perfect matching
⇔
there exists a subset EP ⊆ ED, so that each vertex in P is contained in exactly one
edge of EP .
⇔
P =

⋃
e∈EP

(e) and ei ∩ ej = ∅, f.a. ei, ej ∈ EP and ei 6= ej .

⇔
EP defines a partition into subsets of size 2 on P and the subset EP ⊆ ED corre-
sponds to a subset AP of the midpoints AD contained in disk D.
⇔
D contains a disk DP which is the smallest enclosing disk of AP .
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(a) Point set P and a disk D defining a set of midpoints AD ⊆ A∗.
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(b) Graph G induced by P and A.

Figure 3.2.5: Illustration of the construction of the graph DG from P and D.
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(a) The perfect matching in G.
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(b) The partition of P into subsets of size 2.

Figure 3.2.6: Illustration of Lemma 3.2.9.
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We will complete this section by stating the algorithm which solves the ε-SD
computational problem for symmetry group C2, proving its correctness and deter-
mining its running time.

Algorithm 3.2.2 A polynomial time algorithm for the ε-SD computational problem
for symmetry group C2.

SymmetryDetection(P = {p1, . . . , pn})
1 //Compute the midpoints of all pairs of points
2 for i = 1 to n do
3 for j = i+ 1 to n do
4 ai,j =

pi+pj
2 ; //ai,j is the midpoint of pi and pj

5 A∗ = A∗ ∪ {ai,j}; //A∗ is the set of midpoints
6 end for
7 end for
8 //Compute all possible disks defined by two midpoints
9 for i = 1 to |A∗| do

10 for j = i+ 1 to |A∗| do
11 Di,j = Disk(ai, aj);
12 D∗ = D∗ ∪ {Di,j}; //D is the set of disks
13 end for
14 end for
15 //Compute all possible disks defined by three midpoints
16 for i = 1 to |A∗| do
17 for j = i+ 1 to |A∗| do
18 for k = j + 1 to |A∗| do
19 Di,j,k = Disk(ai, aj , ak);
20 D∗ = D∗ ∪ {Di,j,k};
21 end for
22 end for
23 end for
24 //For each disk, check if it defines a partition P of P into subsets of size 2 each
25 for i = 1 to |D∗| do
26 GDi = ConstructGraph(P,Di, A

∗);//Constructs a graph from P and Di

27 if (HasPerfectMatching(GDi) ∧ Di.Radius()< ε) then
28 ε = Di.Radius();
29 end if
30 end for
31 return ε;
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The two subroutines used in Algorithm 3.2.2 are stated in Algorithm 3.2.3 and
Algorithm 3.2.4.

Algorithm 3.2.3 Algorithm to construct a graph from the point set P and a disk
D.

ConstructGraph(P ,D,A∗)
1 V = P ;
2 E = ∅;
3 for all ai,j ∈ A∗ do
4 //Add an edge connecting vertices pi and pj if the midpoint of pi and pj is

contained in D
5 if D.CONTAINS(ai,j) then
6 E = E ∪ {pi, pj};
7 end if
8 end for

Algorithm 3.2.4 Algorithm to decide, if a graph has a perfect matching.

HasPerfectMatching(G = (V,E))
1 Compute maximum matching EM for the graph G using a matching algorithm;
2 return |EM | == |V |

2 ;

Theorem 3.2.10. Algorithm 3.2.2 solves the ε-SD computation problem for sym-
metry group C2 in O(n8

√
n) time.

Proof. In lines 27 and 28 we update the solution value ε if the considered disk contains
a set of midpoints corresponding to a partition of P and its radius is smaller than
the optimum determined so far. The radius of that disk is the correct solution for
the corresponding partition, as we showed in Section 3.2.1. Since we consider all
possible disks, we compute the smallest value of ε, so that ε is the radius of the
smallest enclosing disk of a set of midpoints corresponding to a partition of P . What
remains to be analyzed is the running time. The number of disks that need to be
checked is in O(n6) as proven in Lemma 3.2.8. Constructing a graph for each disk
takes O(n2) time. Computing a maximum matching in a graph G = (V,E) can be
done in O(

√
|V ||E|) time. This was shown by Micali and Vazirani [32]. The total

running time of our algorithm is O(n6(n2 +
√
nn2)) = O(n8

√
n)

Dynamic Matching

The running time of Algorithm 3.2.2 can be improved by using a dynamic graph
matching algorithm. This is due to the fact that the graphs computed from the
O(n6) disks are not independent but overlap in many edges. Moreover, it is possible
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to sort the constructed graphs in such a way that two neighboring graphs differ by
at most two edges. When computing the maximum matching for each graph from
scratch, too much work is done. A more appropriate way is to use a matching al-
gorithm on dynamic graphs. The idea of dynamic graphs is that a graph is not a
static data structure but can be modified by inserting or deleting an edge. A dy-
namic graph matching algorithm updates the maximum matching after each insert
or delete operation. The algorithm for computing a maximum matching in a general
graph by Micali and Vazirani [32] can easily be used for dynamic graph matching (see
[1]) since it works in phases. In each phase the size of a valid matching is increased
if possible.
Consider a dynamic graph G = (V,E) and let M be a maximum matching for G.
In the case where an edge is inserted to the graph M remains a valid matching but
need not to be maximum anymore. However, the maximum matching in the modi-
fied graph can only contain one edge more than M . After performing one phase of
the algorithm by Micali and Vazirani [32], the maximum matching for the modified
graph is obtained. In the other case where an edge is deleted from G, it also is
deleted from M if it was a matching edge. Either M is the maximum matching in
the modified graph or before the deletion of the edge there was an other matching
which also was maximum and did not contain the deleted edge. M still is a valid
matching. Since at most one edge is deleted from M , |M | ≥ |M ′| − 1, where M ′ is
a maximum matching in the modified graph. Thus by performing one phase of the
algorithm of Micali and Vazirani [32] a maximum matching for the modified graph
can be computed.
In the algorithm of Micali and Vazirani [32] one phase takes O(|E|) time. Maintain-
ing a maximum matching after each insert or delete operation in a dynamic graph
therefore takes O(|Et|) time per update operation where |Et| is the number of edges
in the graph at time t when the operation is executed. Iterating over the O(n6) disks
and using dynamic matching reduces the running time of Algorithm 3.2.2 to O(n8)

since there are O(n2) edges in the graph at any time. This running time can be
assured if the disks are processed in an order which guarantees the edge sets of two
graphs defined by two successive disks to differ by at most two edges.
We will construct a global graph which we will traverse in order to obtain a sequence
of disks so that the above required property holds. The vertex set of the global
graph is the set of centers of the O(n6) disks we need to examine. The edges are the
perpendicular bisectors of the point set over which the disks are defined. This point
set is the set of midpoints of pairs of points in P .

Definition 3.2.11. Let a point set P ⊂ R2, |P | = n be given.
Let S = {p+p′2 |p, p′ ∈ P, p 6= p′} be the set of midpoints defined by pairs of points in
P .
We define a graph Ĝ =

(
V̂ , Ê

)
.

The vertex set is given by V̂ = V̂2 ∪ V̂3, where
V̂2 = {v̂{i,j}|si, sj ∈ S which are distinct} and
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V̂3 = {v̂{h,i,j}|sh, si, sj ∈ S, which are distinct}.
The vertices v̂{i,j} and v̂{h,i,j} are the centers of the disks defined by si, sj and
sh, si, sj , respectively.
Consider a vertex v̂i,j ∈ V̂2 and all vertices {v̂h,i,j |v̂h,i,j ∈ V̂3}. All these vertices lie
on the perpendicular bisector of si and sj by definition.
The edges of Ĝ are given by the set Ê which is defined as follows:
(v̂i,j , v̂h,i,j) ∈ Ê iff v̂i,j and v̂h,i,j are neighbors on the perpendicular bisector defined
by si and sj .
(v̂h,i,j , v̂h′,i,j) ∈ Ê iff v̂h,i,j and v̂h′,i,j are neighbors on the perpendicular bisector
defined by si and sj .

An illustration of Ĝ is given in Figure 3.2.7

Definition 3.2.12. We call sh, si, sj the defining points of v̂{h,i,j} and si, sj the
defining points of v̂{i,j}.

Observation 3.2.13. Let ê ∈ Ê be an edge in Ĝ. If ê = (v̂, ŵ), then the set of
defining points of v̂ and ŵ differ by exactly one point.

Lemma 3.2.14. Let a point set P ⊂ R2, |P | = n be given. Consider the global
graph as defined in Definition 3.2.11. Let v̂, ŵ ∈ V̂ be two adjacent vertices. Let Dv̂

and Dŵ be the two disks defined by v̂ and ŵ, respectively. Let SDv̂ = S ∩ Dv̂ and
SDŵ = S ∩Dŵ. Then |SDv̂ 4 SDŵ | ≤ 2.

Proof. We first show that the points of SDv̂ ∪ SDŵ which are not in SDv̂ ∩ SDŵ are
either on the boundary of Dv̂ or on the boundary of Dŵ.
Let s ∈ S be a point in SDv̂ and let v̂ be defined by three points sh, si, sj ∈ S all not
equal to s. So s lies not on the boundary of Dv̂. The perpendicular bisectors of the
line segments ssh, ssi, ssj each partition the plane into two half-planes. Since s lies
in SDv̂ , it lies in the same half-plane as v̂ for each perpendicular bisector.
Suppose s lies in SDv̂ but not in SDŵ . Suppose w.l.o.g. that the edge (v̂, ŵ) is
the perpendicular bisector of the line segment sisj . Thus si and sj both lie on the
boundary of Dv̂ as well as on the boundary of Dŵ. If s /∈ PDŵ , the perpendicular
bisectors of the two line segments ssi and ssj must be crossed while traversing from v̂

to ŵ on the perpendicular bisector of sisj . Since ŵ is adjacent to v̂, ŵ needs to be the
intersection of perpendicular bisectors of the three line segments ssi, ssj and sisj .
This implies that s is on the boundary of Dŵ and therefore s ∈ SDŵ . This is a
contradiction to our assumption. Thus s is on the boundary of Dv̂.
By the definition of Ĝ the set of points which define two adjacent vertices differ by
at most two points. Thus the difference between the points of S contained in Dv̂ and
Dŵ is at most two. The case where v̂ is defined by two points in S and ŵ is defined
by three points in S follows analogously.
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Figure 3.2.7: An illustration of a global graph. The point set P is illustrated by
crosses, the point set S is illustrated by circles, the vertex set V̂2 is illustrated by
blue squares and the vertex set V̂3 is illustrated by orange boxes.
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Theorem 3.2.15. Let a point set P ⊂ R2 be given. The solution of the ε-SD
computational problem for symmetry group C2 can be determined in O(n8) time.

Proof. The point set S can be computed in O(n2) time. The global graph Ĝ consists
of the O(n6) vertices which can be computed from the point set S in O(n6) time.
The edges are given by the O(n4) perpendicular bisectors of the line segments defined
by pairs of points in S. For each vertex its location on the perpendicular bisectors
given by the defining points of the vertex can be computed in constant time and all
vertices on one perpendicular bisector need to be sorted according to their location
in order to obtain the edge set of Ĝ. Thus Ĝ can be constructed in time O(n6 log n).
Each vertex represents a disk. The maximum matching of the graph defined by the
points of S contained in that disk is stored in the vertex. By traversing Ĝ with
breadth-first-search the matching is updated by performing at most two phases of
the algorithm of Micali and Vazirani [32]. By Lemma 3.2.14 it is guaranteed, that
at most two phases are sufficient since the set of edges of two graphs defined by two
neighboring disks in the global graph differ by at most two edges. For each vertex in
the global graph at most two phases of the matching algorithm are performed. Thus
the overall running time is O(n8).
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3.3 The ε-SD Problem for Symmetry Group D|P |

In this section we will investigate the variation of the ε-SD problem where the sym-
metry group is dependent on the number of input points. We subdivide this section
into two subsections. In the first subsection we will consider the ε-SD computation
problem for symmetry group D|P | and additional knowledge of the rotation center c.
In the second subsection we consider the ε-SD decision problem for symmetry group
D|P | with no further restrictions. In each subsection we will develop the algorithms
solving the problems considered and give the proofs on the correctness and running
time of the algorithms. For the rest of this section, let n = |P | be the size of the
input set P .
The results of this section are joint work with Lena Schlipf and are part of the work
published in [5].

3.3.1 Rotation Center Known

We start by considering the ε-SD computational problem for symmetry group Dn

in the case where the rotation center c of the Dn-symmetric point set Q is given
beforehand.

We define the problem as in Section 3.1:

Problem 3.1.6 (The ε-SD computational problem for symmetry group Dn and
rotation center c.)

Given: A point set P ⊂ R2, |P | = n and a rotation center c.

Task: Compute the smallest value ε ≥ 0 so that there is a Dn-symmetric point set
Q with rotation center c which ε-approximates P .

Since we ask for aDn-symmetric point set Q in this section, |Q| = n and therefore
Q is a regular n-gon.
We can restrict the problem further by adding an order on the input points. By
doing so, we force the bijection to map a point in P to a certain vertex of the regular
n-gon. We extend Definition 3.1.1 to the case where an order on P is given:

Definition 3.3.1. Let a point set P , an order (p1, . . . , pn) on P , a symmetry group
Dn and a value ε ≥ 0 be given. A Dn-symmetric point set Q ε-approximates P with
respect to the given order iff there is a bijection f : P → Q, so that d(p, f(p)) ≤ ε

and f(pi) = ρ
2π
k
c

(
f(p(i−1))

)
for all 1 ≤ i ≤ n, where we define p0 := pn.
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Adding the information of the order on P leads to the following definition of the
ε-SD problem:

Problem 3.3.2 (The ε-SD computational problem for symmetry group Dn with
given order and rotation center c)

Given: A point set P ⊂ R2, |P | = n, an order (p1, . . . , pn) on P and a rotation
center c.

Task: Compute the smallest value ε ≥ 0 so that there is a Dn-symmetric point set
Q with rotation center c which ε-approximates P with respect to the order of
P .

We start by solving the ε-SD computational problem for symmetry group Dn

with given rotation center and order on P . We will use this algorithm later on in
order to solve the ε-SD for symmetry group Dn and given rotation center where the
order on P is not known.

Lemma 3.3.3. Let a point set P , an order (p1, . . . , pn) on P and a rotation center
c be given.
Let α = 2π

n be the rotation angle defined by the symmetry group Dn.
Let ri = ρ

(i−1)α
c (pi), 1 ≤ i ≤ n be the point we get when rotating pi around c by

(i− 1)α in counterclockwise direction.
Let q1 be the center of the smallest enclosing disk D of the point set {ri|1 ≤ i ≤ n}
and qi = ρ

−(i−1)α
c (q1), 2 ≤ i ≤ n.

Let ε be the radius of D.
Then ε is the solution of the ε-SD computational problem for symmetry group Dn

with given rotation center c and given rotational order on the input set P . The point
set Q = {q1, . . . , qn} is the corresponding Dn-symmetric point set ε-approximating P
with respect to the rotational order on P .

Proof. For a given point set P = {p1, . . . , pn} and a Dn-symmetric point set
Q = {q1, . . . , qn} with rotation center c, the smallest possible value ε, so that Q
ε-approximates P , is ε = max{d(pi, qi)|1 ≤ i ≤ n} by definition. Rotating the point
pi around c counterclockwise by the angle (i − 1)α yields the point ri as defined
above. The corresponding point qi will be mapped to the point q1 when applying
the same rotation to it as for pi. Therefore minimizing the distance between pi and
qi corresponds to minimizing the distance between ri and q1.

Thus, computing a Dn-symmetric point set Q which minimizes ε corresponds to
computing a single point q1 minimizing max{d(ri, q1)|1 ≤ i ≤ n}.

For n given points, the point minimizing the maximal distance to all n points is
the center of the smallest enclosing disk.
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Let ε be the radius of the smallest enclosing disk, then

d(ri, q1) ≤ ε ⇔ d(ρ−(i−1)αc (ri), ρ
−(i−1)α
c (q1)) ≤ ε

⇔ d(pi, qi) ≤ ε

Therefore ε is the solution of the ε-SD computational problem for symmetry
group Dn with given rotation center c and order on P . Q = {q1, . . . , qn} is the
corresponding Dn-symmetric point set which ε-approximates P with respect to the
order on P .

For a visualization of this proof see Figure 3.3.1

p1

p2

p3

c

r2r3
q1

q2

q3

Figure 3.3.1: Illustration of the proof of Lemma 3.3.3 for symmetry group D3:
The red points are the points of P = {p1, p2, p3} rotated corresponding to the rota-
tional order (p1, p2, p3) on P . The smallest enclosing disk D of the points p1, r2, r3
is colored blue. The point q1 of the C3-symmetric point set Q is the blue center of
D. The remaining blue points are the points of Q defined by q1 and c.

