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Abstract  

The skin is the largest human organ and forms a protective barrier against the 

environment. Irritation of the skin may lead to local inflammatory reactions and, once 

chronified, even to dermatological disorders such as irritative or atopic dermatitis (AD). 

Atopic dermatitis is one of the most common inflammatory skin disorders worldwide, 

with a prevalence of up to 20% among children and 3% among adults. Even though our 

knowledge about AD has increased significantly in recent years, many aspects 

concerning its molecular pathogenesis still remain elusive. Tumor necrosis factor-α 

(TNF-α) is one of the best known pro-inflammatory cytokines and a key mediator in 

several inflammatory diseases, such as inflammatory bowel disease or psoriasis. 

However, its role in AD still remains unclear. In a mouse model, it has been 

demonstrated that TNF-KO mice develop an aggravated form of AD compared to wild 

type (WT) mice. Moreover, AD-like symptoms are a possible side effect in patients after 

anti-TNF treatment. This raises the question of whether a different cytokine profile may 

explain an AD predisposition in the absence of TNF-α. The aim of this thesis was to 

uncover differences in cytokine patterns upon physical skin irritation in WT and TNF-KO 

mice ex vivo. 

For this purpose, the skin of TNF-KO and WT mice was irritated by means of either wet 

shaving only or additional tape stripping. Biopsies were taken and 96 cytokines were 

measured in skin samples by a multi-array enzyme-linked immunosorbent assay (ELISA). 

Seven cytokines were selected for further investigation by ELISA and mRNA cytokine 

expressions were evaluated by qRT-PCR.  

Chemokine (C-X-C motif) ligand 1 (CXCL1), Chemokine (C-X-C motif) ligand 2 (CXCL2), 

interleukin-5 (IL-5), and interleukin-18 (IL-18) expression increased significantly upon wet 

shaving in TNF-KO and WT mice. When comparing the cytokine levels between the two 

genotypes, we observed a tendency towards higher levels of IL-5 and significantly higher 

levels of IL-17BR in TNF-KO mice upon physical skin irritation compared to WT mice. 

Whereas IL-5 is already associated with AD and irritated skin, it is the first time that IL-

17BR was shown to be induced upon physical skin irritation under TNF-deficiency. In 
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summary, the data suggest deviations of local cytokine responses, which may be 

responsible for the onset of AD-like symptoms upon TNF-deficiency.  
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Zusammenfassung  

Die Haut stellt das größte Organ des Menschen dar und schützt vor externen Reizen der 

Umwelt. Hautirritationen können lokale Entzündungen verursachen und wenn sie 

chronifizieren, gar zu dermatologischen Erkrankungen wie der irritativen oder der 

atopischen Dermatitis führen. Die atopische Dermatitis stellt mit einer Prävalenz von bis 

zu 20% in Kindern und bis zu 3% in Erwachsenen, eine der häufigsten dermatologischen 

Krankheiten dar. Tumor Nekrose Faktor-α (TNF-α) ist bekannt als pro-inflammatorisches 

Zytokin, welches eine Schlüsselrolle bei verschiedenen entzündlichen Erkrankungen 

einnimmt. Die Bedeutung von TNF-a im Zusammenhang mit der atopischen Dermatitis 

ist jedoch noch unklar. In einem Mausmodell wurde gezeigt, dass TNF-KO-Mäuse eine 

schwerere Form der atopischen Dermatitis entwickelten als WT-Mäuse. Außerdem sind 

ähnliche Symptome eine mögliche Nebenwirkung von TNF-Antikörper Therapien. Es 

stellt sich die Frage, ob ein unterschiedliches Zytokinprofil in der TNF-defizienten Maus 

hierfür verantwortlich ist. Ziel der vorgelegten Promotionsarbeit war es, zu untersuchen, 

ob Unterschiede in der Zytokinantwort nach mechanischer Hautirritation in der TNF-KO-

Maus im Vergleich zur WT-Maus vorliegen. Um dieser Fragestellung nachzugehen, 

wurde ex vivo die Haut der TNF-KO- und WT-Mäuse durch Nassrasur oder zusätzlichem 

Tape-stripping (Tesafilm-Abriss) irritiert. Biopsien wurden entnommen und mittels eines 

Multi-Array ELISAs wurden die Konzentrationen von 96 Zytokinen in den Hautproben 

gemessen. Sieben Zytokine hiervon wurden anschließend mittels eines Einzel-ELISA 

überprüft. Die mRNA-Expression der Zytokine wurde mittels qRT-PCR gemessen.  

Die Expression von Chemokine (C-X-C motif) ligand 1 (CXCL1), Chemokine (C-X-C motif) 

ligand 2 (CXCL2), Interleukin-5 (IL-5) und Interleukin-18 (IL-18) ist signifikant durch 

Irritation mittels Nassrasur in WT und TNF-KO Maus gestiegen. In der TNF-KO Maus ist 

im Vergleich zum WT die Proteinexpression für IL-17BR signifikant höher und für IL-5 

tendenziell höher nach Hautirritation angestiegen. Während die vermehrte Expression 

von IL-5 bei der AD bekannt ist, konnte zum ersten Mal gezeigt werden, dass in Folge 

von mechanischer Hautirritation, IL-17BR in der TNF-defizienten Maus stärker ansteigt 

als im WT. Zusammenfassend weisen die Daten darauf hin, dass eine Dysregulation der 

lokalen Zytokinreaktion, den Ausbruch einer AD-ähnlichen Symptomatik unter TNF-

Defizienz fördern könnte.  
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1. Introduction  

1.1 Anatomical skin structure  

 

The skin is the largest human organ and forms a protective barrier against external 

dangers such as microbes or chemicals (2-4). The skin consists of three different layers 

which are tightly connected: epidermis, dermis and subcutis (Figure 1) (5). The epidermis 

itself is composed of multiple layers of flattened cells, which are mainly formed by 

keratinocytes (3). Immune cells such as Langerhans cells but also melanocytes, Merkel 

cells and stem cells of the skin are located here as well (4, 6).  

The epidermis consists of five layers: stratum corneum, stratum granulosum, stratum 

spinosum and stratum basale. The stratum corneum, the top layer, is composed of 

anucleated keratinocytes that are loaded with keratin filaments (2, 4). It provides foremost 

the mechanical protection of the skin (5, 7). Moreover, it plays a crucial role for 

transepidermal water loss (TEWL), which describes the regulation of water loss from the 

organism to the atmosphere through the skin (7). The stratum granulosum contains the 

basophile keratohyalin granules, in which filaggrin is the main component (8). The stratum 

spinosum is composed of multiple layers of spindle shaped keratinocytes that are 

connected through desmosomes (8, 9). The stratum basale, which is the lowest layer of 

the epidermis, contains basal stem cells which are responsible for the continuous 

regeneration of the epidermis (2, 8, 10).  

The dermis consists primarily of connecting tissue and is located between the epidermis 

and the subcutis (11). The papillary dermis, or dermoepidermal junction, is the uppermost 

part of the dermis where the basement membrane of the epidermis is connected with the 

dermis via rate ridges and collagen fibers. Lymphatic and blood vessels are also located 

in the dermis (5, 8, 11). Constriction or dilatation of these blood vessels provides a form 

of thermoregulation of the body (11). Additionally, the dermis contains sensory receptors, 

sweat glands, hair follicles and sebaceous glands (5, 8, 11). The subcutis or hypodermis 

is the deepest layer of the skin. It consists of connective and adipose tissue and contains 

blood vessels and nerves. It provides isolation and mechanical protection as well as 

offering a reserve energy supply. The thickness of the subcutis varies considerably 

among individuals (5, 8, 11-13) 
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The skin structure is complex and forms a protective barrier against the environment. The 

epidermis consists of stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum 
and stratum basale. The dermis contains mainly collagen, reticular fibres and elastic tissue. 

Several cell types may be found here such as fibroblasts, dendritic cells, mast cells and T-cell 

subsets. The subcutis consists of adipose and connective tissue. Taken from Skin Barrier 
Function and Its Importance at the Start of the Atopic March, Mary Beth Hogan, Kathy Peele, and 

Nevin W. Wilson, Journal of Allergy (2012) (14).  
 

1.2. Physical skin irritation in skin pathology  

The skin is a metabolically active organ with various functions. Passive functions of the 

skin include protection from thermal hazards, UV radiation, chemicals, dehydration, 

pressure and friction (1, 5, 15). The most important active functions of the skin are the 

defense against penetrating pathogens and allergens, the resorption of active 

substances, the production of sweat and sebum, thermoregulation by means of blood 

circulation, and sensory perception (3, 5, 13). In order to maintain these functions, several 

factors are required, such as stable cell to cell adhesion, continuous renewal of skin cells, 

Figure 1: Anatomical skin structure and the epidermal layers 



14 

 

a working cell to cell interaction and adequate responses from the immune system (5, 

15). In the case of an acute skin barrier disruption, keratinocytes start producing and 

releasing various pro-inflammatory cytokines such as Interleukin-1α (IL-1α), IL-8, IL-10 

or TNF-α (16, 17). These factors can trigger the production of other pro-inflammatory 

mediators, or attract them to the place of damage in order to repair and to maintain the 

skin homeostasis (15). Physical skin irritation may lead to an impairment of the skin 

homeostasis and, once chronified, even to dermatological disorders such as atopic 

dermatitis (7, 10). Various experimental setups have been designed in order to better 

understand the molecular mechanisms of acute or chronic skin irritation. However, due 

to ethical reasons most of this work is performed on mouse skin. Physical and chemical 

irritants on skin are both common methods used in this context (16-21). Two techniques 

used for physical skin irritation are shaving and tape stripping (16, 17, 22, 23). Escobar-

