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Summary

G-protein coupled receptors (GPCRs) represent the biggest family of membrane receptors.
The physiological accessibility of drugs, their regulatory roles in a vast amount of
physiological and pathophysiological processes, and their prevalence in many tissues are
reasons why they are highly targeted in a therapeutic context. To exploit the modulatory
capabilities of GPCRs prior knowledge of their mechanism of action on a molecular level is
required. This is especially important for the successful application of rational structure-
based drug design campaigns. Sphingosine-1-phosphate receptors (S1PR) has shown to be
effective drug targets against multiple sclerosis (MS), but non-selective drugs suffer from
serious adverse effects. Furthermore, targeting a single STPR holds a lot of potentials to

modulate different inflammatory and autoimmune diseases.

In this thesis, we present in silico mechanistic models for the identification of crucial
structural determinants to illuminate the molecular basis for Sphingosine-1-phosphate
receptor selectivity and the general class A GPCR activation process. We employed extensive
molecular dynamic (MD) simulation models of STPR;.s and performed a holistic comparative
orthosteric protein-ligand interaction analysis of identified different binding modes of a
pan-agonist to overcome the challenge of highly similar binding pockets between each
subtype and rationally explained the selective behavior of marketed drugs Ozanimod and
Siponimod used in multiple sclerosis therapy. Furthermore, we provide insights into the
mechanism of class A GPCR activation and how dihedral angles of the protein backbone are
involved in this process. By developing a data extraction and machine learning workflow we
created predictive models for active and inactive state GPCR conformations and showed
possible applications for GPCR homology models and MD simulation predictions in a fast
and efficient way. The methods and workflow to apply the prediction models are provided

as a python package on GitHub (github.com/TrungNgocNguyen/GPCRml).

The unique and rational combination of state-of-the-art molecular modeling, data
extraction and analysis, and machine learning methods demonstrate how explanatory in
silicomodels can be developed to elevate the understanding of challenging problems in the

field of GPCRs.
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Zusammenfassung

G-Protein-gekoppelte Rezeptoren stellen die gro3te Familie von Membranrezeptoren dar.
Die physiologische Zuganglichkeit fiir Medikamente, ihre regulatorische Rolle in einer
Vielzahl von physiologischen und pathophysiologischen Prozessen und die Pravalenz in
vielen Geweben sind Griinde, warum sie in einem therapeutischen Kontext gezielt genutzt
werden. Um die modulierenden Fahigkeiten von GPCRs voll auszuschopfen, ist eine
vorherige Kenntnis ihres Wirkungsmechanismus auf molekularer Ebene erforderlich. Dies ist
besonders wichtig fiir die erfolgreiche Anwendung rationaler strukturbasierter
Arzneimitteldesign-Kampagnen. Sphingosin-1-Phosphat-Rezeptoren (S1PR) haben sich als
wirksame Arzneimittelziele gegen Multiple Sklerose (MS) erwiesen, aber nicht-selektive
Arzneimittel leiden unter schwerwiegenden Nebenwirkungen. Darlber hinaus birgt das
Ansprechen einzelner S1PR ein groes Potenzial zur Modulation verschiedener

Entzindungs- und Autoimmunerkrankungen.

In dieser Dissertation prasentieren wir in silico mechanistische Modelle zur Identifizierung
wichtiger struktureller Determinanten, um die molekularen Grundlagen fiir die Selektivitat
der Sphingosin-1-phosphat-Rezeptor Familie und den allgemeinen Aktivierungsprozess
von Klasse A GPCR zu beleuchten. Wir verwenden umfangreiche molekulardynamische
Modelle von S1PR;s und flhren eine ganzheitliche vergleichende Protein-Ligand-
Interaktionsanalyse der orthosterischen Bindetasche mit verschiedenen entdeckten
Bindungsmodi eines Pan-agonisten durch, um das Problem der fast einheitlichen
Bindetaschen zwischen den einzelnen Subtypen zu Uberwinden. So konnten wir das
selektive Verhalten der zugelassenen Medikamente Ozanimod und Siponimod rational
erklaren, welche in der Multiple-Sklerose-Therapie eingesetzt werden. Darliber hinaus
haben wir Einblicke in den Mechanismus der GPCR-Aktivierung der Klasse A gegeben und
wie Anderungen der Torsionswinkel des Proteinriickgrats an diesem Prozess beteiligt sind.
Durch die Entwicklung eines Arbeitsablaufs fir die Datenextraktion mit maschinellem
Lernen haben wir ein Vorhersagemodell fiir GPCR-Konformationen im aktiven und inaktiven
Zustand erstellt und mogliche Anwendungen fiir die schnelle und effiziente Analyse von

GPCR-Homologiemodellen und Molekular Dynamik Simulationen gezeigt. Die Methode zur

Xiv



Anwendung der Vorhersagemodelle ist als Python-Paket auf  GitHub

(https://github.com/TrungNgocNguyen/GPCRml) verfligbar.

Die einzigartige und rationale Kombination aus modernster molekularer Modellierung,
Datenextraktion und -analyse sowie maschinellen Lernmethoden zeigt, wie aussagekraftige
In-silico-Modelle entwickelt werden kénnen, um das Verstandnis fir herausfordernde

Probleme auf dem Gebiet der GPCRs zu verbessern.
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Introduction

1. Introduction

1.1. G Protein-coupled Receptors

G protein-coupled receptors (GPCRs), the biggest family of membrane receptor proteins,
play an important role in the mediation of cellular responses through, for instance, small
molecules, lipids, and peptides [1]. Different ligands interacting with orthosteric or allosteric
binding sites of the receptor can trigger various regulatory effects through effector protein
recruitment [2]. On a physiological level GPCRs are responsible e.g. the regulation of sensory
[3, 4], cardiovascular [5, 6], and neurotransmission [7, 8] processes. Dysregulated GPCRs
contribute to pathophysiological processes, such as cardiovascular diseases, neurological,
and metabolic disorders [9]. Due to their prevalence, expression in many tissues with
different regulatory properties, and the physiological accessibility of drugs, GPCRs play a

major role as targets in clinical practice [10, 11].

1.1.1. The Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2, and Secretin

Classification

Fredriksson et al. classified 802 unique human GPCR sequences into five different groups
forming the GRAFS classification: glutamate, rhodopsin, adhesion, frizzled/taste2, and
secretin (Figure 1) [12]. The classification is based on the phylogenetic distance and specific
common structures of GPCRs. As an example, most of the rhodopsin family members have
short N-termini not involved in orthosteric ligand binding, while the N-termini in other GPCR
families play an important role as ligand-binding domains [13]. Furthermore, highly
conserved amino acid motifs such as ‘NSxxNPxxY’, located in the transmembrane domain
seven, and ‘E/DRY’, located between the transmembrane domain three and the intracellular
loop (ICL) two, are found throughout the rhodopsin family [12]. The rhodopsin family (also
called class A) represents the biggest cluster with 701 GPCRs of which 460 belong to the

olfactory cluster.
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Figure 1. Graphical representation of the subdivision and distribution of the GPCR data
set with 779 GPCRs (23 could not be included in any family) from Fredriksson et al.
ordered clockwise from biggest to smallest groups of the GRAFS classification. The
glutamate (15), adhesion (24), frizzled/taste2 (24), and secretin (15) families represent
together only ten percent of the GPCRs categorized in the classification. The by far largest
group, the rhodopsin family (701), is further divided into four main groups: a (89), B (35), y
(59), and 6 (518), which are further subdivided into 13 main branches. ARC — amine receptor
cluster, GRC - glycoproteins receptor cluster, MASrRC — MAS related receptor cluster,
MECARC - Melanocortin, Endothelial differentiation, Cannabinoid, Adenosine binding
receptor cluster, MRC — melatonin receptor cluster, ORC - opsin receptor cluster, PURC -

purine receptor cluster, PRC - prostaglandin receptor cluster
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1.1.2. Structural Characteristics of G Protein-coupled Receptors

The advancement in the structural elucidation of GPCRs has been an immense leap forward
for research of GPCR allosteric signal transduction [14], activation mechanisms [15], and
computer-aided drug design/discovery [10]. The first GPCR crystal structure of the
rhodopsin receptor was imaged in 2000 [16] (Figure 2). Based on the high expression rate in
the retina, the covalently bound chromophore, and the absence of basal activity due to the
physiological role as a light receptor, the rhodopsin receptor was the ideal candidate for the
first crystallization attempts of a GPCR family member [17, 18]. The improvements in
stabilizing other GPCRs via high-affinity ligands, proper detergents, thermostabilizing
mutants, the employment of fusion proteins, and other techniques [19, 20] have led to the
first successfully solved structure of a non-rhodopsin GPCR. The inactive state of the [32-
adrenergic receptor was reported in 2007 [21] and the active state of the same receptor in
2011 [22]. Kobilka et al. overcame numerous challenges creating a blueprint and catalysator
for the revolution of structural GPCR elucidation. Since then over 500 GPCR structures have
been solved via X-ray crystallography and cryogenic electron microscopy (Cryo-EM) [23, 24],
of which more than 400 are class A GPCR structures. This includes apo structures, complexes
with different ligands, intracellular binding partners (IBPs), and ternary complexes. The
research community gained structural insights into the range of possible conformations and

their dependency on each factor on a molecular level [25].
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Figure 2. The total number of GPCR structures available per year. The revolution in
structural G protein-coupled receptors elucidation has led to an explosive growth of
structural data. Due to the more challenging nature to stabilize the ternary complex, there
is less structural data available for the active-state GPCR structures. Data from the GPCRdb

[26]

GPCRs are generally characterized by seven a-helical transmembrane domains (TM1 - 7)
located in the phospholipid bilayer of the cells (Figure 3). These a-helices are the most
homologous structures of GPCRs and consist of mostly hydrophobic amino acids. Three
extracellular loops (ECL1 - 3) and the N-terminus are located outside of the cell (Figure 4).
Intracellularly there are also three intracellular loops (ICL1 - 3) and the C-terminus. The ECLs

are the most variable parts of GPCRs.
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Figure 3. Two-dimensional topography of GPCRs. TM - transmembrane domains, ECL —

extracellular loops, ICL - intracellular loops

Ballesteros and Weinstein have developed a numbering scheme for the transmembrane
domains of class A GPCRs by taking the most conserved residues of all TMs as the central
position [27]. The most conserved amino acid in TM1 is numbered N'*°, where the letter
indicates the amino acid, the first number the transmembrane domain 1, and the number
50 the amino acid position. 50 is used to indicate the most conserved residue in the TM of
class A GPCRs (Figure 4). Every other amino acid is numbered accordingly with lower/higher
numbers diverging from position 50. The Ballesteros-Weinstein numbers (BWN) will be used

throughout this work and be referred to as the Ballesteros Weinstein number.

The short length of ECL1 is highly conserved in the rhodopsin family. This was shown by
Peeters et al, taking the two most conserved amino acids in TM2 (BWN2*°) and TM3 (BWN?3>°)
as the starting and ending points for measurement. The average number of amino acids
between BWN2*° and BWN?3*° in the rhodopsin family is 52+2 amino acids. [28] With a
distance of 50 amino acids between BWN?**and BWN3*° the S1PR group lies within the
average length. Furthermore, reports postulate that ECL1 has an impact on the shape of the

binding site [29, 30].
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Figure 4. Three-dimensional depiction of GPCR domains based on the structure of S1PR,.
Transmembrane (A) and extracellular view (B) of the STPR, show tertiary structure based on
the built homology model in this thesis (chapter 4.1.1). Most conserved residues are
highlighted in red and labeled with the Ballesteros-Weinstein numbering scheme. ECL -

extracellular loop, TM — transmembrane domain

ECL2 shows the highest diversity in length and sequence of the rhodopsin family [28]. As a
result, ECL2 plays an important role in ligand selectivity. Furthermore, binding site shape,
ligand binding specificity, allosteric modulation, and biased agonism can be affected by
ECL2 [31]. Concerning S1PR; crystal structure (PDB 3V2Y [32]) the ligand-binding site is
swayed by the hydrophobic residues of ECL2 [32]. Lastly, the third extracellular loop (ECL3)
is also short in length similar to the ECL1 [28]. Despite the short length, ECL3 can influence
receptor functions in terms of activation and allosteric modulation [33-35]. The crystal

structure of S1PR,, reveals no ECL3 involvement in binding site molding [32].

Due to the evolutionary demand for GPCRs to recognize a vast number of distinct
extracellular stimuli [36], the extracellular domains show the highest sequence diversity [37].
This variety is opposed by the more homologous intracellular regions with only dozens of

interacting partners, which transfer incoming extracellular signals [38].
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1.1.3. Dihedral Angles of Protein Backbones

Dihedral angles of protein backbones are internal angles, also called torsion angles, of
aminoacids consisting of three angles per residue called © (phi), ¢ (psi), and w (omega)
angles. The phi angle is calculated based on the backbone atoms C’-N-Ca-C and the ® angle
is based on N-Ca-C-N’ (Figure 5). Due to the planar nature of the amide (peptide bond), the
w angle is restricted to 180° (trans) or 0° (cis). Ramachandran et al. developed a plot for the
visualization of the ® and Y angles of proteins [39]. Secondary protein structures are defined
in allowed regions around -60° ® and -50°  for right-handed a-helices, 60° ® and  for left-
handed a-helices, and -120° © and 120° { for 3-sheets. One exception is proline, which has
a fixed ® angle of approximately -65° due to its cyclic side chain structure [40]. The

Ramachandran plot is used for the evaluation of protein structure geometry.
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Figure 5. Protein backbone dihedral angles ® (phi, top) and ¢ (psi, bottom). Dihedral
angles of the protein backbone show specific angles if secondary structures are formed (a-

helices or B-sheets).



Introduction

1.1.4. Molecular Mechanisms of Class A G Protein-coupled Receptor

Activation

The concept of GPCR activation has evolved into a complex theorem composed of different
receptor pharmacology mechanisms, such as ligand influence [41-43], basal activity [44—
46], allosteric coupling mechanisms [14, 42, 47], conserved motifs [48, 43], and more [49].
We are now able to draw a more holistic picture of the evolutionary fine-tuned cell signal

reception and translation of this highly dynamic receptor group [25].

In general, GPCR activation describes the process of ligand-induced recruitment of
intracellular binding partners. Advances in structural GPCR elucidation have revealed a
common class A GPCR activation mechanism. [50, 37] Comparison of structural pairs of
active and inactive state GPCRs, e.g. of the B2-adrenergic receptor [21, 22], muscarinic M,
receptor [51, 52], or adenosine A,x receptor [53, 54], has unveiled common structural

rearrangements (Figure 6).

Upon agonist binding to the orthosteric binding site, the extracellular parts of TM5, TM6,
and TM7 are moving inward to the longitudinal receptor axis. This subtle contraction of the
extracellular domain affects the intracellular binding domain leading to the outward
movement of intracellular parts of TM2, TM4, TM5, and TM6 as well as the inward movement
of TM7 ultimately enables intracellular binding partner (IBP) recruitment, such as G proteins,

[3-arrestins, and GPCR kinases, and GPCR stabilization in the active state.
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Extracellular View Transmembrane View Intracellular View

Inactive GPCR Structure
I Active GPCR Structure
B Conformational Change

Figure 6. Conformational changes between the active (PDB 3SN6 [22]) and inactive (PDB
2RH1 [21]) B2-adrenergic GPCR crystal structure. The 32-adrenergic receptor is shown as
a model system to demonstrate conformational changes during activation of class A GPCRs.

Figure adapted from [42].

Different mechanisms on an atomistic level are responsible for class A GPCR activation. The
first conformational changes after agonist binding are observable under the binding pocket
where the conserved P>*°-]340—Fé44 and C547-We48—x—P¢>° motifs are located (Figure 7). The
consecutive conformational change of the toggle-switch Wé*® plays an important role in the
characteristic intracellular outward movement of TM6. Another important microswitch is
the ionic lock, or salt bridge, located at the D(E)*#*°-R3>*°-Y3*! motif, where R**° is forming an
intrahelical salt bridge with E®3°[42]. This salt bridge stabilizes the inactive state and breaks
during activation, which allows subsequent translocation of TM6'. Furthermore, the D(E)*#°-
R30-Y33" motif is directly involved in G protein-binding. Finally, the conserved N74°-P7-0—x—
x=Y”*?* motif's rearrangement stabilizes the active GPCR state and is forming the G protein-

binding site.
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Active GPCR Structure

Inactive GPCR Structure

Figure 7. Comparison of active and inactive B2-adrenergic receptor crystal structures.
Left. Inactive structure (PDB 2RH1 [21]). Right. Active structure (PDB 3SN6 [22]). Middle. From
top to bottom: Motif CWxP, PIF, NPxxY, E/DRY

The transfer of extracellular ligand-binding information via the transmembrane domain to
the intracellular transducer binding domain is called allosteric coupling. The binding of IBPs,
such as G proteins, triggers a reciprocal effect on the ligand-binding domain enhancing
ligand affinity to the orthosteric binding pocket through further tightening the extracellular
part caging the ligand inside as long as the ternary complex is formed [14]. Due to the highly
dynamic properties of GPCRs IBP recruitment can also occur without prior ligand binding.
This phenomenon is also known as basal or constitutive activity. Interestingly, the formation
of the receptor IBP complex leads to ligand affinity decrease until the complex dissociates

[14].

1.1.5. Ligand Influence on G Protein-coupled Receptors

Orthosteric ligand binding can influence, based on the mode of action of the ligand, the

receptors' probability to recruit IBPs through ligand-dependent stabilization of distinct

10
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receptor conformations [41]. Full agonists trigger the maximum signaling capacity at a given
receptor and pathway, whereas partial agonists elicit activity below that level. Antagonists
only bind to the orthosteric binding site but do not affect the basal activity and equilibrium

of receptor conformations. Lastly, inverse agonists inhibit basal activity. [55]
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Figure 8. Ligand influence on receptor signaling.

Ligands can also bind, apart from the orthosteric site, at distinct allosteric sites [56]. They
allosterically enhance or decrease orthosteric ligand binding and are categorized as positive
or negative allosteric modulators, respectively. Furthermore, allosteric modulators can also

elicit signaling without orthosteric ligands. [57]

1.1.6. G Protein-coupled Receptor Signaling

Upon GPCR activation, various downstream signaling pathways are initiated (Figure 9). The
most classical interactions occur with heterotrimeric G proteins. After guanosine
diphosphate (GDP) is exchanged with guanosine triphosphate (GTP) on the Ga subunit, the
G protein dissociates into the Ga and Gy subunits. Ga-GTP activated subunits regulate, via

four subunit types (Gas, Ga, Gag and Gaizns), different downstream effectors such as
11
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adenylyl cyclase, Rho GTPase, and phospholipase C3, which in turn modulate additional
downstream effectors and/or second messengers [58]. GBy subunits bind directly to and
activate G protein-coupled inwardly-rectifying potassium (GIRK) channels. Other important

signaling pathways are conducted through B-arrestins [59]. They initiate internalization and

hinder further activation of GPCRs.

(g
. f,

A 4
A\ 4

Figure 9. General signaling of GPCRs. Different Ga subunits activate different downstream

signaling cascades. Abbreviations: A — agonist, AC — adenylyl cyclase, cAMP - cyclic
adenosine monophosphate, DAG - diacylglycerol, ERK - extracellular signal-regulated
kinase, GDP - guanosine diphosphate, GIRK channel - G protein-coupled inwardly-rectifying
potassium channel, GTP - guanosine triphosphate, K* — potassium ion, ITP3K - inositol-
trisphosphate 3-kinase, MEK - mitogen-activated protein kinase (also known as MAP2K),
Mdm?2 - mouse double minute 2 homolog, PLCB - phospholipase CB, PKA - protein kinase
A, PKC - protein kinase C, Raf-1 — RAF proto-oncogene serine/threonine-protein kinase,

RhoA - Ras homolog family member A. Figure adapted from [60].
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1.1.7. G Protein-coupled Receptors as Druggable Targets

GPCRs play a major role as targets in clinical medicine. This is due to their prevalence,
expression in many tissues with different regulatory properties, and physiological

accessibility for drugs [61].

An analysis by Rask-Andersen et al. in 2011 identified 989 drugs from the Drugbank
database [62] acting on 435 human targets. Drugs with unknown targets and drugs with
non-human targets and non-therapeutic targets were not considered. Only 19% (82) of the
identified targets were GPCRs, while 36% (357) of the drugs target GPCRs [63, 64]. A more
recent evaluation by Sriram et al.in 2017 combined different public databases (CHEMBL [65],
IUPHAR [11], and DRUGBANK [62]) and found ~700 drugs approved in the United States and
the European Union (35% of all marketed drugs) targeting 134 GPCRs [66]. (Figure 10) Even
though more than one-third of all drugs are acting on GPCRs, the significant amount of

untargeted GPCRs provide considerable potential for future clinical use.

GPCRs Targeted by Drugs
M Unexploited GPCRs
M Olfactory GPCR Cluster

Figure 10. Untargeted GPCRs carry the potential for future clinical use. Of 802 GPCRs 460
are categorized as olfactory GPCRs with unknown therapeutic relevance. The unexploited

GPCRs (208) are mostly orphan receptors that could become clinically relevant over time.
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Marketed drugs targeting GPCRs have proven their importance in many therapeutic fields,
such as obstructive lung diseases, inflammatory diseases, cardiovascular diseases, central
nervous system disorders, autoimmune system diseases, and more [67, 68]. This is also
reflected in the commercial impact calculated from 75 countries between 2011 - 2015.
Drugs targeting GPCRs have the highest total market share of 27.42% (889.17 billion USD
aggerated sales) compared to other target classes. Furthermore, 7 of the top 20 targets are
GPCRs in terms of total drug sales from 2011 to 2015. [69] The best performing drug target

is angiotensin Il receptor type 1 (AT, receptor) with total revenue of 99.98 billion USS.

1.2. Sphingosine-1-phosphate Receptors

The S1PRs belong to the lysophospholipid receptor family, with the phospholipid
sphingosine-1-phosphate (S1P) as their endogenous ligand (Figure 13). The receptor group,
also called the endothelial differentiation gene (EDG) family, consists of five subtypes, S1PR;
- S1PRs [70].

The S1PRs belong to the MECA (melanocortin, endothelial differentiation, cannabinoid,
adenosine binding) receptor cluster (RC) of the subcategory a of the rhodopsin group.
Receptors in this cluster bind structurally different ligands despite their short phylogenetic
distance. All STPRs inherit the motif ‘NSxxNPxxY’, but only S1PR; inherits the 'ERY’ motif.
S1PR, and S1PR; bear the motif ‘ERH’, S1PR4 ‘ERF’, and S1PRs ‘ERS' instead.

S1PRs couple with Ga;, Gag and Gaiz13. Most of the subtypes do not couple exclusively with
one G-protein subunit but have preferences such as S1PR; for Ga;, S1PR; for Gaiz13, and S1PRs
for Gaq [71-74]. Due to different coupling combinations (mainly discriminated by Ga
subunits and tissue expression rate) different downstream signaling mechanisms and

therefore different biological effects are regulated by S1PRs (Figure 11).

1.2.1. Physiological Roles of Sphingosine-1-phosphate Receptors

S1PRs fulfill many different regulatory functions in various organ systems with the largest
impact on the regulation of the cardiovascular, immune, and nervous systems (Figure 11)
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[75]. The maintenance of cardiovascular homeostasis is achieved through attuning the basal

permeability of vascular barriers, vascular tone, and lymphocyte trafficking [76].
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Figure 11. Sphingosine-1-phosphate receptor coupling and physiological functions.

S1PR; regulates important domains of the immune system, promoting the migration of
lymphocytes from secondary lymphoid organs into systemic circulation as one of the best-
characterized functions [77]. Furthermore, S1PR; has an impact on the polarization of T cells
to Th17 cells [78]. Findings by Li et al. revealed the pro-tumorigenic character of STPR;
related to nephroblastoma. Upon activation, S1PR; promotes tumor cell migration and
invasion [79]. The formation of endothelial cells by the vascular barrier system is affected by
S1PR; signaling, controlled through the tightening of adherens junctions. Jung et al. showed
that this is not only dependent on ligand activation of STPR; but also fluid shear stress [80].