Theorem 3.3.4. Algorithm 3.3.1 solves the ε-SD computational problem for sym-
metry group Dn with given rotation center c and order (p1, . . . , pn) on P in linear
time.

Proof. The correctness follows directly from Lemma 3.3.3. What remains to be done
is to analyze the running time. Computing the sets R and Q takes time O(n) since n
points are computed for each set and the computation of each point can be done in
constant time. The smallest enclosing disk of n points can be computed in linear time
using an algorithm given by Megiddo [30]. This results in an O(n) overall running
time.
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Algorithm 3.3.1 Algorithm for the ε-SD computational problem for symmetry
group Dn with given rotation center and given order on P .

SDDnOrderAndCenter(P = (p1, . . . , pn), c)
//Compute the rotation angle α for symmetry group Dn.
α = 2π

n ;
//Compute the set of rotated points of P according to the order on P .
R = ∅;
for i = 1 . . . n do
ri = ρ

(i−1)α
c (pi);

R = R ∪ {ri};
end for
D = SmallestEnclosingDisk(R);
q1 = D.Center();
//Compute the set Q from q1 and c.
Q = ∅;
for i = 1 . . . n do
qi = ρ

−(i−1)α
c (q1);

Q = Q ∪ {qi};
end for
//The radius of D is the solution of the ε-SD problem.
ε = D.Radius();
return ε;

One reason why we are able to solve the ε-SD computational problem for symme-
try group Dn in linear time is the knowledge of the rotational order on P . As stated
above, this order gives us the mapping between P and the Dn-symmetric point set
Q. We therefore know which angle to apply to each point pi ∈ P in order to compute
the set R. Different orders lead to different Dn-symmetric point sets Q and different
values ε. If no order on P is given, the question is to find the order on P which
results in the smallest value of ε.

Problem 3.1.6 (The ε-SD computational problem for symmetry group Dn and
rotation center c)

Given: A point set P ⊂ R2 and a rotation center c.

Task: Compute the smallest value ε ≥ 0 so that there is a Dn-symmetric point set
Q with rotation center c which ε- approximates P .

The polynomial time algorithm to solve this problem is more or less the same
as the one where the rotational order on the points is given. However, we need to
find a way to determine the order on P which results in the smallest value of ε.
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One simple way would be to consider all possible rotational orders on each subset.
Unfortunately, this is equivalent to the number of permutations of n numbers since
we need to compute all possibilities to map the n rotation angles in Λ = {iα|α =
2π
n , 0 ≤ i ≤ n − 1} to the points in P . The number of permutations of n numbers,
however, is n! which is not polynomial in n. Thus, this approach is not helpful in
order to find a polynomial time algorithm.

In Algorithm 3.3.1 we computed the smallest enclosing disk of the rotated points
in order to determine the optimal value of ε. We generated these points by rotating
each point in P by an angle defined by the rotational order on P .

Since we do not know the rotational order of the points, we do not know which
angle in Λ to apply to which point in P . We therefore compute n(n − 1) = Θ(n2)

points by rotating each of the n points in P by each of the n angles in Λ. By
r(i,l) = ρlαc (pi) we denote the point generated by rotating pi around c with angle
lα ∈ Λ.

Let R = {ri,l|1 ≤ i ≤ n, 0 ≤ l ≤ n−1} be the set of all rotational images of points
in P with respect to angles in Λ. Rotated points corresponding to one special order
on P are a set R ⊂ R, so that each point in P is represented by exactly one point
in R, thus r(i,l), r(i′,l′) ∈ R ⇔ i 6= i′ ∧ l 6= l′ and |R| = |P |. Each set R with these
properties defines a rotational order on P . For this order we can compute the value
of ε by taking the radius of the smallest enclosing disk of R as stated in Algorithm
3.3.1.

Since a smallest enclosing disk is defined by either two or three points, we compute
Θ(n4) disks defined by two points and Θ(n6) disks defined by three points from the
Θ(n2) points in R.

Each disk D we consider contains a subset R̃ ⊆ R of rotated points. We need to
check if there is a set R ⊆ R̃, |R| = n, so that the labels define a bijection between
the points in P and the angles in Λ. We use a matching algorithm on bipartite
graphs to solve this problem:

Lemma 3.3.5. Let a point set P , |P | = n and a rotation center c be given. Let
α = 2π

n and R = {r(i,l) = ρlαc (pi) |1 ≤ i ≤ n, 0 ≤ l ≤ n − 1} be the set of rotated
points of P . Let D be a disk defined by two or three points in R and let R̃ ⊂ R be the
points of R contained in D. We can decide in time O(M(n)) if R̃ contains a subset
of n points, so that the labels of these points describe a bijection between points in
P and angles in Λ, and therefore an order on P . M(n) is the time needed for the
computation of a perfect matching in a bipartite graph with O(n) vertices.

Proof. We reduce the problem of finding a subset of n points in R̃, so that the labels
of these points define a bijection between points in P and angles in Λ to the problem
of finding a perfect matching in a bipartite graph. Since the labels represent the
points in P on the one hand and the angles in Λ on the other hand, the two vertex
sets of the bipartite graph are the sets P and Λ. For each point r(i,l) ∈ R̃ we add
an edge between the vertices pi and αl = lα. This graph has a perfect matching
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iff exactly n edges exist, so that each vertex is incident to exactly one edge. This
is equivalent to a bijection between points in P and angles in Λ. We therefore can
solve the problem of deciding if there exists a set R ⊆ R̃, so that the labels define
a bijective mapping between P and Λ in O(M(n)) time. If such a perfect matching
exists, we get the rotational order on the points from the edges in the graph since
they model the correspondence between points and angles.

Figure 3.3.2 gives an illustration of the proof. The different shapes illustrate
the points whereas the different colors are used to distinguish between the rotation
angles. All rotational images of points with respect to the rotation angle π are colored
blue. The labels of the points are as described above. In the example in Figure 3.3.2
we consider the symmetry group D4, and therefore a point set containing four points
is depicted. Also, one of the possible Θ(n6) disks is shown. Below the point set we
see on the left hand side the graph with all edges corresponding to the points in the
circle. On the right hand side the matching edges are highlighted.
Using this matching algorithm we can adapt Algorithm 3.3.1 to the situation where
the rotational order is not known and get Algorithm 3.3.2.

Algorithm 3.3.2 Algorithm for the ε-SD computational problem for symmetry
group Dn with given rotation center c.

SDDnCenter(P = {p1, . . . , pn}, c)
1 Compute the set R as defined above.
2 Compute all disks defined by two or three points in R.
3 For each disk D compute the set R̃ = {r(i,l) ∈ R|r(i,l) is contained in D}.
4 Construct bipartite graph G = (P ∪ Λ,E), where E = {{pi, αl}|r(i,l) ∈ R̃}.
5 Use a matching algorithm for bipartite graphs to check, if G contains a perfect

matching.
6 If this is the case, compare the radius r of D to the current value of ε. If r < ε,

set ε = r.
7 After computing and checking all the disks, ε is the solution of the ε-SD compu-

tational problem for symmetry group Dn with given rotation center c.

We complete this section by proving the correctness and running time of Algo-
rithm 3.3.2.

Lemma 3.3.6. Algorithm 3.3.2 solves the ε-SD computational problem for symmetry
group Dn and with given rotation center c in O(n6 ·M(n)), where M(n) is the time
needed to decide if a bipartite graph with n vertices has a perfect matching.

Proof. The correctness follows from Lemma 3.3.5. What remains to be done is to
analyze the running time of Algorithm 3.3.2. The set R contains Θ(n2) points. Since
each disk considered is defined by at most three points of R, we need to consider
Θ(n6) disks in total. For each disk we need to construct a bipartite graph which
takes O(n2) time.
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Figure 3.3.2: Illustration of the proof of Lemma 3.3.5.

Computing a maximum matching in bipartite graphs can be done in
O
(√
|V1|+ |V2||E|

)
time by an algorithm given by Hopcroft and Karp [15] or in

O
(√

|V |3|E|
log |V |

)
time by an algorithm given by Alt et al. [3].

Another possibility to decide if the center of the computed disk D is the vertex of
the optimal regular n-gon is to use the bottleneck distance. For two point sets A
and B in the plane, the bottleneck distance minimizes the maximum distance be-
tween the points in A and B, where the mapping between A and B is a bijection.
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The bottleneck distance can be computed in time O(
√
nn log n) using an algorithm

by Efrat et al. [13].
We can replace the matching algorithm in Algorithm 3.3.2 by using the bottleneck

distance. For each disk D(r, q) defined by two or three points of the set R we can
check if the regular n-gon defined by the given rotation center c and q r-approximates
P by computing the bottleneck distance between P and the vertex set of the regular
n-gon and checking if it is smaller or equal to r.

Thus we can modify Algorithm 3.3.2 as follows:

Algorithm 3.3.3 Algorithm for the ε-SD computational problem for symmetry
group Dn with given rotation center c.

SDDnCenter(P = {p1, . . . , pn}, c)
1 Compute the set R as defined above.
2 Compute all disks defined by two or three points in R.
3 For each disk D = (r, q) compute the regular n-gon QD defined by c and q.
4 bD=BottleneckDistance(P,QD);
5 if bD ≤ r and r ≤ ε then
6 ε = r;
7 end if

Lemma 3.3.7. Algorithm 3.3.3 solves the ε-SD computational problem for symmetry
group Dn and with given rotation center c in O(n7

√
n log n) time.

Proof. The correctness arguments still hold and the running time of Algorithm 3.3.3
is then O(n6

√
nn log n) = O(n7

√
n log n).

Remark 3.3.8. The running time of Algorithm 3.3.3 is better than the running
time of Algorithm 3.3.2, since it is always possible that the bipartite graph contains
n2 edges. Nevertheless we state both results because of the following reasons:

1. Not all graphs constructed by Algorithm 3.3.2 contain n2 edges, a lot of those
graphs will only contain O(n) edges, thus a more careful analysis might result
in a better worst-case running time for Algorithm 3.3.2.

2. In Algorithm 3.3.2, the decision whether the center of a considered disk is a
vertex of the regular n-gon which ε-approximates the point set P is made only
on P . We need neither to compute the vertex nor the whole point set Q as it is
done by Algorithm 3.3.3. One could also think of improving the running time
by using a dynamic approach as for the algorithm considering symmetry group
C2. For the matching approach, dynamic matching can be used, since the
graph only changes in a constant number of edges, when passing from one disk
to the next. For the bottleneck distance approach, for each disk a completely
different point set Q needs to be computed which makes a dynamic approach
almost impossible.
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In the following algorithms we will also explain and analyze both approaches, due to
the above given arguments.

Theorem 3.3.9. Let a point set P ⊂ R2, |P | = n and a rotation center c ∈ R2 be
given. The ε-SD computational problem for symmetry group Dn with respect to c can
be solved in O(n7

√
n log n) time by using the bottleneck distance and in O(n6 ·M(n))

time, where M(n) is the time needed to decide if a bipartite graph with n vertices has
a perfect matching, by using matching in bipartite graphs.

Proof. The theorem follows from Lemma 3.3.7 and Lemma 3.3.6.

3.3.2 Rotation Center c Not Known

In this section we consider the ε-SD decision problem for symmetry group Dn. In
contrast to the last section, we are not given the rotation center of the Dn-symmetric
point set Q which ε-approximates P . The problem we investigate in this section is
defined as follows:

Problem 3.1.5 (The ε-SD decision problem for symmetry group Dn)

Given: A point set P ⊂ R2 and a value ε ≥ 0.

Question: Is there a Dn-symmetric point set Q which ε- approximates P?

Since we do not know the rotation center of the Dn-symmetric point set Q, we
need to compute it from the given point set P .

Again it is easier to consider the case where the rotational order on P is given:

Problem 3.3.10 (The ε-SD decision problem for symmetry group Dn with given
rotational order)

Given: A point set P ⊂ R2, a rotational order (p1, . . . , pn) on P and a value ε ≥ 0.

Question: Is there a Dn-symmetric point set Q and an order (q1, . . . , qn) so that
d(pi, qi) ≤ ε, for all 1 ≤ i ≤ n?

Problem 3.3.10 is a decision problem, we can therefore think of it as of finding a
regular n-gon Q = (q1, . . . , qn), so that qi lies in the disk Di with center pi and radius
ε, for all i ∈ {1, . . . , n}. Suppose such a regular n-gon exists, then the following holds:

Lemma 3.3.11. Let a point set P = (p1, . . . , pn), a rotational order on P and a
value ε ≥ 0 be given. Let Q = (q1, . . . , qn) be a regular n-gon with rotation center c,
so that d(pj , qj) ≤ ε. Let furthermore Dj be the disk with center pj and radius ε f.a
1 ≤ j ≤ n. Then D1 ∩ ρ(j−1)αc (Dj) 6= ∅ for all 1 ≤ j ≤ n, where α = 2π

n .
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Proof. Let rj = ρ
(j−1)α
c (pj) be the rotational image of pj with respect to the rotation

center c and angle (j − 1)α. D1 and ρ(j−1)αc (Dj) intersect, iff d(p1, rj) ≤ 2ε.

d(p1, rj) ≤ d(p1, q1) + d(q1, rj)

= d(p1, q1) + d(ρ−(j−1)αc (q1), ρ
−(j−1)α
c (rj))

= d(p1, q1) + d(qj , pj)

≤ ε+ ε

= 2ε

Lemma 3.3.11 gives us a hint where to find the unknown rotation center c. For
each pair (p1, pj) of ordered points we need to find the region of points so that
rotating the disk Dj around one point in that region by (j − 1)α results in a disk
which intersects D1. We call that region the apex region of D1 and Dj . We will see
in the oncoming algorithms and proofs that it does not suffice to consider the apex
regions of two disks but that we need to consider the apex regions defined by a point
and a disk.
We will use the following definitions:

Definition 3.3.12 (Apex Point and Apex Disk). .

1. For two points pi and pj and an angle α the apex point of pi and pj with respect
to α is the point aαi,j , so that pi = ραaαi,j

(pj).

2. For a point pi and a disk Dj the apex disk of pi and Dj with respect to α is
the set Dα

i,j = {aαi,j |aαi,j is the apex point of pi and pj ∈ Dj}.

For illustration see Figure 3.3.3.

In Lemma 3.3.13 we will show how to compute the apex point of two points with
respect to an angle α. In Lemma 3.3.15 we will prove the apex region defined by a
point, a disk and an angle α to be a disk and show how to compute its center and
radius.
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π
2

p1

p2

a
π
2
1,2

(a) Apex point defined by
p1, p2 and α = π

2
.

p1

p2
D2

D
π
2
1,2

(b) Apex disk defined by
p1, D2 and α = π

2
.

Figure 3.3.3: Illustration of Definition 3.3.12

Lemma 3.3.13. The apex point of two points pi and pj is the unique point

aαi,j =

(
(pyj−p

y
i )

2 tan(α2 )
+ 1

2(pxi + pxj ),
(pxi −pxj )
2 tan(α2 )

+ 1
2(pyi + pyj )

)

Proof. In the following computations we will denote the apex point by a.
By the definition of the apex point, rotating pj around a yields pi. So(
pxi

pyi

)
=

(
cosα − sinα

sinα cosα

)(
pxj − ax

pyj − ay

)
+

(
ax

ay

)
from this definition for the rotation around a, we get the following system of

equations:

pxi = (pxj − ax) cosα− (pyj − ay) sinα+ ax (I)

pyi = (pxj − ax) sinα+ (pyj − ay) cosα+ ay (II)

Sorting both equations, so that terms containing parts of the apex point a are
on the right side and all others are on the left side leads to the following system of
equations:

pxi − pxj cosα+ pyj sinα = ax(1− cosα) + ay sinα (III)

pyi − pxj sinα− pyj cosα = ay(1− cosα)− ax sinα (IV)

We eliminate ax by computing (V) = (sinα)(III) + (1− cosα)(IV):
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pxi sinα− pxj (sinα cosα+ sinα(1− cosα))

+pyi (1− cosα) + pyj (sin
2 α− (1− cosα) cosα)

=

ay(sin2 α+ (1− cosα)2) (V)

Which can be reformed to:

pxi sinα+ (1− cosα)pyi − pxj sinα+ pyj (1− cosα) = 2ay(1− cosα) (VI)

Therefore,

ay =
(pxi − pxj ) sinα

2(1− cosα)
+
pyi + pyj

2

Applying the value of ay to (II) :

ax sinα = pxj sinα+ pyj cosα− pyi + ay(1− cosα)

= pxj sinα+ pyj cosα− pyi +
1

2
((pxi − pxj ) sinα+ (pyi + pyj )(1− cosα))

=
1

2
(sinα(pxi + pxj ) + (1 + cosα)(pyj − p

y
i ))

and therefore,

ax =
(1 + cosα)(pyj − p

y
i )

2 sinα
+

(pxi + pxj )

2

What remains to be shown is sinα
(1−cosα) = 1

tan (α2 )
and (1+cosα)

sinα = 1
tan (α2 )

sinα

(1− cosα)
=

2 sin
(
α
2

)
cos
(
α
2

)
cos2

(
α
2

)
+ sin2

(
α
2

)
− cos2

(
α
2

)
+ sin2

(
α
2

)
=

2 sin
(
α
2

)
cos
(
α
2

)
2 sin2

(
α
2

)
=

cos
(
α
2

)
sin
(
α
2

)
=

1

tan
(
α
2

)
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(1 + cosα)

sinα
=

cos2
(
α
2

)
+ sin2

(
α
2

)
+ cos2

(
α
2

)
− sin2

(
α
2

)
2 sin

(
α
2

)
cos
(
α
2

)
=

2 cos2
(
α
2

)
2 sin

(
α
2

)
cos
(
α
2

)
=

cos
(
α
2

)
sin
(
α
2

)
=

1

tan
(
α
2

)

The distance between two apex points can be related to the distance between the
points defining those apex points.

