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1. List of abbreviations 

3MSE   Modified Mini-Mental State Examination 
ANOVA  Analysis of Variance 
CHS   Cardiovascular Health Study 
CI   Confidence Interval 
cOR   Common (ordinal) odds ratio 
DSST   Digit Symbol Substitution Test 
F11   Gene encoding Factor XI 
F12   Gene encoding Factor XII 
FVIII   Factor VIII 
FXI   Factor XI 
FXII   Factor XII 
HR   Hazard ratio 
HMWK  High molecular weight kininogen 
IQR   Interquartile Range 
KLKB1  Gene encoding prekallikrein 
KNG1   Gene encoding high molecular weight kininogen 
MRI   Magnetic resonance imaging 
OR   Odds ratio 
PK   Prekallikrein 
PROSCIS-B  Prospective Cohort with Incident Stroke - Berlin (Study) 
RATIO  Risk on Arterial Thrombosis In Oral contraception (Study) 
SD   Standard deviation 
SE   Standard error 
SNP   Single nucleotide polymorphism 
TIA   Transient ischemic attack 
WMH   White Matter Hyperintensities 
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2. Abstract 

Given their crucial role in preserving the hemostatic balance, coagulation factors are of 

great interest in the context of both venous and arterial thrombosis. Recent laboratory 

work has indicated that a hypercoagulable state increases risk for ischemic events. 

Furthermore, first clinical trials have found that temporarily lowering Factor XI levels 

prevents clots without increasing bleeds in knee arthroplasty patients, which may make 

these factors attractive therapeutic targets in secondary prevention of ischemic stroke. 

My dissertation subprojects aimed to study the role of coagulation factors in 

neurovascular disease using existing observational datasets. As such, these clinical 

epidemiologic investigations provided important first insights in a cost-effective way. My 

work describes diverse aspects of the processes by which coagulation factors are 

implicated in neurovascular diseases, with each subproject characterized by a different 

study design and population. 

We identified genetic determinants of contact factor levels (High Molecular Weight 

Kininogen (HMWK), Prekallikrein (PK), FXI and FXII) and probed their associations with 

vascular disease phenotypes in a case-control study. In addition to replicating known 

associations between single genetic variants and contact system factor levels, we 

identified two novel loci; one for PK antigen levels (KLKB1 rs4253243; βconditional=-12.38; 

95% confidence interval (CI), -20.07 to -4.69) and one for HMWK antigen levels (KNG1 

rs5029980; βconditional=5.86; 95%CI: 2.40 to 9.32). 

We estimated the effects of hypercoagulability on post-stroke outcomes in a cohort of 

576 ischemic stroke patients. After controlling for confounding, compared with having 

low or normal levels, having high (>75th-percentile) FXI activity levels increased the 

hazard for the combined endpoint (recurrent stroke, myocardial infarction, or all-cause 

mortality) within three years of first ischemic stroke (Hazard Ratio (HR)=1.80, 95%CI: 

1.09–2.98). High FVIII activity was also linked to worse outcomes (HR=2.05, 95%CI: 

1.28–3.29), whereas high FXII activity was not (HR=0.86, 95%CI: 0.49–1.51).  

Finally, in a general population cohort of older persons, we found no evidence of a 

relevant contribution of factor VIII activity to the presence or worsening of white matter 

hyperintensities or cognitive performance over time.  
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Each of these subprojects provided a substantial contribution to filling knowledge gaps 

in the field of hypercoagulability research. Taken together, this dissertation work 

contributes to a better understanding of genetic influences on coagulation factor levels 

as well as the longer-term effects of expressed hypercoagulability on outcomes among 

stroke patients and in a general population sample of older persons. My work concludes 

with a set of suggestions for future coagulation factor research, especially in the context 

of stroke, based on lessons learned during the process of synthesizing and critically 

evaluating my results. 
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3. Deutsche Zusammenfassung 

Aufgrund ihrer entscheidenden Rolle bei der Aufrechterhaltung der hämostatischen 

Balance, sind Gerinnungsfaktoren im Zusammenhang mit venösen sowie arteriellen 

Thrombosen von großem Interesse. Neuere Laborergebnisse zeigten ein erhöhtes 

Risiko für ischämische Ereignisse durch einen hyperkoagulablen Zustand. Erste 

klinische Studien zeigten eine vielversprechende Wirkung gegen Thrombosen durch die 

temporäre Senkung des Gerinnungsfaktor-XI-Spiegels – ohne Erhöhung des 

Blutungsrisikos bei Knieendoprothese-Patient*innen. Diese Erkenntnis ist auch im 

Kontext der Sekundärprävention von Schlaganfällen von hoher Relevanz. 

Das Ziel meiner Dissertation war, in drei Teilprojekten die Rolle bestimmter 

Gerinnungsfaktoren zu untersuchen, die zur Hyperkoagulabilität bei neurovaskulären 

Erkrankungen beitragen. Die auf klinisch-epidemiologischen Fragestellungen 

basierenden Sekundäranalysen von Beobachtungsdatensätzen liefern wichtige 

Erkenntnisse für die Zielpopulationen in kosten-effektiver Weise. 

Im Rahmen meiner Dissertation wurden genetische Determinanten von 

Gerinnungsfaktoren des Contact-Activation-Systems (hochmolekulares Kininogen 

(HMWK), Präkallikrein (PK), Faktor XI und Faktor XII) identifiziert. Außerdem 

untersuchten wir ihre Assoziationen mit Phänotypen von vaskulären Erkrankungen in 

einer Fall-Kontroll-Studie. Zusätzlich zur Replikation bekannter Assoziationen zwischen 

einzelnen genetischen Varianten und den Spiegeln der Gerinnungsfaktoren 

identifizierten wir zwei neue Genloci: einen für den PK-Antigenspiegel (KLKB1 

rs4253243; βadjustiert=-12,38; 95% Konfidenzintervall (KI): -20,07 bis -4,69) und einen für 

den HMWK-Antigenspiegel (KNG1 rs5029980; βadjustiert=5,86; 95%KI, 2,40 bis 9,32). 

Des Weiteren schätzten wir die Effekte von hohen Faktor-XI-, Faktor-XII- und Faktor-

VIII-Aktivitätsspiegeln auf Langzeit-Outcomes in einer Kohorte von 576 Patient*innen 

mit ischämischem Schlaganfall. Im Vergleich zu niedrigen oder normalen Werten hatten 

Schlaganfallpatient*innen mit einer hohen FXI-Aktivität (>75. Perzentil) ein höheres 

Risiko für den kombinierten Endpunkt (rezidivierender Schlaganfall, Myokardinfarkt oder 

Gesamtmortalität) innerhalb von drei Jahren (HR=1,80; 95%KI: 1,09 bis 2,98) nach 

Confounding-Adjustierung. Eine hohe FVIII-Aktivität war ebenfalls mit einem 
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schlechteren Outcome verbunden (HR=2,05; 95%KI: 1,28 bis 3,29), eine hohe FXII-

Aktivität hingegen nicht (HR=0,86; 95%KI: 0,49 bis 1,51).  

Schließlich fanden wir in einer Allgemeinbevölkerungskohorte älterer Personen keine 

Hinweise auf einen relevanten Beitrag des Faktor-VIII-Aktivitätsspiegels zur Präsenz 

von White Matter Hyperintensities oder verminderten kognitiven Funktionen und deren 

Verschlechterung im Zeitverlauf.  

Meine Arbeit schließt mit praktischen und methodischen Vorschlägen für zukünftige 

Forschung zu Gerinnungsfaktoren, insbesondere im Kontext des ischämischen 

Schlaganfalls, basierend auf den Erkenntnissen aus der Synthese und kritischen 

Bewertung meiner Ergebnisse. 
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4. Introduction 

4.1. Stroke, white matter hyperintensities and post-stroke 
outcomes 

Stroke is a neurovascular disease with severe morbidity, high mortality, and substantial 

cost burden on healthcare systems.1 Globally, 5.5 million deaths and 116.4 million 

disability-adjusted life years (DALYs) are attributed to stroke, according to 2016 Global 

Burden of Disease Study estimates.1 As the second most common cause of death and 

the second-highest contributor to global DALYs,1 gaining a better understanding not 

only of the underlying causes of stroke, but also its consequences is of utmost public 

health importance. Thanks to improved acute stroke care worldwide and perhaps most 

importantly, the introduction of specialized stroke-units, a steady decline in short-term 

acute stroke fatality has been observed in recent years, especially in high-income 

countries.2,3 

Ischemic stroke is the most common stroke type, accounting for 84.4% of the global 

prevalent strokes; however, its DALYs are lower compared with the rarer hemorrhagic 

stroke type.1 In addition to overt stroke events, undetected ischemic events may 

contribute to the development of covert white matter hyperintensities (WMH), which are 

highly prevalent among aging individuals and become more common and severe with 

increasing age.4 Over the life course, the accumulation of small microbleeds and 

lesions, visible on magnetic resonance imaging (MRI) as WMH, contributes to vascular 

risk as well as risk for cognitive decline and dementia.5 

Following the initial ischemic stroke event, the risk of having a further, overt vascular 

event, such as a secondary stroke or myocardial infarction, is elevated and sustained 

even in the longer-term.6,7 Despite this increased risk, little is known about factors which 

may causally contribute to secondary events, and whether these differ from known 

causal risk factors for primary ischemic stroke. One known risk factor for first stroke and 

possible risk factor for second stroke is hypercoagulability, which is detailed in the next 

section. 