Moreover, S1PR; regulates vascular relaxation and blood pressure homeostasis [81]. Studies
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on knockout mice demonstrated that S1PR; is required for normal embryonic vascular
development, especially of large vessels, leading to death by hemorrhage in absence of
S1PR, [82]. STPR; signaling is also discussed to target osteoclastogenesis and osteogenesis

and therefore play a complex role in the bone remodeling process [83].

S1PR, antagonizes many functions of S1PR;, which leads to increased paracellular
permeability of the vascular systems, due to disruption of adherens junctions [84]. In
addition, STPR;’s antiproliferative and anti-migrative activity inhibits angiogenic sprouting
[85] and lessens arterial smooth muscle cell formation [86]. Interestingly, the anti-migratory
effect also inhibits the development of distant cancer metastasis cells in mice and
nephroblastoma’s in vitro [87, 79]. In terms of the immune system, S1PR; has a negative
repercussion on the chemotaxis and migration speed of macrophages [88] but seems to
influence phagocytosis positively [89]. Furthermore, hearing impairments [90] and seizures,
due to the increased excitability of neocortical pyramidal neurons [91], were observed in
knockout mice. S1PR; knockout mice also showed in lysolecithin-induced demyelination
increased remyelinated axons. A similar outcome could have also been achieved by
inhibiting STPR, with JTE-013 [92]. It should be noted though that JTE-013 is also an
antagonist of STPR; and several sphingolipid metabolic enzymes, which might have a
significant influence through these off-target effects [93]. Other physiological roles of S1PR,
are restraining tissue-resident lymphocyte's egress [94] and regulation of intestinal barrier

function [95].

Subtypes three to five of STPR, unlike STPR; and S1PR,, have been studied in a limited
fashion. S1PR; physiological roles involve the maturation of dendritic cells in the immune
system [96], recruitment of macrophages during inflammation [97], and controlling the
permeability of vessels [98]. STPRs” knockout mice did not show any phenotypical
abnormalities, whereas S1PR,” and S1PR;” knockout mice died during gestation or infancy
[99]. STPR; are expressed ubiquitously in the body in contrast to STPR; and S1PRs. STPR, is
only expressedin lung, lymphoid, and hematopoietic tissues [100], while S1PRs is specifically
expressed in natural killer cells [101], dendritic cells [102], the central nervous system (CNS)
[103], and endothelial cells [104]. This tissue-specific expression of STPR, and S1PRs suggests
specialized functions. S1PR, deficient mice showed aberrant megakaryocytes and delayed

platelet recovery after a deletion with antibodies, but did not show abnormal phenotype
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changes during embryonic development otherwise [105]. Moreover, S1PR; is involved in
dendritic cell migration and inflammation by T cell function modulation via activation of
myeloid cells [106]. ST1PRs regulates the integrity of the blood-brain barrier, increasing tight
junctions and therefore decreasing the permeability [107]. Moreover, natural killer cell

migration [108] and circulation of monocytes [109] are dependent on S1PR:s.

The ubiquitous expression and involvement in many regulatory functions highlight the

importance of STPRs in the human body.

1.2.2. S1PR; Crystal Structure

The crystal structure of S1PR; (PDB 3V2Y [32]) is used in this thesis. In 2012 Hanson et al.
fused the receptor to a T4-lysozyme in the intracellular part of TM5 and TM6 and solved this
fusion protein in complex with the selective STPR; antagonist ML056 ((R)-3-amino-(3-
hexylphenylamino)-4-oxobutylphosphonic acid, Figure 12) [110]. The mean resolution of
2.8A shows the S1PR; structure on an atomic level. The detailed view of the electron density
map reveals a general good resolution of transmembrane domains and the ligand. Unsolved
domains include part of the N-terminal domain, single residues in the extracellular domain
(e.g. K3*, R73, E7*%), and the last intracellular residues of each TM. This indicates the high
flexibility of intra- and extracellular domains as opposed to the stable TM cores of GPCRs.
Interestingly, R73%, E73¢ residues near the binding pocket entrance between TM1 and TM7,
are discussed to act as amino acids attracting ligands into the binding pocket [111]. This
could explain why residue R’** and E’*°are not solved as well as their absence in ligand

binding and binding pocket shaping.
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Figure 12. Crystal structure of STPR; (PDB 3V2Y). The crystal structure of S1PR; is composed
of a T4-lysozyme fused intracellularly to TM5 and TM6 of S1PR; protein, replacing the ICL3.
Furthermore, MLO56, a selective sphingolipid-mimic STPR; antagonist, is used to stabilize

the inactive conformation.

1.2.3. Sphingosine-1-phosphate Receptors as Drug Targets

Targeting S1PRs to modulate the regulatory function of lymphocyte trafficking has shown
to be an effective/promising treatment for different autoimmune diseases [112]. The
functional antagonist Fingolimod (2-amino-2[2-(4-octylphenyl)ethyl]-1,3-propanediol,
FTY720, 1, Figure 13) is the first-in-class orally bioavailable drug against remitting relapsing
multiple sclerosis (RRMS) [113] and was approved 2010 in the USA and 2011 in the EU.Itisa
structural analog derived from myriocin, a non-proteinogenic immunosuppressive amino
acid found in the fungus Isaria sinclairii, with improved immunosuppressive activity and
reduced toxicity [114]. Fingolimod is activated in vivo via sphingosine kinase 2 (SphK2) to
Fingolimod-phosphate (FTY720-P, 2) [115]. 2 downregulates STPR;, due to its super-agonist
bioactivity, creating an S1PR;s-null state in primary and secondary lymphoid organs leading
to lymphocyte sequestration. Furthermore, 2 also binds to S1PRss [116-118]. The in vivo
efficacy and safety of Fingolimod (daily oral dose of 1.25 or 0.5 mg) for RRMS treatment has
18
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been assessed in the 24-months FREEDOMS [119], FREEDOMS Il [120], and 12-months
TRANSFORMS [121] double-blind, randomized clinical studies (RCT). Fingolimod showed a
significant decrease in annual relapse rates and disease activity in comparison with either
placebo or interferon -1a. The long-term benefits of Fingolimod treatment in FREEDOMS
were sustained during the 2-4 years long FREEDOMS extension. Even though long-term
treatment was reported to be well-tolerated [122], serious adverse events (SAE) like
neoplasms, hepatobiliary disorders, CNS disorders, and infections/infestations occurred in
around 10% of the patients. Commonly reported adverse events (AE) include
nasopharyngitis, upper respiratory tract infection, lymphopenia, and headache. Additional
safety concerns evolve around Fingolimod's cardiac toxicity covering inter alia transient
bradycardia and first-degree atrioventricular block. These adverse events occurred in both
FREEDOMS as well as TRANSFORMS trials during the first dose and might also be dose-
dependent. Animal studies suggest that S1PR; is mainly involved in transient heart rate
reduction by Fingolimod [123, 124]. It is also hypothesized, that STPR; agonism is the cause
of the adverse effect of macular edema through a breakdown of the inner blood-retinal
barrier [125]. Dusaban et al. uncovered the role of STPR; in CNS injury and disease (e.g.,
multiple sclerosis). S1P and Fingolimod activation of S1PR; induces inflammatory cytokines
(e.g. IL-6) and cytotoxic mediators (e.g. COX-2, VEGFa) in astrocytes, which contributes to
neuronal cell death, demyelination, and increased permeability of the blood-brain barrier
leading to S1P and pathogenic lymphocyte leakage into the CNS [125]. This could have a
negative impact on the progression of CNS inflammatory diseases. To circumvent adverse
effects and detrimental mechanisms linked to the non-selective binding of Fingolimod,
great effort has been put into developing selective STPR drugs with better safety profiles

and comparable efficacy.
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Figure 13. (1) Fingolimod, (2) Fingolimod-phosphate and (3) sphingosine-1-phosphate.
The endogenous ligand S1P has an amphiphilic structure with a phosphate head group as
the hydrophilic part and a long alkyl chain as the lipophilic part. The first-in-class drug

Fingolimod inherits analog structural features.

Siponimod (BAF312, (E)-1-(4-[1-({[4-cyclohexyl-3-(trifluoromethyl)benzyl]oxy}imino)ethyl]-
2-ethylbenzyl)azetidine-3-carboxylic acid, Figure 13, 4) was recently approved by the FDA in
2019 and European commission in 2020 for secondary progressive MS (SPMS). Siponimod
was discovered via de novo design based on Fingolimod. The initial structure-activity
relationship study was focused on achieving selectivity against S1PRs by introducing rigidity
into the lipophilic part of the ligand. Furthermore, the in vivo elimination half-life was
reduced by replacing the phosphate group with carboxylic acid [126]. These successful
design strategies have led to Siponimod’s S1PR; and S1PRs selectivity (Table 1), more
favorable pharmacokinetic properties (tmax 3-4.5 h, ti,2 30 h) compared to Fingolimod (tmax
12-16 h, t12 144-216 h) [127] as well as being a non-pro drug. The 6 months long clinical
study BOLD showed a significant decrease in combined unique active brain magnetic
resonance image lesions for RRMS in comparison with placebo for all Siponimod doses (0,5
mg - 10 mg) [128]. Long-term studies with Siponimod revealed a significant reduction in
annual relapse time as well as a relative risk reduction of physical and cognitive impairment
development for SPMS compared to placebo [129, 130]. Similar adverse events, like macular
oedema and bradycardia, have been observed in comparison to Fingolimod. Initial
bradycardia could be mitigated by dose titration. A recent meta-analysis from 2021
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compared the relative risk of adverse events in RCTs between different S1TPR modulators and
the comparator [131]. Siponimod did not show a significant change in relative risk (RR) for
occurring adverse events of 1.09 (1.04-1.13 95% Cl) compared to Fingolimod (1.05, 1.00-1.10
95% CI). Surprisingly, RR for SAEs is higher for Siponimod (2.07, 0.33-13.05 with 95% Cl) vs.
Fingolimod (1.21, 0.96-1.53 with 95% Cl). Siponimod showed reduced RR for bradycardia
(1.88, 1.09-3.22 95% Cl vs. 4.78, 2.30-9.93 with 95% Cl for Fingolimod) but increased RR for
macular oedema (8.93, 1.20-66.75 95% Cl vs 1.87, 0.85-4.13 95% Cl for Fingolimod). Due to
missing clinical studies directly comparing Siponimod to Fingolimod treatment and the
scarce study availability for Siponimod, the presented data might not be sufficient for

conclusions about the safety profile of Siponimod vs. Fingolimod.

Ozanimod (RPC1063, (S)-5-(3-{1-[(2-hydroxyethyl) amino]-2,3-dihydro-1H-inden4-yl}-1,2,4-
oxadiazol-5-yl)-2-(1-methylethyloxy)benzonitrile, Figure 13, 5) was also approved 2020 by
the FDA and European Commission for RRMS treatment. It was initially developed from a hit
found by the Scripps Research Institutes [132]. Ozanimod is a selective S1PR; and S1PRs
agonist (Table 1) with ideal pharmacokinetic properties (tmax 6-8 h, t1,2 19 h) for oral daily dose
application and fast recovery time (2-3 d) of lymphocyte count after discontinuation
(Siponimod 1-5 d, Fingolimod 30-60 d) [133, 134]. The in vivo efficacy has been
demonstrated in several studies [135-138], revealing significantly fewer cumulative lesions
and annual relapse rates vs. either placebo or interferon -1a. Most common AEs include
nasopharyngitis, headache, and urinary tract infections. Interestingly no clinically relevant
cardiac AEs or macular edema was observed. The meta-analysis from Lasa et al. also included
RCT data of Ozanimod [131]. Comparing the relative risk of Fingolimod to Ozanimod,
Ozanimod shows reduced RR for occurring AEs (0.86, 0.77-0.96 95% Cl vs. 1.05, 1.00-1.10 95%
Cl for Fingolimod), SAEs (1.00, 0.59-1.70 95% Cl vs. 1.21, 0.96-1.53 95% Cl for Fingolimod),
bradycardia (2.88, 0.50-16.58 95% Cl vs. 4.78, 2.30-9.93 95% Cl for Fingolimod) and macular
oedema (0.67,0.15-3.05 95% Cl vs. 1.87, 0.85-4.13 95% Cl for Fingolimod). Overall Ozanimod
seems to have a better safety profile with the same efficacy compared to Fingolimod for

RRMS treatment.

There are many other drug candidates in the pipeline, like amiselimod [139], ponesimod
[140], and cenerimod [141], for the treatment of RRMS and other autoimmune diseases

[142].
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Figure 14. (4) Siponimod and (5) Ozanimod. Siponimod and Ozanimod are STPR; and S1PRs

selective drugs. They have been successfully marketed in 2019 in the European Union and

the United States.

Table 1. In vitro activity for marketed drugs targeting S1PRs. Data from Scott et al. [132]

S1PR; S1PR, S1PR; S1PR, S1PRs
GTPyS GTPyS GTPyS B-arrestin GTPyS
FTY720-P  ECso (nM) 0.27 >10 000 0.90 345 0.50
Ema® (NM) 85 22 57 130 61
Siponimod  ECso (nM)  0.39 >10 000 >10 000 920 0.38
Ema® (NM) 75 15 97 38 89
Ozanimod EGCso (nM) 0.41 >10 000 >10 000 >7865 11
Ema (NM) 97 70 109 21 83

*Emaxrelative to 100% S1P signaling.
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2. Aims & Objectives

G-protein coupled receptors are the largest family of membrane receptors involved in a
plethora of physiological and pathophysiological processes. They represent the most drug-
targeted receptor family with uncovered potential to be exploited as targets for many
diseases. One main challenge to specifically targeting a GPCR is to achieve subtype
selectivity between closely related receptors of a family with sparse binding pocket
differences. Furthermore, finding subtle changes in the activation process could elevate the
analysis of molecular dynamics simulations and homology models to support structure-

based ligand design.

This thesis aims to elucidate structural determinants for subtype selectivity and general class
A GPCR receptor activation. One main focus is to decipher the high sequence identity of the
orthosteric binding pocket between Sphingosine-1-phosphate receptor subtypes 1 to 5
with in silico models. Moreover, we want to evaluate the role of dihedral angles in class A
GPCR activation with a thorough data mining and machine learning approach to all

available structural data.

Answering the following questions should enhance our understanding of selected topics

and demonstrate the viability of structure-based ligand design:

1. Which structural determinants are important for S1PR subtype selectivity?

2. Can these determinants explain the selectivity of marketed drugs?

3. Are dihedrals angles as structural determinants able to distinguish between
activation states of GPCRs?

4. What impact can a machine learning model based on dihedral angles have on

structure-based drug design?

To answer these questions and overcome posed challenges we combined state-of-the-art

molecular modeling, data analysis, and machine learning methods with suitable workflows.
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3. Computational Methods

3.1. Molecular Modeling

3.1.1. Homology Modeling

Homology modeling (HM) represents an established method to develop three-dimensional
structural predictions of protein targets. As a starting point, similar proteins are used as
templates, which have their structural data experimentally confirmed [143]. This assumes
that similar protein sequences have resembling structures. To build a valid HM the target
protein and template protein need to have high sequence and/or structural similarities. The
first step to compile an HM is to select a template by utilizing sequence alignment
algorithms such as Clustal Omega [144], FASTA [145], or BLAST [146]. After the identification
of a viable template, different model building solutions are available as web services and
software suits (e.g. iTasser [147], SWISS-MODEL [148], and MOE (Chemical Computing Group
ULC, Montreal, Canada)). In this work, the MOE homology model builder was used, which
constructs HM based on the coordinates of matching residues between template and target
as well as a library of high-resolution structures and rotamers for non-matching residues to
sample the backbone and sidechain rotamers. The initial models should be refined and
validated closely before further application for structure-based design. Validation includes
the analysis of protein geometry (Ramachandran outliers [39]), atomic clashes, and
secondary/tertiary protein structure. Furthermore, another validation method is the docking
of ligands with known activity/binding mode [149]. Due to the availability of S1PR; as crystal
structure (PDB 3V2Y) [32], the shared tertiary conformation (chapter 1.1.2), and the high
sequence identity of STPRs (chapter 4.1.1), they consequently represent auspicious

conditions for HM.

3.1.2. Molecular Docking

Molecular docking is a structure-based tool for flexibly fitting small molecules into rigid

protein binding pockets [150]. It is primarily used for binding mode hypothesis generation
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and virtual screening in drug design. The docking process is separated into two
components: () generating binding modes with a search algorithm and (Il) ranking the
results with a scoring function [151]. Search algorithms have different approaches to
construct conformations. This includes stochastic optimization techniques like Monte Carlo
methods (Autodock [152]) and Tabu searches [153], genetic algorithms (GOLD [154]),
incremental reconstruction (FlexX [155]), and systematic searches (GLIDE [156]) [157, 158].
After generating a set of docking poses, the conformations can be ranked with methods like
molecular mechanic force fields, empirical free energy functions, or knowledge-based
functions [1501. In this thesis, the software suite GOLD, which uses a genetic approach, has

been used for docking experiments.

3.1.3. Molecular Dynamics Simulations

All-atom molecular dynamics (MD) simulations have become an important method for
structure-based drug design since it uses structural data of a rigid macromolecular complex
to sample its different conformations around the rigid state [159]. Three steps are taken to
perform all-atom MD simulations: the parametrization of the system, equilibration, and the
calculation of the velocities and position of the atoms in the main simulation run from

starting velocities based on the Boltzmann distribution.

The parametrization step infers detailed properties to each atom of the system (e.g., atomic
mass, partial charge, bonds, and van der Waals radii). After the successful parametrization,
the system undergoes several equilibration steps (short MD simulations) to reach the
desired temperature and pressure for the main calculation and to relax the protein to
remove possible crystallization/cryo-EM artifacts of the underlying structural data used
[160]. The calculation of MD simulations for the equilibrium steps as well as the main MD
simulations are based on Newtonian mechanics as the underlying principle [161].
Furthermore, detailed parameters of the potential energy functions (e.g. bonds, angles, and
torsions of covalently bound atoms) or intermolecular interactions through van der Waals
forces are summarized as parameters in the commonly termed ‘force-fields’ (OPLS [162],
CHARMM [163], GAFF [164]). These parameters are based on ab initio physics, quantum

mechanics, and experimental data [165]. Different software solutions are available to

25



Computational Methods

perform MD simulations (Desmond [166], Amber [167], GROMACS [168]). In this thesis, the
force-field OPLS 2005 (OPLS_2005) [169] was used in combination with Desmond [166].

3.1.4. Dynamic 3D Pharmacophore Analysis

In 1998 Camille G. Wermuth defined the concept of a pharmacophore in the IUPAC glossary
terms [170]: “A pharmacophore is an ensemble of steric and electronic features that is
necessary to ensure the optimal supramolecular interactions with a specific biological target
structure and to trigger (or to block) its biological response.” In other words, 3D
pharmacophore models are comprehensive visualizations of ligand-protein interactions
represented by spatial pharmacophoric features such as hydrogen bond donors/acceptors,
hydrophobic regions, aromatic rings, and charges. Location, direction, and orientation of the
aforementioned features as well as steric hindrance are mandatory for a proper 3D

pharmacophore model. They play a critical role as an efficient tool for virtual screening [171].

Different software suites are available to generate 3D pharmacophore models (e.g.
LigandScout [172, 173], MOE, PHASE [174], and CATALYST [175], Pharmer [176]). This work
uses the pharmacophore feature definitions of LigandScout, which includes hydrogen bond
donors (HBD), hydrogen bond acceptors (HBA), positive ionizable (Pl) feature, negative
ionizable (NI) feature, hydrophobic contacts (H), and aromatic ring ri-i stacking (AR) features

[173].

The new concept of dynamic pharmacophores (Dynophores) [177, 178] incorporates data
from MD simulations into 3D pharmacophore models. This allows the shift from a static
representation of ligand-protein interactions to a time-dependent dynophore. A
pharmacophore model is generated for each frame of the MD simulation, which gives an
insight into conformational changes over time. Recurring pharmacophoric features are
represented as density functions of single feature points and collected in so-called

dynophore superfeatures [179].
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3.2. Machine Learning

The field of machine learning and artificial intelligence has made large progress due to the
development of new learning algorithms, the availability of data, and the rising
computational processing power [180]. Machine learning is a branch of artificial intelligence
and, in a nutshell, is a method using algorithms to learn generalizable dependencies from
large datasets and improve the performance of a given task over time. This broad discipline
is utilized in many different fields like healthcare [181, 182], computational chemistry [183],
drug discovery [184], and many other fields [185-188]. Machine learning methods can be
divided into three categories: supervised, unsupervised, and reinforced machine learning.
While supervised machine learning models learn from labeled data to infer the labels of new
data, unsupervised machine learning models learn underlying patterns from unlabeled data
to e.g., segment the data into clusters. Reinforced machine learning models learn iteratively
based on penalties and rewards to reach the given goal in a sequence of decisions (e.g.,

winning a chess match).

3.2.1. Supervised Machine Learning

The goal of supervised machine learning is to learn a set of rules from instances of a dataset
based on the given label (known correct output) [189]. These generalized hypotheses give
insight into dependencies between labeled instances and their features (e.g., single or
combined attributes) and can be used to predict the unknown labels of new data. Therefore,
every instance of a given dataset is represented by the same set of features. These features
can be categorical, binary, or continuous, which is also the case for labels of instances. Based
on given labels different machine learning algorithms are used. Categorial or binary labels
utilize classification algorithms, while regression algorithms are used when labels are

continuous (numerical) values [190, 191].
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A general workflow for supervised machine learning can be described as follows (Figure 15):
(1) the first step is to collect a raw dataset, e.g., of molecules or structural protein data,
depending on the central problem to solve. (2) This dataset set will then be pre-processed.
Steps include wrangling of data, handling missing data, feature extraction, splitting the
dataset into training (80% of the available dataset) and test dataset (20% of the available
dataset), and feature engineering and selection based on the training dataset (chapter
3.2.3). After data preparation, the format should be appropriate for further ML downstream
applications. (3) Based on the label, ML algorithms are chosen and trained using the training
dataset. Initial models need optimization through hyperparameter settings (algorithm-
specific changeable parameters), further feature engineering and/or selection based on the
performance measurements and metrics (chapter 3.2.4), or changing to more suitable
algorithms for the dataset. (4) The last step involves the validation of the optimized ML
model by predicting the labels of unknown data. This test data was split in the beginning
from the pre-processed dataset and is now used for the final model evaluation. Due to the
labels known to the user but not to the model, we can evaluate the performance in a
simulated “real world” case. New published/available data can also be included in the
validation process. A further optimization cycle can be implemented after the validation

process, but one should be aware that the model might be more prone to over-fitting.
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Figure 15. General workflow for the creation of supervised machine learning models.
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3.2.2. Classification Algorithms

Decision Trees

A family of commonly used methods in supervised machine learning for classification and
data mining is non-incremental top-down inductions of decision trees (TDIDT) [192, 193]. In
other words, the algorithms are building decision trees (induction) by continuously splitting
(top-down) the entire training dataset (non-incremental) based on the features/attributes
of the labeled instances. The training dataset induction starts at the topmost decision node,
also called root node, represented by the feature that best divides the instance space into
its classes based on a feature value acting as a threshold. The resulting data subsets at child
nodes are further split (decision node) in the same manner. This process of optimizing the
split function of each decision node without the consideration of prior splits is called
recursive partitioning [194]. The recursion ends when a successor child nodes subset is
purely populated with instances of the same class or further splitting does not add value to
the resulting model (e.g., enhancement in predictive power). These terminal nodes are also
called leaf nodes and are attributed with a class label based on the subset. The trained
decision tree can then predict the label of an instance X by following the learned decision
rules of the root node and consecutive child decision nodes until a leaf node is reached. The
class label of the leaf node determines the label of X (Figure 16). The clearly defined decision
rules at each node and the possibility to translate every root-to-leaf path into a set of rules
as a representation of the decision tree offer insight into the underlying dataset.
Furthermore, decision trees can handle high-dimensional data without prior domain

knowledge or parameter settings.
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Figure 16. Generalized Binary Decision Tree. The class label prediction of an instance X

follows a root-to-leaf path. Each decision node on this path sorts X into the successor child
node based on learned rules obtained through prior training with a given dataset. Leaf

Nodes A and B are representing the binary class labels.