Lemma 3.3.14. Let three points p1, p2, p3 and an angle α be given. Let aα1,2 be the
apex point defined by p1, p2 and α. Let aα1,3 be the apex point defined by p1, p3 and α.
Let d = d(aα1,2, a

α
1,3) denote the Euclidean distance between aα1,2 and aα1,3.

Then d(p2, p3) = d
√

2(1− cosα) = 2d sin
(
α
2

)
Proof. Iwanowski [18] proved in Lemma 2.4.6 of his thesis
d(p2, p3) = d

√
2(1− cosα).

That implies

d(p2, p3) = d
√

2(1− cosα)

= d

√
2
(

cos2
(α

2

)
+ sin2

(α
2

)
− cos2

(α
2

)
+ sin2

(α
2

))
= d

√
2
(

2 sin2
(α

2

))
= 2d sin

(α
2

)

Using Lemma 3.3.14 we can prove the apex region defined by a point p, a disk
D and an angle α to be a disk.

Lemma 3.3.15. Let a point p1 ∈ R2 a disk D2 ⊂ R2 and an angle α be given.
Let p2 be the center of D2 and let r be its radius. Then the apex region defined by
p1, D2 and α is a disk Dα

1,2 with center aα1,2 and radius r
2 sin(α2 )

, where aα1,2 is the apex

point defined by p1, p2 and α.

Proof. Let p̃ be a point in the disk D2, so d(p2, p̃) ≤ r. Let aα denote the apex point
defined by p1, p̃ and α. Then d(aα1,2, a

α) = d(p2,p̃)

2 sin (α2 )
≤ r

2 sin (α2 )
by Lemma 3.3.14.
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On the other hand, let aα be a point in Dα
1,2. Then there is a unique point

p̃ ∈ R2 so that aα is the apex point of p̃, p1 and α, by Lemma 3.3.13. What
remains to be shown is p̃ ∈ D2. By Lemma 3.3.14 d(p̃, p2) = d(aα1,2, a

α)2 sin
(
α
2

)
≤

2 sin
(
α
2

)
r

2 sin(α2 )
= r.

By the above Lemma 3.3.15 it is clear that for an angle α and a point c ∈ Dα
1,2 the

rotational image of D2 with respect to the rotation center c and angle α contains the
point p1. So points in the apex region seem to be good candidates for the rotation
center of Q.

The answer of the ε-SD decision problem for symmetry group Dn is simpler to
find if one point of the regular n-gon is known beforehand. This is a similar restriction
as in the previous section. There the rotation center of Q was given, but not the
location of the vertices. Now we suppose we are given one vertex of Q, but do not
know the rotation center.

Problem 3.3.16 (The ε-SD decision problem for symmetry group Dn with given
rotational order and given vertex of Q)

Given: A point set P with rotational order (p1, . . . , pn) and a value ε ≥ 0.

Question: Is there a Dn-symmetric point set Q = {p1, q2, . . . , qn} with order
(p1, q2, . . . , qn), so that d(pi, qi) ≤ ε, for all 2 ≤ i ≤ n?

The rotation center of Q lies in the intersection of the n − 1 apex disks defined
by p1 and the disks D2, . . . , Dn respectively. Here Dj is the disk with center pj and
radius ε, for all 2 ≤ j ≤ n. We will prove this in the following lemma:

Lemma 3.3.17. Let a point p1 ∈ R2 and n − 1 disks D2, . . . , Dn be given. Let
p2, . . . , pn be the centers of the disks and let each disk have radius ε. Let D(j−1)α

1,j

denote the apex disk defined by p1, Dj and angle (j−1)α, where α = 2π
n . Then there

is a regular n-gon Q = (p1, q2, . . . , qn), so that d(qj , pj) ≤ ε, for all 2 ≤ j ≤ n iff⋂
2≤j≤n

(
D

(j−1)α
1,j

)
6= ∅.

Proof. “⇒” Suppose the intersection of the apex disks is not empty. Let c be a point
in this intersection. By Lemma 3.3.15 the radius of D(j−1)α

1,j is ε

2 sin
(

(j−1)α
2

) . Thus,
d(c, a

(j−1)α
1,j ) ≤ ε

2 sin
(
(j−1)α

2

) ,
where a(j−1)α1,j is the apex point defined by p1, pj and (j−1)α. Let qj = ρ

−(j−1)α
c (p1).

Then (p1, q2, . . . , qn) is a regular n-gon with rotation center c. It remains to show
that d(qj , pj) ≤ ε. By Lemma 3.3.14

d(qj , pj) ≤ 2 sin

(
(j − 1)α

2

)
d(c, a

(j−1)α
1,j ) = 2 sin

(
(j − 1)α

2

)
ε

2 sin
(
(j−1)α

2

) = ε
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“⇐” Suppose there exists a regular n-gon Q = (p1, q2, . . . , qn) so that d(pj , qj) ≤ ε.
Let c be its rotation center. We need to show that c ∈ D(j−1)

1,j for all 2 ≤ j ≤ n.

d(c, a
(j−1)α
1,j ) =

d(qj , pj)

2 sin
(
(j−1)α

2

) ≤ ε

2 sin
(
(j−1)α

2

)
where the first equality holds by Lemma 3.3.14.
Thus c is in the intersection of the apex disks and it is therefore not empty. This
completes the proof.

Using Lemma 3.3.17 we can state Algorithm 3.3.4 which solves the ε-SD decision
problem with given rotational order and vertex of Q in linear time.

Algorithm 3.3.4 Algorithm for the ε-SD decision problem for symmetry group Dn

with given rotational order and vertex of Q.

SDDnPartitionAndVertex((p1, p2, . . . , pn), ε)
α = 2π

n ;
for j = 2 to n do
Compute the apex disk D(j−1)α

1,j defined by p1, pj and (j − 1)α and ε;
end for
//disksIntersect is a procedure which decides if the intersection of the given disks
is not empty.
return disksIntersect(Dα

1,2, D
(2)α
1,3 , . . . , D

(n−1)α
1,n );

Theorem 3.3.18. Algorithm 3.3.4 solves the ε-SD decision problem for symmetry
group Dn with given order and vertex of Q in O(n) time.

Proof. The correctness follows from Lemma 3.3.17. The computation of the O(n)

apex disks needs constant time per disk and can therefore be done in linear time.
We can also test in O(n) if O(n) disks intersect by an algorithm of Reichling [35].
Therefore, the overall running time is O(n).

Again, as in Section 3.3.1, we can do without the knowledge of the rotational order
of the input points by using a matching algorithm on bipartite graphs. In Section
3.3.1 we rotated each input point by each possible rotation angle. Afterwards we
labeled the resulting points by the number of the original point and the number of
the rotation angle. We computed all possible disks defined by rotated point and
tested if the labels of the points contained in that disk contain a matching in a
bipartite graph defined by points, angles and labels.

We can apply the same arguments to the case where one vertex of Q is given but
no rotational order on the input points is known. Since we do not know the rotational
order one parameter for the computation of the apex disk is missing. For each point
pj ∈ {p2, . . . , pn} we will therefore compute all apex disks defined by p1, pj and an
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angle αi ∈ Λ = {iα|1 ≤ i ≤ n− 1}. As a result we will get Θ(n2) apex disks which
we denote by Diα

1,j . Analogous to Algorithm 3.3.2 we will test for all intersections of
the apex disks if the labels of the intersecting disks define a perfect matching in a
bipartite graph. Again we will construct one bipartite graph for each intersection.
The vertex sets are the point set {p2, . . . , pn} on one side and the set Λ on the other
side. We will add an edge between point pj and angle αi iff the intersection of the
apex disk Diα

1,j and the considered intersection region is not empty.

Algorithm 3.3.5 Algorithm for the ε-SD decision problem for symmetry group Dn

with given vertex of Q.

SDDn(P = (p1, p2, . . . , pn), ε)
answer = NO

α = 2π
n

for j = 2 to n do
for i = 1 to n− 1 do
Compute the apex disk Diα

1,j defined by p1, pj and iα
end for

end for
Compute the arrangement of all disks in D{iα1,j |2 ≤ j ≤ n, 1 ≤ i ≤ n− 1};
//Traverse the arrangement by depth first search.
for all regions D in the arrangement do
Build bipartite graph G = ({p2 . . . , pn}∪{α1, . . . , αn−1}, E), where (pj , αi) ∈ E
iff D ∩Diα

1,j 6= ∅
answer = (answer) ∨ (G contains perfect matching);

end for
return answer;

Lemma 3.3.19. Algorithm 3.3.5 solves the ε-SD decision problem for symmetry
group Dn with given vertex of Q in time O(n4M(n)), whereM(n) is the time required
to test if a perfect matching in a bipartite graph exists.

Proof. The correctness follows from the correctness of Algorithm 3.3.4 and Lemma
3.3.6. What remains to be done is to analyze the running time. Since we construct
O(n2) apex disks, we will get an arrangement of disks with O(n4) cells. This arrange-
ment can be computed in O(n4) time by using an algorithm stated by Amato et al.
[4]. For each cell we need to compute the bipartite graph and test if a perfect match-
ing exists. Thus the running time is O(n4M(n)), where M(n) is the time needed to
test if a bipartite graph with O(n) vertices contains a perfect matching.

Dynamic Matching

We can reduce the running time by using a dynamic matching algorithm, see Section
3.2.2. We construct a graph G which represents the arrangement of the O(n2) apex
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disks. Each intersection of two disks defines a vertex of G and two vertices are
connected by an edge if they are neighbors on the boundary of a disk. Thus there
are O(n4) vertices and O(n4) edges in G. G is a planar graph and it and its faces can
be computed in O(n4 log n) time by using an naive algorithm. We can then traverse
the arrangement of the apex disk via the edges of this graph by computing the dual
graph Ĝ in O(n2) and traverse it.
When traversing the arrangement of disks via the circular arcs, the number of apex
disks which contain the considered intersection region increases or decreases by one.
Thus we need to perform at most one insert edge and one delete edge operation to the
dynamic graph while traversing from one intersection region to the next. After each
step, the time needed to recompute the maximum matching of the dynamic graph
is O(n2) since the graph contains O(n2) edges at any time. Thus the running time
can be reduced to O(n4n2) = O(n6). This improves the running time of Algorithm
3.3.5:

Lemma 3.3.20. The ε-SD decision problem for symmetry group Dn with given ver-
tex of Q in can be decided in O(n6) time by using dynamic matching.

Bottleneck Distance

As in Algorithm 3.3.3 the bottleneck distance can be used in order to decide for each
cell in the arrangement of disks if it gives a solution to the problem. The running time
is then O(n4n

√
n log n) = O(n5

√
n log n) since the bottleneck distance is applied to

a regular n-gon defined by a point from each cell and the known vertex q.

Lemma 3.3.21. The ε-SD decision problem for symmetry group Dn with given ver-
tex of Q in can be decided in O(n5

√
n log n) time by using the bottleneck distance.

Theorem 3.3.22. Let a point set P ⊂ R2, |P | = n and a point v ∈ R2 be given.
The ε-SD decision problem for symmetry group Dn where v is a vertex of Q can
be decided in time O(n6) by using dynamic matching and in time O(n5

√
n log n) by

using the bottleneck distance.

Proof. The theorem follows from Lemma 3.3.20 and Lemma 3.3.21.

We will now generalize the above algorithm to the case where neither the rotation
center nor a vertex of the regular n-gon is known. Let us again consider the input
as a set of disks D1, . . . , Dn, where Di has center pi and radius ε, for all 1 ≤ i ≤ n.
Algorithm 3.3.5 decides the ε-SD decision problem for symmetry group Dn if p1 is
forced to be a vertex of the regular n-gon. There, one point in the intersection of the
apex disks together with the known vertex of Q uniquely defines the regular n-gon.

For the general version of the ε-SD decision problem for symmetry group Dn,
which we will solve now, neither the rotation center nor a vertex of Q is known. At
least one vertex of Q can be forced to lie on the boundary of a disk with radius ε
centered at a point p ∈ P .
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Lemma 3.3.23. Let a point set P , |P | = n and a value ε ≥ 0 be given. If there
exists a Dn-symmetric point set Q which ε-approximates P then there exists a Dn-
symmetric point set Q̃ which ε-approximates P and d(p, f̃(p)) = ε for at least one
point p ∈ P .

Proof. Let Q be the regular n-gon which ε-approximates P and let c be its rotation
center. Suppose no vertex of Q lies on the boundary of the ε-disk around its corre-
sponding point in P . Then the radius of the regular n-gon Q can be increased until
one vertex lies on the boundary of the disk with radius ε around its corresponding
point in P . See Figure 3.3.4 for illustration.

The vertex of the regular n-gon Q is therefore defined by one parameter, namely
the angle β which denotes the vertex’ location on the boundary of the disk centered
at one point of P . We assume this point to be p1 ∈ P for a moment.

We therefore need to define apex regions Aα1,j for D1, Dj and α so that the
intersection of the regions Aα1,2, . . . ,Aα1,n defines the rotation center of Q as well as
one vertex and therefore Q itself.

c

p1

p2

p3

p4

q1

q2

q3

q4

q̃1

q̃2

q̃3

q̃4

Figure 3.3.4: Illustration of Lemma 3.3.23

Definition 3.3.24 (Apex Region). Let two disks D1 and Dj with centers p1 and pj ,
resp. and radius ε and an angle α be given. The apex region of D1 and Dj with
respect to α is defined as:

Aα1,j = {(β, a)|a ∈ Dα
1,j(β), 0 ≤ β ≤ 2π}.

Here Dα
1,j(β) is the apex disk defined by pj , q(β) = (ε cosβ, ε sinβ) + p1 and α.

The apex region of p1 and pj is a three-dimensional object. The three dimensions
are given by the x- and y-coordinates of the point a ∈ Dα

1,j(β) and the value of β.
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For each fixed β the region is the apex disk defined by Dj and q(β). When β changes,
the apex disk rotates around the apex point defined by p1, pj and α. Thus the apex
region Aα1,j is a helix in R3. An illustration is given in Figure 3.3.5

We can state an analogous theorem considering the apex regionsAα1,2, . . . ,A
(n−1)α
1,n

as Lemma 3.3.17. Again, for simplicity, we will assume that a rotational order on P
is given.

p1

pj

q(β)

a
π
2
1,j(β)

a
π
2
1,j

Figure 3.3.5: Illustration of the apex region defined by two disks.

Lemma 3.3.25. Let a point set P = (p1, . . . , pn), a rotational order on P and a
value ε ≥ 0 be given. Furthermore, let Dj denote the disk with center pj and radius
ε, for all 1 ≤ j ≤ n. Let A(j−1)α

1,j be the apex region defined by D1, Dj and (j − 1)α,
where α = 2π

n . There is a regular n-gon Q = (q1, . . . , qn) so that qj ∈ Dj, for all

2 ≤ j ≤ n and q1 is on the boundary of D1 iff
⋂

1≤j≤n

(
A(j−1)α

1,j

)
6= ∅.

Proof. “⇒” Suppose there is a regular n-gon which ε-approximates P and q1 lies
on the boundary of D1 and let q1 = (ε cosβ, ε sinβ) + p1. Then the apex disks
D
αj
1,j(β), 2 ≤ j ≤ n all intersect by Lemma 3.3.17. Thus

⋂
1≤j≤n

(
A(j−1)α

1,j

)
6= ∅ holds.

“⇐” Suppose
⋂

1≤j≤n

(
A(j−1)α

1,j

)
6= ∅. Let (β, c) be a point in this intersection region.

Then c ∈ D(j−1)
1,j (β) for all 2 ≤ j ≤ n. Thus by Lemma 3.3.17 there exists a regular

n-gon Q which ε-approximates P . Q is defined by c and q(β), therefore the vertex
q(β) of Q lies on the boundary of D1 by construction.
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Using Lemma 3.3.25 we can state a polynomial time algorithm solving the
ε-SD decision problem for symmetry group Dn with given order on P . In the case
where we assume one vertex of Q to lie on D1 we need to test, if all apex regions
A(j−1)α

1,j , 2 ≤ j ≤ n intersect. We do not know which vertex of Q lies on the boundary
of the disk centered at the corresponding point of P . Thus we need to iterate the
procedure over all points in P .