https://paperpile.com/c/PbGcDF/27PL
https://paperpile.com/c/PbGcDF/27PL
https://paperpile.com/c/PbGcDF/27PL
https://paperpile.com/c/PbGcDF/u18G+6h4t
https://paperpile.com/c/PbGcDF/27PL
https://paperpile.com/c/PbGcDF/AMRJ
https://paperpile.com/c/PbGcDF/OReF
https://paperpile.com/c/PbGcDF/fGFS+9Nxv
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4.2. Hypercoagulability and the hemostatic balance 
An excess of prothrombotic factors and/or thrombophillic activities contribute to a so-

called hypercoagulable state, or more generally termed, hypercoagulability.8 

Hypercoagulability is attributable to either genetic variation, an acquired condition (e.g., 

autoimmune diseases), or a combination of both factors.9 Persons with hypercoagulable 

states are predisposed to developing several forms of arterial thrombotic disease 

including ischemic stroke.8–10  

As the hemostatic balance to maintain fluidity while preventing bleeds is a delicate one, 

it is well known that even small shifts in this balance in the procoagulant or 

anticoagulant direction can result in serious pathologies.11,12 Both of the “waterfall-like” 

enzymatic extrinsic and intrinsic pathways can activate Factor X to Xa, which is the first 

step in the “common” pathway that ends with the formation of a clot through the 

generation of fibrin strands that hold together the platelet plug.13,14 The resulting clot can 

be life-saving, in the case of tissue repair, or life-threatening, in the case of thrombosis; 

Rudolf Virchow appreciated this delicate balance as early as the mid-1800s, and 

described the concept of hypercoagulability as one of three causal contributors to 

thrombosis in eponym now know as “Virchow’s triad.”15  

Even within “normal” levels of coagulation factors, having above-average antigen and/or 

activity levels of certain coagulation factors may cause a shift of the hemostatic balance 

in the thrombotic direction, increasing risk for thrombotic events.8,10 Though much of the 

clinical research investigating the relationship between elevated levels of coagulation 

factors and thrombotic events has focused on outcomes affecting venous circulation 

(e.g., deep vein thrombosis and pulmonary embolism), specific coagulation system 

factors, mostly from the intrinsic pathway, have also been implicated in thrombotic 

events impacting arterial circulation; the current state of scientific knowledge is 

summarized in the following section.  

4.3. Coagulation factors: promising targets and first 
insights in the context of vascular disease 

In this section, I summarize key scientific findings pertaining to several promising 

coagulation factors in the context of vascular disease, which I chose to focus on as 

https://paperpile.com/c/PbGcDF/fpYe
https://paperpile.com/c/PbGcDF/moRB
https://paperpile.com/c/PbGcDF/moRB+fpYe+U49i
https://paperpile.com/c/PbGcDF/uAYH+mzn0
https://paperpile.com/c/PbGcDF/mZdP+ujFD
https://paperpile.com/c/PbGcDF/h5gz
https://paperpile.com/c/PbGcDF/fpYe+U49i
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exposures of interest across my three dissertation subprojects: Factor XII (FXII), Factor 

XI (FXI), and Factor VIII (FVIII). 

The coagulation system pathways are characterized by a cascade-like structure with 

many feedback loops and interdependencies. The activation of FXII, also known as the 

Hageman factor, kicks off the appropriately named “contact activation system” upon 

contact with a negatively charged surface.16 Once activated, this first and most 

upstream plasma protein activates FXI, which subsequently sets a series of 

procoagulant processes of the intrinsic coagulation cascade into motion.17,18  

In parallel to its activation of FXI, activated FXII also cleaves Prekallikrein (PK) to its 

activated form, Kallikrein, in a first step of the pro-inflammatory Kinin-Kallikrein peptide 

cascade.19 As a part of yet another feedback loop, activated PK is involved in reciprocal 

transactivation with FXII,20 before PK ultimately cleaves High Molecular Weight 

Kininogen (HMWK) into bradykinin.19 The interconnectedness of this contact activation 

system is further evidenced by HMWK’s role as a membrane-anchoring cofactor 

necessary for the activation of both FXI and PK.17,21 

Further downstream, the intrinsic system connects with the extrinsic (common) 

coagulation pathway via Factor VIII. FVIII is activated by thrombin, and is itself involved 

in the activation of Factor X, which results in downstream activation of more 

thrombin.13,14 Ultimately, the generation of fibrin, through the cleavage of its precursor 

fibrinogen by thrombin, results in blood clot formation through polymerization and 

crosslinking.13,14 

In the early 2000s, FXII was a particularly promising treatment target for investigation in 

animal studies, especially because the absence of FXII was observed to be protective 

against cerebral ischemia in the mouse model without jeopardizing the hemostatic 

balance in terms of any relevant increase in bleeding risk.22,23 Like in the knock-out 

mouse model, humans with a rare inherited condition causing extreme FXII-deficiency 

were found to be protected against both venous thrombosis and ischemic stroke.24,25 

However, the initial excitement in the research community with respect to FXII as a 

promising future therapeutic target for vascular disease26,27 was somewhat attenuated 

after observational studies in humans yielded inconsistent results, outlined below.  

https://paperpile.com/c/PbGcDF/9njo
https://paperpile.com/c/PbGcDF/QB4R+Nzv8
https://paperpile.com/c/PbGcDF/Qp43
https://paperpile.com/c/PbGcDF/0cAG
https://paperpile.com/c/PbGcDF/Qp43
https://paperpile.com/c/PbGcDF/QB4R+D8Yu
https://paperpile.com/c/PbGcDF/mZdP+ujFD
https://paperpile.com/c/PbGcDF/mZdP+ujFD
https://paperpile.com/c/PbGcDF/cxEO+WRcp
https://paperpile.com/c/PbGcDF/Qdb5+qdV9
https://paperpile.com/c/PbGcDF/h33B+wcMn
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Though it was postulated that low FXII levels would be protective against thrombotic 

events, seminal research from the Study of Myocardial Infarctions Leiden (SMILE) 

found that in middle-aged men, low levels of FXII activity actually increased the risk of 

myocardial infarction.28 Moreover, in a nested case-control study embedded in the 

Northwick Park Heart Study, having low levels of inhibitory complexes of FXIIa was 

associated with an increased risk for coronary heart disease and stroke (of ischemic or 

hemorrhagic nature) in middle-aged men.29 Contrarily, an investigation of the same 

relationship found that high levels of FXII activation was associated with an increase in 

stroke risk (OR=2.1, 95%CI: 1.3-3.5) but not myocardial infarction (OR=0.82; 95%CI: 

0.46 to 1.47) among young women in the Netherlands.30 A more recent Swedish study 

found an association between FXII levels and hemorrhagic stroke risk but no 

relationship between FXII and ischemic stroke or myocardial infarction risk.31 Taken 

together, these findings suggest the relationship between FXII levels and thrombosis is 

more complex than initially postulated, likely due to the numerous complex 

interdependencies of the contact activation system, and warrants further investigation. 

Just downstream of FXII, FXI presented as another potential treatment target. FXI was 

particularly appealing because laboratory and animal studies showed that FXI’s role in 

hemostasis is not critical; specifically, reducing FXI seemed to curb thrombotic clotting 

without increasing bleeding risk.32–35 The question remained whether these findings 

from in vitro and in vivo (animal model) experiments were translatable to humans. First 

observational studies found a moderate association between having high FXI levels and 

risk for first ischemic stroke (OR=2.65, 95%CI: 1.27-5.56).36 A systematic review by 

Maino et al. later clarified that hypercoagulability appears to be a stronger risk factor for 

ischemic stroke than for myocardial infarction.10 In 2015, results from a first clinical trial 

confirmed that it was possible to reduce FXI levels using FXI antisense oligonucleotides 

in humans, and that this reduction prevented postoperative venous thromboembolism in 

knee arthroplasty patients.37  Importantly, this intervention was deemed safe in terms of 

bleeding risk, showing that selectively inhibiting FXI does not impact hemostasis in the 

same way as conventional prophylactic treatments targeting Factor Xa or thrombin.37  

High levels of FVIII, further downstream in the cascade, have been linked with an 

increased risk of first ischemic stroke and mortality in the general population.38,39 Strong 

https://paperpile.com/c/PbGcDF/Mmtz
https://paperpile.com/c/PbGcDF/sI4m
https://paperpile.com/c/PbGcDF/upTT
https://paperpile.com/c/PbGcDF/IcNI
https://paperpile.com/c/PbGcDF/kUb3+4Wle+S6YZ+eBO2
https://paperpile.com/c/PbGcDF/tE34
https://paperpile.com/c/PbGcDF/U49i
https://paperpile.com/c/PbGcDF/ja5N
https://paperpile.com/c/PbGcDF/ja5N
https://paperpile.com/c/PbGcDF/AUEC+XI6F
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associations between high FVIII and deep vein thrombosis (OR=4.8, 95%CI: 2.3-10.0) 

and recurrent venous thromboembolism (RR=6.7, 95%CI: 3.0-14.8) as well as a dose-

response relationship have been observed,40,41, but it is yet to be established to what 

extent higher levels of FVIII may contribute to the covert ischemia and the development 

of WMH. 