K Nearest Neighbors

The K Nearest Neighbor algorithm is a non-parametric, instance-based classifier and belongs
to the group of lazy-learning algorithms [195]. The induction process is performed during
the classification of new instances, which leads to less computation time during training, but
increased computation time for each classification (in comparison to e.g., decision trees).
Furthermore, no generalization of the training data set is carried out leading to a large model
which includes all data points. Instances from the training dataset can be seen as points in
an n-dimensional instance space with n-features, in which instances with similar properties
are in close proximity to each other. By locating the k nearest instances to the new instance,
a class label can be determined by a majority vote (Figure 17). The selection of the distance

measurement has a significant impact on performance and noise handling [196].
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Figure 17. Classification visualization with K Nearest Neighbor. By determining the nearest
instances to the unclassified instances, a label can be assumed. Based on K different
classification outcomes are possible. Therefore, K should be picked properly based on the

underlying dataset.

Support Vector Machines

To understand how Support Vector Machines (SVM) induction and classification [197] work
we need to understand four concepts of SVMs: (I) The separating hyperplane, () the
maximum-margin hyperplane, (Ill) soft-margins, and (IV) the used kernel function [198]. In a
one-dimensional dataset with two classes, a separation of the “line” created by one feature
can be achieved with a point (comparable to a decision node in a tree-based function), a
two-dimensional dataset can be separated by a line (Figure 18), and a three-dimensional
dataset by a plane. This can be further upscaled mathematically into higher dimensions. A
line in a higher-dimensional space is called a hyperplane. The term is therefore generally
referring to a line in an x-dimensional space that separates a dataset with binary classes. By
introducing a maximum margin with a distance parameter at each side of the separating
hyperplane, the SVM can optimally place the separating hyperplane. The maximization of
these margins, also called support vectors, minimizes the upper bound of the generalization

error of the model and can therefore maximize the ability to predict labels of unknown data.
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Real datasets normally cannot be separated as cleanly as seen in Figure 18 by a hyperplane.
Often outliers are found on the opposite cluster of the separating hyperplane. To allow
outliers and still place an optimal hyperplane, soft margins have been introduced to SVMs.
These soft margins have to be set and optimized (number of allowed outliers, allowed
distance to the hyperplane, etc.) so that a large margin can still be achieved for correctly
classified instances. The last concept is kernel functions, which are used to mathematically
transform low-dimensional data into higher dimensionalities. By choosing the correct kernel
function a dataset can become linearly separable in a higher dimension in contrast to other
or no kernel function used. One must be aware that the projection into higher
dimensionalities with no boundaries will always yield a kernel function that can separate a
given dataset. But increasing dimensionality also increases the number of possible solutions
leading to a selection problem of the correct function. Moreover, a high-dimensionality
kernel function is prone to overfit the training data leading to a poor generalization of the

underlying data.

Feature 1

Cluster B

Feature 2

Figure 18. Support Vector Machine Hyperplane and Maximum Margin using two

Features.
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3.2.3. Feature Selection for Supervised Machine Learning

The selection of meaningful features represents an important method before training a
supervised machine learning model [199, 200]. Irrelevant features can be described as
features that do not correlate with the dataset’s class labels. They increase computational
cost, introduce the curse of dimensionality (the higher the dimensions, the sparser data
becomes), and reduce predictive performance. Besides selecting features based on domain
knowledge different methods can be utilized. A baseline method represents the removal of
features based on a variance threshold. If a feature shows no or low variance, we can assume
that this feature does not contain information to distinguish between different classes from
the dataset. Another common approach targets the number of missing values for a feature
in a given dataset. The premise here is to remove features with a high number of missing
values and therefore remove features with missing information. Other methods can be
categorized into filter and wrapper methods. Filter methods are preprocessing steps that
utilize statistical tests to rank features independent of the learning algorithms. Features can
be examined individually (univariate) or in subsets (multivariate). Examples for filter
methods include analysis of variance (ANOVA) [201, 202], mutual information [203, 204] and
feature correlation [205, 206]. Wrapper methods on the other hand iteratively rank feature
subsets by utilizing predictors and resulting predictive performances until a defined
criterion is met (e.g., highest learning performance, number of desired features). Popular
wrapper methods include recursive feature elimination with cross-validation (RFECV) [207]
or feature selection based on the random forest algorithm [208]. Due to high computational
costs, different search strategies have been developed, such as sequential search and

genetic algorithms [209, 210].

3.2.4. Model Performance

The performance of a trained machine learning model is important to give an estimate to
two central questions: (1) Which of the models performs the best and (2) how will the model
perform on “unseen” data [211]. These two aspects are also known as model selection and
generalization performance. Based on the underlying data different algorithms can yield
performance differences [212]. To evaluate the performance of a binary classification model
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we can hold out some of the initial data to validate the model with “unseen” data. The
available data is randomly split in the beginning into a stratified (correct representation of
each class) training and test set. Performance measure calculations are based on correctly
classified positive and negative instances (true positives (TP) and true negatives (TN)) as well
as incorrectly classified positive and negative instances (false positives (FP) and false
negatives (FN)). Each instance classification can be visualized and counted in a confusion
matrix (Table 2) The sum of correctly classified instances (TP + TN) divided by the total
number of instances (TP + TN + FP +FN) is defined as the prediction accuracy. By comparing
the training and test set accuracy we can evaluate the generalization performance. A high
training set accuracy which yields a lower test set accuracy is an indicator of an over-fitting
model. In other words, the learned rules of the model are specifically tailored to the training

data, leading to bad performance on unseen data.

Table 2. Confusion matrix for the classification of the test set.

Predicted Positive (PP) Predicted Negative (PN)
Actual Positive (P) True Positive (TP) False Negative (FN)
Actual Negative (N) False Positive (FP) True Negative (TN)

Another popular performance measure is the Mathews correlation coefficient (MCC), which
is a measurement for binary classification problems [213]. It not only takes into account the
correctly classified instances (TP and TN) but also FP and FN instances leading to a more
robust and reliable metric. It is defined as “TP x TN — FP x FN” divided by the square root of
“(TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)". The MCC value ranges from -1 to +1, in which

+1 indicates a perfect prediction, 0 a random prediction, and -1 no correct classifications.

The discussed hold-out method comes with a crucial caveat: the accuracy calculation is a
point estimate of the generalization performance making it sensitive to the particular
training and test set split (especially when the dataset shows high variance). A common
method used to obtain more robust performance measures is the k-fold cross-validation
(Figure 19). Assuming we want to perform 5-fold cross-validation, the first step involves

splitting the dataset into five parts (also called folds) of equal size. In an iterative process,
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one “fold” is being used as the test set and the remaining folds to train the model. This leads
to the generation of five different models with a test opportunity for every instance in the

dataset (Figure 19). The average accuracy of the models represents the k-fold cross-

validation performance measure.

Testdata Train data
Fold 1+— 000 —9-0-0- — Accuracy 1
Fold2s = - @ ** 7777777 “ e » Accuracy 2 . 5-fold cross
Fold 3+ — - - — @ Accuracy 3 > validation
Foldds & - 0-0- yYYys ' & . accuracy

— Accuracy 4

Fold5«—— — = = 2 = = = @ 4 :— >Accuracy57-»/;

Class A Class B

Figure 19. k-fold cross-validation is shown with 5-folds as an example.
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4. Results

4.1. Structural Determinants for Sphingosine-1-phosphate Receptor

Selectivity

4.1.1. S1PR,s Homology Models Reveal Highly Similar Orthosteric Binding
Pockets of Receptor Subtypes

In order to identify structural differences between the binding pockets of the Sphingosine-
1-phosphate receptors (STPR) on an atomistic level, we built the homology models of STPR.-
5, Which at the time of investigation, lacked experimentally determined coordinates. The
crystal structure of STPR; (PDB 3V2Y [32]) was used as the template for homology model
building because of the high sequence identity (45,3 - 61,5%, depending on the S1PR
subtype, Figure 20C), high sequence similarity (65.3 — 78.1%, depending on the ST1PR
subtype, Figure 20C), and the same receptor classification (chapter 1.1.1) of S1PR;.s. Since
the template protein was co-crystallized with an antagonist, the built homology models
mimic the inactive state. All derived homology models showed under 1 A overall atomic
deviation (measured as root-mean-square deviation, RMSD) of the Ca of the protein
backbone in comparison with the template (Figure 20B) suggesting a comparable global

fold to the template protein.

37



Results

S1PR,

S1PR, 55.1. SIE 41.0 51RO

S1PR; KM 51.9. 45.7 50.8
Y 45.7 42.4 45.9. 47.4
Y14 54.3 52.3 50.8 47.2.

Figure 20. (A) S1PR,s homology models (green) superimposed on the S1PR; template
(grey). (B) RMSD (root-mean-square deviation) of the Ca protein backbone matrix in A.(©Q

Sequence identity (left) and similarity (right) in percent.

For further model validation, the protein geometry based on dihedral angles (Chapter 1.1.3)
was analyzed using the Ramachandran plot [214] shown in Figure 21. Residues with
unfavorable backbone geometries are marked as outliers (red cross). There are four outliers,
one occurring in S1PR, (N'? in the N-terminus), two in ST1PR; (L?® in the N-terminus and N
found in ICL1), and one in STPR4 (R**! found in TM4). The outliers do not affect the binding
site in any of the homology models. In addition, the outliers are in highly flexible regions

and were thus not further investigated (Figure 21). Furthermore, no atom clashes were

observed.
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Figure 21. Ramachandran plots of homology model S1PR..s. Green points represent
optimal phi and psi angles, yellow circles are still in the allowed region and red crosses

indicate angles in non-favorable regions of the Ramachandran plot.

The orthosteric binding pocket of STPRs can be divided into a hydrophilic and lipophilic
region. A sequence alignment and superimposition of the structural data reveals highly
conserved residues in the hydrophilic region throughout STPR;.s (N26°, S1%%, T'%9 R32% and E3%,
Figure 22). One exception is R** expressed in STPRsinstead of K** found in STPR;235. Seven
residues in the lipophilic core of orthosteric binding pocket are also conserved, such as
Y20182229.19 | 195183.189.197.186 (STPR 5, respectively), F333, L3, F>47, W58 and F®>? (Figure 22). The

differences in the binding pocket are present in the lipophilic region at BWN residues 2.57,
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5.40, 6.55, 7.39, and 7.42 (Figure 22, right). These residues share strongly similar properties
(calculated with Clustal Omega [144, 215]). Based on these findings, achieving subtype
selectivity via the orthosteric binding pocket is only feasible by exploiting the lipophilic
residue differences. To gain more insights between receptor subtypes a dynamic

comparative analysis was utilized to unveil structural determinants important for STPR

subtype selectivity.
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Figure 22. Orthosteric binding site residue comparison between S1PR;_s structures. Left:
S1PR; binding pocket residues. Blue surface — hydrophilic environment, yellow surface —

uyn

lipophilic environment. Right: Binding pocket residue comparison between S1PR;.s.

u.n

single, fully conserved residue, - conservation between groups of strongly similar
properties, ECL1/2 - extracellular loop 1/2, top row numbers indicate Ballesteros-Weinstein

nomenclature, Yellow - apolar amino acids, Blue - polar amino acids, Green - cysteine
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4.1.2. Knowledge-based Constrained Docking of a Sphingosine-1-

phosphate Receptor Pan-agonist

The main goal of this docking study is to prepare valid binding modes for a dynamic
interaction analysis between S1PRis. Docking studies were performed using the pan-
agonist 2-ammonio-3-hydroxy-2-(5-(4-octylphenyl)-1H-imidazol-2-yl)propylphosphate (6,
Figure 23) [216]. Compound 6 was discovered in 2005 by Clemens et al. during the
development of 4(5)-phenylimidazole-based analogs for STPR;. Its chemical difference to
the endogenous ligand S1P and the measured agonistic activity for all five subtypes (ECso
STPR:-S1PRs in nM: 7.9, 18, 630, 160, 17; Enaxbased on 100% S1P for STPR:.s: 0.91, 0.95, 0.21,

0.87, 0.66) predestine 6’ utilization for the development of comparative dynamic models.

Figure 23. Structure of docked compound (6) and ML056 (7). (6) shows agonistic activity
on all five S1PR substructures (ECso STPR:-S1PRs in nM: 7.9, 18, 630, 160, 17; E.x based on
100% S1P for S1PRys: 0.91, 0.95, 0.21, 0.87, 0.66). (7) MLO56 is a selective S1PR; antagonist
co-crystallized with STPR; (PDB 3V2Y).

The constrained docking of compound 6 was performed based on the position and
interactions of the ligand MLO56 in crystal structure 3V2Y (see Chapter 1.2.2) and S1P loss-
of-function alanine mutation studies of key residues R**®A and E3*A in the binding pocket

of S1PR; [217] (Table 3).
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Table 3. Constraints used for docking compound 6 into S1PR subtypes.

Constraint Compound 6 Residue Rationale
Type
Hydrogen Deprotonated S1PR; K** (HZ2 atom) Observed in STPR; crystal
Bond Oxygen of S1PR, K2 (HZ2 atom) structure (PDB 3V2Y) [32]
Phosphate
S1PR; K#” (HZ2 atom)
Group
S1PRs R** (HH21 atom)
S1PRs K** (HZ2 atom)
Hydrogen Deprotonated S1PRys R32® Observed in STPR; crystal
Bond Oxygen of (HH11 atom) structure (PDB 3V2Y) [32],
Phosphate Mutation study [217]
Group
Hydrogen Protonated S1PRys B3 Observed in S1PR; crystal
Bond Nitrogen of (OE2 atom) structure (PDB 3V2Y) [32],
Primary Amine Mutation study [217]
Distance Terminal C-atom  S1PR;s F># Observed in S1PR; crystal
(CHs-) of alkane (Cz atom) structure (PDB 3V2Y) [32],
substituent Deepest point of the
lipophilic pocket

The resulting docking poses of 6 show overall homogenous conformations in all five
subtypes with the expected fitting of the lipophilic tail in the lipophilic pocket and the head
group of compound 6 in the hydrophilic pocket (Figure 24). While STPR; and S1PRs show the
most comparable conformations between each docking pose, S1PR,.. docking poses of

compound 6 reveal more deviations in the position of the phosphate group.
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Figure 24. Docking solutions of compound 6 in ST1PR;s. Yellow surface - lipophilic, blue

surface — hydrophilic.

The selection of the final docking pose of 6 was based on the number of fulfilled constraints.
If multiple poses fulfill the same set of constraints the scoring function “ChemPLP Fitness
Score” [218] was used as an additional selection criterion. STPR; fulfilled all defined
constraints (Figure 25). For S1PR,.s the interaction between the phosphate group of 6 and
K22, K¥,K2* (S1PR, S1PRs, S1PRs, respectively) or R** of S1PR, could not be established without
losing hydrogen bonds to crucial residues R*?® or E>*. Due to additional mutational studies
on residues R*?® and E*#°, hydrogen bonds to these residues were prioritized over K2, K7, K24
(STPR, S1PRs, S1PRs, respectively) or R** of S1PR, in the final docking pose selection. The five
subtypes in complex with 6 have been used for preparations of molecular dynamics

simulations.
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Figure 25. Selected docking pose of compound 6 for S1PR;s. Yellow surface - lipophilic,

blue surface - hydrophilic.

4.1.3. Quality Assessment of Molecular Dynamics Simulations of STPR;s in

Complex with Compound 6

Extensive MD simulations for each subtype in complex with the chosen docking pose of

compound 6 have been carried out (10 simulations a 100 nanoseconds per subtype). MD

simulations were prepared as described in the methods section.

To quantify the conformational changes of the ligand in the binding pocket and the protein,
we calculated the RMSD of the Ca atoms of the protein backbones and the RMSD of the
heavy atoms of compound 6. Protein RMSD plots for S1PR;.s reveal comparable low distance
deviations between replicas and subtypes (Figure 26) with mean RMSD values for each
subtype range between 2.83 - 3.31 A (Table 4) with a maximum standard deviation of 0.20
A. Compound 6" mean RMSD values (2.44 - 3.15 R), as well as the plots, show higher
fluctuations between replicas leading to higher standard deviations (0.36 - 0.64 A). In
addition to the RMSD based assessment further evaluation criteria are applied. This includes

the visual inspection for simulation artifacts (unwinding of a-helices, unnatural kinks in
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transmembrane domains, and displacement of transmembrane domains), the recurring
formation (at least 75% during any MD trajectory) of the negative ionizable feature between
the phosphate moiety of compound 6 and the highly STPR;s conserved residue R*%, and
the recurring formation (at least 75% during any MD trajectory) of the positive ionizable
feature between compound 6’ primary amine and the highly conserved S1PR;.s residue E>2°.
7 out of 50 MD simulations did not meet one or more of these criteria: STPR; replica 0, S1PR;
replica 1 and 2, S1PR; replica 4, 7, and 8, and S1PR; replica 4. These replicas are outliers. All
outlier replicas are due to simulation artifacts, except for replica 4 of S1PRs, which only
formed 52% of the MD simulations trajectory the positive ionizable feature between
compound 6’ primary amine and residue E*?° of S1PRs. The remaining MD simulations have
been used for dynamic receptor-ligand interaction analysis. Based on the protein RMSD
plots the first 10 ns from each MD simulation have been discarded to account for the protein

and ligand equilibration.

Table 4. Mean RMSD in A for each MD simulation with overall mean and standard

deviation in A for STPR subtype.

Replica 0 1 2 3 4 5 6 7 8 9 g SD

ST1PR; | Protein 275 272 289 287 260 277 294 3.04 270 3.03 283 0.5

Ligand 3.17 292 300 404 297 298 297 294 290 356 3.15 037

ST1PR; | Protein 3.13 301 340 326 295 295 290 331 303 325 312 0.18

Ligand 242 280 251 221 286 268 359 355 288 3.00 285 045

STPRs | Protein 320 330 342 304 364 330 343 321 348 3.07 331 0.19

Ligand 348 386 208 273 349 258 229 297 245 283 288 058

S1PR; | Protein 3.26 3.11 3.08 328 345 323 306 367 305 313 323 020

Ligand 190 231 219 267 205 256 221 285 272 295 244 0.36

S1PRs | Protein 296 323 3.17 322 338 327 327 329 345 338 326 0.14

Ligand 260 361 267 421 279 362 265 258 250 382 311 064
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Figure 26. Protein and ligand RMSD plots for S1PR subtypes.
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4.1.4. Frequent Hydrophilic Contacts Cannot Explain Subtype Selectivity

The dynamic receptor-ligand interactions have been calculated with the Dynophore app
(chapter 3.1.4). Interaction occurrences are analyzed as the mean percent of replicas per
subtype. lonic interactions consist of a negative ionizable (NI) feature formed with the
phosphate group of 6 and a positive ionizable (Pl) feature formed with the primary amine of
6. Both features occur for ST1PR subtypes 100% of the simulation time, except for Pl of STPR;
with 99.3% occurrence (Figure 27, Appendix Table 1). The occurrence of hydrogen bond
acceptors (HBA) formed by the phosphate head group of compound 6 varies between
subtypes due to the fact that feature occurrences are strictly counted for one functional
group (or atom) and that the phosphate group exhibits a rotatable bond with a single
degree of freedom. The calculation of the mean HBA feature of the phosphate moiety
reveals comparable total interaction occurrences (S1PR; 69.3%, S1PR; 70.5%, S1PR; 70.5%,
S1PR4 80.6%, S1PRs 71.0%). Only S1PRs shows a 10% higher mean interaction occurrence.
The reason for this is the mutation of R** expressed in S1PRsinstead of K** for the other
subtypes. The chemical property of arginine’s guanine moiety enables the side chain to form
two hydrogen bonds simultaneously to the phosphate moiety in comparison to the primary
amine of lysine. The primary amine moiety of 6 forms added to the PI feature a hydrogen
bond donor (HBD) feature. In all 5 subtypes, the occurrence ranges from 96.1 to 99.9%,
which indicates frequent interaction formation. All aforementioned features are established
to one of the two key residues R** and E**° important for STP binding [216]. This suggests a
plausible binding mode of compound 6 in the orthosteric binding pocket subtype wide with
low mobility within the binding pocket over the course of MD simulations. Furthermore, the
lipophilic contacts of S1PR:s formed by the alkyl chain and phenyl moiety occurred 100% of

the time, except for S1PRs" alkyl contact with 99.8% occurrence.
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Figure 27. S1PR:.s mean interaction occurrence of pan agonist. Left: 3D view of S1PR; in
complex with pan agonist showing a representative dynamic pharmacophore. Middle: 2D
representation of pan agonist. Atoms involved in an interaction are numbered. Right: Mean
interaction occurrences of STPR;s. Numbers in square brackets represent the according to
atoms involved in a given interaction. AR — aromatic ring interaction, HBA — hydrogen bond
acceptor, HBD - hydrogen bond donor, H - lipophilic contact, NI - negative ionizable

feature, Pl - positive ionizable feature

Interactions with occurrence fluctuations between S1PR subtypes include HBA features
formed by the hydroxyl (15.5 - 52.1%), imidazole moiety (0.6 — 13.0%), and phosphate moiety
(34.0 - 57.1% calculated for separate oxygen atoms) as well as one HBD feature formed by
imidazole moiety (53,9 - 99.1%). Interestingly, STPR; is the only subtype that forms aromatic
ring (AR) interactions. Both phenyl and imidazole moieties form aromatic m-m (AR)
interactions with F’*° (6.0 and 8.0%, respectively). Furthermore, AR interaction switches
between the phenyl and imidazole moiety of compound 6 have been observed in MD
simulations. Since S1PR; exclusively expresses F’3° (STPR;45 L73, S1PR; I3, Figure 28) this
interaction could contribute to the higher binding affinity of compound 6 to S1PR; in
comparison to the S1PRs4 and similar binding affinity to STPRs (ECso STPR:-STPRs in nM: 7.9,
18,630, 160, 17; Emax based on 100% S1P for S1PR;.s: 0.91, 0.95, 0.21, 0.87, 0.66 [216]).
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)

Figure 28. S1PR; expresses F’*°, while other subtypes express I/L’*°. The phenylalanine
forms aromatic ring interactions with the imidazole or phenyl moiety of compound 6 during

MD simulations. Blue surface - hydrophilic, yellow surface - lipophilic

Due to the possible formation of multiple HBA interactions with the phosphate moiety, or
in extreme cases the formation of none, an analysis of total formed hydrogen bonds for each
time step of the MD simulations trajectory has been conducted based on the dynophore
data (Figure 29, Appendix Table 2). The formation of two or more hydrogen bonds per frame
between S1PR subtypes ranges between 95.8 - 99.6%, with S1PR; showing the lowest total
count which in turn also leads to S1PRs expressing the highest count of one or fewer
hydrogen bonds during MD simulations (4.2%). This sugge sts less energetically favorable
phosphate group interactions with key residues important for binding and activity of S1PR.
This resultis also in line with compound 6 showing the weakest potency for S1PR; [216]. Due
to highly conserved hydrophilic residues between all subtypes the hydrogen bond network
analysis of the phosphate moiety represents an indicator correlating with the subtype-

selective behavior of compound 6.

In summary, the presented data and analysis of dynamic hydrophilic interactions and their
occurrences are in line with the subtype-selective behavior of compound 6. The unveiled

unique aromatic interactions of S1PR; residue F’*° with the imidazole and phenyl moiety of
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compound 6 represents a S1PR; selectivity determinant which supports the high agonistic
potency of compound 6 for STPR, binding affinity expressed by compound 6. The next

chapters will focus on an in-depth analysis of lipophilic interactions.
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Figure 29. Hydrogen bond count per frame between the phosphate group of compound
6 and S1PR subtypes. Left: 2D representation of compound 6’ phosphate group forming 5
hydrogen bond interactions with S1PR; residues during one frame. Right: Total occurrence

of hydrogen bond count per frame during all MD simulations for each subtype.