Algorithm 3.3.6 Algorithm solving the ε-SD decision problem for symmetry group
Dn with given order.

SDDnOrderKnown(P = (p1, . . . , pn), ε)
result = FALSE;
α = 2π

n ;
for i = 1 to n do
for j = 1 to n, i 6= j do
Compute the apex region A((j−i) mod n)α

i,j defined by Di, Dj

and ((j − i) mod n)α and ε;
end for

result = result ∨
( ⋂

1≤j≤n

(
A((j−i) mod n)α
i,j

)
6= ∅
)
;

end for
return result;

Theorem 3.3.26. Algorithm 3.3.6 solves the ε-SD decision problem for symmetry
group Dn with given rotational order in time O(n6) time.

Proof. The correctness of Algorithm 3.3.6 follows from Lemma 3.3.25. What remains
to be done is to analyze the running time. For each point pi, 1 ≤ i ≤ n we need to
compute the arrangement of n−1 apex regions and test if they intersect. Basu et al.
[7] stated an algorithm for computing a point from each cell of the arrangement of
a set of n hypersurfaces in Rd each of degree at most b in time O(nd+1bO(d)) (see
also the book of Sack and Urrutia [37]). Using this result, one can compute a point
in each cell of the arrangement of apex regions in time O(n4) and for each point we
need to test if it is contained in all apex regions. We iterate over all points in P .
The overall running time is O(n6).

In order to finally state an algorithm solving the ε-SD decision problem for sym-
metry group Dn we will need to decide if there is a rotational order on P , so that
applying Algorithm 3.3.6 results in the answer YES. We will again use the same
technique as for the case where a vertex of Q was given. For all i ∈ {1, . . . , n} we
will compute all apex regions Alαi,j , 2 ≤ j ≤ n and 1 ≤ l ≤ n − 1. We then will
compute all intersections and apply the matching argument as in Algorithm 3.3.5.
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Lemma 3.3.27. Algorithm 3.3.7 solves the ε-SD decision problem for symmetry
group Dn in time O((n9M(n)).

Proof. The correctness follows from the correctness of Algorithm 3.3.6 and the match-
ing argument.
What remains to be done is to analyze the running time. For each point p ∈ P

we compute O(n2) apex regions in R3. We can compute a point in each cell of the
arrangement in time O(n8) by using the result of Basu et al. [7] (see proof of The-
orem 3.3.26). For each cell we need to construct the bipartite graph and test if a
perfect matching exists. This takes time O(M(n)) per cell where M(n) is the time
needed to compute a maximum matching. We iterate over all points in P . Thus the
overall running time is O(n8M(n)n) = O(n9M(n)).

Algorithm 3.3.7 Algorithm for the ε-SD decision problem for symmetry group Dn.

SDDn(P = {p1, . . . , pn}, ε)
answer = NO

α = 2π
n

for i = 1 to n do
for j = 1 to n, i 6= j do
for l = 1 to n− 1 do
Compute the apex disk Alαi,j defined by pi, pj and lα

end for
end for
for Intersection regions A do
Build bipartite graphsGi = ({p2 . . . , pn}∪{α1, . . . , αn−1}, E), where (pj , αl) ∈
E iff A ∩Alαi,j 6= ∅
answer = (answer) ∨ (Gi contains perfect matching);

end for
end for
return answer;

Bottleneck Distance

The bottleneck distance can be used in order to decide for each of the O(n8) cells in
the arrangement of apex regions if it gives a solution to the problem. Applying the
bottleneck distance takes O(n

√
n log n) time. We need to iterate over n points, thus

the running time is O(n8nn
√
n log n) = O(n10

√
n log n).

Lemma 3.3.28. The ε-SD decision problem for symmetry group Dn with given ver-
tex of Q in can be decided in O(n10

√
n log n) time by using the bottleneck distance.
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Theorem 3.3.29. Let a point set P ⊂ R2, |P | = n and a value ε > 0 be given.
The ε-SD decision problem can be solved in time O(n9M(n)) by using matching in
bipartite graphs or in time O(n10

√
n log n) by using bottleneck distance.
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3.4 The ε-SD Problem for Symmetry Group Ck

In this Section we will state polynomial time algorithms solving the ε-SD problem
for symmetry group Ck where a partition of the input set P of size |P | = km into m
subset of size k each is given. In contrast to Section 3.3, the symmetry group order
is not dependent on the size of the input set. Again, we consider two cases. In the
first case the rotation center c of the Ck-symmetric point set Q is given. Here we
are able to solve the computational problem in polynomial time. The second case
we consider is the one where the rotation center is not known beforehand. For this
case we present a polynomial time algorithm for the decision problem.
For both variations of the ε-SD problem we can use the results of Section 3.3. Each
partition set Pi, 1 ≤ i ≤ m has size k, which is exactly the number of the symmetry
group we consider. The following lemma shows that we can use the partition sets in
order to compute the Ck-symmetric point set Q for the input set P .

Lemma 3.4.1. Let a point set P , |P | = mk and a partition of P into m subsets
P1 . . . , Pm of size |Pi| = k, 1 ≤ i ≤ m each be given. Let Q be a Ck-symmetric
point set which ε-approximates P . Then there is a partition of Q into m subsets
Q1 . . . , Qm of size |Qi| = k each so that Qi ε-approximates Pi for all 1 ≤ i ≤ m.

Proof. Let Q be the Ck-symmetric point set which ε-approximates P . Thus there is
a bijection f : P → Q, so that d(p, f(p)) ≤ ε for all p ∈ P . Let Qi = {f(p)|p ∈ Pi}
for all 1 ≤ i ≤ m. Then Qi contains k elements. Since f is a bijection, Qi ∩Qj = ∅,
for i 6= j. For all 1 ≤ i ≤ m, Qi ε-approximates Pi by the definition of Qi.

The basic idea of the two algorithms, the one for the case where the rotation
center is known and the other for the case where the rotation center is not known, is
to solve the ε-SD problem for the partition sets independently and use the results in
order to solve the ε-SD problem for the whole input set P . For the case where the
rotation center of the Ck-symmetric point set Q is given beforehand, the following
lemma explains how to combine the results for the partition sets P1, . . . , Pm to a
result for the whole point set P .

Lemma 3.4.2. Let a point set P , a partition of P into subsets of size k each, a
symmetry group Ck and a rotation center c be given. Let furthermore Q1, . . . , Qm be
Dk-symmetric point sets of size k all having c as their rotation center. Let Qi∩Qj = ∅
for i 6= j. Suppose Qi εi-approximates Pi, for 1 ≤ i ≤ m. Then Q =

⋃
1≤i≤m

(Qi) is a

Ck-symmetric point set which ε-approximates P and ε = max{εi|1 ≤ i ≤ m}.

Proof. Since Qi εi-approximates Pi, there is a bijection fi : Pi → Qi so that
d(p, fi(p)) ≤ εi for all 1 ≤ i ≤ m. We can use these bijections in order to de-
fine a bijection between P and Q. So f : P → Q and f(p) = fi(p), for p ∈ Pi. Since
the sets Qi do not intersect, f is well defined and a bijection. It remains to show
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that Q ε-approximates P .

d(p, f(p)) = d(p, fi(p)), p ∈ Pi
≤ εi

≤ ε

since ε = max{εi|1 ≤ i ≤ m}.
Thus, Q ε-approximates P . Q is Ck-symmetric since all subsets Q1, . . . , Qm are
Dk-symmetric and they all have the same rotation center c. Thus

ρ
( 2π
k )

c (Q) = ρ
( 2π
k )

c

 ⋃
1≤i≤m

(Qi)


=

⋃
1≤i≤m

(
ρ
( 2π
k )

c (Qi)

)
=

⋃
1≤i≤m

(Qi)

= Q

Note that although the point sets Qi, 1 ≤ i ≤ m are Dk-symmetric, this is not
the case for the point set Q in general (see Figure 3.4.1). Q is only Dk symmetric
in the case where all partition sets Qi, 1 ≤ i ≤ m are symmetric with respect to
the same reflection line or if the union of t < m partition sets is a Dtk-symmetric
point set and is symmetric with respect to the same reflection line as the remaining
partition sets (see Figure 3.4.2).

3.4.1 Rotation Center Known

We start by investigating the variation of the ε-SD decision problem where the ro-
tation center as well as a partition of P into m subsets of size k each is given.

Problem 3.1.7 (The ε-SD computational problem for given partition of P and a
given rotation center c.)

Given: A point set P ⊂ R2, |P | = mk, a symmetry group Ck, a partition of P into
m subsets P1, . . . , Pm of size |Pi| = k, 1 ≤ i ≤ m each and a rotation center c.

Task: Compute the smallest value ε ≥ 0, so that there exists a Ck-symmetric point
set Q and a partition of Q into m subsets Q1, . . . , Qm all of size k, all subsets
having symmetry group Dk and rotation center c, so that Qi ε-approximates
Pi, for all 1 ≤ i ≤ m.



110 CHAPTER 3. ε-SYMMETRY DETECTION

Figure 3.4.1: In general, the reflection lines of the Dk-symmetric partition sets do
not coincide, and therefore the union of these sets is not Dk-symmetric but Ck-
symmetric. For each partition set one reflection line is depicted.
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(a) All partition sets are symmetric with respect to the same
reflection lines (dotted).

(b) The blue and green subsets are not symmetric with respect to the
reflection lines of the red subset, but their union is D8-symmetric with
respect to the same reflection line as the red point set.

Figure 3.4.2: Examples of a D4-symmetric point set. The different partition sets are
indicated by different colors. Each partition set on its own is D4-symmetric.
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In the previous section, we solved the ε-SD computational problem for point sets
P , symmetry group D|P | and a given rotation center c. Since in this section, |Pi| = k

and we consider the symmetry group Ck, we can apply the algorithm developed in the
previous section for each partition set Pi, symmetry group D|Pi| and rotation center
c separately. For each partition set Pi the result is a value εi ≥ 0. By Lemma 3.4.2
we know that if for each partition set Pi there exists a Dk-symmetric point set Qi
with rotation center c which ε-approximates Pi, then there is a Ck-symmetric point
set Q with rotation center c which ε-approximates the whole point set P . By taking
ε = max{εi|1 ≤ i ≤ m} we get the solution of the ε-SD computational problem for
point set P , a partition of P into m subsets of size k, a given rotation center c and
symmetry group Ck.

An algorithm solving the ε-SD computational problem for a point set P , a given
partition of P into m subsets for size k each, a given rotation center c and symmetry
group Ck with polynomial running time is given in Algorithm 3.4.1.

Algorithm 3.4.1 Algorithm for the ε-SD computational problem for symmetry
group Ck with given partition of P and rotation center c.

SDCkPartition({P1, . . . , Pm}, c)
ε = 0;
for i = 1 to m do
εtemp = SDD|Pi|Center(Pi, c);
if εtemp > ε then
ε = εtemp;

end if
end for
return ε.

We complete this section by proving the correctness and analyzing the running
time of Algorithm 3.4.1.

Theorem 3.4.3. Algorithm 3.4.1 solves the ε-SD computational problem for sym-
metry group Ck with given partition of P and rotation center c in time O(nk5M(k)).
Here M(k) denotes the time for computing a perfect matching in bipartite graphs
with k vertices.

Proof. The correctness follows from Lemma 3.4.2 and Lemma 3.4.1. The algorithm
for SDC|P|Center() is given in Algorithm 3.3.2. Since each partition set Pi has size
k, the time needed to compute SDD|P|Center(Pi) is O(k6M(k)). Since we execute
Algorithm 3.3.2 m times, the running time of Algorithm 3.4.1 is O(mk6M(k)) =

O(nkk
6M(k)) = O(nk5M(k)).
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Remark 3.4.4. For some inputs it might be the case, that Qi = Qj for i 6= j, where
Qi and Qj ε-approximate Pi and Pj , respectively. In this case we allow Q to be a
multiset.

Remark 3.4.5. The complexity of M(k) can be taken from the proof of Lemma
3.3.6. Note that the running time of Algorithm 3.4.1 is linear if the symmetry group
order is bounded by a constant number. This is the case in most of the realistic
inputs we have considered in Chapter 2. Here we consider symmetry groups Ck
where k ≤ 12 in most of the cases. The input sets may contain hundreds of points
and are partitioned into subsets of more or less constant size. Thus we apply a
constant time algorithm to m = O(n) subsets.

With the same arguments we can state a polynomial time algorithm for the ε-
SD computational problem for symmetry group Ck where the rotation center c, the
partition of P and additionally a rotational order on each partition set is given.
In Algorithm 3.4.1 we do not need the knowledge of the rotational order to give a
polynomial time algorithm. However, if the rotational order of each partition set is
known, the running time decreases significantly. In Section 3.5 we will have the case,
where we know the rotation center and can compute (under certain assumptions) the
partition of P as well as the rotational order on the partition sets in polynomial time
from the input set P . Thus, we state Algorithm 3.4.2 which we will use in Section
3.5:

Algorithm 3.4.2 Algorithm for the ε-SD computational problem for symmetry
group Ck with given partition of P , rotational order on the partition sets and rotation
center c.

SDCkPartitionOrder({(p(1,1), . . . , p(1,k)), . . . , (p(m,1), . . . , p(m,k))}, c)
ε = 0;
for i = 1 to m do
εtemp = SDD|Pi|OrderAndCenter((p(i,1), . . . , p(i,k)), c);
if εtemp > ε then
ε = εtemp;

end if
end for
return ε.

We prove the correctness and analyze the running time of Algorithm 3.4.2 in the
following theorem.

Theorem 3.4.6. Algorithm 3.4.2 solves the ε-SD computational problem for sym-
metry group Ck with given partition of P , rotational order on the partition sets and
rotation center c in time O(n).

Proof. The correctness follows from the correctness of Algorithm 3.3.1 and from
Lemma 3.4.2 and Lemma 3.4.1. Algorithm 3.3.1 has running time O(k) and is called
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m times, thus the overall running time is O(mk) = O(n).

3.4.2 Rotation Center Not Known

The first problem we will investigate in this section is the ε-SD decision problem with
given partition of P into m subsets of size k each and given rotational order on each
of these partition sets. Afterwards, we will consider the case where only a partition
of P into m subsets of size k each is given but no rotational order is known.

Problem 3.1.8 (The ε-SD decision problem for given partition of P and given
rotational orders on each partition set.)

Given: A set P ⊂ R2, |P | = mk, a symmetry group Ck, a value ε ≥ 0, a partition
of P into m subsets P1, . . . , Pm of size k each and a rotational order on each
partition set.

Question: Is there a Ck-symmetric point set Q and a partition of Q into subsets
Q1, . . . , Qm, all of size k and all having symmetry group Dk, so that Qi ε-
approximates Pi with respect to the rotational order on Pi for all 1 ≤ i ≤ m?

This problem was already investigated and solved in polynomial time by Iwanowski
[18]. We will use the same ideas for our algorithm. We will state them by using the
above defined apex points. The analysis of the running time given by Iwanowski
[18] is based on the complexity of the considered arrangement but does not take into
account the time needed to compute the arrangement. We will present a detailed
analysis of the running time of the algorithms.

The crucial point in the algorithm solving Problem 3.1.8 is to determine for each
partition set Pi, 1 ≤ i ≤ m the set of points which serve as a rotation center of a
regular k-gon Qi which ε-approximates Pi and to test if all these m point sets have
a common intersection.

As we already saw in Section 3.3, a rotation center c is the center of a regular
k-gon Qi which ε-approximates Pi, iff the radius of the smallest enclosing disk of the
points of Pi rotated around c with respect to their given rotational order is smaller
or equal to ε.

The radius of a smallest enclosing disk of a set Ri of rotated points defined by
points in Pi and the rotational order defined on Pi is smaller or equal to ε iff the
radius of each enclosing disks of subsets of three points in Ri is smaller or equal to
ε (see Iwanowski [18]).

Consider a triple of points p1, p2, p3 of a partition set and let α1, α2, α3 be the
angles defining the rotational order of these three points within their set. Let r be
the radius of the smallest enclosing disk of ρα1

c (p1), ρ
α2
c (p2), ρ

α3
c (p3). Then r ≤ ε if

and only if one of the following conditions holds:
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1. The radius of the disk with ρα1
c (p1), ρ

α2
c (p2), ρ

α3
c (p3) on the boundary is smaller

or equal to ε.

