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5. Introduction 
5.1. Herpesviruses 
Herpesviruses have been discovered not only in vertebrates, such as humans, mammals, 

birds, and fishes, but also in animals of lower taxa, including molluscs. These infections are 

associated with various clinical manifestations, ranging from asymptomatic or mild symptoms 

to severe diseases, such as lymphoma.  

 

5.1.1. Classification of herpesviruses 
The classification of herpesviruses is complex. All herpesviruses share a typical virion 

morphology and harbor the linear, double-stranded DNA genomes, comprising the order 

Herpesvirales (Davison et al. 2009). Herpesvirales encompasses three distinct virus families: 

the Herpesviridae, which infect mammals, birds, and reptiles, and the Alloherpesviridae, which 

include the herpesviruses of fish and amphibians; and the Malacoherpesviridae, which contain 

the herpesviruses of invertebrates. The Herpesviridae family was further classified into three 

subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae defined 

primarily based on genetic properties (Gatherer et al. 2021). Alphaherpesviruses have a 

variable mammalian host range and also infect avian and reptilian hosts, with a relatively rapid 

reproductive cycle. They are able to establish latent infection primarily but not exclusively in 

sensory ganglia (Bloom 2016). Betaherpesviruses have a restricted host range and are 

characterized by a long reproductive cycle (over seven days) and latency in secretory glands, 

lymphoreticular cells, kidneys, and other tissues (Flamand 2018; Aimola et al. 2020). 

Gammaherpesviruses also have a limited natural host spectrum, specifying replication and 

latency in T or B lymphocytes (Lieberman 2013).  

 

At present, nine herpesviruses infect humans (Gatherer et al. 2021), and among them are 

representatives from each of the three subfamilies: human herpesvirus 1 and 2 (also termed 

as Herpes simplex viruses 1 and 2, HSV-1 and HSV-2), human herpesvirus 3 (also termed as 

varicella-zoster virus, VZV), human herpesvirus 4 (also termed as Epstein–Barr virus, EBV), 

human herpesvirus 5 (also termed as human cytomegalovirus, HCMV), human herpesvirus 

6A and 6B (HHV-6A and HHV-6B), human herpesvirus 7 (HHV-7), and human herpesvirus 8 

(also termed as Kaposi's sarcoma-associated herpesvirus, KSHV). Additionally, some crucial 

diseases among domestic animal species are caused by herpesvirus. Avian herpesviruses 

(AHV) are enzootic among the poultry and even cause hemorrhagic or neoplastic diseases. 

AVH, such as Marek’s disease virus (MDV), Duck enteritis virus (DEV), and Infectious 

laryngotracheitis virus (ILTV), are of great importance to the commercial poultry industry 

because they are causing substantial economic losses from disease and/or the cost of 

vaccination (Ou and Giambrone 2012; Devlin et al. 2016; Dhama et al. 2017).  
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5.1.2. Virion structure and genome organization 
The morphology of herpesviruses is characteristic and complex, distancing from other viruses. 

A typical herpesvirus consists of a core, capsid, tegument, and envelope, forming a spherical 

to pleomorphic, 120 – 250 nm diameter virion (Figure 1). The size variation is due to variability 

in the thickness of the tegument and the state of the envelope [10]. The core of the mature 

virion contains a linear, double-stranded DNA ranging from 124 – 295 kilobase pair (kbp) in 

length, which is packed in an orderly manner in the form of a torus (Liu and Zhou 2007). The 

virus core was protected by the nucleocapsid, which is a T=16 icosahedron containing 162 

capsomers arranged with 150 hexons, 11 pentons, and one portal (Gatherer et al. 2021). 

Surrounding the capsid is the tegument, consisting of inner and outer layers. Teguments 

contain more than 20 proteins, some of which are present in hundreds of copies per virion 

(Newcomb et al. 2012). The envelope, the outer covering of the virion, is composed of an 

altered membrane and some virally encoded glycoproteins as short spike structures on the 

surface (Mettenleiter et al. 2009). 

 

Herpesvirus DNAs are linear and double-stranded. Features of herpesviruses genomes vary 

from the size of genomes, base composition to sequence arrangements: (1) the length of the 

genome is 125 to 295 kbp; (2) the composition of guanine plus cytosine content (G+C) varies 

from 31% to 77%; (3) the genomes can be divided into six groups designated as class A to F. 

Except for class F genome, other genome classes possess terminal and internal repeated 

sequences (Osterrieder et al. 2014; Davison 2007). Class A genomes consist of a unique 

sequence flanked by a direct repeat region (DR) with several kbp in size. Class B genomes 

also have directly repeated sequences at the termini, containing a variable number of tandem 

repeated. Class C genomes harbor terminal sequences as class B, but consist of an internal 

set of direct repeats that is unrelated to the terminal sequences. Class D and E genomes 

contain two unique regions (UL and US), each flanked by terminal and internal inverted repeats 

(TRL/IRL and TRS/IRS). The class E genomes are the most complex, TRL/IRL of which is much 

larger and which contains the a-like sequences at internal and terminal repeat junctions.  
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Figure 1: Schematic representation of the alphaherpesvirus virion.  

The alphaherpes-virus contains a double-stranded DNA genome that is monopartite and has 

a size of 120 - 240 kbp, protected by the nucleocapsid that consists of 162 capsomers (150 

are hexameric and 12 pentameric). An outer and inner amorphous tegument surrounds the 

capsid. The outer layer consists of glycoprotein spikes embedded in the lipid bilayer of the 

envelope. (Image from https:// viralzone.expasy.org/178?outline=all_by_species) 

 

5.2. Marek’s disease virus (MDV) 
The herpesvirus of interest in this thesis is MDV, an oncogenic alphaherpesvirus that causes 

neurological disorders, immunosuppression, and visceral tumors in chickens (Osterrieder et 

al. 2006). MDV is widely disseminated and ubiquitous, causing significant losses in the poultry 

industry due to increased morbidity and mortality of chickens.  

 

MDV belongs to the genus Mardivirus in the subfamily Alphaherpesviruses. The genus 

Mardivirus have birds as natural hosts, and are best known for causing severe and sometimes 

fatal infections on domesticated poultry such as ducks and chickens. Presently, members of 

the genus Mardivirus can be divided into six species (Gatherer et al. 2021). Marek’s disease 

virus, in the species Gallid alphaherpesvirus 2 (GaAHV-2), consists of all pathogenic strains, 

which are variable in their pathogenic and oncogenic potential and are classified as mildly 

virulent (m) to virulent (v), very virulent (vv) and very virulent plus (vv+) (Calnek 2001). Gallid 

alphaherpesvirus 3 (GaAHV-3), in the species Gallid alphaherpesvirus 3, contains avirulent 

and non-oncogenic strains, such as the SB-1 strain. Meleagrid alphaherpesvirus 1 (MeAHV-
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1), also known as herpesvirus of turkey (HVT), is in the species Meleagrid alphaherpesvirus 

1 and a ubiquitous, nonpathogenic virus of domestic turkeys (Gatherer et al. 2021). The 

sequence similarity between the three serotypes ranges from 50% to 80% (Davison 2001; 

Kingham et al. 2001). 