4.1.5. Pan-agonist Shows Three Distinct Conformations of the Lipophilic

Tail During Molecular Dynamics Simulations

Visual inspections of S1PR:.s MD simulations revealed recurring stable binding modes
distinct from the initial docking pose conformation. The shared characteristics of these
binding modes are (I) comparable types and the number of hydrophilic interactions, (Il)
highly frequent phosphate and primary amine moiety ionic interactions, and (lll)
comparable frequency of the lipophilic contacts of the phenyl moiety of compound 6.
Differences have only been observed for the alkyl moiety expressing three distinct
conformations. While we have observed all three binding modes in STPR, and S1PRs, the
other subtypes S1PR; 34 only show two binding modes consistently. The analysis in this
chapter will therefore use STPR;s as a reference point because compound 6 exhibits all three

binding modes in STPRs.
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The initial docking pose of compound 6 resembles the pose of antagonist ML056 co-
crystallized with S1PR; (PDB 3V2Y [32]). This state will be further referred to as “binding mode
1”7 (BM1). BM1 was observed in all subtypes. Lipophilic contacts of the BM1 alkyl moiety are
characterized by interactions to the side chains of C>43, V544, W848 | 631 Fé52 and L>>for STPRs
(Figure 31). Residue W% and F4*2 are conserved for all subtypes. C># is expressed in S1PR;,
S1PRs;, S1PR4, and S1PRs, while STPR; contains V>3, For BWN-residue 5.44 ST1PR.s express
amino acids with lipophilic properties (V>#*, I>*, L>*, and V>#, respectively), while STPR;
shows less lipophilic T>#* with a polar hydroxyl group. The residue L**' is conserved for S1PR;,
S1PR;, STPR4, and S1PRs. STPR; expresses A%*!instead. The last transmembrane position 6.55

expresses in S1PR:.s residues with lipophilic properties (L%, L%, Fé>>, L%, L%, respectively).

Binding Mode 1 Binding Mode 2 Binding Mode ECL
» !
i \/185¢ 5
2 S N
LN R32s ” v ,..K E3i} R328
f{,:é,as \
4

Figure 30. Static representation of Binding Mode 1, 2, and ECL with compound 6 shown
in complex with S1PRs. Residues forming a lipophilic contact with the alkane moiety in this
lipophilic sub-pocket are shown for all three binding modes. Furthermore, the residues R>*
and B3 are shown due to theirimportance for anchoring the phosphate and amine moiety
of compound 6 into the binding pocket. Blue surface - hydrophilic, yellow surface -

lipophilic

In “binding mode 2” (BM2) of compound 6, the alkyl moiety binds a sub-pocket near the
transmembrane receptor core, orienting the pan agonist in parallel to the transmembrane
domains. BM2 was observed in all S1PR subtypes. The BM2 sub-pocket consists of T*>37, V349,
1>2°, F>47, and F®>2 for STPRs (Figure 31). STPR;, S1PR;, and S1PRs express at BWN position 3.37
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residues with neutral-polar characteristics (5**, S**, and T°>?*, respectively), while S1PR;
expresses G*37 and S1PR, A%*’. Position 3.40 expresses V3% for STPR;, S1PR,, and S1PRs and
T*4° for STPR; and S1PRs4. STPR;s share residues with strongly similar lipophilic properties at
residue position 5.50 (L>°, I>%°, I>%9, V330 and I°*°, respectively). F>#’ and F®*? are fully

conserved in STPR;.

The last observed conformation will be referred to as “binding mode ECL"” (BM ECL). BM ECL
shows lipophilic contacts between compound 6’ alkyl moiety and ECL2 residues
Y198/186/192/2001185 g \/194/182/198/196/185 (ST PR, 5, respectively, Figure 31). This leads to a “bent” of
the flexible alkyl moiety adjacent to the phenyl moiety of compound 6. BM ECL has been
only observed in S1PR,, S1PRs, and marginally in S1PR;. Therefore, further analysis will focus
on S1PR; and S1PRs. The BM ECL sub-pocket is fully conserved between S1PR; and S1PRs,
consisting of F333, Y539, V540 | 655 Y18 and V'8, The residues F333, Y539, Y198/186/192/200/185 ' gn(
\/194/182/198/196/185 (1 PR, 5, respectively) are fully conserved between subtypes (Figure 22). S1PR;
and S1PRs express V>4° while the other subtypes express the bulkier amino acid I°*°. The
residue at BWN 5.40 is surrounded during the unbound ligand state by the other residues of
the BM ECL sub-pocket. To enable ligand binding, the residue 5.40 needs to unbind from
the energetically favorable lipophilic environment opening up the sub-pocket. The larger
lipophilic contact area of the side chain of I>*° compared to V>#° within the sub-pockets
lipophilic environment could explain why BM ECL states are only observed in S1PR, and

S1PRs.

4.1.6. Binding Mode Occurrences in Simulations of Compound 6-S1PR;.s

Complexes

To quantify the total occurrence of each binding mode while excluding transitional states
between each binding mode a set of rules have been established: BM1, BM2, and BM ECL
are determined by lipophilic contacts formed by the alkyl moiety of compound 6 to specific
residues of each sub-pocket detected by Dynophore. The comparability between subtypes
is ensured by selecting residue positions between subtypes based on the same BWN. To be
classified as a BM1 conformation a lipophilic contact has to be established to either C>4
and/or T>* for STPR; (S1PR, V>#3/V344 STPR3 C>43/I544, STPRs C43/L>44, STPRs C>43/V>44). BM2
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classification requires a lipophilic contact to V34° for STPR; (S1PR; V34°, STPR; T340, STPR, T340,
S1PRs V349), A lipophilic contact to Y'® for STPR; (STPR; Y™, S1PR; Y2, STPR, Y2%°, S1PR;s Y'¥)
determines the conformation as BM ECL. Transitional conformations of BM1, BM2, and BM
ECL are excluded from the total occurrence if lipophilic contacts are formed simultaneously

to the specified key residues of any other binding mode.

BM1 and BM2 are found consistently during MD simulations of all STPR subtypes, while BM
ECL conformations are only formed by STPR; and S1PR;s (Table 5). S1PR; exhibits with 67.9%
the highest total BM1 occurrence, followed by S1PR, with 46.9%, S1PR, with 41.4%, ST1PRs
with 39.1%, and S1PR; with 22.0%. The BM1 occurrence relation between subtypes S1PR;,
S1PRs, S1PR4, and S1PRs is correlated to the measured ECso/Emax Values of compound 6 (ECso
S1PR;-S1PRs in nM: 7.9, 18, 630, 160, 17; Enax based on 100% S1P for STPR;s: 0.91, 0.95, 0.21,
0.87, 0.66 [216]). This could be explained with the assumption that BM1 represents an
inactive conformation backed by four arguments: (I) BM1 resembles the binding mode of
MLO56 co-crystallized with S1PR; (PDB 3V2Y), () MLO56 is an antagonist, (Ill) the crystal
structure of S1PR; represents an inactive receptor state, and therefore (IV) the homology

models also represent an inactive state.
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Figure 31. Representative S1PRs Dynophores representing three binding modes
observed during MD simulations of S1PR;.s. Binding Mode 1 occurrence is determined via
lipophilic contacts to STPRs C>#43/V>4* (STPR; C>43/T>44, STPR, V>43/V>44, STPR; C343/1>44, S1PR,4
C>43/L>4), Binding Mode 2 via contacts to STPRs V4% (S1PR; V4%, STPR; V34°, S1PR; T*4°, STPR,4
T*4%) and Binding Mode ECL via contacts to STPRs Y8 (S1PR; Y'*8, STPR, Y™, S1PR; Y'2, STPR,
Y2%), HBA - hydrogen bond acceptor, HBD - hydrogen bond donor, H - lipophilic contact,
NI - negative ionizable feature, Pl - positive ionizable feature, yellow cloud - lipophilic
contact of binding mode, grey cloud - lipophilic contact of other binding mode, blue surface
- hydrophilic environment, yellow surface - lipophilic environment, Black residue names -

Residue contact which determined the binding modes.

While BM1 represents the known inactive conformation of compound 6, the implication of
the newly observed BM2 conformation of compound 6 is not established yet. The highest
BM2 occurrence exhibits compound 6 in STPR; with 36.3%, followed by STPR, with 23.1%,
S1PR; with 18.9%, S1PRs with 15.2%, and S1PRs with 4.3%. The BM2 occurrences of S1PR;,
S1PRs, and S1PR, are inversely correlated with the measured activity of compound 6.
Compound 6 in complex with STPRs shows a low total occurrence of BM2 even though
compound 6 has similar ECs, values for STPR;and S1PRs (18 nM and 17 nM, respectively).
Moreover, BM2 occurrences of STPR4 are higher than S1PR;, which does not support the
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measured activity of compound 6 (18 nM and 160 nM, respectively). A closer look at the
complex conformations with simultaneously occurring key residue interactions of BM1
(V>4/\>4) and BM2 (V%) for S1PR, revealed that in STPR, compound 6 alkyl moiety
preferably establishes lipophilic contacts with V># instead of V>#4, due to BWN position 5.43
protruding farther into the lipophilic sub pocket of BM1. This results in conformations with
shared key residue interactions of BM1 and BM2 (5.7%) leading to no categorization to any
of the two binding modes. This phenomenon is unique to STPR,, which is the only subtype
expressing V>* instead of the less lipophilic C>** and could explain the difference in BM2
occurrences between S1PR, and S1PR.. Moreover, the additional consideration of S1PR; and
S1PRs exclusive BM ECL occurrences (2.1 and 16.9%, respectively) as another possible active
conformation of compound 6 could explain the difference of S1PR, and S1PRs BM2
occurrences compared to higher STPRsBM2 occurrences. This leads to a better alignment of

the presented in silico data with the experimental data.

Table 5. Occurrence of distinct compound 6 binding modes during MD simulations in

percent.
Binding Mode 1 Binding Mode 2 Binding Mode ECL
S1PR; 22.0% 36.3% 0.2%
S1PR; 46.9% 18.9% 2.1%
S1PR; 67.9% 15.2% 0.0%
S1PR, 41.4% 23.1% 0.0%
S1PRs 39.1% 4.3% 16.9%

ECL - Extracellular Loop

55



Results

4.1.7. Markov Chain Models Elucidate S1PR Binding Mode Occurrences of
Compound 6

To explore the sequential relation between BM1, BM2 and BM ECL for S1PR:.s a stochastic
model based on discrete-time Markov chains has been chosen. The subtypes initial data set
consists of multiple sequences of MD simulation frames labeled with BM1, BM2, or BM ECL
(binding mode definitions are described in chapter 4.1.6, page 52). If frames do not satisfy
any of the three binding modes classification rules they are labeled as “Transitional Binding
Mode” (T-BM). The T-BM can be defined as the “negative space” between BM1, BM2, and BM
ECL conformations. One key component of Markov chains is the Markov property, which
states that the probability of the next state is only dependent on the current state. Therefore,
the state transition probability from e.g., BM1 to BM2 is calculated by dividing the number
of observed BM1 to BM2 transitions by the total number of BM1 occurrences. All observed
state transitions with corresponding probabilities are summarized in state transition

diagrams for each subtype. The combined transition probability of one state is always 100%.

The state transition diagram of S1PR; reveals neglectable (<0.1%) inter-state transition
probabilities between BM1, BM2, and BM ECL (Figure 32). Probabilities for recurrence of the
same state are the highest for BM2 (90.8%) followed by BM1 (85.5%) and BM ECL (72.4%).
Consequently, BM ECL has the highest probability to transition to T-BM followed by BM1
and BM2 (27.6%, 14.5%, and 9.2%, respectively). The transition probability from T-BM to
BM2, BM1, or BM ECL (8.1%, 7.7%, and 0.1%, respectively) shows the same trend as the
probabilities for recurring states. These results explain the binding mode occurrences of
BM1, BM2, and BM ECL (22.0%, 36.3%, and 0.2%). Due to neglectable transition probabilities
to BM ECL and high transition probabilities from BM ECL, the total BM ECL occurrence can
be interpreted as neglectable in STPR;. High recurrence and transition probabilities to BM2

lead to the highest occurrence between the three binding modes.
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State Transition Probability
X% from BM1 to BM2
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S1PR,

Figure 32. Markov Chain State Transition Diagram of S1PR;. Based on transition
probabilities from Appendix Table 3. Occurrences for each binding mode are shown in
percent (white). BM1 - Binding Mode 1, BM2 - Binding Mode 2, BM ECL - Binding Mode

Extracellular Loop, Transitional BM - Transitional Binding Mode

The BM1 to BM2 or BM ECL inter-state transition probabilities of STPR, range between 0.3%
and 9.1% (Figure 33), which are the highest among all subtypes. The reason for this is the
BM1 categorization of S1PR, frames based on mostly V>** instead of 5.44 for all other
subtypes. The lipophilic residue V># is found only in STRP, (C>*2 for other subtypes) leading
to interactions with BM2 or BM ECL key residues simultaneously with BM1". This results in
direct transitions between the binding modes. Recurrence probabilities are the highest for
BM1 followed by BM2 and BM ECL (80.9%, 62.1%, and 41.2%, respectively). Binding mode
transition probabilities to T-BM are complementary to the recurrence probabilities with BM
ECL showing the highest followed by BM2 and BM1 (53.6%, 28.8%, and 15.0%, respectively).
Interestingly, the transition probabilities from T-BM to BM1 are higher compared versa
(22.2% vs. 15.0%), while T-BM transition probabilities to BM2 and BM ECL are lower than
versa (16.6% vs. 28.8% and 3.5% vs. 53.6%, respectively). These results are in line with the

highest occurrences is BM1 in STPR..
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State Transition Probability
X% from BM1 to BM2

State Transition Probability
X% from BM1 to BM1

S1PR,

Figure 33. Markov Chain State Transition Diagram of S1PR.. Based on transition
probabilities from Appendix Table 4. Occurrences for each binding mode are shown in
percent (white). BM1 - Binding Mode 1, BM2 - Binding Mode 2, BM ECL - Binding Mode

Extracellular Loop, Transitional BM - Transitional Binding Mode

S1PRs does not form any BM ECL conformations, therefore no transition probabilities from
or to BM ECL exist (Figure 34). Inter-state transition probabilities from BM1 to BM2 or versa
are neglectable (0.1% and 0.5%, respectively). Even though the recurring state transition
probabilities of BM1 are only slightly higher than BM2 (95.7% and 91.3%, respectively) the
transition probability of T-BM to BM1 is more than double the transition probability of T-BM
to BM2 (17.0% and 7.3%, respectively). Together with higher transition probabilities from
BM2 to T-BM compared to BM1 to T-BM (8.2% and 4.2%, respectively), the presented data is
in line with S1PR; binding mode occurrences, which show that BM1 is more frequent with

67.9% than BM2 with 15.2%.
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State Transition Probability
X% from BM1 to BM2

State Transition Probability
X% from BM1 to BM1

S1PR,

Figure 34. Markov Chain State Transition Diagram of S1PRs. Based on transition
probabilities from Appendix Table 5. Occurrences for each binding mode are shown in
percent (white). BM1 - Binding Mode 1, BM2 - Binding Mode 2, BM ECL - Binding Mode

Extracellular Loop, Transitional BM - Transitional Binding Mode

S1PR. expresses low neglectable inter-state transition probabilities between BM1 and BM2
(0.3% and 0.6%, respectively, Figure 35). Furthermore, no BM ECL conformations have been
observed. Recurring state probabilities are higher for BM1 compared to BM2 (87.3% vs.
81.4%). Transition probabilities to T-BM are therefore higher from BM2 compared to BM1
(18.0% vs. 12.4%). Adding the higher T-BM to BM1 probability compared to BM2’, the overall
probability for BM1 is higher than BM2, which is also reflected by the occurrences.
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State Transition Probability
X% from BM1 to BM2

State Transition Probability
X% from BM1 to BM1

S1PR,

Figure 35. Markov Chain State Transition Diagram of S1PR,;. Based on transition
probabilities from Appendix Table 6. Occurrences for each binding mode are shown in
percent (white). BM1 - Binding Mode 1, BM2 - Binding Mode 2, BM ECL - Binding Mode

Extracellular Loop, Transitional BM - Transitional Binding Mode

Lastly, in STPRs all binding modes are observed with low inter-state transition probabilities
between BM1, BM2, and BM ECL (<0.1% - 1.4%, Figure 36). Recurring state transition
probabilities are the highest for BM ECL followed by BM1 and BM2 (97.7%, 79.7%, and 64.9%,
respectively). Consequential, the transition probabilities to T-BM are the highest from BM2
followed by BM1 and BM ECL (33.7%, 20.1%, and 2.2%, respectively). Interestingly, BM ECL
has a total occurrence during MD simulations of 16.9%. Even though only low transition
probabilities to BM ECL are observed, a very high recurring state transition probability
suggests very stable BM ECL conformations. BM2 on the other hand has low recurring
transition probabilities and high transition probabilities to T-BM, which is reflected by the

low total BM2 occurrence rate of 4.3%.
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State Transition Probability
X% from BM1 to BM2

State Transition Probability
X% from BM1 to BM1

S1PR;

Figure 36. Markov Chain State Transition Diagram of S1PRs. Based on transition
probabilities from Appendix Table 7. Occurrences for each binding mode are shown in
percent (white). BM1 - Binding Mode 1, BM2 - Binding Mode 2, BM ECL - Binding Mode

Extracellular Loop, Transitional BM - Transitional Binding Mode

In general, no S1PR subtype expresses inter-state transitions from BM2 to BM ECL. This can
be explained by the localization of BM ECL’s lipophilic sub-pocket near the extracellular
membrane part of the receptor, while BM2 is located in the core part of the receptor.
Therefore, transitions to BM ECL are only possible either with a low percentage from BM1 or
through T-BM. The Markov chain state transition diagrams of STPR; and S1PR; do not show
state transition probabilities to BM ECL, whereas ST1PR;, STPR,, and S1PRs express state
transitions to BM ECL. The state transition probabilities to BM ECL are comparably low
between S1PR; and S1PRs, but STPR; has a twelve times higher state transition probability
from BM ECL to T-BM. S1PR; expresses higher transition probabilities to BM ECL (3.8% in
total) but shows the lowest recurring state transition probability (41.2%) of all STPR:.s BM
states leading to only 2.1% BM ECL occurrences in MD simulations. The starting
conformation of all S1PR;s in complex with compound 6 is BM1 due to the initial docking
conformations with consecutive MD simulations. Based on this starting conformation we
can calculate the transition probability of the pathway sequence from BM1 to BM ECL with
61



Results

a recurring BM ECL state (BM1 - T-BM - BM ECL - BM ECL), which is the product of the
transition probabilities of said sequence. STPR; has a probability of 0.01%, S1PR, 0.22%, and
S1PRs 17.67%. This illustrates the much higher probability of S1PRs compared to S1PR; and
S1PR; to reach BM ECL from BM1 and maintain this state, explaining the different BM ECL
occurrences. The same method can be applied for sequences from BM1 to BM2 with a
recurring BM2 state (i: BM1 - T-BM - BM2 - BM2, ii: BM1 - BM2 - BM2) in which we can
compare all five subtypes with one another. S1PR; shows the highest combined probability
of 10.69% (i: 10.66%, ii: 0.03%) followed by S1PR, with 3.91% (i: 1.55%, ii: 2.36%), S1PRs with
1.43% (i 1.18%, ii: 0.25%), S1PRs with 0.49% (i: 0.48%, ii: 0.09%), and S1PR; with 0.41% (i:
0.28%, ii: 0.13%). Even though S1PRs shows higher BM2 occurrences than S1PR,, the state
transition probability of the BM1 to BM2 pathway sequences is higher for STPR; due to direct
transitions from BM1 to BM2. These results support the high potency of compound 6 in
S1PR..

4.1.8. Dynamic Binding Mode 1 Comparison between S1PR;s Subtypes
Reveals Subtype-specific Interaction Patterns of Compound 6 Alkyl

Moiety

The visual inspection of BM1 dynophores reveals in S1PR;s comparable dynamic polar
superfeatures and one lipophilic superfeature formed by the phenyl moiety of compound 6
(Figure 37). These results are in line with the discussed stable occurrences of dynamic
interactions in chapter 4.1.3. Major differences are found between the S1PR;s lipophilic
superfeature formed by the alkyl moiety of compound 6, revealing subtype-specific
spatiotemporal shapes of the dynamic interaction patterns. STPR; and S1PR; form lipophilic
superfeatures with spherical shapes. While lipophilic interaction in S1PRs is “bean” shaped,
S1PR,’s shape can be described as a “half-moon”. Finally, STPR4’ lipophilic superfeature is
“crescent moon” shaped from the site but shows a wide diameter circular form when turned
90° upwards. It can therefore be described as “plate” shaped. Due to the other S1PR
superfeatures exhibiting stable and dense spherical shapes, the subtype-specific patterns of
the alkyl moiety displayed can be directly correlated to the lipophilic binding pocket

differences between S1PR;.s. To uncover STPR subtype-specific residue interaction patterns
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of compound 6 during BM1 we analyzed occurring BM1 residue interaction clusters
(simultaneously occurring lipophilic contacts between the lipophilic tail and residues based

on calculated dynophore raw data).

S1PR, S1PR, S1PR, S1PR, S1PR,

NI
HBA

Figure 37. Binding mode 1 dynophores reveal distinct lipophilic superfeature shapes
between S1PR;s. HBA - hydrogen bond acceptor, HBD - hydrogen bond donor, H -
lipophilic contact, NI — negative ionizable feature, Pl — positive ionizable feature, Blue surface

- hydrophilic environment, Yellow surface - lipophilic environment.

Compound 6 alkyl moiety in complex with STPR; in BM1 mainly interacts with TM5 and TM6
residues T>44, F652, |65, F>47 T548 W®48 and L' (100.0%, 82.0%, 66.2%, 44.5%, 44.2%, 43.6%,
and 28.3%, respectively). Furthermore, minor interactions with TM3 residues F?3* and L3
are occurring (9.4% and 5.1%, respectively, Figure 38). The most frequent BM1 residue
interaction cluster consists of T>44, F>47, F&52, and L% occurring 14.3% of the total BM1 count
followed by the same cluster with an additional interaction to Wé*® occurring 6.7% of the
time. The third most occurring cluster consists of T>44, T>48, W58 and F5°2 (5.2% of total BM1
count). The highest occurring cluster which includes F?*3* also additionally consists of the

highest occurring clusters T>44, F>47, F552, and L%** (3.4% of total BM1 count), while the highest
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cluster including L33¢ consists of T>44 and T>4¢ (2.2% of total BM1 count). Interaction clusters
with T>%, F>47, F**2, and L°* as their core interactions with alternating additional residue

interactions occur 33.4% of total BM1 count.
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Figure 38. BM1 S1PR; residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 8. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of STPR; with colored residues. Green - 75% to 100%
occurrence, yellow - 50% to under 75% occurrence, red — 25% to under 50% occurrence,

grey — under 25% occurrence.

Compound 6 alkyl moiety in complex with STPR; in BM1 mainly interacts with TM3, TM4,
and TM5 residues V>3, L*%6, |>46 F>47 333 1530 and L3¢ (98.9%, 87.1%, 50.0%, 48.9%, 41.4%,
17.3%, and 14.8%, respectively). The most frequent BM1 residue interaction cluster consists
of L*3¢, V*43, and I°%¢ occurring 16.2% of the total BM1 count followed by the L**¢, V>4, and
F>47 cluster occurring 11.3% of the time. The third most occurring cluster consists also of L**¢,
V343, and F># with additional interactions to F*32 (10.2% of total BM1 count). The highest
occurring cluster which includes I°*° additionally consists of F*33, L6, V>43, and I>4¢ (3.5% of
total BM1 count), while the highest cluster which includes L3¢ consists of F>*3, L**¢, V>3, and
F>47 (3.7% of total BM1 count). Interaction clusters with L**, V>3, and 1% as their core

interactions with alternating additional residue interactions occur 46.0%. Interestingly, V>
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is the main interaction occurring during BM1, but 1.1% of total BM1 occurrence is via V>4

interactions and 1.2% of the time via V>* and V>#* interactions.
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Figure 39. BM1 S1PR: residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 8. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of S1PR,; with colored residues. Green — 75% to 100%
occurrence, yellow - 50% to under 75% occurrence, red - 25% to under 50% occurrence,

grey — under 25% occurrence.