Chavez et al. showed that after 30 times tape stripping with an adhesive tape, the layers 

of the stratum corneum were removed (18). Such a disruption of the stratum corneum 

increases the TEWL and induces the production and release of various pro-inflammatory 

cytokines (15-17). Wood et al. observed an increase of IL-1α, IL-1ß, GM-CSF and TNF-

α expression upon tape stripping the skin of hairless mice (16, 17). Another cytokine 

expressed by keratinocytes upon skin irritation and inflammatory cytokine stimulation is 

thymic stromal lymphopoietin (TSLP), a major initiator of atopic dermatitis (24, 25). Inter 

alia, TSLP is expressed by epithelial cells of the skin and mast cells (26). Studies have 

shown that wet shaving as well as tape stripping induces TSLP production in murine skin 

in vivo as well as ex vivo (19, 27). Yoo et al. reported that TSLP overexpression in murine 

skin resulted in the development of spontaneous dermatitis, the hallmark of human AD 

(28). Additionally, Jessup et al. showed that a direct administration of TSLP resulted in 

AD-like skin lesions in mice (29). TSLP has been shown to promote the proliferation and 

differentiation of Th2 cells, and to induce the expression of its associated cytokines such 

as IL-4, IL-5 and IL-13 (26, 29). Angelova-Fischer et al. investigated the effect of tape 

stripping on the human skin and showed that tape stripping leads to damage to the 

stratum corneum and consequently to an increase of TSLP expression in the human 

epidermis as well (30). Furthermore, TSLP has been described to be highly expressed in 

keratinocytes from AD patients (26).  
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1.2.2 Atopic dermatitis (AD) 
Atopic dermatitis is a genetically determined, chronic-inflammatory skin disease and is, 

along with bronchial asthma and allergic rhinitis, considered as an atopic disorder (31, 

32). Clinically, it is characterised by erythematous, pruritic, dry and flaky skin as well as 

papules, seropapules, erosions and lichenification (5). Furthermore, the disease has a 

typical localisation pattern, depending on the age of the patient (5, 31). AD is a 

widespread disorder, especially among industrialised countries, with prevalences of up to 

20% in children and of 3% in adults which are steadily increasing overall. (31-33).  

 

Pathophysiology of atopic dermatitis  
AD is a highly complex disease with a multifactorial pathophysiology and molecular 

processes that are not completely understood yet (34). Nonetheless, two major risk 

factors for the development of AD have been identified: mutation of the FLG gene 

(encoding the epidermal barrier protein filaggrin) and a positive family history of AD (35, 

36).  

Observation studies showed that a positive parental history is a strong predictor of AD in 

children (32, 37). Additionally, monozygotic twins showed a higher concordance rate than 

dizygotic twins (36). Genetic studies highlighted the critical role of the FLG gene in AD 

(32). The FLG gene codes the filaggrin protein, which is an essential skin barrier protein 

(38). Various studies have demonstrated that a skin barrier dysfunction promotes skin 

inflammation in AD patients (39, 40). A weak skin barrier not only promotes the 

penetration of pathogens and allergens into the skin but also results in an increase of 

epidermal water loss (31, 41). The majority of children with moderate or severe AD carry 

FLG mutations (39). However, several other proteins, such as Claudin-based tight 

junctions, play a crucial role in maintaining the skin barrier as well (42). Additionally, a 

significant number of AD patients do not show any FLG mutation, while conversely a FLG 

mutation does not lead to AD in all cases. Moreover, many patients eventually outgrow 

AD, despite carrying mutations in the FLG gene (31, 43, 44). Consequently, it is likely that 

a disrupted skin barrier alone is not sufficient for the development of AD (44).   

Apart from the skin barrier, studies have shown that immune cells also play a crucial role 

in the pathogenesis of AD (31, 32). In many AD patients, a predominant systemic Th2 

disbalance along with eosinophilia and increased IgE levels can be observed (45). By 
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producing high levels of TSLP, keratinocytes induce Th2 polarization via activated DCs 

(26, 31). Th2 mediated pro-inflammatory cytokines such as IL-4, IL-5 and IL-13 are 

upregulated in lesional as well as non-lesional skin of AD patients in the acute phase of 

the disease (45, 46). Th2 cytokines have also been shown to decrease the expression of 

skin barrier proteins. (47, 48). Moreover, transgenic mice that overexpress Th2 cytokines 

were shown to develop skin barrier defects as well as AD spontaneously (49). As depicted 

in Figure 2, the pathophysiology of AD is a highly complex process in which genetics, skin 

barrier dysfunction and pro-inflammatory as well as environmental factors interact with 

one another (50, 51). 

 

In AD, the weak skin barrier allows the penetration of antigens which encounter Langerhans cells 

(LCs), inflammatory dendritic epidermal cells (iDECs) and dermal dendritic cells, activating Th2 
cells to produce IL-4 and IL-13. DCs then migrate to lymph nodes, where they activate effector T-

cells and induce IgE class-switching. IL-4 and IL-13 induce TSLP production in KCs. TSLP 
reinforces Th2 activity by activating OX40 ligand-expressing dDCs. Skin infiltration by DCs, 

Figure 2: Pathogenesis of atopic dermatitis 
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eosinophils and mast cells is stimulated by cytokines produced by Th2 cells and DCs such as IL-

4, IL-5 and IL-13. Th2 and Th22 cells are dominant in AD patients and their cytokines (IL-4, IL-13 

and IL-22) inhibit terminal differentiation as well as contributing to the barrier defect in patients 
with AD. Additionally, Th1 and Th17 cells contribute to its pathogenesis. Reprinted from Journal 

of Allergy and Clinical Immunology, Vol 131, Issue 2, JK Gittler, JG Krueger and E Guttman-
Yassky, 300-313, copyright 2013 with permission from Elsevier (52). 

 

1.3 Tumor Necrosis Factor-α (TNF-α) 

1.3.1 TNF-α - a pro-inflammatory cytokine  
TNF-α was first described as an endotoxin-induced serum factor that causes necrosis of 

sarcomas in mice (53). TNF is produced by a broad variety of cell types, including 

macrophages, T-cells, DCs, MCs and endothelial cells (7, 54, 55). There are two isoforms 

of TNF-α: one is cell-associated, or membrane bound and the other is secreted or soluble 

TNF-α. Both isoforms of TNF-α are biologically active (54, 56). Ever since its discovery, 

TNF-α has been the subject of intense research and is considered as one of the best 

studied pro-inflammatory cytokines (57). Increased TNF-α is associated with several 

autoimmune diseases, such as Crohn’s disease, psoriasis and rheumatoid arthritis (56, 

58, 59). Furthermore, TNF-α has the ability to enhance the expression of other pro-

inflammatory cytokines and chemokines, such as IL-1, IL-6 and GM-CSF (60). 

Consequently, monoclonal antibodies against TNF-α, such as Infliximab, have become 

part of the standard therapy options in autoimmune disorders like rheumatoid arthritis, 

Crohn’s disease or psoriasis (61-63). 

 

1.3.2 Role of TNF-α in skin irritation  
Chemicals, physical stress or irradiation may cause skin irritation and therefore provoke 

a complex process in the skin that includes skin damage, cell death and activation of 

keratinocytes, immune cells and other cells (64). In the skin keratinocytes are an 

important source of pro-inflammatory cytokines such as TNF-α, IL-1α, IL-1ß, IL-18 and 

TSLP, but also of chemokines such as CXCL1 (15, 30, 65-68). Besides keratinocytes, 

fibroblasts and vascular endothelial cells also are important sources of TNF-a upon skin 

irritation. The release of TNF-α leads to an inflammatory phase with local leukocyte 
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recruitment (69). Additionally, UVB irradiation and chemical irritants such as dimethyl 

sulfoxide, PMA, formaldehyde, tributyltin and SLS cause an upregulation of TNF-α in the 

skin (67, 70). Having a pleiotropic effect on human keratinocytes and endothelial cells, 

TNF-α causes an increased expression of pro-inflammatory mediators such as IL-1, IL-

6, GM-CSF, and CXCL8 (66, 71). Moreover, TNF has been shown to weaken the skin 

barrier by inhibiting the expression of filaggrin and loricrin in human keratinocytes (7, 72). 

Concordantly, Piguet et al.  demonstrated that a treatment with a TNF-antibody abrogates 

the signs of skin inflammation in a mouse model (73). 

 

1.3.3 Role of TNF-α in AD 
The role of TNF-α in the pathogenesis of AD is not entirely clear yet. Several authors 

described lower levels of TNF-α in the skin or in the serum of AD patients compared to 

healthy controls (74-77). Jeong et al. and others measured significantly lower TNF-α 

mRNA expression in skin biopsies of AD patients compared to healthy controls (76, 77). 

Moreover, various clinical studies have described the development of eczemas as a 

common side effect upon anti-TNF therapy in patients with psoriasis, Crohn’s disease or 

rheumatoid arthritis (78-84). In a prospective analysis of patients with rheumatic disease, 

Lee et al. identified the manifestation of eczemas as the most common cutaneous side 

effect of anti-TNF therapy (79). Additionally, Kumari et al. showed in an AD model that 

TNF-KO mice developed more severe AD-like symptoms compared to WT mice (19). On 

the other hand, Sumimoto et al. measured increased TNF-α levels in 15 children with AD 

and others reported therapeutical success with anti-TNF therapy in single AD patients 

(85-89). All in all, there is little evidence in the literature for successful TNF-α directed 

therapy among AD patients (90). However, TNF-α has also been shown to mediate the 

apoptosis of auto reactive T-cells as well as to induce local glucocorticoid production (91, 

92). Consequently, it can be stated that TNF-α may even exert anti-inflammatory effects. 
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1.4 Objectives  

 
Although TNF-α has proven to be a crucial pro-inflammatory cytokine in various 

inflammatory diseases, several authors have also reported anti-inflammatory effects of 

this cytokine. Eczemas are a common side effect of anti-TNF therapy. The underlying 

mechanism of this phenomena remains elusive, however. Kumari et al. showed in an AD 

mouse model that TNF-KO mice develop an aggravated form of AD compared to WT 

mice (19). Furthermore, they were able to demonstrate that these TNF-KO mice had 

increased levels of TSLP mRNA expression. This raises the question of there being 

different cytokine patterns in TNF-KO mice upon skin irritation. Several studies have 

established shaving and tape stripping as forms of physical skin irritation that have an 

impact on inflammatory processes in the epidermis.  
 