 

5.2.1. History of Marek’s disease virus 
József Marek, a Hungarian veterinary pathologist, firstly reported a generalized polyneuritis 

disease in chickens in 1907 (Osterrieder et al. 2006). Two decades later, Pappenheimer and 

colleagues proposed that visceral lymphoma was part of the symptoms of this disease, and 

they suggested to term “neurolymphomatosis gallinarum” (Pappenheimer et al. 1929b; 

Pappenheimer et al. 1929a). In the 1960s, it had developed into a much more severe disease 

with a commonly 10-30% mortality rate, causing severe economic losses to the poultry 

industry (Biggs 1968). A cell-associated herpesvirus was identified in tumor cells, as the 

causative agent of Marek’s disease (MD) (Churchill and Biggs 1967). In the following decades, 

the devastating Marek’s disease came under control after introducing vaccines and 

widespread vaccination with a live attenuated virus HPRS16 or HVT in the early 1970s 

(Churchill et al. 1969; Okazaki et al. 1970). Over time, the virulence of MDV gradually 

increased, with breakthroughs in the vaccine protection. A bivalent or polyvalent vaccine 

formulation, combined HVT and SB-1, was introduced to provide enhanced protection as the 

second-generation vaccine against MDV (Calnek et al. 1983). However, they provided less 

protection for the emergence of highly virulent MDV, such as the RB-1B strain (Schat 2016). 

Dr. Rispens, coming from the Dutch Central Veterinary Institute, firstly isolated, tested, and 

established the third generation MDV vaccine, which is the gold standard vaccine—CVI988-

Rispens, an attenuated MDV-1 strain (Rispens et al. 1972a; Rispens et al. 1972b). All MDV 

vaccines provide efficiency against disease progressions, such as neurological deficits and 

tumorigenesis, but do not induce sterile immunity, thereby establishing infection and exposing 

mature viruses to the environment. Notably, the modified-live virus vaccine significantly 

reduced the incidence of MD but allowed infection, replication, and transmission of viruses, 

potentially prompting the evolution of more virulent pathogens (Gandon et al. 2001; Read et 

al. 2015). Considering this, MD remains a threat to the poultry industry.  

 

5.2.2. MDV pathogenesis 
MDV has a very complex lifecycle, involving different cell types and targeting many organs. 

The “Cornell model of MDV pathogenesis,” a widely accepted MDV lifecycle model, delineated 

the natural in vivo infection into four interlacing main phases: (i) entry, (ii) replication, (iii) 

latency, and (iv) spread (Figure 2) (Calnek 2001; Bertzbach et al. 2020).  
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Figure 2: Schematic illustration of the MDV lifecycle 

MDV infection is initiated by inhalation of infectious dust. The virus is transmitted by 

mononuclear phagocytes to lymphoid organs such as the spleen, thymus and bursa, where it 

multiplies lytically in lymphocytes. A latency period can be established by infected T-cells. 

Latently and/or lytically infected T cells transport the virus to the skin and follicular epithelium 

(FFE), where cell-free MDV is produced. Additionally, MDV can transform latently infected T 

cells, leading to malignant lymphomas. The figure was obtained from (Bertzbach et al. 2020). 

 
 
5.2.2.1.  MDV primary infection and lytic replication 
The natural route of MDV infection starts with the inhalation of dust and feather dander 

containing cell-free virus particles (Calnek et al. 1970). After intratracheal inoculation, initial 

virus replication is evident in mononuclear phagocytes, mainly macrophages or dendritic cells 

(DCs), and pulmonary B cells (Barrow et al. 2003; Baaten et al. 2009), which then deliver the 

virus to primary lymphoid tissues- the bursa of Fabricius, thymus, and spleen. MDV encodes 

a secreted CXC chemokine, termed vIL-8 or vCXCL13, which can recruit B cells and a subset 

of CD4+ T cells (Engel et al. 2012; Haertle et al. 2017). Early cytolytic replication occurs mainly 

in B cells, peaking between 3-7 days post-infection (d.p.i) (Shek et al. 1983; Baigent et al. 

1998). However, B cells are completely unnecessary for MDV replication. In the absence of B 
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cells, CD4+ and CD8+ T cells are compensated for the loss of B cells and facilitate efficient 

virus cytolytic replication in these organs (Schermuly et al. 2015; Bertzbach et al. 2018b). In 

addition, primary chicken endothelial cells and natural killer (NK) cells are also shown to be 

susceptible to cytolytic infection (Lion et al. 2018; Bertzbach et al. 2019b). During the early 

cytolytic replication, MDV causes a transient thymus and bursa of Fabricius atrophy (Berthault 

et al. 2018). MDV-induced apoptosis affects infected cells in the thymus but also non-infected 

cells in the bursa, which causes a massive depletion of T- and B-cells in these organs 

(Morimura et al. 1996; Berthault et al. 2018). However, MDV-infected bursal B-cells are 

associated with a drastic delay in proliferation/cell cycle progression, leading to a prolonged 

B-cell survival (Trapp-Fragnet et al. 2021). The depletion of lymphocytes caused by MDV 

ultimately leads to immunosuppression (Berthault et al. 2018). 

 

5.2.2.2. MDV latency 
The establishment of latency is a hallmark for all herpesviruses, enabling them to escape from 

the host immune system and maintain life-long viral genetic material (Cohen 2020). From 

approximately 7 d.p.i, MDV enters the latent infection when lytic replication can no longer be 

detectable, and tumors are not yet formed. Latently infected cells are mainly activated CD4+ 

T cells, although B cells, CD8+ cells, and CD4-CD8- T cells can also be involved (Schat et al. 

1982; Schat et al. 1991; Lee et al. 1999). Few proteins and RNAs are produced during the 

MDV latency, most of which originate from both the long and short repeat regions (Sugaya et 

al. 1990). Three regions of transcripts have been mainly studied: latency-associated 

transcripts (LATs), the 1.8-kb family of transcripts and transcripts originating from the meq 

(MDV004) gene (Osterrieder et al. 2006). Latency is associated with viral genome integration 

into the telomeres of the host cells, ensuring the lifelong persistence of the virus in the host. 

The genomic DNA of MDV harbors TMRs identical to host telomere sequences (TTAGGG)n, 

which facilitates viral integration into the telomeres of host chromosomes to maintain their 

genetic material (Kaufer et al. 2011; Greco et al. 2014; Osterrieder et al. 2014). This will be 

discussed in section 5.3. 

 

5.2.2.3. MDV shedding 
Latently and/or lytically infected T cells transport the virus to the skin and feather follicle 

epithelia (FFE), where is also the site of MDV replication (Couteaudier and Denesvre 2014; 

Bertzbach et al. 2020; Davidson 2020). Viral DNA can be detected as early as 5-7 d.p.i in FFE 

and increase substantially until 28 d.p.i, reaching a plateau (Baigent et al. 2005; Islam and 

Walkden-Brown 2007). Notably, infectious mature virions have been observed in FFE, from 

which cell-free infectious virions can be purified (Calnek et al. 1970; Couteaudier and 

Denesvre 2014). Form infected feather follicles, MDV is shed into the environment via 
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releasing infectious dander and feather debris at 12-14 d.p.i, causing horizontal disease 

spread (Jarosinski et al. 2014). MDV shedding makes the virus ubiquitous and causes 

environmental contamination. The infectious MDV can last up to 16-28 weeks in the 

environment (Carrozza et al. 1973).  