2. d(ρα1
c (p1), ρ

α2
c (p2)) ≤ 2ε and

d(ρα1
c (p1), ρ

α2
c (p2))

2 ≥ d(ρα1
c (p1), ρ

α3
c (p3))

2 + d(ρα2
c (p2), ρ

α3
c (p3))

2

3. d(ρα1
c (p1), ρ

α3
c (p3)) ≤ 2ε and

d(ρα1
c (p1), ρ

α3
c (p3))

2 ≥ d(ρα1
c (p1), ρ

α2
c (p2))

2 + d(ρα2
c (p2), ρ

α3
c (p3))

2

4. d(ρα2
c (p2), ρ

α3
c (p3)) ≤ 2ε and

d(ρα2
c (p2), ρ

α3
c (p3))

2 ≥ d(ρα1
c (p1), ρ

α2
c (p2))

2 + d(ρα1
c (p1), ρ

α3
c (p3))

2

The first condition is true in the case where the smallest enclosing disk with radius
smaller or equal to ε is defined by all three points, where the other three conditions
describe the case where the radius of the smallest enclosing disk with radius smaller
or equal to ε is defined by two of the three points.

For two points pi and pj with associated angles αi and αj let ai,j be the apex point
defined by pi, pj , and the angle |αi−αj |. Then by Lemma 3.3.14 d(ραic (pi), ρ

αj
c (pj)) =

2 sin
(
|αi−αj |

2

)
d (c, ai,j).

We can therefore rewrite the conditions in terms of apex points:

1. The radius of the disk defined by the vertices of a triangle with side lengths
2 sin

(
α1−α2

2

)
d(a1,2, c), 2 sin

(
α1−α3

2

)
d(a1,3, c), 2 sin

(
α2−α3

2

)
d(a2,3, c) is smaller

or equal to ε.

2. 2 sin
(
α1−α2

2

)
d(a1,2, c)) ≤ 2ε and(

2 sin
(
α1−α2

2

)
d(a1,2, c)

)2 ≥ (2 sin
(
α1−α3

2

)
d(a1,3, c)

)2
+
(
2 sin

(
α2−α3

2

)
d(a2,3, c)

)2
3. 2 sin

(
α1−α3

2

)
d(a1,3, c)) ≤ 2ε and(

2 sin
(
α1−α3

2

)
d(a1,3, c)

)2 ≥ (2 sin
(
α1−α2

2

)
d(a1,2, c)

)2
+
(
2 sin

(
α2−α3

2

)
d(a2,3, c)

)2
4. 2 sin

(
α2−α3

2

)
d(a2,3, c)) ≤ 2ε and(

2 sin
(
α2−α3

2

)
d(a2,3, c)

)2 ≥ (2 sin
(
α1−α3

2

)
d(a1,3, c)

)2
+
(
2 sin

(
α1−α2

2

)
d(a1,2, c)

)2
Remark 3.4.7. The radius r of the disk defined by the three side length a, b and
c of a triangle is given by r = a

sin(α) , where α is the angle opposite to the side with

length a. Also, cos(α) = a2−b2−c2
−2bc and therefore

r ≤ ε⇔ r2 =
a2

4
(

1− a2−b2−c2
−2bc

) ≤ ε2
Using these conditions we can test for the existence of a regular k-gon which
ε-approximates Pi:
There is a regular k-gon Qi which ε-approximates Pi iff there is a point c so that for
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all triple of points of Pi one of these four conditions holds. This was already proven
by Iwanowski [18].

Each of these conditions is given by a polynomial which defines a suitable region
in R2. By using an algorithm of Basu et al. [7] we can compute a point of each cell
of the arrangement of these regions. If and only if there is a regular k-gon which
approximates Pi then there is one whose rotation center is one of the points computed
by the algorithm of Basu et al. [7]. This can be seen as follows:
In the case where there is a regular k-gon which ε-approximates Pi, its rotation
center c fulfills one of the conditions defined above for each triple of Pi. Thus the
corresponding regions of all these triples intersect. On the other hand, if for each
triple of points one of the conditions are fulfilled for the same point c, then it is a
rotation center with the property that all smallest enclosing disks have radius smaller
or equal to ε. Thus there is a regular k-gon with rotation center c which approximates
Pi.
For one partition set we need to compute the arrangement of 7k3 regions and test
for each point representing a cell of the arrangement if it is the rotation center of a
regular k-gon ε-approximating Pi.

A Ck-symmetric point set Q which ε-approximates P is the union of m regular
k-gons Q1, . . . , Qm all having the same rotation center and Qi ε-approximates Pi,
1 ≤ i ≤ m. For each partition set we compute the regions for each triple of points
given by the above conditions. We then consider the arrangement of all these regions
of all partition sets. We ask for a point c with the property, that at least one condition
is fulfilled for each triple of points within the partition sets. Again we can apply the
algorithm of Basu et al. [7] in order to compute a set of points representing each
cell of the arrangement. For each point we check, if it is the rotation center of a
Ck-symmetric point set which ε-approximates P .

Theorem 3.4.8. Let a point set P , |P | = mk = n, a partition of P into m subsets
of size k each and a rotational order on each subset be given. Algorithm 3.4.3 decides
the ε-SD decision problem for symmetry Ck and point set P in time O

(
n4k6

)
Proof. The correctness follows from the above observations and was proven by
Iwanowski [18]. What remains do be done is to analyze the running time. Com-
puting a point of each cell of the arrangement of O

(
mk3

)
regions in R2 takes

time O
(
(mk3)3

)
= O

(
m3k9

)
by using the algorithm of Basu et al. [7]. There

are O
(
m3k9

)
cells and thus O

(
m3k9

)
rotation center candidates need to be tested.

For each rotation center candidate it takes O(n) time to test if it is the center of a
Ck-symmetric point set which ε-approximates P . Thus the overall running time is
O
(
m3k9n

)
= O

(
n4k6

)
.

We can generalize the above ideas in order to state a polynomial time algorithm
deciding the ε-SD decision problem in the case where the rotational orders of the
partition sets are not part of the input. This is a variant of the ε-SD problem which
was not considered so far.
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Algorithm 3.4.3 Algorithm deciding the ε-SD decision problem for symmetry group
Ck, given partition of P and given rotational order.

SDCkPartitionOrder({(p(1,1), . . . , p(1,k)), . . . , (p(m,1), . . . , p(m,k))}, ε)
for i = 1 to m do
for each triple of points in Pi do
Define polynomials representing the conditions as above.

end for
end for
Compute set of points C representing each cell of the arrangement given by the
polynomials, use algorithm of Basu et al. [7].
for each c ∈ C do
if SDCkPartitionOrder{(p(1,1), . . . , p(1,k)), . . . , (p(m,1), . . . , p(m,k))}, c) ≤ ε

then
return TRUE;

end if
end for
return FALSE;

The procedure SDCkPartitionOrder{(p(1,1), . . . , p(1,k)), . . . , (p(m,1), . . . , p(m,k))}, c)
is stated in Algorithm 3.4.2.

Problem 3.1.8 (The ε-SD decision problem for given partition of P .)

Given: A set P ⊂ R2, |P | = mk, a symmetry group Ck and a partition of P into m
subsets P1, . . . , Pm of size k each and a value ε ≥ 0.

Question: Is there a Ck-symmetric point set Q and a partition of Q into subsets
Q1, . . . , Qm all of size k and all having symmetry group Dk so that Qi ε-
approximates Pi for all 1 ≤ i ≤ m?

The conditions for a point c having the property that a set of rotated points given
by a triple of points rotated around c are defined by the three points and the three
angles which define the rotated points. In the case where the rotational order of
each partition set was given, the mapping between the points in Pi and the rotation
angles was given by the rotational order. Thus we needed to consider 7 conditions
for each triple of points.

In the case where the rotational order is not given, we need to consider 7 con-
ditions for each triple point-angle-pair and compute the arrangement of the regions
defined by those conditions. For each cell of the arrangement we compute a point
c representing this cell and test if c is the rotation center of a Ck-symmetric point
set which ε-approximates P with respect to the partition of P . There exist Ck-
symmetric point sets which ε-approximates P with respect to the partition of P iff
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the center of one of them represents one of the cells of the arrangement. This can
be seen as follows:
Let Q be the Ck-symmetric point set which ε-approximates P with respect to the
partition of P and let c be its rotation center. Then there is an order on the points
of each partition set Pi such that the radius of the smallest enclosing points of the
rotated points defined by the points in the partition sets, the rotational order and the
center c is smaller or equal to ε. Therefore the regions defined by these conditions
intersect and c is a point in this intersection.

Algorithm 3.4.4 Algorithm deciding the ε-SD decision problem for symmetry group
Ck, given partition of P .

SDCkPartition({P1, . . . , Pm}, ε)
for t = 1 to m do
for each triple of point-angle-pairs in Pi do
Define polynomials representing the conditions as above.
Compute set of points C representing each cell of the arrangement given by
the polynomials, use algorithm of Basu et al. [7].

end for
end for
for each c ∈ C do
if SDCkPartition({P1, . . . , Pm}, c) ≤ ε then
return TRUE;

end if
end for
return FALSE;

The procedure SDCkPartition({P1, . . . , Pm}, c) is stated in Algorithm 3.4.1.

Theorem 3.4.9. Let a point set P , |P | = km = n a partition of P into m subsets of
size k each and a value ε be given. Algorithm 3.4.4 decides the ε-SD decision problem
for symmetry group Ck and P in time O(n4k20M(k)).

Proof. The correctness follows from the above observations. What remains to be
done is to analyze the running time. For each point-angle triple of the points in the
partition sets we need to consider 7 regions defined by the above conditions. We
need to compute a set of points representing each cell of an arrangement of 7mk6

regions. Using the results of Basu et al. [7] this takes time O
(
(mk6)3

)
and the size

of the set of representing points is O
(
(mk6)3

)
. We apply Algorithm 3.4.1 for each

of those points. Algorithm 3.4.1 has running time O
(
nk5M(k)

)
, where M(k) is the

time needed to compute a maximum matching in a bipartite graph with k vertices.
Thus the overall running time is O(m3k18nk5M(k)) = O(n4k20M(k)).
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3.5 The ε-SD Problem for γ-Disjoint Point Sets

In the last three sections, we proved the ε-SD decision problem to be in P if we
consider the symmetry group C2, as shown in Section 3.2, if the symmetry group is
dependent on the number of input points, as shown in Section 3.3, or if a partition of
the input set of subsets of size k each is given. Thus the complicated part of solving
the ε-SD problem is to find the partition of the input set P . The task of finding a
partition of P becomes easier if the points are well separated.

p1

p2

p3

p4

p5

p6

p7

p8

(a) A good choice for the parti-
tion would be {p1, p3, p5, p7} and
{p2, p4, p6, p8}.

p1
p2

p3
p4

p5

p6

p7

p8

(b) It is not obvious which partition
would lead to the optimal solution.

Figure 3.5.1: Considering symmetry group C4, the optimal partition in (a) is easier
to find than the optimal partition in (b).

We use a definition given by Iwanowski [18] to formalize this assumption:

Definition 3.5.1. Let P = {p1, . . . , pn} be a set of points in the plane. We call
P γ-disjoint, iff d(pi, pj) > γ, for all pi, pj ∈ P, pi 6= pj , where d(pi, pj) denotes the
Euclidean distance between the points pi and pj .

In his thesis, Iwanowski [18] presents a polynomial time algorithm for the
ε-SD decision problem in the case where the input set is 8ε-disjoint. By gen-
eralizing this approach, we are able to give a polynomial time algorithm for the
ε-SD decision problem for 4ε-disjoint point sets if the rotation center c of the
Ck-symmetric point set Q which ε-approximates P is given. Note that this is not
the same problem as considered in Section 3.4 since we are not given a partition of
P into subsets of size k each anymore.
We will also give a polynomial time algorithm for the ε-SD decision problem where
we neither need to know the rotation center of Q nor a partition of P . We only ask
the point set to be 4tε-disjoint and we demand the existence of a point c̃ which can
be computed in polynomial time from P and has the property that the solution of
the ε-SD computational problem for symmetry group Ck and rotation center c̃ is a
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t-approximation of the solution of the ε-SD computational problem for symmetry
group Ck. A formal definition of t-approximation will be given in Definition 3.5.7
later on in this section.

3.5.1 The ε-SD Problem for γ-Disjoint Point Sets with Given Ro-
tation Center

We will start by explaining how to solve the ε-SD decision problem for a point set
P and a given rotation center c if P is 4ε-disjoint in polynomial time. Thus the
problem we will consider first is the following:

Problem 3.5.2 (The ε-SD decision problem for 4ε-disjoint point set P and given
rotation center. )

Given: A symmetry group Ck, a value ε ≥ 0, a 4ε-disjoint point set P ⊂ R2 where
|P | = mk and a rotation center c ∈ R2.

Question: Is there a Ck-symmetric point set Q with rotation center c which ε-
approximates P?

Theorem 3.5.3. Algorithm 3.5.1 solves the ε-SD decision problem for symmetry
group Ck and 4ε-disjoint point sets with given rotation center c in time O(n log n),
where n is the size of the input set P .

Proof. We will first show the correctness of the algorithm.
First suppose that there exists a Ck-symmetric point set Q which ε-approximates P .
By Lemma 3.4.1 there is a partition of Q into m Ck-symmetric subsets Q1, . . . , Qm,
|Qi| = k, 1 ≤ i ≤ m, all having rotation center c and a corresponding partition of P
into subsets P1, . . . , Pm, |Pi| = k, so that Qi ε-approximates Pi, for all 1 ≤ i ≤ m.

Consider a subset Pi and its corresponding Ck-symmetric subset Qi. By Lemma
3.3.11 the existence of a point set Qi which ε-approximates Pi implies that there is
an order (p(i,2), . . . , p(i,k)) on Pi, so that
d(p(i,1), ρ

(j−1)α
c

(
p(i,j)

)
) ≤ 2ε in especially d(ρ

−(j−1)α
c (p(i,1)), p(i,j)) ≤ 2ε, for all 2 ≤

j ≤ k.
This is equal to the condition checked in line 6 since ρ−(j−1)αc (p(i,1)) denotes the jth

vertex of the regular k-gon defined by c and p(i,1).
Therefore we are able to compute a partition of P into m subsets of size k in line 6.
The answer to the ε-SD decision problem for P and the computed partition given by
Algorithm 3.4.2 will be YES. It is not possible that a vertex Qi is mapped to more
than one point of P due to the fact that P is 4ε-disjoint.
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Suppose there are two points p(i,j), p̃(i,j) ∈ P , so that
d(ρ
−(j−1)α
c (p(i,1)), p(i,j)) ≤ 2ε and d(ρ

−(j−1)α
c (p(i,1)), p̃(i,j)) ≤ 2ε.

Then

d(p(i,j), p̃(i,j)) ≤ d(ρ−(j−1)αc

(
p(i,1)

)
, p(i,j)) + d(ρ−(j−1)αc

(
p(i,1)

)
, p̃(i,j))

≤ 2ε+ 2ε

= 4ε

This is a contradiction to the assumption that P is 4ε-disjoint.
Therefore, if there exists a Ck-symmetric set Q which ε-approximates P , then Algo-
rithm 3.5.1 computes the correct partition of P into m subsets of size k each in line
6 and the answer of Algorithm 3.4.2 will be YES.

On the other hand, suppose that no point set Q exists which ε-approximates P .
In the case where we computed a partition, the answer of Algorithm 3.4.2 will be
NO. In the case where we are not able to compute a partition, the answer is NO in
line 8. Therefore the answer of Algorithm 3.5.1 will be NO if no Ck-symmetric point
set Q exists which ε-approximates P .

What remains to be done is to analyze the running time. We choose at most m
points from P , one for each partition set. Computing the regular k-gon defined by a
point and a rotation center takes O(k) time per regular k-gon, so in total O(n) time.
For each vertex of the regular k-gons we need to find the nearest point in P and
check if the distance to that point is at most 2ε. This can be done by computing the
Voronoi diagram in O(n log n) time of the point set P and then locate the Voronoi
cell of each vertex in O(log n) time. We compute m regular k-gons and thus mk = n

vertices. Therefore we need O(n log n) time in order to compute the partition of P
and the rotational orders on the partition sets. The rotational order on each subset is
given by the well-defined rotational order of the corresponding regular k-gon. Thus
we can apply Algorithm 3.4.2 which runs in O(n) time. The total running time is
O(n log n).
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Algorithm 3.5.1 Polynomial time algorithm for the ε-SD decision problem for sym-
metry group Ck and 4ε-disjoint point set P with given rotation center c.

SDCkDisjointRotationCenter(P, c, ε)
1 answer = YES;
2 i = 1;
3 while P 6= ∅ do
4 Choose an arbitrary point p(i,1) ∈ P ;
5 Compute the regular k-gon Qi defined by p(i,1) and the rotation center c;
6 Compute the subset Pi ⊆ P with rotational order (p(i,1), . . . , p(i,k)), so that

d(p(i,j), q(i,j)) ≤ 2ε, for all 1 ≤ j ≤ k;
7 if for at least one vertex of Qi no such point in P exists then
8 answer = NO;
9 end if

10 Remove all points in Pi from P ;
11 i = i+ 1;
12 end while
13 return answer ∧

SDCkPartitionOrder( {(p(1,1), . . . , p(1,k)), . . . , (p(m,1), . . . , p(m,k))}, c)≤ ε;

The procedure SDCkPartitionOrder{(p(1,1), . . . , p(1,k)), . . . , (p(m,1), . . . , p(m,k))}, c)
is stated in Algorithm 3.4.2.