The following questions were addressed in this thesis:  

1) Does physical skin irritation (caused by shaving and repeated tape stripping) induce 

an increase of cytokine concentration in WT and TNF-KO mice? 

2) Do TNF-KO mice show different cytokine responses compared to WT mice upon 

physical skin irritation?  

 

Answering these questions will be helpful for the better understanding of the molecular 

mechanisms induced by physical skin irritation or acute permeability disruption of the skin 

of WT as well as TNF-KO mice.  
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2. MATERIALS AND METHODS 

2.1 MATERIALS 

 

Information about reagents, solutions, buffers, chemicals, instruments, software and 

labwares are listed below: 

  

Table 1: List of reagents 

Reagent Supplier Catalog 

Number 

Agarose Biozym 840004 

Antibody diluent (Dako REALTM) DAKO Diagnostika S0809 

Aqua Braun 2351744 

Bovine serum albumin (BSA) PAA K45-001 

DermaLife K Medium Complete Kit Lifeline Cell  LL-0007 

 Technology  

Deoxyribonucleic acid (DNA) 

Molecular 
Roche 

1172192500

1 

Weight XIII –50 base pair (bp)ladder   

DNA Molecular Weight XIV–100 bp 

ladder 
Roche 

1172193300

1 

Ethanol J.T. Baker 8025 

Ethidium Bromide Solution Invitrogen 15585-011 

Hydrogen peroxide (H2O2) Sigma-Aldrich 216763 

Human TSLP ELISA kit eBioscience 88-7497-88 

LightCycler®FastStart DNA Master 

SYBR 
Roche 

1223926400

1 

Green I   
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Mouse CCL1 ELISA Kit                               BOSTER EK0566 

Mouse Cytokine Antibody Array RayBio®  

Mouse IL-5 ELISA Kit RayBio® ELM-IL5 

Mouse IL-17BR ELISA Kit RayBio® ELM-IL17BR 

Mouse IL-18 ELISA Kit MBL 7625 

Mouse KC ELISA Kit  RayBio® ELM-KC 

Mouse MIP-2 ELISA Kit RayBio® ELM-MIP2 

Mouse TSLP Duo Set  R&D Systems®  DY555  

Nucleo Spin® RNA II  Macherey-Nagel  740955.250  

PBS  GE Healthcare  H15-002  

Penicillin/Streptomycin Biochrom A 2212 

Proteinase K  Macherey-Nagel  740506  

 

 
  

Table 2: List of materials 

Material Supplier Catalog 

Number 

Biosphere Filter Tips 

0.5-20 µL 

2-100 µL 

Sarstedt 

70.1116.

20 

70.760.2

12  

70.762.2

11  
 

100-1000µL   

LightCycler® Capillaries  Roche  049292920

01  

   

Micro tube, 0.5mL Sarstedt 72.699  

Micro tube, 1.5 mL  Sarstedt 72.690.001  
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Table 3: List of instruments 

   

Instrument Type Supplier 

Centrifuge Megafuge 1.0R Thermo Scientific, 

Schwerte 

Electrophoresis System Sub-Cell®GT 
Bio Rad, 

München 

Gel Imager Gene Genius 
Syngene, 

Cambridge 

Light Cycler  Roche, Penzberg 

Microplate reader Dynatech MRX Dynex 

Technoloies, 

Chantilly 

Pipette Eppendorf Reference®/ 

Research® 

Eppendorf, 

Hamburg 

  

Micro tube, 2 mL  

 

Sarstedt  72.691  

 

Quality Tips without filter  

10 μL  

200 μL  

1000 μL  

Sarstedt  70.1130  

70.760.002  

70.762  

   

Serological Pipet  

5 mL  

10 mL  

25 mL  

BD FalconTM  357543  

357551  

357525  
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PCR machine  
Px2 Thermal Cycler  

Thermo Electron 

Corporation  

Thermomixer 
Thermomixer comfort 

Eppendorf, 

Hamburg 

Tissue homogenizer  Precellys 24  Bertin 

Technologies, 

Montigny-le-

Bretonneux  

Waterbath  MA6  Lauda, Lauda-

Königshofen  

Vortexer  REAX 2000  Heidolph, 

Schwabach  

  

   

2.2 METHODS  

2.2.1 Animals 

2.2.1.1 Breeding of B6;129S-Tnftm1Gkl/J (TNF-KO) mice  

 
TNF-KO mice were kindly provided by Professor Max Löhning from the DRFZ, Berlin. 

Originally, the strain was generated by using a targeting vector to replace the TNF gene 

with MC1neopA cassette (Stratagene), the 438 bp Narl-BglII fragment containing 40 bp 

of the 5' UTR, and all the coding region, including the ATG translation initiation codon of 

the first exon and part of the first intron of the mTNF-α gene. The homozygous animals 

were bred according to animal guidelines at the Charité animal facility (FEM). Control 

animals (C57B16/JRj) were ordered from a stock breeding at the Charité animal facility 

(FEM). The animals used for the ex vivo skin irritation model were painlessly sacrificed 

by a qualified member of professor Worm’s group and listed accordingly (Tötungsanzeige 

T0027/19). 
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2.2.1.2 Ex Vivo skin irritation model 

Eight- to twelve-week-old female C57B16/JRj (wt) and TNF-KO mice were painlessly 

sacrificed by a qualified person. Immediately after death, the belly regions were wet 

shaved and the resulting area was divided into two equal parts as shown in Figure 3. The 

lower part of the belly was then tape stripped 30 times by  

using cello tape in order to irritate the skin. The entire shaved area was cut out with 

scissors and put on a piece of cork with the dermis facing downward. As many  

biopsies as possible were taken from each area of the skin for  

ELISAs and mRNA isolation, using a 5.0 mm  

biopsy punch (Figure 4). Each biopsy was immediately put into a  

50ml falcon containing 15ml hydrocorticoid free KBM gold KC medium.  

At a germ-free bench under airflow, three biopsies from each condition were placed into 

a well of a 24-well plate filled with 450µl of prewarmed fresh hydrocorticoid free KBM gold 

KC medium. The biopsies were incubated for four or twelve hours. The supernatant and 

the biopsies were then snap-frozen separately and stored at -80°C.  

 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Scheme of the skin irritation model ex vivo  
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Figure 4: Example of the experimental approach 
The lower part was wet shaved and tape stripped, whereas the upper part was only wet shaved. 

Biopsies were taken accordingly.  

 

2.2.2 Multi Array  Experiment 

The supernatants of the performed ex vivo experiment were measured for 96 different 

cytokine levels (Figure 5). The multi array works similarly to a sandwich based ELISA 

which is explained below (Figure 8). The fluorescent signal was obtained by using a laser 

scanner and ImageJ software was used to translate the fluorescent signals into arbitrary 

units (Figures 6, 7). The analysis was performed based on RayBio®Mouse Cytokine 

Antibody Array G-Series 1000 according to manufacturer’s instructions.  
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Figure 5: Scheme of the multi array glass slides 
Each glass slide has eight subarrays. Array 1 can detect 34 different mouse cytokines in one 
experiment. Array two can detect 62 different mouse cytokines in one experiment. 

 

 

 

 
Figure 6: Example of two subarrays 
Subarrays on a slide after the fluorescent signal was detected by means of a laser scanner. 
Each fluorescent circle represents a detected cytokine or a positive control. Negative controls 

were used for background subtraction.  
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Figure 7: Example of an image of a subarray measured with ImageJ software 
The software is able to detect the intensity of the fluorescence and measure it immediately as a 

table of values.  

 

2.2.3 Mouse Enzyme Linked Immunosorbent Assay (ELISA)  

An ELISA is used in order to detect the unknown amount of a protein in a liquid. In this 

work, several sandwich based ELISAs were used. In this model, specific capture 

antibodies were coated on the surface of a reaction plate. The supernatant or standard 

was then added to the plate, followed by an incubation period which allowed the antigen 

to bind to the primary antibody. In a second step, a biotin-conjugated detection antibody 

was added to the plate, which was supposed to bind to the capture antibody-antigen 

complex during another incubation time. Thereafter, the plates were incubated with 

horseradish peroxidase (HRP), which binds to the biotin-conjugated antibody. Between 

these steps, the wells were washed with PBS or a specific washing solution depending 

on the ELISA. Finally, a substrate solution such as TMB was added, causing an 

enzymatic reaction with a color change in proportion to the amount of the cytokine present 

in the well (Figure 8). The colored product was measured by a spectrophotometer. The 

program “Revelation” calculated the concentration of the specific protein in the samples 

by means of a standard curve for which the blank value was first subtracted. All steps 

were performed at room temperature.  
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Based on the results of the multi array experiment, the supernatants of the performed ex 

vivo experiment were then measured for mouse IL-1alpha (IL-1 alpha ELISA kit from R&D 

systems), mouse CXCL1 (RayBio®Mouse KC ELISA Kit), mouse CXCL2 

(RayBio®Mouse-2 ELISA Kit), mouse CCL1 (Mouse CCL1/TCA3 PicoKine™ELISA Kit 

from BOSTER), mouse IL-5 (RayBio®Mouse IL-5 ELISA Kit) and mouse IL-17BR 

(RayBio®Mouse IL-17BR ELISA Kit). Additionally, the supernatant was also measured 

for mouse IL-18 (Mouse IL-18 Platinum ELISA from eBioscience / Mouse IL-18 ELISA Kit 

from MBL). The analysis was performed according to the manufacturer’s instructions.  