Following an ischemic stroke event, FVIII levels are elevated. However, these increased 

levels are thought to persist beyond the initial acute phase, at least in some 

individuals.42,43. Though it remains unknown whether this increase may have a clinically-

relevant impact on long-term post-stroke outcomes, a recent study suggested that 

concurrent elevation of FVIII and the von Willebrand Factor in the acute phase of 

ischemic stroke was linked to poorer outcomes in the very short-term, including worse 

functional outcome at hospital discharge (OR=2.87, 95%CI: 1.16-7.06), as well as 

higher odds of inpatient complications (OR=8.6, 95%CI: 1.58-46.85) and 

neuroworsening (OR=3.2, 95%CI: 1.18-8.73).44 

To date, much of our knowledge about the potential role of coagulation factors in the 

context of ischemic disease is based on laboratory knowledge. Especially in the context 

of secondary events after first stroke and covert white matter hyperintensities 

development, a large knowledge gap exists in the literature. Therefore, in my 

dissertation work, I sought to generate clinically relevant, epidemiological research 

questions from laboratory insights and preliminary research to better understand causes 

and consequences of hypercoagulability in the context of neurovascular outcomes. 

  

https://paperpile.com/c/PbGcDF/vbdk+j1B1
https://paperpile.com/c/PbGcDF/bKCW+gAVk
https://paperpile.com/c/PbGcDF/Wjtq
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5. Objectives  

The overarching goal of my PhD research was to investigate both determinants and 

consequences of a set of coagulation factors known to contribute to hypercoagulability, 

which are also relevant treatment targets in the context of ischemic vascular disease. 

The cumulative dissertation subprojects described in detail in the next chapters were 

designed to address three specific aims: 

(1) To explore potential associations between genetic variants and activity and 

antigen levels of contact system coagulation factors as well as vascular 

outcomes (Publication 1).45 

(2) To investigate the role of coagulation factors known to contribute to 

hypercoagulability measured in blood samples taken from patients shortly after 

first stroke on the occurrence of post-stroke endpoints (Publication 2).46 

(3) To determine whether FVIII levels, a risk factor for overt thrombotic events, also 

contribute to the presence and worsening of small areas of tissue death in the 

brain (WMH) and cognitive decline (Publication 3).47 

 

6. Methods 

To address the objectives outlined in the previous chapter, my PhD research project 

involved the secondary use of existing data supplemented with additional laboratory 

measurements performed in stored blood samples from three large human studies. In 

this chapter, I describe these datasets, outline key study design elements, and highlight 

the analytical approaches that were employed to address the aforementioned objectives 

of this dissertation. 

6.1.1. Dataset: Population-based Dutch case-control study, 
RATIO 

To explore the potential role of genetic variation in determining expression of antigen 

and activity levels of the contact system factors (XII, XI, PK and HMWK) as well as 

vascular disease phenotypes, we used data from the Dutch Risk on Arterial Thrombosis 

https://paperpile.com/c/PbGcDF/9HA9
https://paperpile.com/c/PbGcDF/w24Z
https://paperpile.com/c/PbGcDF/NW8l
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In Oral contraception (RATIO) study.45 This population-based case-control study was 

originally designed to determine the relationship between oral contraceptive use and 

vascular outcomes among females aged 18 to 49 recruited from 16 locations in the 

Netherlands.48,49 In this study, adult women aged less than 50 years who were 

hospitalized for an ischemic stroke or myocardial infarction between January 1990 and 

October 1995 were recruited from the participating centers as cases.48,49 Data collected 

from the ischemic stroke and myocardial infarction patients in the RATIO study were 

relevant for our analyses of associations between single genetic variants and disease 

phenotypes.45  

In the RATIO study, female participants from the areas surrounding the participating 

centers, representing the underlying target population that gave rise to the cases, were 

recruited using random digit dialing as controls.48 The final control group reflected a 

population sample that was frequency-matched to the cases by index year, place of 

residence, and age group,48 and it was this group that comprised our sample for the 

analysis of inherited genetic variants and contact system factor levels (traits).45  

A standardized questionnaire was used to collect relevant demographic information 

from all participants upon enrollment.48 Blood samples and buccal swabs were collected 

and stored during the second phase of the RATIO study, which occurred a median of 69 

months after myocardial infarction or 95 months after ischemic stroke among patients, 

and at a comparable interval among the frequency-matched control participants.36 

Ethics committees of all collaborating hospitals approved the study, also allowing 

secondary data analysis projects, such as this one, and written informed consent was 

obtained from all RATIO study participants.48  

6.1.2. RATIO: Single nucleotide polymorphism selection, 
genotyping and laboratory measurements 

We were interested in capturing the common genetic variation across the genes 

encoding the contact activation system proteins of interest; namely, FXII (encoded by 

the F12 gene on chromosome 5), FXI (F11 on chromosome 4), PK (KLKB1, kallikrein 

B1 on chromosome 4), and HMWK (KNG1 on chromosome 3). Therefore, we used 

Haploview software (version 4.2) to select tag SNPs (single nucleotide polymorphisms) 

https://paperpile.com/c/PbGcDF/9HA9
https://paperpile.com/c/PbGcDF/WJN4+WfM8
https://paperpile.com/c/PbGcDF/WJN4+WfM8
https://paperpile.com/c/PbGcDF/9HA9
https://paperpile.com/c/PbGcDF/WJN4
https://paperpile.com/c/PbGcDF/WJN4
https://paperpile.com/c/PbGcDF/9HA9
https://paperpile.com/c/PbGcDF/WJN4
https://paperpile.com/c/PbGcDF/tE34
https://paperpile.com/c/PbGcDF/WJN4
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having a minor allele frequency of at least 5% and an R2 larger than 0.80 according to 

data from the HapMap Central European reference population.45,50 Ultimately, we 

selected two F12, eleven F11, ten KLKB1, and twenty KNG1 tagging SNPs for 

genotyping and further analysis45. The assay design failed for one SNP (rs5030072) in 

two different assays, so we were forced to exclude this SNP.45  

In the RATIO study, antigen levels of FXII, FXI, PK and HMWK, relevant for our primary 

analysis of common genetic variation and coagulation factor levels (quantitative trait loci 

analyses), were quantified using sandwich-ELISA-based assays and are expressed as 

percentages of normal pooled plasma.36,45,51 For one factor, FXI, activity measurements 

were available in addition to antigen levels. These activity levels were ascertained using 

a one-stage clotting assay and FXI-deficient plasma and are reported as percentages of 

activated pooled plasma.45,52 

6.1.3. RATIO: Statistical analysis 
For each SNP, we computed the major and minor allele frequencies among control 

participants.45 We further determined the proportion of individuals for whom the 

corresponding SNP information is available, reported as the “call rates”.45 

The single SNP quantitative trait loci analyses were performed using age-adjusted 

linear regression models using data from control participants only.45 In these models, 

we assumed that inheritance was additive; therefore, the reported β estimates (with 

corresponding 95% confidence intervals (CI)) can be interpreted as the change in the 

level of the corresponding trait per copy of the minor allele of that SNP.45 

Since we employed statistical testing for discovery purposes, and we tested for 

statistical associations between the individual SNPs of the four genes (N=43) across the 

five traits, correction for multiple statistical hypothesis testing was warranted. Therefore, 

we imposed a global significance level of 0.00116 for all statistical tests, reflecting a 

conservative Bonferroni correction.45 Sometimes, we obtained multiple statistically 

significant associations between SNPs within one gene and a given trait. In these 

instances, we performed a “conditional analysis”, in which we further adjusted these 

regression models for the so-called lead SNP (i.e., the SNP whose coefficient had the 

smallest p-value across the single-SNP regression models for that gene).45 Within each 
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gene, SNPs with associations that remained statistically significant were then included 

in a single model, and ultimately, only those still remaining statistically significant were 

carried forward and reported as “secondary signals”.45  

To assess across-trait associations between a SNP from one gene and a different trait 

(i.e., not encoded by the gene of the SNP), we followed the same aforementioned 

procedure with additional adjustment for the levels of the trait encoded by the SNP’s 

gene.45 

In secondary analyses, associations between all lead and secondary signal SNPs and 

the two disease phenotypes (myocardial infarction and ischemic stroke) were estimated 

using logistic regression models in the full RATIO study population including both cases 

and control participants.45 Since both cases and controls were included, these models 

were conditioned on the set of variables used to frequency-match the participants, 

including age, place of residence, and index year.45 All aforementioned single SNP 

analyses were conducted using IBM SPSS statistical software (version 23). 