3.5.2 ε-SD Problem for γ-Disjoint Point Sets Without Given Ro-
tation Center

We will now consider the case where the rotation center of the Ck-symmetric point
set Q is not known. We will present polynomial time algorithms, but we need the
point set P to be 4tε-disjoint, where t > 1 will be determined later.

Lemma 3.5.4. Let a point set P ⊂ R2, |P | = n = mk, a symmetry group Ck
and a value ε > 0 be given. Suppose there is a Ck-symmetric point set Q which ε-
approximates P and let csol be the rotation center of Q. Let c ∈ R2 be a point in the
δ-neighborhood of csol. Then there exists a Ck-symmetric point set Q̃ with rotation
center c which (δ + ε)-approximates P .

Proof. Since the Ck-symmetric point set Q ε-approximates P , there is a bijection
f : P → Q, so that d(p − f(p)) ≤ ε, for all p ∈ P . Consider the point set
Q̃ = {f̃(p) = f(p) + csolc |p ∈ P}. The point set Q̃ is Ck-symmetric since Q is
Ck-symmetric and Q̃ is the translation of Q by the vector csolc. The rotation center
of Q̃ is the point c by construction. The distance d(p, f̃(p)) for each p ∈ P can be
computed as follows:

d(p, f̃(p)) = d(p, (f(p) + csolc)) ≤ d(p, f(p))︸ ︷︷ ︸
≤ε

+ d(c, csol)︸ ︷︷ ︸
≤δ

≤ ε+ δ
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Thus Q (δ + ε)-approximates P .

We will now present a generic algorithm which decides the ε-SD decision problem
for symmetry group Ck in polynomial time if the point set P is 4tε-disjoint. We will
also specify the value t. The algorithm we will present is based on the same idea as
Algorithm 3.5.1 which decides the ε-SD decision problem with given rotation center
in polynomial time for 4ε-disjoint point sets. Instead of the given rotation center
used in Algorithm 3.5.1 we use a point c so that there exists a point set Q̃ having
rotation center c which εc-approximates P and εc ≤ tε if it is possible at all to
ε-approximate the point set P .

Lemma 3.5.5. Let a point set P ⊂ R2, |P | = n = mk, a symmetry group Ck and a
value ε > 0 be given. Suppose there is a point c ∈ R2 which can be computed in time
ARC(n) and has the following property:
If there exists a Ck-symmetric point set Q which ε-approximates P , then there exists
a Ck-symmetric point set Q̃ with rotation center c which εc-approximates P and
εc ≤ tε.
Then Algorithm 3.5.2 decides the ε-SD decision problem for point set P if P is 4tε-
disjoint.
The running time is O

(
ARC(n) +

(
n4k6

))
, where ARC(n) is the time needed to

compute c.

Proof. Consider the regular k-gon Qi defined by c and a point p(i,1) ∈ P . If for one
vertex q(i,j) of Qi there is no point of P in the 2tε-neighborhood of q(i,j) then εc > tε.
This is due to the fact that the optimal value for a given partition is the radius of the
smallest enclosing disk of the rotated points and thus is larger than half the distance
between each pair of rotated points (see Section 3.3). Thus there exists no point set
Q which ε-approximates P by the property of P . This implies that the answer NO
is correct in line 8.
On the other hand, assume a partition of P into m subsets of size k is computed
by the algorithm. Then Algorithm 3.4.3 which is used in line 13 gives the correct
answer.
It is not possible that there are two points of P in the 2tε-neighborhood of the vertex
of a regular k-gon, due to the fact that P is 4tε-disjoint by assumption. Therefore
Algorithm 3.5.2 is correct. What remains to be done is to analyze the running time.
Computing a regular k-gon from c and a point pi1 ∈ P takes O(k) time. There is
at most one point of P in the 2tε-neighborhood of each vertex of the regular k-gon.
Thus we can build the Voronoi diagram of the point set P in O(n log n) preprocessing
time and determine in time O(log n) for each vertex of the regular k-gon the Voronoi
cell in which it is contained and thus the point of P closest to that vertex. Overall
it takes O(k log n) time to perform the operations in the while-loop. In each step we
delete k points from P and thus the while-loop is processed at most m = n

k times.
Therefore processing the while-loop in total takes O (n log n) time. The running time
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of the procedure SDCkPartitionOrder is O
(
n4k6

)
. Thus the overall running time

is O
(
ARC(n) +

(
n4k6

))
.

Algorithm 3.5.2 Polynomial time algorithm for the ε-SD decision problem for sym-
metry group Ck and a 4tε-disjoint point set.

SDCkTEpsDisjoint(P, ε)
1 c = RotationCenter(P );
2 return SDCkTEpsDisjoint(P, c, ε);

Algorithm 3.5.3 Polynomial time algorithm for the ε-SD decision problem for sym-
metry group Ck and a 4tε-disjoint point set and given rotation center c.

SDCkTEpsDisjoint(P, c, ε)
1 answer = YES;
2 i = 1;
3 while P 6= ∅ do
4 Choose an arbitrary point p(i,1) ∈ P ;
5 Compute the regular k-gon Qi defined by p(i,1) and c;
6 Compute the subset Pi ⊆ P , so that each point in Pi has distance smaller or

equal 2tε to a vertex of Qi;
7 if for at least one vertex of Qi no such point in P exists then
8 answer = NO;
9 end if

10 Remove all points in Pi from P ;
11 i = i+ 1;
12 end while
13 partition = SDCkPartitionOrder({{p(1,1), . . . , p(1,k)}, . . . , {p(m,1), . . . , p(m,k)}, ε})

14 answer = answer ∧ partition;
15 return answer;
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We will now explain how to compute points from P which fulfill the properties
needed for Lemma 3.5.5.
In order to do so, we need to consider the corresponding computational problem:

Problem 3.5.6 (The ε-SD computational problem for symmetry group Ck.)

Given: A set P ⊂ R2 of n = mk points, and a symmetry group Ck.

Task: Compute the smallest ε ≥ 0, so that there is a Ck-symmetric point set Q
which ε- approximates P .

The ε-SD computational problem is an optimization problem. Therefore we can
describe a solution of the ε-SD computational problem as a function s which maps
a point set P of size n = mk to the real numbers. The optimal solution for the
ε-SD computational problem is denoted by sopt, and sopt(P ) = εopt is the optimal
value. We call the corresponding Ck-symmetric point set Qopt. If we could compute
the rotation center copt of Qopt in polynomial time, we would get a polynomial time
algorithm for the ε-SD problem for 4ε-disjoint point sets by applying Algorithm 3.5.1.
Unfortunately, it is not clear how to compute copt in polynomial time.

Definition 3.5.7. Let B be an optimization problem with input b and let s be a
solution for B. A solution sopt is called optimal iff sopt(b) ≤ s(b) for all solutions
s if B is a minimization problem or iff sopt(b) ≥ s(b) for all solutions s if B is a
maximization problem, respectively.

This definition leads to Lemma 3.5.8 which is similar to Lemma 3.5.5. Lemma
3.5.8 relates the value of εc to εopt and not to ε as Lemma 3.5.5 does. The advantage
is that εopt is related to the input set P whereas ε is given independently of P .

Lemma 3.5.8. Let a point set P ⊂ R2, |P | = n, a symmetry group Ck and a value
ε > 0 be given. Let c ∈ R2 be a point which can be computed from P in time
ARC(n). Let furthermore εc be the solution of the ε-SD computational problem for a
given point c and input set P and let εopt be the solution of the ε-SD computational
problem for input set P and let εc ≤ tεopt. Then the ε-SD decision problem can be
decided in time O

(
ARC(n) +

(
n3k + n2k3

))
if P is 4tε-disjoint.

Proof. If there exists a Ck-symmetric point set Q which ε-approximates P , then
εopt ≤ ε and therefore εc ≤ tεopt ≤ tε. Thus we can apply Algorithm 3.5.2.

Algorithm 3.5.2 gives a framework for polynomial time algorithms solving the
ε-SD decision problem for symmetry group Ck and 4tε-disjoint point sets. One only
needs to plug in a polynomial time algorithm which computes a point c, so that the
optimal solution of the ε-SD decision problem for symmetry group Ck and rotation
center c is a t-approximation of the optimal solution of the ε-SD decision problem
for symmetry group Ck.
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The goal is now to find a rotation center c which can be computed in polynomial
time and leads to a small value t. Similar to Lemma 3.5.4, one attempt is to find a
point that lies in the δ neighborhood of the optimal rotation center copt for a small
value δ:

Lemma 3.5.9. Let a point set P in the plane and a symmetry group Ck be given.
Assume a point c to be in the δ-neighborhood of the optimal rotation center copt. Then
there is a Ck-symmetric point set Q with rotation center c that (δ+εopt)-approximates
P , where εopt is the optimal solution of the ε-SD computation problem for P .

Proof. By setting ε = εopt we can apply Lemma 3.5.4.

A point that is easy to compute from the point set P is the center of mass of P .
Since the center of mass c is given by

c =
1

|P |
∑
p∈P

(p)

it can be computed in linear time. The center of mass lies in the εopt-neighborhood
of copt as the following lemma shows:

Lemma 3.5.10. Let a point set P ⊂ R2 and a symmetry group Ck be given. Let εopt
be the solution of the ε-SD computational problem for input set P , let Qopt be the
corresponding Ck-symmetric point set and let copt be its rotation center. Furthermore,
let s = 1

|P |
∑

p∈P p be the center of mass of P . Then d(s, copt) ≤ εopt.

Proof.

d(s, copt) = d

 1

|P |
∑
p∈P

p,
1

|P |
∑

f(p)∈Qopt

f(p)

 ≤ 1

|P |
∑
p∈P

d(p, f(p)) ≤ 1

|P | |P |εopt = εopt

Using the center of mass as rotation center, we can easily prove a result already
shown by Iwanowski [18]:

Theorem 3.5.11. Let a point set P in the plane, a symmetry group Ck and a value
ε > 0 be given. The ε-SD decision problem can be decided in O

(
n3k + n2k3

)
, if P

is 8ε-disjoint.

Proof. Let c be the center of mass of the point set P , so c = 1
|P |
∑

p∈P p. By Lemma
3.5.10 and Lemma 3.5.9, εc ≤ 2εopt and thus by Lemma 3.5.8 the ε-SD decision
problem can be decided in time

O
(
n+

(
n3k + n2k3

))
= O

(
n3k + n2k3

)
,

if P is 8ε-disjoint.



3.5. THE ε-SD PROBLEM FOR γ-DISJOINT POINT SETS 127

As seen above, the center of mass of the point set P leads to a 2-approximation for
the ε-SD computation problem. In the following we will introduce a point that gives
a 2√

3
-approximation. We do not know if this point can be computed in polynomial

time for arbitrary points sets P . But we can give a polynomial time algorithm
computing this point if the point set P is 4 2√

3
ε-disjoint.

3.5.3 The ε-SD Problem for 8ε√
3
-Disjoint Point Sets

In this section, we will explain how to compute a rotation center c ∈ R2 so that
the optimal solution εc of the ε-SD computational problem with rotation center c
is a 2√

3
-approximation of the optimal solution of the ε-SD computational problem.

Using Lemma 3.5.8, we can give a polynomial time algorithm for the ε-SD decision
problem if the input set is 8ε√

3
-disjoint, where 8√

3
≈ 4.6188. This is an improvement

of the result presented in Theorem 3.5.11.
As in Section 3.3 we will use the apex point aαi,j defined by two points pi, pj and an

angle α. In Section 3.3 we considered the ε-SD decision problem for symmetry group
D|P |. The problem we need to consider now is more complicated. On the one hand,
we consider the symmetry group Ck where k does not depend on the size of the input
set. On the other hand, we need to consider the ε-SD computational problem since
we want to show that the rotation center we compute leads to a 2√

3
-approximation.

The algorithm we will state in order to compute the rotation center c is closely
related to the algorithm given in Section 3.2. There we also needed to compute
a rotation center, namely the rotation center which gives the optimal solution for
the ε-SD computational problem for symmetry group C2. For a given partition into
subsets of size 2 we proved that the optimal rotation center is the center of the
smallest enclosing disk of the midpoints defined by the two points in each subsets.
We used a matching algorithm on general graphs in order to find the partition which
results in the optimal rotation center.

The basic observation we used in order to prove the correctness of the algorithm
is that the distance between a point pi and the rotational image ρπc (pj) of pj with
respect to the rotation around c by an angle π is twice the distance between c and
the midpoint of pi and pj (see Lemma 3.2.4).

When considering the symmetry group Ck the midpoint of two points is gener-
alized to the apex point as defined in Definition 3.3.12. By Lemma 3.3.14 we can
relate the distance between a rotation center c and an apex point aαi,j to the distance
between pi and ραc (pj) and vice versa. Note that d(pi, ρ

α
c (pj)) = 2 sin

(
α
2

)
d(c, aαi,j)

by Lemma 3.3.14. Thus the distance between a point pi and the rotational image of
pj with respect to a rotation center c and an angle α is not only dependent on the
distance between the apex point defined by pi, pj and α and c, but also on the angle
α.

In Section 3.3 we explained how to solve the ε-SD computational problem for
symmetry group D|P | in the case where the rotation center c and the rotational
order on the input set P are given. We will now relate the optimal solution εopt to
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the distance between apex points and rotation center. First we state a general lemma
which relates the radius of a smallest enclosing disk of a point set to the maximum
distance between two points in that set:

Lemma 3.5.12. Let a point set P = {p1, . . . , pn} be given.
Let dmax = max{d(pi, pj)|1 ≤ i < j ≤ n} be the maximum distance between pairs of
points in P . Furthermore, let D denote the smallest enclosing disk of P and let r
denote its radius. Then r is bounded by 1

2dmax ≤ r ≤ 1√
3
dmax.

Proof. The smallest enclosing disk D in P is defined by two or three points in P .
First, suppose the smallest enclosing disk is defined by two points and w.l.o.g. let
these two points be p1 and p2. Then r = 1

2d(p1, p2). Furthermore, the line segment
pipj , for all pi, pj ∈ P must be contained in D thus d(pj , pi) ≤ 2r = d(p1, p2).
Therefore, d(p1, p2) = dmax and thus r = 1

2dmax which proves the lemma for this
case.
Now suppose the smallest enclosing disk is defined by three points p1, p2, p3. These
three points define a triangle. Let us assume w.l.o.g. that p1p2 is the side of the
triangle with maximum length and let γ be the angle opposite to this side.
For the radius r of the disk defined by p1, p2, p3 r = |p1,p2|

2 sin(γ) holds. Thus |p1,p2|2 ≤
r ≤ |p1,p2|

2
√
3

holds for π
3 ≤ γ ≤ π

2 . This is the only range possible for γ since we
assume p1, p2 to be the side with maximum length and all three points to be on the
boundary of the disk. The line segment with length dmax between a pair of points is
contained in the smallest enclosing disk. Therefore 1

2dmax ≤ r and r ≤ 1√
3
|p1, p2| ≤

1√
3
dmax. This proves that the radius of the smallest enclosing disk of P is bounded

by 1
2dmax ≤ r ≤ 1√

3
dmax.

Notation 3.5.13. Let a point set P, |P | = mk = n in the plane and a partition of
P into subsets P1, . . . , Pm all of size k be given. For two points p(i,j), p(i,l) ∈ Pi and
an angle α the apex point defined by p(i,j), p(i,l) and α is denoted by aα(i,j,l).

We now use Lemma 3.5.12 in order to relate the value εopt to the maximum
distance between an apex point and the rotation center.

Lemma 3.5.14. Let a point set P of size |P | = mk, a partition of P into subsets
P1, . . . , Pm of size |Pi| = k and a rotation center c be given. Furthermore, let a
rotational order (p(i,1), . . . , p(i,k)) on each partition set Pi, 1 ≤ i ≤ m be given. Let
{a(l−j)α(i,j,l) |1 ≤ i ≤ m, 1 ≤ j < l ≤ k} be the set of apex points where α = 2π

k . Let εopt
be the solution of the ε-SD computational problem for symmetry group Ck with given
rotation center, partition of the input set and rotational order on the partition sets.
Then dmax

2 ≤ εopt ≤ dmax√
3
, where dmax = max{2 sin

(
(l−j)α

2

)
d
(
a
(l−j)α
(i,j,l) , c

)
|1 ≤ i ≤

m, 1 ≤ j < l ≤ k} is the maximum weighted distance between the rotation center c
and an apex point.
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Proof. Let p(i,j), p(i,l) ∈ P be the pair of points, where

dmax = 2 sin
(
(l−j)α

2

)
d
(
a
(l−j)α
(i,j,l) , c

)
. Thus the distance between p(i,j) and ρ

(l−j)α
c

(
p(i,l)

)
is d

(
p(i,j), ρ

(l−j)α
c

(
p(i,l)

))
= dmax by Lemma 3.3.14. Considering the set of rotated

points {ρ(j−1)αc

(
p(i,j)

)
|1 ≤ j ≤ k} as computed in Algorithm 3.3.1. Then the dis-

tance

d
(
ρ(j−1)αc

(
p(i,j)

)
, ρ(l−1)αc

(
p(i,l)

))
= d

(
p(i,j), ρ

(l−j)α
c

(
p(i,l)

))
= dmax.