 
Figure 8: Scheme of sandwich based enzyme linked immunosorbent assay 

(ELISA) 
Adapted from Epitomics - an Abcam Company. 
 
 

2.2.4 RNA isolation  

The frozen skin samples were put into liquid nitrogen and each sample was then 

transferred into a pre-chilled bead tube (Precellys) containing 250 μL of RA1 buffer 

(NucleoSpin® RNA isolation kit) and 2.5 μL of β-mercaptoethanol (β-ME). The 

homogenization was performed by using precellys 24 tissue homogenizer at 55000 rpm 

for 2*30 sec with a 5 sec pause. The supernatant was then transferred into a NucleoSpin 

filter and centrifuged for two minutes at 11 000 g at room temperature. Without touching 

the pellet, the supernatant was taken out and 500 µl of RNase-free water as well as 100 

µl of 10% proteinase K were added and mixed and then incubated for 15 minutes at 55°C. 

Afterwards, the lysate was centrifuged for three minutes at 10 000g. Without touching the 

pallet, the supernatant was pipetted into a new autoclaved eppy and 500µl of 100% 

ethanol was added to the lysate and mixed well by pipetting up and down. 750µl of the 

lysate was then loaded into a NucleoSpin RNA ll Column and centrifuged for 15 seconds 

at 8 000g. The flowthrough was discarded and the same was done to the remaining lysate. 

350µl of MDB (membrane desalting buffer) was added to the NucleoSpin RNA ll column 
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and centrifuged for one minute at 8 000 g. 95µl of DNase reaction mixture was pipetted 

directly onto the center of the silica membrane of the column and incubated for 15 minutes 

at room temperature. Further RNA isolation was performed according to the 

manufacturer’s instructions. The RNA was eluted with 30 μl of RNase-free water. Using 

NanoDrop UV-Vis spectrophotometer, the RNA concentration was measured at 260 nm. 

The eluted samples were stored at -80 °C for further analysis. 

 

2.2.5. Reverse transcription  
The RNA was entirely reverse transcribed into single stranded cDNA with TaqMan® 

reverse transcription reagent according to the manufacturer’s instructions. 1 μg of total 

RNA was used for reverse transcription into cDNA in a thermo cycler with the following 

protocol. If 1µg was not available, the missing amount was replaced with sterile BRAUN® 

water.  

 

Table 4: Reverse transcription 

Steps Temperature (°C) Time (min) 

Incubation 25 10 

Reverse transcription (RT) 48 40 

RT inactivation 95 5 

 

All cDNA samples were stored at -20 °C. 

 

2.2.6 Real-time polymerase chain reaction (qPCR) 

Fluorescence-based real-time quantitative polymerase chain reaction (qPCR) was 

performed for the quantification of gene expression in skin samples on the previously 

transcribed cDNA. The LightCycler® FastStart DNA Master SYBR Green I (Roche) was 

used according to the protocol listed below. The cDNA was first diluted 1:3. The specific 

binding of SYBR green fluorescence dye to the rising amount of double-stranded DNA 

causes an increased level of fluorescence which may then be measured. Naturally, an 

unspecific binding of SYBR-green also occurs, which needs to be subtracted. Therefore, 

the PCR buffer also contains a reference dye in order to normalize the specific binding. 
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The threshold cycle value (ct) defines the number of cycles that were needed to see a 

significant increase of the fluorescence. The relative expression of a gene was thus 

calculated dependent on its CT value and the efficacy of the primer. The expression level 

of the target gene was normalized to the expression level of the housekeeping gene 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) using the 2-ΔΔCT method. 

 

Table 5: qPCR 

Component Final conc. µl/rxn (rxn=10) 

Sybrgreen 1x 5 

Fw-Primer  0.5 

Rev. Primer  0.5 

Braun water  2 
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Table 6: Primer sequence 

Gene Primers Sequence  Size Product 

size 

mGAPDH forward 5‘-ctttgtcaagctcatttcctgg-

3‘ 

22 133 

reverse 5’-tcttgctcagtgtccttgc-3’ 19 

mIL17-BR forward 5‘-

gcaagcggcagataaagtgg-

3‘ 

20 196 

reverse  5’-tgctcccccaagatagacca-

3’ 

20 

mIL5 forward  5‘-actgtgccatgactgtgcct-3‘ 20 114 

reverse  5‘-

acggagaagtaaggcccagc-

3‘ 

20 

mIL18 forward 5‘-caactttggccgacttcactg-

3‘ 

21 100 

reverse  5‘-

agtcatatcctcgaacacaggc-

3‘ 

22 

 

2.3 Statistical Analysis  

 

To prove a normal distribution of the values, the D’Agostino-Pearson omnibus normality 

test, Shapiro-Wilk normality test and Kolmogorov-Smirnov normality test were performed. 

If one of the above-mentioned tests confirmed a normal distribution of the data, a 

parametric t-test was performed (paired and unpaired). GraphPad Prism version 5 

(GraphPad Software, USA) was used for all statistical analyses. P < 0.05 was considered 

as statistically significant. 
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3. Results 

In a skin irritation model, Kumari et al. demonstrated that TNF-KO mice developed a more 

severe dermatitis in comparison to WT mice upon OVA injections and physical skin 

irritation within a time span of 71 days (19). Additionally, dermatitis-like symptoms are a 

possible adverse event of anti-TNF therapy (78, 79, 83) and several studies reported 

lower TNF levels in AD patients (74-77). This raised the question of whether TNF-KO 

mice show a different cytokine pattern upon skin irritation, which may eventually lead to 

a predisposition for AD in the absence of TNF-α. In order to asses this question in detail, 

8- to 10-week-old female WT and TNF-KO mice were sacrificed, wet shaved or 

additionally tape stripped on a defined belly region, and biopsies were taken and 

incubated in fresh hydrocorticoid free KBM gold KC medium for four or twelve hours. The 

supernatant was snap frozen and stored at -80°C for protein analysis by ELISA. Skin 

biopsies were used for qPCR to determine gene expression.  

 

3.1 Multi Array Experiment  

In a first step, a multi array experiment was performed detecting 96 different cytokines at 

once. In this setting, we wanted to determine whether protein levels of these cytokines 

are different between WT and TNF-KO mice upon physical skin irritation. We chose this 

panel because, inter alia, it was able to not only detect key cytokines from the IL-1 family, 

such as IL-1α and IL-1ß, but also Th2 cytokines like IL-4, IL-5, IL-13 and TSLP. IL-18, an 

important member of the IL-1 family, was not included in the panel. Therefore, we 

performed IL-18 ELISAs separately.  

After four and twelve hours of incubation, IL-1ß levels were unaltered between genotypes 

(Figure 9A). TSLP levels were similar in both genotypes after four hours of incubation. 

After twelve hours of incubation, the levels were higher in TNF-KO compared to WT mice 

(11.500 AU vs. 1390 AU) (Figure 9B). IL-4 levels were only slightly higher in TNF-KO 

after four (1103 AU vs. 1646 AU) and twelve hours (1509 AU vs. 2063 AU) of incubation 

compared to WT mice (Figure 9C). The levels of IL-13 were similar in both genotypes 

after four and twelve hours of incubation (Figure 9D).  
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Cytokine levels of IL-1ß (A), TSLP (B), IL-4 (C) and IL-13 (D) after four (left panel) and  
twelve hours (right panel) post irritation, respectively. Data are shown  

as mean, each mouse is indicated by a single dot, n = 2 mice/group.  
 

 

The largest differences of cytokine levels between the genotypes were observed 

regarding the expression of the proteins IL-1α, CXCL1, CXCL2, CCL1, IL-5 and IL-17BR  

(Figure 10). 

 

IL-1α is known to play a major role in the skin barrier function and has been shown to 

play a significant role in the pathogenesis of AD  (31, 40, 93). In the multi array experiment, 

IL-1α levels were similar in both genotypes after four hours of incubation (55.000 AU in 

WT vs. 52.000 AU in TNF-KO). After twelve hours of incubation IL-1α levels were 
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Figure 9: Cytokines of the IL-1 family and Th2 cytokines detected in the multi array 

experiment in the skin of WT and TNF-KO mice upon irritation 
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approximately two times higher in TNF-KO (106.000 AU) compared to WT mice (50.000 

AU) (Figure 10A). CXCL1 and CXCL2 are homologues, and both related to skin injury 

and inflammatory processes (94-96). In the multi array experiment, CXCL1 levels in WT 

mice were at 39.000 AU and in TNF-KO mice at 59.000 AU after four hours of incubation 

(Figure 10B). CXCL2 levels in WT mice were at 73.000 AU and at 208.000 AU in TNF-

KO after four hours of incubation (Figure 10C). The levels of both chemokines were 

similar in both genotypes after twelve hours of incubation (Figure 10B, C). CCL1 is an 

inflammatory cytokine associated with AD (97, 98). CCL1 levels were twice as high in WT 

than in TNF-KO mice after four hours of incubation (1200 AU vs. 720 AU). This tendency 

was less striking after twelve hours but still remained visible (Figure 10D). IL-5 is 

considered an inflammatory Th2 cytokine and is hence associated with AD (99, 100). 

After four hours, IL-5 levels were similar in both genotypes. After twelve hours IL-5 levels 

were two times higher in TNF-KO compared to WT mice (3100 vs 1500 AU) (Figure 10E). 