Compound 6 alkyl moiety in complex with S1PR; in binding mode 1 mainly interacts with
TM5 and TM6 residue [°44, F6-°, F6-52, F>47 T348 540 | 636 and L%*' (100.0%, 66.5%, 66.2%, 40.5%,
28.6%, 21.2%, 12.5%, and 28.3%, respectively). Furthermore, interactions with TM3 residue
F333 is frequently occurring (21.5%, Figure 40). The most frequent BM1 residue interaction
cluster consists of F333, [54°, I>44 and F5** occurring 17.2% of the total BM1 count followed by
the interaction cluster I>#, T>48 F®32, and F®* occurring 11.4% of the time. The third most
occurring cluster consists of 14, F>#7, F&2, and F5** also occurring 11.4% of the total BM1
count. The highest occurring cluster which includes L5*¢ additionally consists of I>*4, F>%7, and
Fé52 (4.9% of total BM1 count), while the highest cluster which includes L®*" also consists of
[>44, F>47 and Fé>2 (3.2% of total BM1 count). Interaction clusters with F333, [>4, |>4* and Fé>° as
their core interactions with alternating additional residue interactions occur with 19.7%

frequency of total BM1 count.
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Figure 40. BM1 S1PR; residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 8. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of S1PR; with colored residues. Green - 75% to 100%
occurrence, yellow - 50% to under 75% occurrence, red — 25% to under 50% occurrence,

grey — under 25% occurrence.

Compound 6 alkyl moiety in complex with S1PR4 in binding mode 1 mainly interacts with
TM3, TM5, and TM6 residues L34, F>47, 5%, F652, F333 1540, | 336 and W58 (100.0%, 88.9%, 66.7%,
63.3%, 30.7%, 26.7%, 21.6, and 13.7%, respectively, Figure 41). The most frequent BM1
residue interaction cluster consists of L>#, F>%, F¢32, and L®** occurring 15.0% of total BM1
count followed by the F*33, L>#, F>%’, and F°*2 cluster occurring 7.5% of the time. The third
most occurring cluster consists of L>#4, F>#’, and F®*? (7.0% of total BM1 count). The highest
occurring cluster which includes interactions to L*3¢ additionally consists of F333, L6, V>43,
and I°4¢ (3.5% of total BM1 count), while the highest cluster to include W®“® consists of L>4,
F>47, and L% (1.9% of total BM1 count). Interaction clusters with L>#*, F>#’, and F®>? as their
core interactions with alternating additional residue interactions occur 56.7% of total BM1

count.
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Figure 41. BM1 S1PRs residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 8. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of S1PR, with colored residues. Green — 75% to 100%
occurrence, yellow - 50% to under 75% occurrence, red — 25% to under 50% occurrence,

grey — under 25% occurrence.

Compound 6 alkyl moiety in complex with STPRs in BM1 mainly interacts with TM3, TM5,
and TM6 residues V544, F>47, | 653, F652, F333 | 336 W48 and Y>3 (100.0%, 82.8%, 59.1%, 48.0%,
29.4%, 23.5%, 6.7%, and 6.1%, respectively, Figure 42). The most frequent BM1 residue
interaction cluster consists of V>4, F>#/, and L%* occurring 16.0% of the total BM1 count
followed by the same cluster with an additional interaction to F®*? occurring 15.0% of the
time. The third most occurring cluster consists of F>*3, V>44 F>47 and L5*° (6.5% of total BM1
count). The highest occurring cluster which includes interactions to L**° additionally consists
of V>4 (5.2% of total BM1 count), while the highest cluster to include W®*® consists of V>44,
F>47, and F®2 (1.3% of total BM1 count). Interactions with Y>3°, V>4, and F>#” also occur 1.3%
of the time. Interaction clusters with V>#, F>%, and L% as their core interactions with

alternating additional residue interactions occur 49.5% of total BM1 count.
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Figure 42. BM1 S1PRs residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 8. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of S1PRs with colored residues. Green - 75% to 100%
occurrence, yellow - 50% to under 75% occurrence, red - 25% to under 50% occurrence,

grey — under 25% occurrence.

Comparing all STPR:.s BM1 interaction patterns reveal STPR, BM1 with the most distinct set
of lipophilic residues, showing interactions to V>4, 146, and I>° exclusively observed in S1PR;
(Figure 43). Furthermore, interactions to residue L**¢ are found in more than 80% during BM1
occurrences in STPR, with minor interaction occurrences in S1PRs (under 5%). This is also
reflected by the main interaction cluster consisting of L**¢, V>43, and I>%¢ observed in STPR; as
shown in this chapter. The other subtypes reveal a comparable set of residues interacting
with the lipophilic tail of compound 6. This includes similar interaction occurrences to the
conserved residue F>2 as well as non-conserved residues for STPR;, S1PRs, STPR,;, and S1PRs
at BWN position 5.44 (T>44, >4, L>%, and V*>#, respectively) and 6.55 (L%, F®>>, L%, and L,
respectively). Interactions to conserved residue F># are made for S1PR;.; with around 40%
but more than 80% for S1PRs and S1PRs, while interactions to BWN positions 5.48, 6.48, and
6.51 are mainly observed in STPR;. Interactions to position 5.40 are only found in STPR;,

S1PRs and S1PR,; due to the substitution of V>4° with I1°4°in STPR, and S1PRs.
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Figure 43. Occurrence comparison of lipophilic residue interactions in percent for

binding mode 1 of S1PR;.s. The corresponding data can be found in Appendix Table 8.

4.1.9. Dynamic Binding Mode 2 Comparison between S1PR;s Subtypes
Reveal Subtype-specific Interaction Patterns of Compound 6 Alkyl

Moiety

The visual inspection of BM2 dynophores also reveals ST1PR;.s comparable dynamic polar
superfeatures and one lipophilic superfeature formed by the phenyl moiety of compound 6
(Figure 44) as in BM1. These results are in line with the discussed stable occurrences of
dynamic interactions in chapter 4.1.3, page 47. The differences found between the S1PR;.s
lipophilic superfeature formed by the alkyl moiety of compound 6 reveal subtype-specific
dynamic interaction patterns. Comparable to S1PR:;s BM1's lipophilic feature, BM2's
lipophilic superfeatures spatiotemporal shapes are more alike. STPR; and ST1PR; form dense
lipophilic superfeatures with spherical shapes. Even though S1PR; also shows a spherical
superfeature, it shows a less dense distribution in comparison to S1PR; and S1PRs. S1PRs's
lipophilic interaction is oval-shaped. Finally, S1PR.’s lipophilic superfeature is triangular
shaped. Due to the other S1PR superfeatures exhibiting durable and frequent spherical
shapes over the course of the simulations, the subtype-specific patterns of the alkyl moiety
displayed can be directly correlated to the lipophilic BM2 differences between S1PR:s. We

have also analyzed the simultaneously occurring lipophilic contacts of BM2 between the
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lipophilic tail of compound 6 and the S1PR;.s residues to reveal subtype-specific interaction

patterns based on the calculated dynophore raw data.

Figure 44. Binding mode 2 dynophores reveal distinct lipophilic feature shapes between
S1PR.s. HBA — hydrogen bond acceptor, HBD - hydrogen bond donor, H - lipophilic contact,
NI - negative ionizable feature, Pl — positive ionizable feature, Blue surface - hydrophilic

environment, Yellow surface - lipophilic environment.

Compound 6 alkyl moiety in complex with STPR; in BM2 mainly interacts with TM3, TM5,
and TM6 residues V340, F>47 652 648 | 336 | 551 and L%*' (100.0%, 91.2%, 84.2%, 71.9%, 42.7%,
24.4%, and 11.6%, respectively, Figure 45). The most frequent BM2 residue interaction
cluster consists of L33, V340, F>47 W848 and F5>2 occurring 17.0% of total BM2 count followed
by the same cluster, but without interactions to L3¢, occurring 16.8% of the time. The third
most occurring cluster consists also of V340, F>47, | 551, Wé48 F652 (10.2% of total BM2 count).
The highest occurring cluster which includes L' additionally consists of V34°, F>47, Wé4¢ and
F552 (4.1% of total BM2 count). Interaction clusters with V34°, F>47, W48 and F5°2 as their core
interactions with alternating additional residue interactions which occur 54.6% of total BM2

count.
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Figure 45. BM2 S1PR; residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 9. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of S1PR; with colored residues. Green - 75% to 100%
occurrence, yellow - 50% to under 75% occurrence, red — 25% to under 50% occurrence,

grey — under 25% occurrence.

Compound 6 alkyl moiety in complex with STPR; in BM2 mainly interacts with TM3, TM4,
and TM5 residues V340, F>47, 546, | 531 | 336 | 436|335 F341 and F3*3 (100.0%, 52.5%, 37.5%, 35.4%,
34.4%, 29.7%, 12.1%, 12.0%, and 6.3%, respectively). Moreover, interactions with TM6
residues F&44, 164>, F&*2, and W8 occur (23.5%, 22.5%, 15.0%, and 11.4%, respectively, Figure
46). The most frequent BM2 residue interaction cluster consists of V34, L**, and I>*¢ occurring
8.3% of the total BM2 count followed by the same cluster with an additional interaction to
F>47 occurring 4.7% of the time. The third most occurring cluster consists of V34° and L>'
(4.6% of total BM2 count). Residue interaction clusters containing TM6 residue interactions
are under 2.5% of the total BM2 count each. Interaction clusters with V34°, L**¢, and [>*¢ as
their core interactions with alternating additional residue interactions occur 28.1% of total

BM2 count.
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Figure 46. BM2 S1PR; residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 9. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of S1PR; with colored residues. Green - 75% to 100%
occurrence, yellow - 50% to under 75% occurrence, red — 25% to under 50% occurrence,

grey — under 25% occurrence.

Compound 6 alkyl moiety in complex with STPR; in BM2 mainly interacts with TM3, TM5,
and TM6 residues T340, F>47, |31 F652, \W648 546 and L33¢ (100.0%, 80.5%, 58.8%, 57.1%, 36.1%,
17.0%, and 11.6%, respectively). Furthermore, interactions with TM4 residue L**° have been
observed (19.2%, Figure 47). The most frequent BM2 residue interaction cluster consists of
T340, F>47, L>*1, We48, and F%*2 occurring 21.3% of total BM2 count followed by the same cluster,
but without interactions to W%, occurring 21.2% of the time. The third most occurring
cluster consists of lipophilic interactions to V3*#° and F>#’ (8.4% of total BM2 count). The
highest occurring cluster which includes 1°4¢ additionally consists of V*%° and L**¢ (6.1% of
total BM2 count), while the largest cluster including L33¢ also consists of T340, F547, | 531 \W648,
and F®>? (3.4% of total BM2 count). Interaction clusters with T34, F>47, L>*', and F®°2 as their

core interactions with alternating additional residue interactions occur 45.9% of total BM2

occurrences.
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Figure 47. BM2 S1PR; residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 9. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of S1PR; with colored residues. Green - 75% to 100%
occurrence, yellow - 50% to under 75% occurrence, red — 25% to under 50% occurrence,

grey — under 25% occurrence.

Compound 6 alkyl moiety in complex with STPRs in BM2 mainly interacts with TM3, TM5,
and TM6 residues T34, F>47, 336, A337 [>46 F6-32 W68 [ 631 [ ¢> and F*4' (100.0%, 82.5%, 41.4%,
36.6%, 33.0%, 27.4%, 18.3%, 16.6%, 8.8%, 7.4%, 5.3%, respectively). Moreover, minor
interactions with TM4 residue L**¢ occur (7.4%, Figure 48). The most frequent BM2 residue
interaction cluster consists of A>%, T>4°, I>4¢ and F>#’ occurring 12.1% of the total BM2 count
followed by the cluster with interaction to L33¢, T>%°, and F>*’ occurring 11.3% of the time.
The third most occurring cluster consists of T>%, F>#’, and F®>? (5.1% of total BM2 count).
Residue interaction clusters containing TM4 L**¢ residue interactions also consist of A>37, T340,
and I°%¢ (3.4% total BM2 count). The biggest cluster with Wé“¢is accompanied by interactions
with T*4% and F># occurring 3.6% percent of total BM2 count, while the interaction cluster
with L®'" occurs with interactions to L*3¢, T*%°, and F>*’ 4.0% of the time. The highest
occurrence of interaction clusters with L% or F3#! is around 2%. Interactions with A337, T34,
1>4¢, and F>47 as their core interactions with alternating additional residue interactions occur

16.5% of total BM2 count.
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Figure 48. BM2 S1PR; residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 9. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of S1PR, with colored residues. Green — 75% to 100%
occurrence, yellow - 50% to under 75% occurrence, red - 25% to under 50% occurrence,

grey — under 25% occurrence.

Compound 6 alkyl moiety in complex with STPRs in BM2 mainly interacts with TM3, TM5,
and TM6 residues V340, T337 F347 A546 1550 \We48 and F532 (100.0%, 91.5%, 59.9%, 52.4%, 51.5%,
32.0%, and 19.4%, respectively). Furthermore, interactions with TM4 residue L**® have been
observed (32.3%, Figure 49). The most frequent BM2 residue interaction cluster consists of
T337, V340, 436, A346 and I°*° occurring 24.8% of total BM2 count followed by the same cluster,
but without interactions to L**, occurring 12.2% of the time. The third most occurring
cluster consists of lipophilic interactions to T327, V340, F>47 W848 and F®>2 (11.2% of total BM2
count). Interaction clusters with T337, V34, A>% and |>°° as their core interactions with

alternating additional residue interactions occur 50.5% of total BM2 occurrences.
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Figure 49. BM2 S1PRs residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 9. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of S1PRs with colored residues. Green - 75% to 100%
occurrence, yellow - 50% to under 75% occurrence, red — 25% to under 50% occurrence,

grey — under 25% occurrence.

By comparing the different BM2 interaction patterns of S1PR;s we can deduce that S1PR,
shows the most distinct lipophilic residue contacts (Figure 50), which interestingly was also
the case for BM1 (chapter 4.1.8, Figure 43). Compound 6 lipophilic tail interactions in S1PR.
BM2 express exclusive interactions to F>*3, Fé44 and 1°4°. The residues F¢** and 1°** are located
farther to the intracellular domain of the receptor than other interactions observed with TM6
residues, leading to BM2 conformations of compound 6 in STPR; reaching the deepest into
the receptor core compared to other subtypes. On the other hand, interaction occurrences
to residues, besides BWN position 3.40, which is used to define BM2 conformations, are only
observed at around 50% maximal during BM2 conformations in S1PR,. Moreover, the
number of different residue interactions over 5% during BM2 is the highest for S1PR, with
13 different residues, leading to diverse interaction clusters with the biggest combined
cluster amounting to 28.1% (core interactions to V34, L**¢, and I°#¢). This is also reflected in
the lipophilic superfeature cloud of ST1PR, showing the largest lipophilic point distribution.
S1PR, follows with 11 different residue interactions during BM2, but without expressing

exclusive interactions as seen in STPR,. STPR, shows an even lower recurrence of interaction
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clusters amounting to only 16.5% (core interactions to A*¥, T>4°, 146, and F>#’). The other
subtypes S1PR;, S1PRs;, and S1PRs show a smaller and more comparable set of interactions
with recurring clusters ranging between 45.9% and 54.6%. The most comparable interaction
poses the conserved residue F>*” between all subtypes. F>#’ is located directly between BM1
and BM2, therefore acting as a common denominator between the two binding modes.
Interestingly, interactions to conserved residue Wé# and F®*? are observed the most for

S1PR; followed by S1PRs.
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Figure 50. Occurrence of lipophilic residue interactions in percent for BM2 of S1PR:..

Corresponding data can be found in Appendix Table 9.

4.1.10. Dynamic Binding Mode ECL Comparison between S1PR; and S1PRs

in Complex with Compound 6

The visual inspection of BM ECL dynophores reveals in S1PR; and S1PRs comparable dynamic
polar superfeatures and one lipophilic superfeature formed by the phenyl moiety of
compound 6 (Figure 51). These results are in line with the discussed frequent occurrences
of dynamic interactions in chapter 4.1.3, page 47. Major differences are the aromatic
superfeatures only observed between the phenyl and imidazole moiety and F’3° of S1PR..

Surprisingly, the formed lipophilic interaction by the alkyl moiety of compound 6 reveals
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subtype-specific dynamic interaction patterns, even though the binding pocket of BM ECL
is fully conserved between S1PR, and S1PRs. STPR, forms a lipophilic superfeature with a
“bean” shape from the side. When turned 90° upwards the superfeature shows a circular

shape with a wide diameter. S1PRs on the other hand forms a “banana” shape.

S1PR, STPRs

Figure 51. Binding mode ECL dynophores reveal distinct lipophilic feature shapes
between S1PR; and ST1PRs. Aromatic interactions are only observed for S1PR, shown in blue
dots at the imidazole and phenyl moiety. AR — aromatic interaction, HBA — hydrogen bond
acceptor, HBD - hydrogen bond donor, H - lipophilic contact, NI - negative ionizable
feature, Pl — positive ionizable feature, Blue surface - hydrophilic environment, Yellow

surface - lipophilic environment.

Compound 6 alkyl moiety in complex with STPR; in BM ECL mainly interacts with TM3, ECL2,
and TM5 residues Y8, L8, F333, Y>3° and A332 (100.0%, 95.8%, 59.8%, 38.2%, and 8.2%,
respectively). Moreover, minor interactions with TM6 residue L®>> occur 16.3% of the total
BM ECL occurrence count (Figure 52). The most frequent BM ECL residue interaction cluster
consists of L'®, Y8 F333 and Y>3 occurring 25.8% of the total BM ECL count followed by the

same cluster without interactions to Y**° occurring 22.9% of the time. The third most
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occurring cluster consists of L'® and Y'® (16.0% of total BM ECL count). The most observed
residue interaction cluster containing TM6 residue L% or A*3? also consists of L'®® and Y8
occurring 9.8% with L% and 4.2% with A33? of the total BM ECL count. Interaction clusters
with L', Y'®, and F*3* as their core interactions with alternating additional residue

interactions occur 55.6% of the total BM ECL count.
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Figure 52. BM ECL S1PR; residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 10. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of S1PR; with colored residues. Green — 75% to 100%
occurrence, yellow - 50% to under 75% occurrence, red — 25% to under 50% occurrence,

grey — under 25% occurrence.

Compound 6 alkyl moiety in complex with STPRs in BM ECL mainly interacts TM3, ECL2, and
TM5 residues Y89, Y39 F333 /340 | 186 and V'# (100.0%, 92.8%, 69.8%, 56.7%, 24.4%, and 8.3%,
respectively). Furthermore, interactions with TM6 residue L%>> have been observed (23.0%,
Figure 53). The most frequent BM ECL residue interaction cluster consists of F*33, Y'®, and
Y32 occurring 38.1% of the total BM ECL count followed by the same cluster including
interactions with V*°, occurring 20.8% of the time. The third most occurring cluster consists

of lipophilic interactions to F333, Y8, Y>3 and V>4 (5.3% of total BM ECL count). Interaction

78



Results

clusters with F323, Y'® and Y>*° as their core interactions with alternating additional residue

interactions occur 68.9% of total BM ECL occurrences.
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Figure 53. BM ECL S1PRs residue interaction occurrence of compound 6’ lipophilic tail.
Interaction occurrences under 5% have not been considered. The corresponding data can
be found in Appendix Table 10. Left: Barplot of residue interactions in percent. Right:
Snakeplot derived from gpcrdb.com of S1PR; with colored residues. Green — 75% to 100%
occurrence, yellow — 50% to under 75% occurrence, red - 25% to under 50% occurrence,

grey — under 25% occurrence.

Comparisons between STPR; and S1PRs compound 6 BM ECL conformations reveal for both
subtypes exclusive residue interactions. While S1PR; expresses minor exclusive interactions
to A*2, S1PRs exclusively interacts with V'® and V*#° (Figure 54). Major interaction
occurrences between both subtypes are also observed for L8/ (S1PR, with 95.8% and
S1PRs with 23.0% of total BM ECL count, respectively) and Y>3 (S1PR, with 38.2% and S1PRs
with 92.8% of total BM ECL count). Even though the residues of the lipophilic sub pocket of
BM ECL are fully conserved between S1PR, and S1PRs we observed major differences in
shaped lipophilic superfeatures and different interaction patterns. This might be due to

additional aromatic interactions of compound 6’ phenyl moiety with residue F’3°of S1PR..
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Figure 54. Occurrence of lipophilic residue interactions in percent for BM3 of S1PR; and

S1PRs. Corresponding data can be found in Appendix Table 10.

4.1.11. Comparison Between Experimentally Solved Binding Mode of
Ozanimod/Siponimod and BM1/BM2 of Pan-agonist 6 Lipophilic

Interactions

During the time of our investigation new cryo-EM structures of active state STPR; in complex
with the superagonists Ozanimod and Siponimod as well as STPRs in complex with
Siponimod has been published (PDB 7EW0, 7EVY, and 7EW1, respectively) [219]. In this
chapter we want to evaluate the lipophilic binding pockets in STPR; and S1PRs, compare
them to our binding modes 1 and 2, and explain the selectivity of Ozanimod and Siponimod

based on our models and observations.

S1PR; in complex with Ozanimod shows lipophilic interactions of the isopropyl moiety with
/340, F341 456 346 347 | 350 and We4® (Figure 55 left, L**¢ for the sake of clarity not shown).
The nitrile moiety is interacting with T>** through a hydrogen bond. Siponimod shows
similar interactions of the cyclohexyl moiety with S1PR; as Ozanimod's isopropyl moiety
(V340 F341 436 546 F347 | 550 and W, Figure 55 middle, L**¢ for the sake of clarity not

shown). The trifluoromethyl moiety shows lipophilic contacts to the side chains of T>4, F>47,
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Fé52, and L5**. Interestingly, T°4* adopts a different side chain rotamer over the chil angle
compared to the Ozanimod complex leading to different positions of the hydroxyl and
methyl group to accommodate the different moieties of Ozanimod and Siponimod in S1PR.
In S1PR;s Siponimods cyclohexyl moiety shows lipophilic contacts to T3/, V340, L#°¢, A>46, F>47,
1>3°, and W58 and the trifluoromethyl moiety to V>#4, F>#7, F%2, and L®> (Figure 55 right, L**¢

for the sake of clarity not shown).
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Figure 55. STPR; in complex with Ozanimod and S1PR; s in complex with Siponimod (PDB
7EWO0, 7EVY, and 7EW1 [219], respectively). Yellow surface color - lipophilic, Blue surface
color - hydrophilic

The superposition of representative frames for BM1 and BM2 (chapter 4.1.5) taken from our
MD simulations of pan agonist 6 in complex with S1PR; with the structurally solved
Ozanimod in complex with S1PR; revealed that the nitrile moiety occupies the cavity of BM1
occupied by the lipophilic tail of compound 6 while the isopropyl moiety occupies the same
cavity compound 6 lipophilic tail occupies in BM2 (Figure 56A). The lipophilic tail of pan-
agonist 6 perfectly aligns in each binding mode with the corresponding moiety of
Ozanimod in complex with S1PR;. Superposing the BM1 and BM2 conformations of pan-
agonist 6 in STPR; with the structurally solved Siponimod in complex with S1PR; also
revealed matching binding pocket accommodations of the trifluoromethyl group with pan-
agonist 6 lipophilic tail BM1 conformation and the cyclohexyl moiety with pan agonist 6
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BM2 conformation (Figure 56B). The most frequent compound 6 BM1 lipophilic contacts in
STPR; (T4, F>%, F532, and L%, chapter 4.1.8) are also observed for the trifluoromethyl group
of Siponimod in complex with S1PR;, while the nitrile moiety is surrounded by these residues
in S1PR;. Compound 6 BM2's most frequent lipophilic interactions in STPR; are V34, F>47,
We48 and F5>2 (chapter 4.1.9). Due to the rigidity of Ozanimod and Siponimod as well as the
large isopropyl moiety or cyclohexyl moiety compared to the n-alkyl chain in 6, we observe

no lipophilic contacts of both moieties to Fé*2 but with additional contacts to L**¢ and V>4,

We also observed compound 6 BM1 and BM2 alkyl moiety conformations for Siponimod
lipophilic moieties (trifluoromethyl and cyclohexyl, respectively) in complex with S1PRs as
observed for 6 in complex with STPRs (Figure 56C). For 6’ BM1 in complex with S1PRs V>44,
F>47, Fé32, and L%* are the most frequent interactions (chapter 4.1.8), which are also observed
for the trifluoromethyl moiety of Siponimod in complex with STPRs. Compound 6’ BM2 most
recurring interactions in STPRs consist of T>%7, V340, A>% F>47 and I>*° with less frequent
interactions to L***and W8, These are also observed for the cyclohexyl moiety of Siponimod

in complex with S1PRs.
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Figure 56. Superpositions of representative frames for BM1 and BM2 of pan agonist 6 in
complex with S1PR; (A and B, respectively) or S1PRs (C) with structurally solved S1PR; in
complex with Ozanimod (A) and S1PR;s in complex with Siponimod (B and C,
respectively). Residues used to define BM1 (BWN 5.44) and BM2 (BWN 3.40) are shown.
White atoms - structurally solved ligand and protein, Green atoms — BM1 of pan agonist 6,
Dark grey atoms — BM2 of pan agonist 6, Yellow surface color - lipophilic, Blue surface color

- hydrophilic

Our identification and definition of BM1 and BM2 from MD simulations (chapter 4.1.6) is
therefore in line with the structurally solved binding of Ozanimod to S1PR; and Siponimod
to STPR; 5. From that, we can conclude that the higher potency of Ozanimod to S1PR; against
S1PRs (ECso 0.4Tnm and 11nm, respectively) comes from the hydrogen bond formed
between the hydroxyl group in T>**and the nitrile moiety, which is V>#*in STPRs. The residue
T>#4 or V>#* does not impact the binding of the trifluoromethyl moiety of Siponimod since
both can establish a lipophilic contact. Even though in S1PR; BM2 residue S$**7 is less
favorable for binding the lipophilic cyclohexyl moiety in comparison to S1PRs BM2 residue
T33%7, $*%7 is less bulky and enables more space in BM2. Therefore, Siponimod shows similar

potency to S1PR; and S1PRs (ECso 0.39nm and 0.38nm, respectively).