To quantify associations between inherited combinations of these variants and 

coagulation factor levels, we built “haplotypes” for each gene using the lead SNP and all 

secondary signals using the haplo.em function of the haplo.stats package using the 

open-source statistical software, R.45,53 For all haplotypes occurring in more than 1% of 

control participants, we ran age-adjusted regression models for each of the five 

expressed outcome traits (factor levels) using the haplo.glm function,45,53 with the 

haplotype containing major allele copies as the reference. For these analyses, we 

obtained β estimates, corresponding standard errors (SE), and p-values from the 

generalized linear models.45 We employed logistic regression models to estimate the 

associations between these haplotypes and the two disease phenotypes in the full study 

population, adjusting for matching variables.45 
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6.2. Coagulation factor levels and post-stroke outcomes 

6.2.1. Dataset: Berlin-based stroke patient cohort with long-
term follow up; PROSCIS-B 

To estimate the effects of high coagulation factor FXII, FXI and FVIII activity levels on 

vascular post-stroke outcomes, we used data from the longitudinal Prospective Cohort 

with Incident Stroke Berlin (PROSCIS-B) study (N=699).46 Full details regarding 

eligibility criteria and participant recruitment in this hospital-based, longitudinal cohort 

study, which was originally conceptualized to develop a clinical risk prediction model, 

are detailed elsewhere.54 To summarize, this patient cohort consisted of individuals 

aged 18 or older diagnosed with first-ever stroke at one of the three stroke units at the 

Charité - Universitätsmedizin Berlin between January 2010 and February 2013.46,54 

After participants or their legal representatives provided written informed consent, the 

study team conducted a detailed interview, performed a clinical examination, and 

collected blood samples within one week of the index event.46,54 

Trained study nurses contacted participants in PROSCIS-B for structured telephone 

interviews (or sent a survey by postal mail, if the participant was not reachable by 

phone) once per year during the three-year follow-up period after stroke.46,54 Among 

other parameters, information was obtained about vital status as well as the date of 

occurrence and type of any incident vascular events.46,54 This information was 

volunteered by the participants themselves, with the assistance of a family member, or 

by their legal guardian.46,54 We verified these endpoints and obtained information about 

additional events meeting the endpoint criteria through review of Charité hospital 

medical records or information provided by participants’ general practitioners or treating 

hospital (if outside the Charité).46,54  For participants who could not be reached, vital 

status information was obtained from the Berlin city registration office.46,54 The Charité – 

Universitätsmedizin Berlin ethics committee granted approval for the PROSCIS-B study 

(EA1/218/09), which includes the research activities of this subproject.46 
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6.2.2. PROSCIS-B: Relevant outcome variables and 
eligibility criteria 

In this study, our outcome of interest was a combined endpoint, defined as the first 

occurrence of one of the following events after participant inclusion: (1) stroke, (2) 

myocardial infarction, or (3) death due to any cause during follow-up.46 An endpoint 

committee consisting of two independent vascular neurologists blinded to exposure 

status validated all vascular events occurring during the PROSCIS-B follow-up.46,54 In 

addition to the eligibility criteria of the original PROSCIS-B,54 for the purposes of this 

subproject, we excluded participants with index strokes not of ischemic nature (i.e., 

hemorrhagic stroke and sinus venous thrombosis), since these stroke types have 

distinct underlying etiologies, as well as severe strokes (participants with a National 

Institute of Health Stroke Scale score >15), which were very uncommon in the cohort, to 

limit heterogeneity of the study sample.46  

6.2.3. PROSCIS-B: Coagulation factor activity 
measurements 

In collaboration with the Leiden University Medical Center, we assayed FXII, FXI and 

FVIII activity levels using a one-stage clotting protocol in thawed citrate-buffered blood 

plasma samples.46 These samples were originally harvested shortly after participant 

inclusion, within one week of the index stroke (median: 4 days, and were stored 

uninterruptedly at -80°C until the activity measurements were performed after a single 

thaw.46 All laboratory assays were conducted without knowledge of endpoint status.46 In 

a few instances, the plasma aliquots were of insufficient volume to measure all three 

factors of interest; in these cases, FXI then FXII were prioritized over FVIII.46 

6.2.4. PROSCIS-B: Statistical analysis 
 
In the primary analysis, we created two categories for the coagulation factor activity 

levels. Participants with activity levels in the top fourth (>75th percentile) of all available 

measurements for a given factor were considered to have “high” levels of that factor. 

Participants with normal or low levels (less than or equal to the 75th-percentile) 

comprised the reference group.46 We additionally analyzed the exposure variables 

continuously by dividing the raw activity measurements of each factor by the standard 
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deviation (SD) of that factor’s measurements to facilitate comparison of the effect size 

estimates across the different factors.46 

Among those experiencing the combined endpoint during the follow-up period, 

contributed person-time was defined from the index stroke date until the date of the 

endpoint event.46 Person-time for individuals not experiencing the combined endpoint 

was computed as the interval between the index event date and the end of the study 

period, or, in instances of loss-to-follow-up, the date last reachable.46  

We computed unadjusted Kaplan-Meier estimates of cumulative probabilities of the 

combined endpoint among the categorical exposure groups for each coagulation factor 

and created three graphical representations of the corresponding curves.46 For each of 

the three exposures of interest, after visually confirming no strong violations of the 

proportional hazards assumption (i.e., no crossing of the Kaplan-Meier curves), we 

conducted a two-tailed log-rank test with a significance level of 5% to assess whether 

there was a crude, statistically significant difference in the combined endpoint among 

those having high versus reference levels.46 

Next, we ran three Cox proportional hazards models, each to estimate the effect of 

having high levels of a given coagulation factor on the combined endpoint outcome, 

which were quantified as Hazard Ratios (HR) and corresponding 95% CIs.46 These 

models were run as complete case analyses adjusted for an a priori-defined set of 

potential confounding factors, including age, sex, body mass index, high-density 

lipoprotein levels, low-density lipoprotein levels, smoking status, regular alcohol 

consumption, hypertension, diabetes mellitus, and acute coronary syndrome, each 

thought to influence both the coagulation factor levels and the risk for the combined 

endpoint.46 We used Stata IC version 14.2 for all reported analyses in this subproject.46 
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6.3. Coagulation factor VIII activity, white matter 
hyperintensities and cognitive function in the older 
general population 

6.3.1. Dataset: Population-based U.S. Cardiovascular Health 
Study (CHS) 

Originally designed to determine risk factors for cardiovascular disease among the older 

general population, the large, longitudinal, Cardiovascular Health Study (CHS) 

conducted in the United States is well-known for its rigorous and comprehensive data 

collection.55 This section provides a short summary of CHS design aspects relevant for 

this subproject’s secondary data analysis. In the first CHS study year (1989-1990), a 

cohort of individuals from four U.S. cities were recruited from Medicare (federal health 

insurance for people aged 65 and older) eligibility lists (N=5,201).55 Upon obtaining 

informed written consent, a detailed baseline examination was conducted; then, each 

year thereafter for the next nine years, annual clinic visits (or telephone interviews) took 

place.55 Ethics committees at each participating CHS center approved the original 

study, and the Charité - Universitätsmedizin Berlin’s ethics committee approved this 

secondary data analysis.47 

6.3.2. CHS: Relevant variables and eligibility criteria 

CHS investigators measured FVIII activity levels with the Coag-a-mate X2 instrument 

calibrated to WHO standards alongside several other biomarkers in blood samples 

collected during the baseline study visit.47,56 As in the prior subprojects, all activity 

measurements were quantified as percentage units of normal pooled plasma.47,56 We 

categorized FVIII activity levels as “high” (>75th percentile), “low” (less than or equal to 

the 25th percentile), or  “normal” (reference, measurements between the first and third 

quartiles) levels.47 To reflect the continuous nature of the activity level measurements, in 

a secondary analysis, we used the normalized variable obtained by dividing each FVIII 

activity measurement by the SD of all activity measurements as the exposure.47 We 

also requested relevant data about demographic and additional cardiovascular risk 

factors documented during the baseline visit to describe the study sample and for 

confounding control.47  
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During the CHS follow-up period, two magnetic resonance imaging (MRI) scans of the 

brain were performed on consenting participants without contraindications; the first scan 

during the 2nd, 3rd or 4th follow-up visit, and the second scan during the 8th or 9th 

follow-up visit.47,57,58 Experienced neuroradiologists used a 10-point scale to quantify the 

burden of white matter hyperintensities (WMH) visible on the standardized sagittal axial-

spin density/T2-weighted cranial MRI images.59 This scale was based on training 

template images, and ranged from 0 (no hyperintensities visible) to 9 (maximum amount 

of hyperintensities).58 In these analyses, we operationalized WMH burden as “low” 

(scores of 0 or 1), “medium” (scores of 2 or 3) and “high” (scores of 4 or higher).47. 

To determine longitudinal worsening in WMH burden, we relied on ratings of both scans 

made at the time of the second scan, at which point a side-by-side assessment was 

possible.47,57 We operationalized the WMH burden worsening between the two scans in 

three categories: (1) no worsening, (2) a worsening of 1 grade and (3) a worsening of 2 

or more grades.47  

The secondary outcome of this subproject was cognitive performance. We made use of 

the annual cognitive function measurements available starting with the first CHS follow-

up, which included the 100-point Modified Mini-Mental State Examination (3MSE)60 and 

the 90-point Digit Symbol Substitution Test (DSST).61 In an effort to counteract missing 

values, we were able to impute missing 3MSE scores with estimates derived from 

Telephone Interview for Cognitive Status (TICS),62 which were available for the sixth 

follow-up and in subsequence years for those who opted for a phone-based follow-up 

instead of an in-person visit.47 

On top of the eligibility criteria imposed in the original CHS, we further excluded 

participants who reported a prior overt clinical stroke or transient ischemic attack (TIA) 

at baseline, those with confirmed dementia, and those with low baseline cognitive 

performance (defined as scoring less than 78 on the first 3MSE or within the lowest 

tenth of DSST scores).47 

https://paperpile.com/c/PbGcDF/ab1S+OAOm+NW8l
https://paperpile.com/c/PbGcDF/nx1w
https://paperpile.com/c/PbGcDF/OAOm
https://paperpile.com/c/PbGcDF/NW8l
https://paperpile.com/c/PbGcDF/ab1S+NW8l
https://paperpile.com/c/PbGcDF/NW8l
https://paperpile.com/c/PbGcDF/ovqP
https://paperpile.com/c/PbGcDF/cT1B
https://paperpile.com/c/PbGcDF/vNK3
https://paperpile.com/c/PbGcDF/NW8l
https://paperpile.com/c/PbGcDF/NW8l