IL-17BR is part of the receptor for IL-17B as well as for IL-25 (101, 102). After four hours 

of incubation, IL-17BR levels were at 450 AU in WT and at 21.500 AU in TNF-KO mice. 

After twelve hours, the relation was 1250 AU vs. 13.000 AU (Figure 10F).  Among the 96 

cytokines, these five proteins were the most differentially regulated ones within the 

experiment.    
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Cytokine levels of IL-1α (A), CXCL1 (B), CXCL2 (C), CCL1 (D), IL-5 (E) and IL-17BR (F) after 
four (left panel) or twelve hours (right panel) post irritation, respectively. Data are shown  

as mean, each mouse is indicated by a single dot, n = 2 mice/group.  
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Figure 10: Cytokines detected in the multi array experiment that showed 
notable differences between the two genotypes ex vivo 
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To verify the results of Figure 10, we analyzed the corresponding cytokines by simple 

protein ELISAs in the next step. 

3.2 ELISA  

In order to see whether the results from 5.1 were reproducible, specific ELISAs for IL-1α, 

CXCL1, CXCL2, CCL1, IL-5 and IL-17BR were performed. Based on the literature, we 

were also interested in IL-18. For this purpose, 8- to 10-week-old female WT and TNF-

KO mice were sacrificed and either only wet shaved or additionally tape stripped on the 

previously defined belly region. Biopsies were taken and incubated in fresh hydrocorticoid 

free KBM gold KC medium for four or twelve hours. The supernatant was snap frozen 

and stored at -80°C until ELISAs were performed. 

 

3.2.1 IL-1α 
IL-1α is mainly produced by neutrophils, endothelial cells, activated macrophages, 

epithelial cells as well as by keratinocytes (93, 103). It is known to be a major inflammatory 

cytokine and is therefore used as an indicator of inflammation or skin impairment in 

clinical trials (104, 105). In the multi array experiment, we saw higher levels of IL-1α in 

TNF-KO mice after twelve hours of incubation (Figure 10A). In order to assess 

reproducibility, we performed an ELISA using skin samples from more mice. After four 

hours of incubation, the levels of IL-1α were similar in all conditions, while showing a 

strong variance (Figure 11A). After twelve hours of incubation, the levels of IL-1α were 

similar in both genotypes upon wet shaving only. Additional tape stripping  

seemed to decrease the levels of IL-1α in both  

genotypes. However, statistically there was a tendency of a stronger decrease  

only in WT mice (Figure 11B, p=0.058). 
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A) 

 
B) 

 
Figure 11: Impact of physical skin irritation on IL-1α production in WT and TNF-
KO mice 
IL-1α production in the irritated skin after four hours (A) and twelve hours (B) post irritation, 

respectively. Data are shown as mean, each mouse is indicated by a single dot; n = 4-6 
mice/group, ws = wet shaving, ts = tape stripping. Data was analyzed using the paired t-test.  
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We observed a decrease of cytokine levels upon additional tape stripping compared to 

only wet shaving in IL-1α. For the following cytokines we performed a first ELISA with 

less samples to check for this phenomenon. In all cases, a decrease of cytokine levels 

upon tape stripping was determined. Therefore, we only pursued wet shaving further.  

 

3.2.2 CXCL1 
CXCL1 is expressed by macrophages, neutrophils, keratinocytes and epithelial cells,  and 

plays a role in inflammation and wound healing (96, 106, 107). In the multi array 

experiment, higher levels of CXCL1 were measured, especially after four hours of 

incubation in TNF-KO compared to WT (Figure 10B). In order to assess reproducibility, 

we performed a CXCL1 ELISA with samples from more mice. After four hours of 

incubation, the levels of CXCL1 were similar in both genotypes (Figure 12). Over time, 

wet shaving led to a significant increase of CXCL1 production in WT and showed the 

same tendency in TNF-KO. In WT mice, CXCL1 levels increased from 270pg/ml to 

1800pg/ml (p=0.02). In TNF-KO mice, the levels increased from 290pg/ml to 2442pg/ml 

(p=0.067).  

 

 
Figure 12: Impact of wet shaving on CXCL1 production in WT and TNF-KO mice 
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CXCL1 production in the irritated skin after four hours (left panel) and twelve hours (right panel) 

post irritation, respectively. Data are shown as mean, each mouse is indicated by a single dot; n 

= 6-9 mice/group. Data was analyzed using the paired t-test (*P ≤ 0.05). 

 

3.2.3 CXCL2 
Macrophage inflammatory protein 2-alpha or CXCL2 is secreted by macrophages and 

monocytes and plays a role in angiogenesis, cancer metastasis and wound healing (108, 

109). In the multi array experiment, higher levels of CXCL2 were measured after four 

hours of incubation in TNF-KO (Figure 10C). In order to investigate whether these results 

could be reproduced with samples from more mice, a CXCL2 ELISA was performed. Wet 

shaving induced a significant increase of CXCL2 production in both genotypes time 

dependently. In WT mice, CXCL2 mean levels increased from 267pg/ml to 3963pg/ml 

(p=0.002) and in TNF-KO from 318pg/ml to 3802pg/ml (p=0.0056) over time. However, 

there was no difference between the different genotypes regarding the increase of CXCL2 

levels upon irritation (Figure 13).  

 

 
Figure 13: Impact of wet shaving on CXCL2 production in WT and TNF-KO mice  
CXCL2 production in the irritated skin after four hours (left panel) and twelve hours (right panel) 

post irritation, respectively. Data are shown as mean; each mouse is indicated by a single dot; n 
= 7-9 mice/group. Data was analyzed using the paired t-test. (**P ≤ 0.01). 
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3.2.4 CCL1  

CCL1 is a glycoprotein secreted by activated T-cells and attracts various immune cells 

such as monocytes, NK-cells and dendritic cells (110, 111). In the multi array experiment, 

higher levels of CCL1 were measured in WT mice compared to TNF-KO mice upon 

physical skin irritation (Figure 10D). We performed the experiment on more mice to check 

for reproducibility. CCL1 levels were similar in both genotypes in all conditions and did 

not increase or decrease over time (Figure 14). 

 
Figure 14: Impact of wet shaving on CCL1 production in WT and TNF-KO mice 
CCL1 production in the irritated skin after four hours (left panel) and twelve hours (right panel) 
post irritation, respectively. Data are shown as mean, each mouse is indicated by a single dot; n 

= 8-9 mice/group. 

 

3.2.5 IL-5 

Interleukin-5 is produced, inter alia, by type-2 T helper cells and mast cells and plays a 

role in B-cell growth, immunoglobulin secretion and eosinophil activation (45, 112, 113). 

In the multi array experiment, higher levels of IL-5 were measured in TNF-KO mice 

compared to WT mice especially, after twelve hours of incubation (Figure 10E). Hence, 

an IL-5 ELISA with samples from more mice was performed to detect whether this result 

was reproducible. After four hours of incubation, the levels of IL-5 were similar in all 

conditions in WT and TNF-KO mice (Figure 15). After twelve hours of incubation, IL-5 
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levels increased significantly in both genotypes compared to four hours. In WT mice, the 

mean level of IL-5 increased from 7 pg/ml to 154 pg/ml (p=0.012) and in TNF-KO it 

increased from 7 pg/ml to 270 pg/ml (p=0.037). Interestingly, IL-5 levels had a tendency 

of higher levels in TNF-KO (265 pg/ml) after twelve hours compared to WT mice (152 

pg/ml) (p=0.072).  

 
Figure 15: Impact of wet shaving on IL-5 production in WT and TNF-KO mice 
IL-5 production in the irritated skin after four hours (left panel) and twelve hours (right panel) 

post irritation, respectively. Data are shown as mean; each mouse is indicated by a single dot; n 
= 5-9 mice/group. Data was analyzed using the t-test.  (*P ≤ 0.05). 
 

 

As we observed a tendency for an increased IL-5 production in TNF-KO compared to WT 

mice upon physical skin irritation, we performed qPCR to check for this finding on a mRNA 

level after four hours of incubation. However, at the chosen time point, no difference was 

detected between the genotypes (Figure 16).  
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IL-5 mRNA expression in the irritated skin four hours post irritation. Data are shown as mean; 

each mouse is indicated by a single dot; n = 5 mice/group. 

 

 

3.2.6 IL-17-BR 

Interleukin-17B receptor is the receptor to IL-17B and, together with IL17RA, also the 

receptor to IL17E/IL25. (114-116). It is expressed in various organs such as in the kidney 

or in the lungs, but also by cells of the immune system such as Th2 memory cells or ILC2 

(101, 102). In the multi array experiment, we saw higher levels of IL-17BR in TNF-KO 

mice compared to WT mice upon physical skin irritation (Figure 10F). We used ELISAs 

with samples from more mice to scrutinize reproducibility. After four hours of incubation, 

the levels of IL-17BR were significantly higher in TNF-KO compared to WT (0.7 pg/ml vs. 

1.5 pg/ml, p=0.03). After twelve hours of incubation, the levels of IL-17BR were similar in 

both genotypes (Figure 17). However, the levels of IL-17BR increased significantly over 

time in WT mice from 0.6 pg/ml after four hours of incubation to 1.5 pg/ml after twelve 

hours of incubation (p=0.01). 
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Figure 16: Comparative analysis of IL-5 expression between WT and TNF-KO 

mice upon wet shaving 
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Figure 17: Impact of wet shaving on IL-17BR production in WT and TNF-KO mice 
IL-17BR production in the irritated skin four hours (left panel) and twelve hours (right panel) post 

irritation, respectively. Data are shown as mean, each mouse is indicated by a single dot; n = 7-
9 mice/group. The data was analyzed using the t-test. (*P ≤ 0.05). 
 