 

5.2.3. MDV genome structure 
The double-stranded MDV DNA genome is approximately 180 kilo base pair and belongs to 

class E consisting of a unique long (UL) and a unique short (US) sequence that is flanked by 

the terminal (TRL and TRS) and internal (IRL and IRS) inverted repeat regions (Tulman et al. 

2000; Osterrieder et al. 2006). Two virus species in the genus Mardivirus, GaAHV-3 and HVT, 

share significant sequence homology throughout the genome except within the repeat-long 

regions (Figure 3). More than 100 open reading frames (ORFs) have been annotated in the 

MDV genome. The unique regions mainly harbor genes that are conserved and have 

homologs in other alphaherpesviruses, typically involved in DNA replication, production of 

progeny virus, and various other processes critical to the viral lifecycle (Lee et al. 2000). In 

addition, several MDV-unique genes in these regions are essential for viral replication and 

pathogenesis, such as viral lipase (vLIP, encoded by LORF2) and MDV012 (Kamil et al. 2005; 

Schippers et al. 2015; Liao et al. 2021). In contrast, the repeat regions harbor many MDV-

specific genes, RNAs, and other sequence fragments that are important for MDV 

pathogenesis, tumorigenesis, and latency (Bertzbach et al. 2018a). 
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Figure 3: Overview of the vvMDV strain RB1B and MDV vaccine genomes that harbor 
telomeric repeat (TMR) arrays 

These viruses have a class E genome, consisting of a unique long (UL) and short (US) that are 

flanked by terminal (TRL and TRS) and internal (IRL and IRS) inverted repeat regions. A focus 

on the regions harboring TMRs is shown. 

 

5.2.4. MDV virulence factors 
MDV encodes about 100 proteins that orchestrate the virus life cycle and/or contribute to 

pathogenesis. Several viral factors involved in MDV pathogenesis and/or tumorigenesis have 

been identified, and some of the mechanisms have been deciphered (Figure 4). Research on 

deciphering the mechanistic descriptions of these viral factors is still ongoing to completely 

understand the mechanisms for MDV pathogenesis. To date, the most crucial oncoprotein in 

MDV pathogenesis is the major oncoprotein Meq (Marek’s EcoRI Q fragment), a basic leucine 

zipper (b-ZIP) transcription factor (Jones et al. 1992). Meq is constitutively expressed in lytic 

and latent infection and even in MDV-driven lymphoblastoid cells (Arumugaswami et al. 2009a; 

Arumugaswami et al. 2009b) and can regulate cellular and viral gene expression, such as p53, 

retinoblastoma protein, and vTR (Levy et al. 2003; Brown et al. 2006; Osterrieder et al. 2006; 

Zhao et al. 2009; Conradie et al. 2019). Moreover, few amino acid changes in the meq gene 

significantly alter virulence, vaccine resistance, and viral shedding ability, providing 

fundamental insights into evolutionary adaptations (Conradie et al. 2019; Conradie et al. 2020). 
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Furthermore, other protein-coding genes, including vIL-8, RLORF4 (repeat long open reading 

frame 4), phosphoprotein 14 (pp14), and phosphoprotein 38 (pp38), have been identified as 

virulence factors of which deletion mutants severely impaired disease development and tumor 

formation (Parcells et al. 2001; Reddy et al. 2002; Jarosinski et al. 2005; Engel et al. 2012; 

Tahiri-Alaoui et al. 2013). 

 
Figure 4: Schematic representation of the MDV genome with a focus on the viral factors 
involved in pathogenesis and tumorigenesis.  

The repeat regions contain MDV-specific genes encoding for proteins or RNA. Deletion one 

of them has been shown that are responsible for pathogenesis, cellular tropism, tumorigenesis, 

and/or latency. The positions of the following genes or DNA sequences are shown in the IRL: 

pp38, pp14, miR-M4, major oncogene meq, RLORF4, viral chemokine vIL-8, viral telomerase 

RNA (vTR), and TMR. The corresponding functions and expression stages of viral virulence 

factors are respectively listed. 

 

Usually, with strict size limitations, the majority of herpesvirus transcripts are unspliced, but a 

few genes are also known to be spliced. Moreover, viruses, including herpesvirus, utilize host 

alternative splicing machinery to generate multiple proteins from their limited genome (Berget 
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et al. 1977; Toth 2008; Nojima et al. 2009). Notably, tumor viruses produce spliced RNA 

isoforms from bicistronic or polycistronic RNA transcripts, which is essential for diversifying 

their transcriptomes during virus infection and oncogenesis (Zheng 2010; Shuda et al. 2011; 

Ajiro and Zheng 2015; Ajiro and Zheng 2019). For MDV, a small proportion of genes containing 

introns have already been identified and characterized, such as vIL-8, glycoprotein C (gC), 

pp38, and MDV012, which play crucial roles in the viral lifecycle (Parcells et al. 2001; Li et al. 

2006; Jarosinski and Osterrieder 2012; Schippers et al. 2015). Furthermore, alternative RNA 

splicing occurs when several splice donors and/or acceptors are eligible and facultative, based 

on which multiple spliced transcripts have been identified in the region containing meq, 

RLORF4/5a, and vIL-8 (Jarosinski and Schat 2007; Okada et al. 2007). An alternative spliced 

transcript, Meq/vIL-8, has been reported that it was as a negative regulator of Meq and showed 

different nuclear mobilities (Anobile et al. 2006). The abrogation of the Meq/vIL-8 isoform in 

the very virulent plus (vv+) MDV 686 strain slightly accelerated the onset of disease and 

increased the prevalence of persistent neurological disease, suggesting that it could be a self-

controller to avoid early mortality of infected chickens (Liao et al. 2020). Comprehensive 

transcriptome analyses of MDV-infected cells revealed extensive splicing of viral genes 

resulting in coding and non-coding RNA transcripts. However, most of their biological 

relevance remains poorly understood (Bertzbach et al. 2019a; Sadigh et al. 2020). 

 

The MDV genome also encodes for a rich repertoire of non-coding RNAs, including viral 

microRNAs (miRNA), the viral telomerase RNA subunit (vTR), long noncoding RNAs (lncRNA), 

and circular RNAs (circRNA) (Fragnet et al. 2003; Yao and Nair 2014; Bertzbach et al. 2020; 

Chasseur et al. 2022). MDV has been discovered to encode 14 miRNA precursors that 

produce 26 mature miRNAs. MDV-miR-M4, a human miRNA miR-155 ortholog, plays a critical 

role in the induction of tumors (Zhao et al. 2011; Bondada et al. 2019; Zhang et al. 2019). miR-

M7-5p, which originated from the LAT-cluster, may contribute to the establishment and 

maintenance of latency (Strassheim et al. 2012). A well-study non-coding RNA is vTR which 

plays a crucial role in MDV-driven tumor formation (Fragnet et al. 2003; Trapp et al. 2006). 

vTR shares high sequence identity with chicken telomerase RNA and the conserved stem-

loop structure (Fragnet et al. 2003). Furthermore, MDV harbors a specific sequence in its 

genome, called telomeric repeat (TMR) arrays, which facilitate viral integration to establish 

latency in infected-CD4+ cells and tumor cells (Kaufer et al. 2011; Greco et al. 2014; 

Osterrieder et al. 2014).  