Neither Ozanimod nor Siponimod binds to S1PR,. This can be explained by following
selectivity determinants. First, STPR; expresses F7*° while the subtypes STPR; 45 express L’*°

and S1PR; I’*° (chapter 4.1.3,Figure 28). The larger residue located between the lipophilic
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and hydrophilic binding pockets prevents the large and rigid propoxybenznitrile moiety of
Ozanimod and cyclohexyltrifluoromethylphenyl of Siponimod from entering the lipophilic
binding pockets of BM1 and BM2. Furthermore, V*** in BM1 is less favorable for binding the
nitrile moiety of Ozanimod compared to S1PR; with T>#%, While V*>#* is expressed only in S1PR,
(vs STPR1 345 C>*%) and is favorable for binding the trifluoromethyl group of Siponimod, the
size of STPR, BM2 side chain I°%¢ in comparison to V*% S1PR; and A>#¢ S1PRs is less favorable
for the accommodation of the cyclohexyl moiety of Siponimod. We have also observed
interactions in S1PR, BM1 which are predominantly seen in BM2 (L**¢ and I>°), as well as
interaction partners in BM2 (F¢** and Fé**) only observed in STPR,, which are located closer
to the intracellular region. This might indicate a deeper location of BM1 and BM2 for ST1PR;

in comparison to the other subtypes.

Ozanimod and Siponimod also shows no potency at S1PRs. In STPR; BM1 Fé>> (vs STPR1 45
L®>%) might act like a lid to the binding pocket, which prevents the large and rigid
propoxybenznitrile moiety of Ozanimod and cyclohexyltrifluoromethylphenyl of Siponimod
from entering the lipophilic binding pockets of BM1 and BM2. Furthermore, the side chain
of STPR; BM1 I*##is larger than S1PR; T>#* and S1PRs V*#4, which is for both the nitrile moiety
of Ozanimod and trifluoromethyl moiety of Siponimod less favorable. The larger residue of
S1PRs I>%¢ from BM2 in comparison to V>4 S1PR; and A>#¢ S1PR; is also less favorable for the
accommodation of the cyclohexyl moiety of Siponimod. On the other hand, S1PR; G**7 (vs
S337,§3%, A3¥, and T3>* for STPR; .45, respectively) smaller size could allow binding, even

though no lipophilic contact would stabilize the lipophilic moiety.

Lastly, Ozanimod shows no potency to S1PR4, while Siponimod exhibits weak potency at
S1PR4 (ECs0 920 nM). S1PR, BM1 residue L>#* does not allow hydrogen bonding to the nitrile
moiety of Ozanimod compared to S1PR; T>#* and is larger than S1PRs V>4, This is also less
favorable for binding the trifluoromethyl moiety of Siponimod. For BM2 only S1PR; and
S1PRs show interactions to residue A** / T**” during BM2. Especially A**” with the small size
and possible lipophilic contact to the large cyclohexyl moiety of Siponimod is in favor of
binding of Siponimod. On the other hand, the larger I>*¢ in comparison to S1PR; V*4¢ and
S1PRs A% is less favorable to accommodate the large cyclohexyl moiety of Siponimod. In

conclusion, the stated points explain the weak potency of Siponimod to S1PR..
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4.2. Dihedral Angle Dynamics of Class A G Protein-coupled Receptor

Activation Hotspots

While the elucidation of S1PR subtype selectivity determinants is important for the rational
design of ligands for modulating disease relevant pathophysiological processes and to
reduce adverse effects triggered through off-targets, we want to also understand the
underlying mechanisms of general class A GPCR activation. The following chapters will show
how dihedral angles are involved in the class A GPCR activation process. Furthermore, we
present a fast and reliable method which uses dihedral angles as determinants to predict
the activation states of homology models (HM) and molecular dynamics (MD) simulations of

class A GPCRs utilized in structure-based drug design.

4.2.1. Structural Dataset Assessment & Curation

The underlying dataset used for machine learning models initially consists of all available
class A GPCR structures (as of 29.09.2021). In total 487 structural data points consisting of
384 crystal structures and 103 cryo-EM structures (Figure 57) has been collected from the
PDB [220]. 261 structures are defined as an inactive state, 188 as active, 37 as intermediate,
and 1 as undefined. These states are adopted from the GPCRdb [26, 221] and are based on
intracellular Ca distances of ternary structure complexes as active state references and
highly closed intracellular TM structures as references for inactive states. The structural
dataset spans 38 different GPCR families with 85 unique receptors. To evaluate the quality
of the structures five indicators have been extracted from the RCSB PDB database [222, 223]:
overall resolution, clashscore [224], average B factor of protein atoms [225], Rfree [226, 227],
and A Rfree/Rwork. While the resolution and clashscore were available for all structural data,
Rfree, A Rfree/Rwork, and average B factor were only found for crystal structures obtained
via x-ray diffraction (487, 487, 384, 384, and 256 structures, respectively). The initial outlier
evaluation was carried out with boxplots (Figure 58). Resolution-wise, we observed 24
outliers past the upper whisker (4.03 A) of the boxplot and five under the lower whisker of
1.82 A. Even though 3 A is generally defined as the minimum resolution to observe
secondary structures of the protein [228], the less flexible TM domains show higher

resolutions compared to the overall, intracellular, and extracellular resolutions [229].
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Therefore, 4 A has been chosen as the maximum resolution tolerated for our curated
datasets. The clashscore boxplot revealed 51 outliers above the upper whisker of 15.32, the
average B factor ten outliers above the upper whisker of 153.25, Rfree eight outliers above
the upper whisker of 0.34, and A Rfree/Rwork 26 outliers above the upper whisker of 0.06

and 24 outliers below the lower whisker of 0.01.
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Figure 57. Distribution of all structural GPCR data between receptor families. 487

structural data points in total (as of 29.09.2021).

All indicators showed a problematic analysis with boxplots due to the nature of the data

itself being either heavy skewed (asymmetric distribution), right-hand oriented (0 as natural
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lower limit, outliers only for high values), or showing long-tails in the data distribution. An
example of that is the identification of outliers below the lower whisker of the resolution
and A Rfree/Rwork, even though optimum values for the indicators are 0. Another example
is the long-tailed distribution of the clashscore. Shao et al. has addressed these problems in

2018 with a probability-density-ranking (PDR) approach to analyze PDB data outliers [230].
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Figure 58. Boxplots of different measures of structural data quality for all data. 487

structural data points in total (as of 29.09.2021).

Finally, our curated dataset used 4 A for resolution as defined from the boxplots and 5% PDR
boundaries for the clashscore (34.0), average B factor (87.105), Rfree (0.312), and A
Rfree/Rwork (0.076) to eliminate outliers as recommended by Shao et al. The 5% PDR
boundary datasets also only consist of data with active/inactive labels. The 5% PDR
boundary dataset included 324 structures with 242 crystal structures and 82 cryo-EM
structures. 176 structures are labeled as inactive, while 148 are labeled as active. These
structures span 33 GPCR families. In comparison to the boxplot of the full data set, the 5%
PDR boundary dataset fully eliminates upper outliers for the resolution, average B factor,

and Rfree values, 23 clashscore outliers, and 10 upper whiskers A Rfree/Rwork outliers. The
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different amount of structures between the 5% PDR boundary and full datasets (448)
consisting of active and inactive structures results in a more favorably balanced dataset
between active and inactive structures for the 5% PDR boundary dataset of around 1:1.2
active/inactive state ratio, while the full dataset shows a more imbalanced ratio around 1:1.4
(188 active and 260 inactive structures). The 5% PDR boundary dataset has been used for

the creation of all following machine learning models.

4.2.2. Dihedral Angles as Features for the Machine Learning Models

Features for the machine learning model consist of GPCR intercomparable ® (phi) and @
(psi) dihedral angles of the backbone (chapter 1.1.3) in the transmembrane domain. To
ensure comparability between each feature we aligned all structures from the 5% PDR
structural dataset (324 structures) based on the adjusted BWN numbering scheme of the
GPCRdb. Due to possible differences in length, insertions, or deletions between each GPCR
subtype the extracted dihedral angles of each feature can contain non-defined values. Initial
feature extraction resulted in 621 dihedral angle features. All features with more than 1%
undefined values were removed from the data set. Feature values with undefined values
were replaced with an average value of the corresponding feature leading to a total of 286

features (145 ® and 141 @ angle features) from 159 residues (Figure 59).
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Figure 59. Extracted dihedral angle residue positions (green). Left: Under 1% undefined
angle values are handled with the mean value of the corresponding feature resulting in 159
residue positions with 286 dihedral angle features. Right: Removal of every feature with

undefined values results in 94 residues positions with 141 dihedral angle features.

The removal of every feature containing an undefined value leads to a total of 141 features
(71 ® and 70 Y angle features) from 94 residues (nonan dataset). Handling the non-defined
values with a 1% threshold provides a larger coverage (Figure 59 left) of the TM domains in
comparison with the removal of every feature if non-defined values occur while maintaining

a high information density of the dataset provided by the structural data (1% nan dataset).

4.2.3. Model Building and Evaluation

1% nan dataset with variance-based feature reduction yielded the best model performances

For both the 1% nan dataset and nonan dataset, the number of features leads to very high
dimensionality. We, therefore, employed the following feature reduction methods: recursive
feature elimination with cross-validation (RFECV), random forest feature selection (RFSEL),

and variance-based statistical selection (ANOVA f-value) to reduce the model dimensionality
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and to remove features that do not contribute to the prediction accuracy between active
and inactive states. These are paired with three different machine learning algorithms with
optimized hyperparameter settings for each model (Figure 60): decision tree classifier (DTC),

support vector machine (SVM), and k-nearest neighbor (KNN).
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Figure 60. Feature reduction methods with optimized hyperparameter settings for the
nonan and 1% nan datasets. The X-axis states the dataset and resulting feature numbers in
brackets from the applied feature reduction methods. The Mathews correlation coefficient
(MCCQ) values range from -1 to 1 (1 being the perfect prediction score and 0 a random
prediction). DTC - decision tree classifier, SVM - support vector machine, KNN - k-nearest

neighbor

Both datasets have been split into a training and test set (80:20) with even distribution of
active and inactive state data. The initial RFECV and RFSEL models yielded a good prediction
performance measure of 0.65 to 0.81 MCC with features still ranging between 42 to 142.
Using a variance-based method (ANOVA f-value) to select the ten best features yielded with
the 1% nan dataset an MCC of 0.74 paired with SVM, 0.77 with KNN, and 0.81 with DTC. In
comparison with the nonan dataset, the 1% nan dataset using the ANOVA f-value for feature
selection performed better with the DTC model (MCC 0.68 and 0.81, respectively), the SVM
model (MCC 0.67 and 0.74, respectively), and the KNN model (MCC 0.70 and 0.77,

respectively). The ten features of the 1% nan dataset (with ANOVA f-value) consist of residue
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positions 1.56, 2.39, 4.51, 4.55, 6.44, 7.47,7.48,7.52,7.53, and 7.54 (Figure 61). Position 6.44
is part of the P>*°—24°-F¢4 motif and 7.52 — 7.53 is part of the N74°-P7>°-x—x-Y7>* motif both
highly conserved and important for activation of class A GPCRs (chapter 1.1.4) [42]. Due to
the introspective possibility and highest MCC, we further evaluated and analyzed the
ANOVA/DTC model of the 1% nan dataset.
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Figure 61. Feature positions of the models after feature selection through ANOVA f-
value of the 1% nan dataset. Positions are marked in green and numbered via the BWN

scheme. The shown structure is STPR; (PDB 3V2Y).

4.2.4. Decision Tree Model and Dihedral Angle Analysis

The ANOVA/DTC model of the 1% nan dataset performance is the highest with 0.81 MCC.
The training set accuracy is 91.52% * 5.71% and the test set accuracy is 90.77%, which
suggests that the model is not overfitting. Structure wise the DTC model has a depth of two
with one root decision node at the top branching into one successor decision node and one
terminal successor child node at depth one and two terminal successor child nodes (leaf

node) on depth two branching from the decision node (Figure 62A). The root decision node

91



Results

contains 136 inactive state structures and 123 active state structures. These are split based
on the feature value -69.98° O of residue 7.53. If the feature value of a given sample structure
in the root node is smaller or equal (-69.98°) it will be categorized in the second decision
node. Else it will be categorized into the terminal successor child node with the label inactive
at the decision tree depth one. 118 inactive state structures and 10 active state structures
have been categorized into the said terminal node. The remaining samples of 18 inactive
state and 113 active state structures are further split by the second decision node with a
feature value of -76.33° ® of residue 7.45. Sample features are split into the left terminal
successor child node with an active state if the value is smaller or equal as the decision node
(-76.33°). 15 inactive state structures and 9 active state structures are found in the inactive
labeled right terminal node, while 3 inactive and 104 active state structures are found in the

active labeled left terminal node.
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Figure 62. (A) DTC model and (B, C) corresponding violin plots for both features.

To gain insights into the decision nodes, we plotted the angles of feature 7.53 ® and 7.54 ©
with violin plots of the full data set (Figure 62B and Figure 62C, respectively). Both reveal
that most inactive state structures show an O angle over the decision nodes feature value of

-69.98° O for the residue 7.53 and -76.33° O for the residue 7.54. These two positions are also
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in line with the general activation mechanism of GPCR, in which the change from inactive to
active state structure leads to a final rearrangement of the conserved N’#°—P70—x—x-Y7-3
motif, which forms the binding site for intracellular binding partners (Figure 63). This
rearrangement seems to correlate with the change in the ® angle of both positions 7.53 and
7.54. The typical degree for a-helices according to the values sampled by Ramachandran et
al.[39] lies in the range of -60° ® angle, which means during GPCR activation we observe an
unwinding of these two residue positions out of the normative @ angles observed for a-

helices moving the intracellular TM7 part inwards.

-71.58°

/‘ -65.79°

Y753 @ c7.54 (0]

-127.47°

-78.05°

Figure 63. Dihedral angle change of Y’ ® and C’>* ® between an inactive (grey, PDB
2RH1 [231]) and active state (green, PDB 3SN6 [22]) B,-adrenoceptor.

Due to the wider distribution of active state angles seen in the violin plots for 7.53 ® and
7.54 O (Figure 62B and Figure 62C, respectively), we further investigated the angle
distributions of active state GPCRs in complex with Gs, G, and Gg/11. To ensure a correct G
protein coupling representation of the structural data, we only selected active state

structures solved with a G protein. Furthermore, we discarded GPCR structures that are not
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solved with their main intracellular binding partner (IBP) or have several main IBPs (based
on the gproteindb.org [26, 221]). The kernel density estimation plot revealed a narrower
distribution of 7.53 ® and 7.54 ® angles for Gq/11 < Gs < Gy, coupled GPCRs in a kernel density
estimation plot (Figure 64), although it should be noted that only five Gq/11 coupled GPCR
structures are included into the plot (vs. 31 Gi, and 29 Gs-coupled GPCRs). Even though
GPCRs binding Gy, proteins seem to allow a larger distribution of both angles in comparison
to Gs-coupled GPCRs the distribution is still comparable and is in line with residue position

7.53 representing a universal mediator of GPCR activation.
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Figure 64. Kernel density estimation plot of 7.53 ® and 7.54 O active state structure

angles coupled to different G proteins.
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4.2.5. Prediction of Homology Model Activation States

GPCRdb Homology Models

The GPCRdb integrated an automated pipeline for the construction of active, intermediate,
and inactive state homology models (HM) [26, 232]. We have downloaded all available
homology models with active or inactive labels and predicted with our model the state of
each homology model to check against the given labels. In total 217 inactive and 230 active
GPCRdb labeled homology models from 59 different class A GPCR families have been
analyzed (Figure 65).
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Figure 65. Homology models from different class A families with active/inactive labels

from the GPCRdb.

From 217 inactive state homology models, 210 (96.8%) have been also predicted as an
inactive state from our DTC model, while seven has been labeled as active. A closer look at
the wrongly categorized HM reveals that two homology models (FFAR2 and NPY4R) have
been built with structural templates (PDB 7F8Y [233] and 5ZBH [234], respectively) that were
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not included in our model since they did not satisfy our outlier and quality assessment
(chapter 4.2.1). The structural templates of three miscategorized originally as inactive
labeled homology models (LPAR6, STPR4, and TAAR1) were identified correctly as inactive
(PDB 4MBS [235], 3V2Y [32], and 7BVQ [236], respectively). We have aligned and superposed
each of the three models with the corresponding template to investigate possible reasons
for the different categorizations between the GPCRdb and our model. The homology model
of LPAR6 shows a high mean RMSD of 3.3 A to its template (PDB 4MBS [235]) with especially
high RMSD values at residue positions 7.53 (5.3 A) and 7.54 (6.6 A). The S1PR; GPCRdb HM
also shows a high mean RMSD of 3.9 A and high RMSD values for positions 7.53 (3.6 A) and
7.54 (4.6 A) against its template (PDB 3V2Y [32]). Both high RMSD between HM and template
leads to a different angle and therefore different categorization of our model vs. the
GPCRdb. Superposing the homology model TAAR1 with its structural template (PDB 7BVQ
[236]) showed a good mean RMSD value of 1.4 A with values at positions 7.53 (0.25 A) and
7.54 (0.22 A). The TAART homology models phi angle at position 7.53 with -73.7° and 7.54
with -85.9°, which is very close to the first and second decision node value of our model (-
69.98° and -76.34°, respectively) leading to the categorization as active state. Interestingly,
the phiangle of the structural template of TAAR1 at position 7.53 is -68.9° slightly larger than
the decision nodes value and therefore labeled as inactive. Lastly, two of the homology
models (IGR4 and IGR5) are both built based on PDB structure 7FlJ [237], which was also
incorrectly classified by our model. Therefore, these homology models adopt the angles of

the incorrectly classified PDB structures and are outliers of our model.

The prediction of 230 active state GPCRdb homology models revealed 158 (68.7%) also
predicted as active states and 72 (31.3%) as inactive states by our DTC model. We have
further analyzed 34 of the 72 homology models built upon structural data, which has also
been used for our model meeting the requirements of our outlier and quality assessment
(chapter 4.2.1). Of 34 homology models, 13 are based on PDB structures (AA2BR based on
PDB 4UHR [238]; NTR2 and GPR39 based on PDB 4XES [239]; PAR2, P2Y11, GPR55, GPR4,
GPR174, GPR151, GPR15, and GPR132 based on PDB 5UNG [240]; TAR2 and PF2R based on
PDB 6AK3 [241]), which are solved with an agonist and without an IBP. These structures are
not fully active and therefore the homology models resemble these structures. 16 homology
models were built upon six ternary structures (OPRM based on PDB 6DDE [242]; GPR21

based on PDB 6LI3 [243]; GPR153 and GPR84 based on 6WHA [244]; GPR146, ACKR4, CCR10,
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CCR7, CCR9, CXCR4, GPR34, and CXCR6 based on PDB 6WWZ [245]; GPR22, HRH3, and
GPR160 based on PDB 7DFL [246]; TAAR6 based on PDB 7EXD [247]) with atypical angles (-
60° to -70°) for active state structures (Figure 62) and therefore inherit the inactive label and
atypical angles from the corresponding templates. The last 9 homology models were built
upon correctly classified ternary structures (G37L1 based on PDB 7DB6 [248]; GPR148 based
on 7E32 [249]; GPR63 and GPR162 based on PDB 7JVR [250]; V1AR, OXYR, GNRHR, GP150,
and V1BR based on PDB 7KHO0 [251]). The classification as inactive is due to the error margin

of our model.

The prediction and analysis of provided homology models revealed, that not all GPCRdb
given labels represent the state of the homology model. Our model provides a second
measure to identify mislabeled homology models, especially for high average RMSD values
between PDB structure templates and created models and homology models built with

templates that are not in full active state due to a missing IBP.

Sphingosine-1-phosphate receptor 2-5 Homology Models

We have built HM of S1PR,.s based on the STPR; crystal structure (PDB 3V2Y [32]) to elucidate
structural determinants for subtype selectivity of S1PR:.s (chapter 4.1.1, page 37). The HM of
S1PR.s had low RMSD of the Ca protein backbone <1 A compared to its template S1PR;. All
four HM were predicted to be inactive with our model, which is in line with the inactive state

of the template S1PR:.

4.2.6. B.-adrenoceptors as a Model System for Dynamic Predictions

The effect of intracellular binding partners on the activation state of 3,-adrenoceptor

We have chosen the B:-adrenoceptor as a test system because of the well-known
mechanistic, ligands, and structural data available. To test our predictive model we prepared
four dynamic model systems, which include (i) an B--adrenoceptor crystallized in complex
with the active state stabilizing nanobody Nb80 and the full agonist BI-167107 (PDB 3P0G
[252]), (ii) the same B2-adrenoceptor without Nb80 but in complex with BI-167107, (iii) an (3,-
adrenoceptor in complex with the inactive state stabilizing nanobody Nb60 and the inverse
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agonist carazolol (PDB 5JQH [253]), (iv) and the same structure without Nb60 but in complex
with carazolol (Figure 66). The active state crystal structure (PDB 3P0G [252]) has been
categorized as active and the inactive state crystal structure (PDB 5JQH [253]) as inactive by
our DTC model. Every model system has been simulated in five replicastes a 100 ns
(Appendix Figure 3). For each frame of the MD simulations, we have predicted the state with

our DTC machine learning model.
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Figure 66. Model systems to evaluate the effect of intracellular stabilizing nanobodies
for active (PDB 3P0G [252]) and inactive (PDB 5JQH [253]) structures in a dynamic

system. Green - active state, grey -inactive state

As expected, the prediction of the active state for the ternary complex (i) resulted in mostly
predicted active state frames of 77.6% of all simulations, while the inactive ternary complex
(iii) resulted in the lowest amount of active states predicted at around 18.2% (Table 6).
Removing the active state stabilizing nanobody lead to a reduction of 42.1% active frames
to a mean of 35.5% for the active state 3,-adrenoceptor without a nanobody (ii), showing a
high correlation between bound and non-bound active state stabilizing nanobody Nb80.
The removal of the inactive state stabilizing nanobody resulted only in a slightly higher
amount of predictive active states overall of 21.9%, which is in comparison to the active state

complexes resulted only in a difference of 3.7%. Though this is in line with the known
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activation process and stabilized conformational change intracellular through an IBP

(chapter 1.1.4, page 8).