At the protein level, we determined a significantly higher increase of IL-17BR levels upon 

wet shaving in TNF-KO compared to WT mice. We performed qPCR to see whether 

mRNA levels confirm this result. However, mRNA levels of IL-17BR were similar in both 

genotypes after four hours of incubation.  
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IL-17BR mRNA expression in the irritated skin four hours post irritation. Data are shown as mean; 

each mouse is indicated by a single dot; n = 5-6 mice/group. 
 

 

3.2.7 IL-18 

IL-18 is produced by various cells, such as dendritic cells or keratinocytes (117, 118). 

Being able to trigger Th1 as well as Th2 response, it is considered a pleiotropic cytokine 

(119, 120). Different studies have shown that IL-18 is associated with AD (121-124). 

Hence, the ELISA was applied to study whether IL-18 is regulated differently in the two 

genotypes upon physical skin irritation. After four and after twelve hours of incubation, 

the levels of IL-18 were similar in both genotypes. However, the levels of IL-18 increased 

in both genotypes significantly over time upon wet shaving. In WT mice the cytokine levels 

increased from 225 pg/ml to 330 pg/ml (p=0.002) and in TNF-KO, they increased from 

259 pg/ml to 359 pg/ml (p=0.028) (Figure 19). 
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Figure 18: Comparative analysis of IL-17BR expression between WT and TNF-KO 

mice upon wet shaving 
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Figure 19: Impact of physical skin irritation on IL-18 production in WT and TNF-

KO mice 
IL-18 production in the irritated skin four hours (left panel) and twelve hours (right panel) post 

irritation, respectively. Data are shown as mean; each mouse is indicated by a single dot; n = 9-

10 mice/group.  Data was analyzed using the paired t-test.  (*P ≤ 0.05, **P ≤ 0.01). 

 
After measuring IL-18 production at the protein level, we performed qPCR to evaluate 

whether mRNA expression of IL-18 is differently regulated in the two genotypes. However, 

after four hours of incubation, the mRNA levels of IL-18 were similar in the genotypes 

(Figure 20). 
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IL-18 mRNA expression in the irritated skin four hours post irritation. Data are shown as mean; 

each mouse is indicated by a single dot; n = 6 mice/group. 
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Figure 20: Comparative analysis of IL-18 expression between WT and TNF-KO 

mice upon wet shaving 
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4. Discussion  

TNF-α is known to be one of the key factors and driving forces in various chronic 

inflammatory diseases (56, 59, 60). However, the role of endogenous TNF-α in physical 

skin irritation, skin inflammation and particularly AD remains elusive. Kumari et al. 

reported an adverse interaction between TNF and AD, suggesting that the absence of 

TNF results in an aggravated AD (19). Kumari et al. showed in an AD mouse model that 

TNF-KO mice developed an aggravated AD and displayed further increased TSLP 

expression as well as MCs numbers compared to WT mice (19). However, it is not clear 

why TNF-KO mice are more prone to develop AD symptoms upon skin irritation compared 

to WT mice. We speculated that TNF-KO mice show a different cytokine pattern upon 

skin irritation, which eventually may explain why TNF deficiency predisposes to enhanced 

manifestation of AD. 

 

This thesis aimed to uncover major differences in cytokine patterns upon physical skin 

irritation in WT and TNF-KO mice ex vivo to pin down the mechanisms underlying AD 

predisposition in the absence of TNF. For this purpose, the skin of WT and TNF-KO mice 

was irritated by either wet shaving only or additional tape stripping ex vivo. Biopsies were 

taken and incubated for four and twelve hours. The supernatants were used for 

measuring the protein levels of cytokines and the biopsies were used to analyze gene 

expression. First, a multi array experiment detecting 98 different cytokines was 

performed. Based on the results, six cytokines were chosen for further investigation. This 

particular array was chosen as it was able to detect Th2 cytokines as well as key cytokines 

from the IL-1 family. Both groups are known to play a significant role in the pathogenesis 

of AD (31, 93). As IL-18, another important member of the IL-1 family, was not included 

in the panel. Therefore, we investigated IL-18 separately. 
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4.1 IL-1 alpha levels are similar in TNF-KO and WT upon physical skin 

irritation  

 

Interleukin (IL)-1 alpha (IL-1α) belongs to the IL-1 family and has another isoform named 

IL1-beta (IL-ß). IL-1α is mainly produced by neutrophils, endothelial cells, epithelial cells 

as well as by keratinocytes (93, 103). IL-1α is reported to initiate and maintain 

inflammatory processes and to induce the expression of various other pro-inflammatory 

cytokines and mediators, such as IL-5 or TNF- α (93, 103, 105). Hence, IL-1α is frequently 

used as an indicator for inflammation and skin barrier impairment in clinical trials (104, 

125, 126). Moreover, IL-1 is produced by keratinocytes upon disruption of the skin barrier 

and in the acute phase of AD (93). In humans, Machaelidou observed an increase of IL-

1α protein levels in healthy individuals upon disrupting the skin barrier via tape stripping 

(data not published). Additionally, Reilly et al. as well as Doege et al. described an 

increase of IL-1α production in human skin upon tape stripping (126, 127). However, 

Dickel et al. did not report an increase of IL-1α mRNA expression in tape stripped human 

skin (128). The contradicting results may be explained by the different methods that were 

applied. Doege et al. performed 50 tape strips on the skin and measured superficial IL-

1α production on Sebutape (126). Reilly et al. carried out 10 tape strips and analyzed IL-

1α levels in suction blister fluids (127). Dickel et al. tape stripped the skin down to the 

stratum lucidum and measured IL-1α mRNA expression in curettage biopsies (128).  

In mice, Wood et al. (1992) reported an increase of IL-1α mRNA expression upon tape 

stripping hairless mice (17). In 1996, these authors confirmed their results by means of 

immunohistochemistry and ELISA (129). Based on the literature, we expected an 

increase of IL-1α levels upon tape stripping. Interestingly, we determined a tendency 

towards a decrease of IL-1α protein levels upon treatment. Again, this may be explained 

through the different methods used. Wood et al. (1992) used male hairless mice, tape 

stripped them 5-8 times and incubated the skin for 35 minutes. Wood et al. (1996) used 

male hairless mice, tape stripped them four times and incubated the skin for 15 minutes.  

We shaved sacrificed female mice, tape stripped them 30 times and incubated the 

biopsies for four or twelve hours. It needs to be pointed out that shaving as well as tape 

stripping removes layers of the stratum corneum and, as a consequence, it also removes 
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IL-1α itself (126, 129). Moreover, longer incubation times may result in a decrease of 

protein levels as cytokine expressions follow certain kinetics. Wood et al. have shown 

that upon skin irritation, IL-1α levels already increase ten minutes upon tape stripping and 

start to decrease after four hours. Hence, our results are consistent with the literature.  

Furthermore, we did not determine any difference between TNF-KO and WT regarding 

IL-1α protein levels upon physical skin irritation. Kutsch et al. showed that human 

keratinocytes produced significant amounts of IL-1α in response to TNF stimulation (130). 

Contrary to Kutsch et al., we performed an ex vivo and not an in vitro experiment and 

used murine and not human material. Moreover, Kutsch et al. worked with exogenous 

TNF- α. This may explain the differing results. In accordance to our data, Kumari et al. 

from our group showed in an AD model that in lesional skin, TNF-KO mice express similar 

protein amounts of IL-1α as WT mice (19). In summary, these findings suggest that it is 

unlikely that IL-1α is a cytokine responsible for AD predisposition in the absence of TNF 

or that is regulated differently in TNF-KO mice.  

 

4.2 CXCL1 protein concentration increases in TNF-KO and WT mice upon 

wet shaving and shows higher concentration in TNF-KO mice compared to 

WT mice 

CXCL1, also known as Keratinocyte-derived Chemokine (KC) or growth-related 

oncogene alpha (GRO-alpha) or cytokine-induced neutrophil chemoattractant-1 (CINC-

1), is a homologue to CXCL2 and belongs to the CXC chemokine family that has been 

reported to attract and activate neutrophils (107, 108, 131, 132). This chemokine family 

is also known to play a role in directing leukocytes to the sites of injury or inflammation, 

thus perpetuating the inflammatory process (133). It is expressed by macrophages, 

neutrophils, epithelial cells, keratinocytes and mast cells (96, 106, 108, 134). 

Furthermore, CXCL1 is induced in the human epidermis upon skin irritation and its 

inflammatory processes (96). Even though CXCL1 is considered as an AD related 

chemokine, its mechanism of action in the pathogenesis of the disease still remains 

unclear (131, 135-137). Our results show a significant increase of CXCL1 protein 

expression in both genotypes after twelve hours of incubation compared to four hours of 
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incubation upon wet shaving. To the best of our knowledge, we were able to show for the 

first time that wet shaving alone is sufficient to provoke CXCL1 production in murine skin. 

Using a MC903 irritation mouse model, Welsh et al. saw an increase of CXCL1 mRNA 

expression at a very early time point in their experimental setup before any itch behavior 

(138). This finding is in accordance with our results and implies an important role of 

CXCL1 during the early stages of skin irritation/inflammation. 

 

Several authors described an increasing effect of TNF on CXCL1 expression in different 

experimental settings using human cells. Lo et al. showed that the incubation of HUVEC 

with TNF resulted in a significant increase of CXCL1 mRNA expression and CXCL1 

production (139). Additionally, Shieh et al. presented similar results using human 

pulmonary epithelial cells (132). Moreover, Ohta et al. reported an increase of CXCL1 

mRNA expression in human synovial fibroblasts upon TNF treatment (140). Based on the 

literature, we expected lower CXCL1 expression in TNF-KO mice. Our results, however, 

showed that endogenous TNF is dispensable for CXCL1 production, as we saw no 

difference in protein levels of CXCL1 in TNF-KO compared to WT mice upon physical 

skin irritation. 