  

5.3. Herpesvirus genome integration 
The herpesviruses' hallmark is mainly their ability to establish lifelong latency and reactivate 

to infect other hosts. The key to successful latency establishment is that the viral genome is 
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stably maintained in the nuclei of latently infected cells. Most herpesviruses maintain their 

genome as circular episomes in one or multiple copies, which are or are not physically 

associated with host chromosomes (Osterrieder et al. 2014; Cohen 2020). Intriguingly, HHV-

6A/B and MDV have been found to integrate their genome into the telomeres of host 

chromosomes (Delecluse and Hammerschmidt 1993; Luppi et al. 1993; Arbuckle et al. 2010). 

Telomeres are specialized and conserved structures at the ends of vertebrate chromosomes, 

consisting of tandem hexanucleotide (TTAGGG)n associated with numerous proteins. 

Analysis of these genomes revealed that HHV-6A/B and MDV harbor arrays of TMRs, identical 

to those of the host (Osterrieder et al. 2014). 

 

5.3.1. MDV Telomeric repeats 
TMRs were identified in all sequenced MDV genomes to date. The number and arrays of 

TMRs are flexible and variable among different strains and species (Figure 3). TMRs are 

located within the a-like sequences, which are present at both ends of the linear genome and 

in an inverted orientation at the IRL-IRS junction. For MDV, each a-like sequence harbors two 

TMR arrays: multiple telomeric repeats (mTMR), with specific variable lengths, and short 

telomeric repeats (sTMR), with a fixed number of six repeats. For GaAHV-3 and HVT, they 

only harbor mTMR.   

 

5.3.2. Mechanism of MDV integration 
The presence of viral TMRs in some herpesviruses, including HHV-6 and MDV, facilitates 

directed integration into host telomeres and then ensures faithful viral maintenance in host 

cells during cell division (Kaufer et al. 2011; Greco et al. 2014; Wallaschek et al. 2016b). 

Previously, studies have demonstrated that the exact TMR sequences are crucial for MDV 

integration. Mutation of viral TMRs, replaced with either structurally similar (TAAGGC)n or 

completely scrambled repeats (ACGACA)n, preclude efficient integration into host telomeres 

(Kaufer et al. 2011). Tumor cells driven from these MDV mutants-infected animals harbored 

only a single MDV integration site that was not located in host telomeres, but elsewhere in the 

chromosome. Functional analysis of the individual TMR arrays revealed that either mTMR or 

sTMR affects MDV integration (Kaufer et al. 2011; Greco et al. 2014). sTMR show a dual role 

in the MDV life cycle. Complete deletion of sTMR abrogates virus replication, while extensive 

mutation of sTMR does not, indicating that the sTMR arrays likely serve as spacers between 

the packaging signal pac-1 and the DR-1 cleavage site to ensure viral replication (Volkening 

and Spatz 2013; Greco et al. 2014). Mutation of the sTMR alone slightly reduced viral 

integration, which still occurred in up to four chromosomes, indicating that the sTMR plays a 

relatively minor role in integration. On the other hand, deletion of the mTMR alone severely 

impaired the integration frequency (Kaufer et al. 2011). Analysis of tumor cells derived from 
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mTMR deletion mutant-infected animals demonstrated that viral integration only occurred in a 

single locus that was random integration as concatemers, indicating that the mTMR plays a 

significant role in the MDV genome integration into host telomeres (Kaufer et al. 2011).  

 

Viral TMRs and homology to the host telomeres play a crucial role in HHV-6 and MDV 

integration, indicating that the insertion of the virus genome into host telomeres most likely 

occurs via the homologous recombination (HR) pathway (Osterrieder et al. 2014; Aimola et al. 

2020). Many cellular recombinases have been proposed to be involved in this integration, 

such as Rad51, Rad52, which are essential for DNA damage repair (DDR) and single-strand 

annealing (SSA) by HR, respectively. Although the inhibition of Rad51 did not alter the HHV-

6 integration efficiency, more studies are required to decipher this process (Wallaschek et al. 

2016a; Wight et al. 2018). Beyond the cellular pathways, several viral factors also could be 

involved in the homologous recombination. MDV encodes a putative recombinase complex 

consisting of pUL12 and the HSV ICP8 ortholog encoded by UL29, which are also named U41 

and U70 in HHV-6A/B. Surprisingly, even though UL12 or U70 aids in the SSA DNA repair 

pathway, silencing these genes using shRNA did not affect virus genome maintenance or viral 

telomere integration (Wight et al. 2018; Previdelli et al. 2019). Moreover, HHV-6A/B encodes 

another putative viral recombinase U94, unique to other telomere herpesviruses, which is an 

orthologue of the adeno-associated virus 2 (AAV-2) integrase (Rep68). The absence of U94 

did not impair HHV-6A integration in several commonly used cell lines, suggesting that U94 is 

dispensable for HHV-6A/B integration at least under these conditions or other factors can 

complement the loss of U94 (Wallaschek et al. 2016a). However, studying for MDV integration 

could only be investigated qualitatively upon infection of animals due to the lack of an in vitro 

integration assay, leading to a lag behind HHV-6 research. Therefore, establishing a cell 

culture-based system would shed further light on the MDV integration mechanism. 

 

5.3.3. The importance of integration in MDV tumorigenesis 
For oncogenic MDV strains, viral integration efficiency is directly correlated with pathogenesis 

and tumor formation. Deletion or mutation of TMRs severely impaired MDV-induced tumor 

formation (Kaufer et al. 2011; Greco et al. 2014). The integration occurred in all MDV-driven 

tumor cells even upon TMR mutation. Moreover, analysis of tumor cells obtained from different 

organs of an animal showed a similar integration pattern (Delecluse and Hammerschmidt 

1993; Osterrieder et al. 2014). These demonstrated that viral integration occurs at a very early 

stage of the lymphocytes’ transformation and is likely the initial step in the process of tumor 

formation, which ensures faithful maintenance of the viral genome and expression of 

oncogenic factors, such as Meq and vTR (Lee et al. 2008; Kaufer et al. 2010; Conradie et al. 

2019). 
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Of note, three vaccine viruses strains that protect chickens against oncogenic MDV, CVI988, 

SB-1 and HVT, also harbor TMRs in their genome. Currently, all these vaccines do not provide 

sterilizing immunity, allowing pathogenic strain infection, replication, and transmission (Read 

et al. 2015; Conradie et al. 2020). In vaccinated chickens, these vaccines can be detected in 

a latent form and in very few metaphase chromosomes harboring the virus genome 

(McPherson et al. 2016; McPherson et al. 2018). It is unclear whether these vaccines also 

establish latency by integrating their genome into the host and utilizing their TMRs to facilitate 

this process. On the other hand, vaccination with CVI988 did reduce not only the pathogenicity 

and tumor formation but also the viral telomere-integration (McPherson et al. 2018). Therefore, 

it is worthy to investigate whether the mechanism of vaccinal protection is associated with the 

disrupted latency or transformation of oncogenic MDV, and whether the latency of vaccines 

contributes to the protection.  