  
 

23 

6.3.3. CHS: Statistical analysis 

In this subproject, Stata IC software (version 14) was used to perform all analyses. First, 

to determine whether mean FVIII activity levels differed across covert WMH burden 

severity levels measured on the first cranial MRI, we first performed one-way Analysis 

of Variance (ANOVA).47 Then, to estimate the effect of FVIII activity at baseline on this 

outcome, we used ordinal logistic regression models adjusted for a set of pre-specified 

demographic, socioeconomic, and cardiovascular factors thought to contribute to 

confounding.47 These included: age, sex, education level, ethnicity, smoking status, 

frequency of alcohol use, body mass index, hypertension, diabetes, high and low 

density lipoprotein cholesterol levels, fibriongen, C-reactive protein, maximum common 

and internal carotid intima-media thickness, and the occurrence of a TIA or stroke after 

the baseline visit but before the first MRI scan.47 

We obtained common odds ratios (cOR) with corresponding 95% CIs from crude and 

fully-adjusted models using the gologit2 package in Stata,63,64 which fits a partial 

proportional odds model to accommodate the ordinal outcome variable and can 

selectively relax the proportional odds assumption in case of violations.47 The fully-

adjusted models included a variable for the occurrence of an overt cerebrovascular 

event (clinical stroke or TIA) during the follow-up period but before the first MRI scan; 

however, since this variable is both a proxy for confounding as well as a potential causal 

mediator on the path between the exposure and outcome variables, we further 

performed a sensitivity analysis in which we omitted it from the model.47 

For the longitudinal comparisons assessing the relationship between baseline FVIII 

activity levels and the outcome of WMH burden worsening, only participants taking part 

in both cranial MRI scans could be included.47 We again computed cORs and 95% CIs 

from ordinal logistic regression models estimated using gologit2.47,63 In addition to the 

aforementioned set of confounding variables, these longitudinal analyses were 

additionally adjusted for the time interval between scans.47 We did not adjust for 

baseline WMH burden, as such an adjustment with a change-score as an outcome has 

been shown to introduce bias.47,65 

https://paperpile.com/c/PbGcDF/NW8l
https://paperpile.com/c/PbGcDF/NW8l
https://paperpile.com/c/PbGcDF/NW8l
https://paperpile.com/c/PbGcDF/RyJc+Jq13
https://paperpile.com/c/PbGcDF/NW8l
https://paperpile.com/c/PbGcDF/NW8l
https://paperpile.com/c/PbGcDF/NW8l
https://paperpile.com/c/PbGcDF/NW8l+RyJc
https://paperpile.com/c/PbGcDF/NW8l
https://paperpile.com/c/PbGcDF/tuxX+NW8l


  
 

24 

To quantify the associations between baseline FVIII activity levels and the second 

outcome of interest, cognitive performance (operationalized as 3MSE and DSST 

scores), we first obtained crude and adjusted β estimates and 95% CIs from linear 

regression models.47 The same set of variables was used for confounding control as in 

the aforementioned analyses of the primary outcome (WMH burden).47 To 

accommodate the repeated nature of the serial, annual cognitive performance 

measurements, in the longitudinal analyses, we used linear models with mixed effects, 

introducing random intercepts for each individual, to obtain the adjusted effect estimates 

of interest (presented as β estimates and 95% CIs).47  
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6.4. Summary of data sources 
To provide an overview of the three datasets used in my dissertation subprojects, I have 

created a condensed summary of their designs, participants’ ages, and years during 

which the studies recruited participants in Table 1. This table also includes the number 

of participants who ultimately met the criteria for inclusion, as well as the exposure and 

outcome variables of interest for each subproject. 

Table 1. Overview of datasets, designs and study samples per subproject 

 

Original dataset information 
 

Subproject study design 

Study 
name 

Study 
population 

Study 
design 

Ages Recruit
- ment 
period 

Included 
participants 

Main 
Exposure 

Outcomes of interest 

RATIO 
(phase 2) 
48,49 
 

Young 
women living 
in the 
Netherlands 

Population
-based 
case- 
control 
study 

18-50 1990- 
1995 

755 controls, 
216 myocardial 
infarction 
patients, 182 
Ischemic 
stroke patients 
with available 
DNA samples. 
630 controls 
also had blood 
samples 45 

42 SNPs 
capturing 
common 
variation in 
F12, F11, 
KLKB1 and 
KNG1 genes 

1. Coagulation factor 
traits 
- FXII, FXI, PK and 
HMWK antigen levels 
- FXI activity levels 
 
2. Disease 
- Myocardial infarction 
- Ischemic stroke 

PROSCIS
-B 54 

First stroke 
patients in 
Berlin 

Hospital- 
based 
cohort 
study 

18+ 2010- 
2013 

576 46 FXII, FXI and 
FVIII activity 
levels 

1. Combined endpoint 
(stroke, myocardial 
infarction, death) 

CHS 55 Adults from 
four US 
communities 

Population
-based 
cohort 
study 

65+ 1989- 
1990 

4,295 47 FVIII activity 
levels 

1. First measurement 
- White matter 
hyperintensity burden 
- Cognitive performance 
(3MSE, DSST) 
2. Longitudinal 
- White matter 
hyperintensity worsening 
- Cognitive decline 

 
Abbreviations: SNP; single nucleotide polymorphism; FXII, coagulation factor XII; FXI, coagulation factor 
XI; PK, prekallikrein; HMWK, high molecular weight kininogen; 3MSE, Modified Mini-Mental State 
Examination; DSST, Digit Symbol Substitution Test. The information presented in this table highlights the 
key design elements of the three dissertation subprojects; full details can be found in resulting original 
scientific publications: Rohmann et al. 2019, Rohmann et al. 2020, and Rohmann et al. 2020.45–47 
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7. Main Results 

7.1. Common genetic variation in the contact system: 
RATIO study results 

7.1.1. Genotyping results 

The call rates in all genotyped control participant samples (N=755) ranged from 90.5% 

to 98.5% (Table 2).45 Minor allele frequencies for each included SNP (organized by 

chromosome and gene) are also displayed in Table 2. 

Table 2. 

Chr. Gene Tag SNPs 
Major/minor 

alleles 
Minor allele 
frequency Call rate 

5 F12 rs1801020 C/T 25.3% 96.4% 

5 F12 rs17876032 A/G 34.9% 91.0% 

4 F11 rs4253399 T/G 38.9% 95.6% 

4 F11 rs2036914 C/T 46.3% 96.6% 

4 F11 rs1593 A/T 12.2% 96.4% 

4 F11 rs4253417 T/C 41.7% 94.6% 

4 F11 rs4253418 G/A 4.9% 97.9% 

4 F11 rs4253430 G/C 35.7% 95.4% 

4 F11 rs4253429 A/G 16.0% 97.1% 

4 F11 rs4253406 G/T 7.9% 95.2% 

4 F11 rs3733403 C/G 10.3% 96.0% 

4 F11 rs5966 A/G 4.8% 95.4% 

4 F11 rs4253431 G/A 14.1% 92.6% 

4 KLKB1 rs2304595 G/A 43.2% 92.8% 

4 KLKB1 rs1511801 T/A 45.5% 95.4% 

4 KLKB1 rs4253243 T/C 6.9% 95.5% 

4 KLKB1 rs4253327 T/A 28.9% 90.9% 
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4 KLKB1 rs4253326 T/C 18.4% 91.0% 

4 KLKB1 rs925453 C/T 31.0% 98.5% 

4 KLKB1 rs4253292 A/G 13.3% 95.9% 

4 KLKB1 rs4253315 C/T 10.3% 92.1% 

4 KLKB1 rs3087505 G/A 10.7% 96.2% 

4 KLKB1 rs4253246 A/T 13.2% 93.4% 

3 KNG1 rs5030062 A/C 38.3% 91.9% 

3 KNG1 rs5030039 T/C 25.6% 94.7% 

3 KNG1 rs166479 C/T 45.3% 92.3% 

3 KNG1 rs5030060 C/T 30.0% 94.2% 

3 KNG1 rs1621816 T/C 28.9% 93.9% 

3 KNG1 rs2304456 T/G 11.4% 95.8% 

3 KNG1 rs1469859 G/A 32.1% 96.3% 

3 KNG1 rs266723 A/C 48.2% 90.5% 

3 KNG1 rs5029980 T/C 12.9% 92.5% 

3 KNG1 rs1648722 C/T 39.3% 91.8% 

3 KNG1 rs5029999 C/T 20.5% 95.4% 

3 KNG1 rs5030091 T/C 44.8% 93.9% 

3 KNG1 rs5030102 T/G 9.9% 91.1% 

3 KNG1 rs1624230 C/A 42.4% 94.8% 

3 KNG1 rs1836860 T/C 33.8% 93.8% 

3 KNG1 rs4686799 C/T 20.7% 93.9% 

3 KNG1 rs5030095 G/C 13.3% 95.8% 

3 KNG1 rs266760 G/A 26.2% 91.8% 

3 KNG1 rs5030003 T/G 47.7% 94.3% 

3 KNG1 rs5030072 -- failed in lab* --  
 

Abbreviations: Chr., chromosome; SNP, single nucleotide polymorphism (variant). Minor allele 
frequencies and SNP call rates were calculated using data from all control participants with 
available DNA samples. This Table represents a modification of a published version in 
Rohmann et al. 2019.45 
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7.1.2. Associations between SNPs and traits (coagulation 
factor levels) 

We included 630 control participants with both DNA and blood plasma samples 

available for the protein quantitative trait loci analyses. In this section, results are 

presented organized by gene (F12, F11, KLKB1 then KNG1). 