Contrary to the other authors mentioned above, we performed ex vivo experiments, 

whereas the other groups performed in vitro experiments adding exogenous TNF. Skin 

irritation is a complex process and its pathomechanism is not completely understood. 

Different systems and organs are tightly linked with each other. In vitro studies are known 

for being very different from the natural organism, lacking its complexity. Ex vivo models, 

on the other hand, are closer to the in vivo setting, mimicking normal skin (141, 142), 

whereas In vitro studies are not able to reproduce the complexity of a living organism. 

Additionally, the above-mentioned publications show data in human cell lines whereas 

we performed experiments in mice. The completely different experimental settings are 

possible explanations for the somewhat contradictory results. However, Segueni et al. 

used an ex vivo model and reported that the lungs of TNF-KO mice showed higher protein 

levels of CXCL1 compared to WT 28 days after a M. tuberculosis infection (143). This 

observation is in line with our results.  

Because CXCL1 has been reported to cause itch and neutrophil infiltration and is 

released from mast cells as well as keratinocytes, other groups speculate that CXCL1 is 



51 

 

a chemokine that plays a role in AD predisposition in the absence of TNF and/or in 

physical skin irritation (96, 108, 138). However, in our study, no significant difference 

between TNF-KO and WT mice regarding CXCL1 expression upon physical skin irritation 

was determined.  

 

4.3 Wet shaving induces CXCL2 production in WT and TNF-KO mice  

Chemokine (C-X-C motif) ligand 2 (CXCL2), also known as macrophage inflammatory 

protein 2-α (MIP-2), belongs to the CXC chemokine family and is secreted by monocytes, 

macrophages and mast cells (108, 109). Even though it has been reported that tape 

stripping increases CXCL-2 production in mouse skin, Takahashi et al. observed a 

decrease in CXCL2 levels when it was tape stripped excessively, probably due to a loss 

of keratinocytes (94, 95). To the best of our knowledge, we were able to show for the first 

time that wet shaving alone is sufficient for a significant increase of CXCL2 production in 

mice over time. Hence, CXCL2 is a chemokine, which may play a role in the early steps 

of skin irritation/inflammation.  

 

Different authors reported an increase of CXCL2 protein levels and/or mRNA expression 

upon TNF stimulation in vivo or in vitro in different organs of rodents. De Plaen et al. 

showed that IEC-6 cells increased CXCL2 protein production when incubated with TNF. 

This effect was dose dependent and significant at one hour following TNF incubation, and 

remained present after four hours (144). Li et al. showed that a nasal application of 10ng 

TNF is followed by an increase of CXCL2 mRNA expression in murine lungs of more than 

200-fold (145). Additionally, Gong et al. saw an increase of CXCL2 mRNA levels in murine 

kidneys and liver upon intraperitoneal injections of 250ng TNF (4.2 and 6.6-fold increase, 

respectively). However, the mRNA expression of CXCL2 in the spleen was not affected 

by TNF injections, indicating that different organs may respond differently to TNF (146). 

As these authors demonstrated an increasing effect of TNF on CXCL2 expression we 

expected to see lower CXCL2 levels in TNF-KO mice.  However, we did not detect a 

difference regarding protein levels of CXCL2 between WT and TNF-KO mice upon 

physical skin irritation. There are several possible factors behind this discrepancy. 

Contrary to our experimental setup, all the above-mentioned authors performed 
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experiments adding varying amounts of TNF exogenously. Moreover, De Plaen et al. 

performed an in vitro experiment, whereas we performed ex vivo experiments. 

Furthermore, the authors analyzed IEC-6, murine lungs, kidneys and livers for CXCL2 

levels upon TNF administration, whereas we performed our experiments on murine skin. 

Interestingly, Kielian et al. performed, just like us, ex vivo experiments comparing CXCL2 

levels in TNF-KO and WT mice in staphylococcus aureus-induced brain abscesses. The 

authors did not see any significant difference regarding CXCL2 protein levels, which 

supports our results (147). 

As we detected no differences in CXCL2 production between TNF-KO and WT mice upon 

physical skin irritation, it is unlikely that CXCL2 represents a cytokine that underlies AD 

predisposition in the absence of TNF or that is regulated differently in TNF-KO mice.  

 

4.4 TNF-KO and WT mice show similar CCL1 protein concentrations upon 

physical skin irritation 

Chemokine ligand 1 (CCL1) is a small glycoprotein secreted by activated T-cells, MCs, 

Monocytes and endothelial cells (132, 148). CCL1 is known to attract monocytes and 

lymphocytes and plays a role in inflammatory processes (132). It has been reported that 

patients with AD show significantly higher levels of CCL1 mRNA expression and 

production in their skin lesions compared to nonlesional skin or normal skin (97, 98). 

Moreover, Gombert et al. observed significantly higher CCL1 levels in the serum of AD 

patients compared to healthy individuals (90). It has been suggested that CCL1 plays a 

role in the initiation and amplification of AD. However, while being associated with AD the 

role of CCL1 in the pathogenesis of the disease still remains unclear (98). 

N’Diaye et al. showed that in human macrophages, CCL1 protein levels as well as mRNA 

expression increased upon TNF treatment (149). In mice, Heather et al. reported an 

increase of CCL1 protein in cytotoxic T-cells upon TNF treatment as well as in the serum 

of mice upon TNF injections (150). Therefore, we expected lower levels of CCL1 in TNF-

KO compared to WT mice. However, we did not observe any difference in CCL1 protein 

levels in TNF-KO compared to WT mice upon physical skin irritation. This suggests that 

TNF plays a rather minor role concerning CCL1 secretion upon physical skin irritation. 

Contrary to N’Diaye et al. and Heather et al., we used murine material in an ex vivo 
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setting, which is closer to an in vivo setting (142).  Moreover, the authors worked with 

exogenous TNF. Additionally, they did not perform any experiments  on the skin as we 

did. Gombert et al. did not see any increase of CCL1 mRNA expression after stimulating 

human keratinocytes or dermal fibroblasts with TNF/IL-1ß (97). This aligns with our 

results. Overall, it is unlikely that CCL1 represents a cytokine that underlies AD 

predisposition in the absence of TNF or that is regulated differently in TNF-KO mice.  

 

4.5 IL-5 protein concentration is significantly increased in TNF-KO and WT 

mice upon wet shaving  

Interleukin (IL)- 5 plays a role in the differentiation of B cells and in the proliferation as 

well as activation of eosinophiles (112). It is produced by ILC2, granulocytes, T-cells, 

natural helper cells and MCs (112, 113). IL-5 is also largely produced by Th2 cells, which 

play a crucial role in the pathogenesis of AD, especially at the early stages of the disease 

(45). IL-5 mRNA expression was shown to be increased in acute as well as in chronic AD 

lesions (19). IL-5 is therefore associated with AD and was shown to be a key driver in 

differentiating AD patients from healthy individuals in their serum (100). Mepolizumab, an 

anti-IL-5 antibody, has been shown to be an effective drug against asthma, another atopic 

disease, but has so far failed to achieve significant results against AD (99). In our results, 

we saw a significant increase of IL-5 protein levels in TNF-KO and WT mice upon physical 

skin irritation. To the best of our knowledge, we were able to show for the first time that 

wet shaving as such leads to a significant increase of IL-5 production in the skin of WT 

and TNF-KO mice.  

Moreover, we observed increased IL-5 in TNF-KO compared to WT mice after twelve 

hours of incubation, although this did not reach statistical significance. However, this 

result may be viewed as underpowered (P = 0.07) due to the low number of samples 

analyzed. As we performed an explorative study, sample size estimation was not possible 

beforehand. In agreement with our data, Fei et al. demonstrated increased IL-5 mRNA 

expression in an allergy model in murine lungs when TNF is blocked. Additionally, they 

observed significantly higher IL-5 protein levels in TNF-KO mice compared to WT mice 

in their experimental setup (151). These findings are in line with our findings.   
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The reason for higher levels of IL-5 in TNF-KO mice needs to be evaluated in more detail. 

IL-5 is known to play a major role in eosinophilia (113), whereas TNF has been described 

as regulating the neutrophil/eosinophil balance, and to hence have an inhibitory effect on 

IL-5 production (151). Furthermore, the hypothesis exists that Th1 and Th2 are two 

opposing immunological pathways and that activation of one pathway leads to the 

downregulation of the other (83). TNF is reported to be a key mediator in the Th1 pathway, 

and its absence in TNF-KO mice may lead to a Th2 dominance and its cytokines such as 

IL-5 (83). This hypothesis offers an explanation of the phenomenon of eczema onset in 

anti-TNF therapy. Additionally, TNF-KO mice were shown to have higher protein levels of 

TSLP upon physical skin irritation, and TSLP has been reported to increase the amounts 

of IL-5 produced per murine T-cell (19, 27, 152). Another possible explanation might be 

higher numbers of ILC2 or MCs in TNF-KO skin. 

The IL-5 mRNA expression did not show any difference between the two genotypes after 

four hours of incubation. However, this might be due to the chosen time point. Further 

studies with a higher number of samples could clarify the possibility of underpowered 

data.  

Interestingly, we detected a significant decrease in IL-5 protein levels upon additional 

tape stripping and twelve hours of incubation in both genotypes. A possible explanation 

might be the removal of IL-5 producing cells or of IL-5 itself via tape.  