 

5.4.  Project introduction  
Despite many years of MDV research, many critical questions remain unanswered and need 

extensive studies. Comprehensive MDV transcriptome analyses revealed that the coding 

capacity of the MDV genome is greater than previously anticipated, identifying some novel 

MDV genes and splice variants. Functional characterization of MDV genes is essential to shed 

light on the complex virus life cycle and MDV pathogenesis. In this cumulative dissertation, I 

addressed the contribution of two novel proteins to MDV pathogenesis and tumorigenesis. 

Furthermore, the establishment of de novo in vitro integration assay system that will provide 

an optimal plateform for in vitro research on the integration mechanism of MDV into host 

telomeres. Work from both aims has been published, and the results are summarized: 

 

1. To identify and investigate the contribution of three putative MDV-1-specific 
protein-coding genes 
Recently, comprehensive MDV transcriptome analyses have identified a couple of 

potential protein-coding genes, such as MDV082, RLORF11, and SORF6, which are 

also unique to MDV-1 based on sequence alignment. Using FLAG-tagged mutants, we 

concluded that only the protein of MDV082 is produced during viral infection. Moreover, 

our data revealed that pMDV082 contributes to the rapid onset of Marek’s disease but 

is dispensable for replication, dissemination, and tumor formation in infected chickens. 

The paper was published in the Journal of Virology, ‘The Marek's Disease Virus Unique 

Gene MDV082 Is Dispensable for Virus Replication but Contributes to a Rapid Disease 

Onset’ and is presented in Section 7 of this thesis. 
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2. To characterize the contribution of a novel vIL-8 splice variant 
MDV encodes a CXC chemokine, also named viral interleukin 8 (vIL-8), which consists 

of two introns and three exons. Comprehensive transcriptome analyses recently 

revealed a novel alternative vIL-8 splice junction within intron II. This splicing event 

would result in a novel exon 3 (E3′) containing the last 16 base pairs (bp) of intron II 

and a stop codon. While the splice variant was clearly detectable in the transcriptome 

of B cells and CECs, it remained unknown whether this spliced transcript encodes a 

protein. Using FLAG-tagged mutants, we demonstrated that the novel splice form is 

expressed as a protein. This protein is dispensable for virus replication, and its 

absence does not affect the expression of the secreted vIL-8 chemokine. Only minor 

effects were observed in MDV pathogenesis and tumor formation. This study provides 

novel insights into the splice forms of the CXC chemokine of this highly oncogenic 

alphaherpesvirus. The paper was published in Microorganisms, ‘Characterization of a 

Novel Viral Interleukin 8 (vIL-8) Splice Variant Encoded by Marek’s Disease Virus’ and 

is presented in Section 8 of this thesis. 

 

3. To develop an in vitro quantitative system to study MDV integration 
MDV integrates its genome into the host telomeres, which is crucial for efficient tumor 

formation. Telomeric repeat arrays present at the ends of the MDV genome facilitate 

this integration into host telomeres; however, the integration mechanism remains 

poorly understood. Moreover, MDV integration could only be investigated qualitatively 

upon the infection of chickens. Therefore, we developed a cell-based quantitative 

integration assay that was used to investigate the integration efficiency of MDV in vitro. 

This quantitative integration system provides an optimal basis for investigating the role 

of viral and cellular factors in integrating MDV into the host telomeres. The paper was 

published in Microorganisms, ‘A Cell Culture System to Investigate Marek’s Disease 

Virus Integration into Host Chromosomes’ and is presented in Section 9 of this thesis. 
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10. Discussion 
10.1. General discussion 
Marek’s disease is a contagious, deadly lymphoproliferative disease of chickens caused by 

MDV. The virus induces immunosuppression and severe neurological symptoms and typically 

results in mortality rates of up to 100% in unvaccinated chickens, which causes substantial 

economic losses in poultry production worldwide (Bertzbach et al. 2020). Therefore, billions 

of chickens are vaccinated every year, effectively decreasing its natural incidence (Schat 

2016). Unfortunately, all the generations of vaccines do not induce sterile immunity, thereby 

establishing infection and exposing mature viruses to the environment, allowing the viruses to 

become resistant and potentially prompting the evolution of more virulent pathogens (Read et 

al. 2015). In-depth characterization of the genetic factors of MDV is an essential step toward 

understanding the complex viral lifecycle, from viral primary infection, lytic replication, latency, 

to tumor formation eventually. Many studies have demonstrated the roles of several viral 

factors involved in viral pathogenesis, including the oncoprotein Meq, the viral chemokine vIL-

8/vCXCL13, RLORF4, RLORF5a, pp14, and pp38 (Bertzbach et al. 2018; Bertzbach et al. 

2020). The functional analyses of these virus-specific virulent genes have provided much 

insight into the molecular mechanisms responsible for MDV pathogenesis. However, many 

aspects have not been assessed, and an update of the status quo would help identify 

knowledge gaps to fill them. Moreover, deciphering the mechanisms of viral factors involved 

in MDV pathogenesis and lymphomagenesis will also provide new strategies for efficiently 

engineering new vaccines against this deadly pathogen.  

 

Comprehensive MDV transcriptome analyses recently revealed that the coding capacity of the 

MDV genome is greater than previously anticipated and identified additional hypothetical 

coding sequences, such as SORF6 and RLORF11 (Bertzbach et al. 2019; Sadigh et al. 2020). 

mRNA levels of these transcripts were high in lytically infected cells. Intriguingly, although the 

very virulent strain RB1B has high sequence similarity (>99%) with the vaccine strain CVI988, 

their transcriptome showed some minor differences in the viral messenger RNA (mRNA) 

levels, reflecting that either change in the protein expression or functional differences in 

virulence factors might be responsible for the difference in pathogenesis between RB1B and 

the vaccine. One of the notable transcripts is MDV082, which has significantly higher 

expression in CVI988-infected cells compared to cells that were infected with RB1B. These 

three transcripts (SORF6, RLORF11 and MDV082) all possess an upstream TATA box and a 

downstream poly(A) cleavage cluster, resembling protein-encoding genes. Moreover, they are 

unique to MDV based on sequence alignment. Therefore, investigating their coding potentials 

and the functions of their gene products could shed more light on the complex viral lifecycle. 
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RNA alternative splicing is an essential and common process for eukaryotic gene expression, 

occurring when several splice donor sites (GT) and/or acceptor sites (AG) are eligible and 

facultative, which allows the construction of different RNA transcript isoforms from a single 

pre-mRNA (Bonnal et al. 2020). Despite its prevalence in eukaryotic cells, viruses, such as 

adenovirus and herpesvirus, have been demonstrated to utilize alternative splicing machinery 

of the host to generate diverse sets of transcripts (Berget et al. 1977; Toth 2008; Nojima et al. 