F12 SNPs and FXII antigen levels: In the age-adjusted single SNP analyses within the 

F12 gene, two SNPs were found to have highly statistically significant associations 

(below the Bonferroni-corrected alpha level) of considerable magnitude with FXII 

antigen levels: lead SNP rs1801020 (β=-41.54, 95%CI: -45.67 to -37.41, p=6.85·10-67) 

and rs17876032 (β=-28.09, 95%CI: -32.52 to -23.66, p=1.42·10-31).45 However, the 

secondary signal for rs17876032 disappeared after adjustment for the lead SNP in the 

conditional analyses.45 

F11 SNPs, FXI antigen and FXI activity levels: Of five F11 SNPs showing statistically 

significant signals with FXI antigen levels, the strongest signal was with SNV rs2036914 

(β=-11.38, 95%CI: -14.18 to -8.58, p=7.87·10-15).45 After adjustment for the lead SNP 

and mutual adjustment, two secondary signals persisted; the associations with rs1593 

(βadjusted=-7.47, 95%CI: -11.99 to -2.96, padjusted=0.001) and rs4253399 (β=6.11, 95%CI: 

2.02 to 10.20, p=0.003).45 Five F11 SNPs were also significantly associated with FXI 

activity levels in the age-adjusted single SNP regression models.45 In addition to lead 

SNP rs4253399 (β=9.24, 95%CI: 6.69 to 11.79, p=3.32·10-12), only the additional 

secondary signal between rs1593 and FXI activity (βadjusted=-5.65, 95%CI: -9.46 to -1.83, 

padjusted=0.004) persisted after adjustment for the lead SNP and mutual adjustment for 

the other SNPs with secondary signals (rs4253418 and rs2036914).45 

KLKB1 SNPs and PK antigen levels: For this second gene of interest that, like F11, is 

also situated on chromosome 4, we estimated below-threshold signals for a total of six 

KLKB1 SNPs in the age-adjusted single-SNP models with PK antigen levels as the 

outcome.45 In addition to the lead SNP rs2304595 (β=10.33, 95%CI: 6.65 to 14.02, 

p=5.58·10-8), a conditionally independent signal with rs4253243 persisted (βadjusted=-

12.38, 95%CI: -20.07 to -4.69, padjusted=0.0017).45 This locus had not previously been 

described in the literature and thus represents a novel finding. 
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KNG1 SNPs and HMWK antigen levels: Of the four contact system genes, KNG1 had 

the highest number of SNPs to capture common genetic variation; we found statistically 

significant associations for 11 of these with HMWK antigen levels in the age-adjusted, 

single-SNP analyses.45 The lead SNP was rs5030062 (β=10.23, 95%CI: 7.87 to 12.59, 

p=1.63·10-16), and upon conditioning on this SNP, associations between eight KNG1 

SNPs and HMWK antigen levels remained.45 After mutual adjustment for the strongest 

secondary signals, only one association involving rs5029980 persisted (βadjusted=5.86, 

95%CI: 2.40 to 9.32, padjusted=0.001).45 This novel locus was first identified by our work. 

Across-trait associations: In addition to the aforementioned associations between 

single SNPs from the contact system genes and levels of the respective proteins 

encoded by each of these four genes, we also looked for signals “across-traits”. Upon 

investigating any statistically significant associations between SNPs of one gene and 

other traits (expressed contact factor levels not encoded by that gene) in the age-

adjusted single-SNP models, we found no signals below the Bonferroni-corrected 

statistical significance threshold for SNPs within the F12 or F11 genes.45 We identified 

three KLKB1 SNPs having statistically significant single-SNP associations below the 

multiple testing-corrected threshold with both FXI antigen and activity levels (rs1511801, 

rs2304595 and rs3087505).45 In KNG1, four SNPs (rs5030062, rs5030060, rs1469859 

and rs166479) were associated with FXI activity levels, and two of these (rs5030062, 

rs5030060) also with FXI antigen levels.45 Furthermore, two KNG1 SNPs (rs5030062 

and rs5030060) were associated with PK antigen levels.45 

7.1.3. Haplotype construction and analysis 

F12: Since no secondary signals were conditionally independent of the lead SNP that 

we identified for the association with FXII antigen levels (rs1801020), no haplotypes 

could be constructed for F12.45  

F11: Using the discovered F11 SNPs, we were able to construct five haplotypes present 

in at least 1% of the included control participants.45 Compared with the reference 

haplotype occurring in 15% of participants, which contained only major alleles of 

rs4253399 (T), rs2036914 (C) and rs1593 (A), a haplotype consisting of at least one 

copy of the rs4253399 major allele and less frequently occurring minor allele variants of 
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both rs2036914 (T) and rs1593 (T) occurred in 12.0% of control participants.45 This 

haplotype was statistically significantly associated with 12.9-unit lower levels of FXI 

antigen (SE=2.8, p<0.0001).45 No other F11 haplotypes occurring in at least 1% of the 

control participants showed a statistically significant association with the expressed FXI 

antigen or FXI activity levels.45 

KLKB1: The two KLKB1 SNPs we identified with mutually independent associations 

with PK antigen levels did not occur together in an inherited combination; therefore, no 

haplotypes could be constructed in our study sample of control participants.45 

KNG1: In KNG1, we constructed a total of five haplotypes consisting of the lead SNP 

and the two secondary signals.45 The reference haplotype consisted of all major alleles 

only for rs5029980 (T), rs2304456 (T) and rs5030062 (A) and occurred in 43.2% of 

participants.45 The alternative, rarer haplotype containing at least one copy of C alleles 

for both the rs5029980 and rs5030062 loci was associated with an increase in HMWK 

antigen levels (β=25.2, SE= 3.4; p-value<0.0001).45  

7.1.4. Associations with disease phenotypes 

We found no statistically significant associations between any of the included SNPs that 

were significantly associated with the protein levels encoded by their gene (N=26), and 

either myocardial infarction or ischemic stroke in the disease phenotype analyses that 

included all RATIO case and control participants with DNA samples.45 Furthermore, 

upon assessing the associations between the haplotypes described in the previous 

section and these diseases, none were statistically significant.45  

7.2. High levels of FVIII, FXI or FXII activity and post-stroke 
outcomes: results from the PROSCIS-B study 

7.2.1. Study population characteristics 

The majority of first-ever stroke patients in the PROSCIS-B study were middle or older 

age (median age: 69 years; IQR 58-76), more than half were men (61%), and the 

participants’ median BMI was 27 kg/m2 (IQR: 24-30).46 A total of 576 participants met 

eligibility criteria and had at least one coagulation factor measurement.46 For all 
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available measurements, median levels of FVIII, FXI, and FXII activities were 140 (IQR: 

51), 133 (IQR: 31), and 108 (IQR: 36).46 

7.2.2. Survival analysis results 

A total of 1419.5 person-years were contributed by the included PROSCIS-B study 

participants.46 During follow-up, a total of 94 sequelae meeting the definition of the 

combined endpoint were observed (48 deaths, 41 strokes, and 5 myocardial 

infarctions).46 

Plots of the Kaplan-Meier estimates for the cumulative probability of the combined 

endpoint are displayed in Figure 1, in which high levels of each of the three coagulation 

factors were compared with low-to-normal reference levels.46 The log-rank test results 

for the crude comparison of high versus reference activity levels indicated a significant 

difference for FVIII (p=0.0001) but not FXI (p=0.06) or FXII (p=0.48) activity levels.46 

However, these results do not reflect any confounding adjustment, which is critical in 

this observational cohort design, and was thus addressed in a second analytical step. 
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Figure 1. Kaplan-Meier estimates of cumulative probabilities of the combined endpoint by 
coagulation factor activity group (high versus reference levels). Activities are reported as 
percentages of activated normal pooled plasma. Abbreviations: FVIII, coagulation factor VIII; FXI, 
coagulation factor XI; FXII, coagulation factor XII; p75, 75th-percentile. This figure was redrawn from 
original data, and represents a modification from the original version published in Rohmann et al. 2020.46  
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As shown in Figure 2, after adjustment for the a priori-specified confounding variables, 

having high levels of FXI activity compared with reference levels increased the hazard 

for the combined endpoint (HR = 1.80, 95%CI: 1.09–2.98).46  This was also observed 

for having high FVIII activity levels (HR = 2.05, 95%CI: 1.28–3.29).46  Among those 

having high levels of FXII activity, we did not observe a statistically significant 

relationship with the combined endpoint (HR=0.86, 95%CI: 0.49–1.51).46  The 

standardized continuous analyses yielded analogous results (Figure 2).46 

 