 

4.5 Wet shaving leads to significantly higher protein levels of IL17-BR in 

TNF-KO mice 

Interleukin (IL)- 17BR, IL25R or Evi27 are the receptors to IL-17B, and together with 

IL17RA, also the receptors to IL17E/IL25, which mediates Th2 immune response, a 

crucial perpetuator in the pathogenesis of AD (115, 153). IL-17BR is not only expressed 

in human organs such as kidney, brain, intestines, testis, lung, pancreas and liver, but 

also in cells of the immune system such as dendritic cells, macrophages, Th2 memory 

cells and ILC2 (101, 102, 114, 116). The receptor exists in a soluble (sIL-17BR) and a 

membrane-bound isoform (mIL-17BR) (154). Even though IL-17BR is also the receptor 

for IL-17B, IL-25 shows a significantly higher binding and is hence considered the main 
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ligand for IL-17BR (153). IL-17BR is upregulated in the lesional skin of AD patients and 

is therefore associated with the disorder (115).  

In our results, we showed for the first time that wet shaving induces a significantly higher 

production of IL-17BR in TNF-KO compared to WT mice. As we used supernatants from 

ex vivo skin biopsies for the ELISA, it is likely that we rather measured sIL-17BR. It is 

somewhat difficult to evaluate and discuss these results, as the role of sIL-17BR is not 

yet defined and poorly investigated. A possible role for sIL-17BR may be that of a decoy 

receptor that may decrease the concentration of IL-25. Contrary to that, sIL-17BR could 

also enhance or/and modify the effects of IL-25 (114). The IL-17BR mRNA expression 

did not show any difference between the two genotypes after four hours of incubation. It 

should be noted that on the mRNA level, sIL-17BR as well as mIL-17BR was measured.  

 

4.7 IL-18 protein levels are similar in TNF-KO and WT upon physical skin 

irritation 

Interleukin (IL)- 18 belongs to the IL-1 cytokine family and is not only produced by various 

cells such as osteoblasts and dendritic cells but also by keratinocytes (117, 118). IL-18 

functions as a pleiotropic cytokine, which in the presence of IL-12 triggers the Th1 

response, and its absence increases IgE production and induces the Th2 response (119, 

120). Th2 cytokines such as IL-4, IL-13 or IL-5 are important inflammatory cytokines in 

AD. On the other hand, the Th1 response also seems to play a role in the pathogenesis 

of AD, especially in its chronic phase (31). Indeed, several studies reported higher 

amounts of IL-18 in the serum of AD patients (122-124). Zedan et al. reported a positive 

correlation between the serum IL-18 protein and AD severity (124). Inoue et al. showed 

that IL-18 is expressed at higher levels in the human epidermis of AD skin lesions 

compared to healthy individuals, and expression increased with the severity of the 

disease (155). Additionally, Konishi et al. demonstrated that mice producing abundant 

levels of IL-18 developed AD-like symptoms (121). Moreover, Chen et al. demonstrated 

in an AD mouse model that IL-18-KO mice developed a more mild form of AD, indicating 

that IL-18 plays crucial role in the development of AD (156). Whereas more and more 

studies hint at a crucial role of IL-18 in the pathogenesis of AD, its role in skin irritation 

remains elusive. We saw a significant increase in IL-18 protein levels in WT and TNF-KO 
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mice upon wet shaving. To the best of our knowledge, we were able to show for the first 

time that wet shaving as such is sufficient for this effect. In accordance with our results, 

Michaelidou from our group also detected a tendency of increased IL-18 protein levels in 

tape stripped human skin (data not published). These results suggest that IL-18 is 

involved in the initial cytokine response upon physical skin irritation and barrier disruption. 

In the context of AD, it is known that keratinocytes produce IL-18 in response to 

pathogens and allergens (155, 157). Our results suggest that scratching might also 

induce IL-18 production in the skin.  

Marotte et al. demonstrated that human synovial fibroblasts express higher protein 

amounts of IL-18 when treated with TNF (158). We did not measure a significant 

difference of IL-18 protein or mRNA expression between TNF-KO and WT. In contrast to 

Marotte et al. we performed an ex vivo experiment using murine material.  

Interestingly, IL-18 protein was decreased after additional tape stripping and at a 12 hour 

incubation time point. One explanation might be that tape stripping removes the upper 

epidermal cells producing IL-18. Not only Inoue et al. but also Lyubchenko et al. 

demonstrated that tape stripping removes significant amounts of IL-18 protein from the 

stratum corneum (155, 159). In summary, our results do not show a predisposition for 

increased IL-18 production upon skin irritation in the absence of TNF. However, we 

detected a deviation of IL-18 protein hinting at increased cytokine levels in TNF-KO mice. 

As our work was an explorative study, it was not possible to estimate the number of cases 

beforehand. In summary, IL-18 remains a key cytokine in the pathogenesis of AD and 

skin irritation. Further studies with a higher number of samples may bring clarity to this 

matter. 

 

4.8 Reproducibility of results  

Regarding our methods, we faced difficulties standardizing our method of physical skin 

irritation. Each shaving and each tape stripping varies in the pressure that is used or the 

number of times that the razor has to be ran over the skin, eventually resulting in varying 

irritation and hence varying cytokine levels. When comparing our results with the 

literature, it also needs to be considered that other authors, e.g. Doege et al., Reilly et al., 
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Wood et al. or Angelova-Fischer et al., used different pressures and other kinds of razors 

or tapes (30, 126, 127). 

Comparing the cytokine expression between the two genotypes, we observed a clear 

deviation of the protein levels of CXCL1, IL-5 and IL-18 twelve hours post irritation. These 

deviations are however not statistically relevant. We generally used 6-9 samples per 

group. Being an explorative study, it was not possible to determine the number of cases 

needed beforehand. Julious demonstrated that a sample size of 12 per group is 

recommended for pilot studies like ours (160). Thus, some of our results may be 

underpowered and this therefore limits their statistical relevance.  

Another debatable factor in our experimental setup is the effect of the punch biopsy on 

cytokine production. For investigating further effects of wet shaving on cytokine 

production, we recommend including samples derived from of non-shaved biopsies as 

controls.   

 

4.9 Conclusions and recommendations  

The epidermis plays a crucial role for the organism as it forms a barrier against external 

threats such as radiation, heat, chemicals or pathogens (1, 3). Skin irritation may initiate 

inflammatory processes which, when chronified, may lead to chronic skin diseases such 

as AD (7, 14). The regulation of cytokines and chemokines as inflammatory mediators 

can be alternated upon skin irritation (7, 15). Tape stripping is a common technique in 

dermatological research to perturbate the skin barrier, remove layers of the stratum 

corneum, increase TEWL and induce an immune reaction via various pro-inflammatory 

cytokines (17, 95, 129, 161, 162). Hence, tape stripping forms part of AD mouse models, 

mimicking skin injury inflicted by scratching in patients (163). Whereas a lot of research 

has been done to understand the effects of tape stripping in murine skin, the 

consequences of wet shaving at a molecular level are not well defined. In human skin, 

Dabboue et al. showed that wet shaving induces comparable damage and TEWL 

increase as by 30 times tape stripping (164). To the best of our knowledge, we are the 

first study group to investigate cytokine production over time upon wet shaving WT and 

TNF-KO mice. Interestingly, we observed a significant increase of CXCL1, CXCL2, IL-5 

and IL-18 upon wet shaving after twelve hours compared to four hours. Others have also 
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reported an increase of TSLP production in murine skin upon wet shaving (19, 27). Taken 

together, these results show that wet shaving alone is sufficient to damage the skin and 

provoke an immune response in mice. This is particularly important for mice models 

where shaving is required as a preparation step, as it may impact further events and 

results. In order to avoid this obstacle, we suggest using hairless mice, or to use other 

hair removal methods such as hair removal cream, or to keep a day in between shaving 

and further procedures.  

  

Along with the effects of wet shaving, we also investigated differences in cytokine patterns 

between TNF-KO and WT mice upon physical skin irritation. TNF is known to be a key 

pro-inflammatory cytokine in different diseases (56). Yet, AD-like symptoms are a known 

side effect of anti-TNF drugs, and enhanced AD symptoms were reported in TNF-KO 

mice in an AD mouse model (19, 79, 80). This thesis aimed to pin down differences in 

cytokine regulation underlying AD predisposition in the absence of TNF. We saw a 

significant increase of IL-17BR levels in TNF-KO mice compared to WT mice upon wet 

shaving. However, as long as the role of sIL-17BR remains somewhat elusive, it is difficult 

to discuss this finding. 

Moreover, we saw a tendency (P = 0.07) towards higher levels of IL-5 in TNF-KO mice 

upon wet shaving. It may be argued that the number of samples was too small and 

therefore this result can be viewed as underpowered. IL-5 is known to be a Th2 cytokine. 

Th2 cells and its cytokines, such as IL-4, play a crucial part in the pathogenesis of AD. 

Higher levels of IL-5 in TNF-KO mice could be founded on a stronger Th2 activity in these 

transgenic mice. Contrary to that, Kumari et al. showed in an AD model that in lesional 

skin, mRNA expressions of other Th2 cytokines (IL-4, IL-10) were equally expressed in 

WT and TNF-KO mice (19). We did not, however, perform an AD model, but we did 

investigate the effects of immediate physical skin irritation on cytokine production. Further 

investigations may answer whether or not TNF-KO mice show a stronger Th2 activity 

upon physical skin irritation.  

 

Based on the literature, we expected to see an increase of cytokine production upon tape 

stripping. However, what we saw was rather a decrease in cytokine levels upon tape 

stripping. Other authors such as Wood et al. tape stripped hairless mice, and tape 
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stripped them only 4-8 times (17, 129, 162). Takahashi et al. showed that excessive tape 

stripping leads to a decrease in cytokine levels (95). Tape stripping removes 

keratinocytes that not only contain cytokines but also produce them (126, 129). Hence, 

our recommendation is to not tape strip excessively and to control the damage done to 

the epidermis by means of TEWL measurement. In this way, better standardization may 

also be achieved. 
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