Table 6. Prediction of MD simulations of B,-adrenoceptor model systems with and
without intracellular binding partners. Green (100%) to white (50%) to grey (0%) indicate

the number of active state frames predicted by the DTC model. Values are shown in %.

[3;-adrenoceptor models Replica1 Replica2 Replica3 Replica4 Replica5 @

Inactive + Carazolol + Nb60 | 38.8 5.5 17.7 13.3 15.8 18.2
Inactive + Carazolol 34.4 7.0 53.3 5.6 9.2 21.9
Active + BI167107 723 12.2 15.3 65.1 12.9 35.5

Active + BI167107 + Nb80 |94.5 76.8 82.7 46.0 88.0 77.6

Different modes of ligands in complex with active state 3,-adrenoceptor

To evaluate possible influences of different ligand protein complexes on the activation state
we have docked full agonists (adrenaline, hydroxybenzylisoproterenol, and isoprenaline),
partial agonists (salbutamol and salmeterol), inverse agonists (carazolol, 1CI-118,551, and
timolol), and antagonists (alprenolol and propranolol) ligands (chapter 1.1.5) [254-256] to
the orthosteric binding site of the active state B>-adrenoceptor without Nb80 (PDB 3P0G
[252], Figure 66). Docking of adrenaline, hydroxybenzylisoproterenol, salmeterol, carazolol,
ICI-118,551, timolol, and alprenolol has been carried out based on co-crystallized ligand
conformations with (3,-adrenoceptor (PDB 4LDO [257], 4LDL [257], 6MXT [258], 5JQH [253],
3NY9 [256], 3D4S [259], and 3NYA [256], respectively, Figure 67). Docking conformations of
isoprenaline, salbutamol, and propranolol have been superposed and compared with new
available crystal/cryo-EM structures (PDB 7DHR [260], 7DHI [260], and 6PS5 [261],
respectively, Figure 67). The docking poses of all full and partial agonists match the
crystallized pose, while the docking poses of the inverse agonists and antagonists mimic the
orientation in the binding pocket with a minor offset to the extracellular part of the receptor.
Only alprenolol showed a major offset to the extracellular part of the receptor after energy

minimization of the docking conformation.
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Figure 67. Comparison between docking conformation and ligand conformations from

crystal or cryo-EM structural data. Green ribbon - active state 3,-adrenoceptor (PDB 3P0G)

The active/inactive state prediction of each frame of the MD simulation trajectories of full
agonists in complex with the active state 3,-adrenoceptor revealed that the adrenaline and
hydroxylisoproterenol models show a high amount of active state frames (52.7% and 64.6%,
respectively), while the other full agonist complexes with isoprenaline and BI-167107 show
a lower amount of predicted active state frames (44.1% and 35.5%, respectively). In
comparison to the two partial agonist complexes with salbutamol (34.0% active state) and
salmeterol (24.9% active state), the full agonist systems reveal more predicted active state
frames. There seem to be no correlations to inverse agonist (carazolol, 1Cl-118,551, and
timolol) and antagonist complexes (alprenolol and propranolol) showing high amounts of
predicted active state frames as seen in the full agonist complexes (69.5%, 60.0%, 43.5%,
39.1%, and 54.0%, respectively). The lowest mean predicted active state is therefore
salmeterol in complex with 32-adrenoceptor (24.9%) and the highest carazolol in complex
with B2-adrenoceptor (69.5%). Mean active state predicted frames through all simulations
reveal a similar amount as seen in the removal of the nanobody from active state 32-
adrenoceptor in complex with the reference ligand BI-167107 (47.4% and 35.5%,
respectively).
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Table 7. Prediction of MD simulations of active state B,-adrenoceptor model in complex
with different ligands. Green (100%) to white (50%) to grey (0%) indicate the number of

active state frames predicted by the DTC model. Values are shown in %.

Type Ligand Replica1 Replica2 Replica3 Replica4 Replica5 @

Adrenaline 60.9 11.7 77.5 83.2 30.1 52.7
Hydroxybenzyl-
Agonist isoproterenol | 59.8 72.8 74.3 54.9 61.1 64.6
Isoprenaline 17.5 48.3 17.6 74.6 62.6 441
BI-167107 72.3 12.2 15.3 65.1 12.9 35.5
Partial Salbutamol 18.8 53.0 59.7 329 57 340
agonist Salmeterol 56.3 24.7 184 3.9 214 24.9
Carazolol 89.1 439 79.8 58.9 76.0 69.5
Inverse

agonist ICI—‘I 18,551 52.7 91.7 88.2 15.9 51.7 60.0
Timolol 90.8 18.9 81.6 8.2 17.9 435
Antagonist Alprenolol 5.2 73.1 75.6 10.3 314 39.1
Propranolol 61.6 67.1 449 69.9 26.7 54.0
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5. Discussion

Even though the last decade of GPCR research has led to a tremendous amount of new
structural data, the three-dimensional coordinates for less than 150 unique GPCRs have
been experimentally solved [221]. The development of many mechanistic structure-based
GPCR models is therefore still confronted with a lack of structural data. The utilization of
molecular modeling methods can close this gap and lead to the development of
significantly more precise mechanistic models. Combined with an in-depth data analysis we
have developed dynamic mechanistic models of S1PR:;s and unveiled molecular
determinants able to explain S1PR subtype selectivity. Furthermore, we report a novel
approach for the analysis of GPCR equilibrium simulations regarding receptor activation and
conformational dynamics. We have utilized all available class A GPCR structures to develop

predictive models which can classify active and inactive receptor conformations.

5.1. Structural Determinants for Sphingosine-1-phosphate Selectivity

Targeting ST1PRs is an effective treatment for multiple sclerosis. This has been demonstrated
with the first-in-class drug Fingolimod. Due to the non-selective binding to S1PRi345,
therapy with Fingolimod bears a risk of serious adverse events, such as bradycardia and
macular edema. The development of subtype-selective STPR drugs can enhance the drug
safety profile while retaining the effectiveness against multiple sclerosis compared to
Fingolimod (chapter 1.2.3). S1PR subtype-selective ligands also have considerable potential
to modulate pathophysiological processes involved in autoimmune and inflammatory
diseases. Hence, understanding the molecular mechanistics of STPR subtype selectivity can

facilitate the rational ligand design of STPR subtype-selective modulators.

The S1PR,s derived homology models based on the S1PR; crystal structure (PDB 3V2Y [32])
revealed the expected secondary and tertiary structure with under 1 A RMSD of the Ca of
the protein backbone between each STPR;s structure. Initial structural comparisons of the
orthosteric binding pocket of S1PR;s revealed a general STPR family-wide comparable
binding pocket divided into a hydrophilic and lipophilic sub pocket, which is in line with the
amphiphilic character of the endogenous ligand S1P. Binding pocket differences are
predominantly located in the lipophilic pocket (chapter 4.1.1). Due to the high conservation
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of the residues forming the lipophilic sub pocket in all STPRs, a clear differentiation between
the binding pockets with static 3D pharmacophore models would not adequately render
the important spots for selectivity. To address this challenge we developed mechanistic
dynamic pharmacophore models for every S1PR subtype and performed a comparative
analysis that can protrude selectivity determinants more clearly. We have docked the
experimentally validated STPR:.s pan agonist 6 [216] to the orthosteric binding pocket of all
five S1PR subtypes. Three reasons make compound 6 the ideal ligand for this comparative
study. Firstly, compound 6 shows different agonistic activity for S1PR;s. Secondly, the
agonistic activity was measured with a GTPyS binding assay, which is less subject to
amplification or regulation through cellular processes because the monitored GTP
exchange occurs early in the signal transduction cascade and is proximal to the receptor
activation. Lastly, 6 is chemically different from the endogenous ligand S1P while retaining

the overall amphiphilic properties important for S1PR binding.

The dynamic pharmacophore interaction analysis revealed expected recurring and
comparable ionic interactions of the phosphate and amine moiety of compound 6 to S1PR;s
key residues R*#® and E3>%, respectively. Furthermore, we analyzed the simultaneously
occurring hydrogen bonds of compound 6’ phosphate moiety to the conserved residues
S1PR;s polar sub pocket to the phosphate moiety of compound 6 revealing that compound
6 in complex with STPR; exhibits the weakest hydrogen bond network from all subtypes.
While these results correlate with compound 6 lowest activity in S1PR; (ECso 630 nM), it
should be interpreted as an indicator of weak potency linked to other unfavorable protein
ligand interactions. In general, these results can be used as a reference point for the analysis
of hydrogen bond networks of structure-based dynamic S1PR models in complex with novel
ligands with a phosphate moiety or bioisosteric moiety. This novel S1PR tailored analysis can
therefore be utilized to support the rational assessment and selection of potent S1PR
agonists from large ligand datasets. Another selectivity determinant we have revealed is n-
m aromatic ring (AR) interactions of the phenyl and imidazole moiety of compound 6
exclusively observed in STPR,. This is explained by the expression of residue F’*° of STPR; in
comparison to L’2° of S1PR;, I’* of S1PR;, L’*° of S1PRs;, and L7*° of S1PRs. The F73°
determinant supports the high potency of compound 6 in S1PR; (ECs, 18 nM). Residue F7°
switches AR interactions between both aromatic moieties. Exploiting this selectivity

determinant could be achieved in two ways. First, an aromatic moiety could be placed more
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strategically in a ligand to achieve stable AR interactions for S1PR; selectivity. Another way
could be the addition of bulky lipophilic moieties to a compound to exclude S1PR; binding
due to the constrained access of the S1PR; lipophilic sub pocket through F’*. The second
approach is in line with Ozanimod and Siponimods bulky lipophilic moieties that would
cause a clash with F73° upon binding to S1PR, leading to a complete affinity loss on this

receptor subtype.

The dynamic pharmacophore analysis of compound 6 lipophilic tail moiety in STPR;.s
revealed two new binding modes distinct from the initial binding mode similar to the S1PR;
crystal structure in complex with MLO56 (PDB 3V2Y, binding mode 1). We surmised that
binding mode 1 (BM1) represents an inactive conformation based on the antagonist ML056
conformation. The second binding mode (BM2) is proximal to the receptor core, while the
third binding mode (BM ECL) is proximal to the extracellular domain. Both BM2 and BM ECL
might play an important role in receptor activation. BM1 and BM2 have been observed in all
S1PR subtypes, while BM ECL was only present in complex with STPR,s. Occurrences of
S1PRi345 BM1 correlate with the measured activity of compound 6, while BM2 occurrences
of STPRy 3.4 are inversely correlated with the measured activity of 6. One possible reason why
compound 6’ BM1 occurrences of STPRs and BM2 occurrences of S1PR; are not correlating
with the measured potency is the inactive STPR-compound 6 structure models as the basis
for conducted MD simulations. This might introduce a bias through stable BM1
conformations trapping the pan-agonist 6 in the energy well of the inactive conformation
[262]. By conducting ten replicas of each STPR MD system we minimized the risk of
nonrepresentative mechanistic models and ensured reproducibility and convergence [263].
Interestingly, STPR,s BM ECL occurrences of compound 6 could explain the lower BM2
occurrence of S1PR,s. Furthermore, the BM ECL conformation might be exploitable to
achieve S1PR,;s selective ligands by introducing a lipophilic substituentin a rigid sharp angle
to simultaneously accommodate the hydrophilic binding pocket as well as the BM ECL
lipophilic sub pocket proximal to the extracellular domain of STPRs. Due to no available
data on the importance or (activation) role of BM ECL on STPR,s, this result needs further
careful evaluation and in vitro testing of novel optimized STPR ligands to confirm the stated

hypothesis.
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To evaluate the sequential relation and transition probabilities between the three binding
modes we created Markov-chain models for each S1PR subtype. The use of Markov state
models has become a popular method for the analysis of conformational changes of
proteins and protein ligand binding [264-266]. While the popular python package PyEMMA
[267] provides a full framework for handling MD simulation data, incorporation of the
systems topology, guide in feature selection, cluster the data into distinct states, estimate
Markov state model, and methods to analyze the model [267], we have developed our own
workflow to create the Markov-chain models. The workflow is tailored towards the dynamic
protein ligand interactions calculated by the Dynophore app with defined states based on
distinct protein ligand interactions and labeled the MD simulation frames. The combination
of dynamic pharmacophores and Markov chain models revealed transition probabilities is

in line with the binding mode occurrences.

New structural data of Ozanimod in complex with ST1PR; and Siponimod in complex with
S1PR,s (PDB 7EWO0, 7EVY, and 7EW1, respectively) [219] has been published during the time
of this investigation. The comparison of the structural data with our binding modes revealed
that Ozanimod and Siponimods lipophilic moieties both interact with the lipophilic sub
pockets stabilizing BM1 and BM2 of S1PR; s confirming our observed and defined BM1 and
BM2. Based on the STPR;.s subtype selective interaction pattern of compound 6 alkyl moiety
with the lipophilic sub pockets targeted within the BM1 and BM2 we were able to explain

the selectivity and potency of Ozanimod and Siponimod for all STPR subtypes.

The main limitation of this study is the inability of our mechanistic models to explain the
binding and selectivity of S1PR antagonists due to the subtype selectivity determinants
inferred based on the used pan-agonist. Furthermore, the observed S1PR:s subtype
selective lipophilic interaction patterns of compound 6’ alkyl moiety with the lipophilic sub
pockets detected in BM1,BM2, and BM ECL are dependent on stable ionic interactions of the
phosphate and amine moiety of compound 6 to S1PR;s residue R*? and E3>%, respectively.
This should be considered when our selectivity determinants are applied to known S1PR
agonists, which do not inherit the amphiphilic structure of STP or compound 6. BM ECL has
not been experimentally validated. Hence, mutational studies based on our hypothesis for
BM ECL S1PR,;s exclusive binding would elucidate BM ECL. Specifically, mutation of V*° to
I>4%in STPR,; should diminish compounds 6 ST1PR,;s activity.
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5.2. Dihedral Angle Dynamics of Class A G Protein-coupled Receptor

Activation Hotspots

During the activation of GPCRs different important conformational rearrangements occur,
such as an outward tilt of the transmembrane (TM) domain 6. Since the full transition from
one GPCR activation state to another is not achievable in all-atom molecular dynamics (MD)
simulations, most approaches follow equilibrium simulations starting from a distinct
receptor-ligand complex. Subtle changes linked to receptor activation or deactivation are
hard to grasp and thus represent a major challenge for the use of MD simulations in the
GPCR field. Thus, there is a need to identify new determinants able to grasp these subtle
changes. This study explores dihedral angles as possible determinants for machine learning
models which can classify static and dynamic structural models as active or inactive
conformations. Furthermore, we developed a new method to efficiently predict any given

structural class A GPCR model.

The underlying dataset consisted of all active and inactive state experimentally validated
class A GPCR structures. By performing a thorough dataset assessment and curation we
created a tailored qualitative dataset to reduce noise from the dataset and therefore
enhance the predictive power of our created machine learning models. Due to the great
amount of unique class A GPCR structures, one of the main challenges was the alignment
between GPCRs to create intercomparable features. This was addressed with the use of
GPCRdb adjusted generic Ballesteros-Weinstein number (BWN) for TM residues of class A
GPCRs. Due to the possible different lengths, insertions, and deletions between class A GPCR
TMs some of our dihedral angle extracted features had gaps (missing data point). All features
are required to have the same amount of data points to be used for machine learning model
development. We considered two ways of handling these gaps. Either remove any feature
with gaps or fill the gaps with the mean value of the feature. Both options come with
advantages and caveats. By removing all features with gaps the initial feature set (621
dihedral angle features) would shrink to only 22.7% (141 dihedral angle features) and
therefore lose a lot of possibly valuable data. On the other hand, filling missing data points
with mean values might introduce a significant amount of noise to the data set. We,
therefore, tried to find a balance between these two options and only filled in missing values

of features if the number of missing values does not exceed 1% of a given feature. This led
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to the dataset of 286 dihedral angle features and a balance between retainment of higher
information density and noise introduction. To evaluate the impact on the predictive

performance of trained machine learning models we used both datasets for model building.

An important part of model building is the selection of meaningful features. We applied
three feature selection methods (RFECV, random forest-based selection, and ANOVA F-
value) and evaluated the predictive performance with three different machine learning
algorithms (DTC, SVM, and KNN). In general, the dataset with filled mean values for 1%
missing data performed better than the dataset which removed any feature with missing
values. Interestingly one of the top-performing models was the DTC model with applied
ANOVA F-value, a variance-based statistical selection method, with only two features
selected. This posed an ideal outcome due to the low dimensionality of the dataset (2
dimensional), introspective possibility of the DTC model, and highest possible prediction
performance. A detailed analysis of the two features (BWN’>* ® and BWN’>* ) revealed that
the positions are in line with the known N74°-pP7*°—x—x-Y”*3 motif important for activation
and binding site molding when an IBP is binding. Furthermore, we discovered that the
mechanism of structural rearrangement of the N74°-P7*0—x-x-Y73 motif goes hand in hand
with an untangling of the two feature positions BWN’** and BWN’**, An angle analysis with
only G-protein activated complexes revealed no difference in angular distribution between
Gi/o, Gs, and Gg/11. We have found a universal angle difference of the N74°-P7-30—x—x-Y”*3
motif for class A GPCR activation, which is not dependent on the type of IBP and is in line

with the literature.

The prediction of homology models from the GPCRdb revealed partly mislabeled homology
models. Prediction of inactive state labeled homology models was very robust and
identified three high RMSD homology models in comparison to their templates. Only three
structures were correctly labeled by the GPCRdb but misinterpreted by our model. This was
due to the angle values of the inactive state structures being very close to the decision node
values and lies in the error margin of the model. Prediction of active state homology models
revealed the identification of 13 structures based on active-like structures (protein-ligand
complex). 16 Structures that were correctly labeled by the GPCRdb but misinterpreted by
our model were based on ternary structures with angles normally found in inactive

structures. More surprising were nine homology models which used correctly classified
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templates by our model but had different feature angle values and were therefore
misclassified by our model. The general architecture of these structures was active state. This
might be an indicator of mishandled construction of the protein backbone at the N74°-p7-50—

X—X-Y’3 motif.

The prediction of four dynamic ,-adrenoceptor systems with and without active state
stabilizing nanobodies and with and without inactive state stabilizing nanobodies revealed
the expected shift in active states. Interestingly, the highest difference of the four systems
was observed between the active state ternary structure and the active state structure only
in complex with the agonist (77.6% active state to 35.5% active state), while the decline in
active state frames is less than 10% between the active and inactive state protein-ligand
complex and only around 3% between the inactive state protein-ligand complex and
inactive state ternary complex. This result shows that without an active state stabilizing IBP
the receptor complex probability to reach an inactive state is very high and to maintain a
fully active state in MD simulations an IBP is mandatory. The prediction of different active
state protein-ligand complexes is in line with these results. We have seen no correlation
between the different modes of action of a ligand in complex with an active state structure

during MD simulations.

The main limitation of our model is the identification of only fully active and inactive state
structures dependent on IBP binding. The analysis and use of dihedral angles as a predictor
are therefore limited and could not show active state-like stabilizing properties of agonists.
Furthermore, even though our model is easy to understand and is in line with the scientific
literature this feature is also one of the main caveats of the model due to the reliance on just
one endpoint of the activation process of class A GPCRs. Future applications of new machine
learning models should benefit from our found dihedral angle features if combined with
more features or used in a sequential prediction model with our angular features as the

endpoint for the evaluation of fully active state structures.
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6. Conclusion

Understanding GPCRs on a molecular level in both, a smaller subtype-specific and greater
class-wide context is essential for the future development of structure-based ligands with

potential therapeutic value.

Selectively targeting S1PR subtypes hold a lot of potential to modulate different diseases
through their omnipresence in different tissues and regulatory functions as described in
chapter 1.2. Using homology models, docking experiments, extensive molecular dynamics
simulations, dynamic pharmacophores (Dynophores), and subsequent rigorous data
analysis three distinct binding modes in STPR;.s with subtype-specific residue interaction
patterns were discovered. Comparison with new structural data of Ozanimod and
Siponimod confirmed the hypothesis of subtype selectivity by targeting sub pockets seen
in binding modes 1 and 2 and occurring in the molecular dynamics simulations of S1PR in
respective complexes with a pan-agonist. Furthermore, based on our models, we could
explain the subtype-selective behavior of both marketed drugs. Hence, we created an STPR
wide holistic model with high explanatory capabilities and provide the structural basis for

subtype selectivity in STPR.

Understanding the general class A GPCR activation mechanisms can lead to generalized
methods for fast and accurate analysis of structural (dynamic) models. We have explored
dihedral angles as possible structural determinants for GPCR activation and discovered
specific residue positions which reveal a change of O angles at residue positions 7.53 and
7.54 and subsequent untangling of the a-helix of TM7 in the intracellular part of the
receptor. These positions are also in line with the scientific literature and posed useful as
machine learning features to distinguish between active and inactive states. We developed
a framework to use our models efficiently and showed successful application for batch

analysis of homology models as well as MD simulations.

Hence, in this thesis, we have shown that a structural basis through an in-depth analysis of
S1PR subtype selectivity and class A GPCR activation determinants can be created to support
and deepen our understanding of GPCR research. By applying our developed unique
workflows we exploited the scarce data availability for S1PR at the time of investigation and
large structural datasets to extract dihedral angle data as determinants for class A GPCR
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activation. Employing these workflows to other current and pressing topics for other GPCRs
or targets beyond GPCRs can further provide insights in activation and selectivity

mechanisms.
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7. Experimental Section

Homology Modeling

The homology models of S1PR.s were built based on the S1PR; crystal structure (PDB 3V2Y
[32]). Protein sequences for the homology models (HM) were obtained from UniProtKB
(S1PR1.s accession numbers: P21453, 095136, Q99500, 095977, Q9H228, respectively) [268].
Sequence similarity was calculated with MOE 2013.08 (Chemical Computing Group ULC,
Montreal, Canada). Before building the HM, STPR; crystal structure involved the excision of
the T4-lysozyme fused to TM5 and TM6 at the intracellular part of the receptor. The HM
ST1PRys in this study was built using MOE 2013.08. The force field OPLS-AA [162] with the
temperature set on 300 K was used to build ten main chain HM and scored with the

integrated GB/VI [269] scoring.

Molecular Docking

All docking experiments in this work were carried out with Cambridge Crystallographic Data
Centre’s (CCDC) GOLD v5.7.0 [154]. Generated docking conformations have been energy
minimized by using the MMFF94 [270] force field.

Compound 6 was docked into the orthosteric binding site of S1PR:.s with constraints based
on known interactions important for S1P binding and ML056 binding to STPR; (PDB 3V2Y
[32], Table 3). The orthosteric binding pocket has been defined in GOLD as 10 A radius
around S1PR;s residue BWN?332, 100 conformations have been generated without early
termination and with diverse solutions (Cluster size 1, RMSD 1.5 A). The selected scoring
function was ChemPLP Fitness Score [218]. The selected docking poses for STPR;.s used for
molecular dynamics (MD) simulations were based on the number of fulfilled constraints and

the scores given from the ChemPLP Fitness Score.

The ligands isoprenaline, salbutamol, and propranolol were docked into the orthosteric
binding pocket of (3;-adrenoceptor (PDB 3P0G [252]). The orthosteric binding pocket has
been defined as 12 A radius of a defined point (62.229, 19.461, 15.333) visually estimated as
the binding pocket center. 100 conformations have been generated without early

termination and with diverse solutions (Cluster size 1, RMSD 1.5 A). The selected scoring
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function was Goldscore [218]. Docking pose selection was initially guided based on binding
conformations from available structural data at the time as well as the score given by the
Goldscore function. Docking of adrenaline, hydroxybenzylisoproterenol, salmeterol,
carazolol, ICI-118,551, timolol, and alprenolol was guided by experimentally confirmed
ligand conformations from available structural data (PDB 4LDO [257], 4LDL [257], 6 MXT
[258], 5JQH [253], 3NY9 [256], 3D4S [259], 3NYA [256], respectively) and inserted into the
binding pocket of B,-adrenoceptor (PDB 3P0G [252]) via superposition.