2009). For MDV, some of the introns and associated spliced genes have been previously 

described, most notably the spliced variants of MDV oncogene meq, the viral lipase (vLIP), 

glycoprotein C (gC), vIL-8 and pp14 (Kamil et al. 2005; Bertzbach et al. 2018). In addition, in 

the meq to vIL8 region, multiple spliced transcripts have been identified via the nucleotide 

sequencing of a limited number of cDNA products, including fusion proteins of Meq, RLORF4, 

and RLORF5a with exons II and III of vIL-8 (Jarosinski and Schat 2007). The complex 

transcriptional landscape of MDV revealed the presence of 71 introns, giving rise to hundreds 

of splice forms, including a novel vIL-8 splice junction, which was detected at about 13–40-

fold lower levels than previously published vIL-8 transcripts (Bertzbach et al. 2019; Sadigh et 

al. 2020). This new splice site was predicted to lead to a novel ORF that could also splice with 

other transcripts through canonical splicing motifs. Recent studies have indicated that a 

spliced transcript of vIL-8 and meq play a role in MDV pathogenesis (Liao et al. 2020). 

Consequently, there is an immense need to better understand the role of splicing in the MDV 

lifecycle and in MDV pathogenesis.  

 

Except for several virulence genes and gene products, MDV integration efficiency is directly 

correlated with the pathogenesis and lymphomagenesis (Kaufer et al. 2011b; Greco et al. 

2014; Osterrieder et al. 2014). Even though the natural MDV-chicken model has demonstrated 

that TMRs present at the ends of the MDV genome facilitates directed integration into host 

telomeres, the deciphering of the integration mechanism has been seriously hampered by the 

lack of an in vitro integration assay. To shed further light on the MDV integration mechanism, 

we tested several REV-transformed chicken T cell lines for their ability to facilitate MDV latency, 

genome maintenance, and integration. Combined and compared with in vivo information, we 

established a cell culture-based system to investigate MDV integration. 

 

Taken together, we first identified a novel protein encoded by MDV082 and the spliced vIL-8-

E3′protein, and then investigated the role of these novel proteins on MDV pathogenesis. Also, 

we developed and validated a novel in vitro integration assay as an optimal basis for 

investigating the MDV integration mechanism. All will be discussed in greater detail below. 
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10.2. Characterization and contribution of three putative genes in MDV pathogenesis 
As most MDV genes have homologues in other alphaherpesviruses, their function is mainly 

involved in DNA replication, envelopment, and many other processes essential for the virus 

lifecycle (Liao et al. 2021). In addition, extensive studies have demonstrated that MDV 

encodes some specific protein-coding genes, RNAs, and other sequence elements, mainly 

located in the repeat regions, that contribute to viral pathogenesis, tumorigenesis, and latency 

(Bertzbach et al. 2018). While these studies have undoubtedly provided insights into the viral 

lifecycle and MDV pathogenesis, some unique and as of yet uncharacterized genes existing 

in the MDV genome may also be critical to understanding viral pathogenicity. Based on 

previous transcriptome analyses and bioinformatic predictions, some MDV-specific transcripts, 

such as MDV082, RLORF11 and SORF6, are potential ORFs and could encode proteins 

(Bertzbach et al. 2019; Sadigh et al. 2020). We, therefore, inserted FLAG cassettes into the 

N- and/ or C- terminals of these putative genes based on the vvMDV strain RB1B, to be able 

to detect their expression using commercial anti-FLAG antibodies (Schippers et al. 2015). 

 

Regarding the expression, we concluded that only the pMDV082 is produced during viral 

infection. There are some reasons why the expression of RLORF11 and SORF6 proteins were 

not detectable in our experiments. Firstly, they might be expressed at low levels so that WB 

and IFA cannot detect them; Secondly, they might be expressed in other phases of the viral 

lifecycle, such as latency. A previous study, for example, showed that the mRNA transcript of 

RLORF11 was detected during the lytic and latent infection (Hunter 2012). Last but not least, 

they could even represent potentially non-coding RNAs. It is not surprising that MDV encodes 

numerous linear non-coding RNAs, including viral microRNAs (miRNAs), the viral telomerase 

RNA subunit (vTR), and long noncoding RNAs (lncRNAs), and even circular RNAs (circRNAs) 

(Kaufer et al. 2010; Kaufer et al. 2011a; Zhao et al. 2011; Zhang et al. 2019; Chasseur et al. 

2022).. Therefore, the hypothetical expression of proteins or non-coding RNAs remains to be 

addressed further. 

 

We, next, mutanted the start code of MDV082 in a very virulent RB1B MDV, thereby 

abrogating its expression. We characterized this mutant virus in vitro and vivo to investigate 

the contribution of pMDV082 in viral replication. As with most of the unique-MDV genes, we 

demonstrated that pMDV082 is completely dispensable for the in vitro replication and cell-to-

cell spread. Also, pMDV082 did not show specific localization in CEFs and B cells, but 

appeared very late in MDV-induced plaques, even up to 4 dpi. Intriguingly, pMDV082 

potentially share the same transcriptional start site with the immediate-early gene ICP4, 

forming a bicistronic transcript (Bertzbach et al. 2019; Sadigh et al. 2020), but they seem to 

show different temporal expression. ICP4 transcripts are terminated by four alternative 



 96 

polyadenylation signals, which play a major role in post-transcriptional regulation, particularly 

during latency (Heidari et al. 2008; Rasschaert et al. 2018). Nevertheless, it remains unknown 

whether the transcription and expression of MDV082 are regulated by these alternative 

polyadenylation signals of ICP4.  

 

Furthermore, we infected chickens with the pMDV082-deficient recombinant virus to evaluate 

the contribution of MDV082 to viral replication in vivo, MD incidence and tumor formation. 

Coherent to the in vitro data, we did not a observe significantly difference in viral replication 

between mutant and wild type virus. The absence of pMDV082 did not alter diseases and 

tumors incidence but delayed the onset of the disease. Intriguingly, MDV082 mRNA is one of 

only a few transcripts that are higher expressed in the live attenuated virus strain CVI988-

infected cells than vvMDV strain RB1B-infected.  

 

Moreover, MDV pathogenesis and tumorigenesis are associated with immune response 

induced by the major histocompatibility complex (MHC) (Hearn et al. 2015; Bertzbach et al. 

2022). pMDV082 gave rise to two peptides bound to MHC class II molecules, which are unique 

to CVI988 (Halabi et al. 2021). Although the difference in the virulence between CVI988 and 

RB1B has been recently attributed to mainly to the meq gene that acquired changes during 

virus evolution (Conradie et al. 2020), it would be worthwhile to further explore the role of 

MDV082 in the context of immune recognition and MDV latency. 

 
10.3. Novel insights into a novel viral interleukin 8 (vIL-8) splice variant 
Although the majority of herpesvirus genes are unspliced, some herpesviruses, including MDV, 

make extensive use of alternative splicing to generate multiple proteins from their limited 

genomes (Verma and Swaminathan 2008; Nojima et al. 2009), most of which are 

uncharacterised and/or not annotated. Recent RNA-seq provided more in-depth knowledge 

of MDV transcriptome (Bertzbach et al. 2019; Yang et al. 2020). A novel vIL-8 splice junction 

was identified that was expressed at approximately 13~40-fold lower levels than previously 

published vIL-8 transcripts. This splice event would result in a novel exon containing the last 

16 bp of intron II and a stop codon. We, therefore, inserted the FLAG cassette at 89 bp 

downstream of the 5′end of vIL-8 intron II based on the vvMDV strain RB1B. We successfully 

identified this novel vIL-8 spliced variant by WB and IFA. As with the deletion of the whole vIL-

8 region, it’s not surprised that the abrogation of this novel spliced vIL-8-E3′ protein has no 

effect on MDV replication in vitro and in vivo.  