Since the value of εiopt is given by the radius of the smallest enclosing disk of the ro-

tated points {ρ(j−1)αc

(
p(i,j)

)
|1 ≤ j ≤ k}, the line segment ρ(j−1)αc

(
p(i,j)

)
ρ
(l−1)α
c

(
p(i,l)

)
of length dmax must be contained in this smallest enclosing disk. Thus by Lemma
3.5.12, the value of εiopt for the partition set Pi is bounded by dmax

2 ≤ εiopt ≤ dmax√
3
.

Since εopt = max{εiopt |1 ≤ i ≤ m}, as seen in Lemma 3.4.2, εopt is also bounded by
dmax
2 ≤ εopt ≤ dmax√

3

We will now state Algorithm 3.5.4, which computes a rotation center c in poly-
nomial time, so that the solution of the ε-SD computational problem for symmetry
group Ck with rotation center c is a 2√

3
-approximation of the ε-SD computational

problem. We assume for a moment that the partition of P into subsets of size k
each and a rotational order on the partition sets are given. We will explain later on
how to find a partition and rotational order in polynomial time in the case where
the input set P is 8ε√

3
-disjoint.

Algorithm 3.5.4 Algorithm deciding the ε-SD decision problem for 8√
3
-disjoint

point sets (outline).

RotationCenter({(p(1,1), . . . , p(1,k)), . . . , (p(m,1), . . . , p(m,k))})
α = 2π

k

Compute the set of apex points {a(l−j)α(i,j,l) |1 ≤ i ≤ m, 1 ≤ j < l ≤ k}
Compute point c, so that
dmax = max{2 sin

(
(l−j)α

2

)
d
(
a
(l−j)α
(i,j,l) , c

)
|1 ≤ i ≤ m, 1 ≤ j < l ≤ k} is minimized.

return c.

We will first prove the solution of the ε-SD computational problem with rotation
center c to be a 2√

3
-approximation of the ε-SD computational problem. Afterwards,

we will give more details on the steps in Algorithm 3.5.4, especially on how to find
the point c which minimizes the maximum distance to the apex points.

Lemma 3.5.15. Let a point set P , a partition of P into sets P1, . . . , Pm of size k each
and a rotational order on each partition set be given. Let c be a point which minimizes
d = max{2 sin

(
(l−j)α

2

)
d
(
a
(l−j)α
(i,j,l) , c

)
|1 ≤ i ≤ m, 1 ≤ j < l ≤ k}. The solution of

the ε-SD computational problem with rotation center c is then a 2√
3
-approximation

of the solution of the ε-SD computational problem.
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Proof. Let εopt be the solution of the ε-SD computational problem for input set P ,
let Qopt be the Ck-symmetric point set which εopt-approximates P and let copt denote
its rotation center. Let dopt = max{2 sin

(
(l−j)α

2

)
d
(
a
(l−j)α
(i,j,l) , copt

)
|1 ≤ i ≤ m, 1 ≤

j < l ≤ k} be the maximum distance between copt and the set of apex points. Since
d has the property that it minimizes the maximum distance to the set of apex points,
d ≤ dopt. Thus by Lemma 3.5.14 dopt

2 ≤ εopt ≤ dopt√
3

and d
2 ≤ ε ≤ d√

3
, where ε is the

solution of the ε-SD computational problem for input set P and rotation center c.
Therefore,

ε ≤ d√
3
≤ dopt√

3
≤ 2εopt√

3

Thus the solution of the ε-SD computational problem for input set P and rotation
center c is a 2√

3
-approximation of the solution of the ε-SD computational problem

for input set P .

We will now explain how to find for a given set A ⊂ R2 of apex points the point
c which minimizes max{2 sin

(
α
2

)
d(α(a), c)|a ∈ A} where α(a) is the defining angle

of the apex point a. Since the distances are dependent on the angle which defines
the apex points, we can view the apex points as weighted points.

Finding the point which minimizes the maximum weighted distance to n points
with weights can be done in O(n(log n)3(log log(n))2) by an algorithm of Megiddo
[31].

Definition 3.5.16. We call the point minimizing the maximum weighted distance to
n weighted points smallest weighted center of these n weighted points. The minimized
distance is called the smallest weighted radius of the point set.

Lemma 3.5.17. Let a point set P of n weighted points be given. The smallest
weighted center and radius of P is defined by two or three points of P .

Proof. Let c be the smallest weighted center and let r be the smallest weighted radius
of P . Consider the point set P ′ = {c+w(p)cp|p ∈ P}, where w(p) denotes the weight
of p ∈ P . Then c is the center of the smallest enclosing disk of P ′ and r is the radius
of that disk. Thus c is defined by two or three points in P ′ and therefore also by two
or three points of P .

In Algorithm 3.5.4 we assume a partition of P into subsets of size k and a ro-
tational order on each subset to be given. We will now explain how to partition P
and how to find the rotational order on each subset under the assumption that P
is 8√

3
-disjoint. We will use a similar approach to the one used in Algorithm 3.2.2.

There we computed all midpoints defined by two points of the input set P . from
this set of O(n2) midpoints we needed to find n

2 midpoints, so that each point of the
input set is represented by exactly one midpoint. We computed all possible disks
defined by two or three points and used a matching algorithm in order to verify that
each point is represented by exactly one midpoint.

We can extend this approach to the weighted apex points.
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For a given partition and rotational orders on the partition sets we compute the
smallest weighted center of the subset of apex points given by the partition and
rotational orders.

In the case where the partition and rotational orders are not known, we can
compute the set A of all apex points defined by two points of the input set P and
an angle α ∈ Λ = { i2πk |1 ≤ i ≤ k − 1}. A smallest weighted center is defined by two
or three points of A. We therefore compute all smallest weighted centers defined by
two or three apex points and examine the set of apex points with weighted distance
smaller or equal to the smallest weighted radius. For a smallest weighted center c
and radius r let this set be denoted by A(c, r) = {a ∈ A|2 sin

(
α(a)
2

)
d(a, c) ≤ r}.

It remains to check if A(c, r) contains a subset of apex points which are the apex
points given by a partition of P into m subsets of size k each and a rotational order
on each subset.

In the case of symmetry group C2 we needed to find a partition into subsets of
size 2 each. We represented the partition sets by the midpoints defined by pairs of
points of the input set.

When considering the symmetry group Ck, the situation is slightly different. An
apex point defined by two points and a rotation angle α does not represent a subset
of size k on its own. We need to consider a set of apex points in order to get a
partition set.

Suppose c is a smallest weighted center and r the corresponding smallest weighted
radius of a set of apex points given by a partition of P into set of size k and rotational
order on each partition set. Then for each partition set Pi with rotational order
(p(i,1), . . . , p(i,n)) the apex points a(l−j)α(i,j,l) , 1 ≤ j < l ≤ k define this partition and this
order and therefore need to be in the set A(c, r).

We can again use the approach of constructing a graph defined by the apex points
and use a graph algorithm in order to solve the assignment problem. We construct
a graph G = (V,E) where the vertex set V is the point set P .

We assume that to each apex point a label representing the two defining points
and the defining angle is assigned. For each apex point alαi,j ∈ A(c, r), where α = 2π

k ,
we add the edge eli,j with label l connecting pi and pj to the edge set E. A subset
E′ ⊆ E of the edges corresponds to a partition set Pi with rotational order if for
each point of Pi there are k − 1 distinct edges incident only to points in Pi and the
set of labels of these edges is exactly Λ. Additionally, the local rotational orders
need to be globally the same. So if there is an edge el1i,j and an edge el2j,t then there
needs to be the edge el1+l2i,t We will prove in the following two lemmata that we only
need to consider a smallest weighted center c defined by two or three apex points
if the corresponding radius r is smaller or equal to 4ε√

3
and that for such a smallest

weighted center the graph defined by apex point in A(c, r) can be build and the
above explained property can be checked in polynomial time.

Lemma 3.5.18. Let a point set P, |P | = mk = n, a symmetry group Ck and a value
ε ≥ 0 be given. Furthermore, let P be 8ε√

3
-disjoint. Let A = {alαi,j |1 ≤ i, j ≤ n, 1 ≤
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l ≤ k − 1} be the set of labeled apex points defined by P , where α = 2π
k . Let c be a

smallest weighted center of a subset A′ ⊆ A of apex points. Suppose A′ contains all
apex points defined by a partition of P and rotational orders on each partition set.
If there is a Ck-symmetric point set Q which ε-approximates P with respect to this
partition and rotational order, then the weighted radius of c is smaller than 4ε√

3
.

Proof. Let c be the smallest weighted center and let r be the corresponding smallest
weighted radius. Assume r > 4ε√

3
:

Then εc ≤ 2√
3
εopt ≤ 2√

3
ε, where the first inequality holds by Lemma 3.5.15 and the

second inequality holds since we assume that there exists a Ck-symmetric point set
Q which ε-approximates P .

Let alαi,j be an apex point with weighted distance r to c. Then d(alαi,j , c) >
4ε√
3

1
2 sin( lα2 )

and thus by Lemma 3.5.14 d(pi, ρ
lα
c (pj)) >

4ε√
3
. Thus the smallest en-

closing disk of the rotated points must contain a line segment of length larger than
4ε√
3
. Its radius has therefore to be greater than 2ε√

3
and thus εc > 2ε√

3
. This is a

contradiction. Thus the lemma holds.

The above Lemma 3.5.18 allows us to neglect all weighted smallest enclosing
disks defined by two or three apex points whose radius is larger than 4ε√

3
. In the

following lemma we will explain how to check for a subset of apex points if it defines
a partition of P into subsets of size k each and a rotational order on each partition
set in polynomial time.

Lemma 3.5.19. Let a point set P, |P | = mk = n, a symmetry group Ck and a value
ε ≥ 0 be given. Let P be 8ε√

3
disjoint. Let A = {alαi,j |1 ≤ i, j ≤ n, 0 ≤ l ≤ k − 1},

where α = 2π
k be the set of labeled apex points defined by P . Let c be a weighted

center with weighted radius r ≤ 4ε√
3
. Then for each angle lα, 0 ≤ l ≤ k − 1 and each

point pi ∈ P there is at most one apex point alαi,j with weighted distance smaller or
equal to r to c.

Proof. Suppose there are two apex points alαi,j1 and alαi,j2 with weighted distance
smaller or equal to r to c. Then

d(alαi,j1 , c) ≤
4ε√

3

1

2 sin
(
lα
2

) and d(alαi,j2 , c) ≤
4ε√

3

1

2 sin
(
lα
2

) .
Thus

d(alαi,j1 , a
lα
i,j2) ≤ 8ε√

3

1

2 sin
(
lα
2

) .
By Lemma 3.3.14 it follows that d(pj1 , pj2) ≤ 8ε√

3
. This is a contradiction to the

assumption that P is 8ε√
3
-disjoint.

Lemma 3.5.19 assures that for each point pi and each angle lα there is at most
one point in P which can be the partner of pi with respect to lα in the rotational
order. Using this result we can check if A(c, r) contain all the apex points defined
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by a partition of P into subsets of size k each and a rotational order on each subset
as follows:

Lemma 3.5.20. Let a point set P, |P | = mk and a value ε ≥ 0 be given.
Let A = {alαi,j |1 ≤ i, j ≤ n, 0 ≤ l ≤ k − 1} be the set of apex points. 2 sin( lα2 ) is the
weight of apex point alαi,j.
Let c be a weighted center with weighted radius r ≤ 4ε√

3
.

Let A(c, r) ⊂ A be the set of apex points defined by c and r.
Assume that for all j1 6= j2 and al1αi,j1 , a

l2α
i,j2
∈ A(c, r) l1 6= l2 holds.

Then we can decide in time O(mk2) if all apex points defined by a partition of P into
m subsets of size k each are contained in A(c, r).

Proof. For given weighted center c and weighted radius r and a set A(c, r) ⊆ A of
apex points we build a directed graph G = (V,E). The vertex set V is the set P .
The directed edge (i, j) is in E, iff aαi,j ∈ A(c, r), where α = 2π

k . By the assumption
of this lemma, there is at most one edge incident to each vertex. Thus we can decide
if there are m directed circles each of size k in G in time O(n) since for each vertex
we need to check if there is an edge incident to that vertex. If that is the case, we
have found a partition of P into m subsets of size k each and a rotational order on
each subsets. Let Pi be one partition set and let (p(i,1), . . . , p(i,k)) be its rotational
order with respect to angle α. It remains to check that for each pair (p(i,j), p(i,l)) the
apex point a(l−j)α(i,j,l) is in A(c, r). This can be done in time O(mk2) since we need to
check at most one apex point for each pair in a partition set and have m partition
sets.

Theorem 3.5.21. Algorithm 3.5.5 solves the ε-SD decision problem for symmetry
group Ck and 8ε√

3
-disjoint point sets in time O

(
n6k3

(
n4k6

))
.

Proof. The correctness follows from Lemma 3.5.18, Lemma 3.5.19 and Lemma 3.5.20.
What remains to be done is to analyze the running time.
Computing all apex points takes O(n2k) time. Computing a weighted center and
weighted radius defined by two or three points can be done in constant time. We
need to compute O(n6k3) many of those centers, thus the overall running time for
computing the weighted centers is O(n6k3). For each center and radius computing
the set of apex points A(c, r) and building the graph takes time O(n) since there are
O(n) edges contained in each graph. Checking if the disk defines a partition with
rotational order on the partition sets takes time O(mk2) = O(nk) by Lemma 3.5.20.
Each of the O(n6k3) graphs gives at most one partition with rotational order which
needs to be checked. We need to apply the procedure SDCkPartitionOrder which
has running time O

(
n4k6

)
to each of the computed partitions. Thus the overall

running time is O
(
n6k3

(
n4k6

))
.
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Algorithm 3.5.5 Polynomial time algorithm solving the ε-SD decision problem for
8ε√
3
-disjoint point sets.

8ε√
3
Disjoint(P = {p1, . . . , pn}, ε)
α = 2π

k ;
//Compute the set of apex points
A = {alαi,j |1 ≤ i < j ≤ n, 1 ≤ l ≤ k − 1};
C = {(c, r)|(c, r) is weighted center/radius defined by two or three points inP}
for all (c, r) ∈ C, r ≤ 4ε√

3
do

Compute the set of apex points A(c, r) ⊆ A;
Check if all apex points defined by a partition of P into subsets of size k and
a rotational order on each partition set are contained in A(c, r) by applying
Lemma 3.5.20;
if SDCkPartitionOrder({(p(1,1), . . . , p(1,k)), . . . , (p(m,1), . . . , p(m,k))}, ε) then
return YES;

end if
end for
return NO;

3.5.4 The ε-SD Problem for 4(1+δ)ε-Disjoint Point Sets

In this section we will show how to solve the ε-SD decision problem for a point set
P ⊂ R2, |P | = n and each value δ > 0 in time O

((
1
δ2

)
n2
)
if P is 4(1 + δ)ε-disjoint.

By Lemma 3.5.5 we can state a polynomial time algorithm for the ε-SD decision
problem for a 4(1 + δ)-disjoint point set if we can compute a point c ∈ R2 in poly-
nomial time, so that εc ≤ (1 + δ)ε. By Lemma 3.5.9 this is the case if c lies in
the δε-neighborhood of the rotation center of a Ck-symmetric point set Q which
ε-approximates P .
In order to find such a point, we will construct a grid in such a way that at least
one of the grid points has a distance smaller or equal to δε to the rotation center of
a Ck-symmetric point set Q which ε-approximates P , if such a point set exists. For
this point we can then apply Algorithm 3.5.3.
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Algorithm 3.5.6 Algorithm deciding the ε-SD decision problem for symmetry group
Ck and 4(1 + δ)ε-disjoint point sets in polynomial time.

SDCk4(1 + δ)εDisjoint(P, ε, δ)
1 //The point s denotes the center of mass of the points in P .
2 s = 1

|P |
∑

p∈P (p);
3 Compute grid with grid side length

√
2δε centered at s on a square of side length

(2ε× 2ε);
4 answer = NO;
5 for pg is grid point do
6 answer = answer ∨ SDCkTEpsDisjoint(P, pc, ε);
7 end for
8 return answer;

Theorem 3.5.22. Algorithm 3.5.6 solves the ε-SD decision problem for 4(1 + δ)ε-
disjoint point sets in O

((
1
δ2

) (
n4k6

))
time.