 
Figure 2. Hazard ratios for FVIII, FXI and FXII activity levels (high versus reference) and the 
combined endpoint outcome. High levels were defined as values greater than the 75th percentile for 
each factor’s measurements. Abbreviations: FVIII, coagulation factor VIII; FXI, coagulation factor XI; FXII, 
coagulation factor XII; SD, standard deviation. This figure reflects effect estimates from published tables 
in Rohmann et al. 2020.46  
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7.3. FVIII activity, white matter hyperintensities and 
cognitive performance: results from the CHS 

7.3.1. Baseline characteristics of included participants 

Of the original 5,201 CHS participants, after excluding those with missing FVIII activity 

measurements, prior overt clinical stroke or TIA, adjudicated dementia, and those 

having very low baseline cognitive performance, the study population meeting inclusion 

for at least one of the analyses consisted of 4,295 individuals aged 65 or older at study 

start.47 The mean age was 72.3 years (SD: 5.3), more than half of the included 

participants were female (59.3%), the vast majority were white (96.0%), and 76.9% had 

at least 12 years of education (high school diploma). In terms of traditional 

cardiovascular risk factors, 45.4% of participants were hypertensive, 13.9% had 

diagnosed or detected fasting glucose levels indicative of diabetes, 54.1% reported 

being a former or current smoker, and 13.8% reported consuming more than 7 alcoholic 

drinks per week, on average.47 A complete summary of baseline characteristics for the 

included participants can be found in the original publication.47 

7.3.2. FVIII activity and white matter hyperintensity burden 

For a total of 2,735 included participants, WMH burden results from the first cranial MRI 

scan were available in the dataset for analysis.47 In line with our hypotheses, the mean 

FVIII activity levels were highest among individuals with the high WMH burden (mean: 

121.2 activity units) compared with individuals having medium (120.5) or low (115.3) 

WMH burden.47 This difference was statistically significant in the crude, unadjusted 

comparison (ANOVA p=0.001).47 

Compared with having “normal” FVIII activity levels (reference; between the 1st and 3rd 

quartiles), having “high” FVIII activity levels in the upper fourth of all measurements 

(>75th percentile) was weakly but not statistically significantly associated with a more 

severe WMH burden on the first cranial MRI scan after full adjustment for confounding 

(cOR=1.20, 95%CI: 0.99-1.45).47 On the other end of the spectrum, having FVIII activity 

levels in the lowest fourth (≤25th percentile) was not associated with more severe WMH 
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burden (cOR=1.03, 95%CI: 0.85-1.23).47 In the analysis treating FVIII activity as a 

continuous variable, we obtained analogous results. Per one SD increase in FVIII 

activity, corresponding to an increase of 36 units, our model estimated a cOR for the 

ordinal WMH burden outcome on the first MRI scan of 1.08 (95%CI: 0.99-1.17).47 

In the longitudinal analyses, we quantified the association between baseline FVIII 

activity levels and WMH worsening observed over time on two cranial scans, separated 

on average by 5 years, in participants who received both scans (N=1,527).47 After full 

adjustment for confounding, we found no statistically significant association between 

having high (cOR=1.18, 95%CI: 0.87-1.59) or low (cOR=1.01, 95%CI: 0.76-1.33) FVIII 

activity levels and this ordinal outcome variable, compared with normal (reference) 

levels.47 Similarly, per one SD increase in FVIII activity (36.3 units), the cOR was 1.07 

(95%CI: 0.94-1.22).47 

7.3.3. FVIII activity and cognitive performance 

In the fully-adjusted models, we found that having high FVIII activity levels at the first 

follow-up visit was not statistically significantly associated with 3MSE scores (β=-0.06, 

95%CI: -0.45 to 0.32) or DSST scores (β=-0.69, 95%CI: -1.52 to 0.13) among the 

approximately 4,000 participants for whom these scores were available.47 Having low 

FVIII activity levels showed a small, not statistically significant association with 3MSE 

scores (β=0.33, 95%CI: -0.04 to 0.71), and a small, statistically significant association 

with DSST scores (β=0.85, 95%CI: 0.06 to 1.64) in the fully-adjusted models.47 

Correspondingly, in the continuous analyses, per one SD increase in FVIII levels, we 

estimated a 0.14-point lower average score for the 3MSE (95%CI: -0.30 to 0.03) and 

0.37-point lower score for the DSST (95%CI: -0.72 to -0.02).47  

Our longitudinal analyses showed that high FVIII activity levels were not associated with 

3MSE or DSST scores over time across the duration of study follow-up in the fully 

adjusted mixed models (3MSE β=-0.07, 95%CI: -0.58 to 0.44; DSST β=-0.22, 

95%CI: -0.97 to 0.53).47 Our findings treating the exposure as a continuous variable 

were consistent (β for 3MSE per SD of FVIII=0.15, 95%CI: -0.06 to 0.37; β for DSST per 

SD of FVIII=-0.11, 95%CI: -0.43 to 0.22).47  
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In the sensitivity analysis, in which we removed the variable encoding the occurrence of 

a TIA or stroke during the follow-up, we obtained nearly identical estimates for all 

relationships outlined above.47 

 

 

8. Discussion 

8.1. Summary of main findings, strengths and relevance 

The overarching aim of this dissertation work was to investigate possible determinants 

and consequences of high levels of coagulation factors, which were selected as 

particularly promising targets in the context of ischemic vascular pathologies. 

Specifically, across the three subprojects, I sought to probe potential genetic influences 

on coagulation factor levels and disease phenotypes,45 examine relationships between 

coagulation factors already implicated in first stroke with outcomes after stroke,46 and 

determine whether FVIII, known to be a cause of overt vascular events, may also 

contribute to covert white matter hyperintensity development and cognitive performance 

among healthy older adults.47 

My work on the first subproject contributed to the identification of two new genetic loci 

that influence contact system factor levels. Using data from the RATIO study, we 

identified novel locus rs4253243 (which tagged rs4253331) within the KLKB1 gene as a 

determinant of PK antigen levels, and this relationship was conditionally independent of 

the KLKB1 lead SNP rs2304595.45 The second novel locus discovered was rs5029980 

(no tagged SNPs) within the KNG1 gene, which remained independently associated 

with HMWK levels, even after conditioning on both the KNG1 lead SNP rs5030062 and 

a replicated secondary signal in KNG1, rs2304456.45  

We further confirmed postulated across-trait influences of some KNG1 loci on both FXI 

antigen and activity levels.45 These relationships persisted after conditioning on HMWK 

antigen levels, and appeared to be driven by FXI activity levels, since the associations 

with FXI antigen disappeared after further adjustment for FXI activity.45 Neither the 
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single SNPs nor haplotypes constructed from all signals within a given gene were found 

to be associated with ischemic stroke or myocardial infarction in the analyses using data 

from both case and control participants.45 

The work of the first subproject provided a further valuable contribution to the field of 

coagulation factor genetics in that it replicated several previously reported single-variant 

associations in a single study. The idea of external replication of genetic signals in 

independent datasets is a critical pillar to genetic discovery studies,66,67 especially in 

light of the ongoing, well-described reproducibility crisis in the published scientific 

literature.68  

Although our study of coagulation factor genetic variation only captured common 

variation across the four contact system genes, it had a unique strength in that we had 

multiple coagulation factor measurements available for the same set of individuals, as 

well as both antigen and activity level measurements for FXI. This allowed us to probe 

more complex across-trait relationships that had been previously postulated in the 

literature. For example, we showed that the association between KNG1 SNP rs5030062 

and FXI antigen levels appears to be driven by rs5030062’s (or a tagged SNP’s) 

influence on FXI activity.45 This finding provides relevant contextualization for a 

previously proposed mechanism of KNG1-driven modulation of FXI levels by a tagged 

SNP rs710446.69 The C allele of this missense mutation is thought to alter the binding 

site functionality of HMWK, which impacts FXI activity (but not antigen levels), because 

HMWK and FXI circulate together as complexes in the blood.69 Of course, the exact 

mechanism would need to be investigated in a functional study, but our corroboration of 

this initial proposition is an important first step in terms of understanding genetic 

influences on the contact system factor expression.45 

In the second subproject, using data from the stroke patient cohort, PROSCIS-B, I was 

interested in quantifying the relationships between activity levels of two of the 

aforementioned contact system factors belonging to the intrinsic coagulation cascade 

(FXI and FXII) as well as the more downstream FVIII with post-stroke outcomes.46 While 

all three of these factors have been implicated as causes of first ischemic stroke, 

evidence regarding whether they also contribute to the development of post-stroke 

endpoints was lacking in the literature. After adjustment for confounding, while we did 
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not observe a relevant relationship between high levels of FXII activity and the 

combined endpoint (HR=0.86, 95%CI: 0.49–1.51), the HR  estimates for having high 

FXI and high FVIII were 1.80 (95%CI: 1.09–2.98) and 2.05 (95%CI: 1.28–3.29), 

respectively, suggesting the relevance of these factors in the context of secondary 

events after first stroke.46  

Upon initiation of this subproject, the potential role of coagulation factors XII, XI, and VIII 

in contributing to vascular events after stroke was largely unexplored. This was 

surprising given their prior implications in first ischemic stroke and other vascular 

events. First results from concurrent studies have since linked FVIII to post-stroke 

outcomes. For instance, a study of hospitalized stroke patients in the U.S. found that 

ischemic stroke patients with high levels of FVIII more frequently experienced vascular 

events during the acute phase.70 Among the subset of ischemic stroke patients who 

received thrombolysis therapy, another study found that having high FVIII activity levels 