 

Studies on human oncogenic virus, such as human papillomavirus (HPV), Epstein–Barr virus 

(EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's 
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sarcoma-associated herpesvirus (KSHV), have revealed that RNA splicing is an indispensable 

step for viral oncogene expression, which diversifies their transcriptomes during virus infection 

and could activate their oncogenic activities (Ajiro and Zheng 2019). Notably, abrogation of 

vIL8 secretion alone does not fully compensate for the effect of the deletion of the entire vIL-

8 gene sequence on disease and tumor formation (Parcells et al. 2001; Cui et al. 2004; 

Jarosinski and Schat 2007; Engel et al. 2012). Thus, it remains unknown whether the vIL-8 

splice variants contribute in some way to MDV-induced disease and tumor formation. Our data 

demonstrated that the abrogation of the novel vIL-8-E3′ protein does not directly alter MDV 

pathogenesis and tumorigenesis. Investigating the role of splicing isoforms, especially those 

involved in viral oncogene transcripts, will be a formidable challenge, but will provide some 

fundamental insight into cells transformation. EBV LMP1 and lyLMP1 are produced by RNA 

splicing from two separate transcripts (Renzette et al. 2014). LMP1 can immortalize and 

transforms human B cells, but lyLMP1 has no transforming activity and even interferes the 

LMP1-signaling pathways (Wang et al. 1988; Verma and Swaminathan 2008).  

 

On the other hand, viral gene, such as infected-cell protein 27 (ICP27), can also regulate 

alternatively splice events (Bryant et al. 2001; Tang et al. 2019). HSV-1 ICP27 predominantly 

transactivated unspliced gC mRNA and promoted the retention of an intron (Perkins et al. 

2003; Sedlackova et al. 2008). As described for HSV-1, MDV ICP27 also can interact with 

splicing factors, which inhibits mRNA splicing of vIL-8 and the cellular chicken telomerase 

reverse transcriptase (chTERT). Upon ICP27 expression, unspliced vIL-8 transcripts were at 

low levels during MDV reactivation (Amor et al. 2011). Thus, it would be intriguing to explore 

why MDV blocks vIL-8 splice variants during reactivation. 

 
10.4. A Cell Culture System Provides an optimal basis for investigating the MDV 

integration mechanism  
TMRs facilitate MDV integration into chicken telomeres. Upon deletion of the viral TMRs, the 

virus is still able to preserve its DNA in chicken cells in vivo, but the virus integration occurs 

randomly and the tumor formation is severely impaired. Until now, investigation of the MDV 

integration mechanism and viral factors that facilitate this process required animal 

experiments. To overcome this issue, we set to establish a feasible cell culture-based 

integration assay. We, firstly, tested serval immortalized chicken T cell lines and optimized the 

MDV infection, and then measured viral genome maintenance by q-PCR and visualized viral 

integration by FISH, which allow us to establish an in vitro integration assay system. Then, we 

tested various knockout mutants using in vitro integration assay, the integration efficiency of 

which was consistent with our previous in vivo studies. With the in vitro system, many potential 

cellular and viral factors involved in HHV-6 integration have been assessed (Wallaschek et al. 
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2016a; Wallaschek et al. 2016b; Wight et al. 2018; Aimola et al. 2020). We strongly believe 

that this assay also allows to investigate the involvement of cellular or other viral factors that 

might (co-)facilitate genome integration due to their role in MDV replication and tumorigenesis 

like vTR (viral telomerase RNA), UL30 (MDV polymerase), UL29 (major DNA-binding protein 

ICP8), UL12 (MDV 5′-3′ exonuclease) (Previdelli et al. 2019). Moreover, MDV integration 

efficiency is directly correlated with the pathogenesis and lymphomagenesis. MDV-induced 

tumor cells obtained from different organs showed the same integration pattern, suggesting 

that it occurs at a very early phase of transformation. Therefore, effective integration not only 

enables maintenance of viral genome in latently infected T cells, but also is likely the initial 

step in lymphomagenesis. As reported, only a limited number of latently infected cells are 

subsequently transformed, resulting in deadly lymphomas (Mwangi et al. 2011; Bertzbach et 

al. 2020). Deciphering the integration mechanism would provide deeper insights into viral 

latency, transformation, and reactivation. Additionally, future directions could be investigations 

into the genome integration properties of MDV vaccine viruses which also possess TMRs in 

their genomes. 

 
10.5. Concluding remarks and outlook 
During my Ph.D. in the Viral Integration and Tumorigenesis Group at the Institute of Virology, 

my project focused on charactering novel putative genes and studying the integration of 

Marek’s disease virus. Despite many years of research, the MDV genetic factors that 

potentially contribute to viral pathogenesis and tumorigenesis are still far from fully understood 

(Bertzbach et al. 2018; Bertzbach et al. 2020). Here we identified a novel protein encoded by 

MDV082 and a novel vIL-8 splice variant. We revealed that the MDV082 protein contributes 

to the rapid onset of Marek’s disease, and represented the first characterization of the novel 

vIL-8 splice form. Meanwhile, we developed and validated a cell culture-based integration 

assay system. With the information obtained here, we understand the genetic factors of MDV 

better and our in vitro assay will allow us to investigate potential viral and cellular factors 

involved in the integration mechanism.  

 

Exceeding the three manuscripts of this doctoral thesis, we have been working on several 

other projects that strongly link to these projects in terms of content. Firstly, except 

identification and characterization of the novel vIL-8 splice form, we also work on the 

investigation of other vIL-8 splice variants. Recent work showed that vIL-8, a viral CXC 

chemokine, plays important roles in MDV pathogenesis and tumorigenesis via recruiting B 

cells and CD4+CD25+ T cells (Engel et al. 2012; Haertle et al. 2017). The complete abrogation 

of vIL-8 significantly reduced virus replication and abrogated tumor formation by about 90%, 

while abrogation of vIL-8 chemokine expression by mutating its start codon or deleting its exon 
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I “only” reduced tumor incidence by about 60% (Cui et al. 2004; Engel et al. 2012; Bertzbach 

et al. 2018). Therefore, it is likely that the complete vIL8 gene function consists of secreted 

vIL-8 and other aspects, such as one or more of the vIL-8 splice variants. Previous studies 

showed that vIL-8 exons 2 and 3 interact with upstream viral virulence genes, including meq, 

RLORF4 and RLORF5a, to produce multiple alternatively spliced mRNAs. This alternative 

splicing significantly expands the size of the MDV transcriptome, but its biological significance 

remains undetermined and in need of further investigation. We generated the vIL-8 intron 1 

deletion mutant, which abrogated the multiple alternative spliced mRNAs fused by the splice 

acceptor A18 but did not affect the secreted vIL-8. Our data obtained from the animal 

experiments will provide insights into the splice forms of the CXC chemokine of this highly 

oncogenic alphaherpesvirus. 