Proof. Suppose there is a Ck-symmetric point set which ε-approximates P . Let εopt
be the solution of the ε-SD computational problem for input set P and let Qopt be
the Ck-symmetric point set which ε-approximates P . Let copt be the rotation center
of Qopt. Then εopt ≤ ε. The center of mass s of P lies in the εopt-neighborhood of
copt by Lemma 3.5.10 and thus in the ε-neighborhood of copt. Since the grid has size
(2ε× 2ε) and side length

√
2δε, there is a grid point pg, so that

d(pg, copt) ≤
1

2

√((√
2δε
)2

+
(√

2δε
)2)

= δε

Therefore εpg ≤ (1 + δ)ε and thus applying Algorithm 3.5.3 to pg gives the correct
answer by Lemma 3.5.5.
On the other hand, assume there is no Ck-symmetric point set which ε-approximates
P . Then in line 13 of Algorithm 3.5.3, even if the algorithm managed to compute
a partition with rotational order, the answer of Algorithm 3.4.3 would be NO since
there exists no Ck-symmetric point set which ε-approximates P and thus no such
point set with this particular partition and rotational order. The call of the procedure
SDCkTEpsDisjoint in line 6 of Algorithm 3.5.6 is the only line where the answer
YES could possibly be produced.

This shows the correctness of Algorithm 3.5.6.
What remains to be done is to analyze the running time. A (2ε × 2ε)-grid

with side length
√

2δε has
(

2ε√
2δε

)2
=
(

2
δ2

)
grid points. Thus Algorithm 3.5.3 is

applied
(

2
δ2

)
times. Its running time is O

(
n4k6

)
, thus the overall running time is

O
((

1
δ2

) (
n4k6

))
.
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Remark 3.5.23. By Theorem 3.5.22 the ε-SD decision problem can be decided in
time O(n4k6) for 8ε√

3
-disjoint point sets. This is a much better result regarding the

running time than the one given by Algorithm 3.5.5. This is due to the fact, that
the computation of the rotation center used in Algorithm 3.5.5 is complicated and
expensive. We nevertheless state the result of Algorithm 3.5.5 in this thesis since we
believe the computed rotation center to be interesting while trying to understand the
ε-SD problem in detail. We believed this point to be the rotation center of the solu-
tion of the ε-SD computational problem for symmetry group Ck with given partition
but could not prove it. By now we believe that this is not true but think that the
rotation center of the solution of the ε-SD computational problem for given partition
can be computed by using the apex points in a similar way as the computation of
the rotation center computed in Algorithm 3.5.5.
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3.6 Summary

The following two tables provide an overview of the considered variations of the ε-
SD problems. For each variation, the running time and reference to the algorithm is
presented.
In Table 3.1 the results for the ε-SD decision problem for disjoint point sets is pre-
sented. Note that the results for 4ε-disjoint point sets hold for a given rotation
center. For 4tε-disjoint point sets, the function ARC(n) describes the time needed
to compute a point c out of the input point set P , s.t. the solution of the ε-SD
computational problem for P w.r.t. rotation center c is a t-approximation of the
solution of the ε-SD computational problem for P .

disjointness factor running time reference

4ε O (n log n) Alg. 3.5.1

4tε O
(
ARC(n) +

(
n4k6

))
Alg. 3.5.3

8ε O
(
n4k6

)
Thm. 3.5.11

8√
3
ε O

(
n6k3

(
n4k6

))
Alg. 3.5.5

4(1 + δ)ε O
((

1
δ2

) (
n4k6

))
Alg.3.5.6

Table 3.1: Results for the ε-SD decision problem for disjoint point sets.

In Table 3.2 we present the results for the variations of the ε-SD problem we
considered in this thesis.
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decision computational
problem problem

C2

partition
O(n) O(n)

Alg. 3.2.1 Alg. 3.2.1

no partition
O
(
n6
)

O
(
n8
√
n
)
/O(n8)

Iwanowski [18] Alg. 3.2.2/Thm. 3.2.15

D|P |

center
order

O(n) O(n)

Alg. 3.3.1 Alg. 3.3.1

no order
O
(
n6M(n)

)
/O
(
n7
√
n log n

)
O
(
n6M(n)

)
/O
(
n7
√
n log n

)
Alg. 3.3.2/3.3.3 Alg. 3.3.2/3.3.3

vertex
order

O(n)

Alg. 3.3.4

no order
O
(
n6
)
/O
(
n5
√
n log n

)
Thm. 3.3.22

original
order

O(n6)

Alg. 3.3.6

no order
O
(
n9M(n)

)
/O
(
n10
√
n log n

)
Thm. 3.3.29

Ck

center
order

O(n) O(n)

Alg. 3.4.2 Alg. 3.4.2

no order
O
(
nk5M(k)

)
O
(
nk5M(k)

)
Alg. 3.4.1 Alg. 3.4.1

original
order

O
(
n4k6

)
Alg. 3.4.3

no order
O(n4k20M(k))

Alg. 3.4.4

Table 3.2: Results for the variants of the ε-SD problem considered in this thesis. For
symmetry group Ck we assume the partition of P into subsets of size k to be given.



3.7. THE ε-SD PROBLEM AND HYPERGRAPH MATCHING 139

3.7 The ε-SD Problem and Hypergraph Matching

In this section we will consider the relation between the ε-SD problem and the
problem of finding a maximum matching in hypergraphs.
We start by stating the definition of hypergraphs and matchings in hypergraphs:

Definition 3.7.1. A hypergraph H = (V,E) consists of a set of vertices V and a
set of edges E, where each edge e ∈ E is a subset of the vertex set, so e ⊆ V .
We call a hypergraph k-uniform iff |e| = k for all e ∈ E.
A b-matching of a hypergraph H is a subset M ⊆ E of the edges set where no vertex
is contained in more than b edges.
A b-matching Mmax of a hypergraph H is called maximum b-matching iff |Mmax| ≥
|M | for all b-matchings M of H.

In this section we will consider k-uniform hypergraphs and ask for a maximum
1-matching.

In Section 3.4 we solved the the ε-SD decision problem for symmetry group Ck
in polynomial time in the case where a partition of the input set P was given.
One possibility to use this algorithm in order to solve the ε-SD decision problem for
symmetry group Ck without given partition of P is to test all partitions of P into
subsets of size k.
We formulate this approach by using the notion of hypergraphs and matchings in
hypergraphs. The ε-SD decision problem for symmetry group Ck can be reduced to
the problem of finding maximum 1-matchings in a k-uniform hypergraph as follows:

Lemma 3.7.2. Let a point set P ⊂ R2, |P | = mk, a symmetry group Ck and a value
ε ≥ 0 be given.
Construct a hypergraph H = (V,E) as follows:
V = P and an edge e ∈

(
P
k

)
is in E iff the answer to the ε-SD decision problem for

symmetry group C|e| and input set e is YES.
Then the answer to the ε-SD decision problem for symmetry group Ck, input point
set P and value ε is YES iff there is a maximum 1-matching Mmax, |Mmax| = m so
that the answer of the ε-SD decision problem for symmetry group Ck, the partition
given by Mmax and value ε is YES.

Proof. ⇒ Suppose there is a Ck-symmetric point set Q which ε-approximates P .
Then there is a partition of P into subsets P1, . . . , Pm all of size k and a partition
of Q into regular k-gons Q1, . . . , Qm, all having the same rotation center c and Qi
ε-approximates Pi, for all 1 ≤ i ≤ m. Thus there is an edge ei ∈ E defined by Pi
contained in the hypergraph H, for all 1 ≤ i ≤ m and the set Mmax = {e1, . . . , em}
is a 1-matching of size m and thus a maximum 1-matching in H.
⇐ Suppose there is a maximum 1-matching Mmax of size m in H and the answer
to the ε-SD decision problem for symmetry group Ck, the partition of P defined
by Mmax and value ε is YES. Thus there is a Ck-symmetric point set Q which ε-
approximates P and therefore the answer to the ε-SD decision problem is YES.
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Remark 3.7.3. The problem of finding a maximum matching in a hypergraph for
k ≥ 3 is known to be NP-complete. This was already shown by Karp [22] in 1972.

Using this reduction we can state the following algorithm which solves the ε-SD
decision problem for symmetry group Ck:

Algorithm 3.7.1 Algorithm solving the ε-SD decision problem for symmetry group
Ck.

SDCkHypergraph(P = {p1, . . . , pn}, ε)
V = P ;
//For each subset e ⊂ P of size k...
for e ∈

(
P
k

)
do

//... test if a regular k-gon exists which ε-approximates e.
if SDC|e|(e, ε) then
//If that is the case, add the subset e to the set of edges.
E = E ∪ {e};

end if
end for
//Test for each matching M if the partition of P given by M leads to a positive
answer to the ε-SD problem.
M =FindMaximumMatchings(H = (V,E));
for M ∈M do
if SDCkPartition(M, ε) then
return TRUE;

end if
end for
return FALSE;

Theorem 3.7.4. Let a point set P ⊂ R2, a symmetry group Ck and a value
ε ≥ 0 be given. Then Algorithm 3.7.1 solves the ε-SD decision problem in time
O
(
n(mk)n4k20M(k)

)
, where M(k) is the time needed to compute a maximum match-

ing in bipartite graphs with k vertices.

Proof. The correctness follows from the correctness of Algorithm 3.3.7 and Lemma
3.7.2.

The k-uniform graph constructed in the algorithm has O(nk) edges. Thus there
are O

((
nmk

))
many matchings to be tested. Therefore the overall running time of

this approach is O
(
nmkn4k20M(k)

)
.

Using this algorithm is not practical for real world input point sets due to the
running time.
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Unfortunately, even computing a constant factor approximation of the maximum
1-matching in an k-uniform hypergraph is not possible in polynomial time unless
P=NP, which was proven by Hazan et al. [14].

The high running time resolves not only from the problem of finding maximum
matchings in a hypergraph but also from the high running time of Algorithm 3.4.4
which decides the ε-SD decision problem for symmetry group Ck with given partition
of P . This is due to the fact that we do not know the rotation center of the Ck-
symmetric point set Q.

In the remaining part of this section we will develop an algorithm which computes
an acceptable solution for the ε-SD computation problem for symmetry group Ck
and a realistic input set P . We assume the point set P to behave well w.r.t the
considered symmetry group, which means that we assume the optimal value εopt to
be small.

We can then achieve good result for the ε-SD computational problem for sym-
metry group Ck by using Algorithm 3.7.2.

The procedure MinimumWeightMaximumMatching(H = (V,E)) computes
an approximation of a maximum cardinality matching for the hypergraph H and is
given in Algorithm 3.7.3.

Theorem 3.7.5. For a given weighted k-uniform hypergraph H = (V,E) Algorithm
3.7.3 computes a 1-matching in time O

(
|E|
((
|V |
k

)
+ log |V |

))
.

Proof. The computed set M is a 1-matching of the hypergraph H since each vertex
is contained in at most one edge in M by construction. After adding an edge to the
set of matching edges, all edges incident to any vertex in e are deleted from E.

The while loop is iterated O
(
|V |
k

)
times since in each iteration k vertices are

covered by an edge and only edges not incident to any covered vertex are left in
E. Finding the vertex with minimum degree can be done in O(1) time by us-
ing a heap. Decreasing the degree of a vertex when deleting edges form the edge
set takes O(log |V |) time. Choosing the edge with smallest weight of a vertex v

can be done in time O(|E|) by using a doubly linked list for the edges. Delet-
ing an edge from that list takes time O(1). Thus the overall running time is
O
((
|V |
k

)
(1 + |E|) + |E| log |V |+ |E|

)
= O

(
|E|
((
|V |
k

)
+ log |V |

))
.

Remark 3.7.6. For realistic inputs we do not assume any more that the number
of elements in the point set is a multiple of the symmetry group number k. Since
the matching algorithm stops when all edges are deleted from the set E, the su-
pernumerous points are ignored. In Figure 3.7.1 the input set in (a) consists of 43

points. Since we search for a C8-symmetric point set, 3 points are left over and are
not mapped to any vertex of the C8-symmetric point set Q depicted in (b). In (c)
the green points are those points from the original point set which are mapped to a
point of Q. The radii of the circles indicate the weight of the corresponding matching
edges.
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Algorithm 3.7.2 Algorithm computing an approximation of the solution of the
ε-SD computational problem for symmetry group Ck.

SDApproximation(P = {p1, . . . , pn}, k)
//Use the center of mass as rotation center.
s = 1

n

∑n
i=1 pi;

α = 2π
k

V = P ;
E = ∅;
for i = 1 to n do
//Compute regular k-gon defined by pi and s.
Qi = {q(i,j) = ρ

(j−1)α
s (pi)|1 ≤ j ≤ k};

//εi is the minimum value s.t. a point of P is contained in each disk of radius
εi centered at the vertices of Qi.
εi = maxq∈Qi min{d(q, p)|p ∈ P};
for j = 1 to k do
//The set P(i,j) contains all points of P with distance smaller or equal to εi
to the jth vertex of Qi.
P(i,j) = {p ∈ P |d(q(i,j), p) ≤ εi};

end for
//Add all possible combinations of points in the sets P(i,1), . . . , P(i,k) to the set
of edges.
E = E ∪ {{p(i,1), . . . , p(i,k)}|p(i,j) ∈ P(i,j), 1 ≤ j ≤ k};
//The weight of the edge is the solution of the ε-SD computational problem for
symmetry group Dk and given rotation center s applied to the points in the edge.
w({p(i,1), . . . , p(i,k)}) =SDDkCenter({p(i,1), . . . , p(i,k)}, s);

end for
M =MinimumWeightMaximumMatching(H = (V,E));
return max{w(e)|e ∈M};

The running time of Algorithm 3.7.2 depends on the behavior of the input set P .
The more points of P are contained in the ε-neighborhoods of k − 1 vertices of the
regular k-gon defined by s and a point of P , the more edges are in the hypergraph.
Therefore the construction of the hypergraph and especially the algorithm finding a
1-matching take more time than in the case where only few points of P lie in the
ε-neighborhoods of the vertices of the regular k-gons.

The aim of Algorithm 3.7.2 is to construct a Ck-symmetric point set which is a
good approximation of the input set. As an application of this algorithm think of
a picture of a figure with symmetry group Ck which contains noise due to certain
preprocessing steps. For examples consider a pipeline which converts a picture of
an object to a .jpg image and then to a polygonal curve. The result of Algorithm
3.7.2 applied to the vertices of the polygonal curve is then a Ck-symmetric polygonal
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Algorithm 3.7.3 Algorithm for approximating the maximum cardinality matching
with minimum weight for hypergraph H.

MinimumWeightMaximumMatching(H = (V,E))
M = ∅;
while E 6= ∅ do
Choose vertex v with smallest degree;
Choose edge e incident to v with minimum weight;
M = M ∪ {e};
Remove e and all other edges incident to any vertex in e from E;

end while
return M ;

representation of the original symmetric figure. In order to get good results, we
assume that the symmetry group considered in Algorithm 3.7.2 is the one of the
original figure.

For a given point set P which results from an originally symmetric figure but
is slightly distorted due to some processing steps, we can construct a symmetric
point set which is a close approximation of P by combining the algorithms presented
in Chapter 2 with the one presented in this section. The algorithms presented in
Chapter 2 detect the symmetry group of a point set or an image even if it contains
noise. Thus we can apply these algorithms in order to detect the symmetry group
which we then use in Algorithm 3.7.2 in order to construct the symmetric point set
Q.

A program using this procedure in order to detect a symmetry group of an object
represented by a set of points or straight line segments and approximate it by an
object having the detected symmetry group was implemented by using the language
JAVA. The program is attached to this thesis.

The point sets in Figure 3.7.2 are constructed using the JAVA-program.
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(a) Input point set P . (b) C6-symmetric point set Q.

(c) The green points are those point of the input
point set P which are mapped to a point of the
point set Q.

Figure 3.7.1: Example of symmetric approximation.



3.7. THE ε-SD PROBLEM AND HYPERGRAPH MATCHING 145

(a) Original point set (b) C5-symmetric point set

(c) Original point set (d) C8-symmetric point set

Figure 3.7.2: Examples of point sets and their symmetric reconstruction.
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The last example is a very interesting one. It shows how misleading the human
perception is. Let us consider the following point set:

(a) Original point set

By looking at the point set one would consider it to be D10-symmetric. And indeed
this is one of the answers with a large number of votes in the probabilistic

algorithm. The approximation is quite close as can be seen in the following figure:

(b) Approximating point set with small value of ε, which is indicated
by the disks.

Figure 3.7.3: Example where the human perception is misleading.
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The symmetry group with the largest number of votes, however, is C2. And indeed
this is the correct answer since the input set itself is C2-symmetric as the
approximation shows:

(c) The input point set itself is C2-symmetric since the value of ε of
the approximating set is zero.
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