Molecular Dynamics Simulations

Protein preparation was carried out with Maestro v11.7 (Schrédinger, LLC: New York, USA)
and involved assigning bond orders, adding hydrogen’s, creating disulfide bonds, cap
termini, deleting waters beyond 5 A from the protein surface, and optimization of the
hydrogen bond network based on predicted pKa values (PROPKA [271]). Model systems
were prepared in an orthotrombic box where the GPCRs are solved with SPC water [272] and
0.15 M sodium chloride and embedded in a POPC-membrane (palmitoyl-oleoyl-
phosphatidyl-choline bilayer). Membrane placement has been adjusted to the
transmembrane regions defined by the OPM-database [273]. The netto systems charge was
neutralized with sodium ions. The systems were parametrized using the OPLS2005 force
field [162]. Desmond v2018-3 [274] was used to perform the equilibration of the systems
(default Desmond protocol) and MD simulations under periodic boundary conditions as an
NPT (constant number of particles, pressure, and temperature) ensemble (300 K
temperature and 1.01325 bar pressure). Each system was simulated in ten (S1PRs) or five (.-
adrenoceptor) replicas for 100 ns with 2000 recorded frames per simulation. The trajectories
were wrapped and aligned based on the heavy atoms of the protein backbone of the first

frame using VMD 1.9.3 [275]. All RMSD plots were created with mdanalysis 1.0.0 [276, 277].

Dynamic Pharmacophore analysis

The MD simulations of S1PR;.s in their respective complexes with compound 6 have been
analyzed using the in-house developed Dynophore software [179, 177]. After the first 10%

of the trajectory, the RMSD has reached a stable plateau for the protein and ligand. All
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analysis has been carried out after the first 10% of each trajectory. For every frame of a
trajectory, the protein-ligand interactions are extracted as pharmacophores and gathered
into spatiotemporal interaction clouds. We developed a workflow for in-depth data analysis
within this work. The raw data of the dynophores have been extracted, processed, and
analyzed with Python 3.7 [278] and pandas 1.0.1 [279]. Data visualization and plots were
created with seaborn 0.11.0 [280, 281]. Three distinct binding modes of compound 6 have
been defined based on unique interactions to label the frames of all MD simulations. This
enabled us to perform a rigorous comparative analysis of three binding modes between

S1PRs.

Machine Learning

The data assessment and curation were carried out with Python 3.7 and pandas 1.0.1.
Feature extraction of ® (phi) and Y (psi) dihedral angles of the protein backbone was done
using mdanalysis 1.0.0. Dataframe preparation, feature selection/reduction methods,
machine learning algorithms, machine learning model creation, and evaluation have been
carried out with Scikit-learn 0.22.1 [282]. To ensure reproducible and deterministic behavior
of machine learning algorithms or if randomization is part of a Scikit-learn algorithm (e.g.
dataset split into train and test set) the “random state” parameter was set to 5. The feature
selection method based on the random forest algorithm was performed with 1000
estimators. The recursive feature elimination with cross-validation with the estimator linear
support vector classification eliminates one feature at a time using accuracy as scoring and
the stratified k-fold as cross-validation. Hyperparameter search for DTC, KNN, and SVM was
done via the brute force method GridSearchCV (accuracy as scoring, five times cross-
validation). Hyperparameters used for GridSearchCV of the DTC model: Max_depth - 3, 4, 5,
6, 7, 8; Criterion - gini; Min_samples_split- 2, 3,4, 5,6, 7, 8,9, 10; Min_samples_leaf - 3,4, 5,
6,7,8,9,10; Max_leaf_nodes-3,4,5,6,7,8,9, 10. The final hyperparameter used for the DTC
model is 3 for max_depth, 3 for max_leaf_nodes, 3 for min_samples_leaf, and 2 for
min_samples_split. KNN hyperparameter: N_neighbours - 3,4, 5,6, 7, 8,9, 10. The final KNN
model had an N-neighbours value of 3. SVM hyperparameter: C-0.1,0.2,0.3,0.4,0.5,0.6, 0.7,
0.8,0.9, 1.0, 1.5, 2.0, 3.0, 4.0; class_weight — balanced. The final SVM model had a C value of
0.2.
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We have created a python package that allows for a fast and reliable application of our
machine learning model. We provide on GitHub (github.com/TrungNgocNguyen/GPCRml)
methods for the automatic assignment of the adjusted BWN from the GPCRdb to a given
topology file based on its PDB code or UniProt ID. Furthermore, methods to extract dihedral
angles from the provided topology file as well as from MD simulation are implemented to
provide the features for using our machine learning model. All three trained models (DTC,

KNN, SVM) are provided in the package to predict active and inactive states of class A GPCRs.

Markov chain modeling

The occurring sequential binding mode pairs have been extracted from the dynophore data
to calculate a transition probability matrix [283] for each ST1PR subtype using Python 3.7
[278] and pandas 1.0.1 [279]. Binding mode labels are given based on the rules defined in
chapter 4.1.6. The state transition probability matrices are represented through state

transition diagrams [284].
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10. Appendix

10.1. List of Abbrevations

AR Aromatic ring interaction

BM  Binding mode

BWN Ballesteros-Weinstein number
Cryo-EM cryogenic electron microscopy
DTC Decision tree classification

ECL Extracellular loop

GPCR G protein-coupled receptor
HBA Hydrogen bond acceptor

HBD Hydrogen bond donor

HM  Homology model

IBP  Intracellular binding partner
ICL  Intracellular loop

KNN  k-nearest neighbour

MCC Mathews correlation coefficient
MD  Molecular dynamics

ML  Machine Learning

NI Negative ionizable

PDB Protein data bank

Pl Positive ionizable

RFSEL Random forest based selection
RMSD Root-mean-square deviation
S1P  Sphingosine-1-phosphate
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S1PR Sphingosine-1-phosphate receptor
SVM  Support vector machine

™ Transmembrane domain
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FIGURE 25. SELECTED DOCKING POSE OF COMPOUND 6 FOR S1PR;.s. YELLOW SURFACE - LIPOPHILIC, BLUE
SURFACE - HYDROPHILIC. 44
FIGURE 26. PROTEIN AND LIGAND RMSD PLOTS FOR S1PR SUBTYPES 46
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OCCURRENCE OF HYDROGEN BOND COUNT PER FRAME DURING ALL MD SIMULATIONS FOR EACH
SUBTYPE. 50
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FIGURE 37. BINDING MODE 1 DYNOPHORES REVEAL DISTINCT LIPOPHILIC SUPERFEATURE SHAPES
BETWEEN S1PR;s. HBA — HYDROGEN BOND ACCEPTOR, HBD - HYDROGEN BOND DONOR, H -
LIPOPHILIC CONTACT, NI — NEGATIVE IONIZABLE FEATURE, Pl — POSITIVE IONIZABLE FEATURE, BLUE
SURFACE - HYDROPHILIC ENVIRONMENT, YELLOW SURFACE - LIPOPHILIC ENVIRONMENT........cccoeevueecuunee 63

FIGURE 38. BM1 S1PR; RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 8. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PR; WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,
GREY - UNDER 25% OCCURRENCE 64

FIGURE 39. BM1 S1PR, RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 8. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PR, WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,
GREY - UNDER 25% OCCURRENCE 65

FIGURE 40. BM1 S1PR; RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 8. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PR; WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,
GREY - UNDER 25% OCCURRENCE 66

FIGURE 41. BM1 S1PR; RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 8. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PR; WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,
GREY - UNDER 25% OCCURRENCE 67

FIGURE 42. BM1 S1PRs RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 8. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PRs; WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,

GREY - UNDER 25% OCCURRENCE 68
FIGURE 43. OCCURRENCE COMPARISON OF LIPOPHILIC RESIDUE INTERACTIONS IN PERCENT FOR BINDING
MODE 1 OF S1PR;.s. THE CORRESPONDING DATA CAN BE FOUND IN APPENDIX TABLE 8.......ccccouuevuunecee 69

FIGURE 44. BINDING MODE 2 DYNOPHORES REVEAL DISTINCT LIPOPHILIC FEATURE SHAPES BETWEEN
S1PR;s. HBA - HYDROGEN BOND ACCEPTOR, HBD - HYDROGEN BOND DONOR, H - LIPOPHILIC

147



Appendix

CONTACT, NI — NEGATIVE IONIZABLE FEATURE, Pl — POSITIVE IONIZABLE FEATURE, BLUE SURFACE -
HYDROPHILIC ENVIRONMENT, YELLOW SURFACE - LIPOPHILIC ENVIRONMENT. 70
FIGURE 45. BM2 S1PR; RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 9. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PR; WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,
GREY - UNDER 25% OCCURRENCE 71
FIGURE 46. BM2 S1PR, RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 9. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PR, WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,
GREY - UNDER 25% OCCURRENCE 72
FIGURE 47. BM2 S1PR; RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 9. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PR; WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,
GREY - UNDER 25% OCCURRENCE 73
FIGURE 48. BM2 S1PR; RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 9. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PR; WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,
GREY - UNDER 25% OCCURRENCE 74
FIGURE 49. BM2 S1PRs RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 9. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PRs; WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,

GREY - UNDER 25% OCCURRENCE 75
FIGURE 50. OCCURRENCE OF LIPOPHILIC RESIDUE INTERACTIONS IN PERCENT FOR BM2 OF S1PR;s.
CORRESPONDING DATA CAN BE FOUND IN APPENDIX TABLE 9. 76

FIGURE 51. BINDING MODE ECL DYNOPHORES REVEAL DISTINCT LIPOPHILIC FEATURE SHAPES BETWEEN
S1PR; AND S1PRs. AROMATIC INTERACTIONS ARE ONLY OBSERVED FOR S1PR, SHOWN IN BLUE DOTS AT
THE IMIDAZOLE AND PHENYL MOIETY. AR — AROMATIC INTERACTION, HBA - HYDROGEN BOND
ACCEPTOR, HBD - HYDROGEN BOND DONOR, H — LIPOPHILIC CONTACT, NI - NEGATIVE IONIZABLE
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FEATURE, PI — POSITIVE IONIZABLE FEATURE, BLUE SURFACE - HYDROPHILIC ENVIRONMENT, YELLOW
SURFACE - LIPOPHILIC ENVIRONMENT. 77
FIGURE 52. BM ECL S1PR, RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 10. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PR, WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,
GREY - UNDER 25% OCCURRENCE 78
FIGURE 53. BM ECL S1PRs RESIDUE INTERACTION OCCURRENCE OF COMPOUND 6’ LIPOPHILIC TAIL.
INTERACTION OCCURRENCES UNDER 5% HAVE NOT BEEN CONSIDERED. THE CORRESPONDING DATA
CAN BE FOUND IN APPENDIX TABLE 10. LEFT: BARPLOT OF RESIDUE INTERACTIONS IN PERCENT. RIGHT:
SNAKEPLOT DERIVED FROM GPCRDB.COM OF S1PR, WITH COLORED RESIDUES. GREEN - 75% TO 100%
OCCURRENCE, YELLOW - 50% TO UNDER 75% OCCURRENCE, RED - 25% TO UNDER 50% OCCURRENCE,

GREY - UNDER 25% OCCURRENCE 79
FIGURE 54. OCCURRENCE OF LIPOPHILIC RESIDUE INTERACTIONS IN PERCENT FOR BM3 OF S1PR, AND
S1PRs. CORRESPONDING DATA CAN BE FOUND IN APPENDIX TABLE 10 80

FIGURE 55. STPR; IN COMPLEX WITH OZANIMOD AND S1PR; s IN COMPLEX WITH SIPONIMOD (PDB 7EWO,
7EVY, AND 7EW1 [219], RESPECTIVELY). YELLOW SURFACE COLOR - LIPOPHILIC, BLUE SURFACE COLOR
- HYDROPHILIC 81
FIGURE 56. SUPERPOSITIONS OF REPRESENTATIVE FRAMES FOR BM1 AND BM2 OF PAN AGONIST 6 IN
COMPLEX WITH S1PR; (A AND B, RESPECTIVELY) OR S1PR;s (C) WITH STRUCTURALLY SOLVED S1PR;
IN COMPLEX WITH OZANIMOD (A) AND S1PR;s IN COMPLEX WITH SIPONIMOD (B AND C,
RESPECTIVELY). RESIDUES USED TO DEFINE BM1 (BWN 5.44) AND BM2 (BWN 3.40) ARE SHOWN. WHITE
ATOMS — STRUCTURALLY SOLVED LIGAND AND PROTEIN, GREEN ATOMS - BM1 OF PAN AGONIST 6,
DARK GREY ATOMS - BM2 OF PAN AGONIST 6, YELLOW SURFACE COLOR - LIPOPHILIC, BLUE SURFACE
COLOR - HYDROPHILIC 83
FIGURE 57. DISTRIBUTION OF ALL STRUCTURAL GPCR DATA BETWEEN RECEPTOR FAMILIES. 487
STRUCTURAL DATA POINTS IN TOTAL (AS OF 29.09.2021). 86
FIGURE 58. BOXPLOTS OF DIFFERENT MEASURES OF STRUCTURAL DATA QUALITY FOR ALL DATA. 487
STRUCTURAL DATA POINTS IN TOTAL (AS OF 29.09.2021). 87
FIGURE 59. EXTRACTED DIHEDRAL ANGLE RESIDUE POSITIONS (GREEN). LEFT: UNDER 1% UNDEFINED
ANGLE VALUES ARE HANDLED WITH THE MEAN VALUE OF THE CORRESPONDING FEATURE RESULTING
IN 159 RESIDUE POSITIONS WITH 286 DIHEDRAL ANGLE FEATURES. RIGHT: REMOVAL OF EVERY FEATURE
WITH UNDEFINED VALUES RESULTS IN 94 RESIDUES POSITIONS WITH 141 DIHEDRAL ANGLE FEATURES.
89
FIGURE 60. FEATURE REDUCTION METHODS WITH OPTIMIZED HYPERPARAMETER SETTINGS FOR THE
NONAN AND 1% NAN DATASETS. THE X-AXIS STATES THE DATASET AND RESULTING FEATURE
NUMBERS IN BRACKETS FROM THE APPLIED FEATURE REDUCTION METHODS. THE MATHEWS
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CORRELATION COEFFICIENT (MCC) VALUES RANGE FROM -1 TO 1 (1 BEING THE PERFECT PREDICTION
SCORE AND 0 A RANDOM PREDICTION). DTC - DECISION TREE CLASSIFIER, SVM - SUPPORT VECTOR
MACHINE, KNN - K-NEAREST NEIGHBOR 90
FIGURE 61. FEATURE POSITIONS OF THE MODELS AFTER FEATURE SELECTION THROUGH ANOVA F-VALUE
OF THE 1% NAN DATASET. POSITIONS ARE MARKED IN GREEN AND NUMBERED VIA THE BWN SCHEME.

THE SHOWN STRUCTURE IS S1PR; (PDB 3V2Y). 91
FIGURE 62. (A) DTC MODEL AND (B, C) CORRESPONDING VIOLIN PLOTS FOR BOTH FEATURES..................... 92
FIGURE 63. DIHEDRAL ANGLE CHANGE OF Y’>* ® AND C’** ® BETWEEN AN INACTIVE (GREY, PDB 2RH1

[231]) AND ACTIVE STATE (GREEN, PDB 3SN6 [22]) B,-~ADRENOCEPTOR 93
FIGURE 64. KERNEL DENSITY ESTIMATION PLOT OF 7.53 ® AND 7.54 ® ACTIVE STATE STRUCTURE ANGLES

COUPLED TO DIFFERENT G PROTEINS. 94
FIGURE 65. HOMOLOGY MODELS FROM DIFFERENT CLASS A FAMILIES WITH ACTIVE/INACTIVE LABELS

FROM THE GPCRDB. 95

FIGURE 66. MODEL SYSTEMS TO EVALUATE THE EFFECT OF INTRACELLULAR STABILIZING NANOBODIES
FOR ACTIVE (PDB 3P0G [252]) AND INACTIVE (PDB 5JQH [253]) STRUCTURES IN A DYNAMIC SYSTEM.
GREEN - ACTIVE STATE, GREY -INACTIVE STATE 98

FIGURE 67. COMPARISON BETWEEN DOCKING CONFORMATION AND LIGAND CONFORMATIONS FROM
CRYSTAL OR CRYO-EM STRUCTURAL DATA. GREEN RIBBON - ACTIVE STATE B,-ADRENOCEPTOR (PDB
3P0Q) 100
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ELECTRON MICROSCOPY
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Appendix Figure 1. Distribution of structural GPCR data between receptor families after

removing outliers in the 5% probability density boundary. 324 structural data points (as

of 29.09.2021).
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Appendix Figure 2. Boxplots of different measures of structural data quality after
removing outliers in the 5% probability density boundary. 324 structural data points (as

of 29.09.2021).
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Appendix Figure 3. Protein and ligand RMSD plots from MD simulations of active (PDB

3P0G) and inactive (PDB 5JQH) B,-adrenoceptor systems.
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Appendix Figure 5. Protein and ligand RMSD plots from MD simulations of active (PDB

3P0G) B.-adrenoceptor systems in complex with inverse agonists and antagonists.
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10.5. Appendix Tables

Appendix Table 1. Detailed occurrences of superfeatures for each MD simulation. Grey

background - discarded MD simulations

AR[6,7,9,11,12] | AR[12,13,14,15,16,17] | HBA[1]| HBA[2]| HBA[3]| HBA[4]| HBA[S]| HBA[7]| HBD[5]| HBD[6]| HBD[8]| H[12,13,14,15,16,17 18,19] | NI[0,1,2,3,4]| PI[8

ofw o~ oos W -

| 203| 204 | 270 390
Selected MDs [ AR[6,7,9,11,12] | AR[12,13,14,15,16,17 mmmmmmmm H[12,13,14,15,16,17] | H[18,19] | NI[0,1,2,3,4] | PI[8] |
[ 635 347
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Appendix Table 2. Hydrogen bond acceptor interaction with phosphate moiety of

compound 6 per frame of each MD simulation in %.

S1PR; S1PR: S1PR; S1PR, S1PRs
0 HBA 0.04 0.13 0.11 0.01 0.01
1 HBA 0.95 1.92 4.06 0.37 1.44
2 HBA 13.59 14.75 13.14 1.05 20.78
3 HBA 24.02 20.84 22.04 10.69 18.32
4 HBA 33.40 22.21 21.40 26.93 25.14
5+ HBA 28.00 40.14 39.26 60.96 34.31

Appendix Table 3. Transition probability between different binding modes of S1PR;.

BM1 BM2 BM ECL T-BM
BM1 85.48% 0.03% 0.00% 14.49%
BM2 0.02% 90.76% 0.00% 9.22%
BMECL 0.00% 0.00% 72.41% 27.59%
T-BM 7.70% 8.05% 0.12% 84.13%

Appendix Table 4. Transition probability between different binding modes of S1PR,.

BM1 BM2 BM ECL T-BM
BM1 80.85% 3.81% 0.27% 14.98%
BM2 9.12% 62.13% 0.00% 28.75%
BM ECL 5.23% 0.00% 41.18% 53.59%
T-BM 22.18% 16.62% 3.50% 57.70%
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Appendix Table 5. Transition probability between different binding modes of S1PRs.

BM1 BM2 BM ECL T-BM
BM1 95.66% 0.14% 0.00% 4.20%
BM2 0.47% 91.35% 0.00% 8.18%
BMECL 0.00% 0.00% 0.00% 0.00%
T-BM 16.97% 7.36% 0.00% 75.67%

Appendix Table 6. Transition probability between different binding modes of S1PR..

BM1 BM2 BM ECL T-BM
BM1 87.28% 0.31% 0.00% 12.41%
BM2 0.62% 81.38% 0.00% 18.00%
BM ECL 0.00% 0.00% 0.00% 0.00%
T-BM 14.35% 11.74% 0.00% 73.91%

Appendix Table 7. Transition probability between different binding modes of S1PRs.

BM1 BM2 BM ECL T-BM
BM1 79.75% 0.14% 0.01% 20.10%
BM2 1.42% 64.86% 0.00% 33.72%
BM ECL 0.07% 0.00% 97.73% 2.20%
T-BM 19.91% 3.70% 0.90% 75.49%
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Appendix Table 8. BM1 lipophilic tail interaction occurrence in percent for S1PR;.s.

S1PR; S1PR, S1PR; S1PR, S1PR;s
3.33 9,37 41,42 21,51 30,67 2944
3.36 511 14,79 0,21 21,59 23,51
4.56 0,00 87,11 0,29 0,00 4,13
5.39 0,00 0,70 0,00 0,10 6,07
5.40 3,37 0,09 21,18 26,68 0,21
543 0,00 98,92 0,00 0,00 0,00
5.44 100,00 2,31 100,00 100,00 100,00
5.46 0,00 49,98 0,01 0,00 0,00
547 44,54 48,94 40,49 88,85 82,78
5.48 44,20 0,00 28,58 0,03 1,74
5.50 0,00 17,26 0,00 0,00 0,00
6.48 43,56 1,88 0,12 13,65 6,74
6.51 28,29 1,76 6,85 1,97 4,58
6.52 81,98 3,83 66,18 63,34 47,99
6.55 66,24 2,37 66,46 66,66 59,07
6.56 1,91 0,00 12,50 0,00 0,00
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Appendix Table 9. BM2 lipophilic tail interaction occurrence in percent for STPR;.s.

S1PR, S1PR;, S1PR; S1PR, S1PR;s
3.33 0,24 6,36 0,26 0,37 0,51
3.36 42,68 34,38 11,60 41,41 4,50
3.37 0,00 0,00 0,00 36,59 91,52
3.40 100,00 100,00 100,00 100,00 100,00
3.41 0,00 12,02 0,00 5,27 0,00
4.56 0,32 29,74 19,20 743 32,26
5.46 0,00 37,54 16,96 33,01 52,44
547 91,17 52,46 80,54 82,54 59,90
5.50 0,00 12,13 0,00 0,00 51,54
5.51 24,43 35,37 58,79 0,00 0,00
6.44 0,00 23,49 0,00 0,00 0,00
6.45 0,00 22,50 0,00 0,00 0,00
6.48 71,86 11,43 36,06 18,28 32,01
6.51 11,59 0,18 0,68 16,57 0,00
6.52 84,20 15,04 57,13 27,40 19,41
6.55 0,00 0,00 0,73 8,77 0,00
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Appendix Table 10. BM ECL lipophilic tail interaction occurrence in percent for S1PR,s.

S1PR, S1PR;s
3.32 8,17 0,00
3.33 59,80 69,79
182/185 0,00 8,26
183/186 95,75 23,03
186/189 100,00 100,00
5.39 38,24 92,79
5.40 0,00 56,70
5.59 0,00 0,00
6.55 16,34 24,45
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Appendix Table 11. Boxplot data for Figure 58.

All data 5% PDR Boundary
Outliers 29 2
Upper Whisker 4.03 3.99
Lower Whisker 1.82 1.74
Resolution Q1 2.65 2.60
Q2 2.90 2.82
Q3 3.20 3.18
IQR 0.55 0.57
Structures 487 324
Outliers 51 28
Upper Whisker 15.32 13.69
Lower Whisker 0 0.20
Clashscore Q1 3.09 3.59
Q2 5.04 5.07
Q3 7.99 7.63
IQR 4.89 4.04
Structures 487 324
Outliers 10 0
Upper Whisker 153.25 86.73
Lower Whisker 27.40 27.40
Average B Factor | Q1 57.14 49.80
Q2 76.37 60.77
Q3 95.59 75.80
IQR 38.44 26.00
Structures 256 131
Outliers 8 0
Upper Whisker 0.34 0.31
Lower Whisker 0.18 0.19
Rfree Q1 0.24 0.24
Q2 0.26 0.26
Q3 0.28 0.28
IQR 0.04 0.04
Structures 384 242
Outliers 50 32
Upper Whisker 0.06 0.06
Lower Whisker 0.01 0.01
A Rfree/Rwork Q1 0.03 0.03
Q2 0.03 0.03
Q3 0.04 0.04
IQR 0.01 0.01
Structures 384 242
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