  

Integration viral genome into host telomeres is important for the pathogenesis and 

lymphomagenesis of oncogenic MDV. Of note, three vaccine strains developed against 

virulent MDV, including CVI988, SB-1, and HVT, also have type E genomes and possess 

TMRs in their genome. After vaccination, the HVT genome was found integrated into 

telomeres of spleen cells as detected by a cytogenetic method, while no FISH images were 

provided to visualize viral integration (McPherson et al. 2016; McPherson et al. 2018). Our 

cell culture-based integration assay system does not only provide a crucial platform for the 

analysis of the MDV integration mechanisms but can be used to investigate if other chicken 

herpesviruses carrying TMRs could integrate their genome into host telomeres. With this, we 

can investigate whether these three MDV vaccines integrate their genomes into host 

telomeres during latency and determine whether this process is facilitated by viral TMRs. We 

recently generated TMR deletion mutants based on these three vaccines, which showed 

similar replication abilities when compared to their parental virus. Based on our in vitro 

integration assay, the vaccine viruses were efficiently maintained over time, while their TMR 

mutants have less efficient maintenance. With our collaborators at the INRA-ISP in France, 

Dr. Caroline Denesvre and colleagues, we carried out animal experiment to assess the role 

of TMRs in HVT replication, reactivation, and viral genome maintenance. Moreover, we will 

also use CVI988, SB-1, and their TMRs mutants to determine whether these viruses carrying 

TMRs have more efficient viral genome maintenance during latency in vivo, and whether the 

efficient latency of these vaccines is relative to its protection against oncogenic MDV.  
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11. Summary 
Marek’s disease virus (MDV) is a highly contagious alphaherpesvirus that causes neurological 

disorders, immunosuppression, and deadly lymphomas in chickens. The virus causes 

substantial economic losses in poultry production worldwide due to high mortality rates and 

the costs of the vaccination. Despite the widespread use of live attenuated vaccines that 

provide excellent protection against clinical disease, the virus still infects vaccinated animals 

and continuously evolved towards a higher virulence.  

 

MDV encodes many viral factors, from proteins to non-coding RNAs, which orchestrate the 

complex viral lifecycle and/or contribute to pathogenesis. Several MDV-specific genes have 

been shown to be involved in viral pathogenesis and tumorigenesis. Comprehensive MDV 

transcriptome analyses revealed that the coding capacity of the MDV genome is far greater 

than previously anticipated and identified some putative MDV-specific genes and splice 

isoforms. In-depth characterization of the genetic factors of MDV is an essential step toward 

understanding the complex viral lifecycle, from viral infection, lytic replication, latency, to tumor 

formation. Here, we set out to assess three MDV-specific hypothetical genes (MDV082, 

RLORF11, and SORF6) and a putative vIL-8 exon (vIL-8-E3′). Using FLAG-tagged 

recombinant viruses based on the very virulent MDV strain RB1B, we identified a novel protein 

encoded by MDV082 and a novel spliced vIL-8-E3′protein. We demonstrate that the novel 

pMDV082 and vIL-8 splice variant are not essential for virus replication, spread, and tumor 

formation, but pMDV082 contributes to the rapid onset of Marek’s disease. These studies shed 

light on the expression of MDV-specific genes and the splice forms of the CXC chemokine 

and unraveled the role of pMDV082 in MDV pathogenesis. 

 

In addition to viral virulence factors, the lymphomagenic properties of oncogenic MDV is also 

directly linked to viral integration, a process which occurs during the establishment of viral 

latency. Telomeric repeat arrays present at the ends of the MDV genome facilitate this 

integration into host telomeres, but the integration mechanism remains poorly understood. To 

shed further light on the MDV integration mechanism, we developed and validated a cell 

culture-based integration assay, providing an optimal basis for investigating the role of viral 

and cellular factors that could be involved in the integration of MDV. 
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12. Zusammenfassung 
Das Marek' s Disease Virus (MDV) ist ein hochansteckendes Alphaherpesvirus, das bei 

Hühnern neurologische Störungen, Immunsuppression und tödliche Lymphome verursacht. 

Das Virus verursacht aufgrund der hohen Sterblichkeitsrate und der Kosten für die Impfung 

weltweit erhebliche wirtschaftliche Verluste in der Geflügelproduktion. Obwohl der weit 

verbreitete abgeschwächten Lebendimpfstoffe einen ausgezeichneten Schutz vor klinischen 

Erkrankungen bieten, infiziert das Virus immer noch geimpfte Tiere und hat sich kontinuierlich 

zu einer höheren Virulenz entwickelt.  

 

MDV kodiert für eine viele virale Faktoren, von Proteinen bis hin zu nicht-kodierenden RNAs, 

die den komplexen viralen Lebenszyklus steuern und/oder zur Pathogenese beitragen. 

Mehrere MDV-spezifische Gene sind nachweislich an der viralen Pathogenese und 

Tumorigenese beteiligt. Umfassende MDV-Transkriptomanalysen haben gezeigt, dass die 

Kodierungs Kapazität des MDV-Genoms weitaus größer ist als bisher angenommen, und 

einige mutmaßlich MDV-spezifischen Gene und Spleiß-Isoformen identifiziert wurden. Die 

eingehende Charakterisierung der genetischen Faktoren von MDV ist ein wesentlicher Schritt 

zum Verständnis des komplexen viralen Lebenszyklus, von der viralen Infektion über die 

lytische Replikation und Latenz bis hin zur Tumorbildung. Hier haben wir uns vorgenommen, 

drei MDV-spezifische hypothetische Gene (MDV082, RLORF11 und SORF6) und ein 

mutmaßliches vIL-8-Exon (vIL-8-E3′) zu untersuchen. Mit Hilfe von FLAG-markierten 

rekombinanten Viren, die auf dem sehr virulenten MDV-Stamm RB1B basieren, identifizierten 

wir ein neuartiges Protein, für das MDV082 kodiert, und ein neuartiges gespleißtes vIL-8-E3′-

Protein. Wir konnten zeigen, dass das neue pMDV082 und die vIL-8-Spleißvariante für die 

Virusreplikation, die Ausbreitung und die Tumorbildung nicht essenziell sind, pMDV082 jedoch 

zum schnelleren Ausbruch der Marek‘schen Krankheit beiträgt. Diese Studien geben 

Aufschluss über die Expression von MDV-spezifischen Genen und den Spleißformen des 

CXC-Chemokins und enträtseln die Rolle von pMDV082 in der MDV-Pathogenese. 

 

Neben viralen Virulenzfaktoren sind die lymphomagenen Eigenschaften des onkogenen MDV 

auch direkt mit der viralen Integration verbunden, einem Prozess, der während der Etablierung 

der viralen Latenz stattfindet. Telomer Repeat-Arrays an den Enden des MDV-Genoms 

erleichtern diese Integration in die Wirts-Telomere, aber der Integrationsmechanismus ist 

nach wie vor kaum verstanden. Um den Integrationsmechanismus näher zu beleuchten, 

haben wir ein zellkulturbasiertes Integrationstestsystem entwickelt und validiert, das eine 

optimale Grundlage für die Untersuchung der Rolle viraler und zellulärer Faktoren bietet, die 

bei der Integration von MDV zum Tragen kommen. 
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