(measured both pre- and post-thrombolysis time points) was associated with worse 

functional outcomes three months after the index event.71  

Due to its large size and three years of follow-up, during which incident vascular events 

and mortality were recorded, using the PROSCIS-B dataset provided a perfect 

opportunity to build on these first observations and investigate whether the impact of 

FVIII persisted also in the longer term.46 Furthermore, in the same study population, we 

could investigate the relationships between the activity levels of FXII and FXI and post-

stroke outcomes, and provide first results showing that FXI seems to play a role in the 

occurrence of relevant post-stroke endpoints.46  

The third subproject again focused on FVIII activity, but this time, my central interest 

was to estimate effects of having high FVIII levels on covert WMH and cognitive 

outcomes in a large, general population-based sample of older persons. The underlying 

motivation for this research line was our hypothesis that FVIII-induced white matter 

hyperintensity development might contribute to subsequent cognitive decline.47  

Contrary to our hypothesis, we did not find that individuals with high FVIII activity levels 

had a more severe burden of white matter hyperintensities on the first cranial MRI scan 

compared with individuals with low or normal levels.47 We further did not find evidence 
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that having high FVIII was linked to WMH worsening over an average period of 5 

years.47 With regard to the cognitive performance outcomes, we did not observe strong 

relationships between FVIII activity levels and the 3MSE or DSST scores in the general 

population of older persons; neither at the time point of first assessment nor in the 

longitudinal analyses with annual measurements across the 9-year follow-up period.47  

These findings were consistent between both tests assessing cognitive performance 

(3MSE and DSST).47 Both tests were repeated according to standardized protocols and 

had unique advantages; for the 3MSE, we were able to impute telephone estimations 

(TICS)62 to avoid large numbers of missing values over time.47 We opted to use DSST 

scores as a second outcome measure to check the robustness of our results since the 

DSST overcomes the well-described ceiling of the 3MSE.47,61  

Since we observed no relationships between FVIII activity levels and either outcome of 

interest (WMH or cognitive test performance), a formal causal mediation analysis was 

not warranted. Taken together with the findings of the second subproject, it appears that 

FVIII is a more relevant research target for overt vascular events than for covert 

ischemia or cognitive decline in the general population of older persons.47 

8.2. Critical reflection and recommendations for future 
coagulation factor research in observational studies 

8.2.1. Timing is everything in matters of coagulation factor 
measurement 

Research investigating the relationship between coagulation factors and specific 

endpoints is only interpretable with explicit consideration of the timing of the 

measurements, that is, when the blood samples are obtained relative to the disease 

process. Therefore, it is of utmost importance to choose a relevant time point for the 

coagulation factor measurement aligned with the operationalization of the exposure in 

the research question of interest. My dissertation project made use of coagulation factor 

measurements obtained from blood samples taken at time points specified by the study 

protocols of already existing studies. While I, myself, could not choose the moment at 

which these blood samples were taken, I emphasize that the results of my work should 

be interpreted and contextualized with explicit consideration of the underlying disease 
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process timeline. Noting that there is no definitive scientific consensus definitions for the 

exact length of the “acute phase” nor the meaning of “short-term” versus “long-term” in 

the context of post-stroke outcomes, I created a simplified timeline with one possible 

operationalization of the relevant time periods leading up to and following ischemic 

stroke onset for illustrative purposes (Figure 3) to demonstrate some lessons learned. 

 
 

 
Figure 3. Timeline surrounding stroke onset relevant for blood biomarker measurements.  
Timeline not to scale and is for illustrative purposes. There is no consensus of how these terms (“acute 
phase”, “short term”, and long-term” outcomes) are operationalized in the scientific literature. This 
operationalization is therefore exemplary, but the concept holds also for other definitions of these terms. 
 
 
 
To ascertain whether a given exposure of interest could be a causal risk factor for first 

stroke, the relevant measurement must be made in a sample taken during the pre-

stroke period. Though I did not investigate causes of first stroke in this thesis, in the 

subproject focusing on a different set of outcomes (WMH development and cognitive 

performance decline) the FVIII activity measurements were technically performed during 

this phase because they were sampled from the general population who had not 

experienced ischemic stroke. 

Though there is formally no consensus on its length in the literature, after ischemic 

stroke onset, the acute phase immediately follows (Figure 3). This time period extends 

for at least several days up to several weeks after symptom onset and is characterized 

by an inflammatory response, during which several biomarkers, called acute phase 

reactants, such as CRP, FVIII, and fibrinogen, become elevated for an extended period 

of time.70,72,73. This is the time period during which ischemic stroke patients should be 
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rapidly hospitalized and may receive treatment, such as intravenous thrombolysis 

and/or mechanical thrombectomy.74 Patients remain hospitalized for various lengths of 

time depending on ischemic stroke subtype, severity and comorbidities.75 In Germany, 

the median stay on a stroke unit is 7 days, though the total length of stay in the hospital 

may be longer, depending on the speed and degree of recovery.75 

During hospitalization (and increasingly, already during prehospital provision of stroke 

care, e.g. in a mobile stroke unit3), it is comparatively convenient to obtain blood 

samples from stroke patients, as laboratory tests are a part of the clinical routine. 

However, this convenience comes with an important caveat for coagulation and 

inflammation research. Namely, measurements performed in blood sampled during this 

period, especially in the first days after the index event, may be vulnerable to capturing 

elevated levels of specific factors if they are impacted by the aforementioned acute 

phase response. This means that FVIII measurements ascertained from blood sampled 

during this period likely represent a mixture of pre-stroke FVIII levels and temporary 

acute phase elevation. Intravenous thrombolysis administration also happens early on 

in this phase, which could further impact some coagulation factor measurements in the 

very short-term. 

In-hospital biosampling makes clinical sense as a measurement time point, as blood 

sampling is routine in this setting, and measured biomarkers may also be used to inform 

future treatment strategies and clinical decision-making for both the short- and long-

term. Taking blood samples at the time of hospital discharge, temporally further from 

ischemic stroke onset, may provide coagulation factor estimates closer to pre-stroke 

levels, however, one should be cautious if inferring that these levels represent pre-

stroke levels, especially if they are known to be impacted by the acute phase.  

In the case of the second subproject using PROSCIS-B data, for pragmatic reasons, 

blood was sampled during the time of hospitalization. However, since the day of 

discharge varies per patient, heterogeneity in blood sampling could further complicate 

the interpretation of the results, representing a further possible limitation to our 

secondary analysis of this existing dataset. 

To avoid capturing transient changes in biomarker levels induced by the acute phase 

https://paperpile.com/c/PbGcDF/LnBQ
https://paperpile.com/c/PbGcDF/pJh7
https://paperpile.com/c/PbGcDF/pJh7
https://paperpile.com/c/PbGcDF/6h4t
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reaction, blood sampling can be performed after a longer period of time has elapsed, for 

example, three months after stroke, or even one or more years after the index event, 

concurrent with long-term outcome measurements. The 3-month time period may be 

particularly practical, since many stroke patient cohorts include a 3-month visit to 

assess a series of “short term” outcome parameters. However, samples taken at 3-

months post-stroke time point were, unfortunately, not available from the data sources 

used in my dissertation project.  

Measurements taken in the longer-term may be preferred in common case-control study 

designs with survivorship sampling, as measuring during these late time periods leads 

to the lowest risk of ‘reverse causation;’ a phenomenon in which a consequence is 

mistaken for the actual cause.76 We encountered such a situation in the RATIO case-

control study dataset, which we used to assess associations between the individual 

genetic variants and disease phenotypes.45 In the RATIO study, coagulation factor 

measurements were performed in blood samples taken 5 years after the index event (in 

cases) or their index date (for the matched control participants).48,49 Though this 

approach also overcomes the limitation of taking measurements in the acute phase, it is 

important to note that using measurements from blood sampled at this late time point 

means that only participants who survived to the time point of blood sampling could be 

included, introducing a potential survivorship bias. Additionally, among survivors of 

vascular events, we cannot rule out that some preventative treatments (e.g., 

anticoagulation medication use after ischemic stroke) might have altered these 

biomarker measurements from their pre-stroke values. 

Taken together, the aforementioned examples from this dissertation work illustrate how 

the timing of blood sampling of biomarkers is highly relevant. Specifically, 

measurements taken at different time points provide different information and represent 

different underlying constructs. In the existing literature, these limitations find little 

acknowledgement. The results of my work illustrate why care should be taken in the 

reporting and interpretation of observational, clinical studies involving coagulation factor 

measurements. In my dissertation, I took care to interpret and contextualize my results 

in light of the time of measurement, as failing to do so could obscure understanding and 

even lead to bias, as illustrated in the next section. 

https://paperpile.com/c/PbGcDF/spPO
https://paperpile.com/c/PbGcDF/9HA9
https://paperpile.com/c/PbGcDF/WJN4+WfM8
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8.2.2. DAGs: visual tools to identify common biases in 
observational studies 

Much of the work in clinical epidemiology stems from identifying biases that arise in 

observational studies and developing strategies to mitigate these biases in study design 

and analysis. In the process of writing this dissertation, I became increasingly exposed 

to directed acyclic graphs (DAGs). Progressively, modern epidemiologists are using 

DAGs across applied clinical disciplines to inform study design and analysis, although 

they are not (yet) commonly implemented in the field of stroke research.77  

DAGs are visual tools based on Bayesian Networks, which were developed largely 

through work in the field of computer science.78,79 DAGs are intuitive representations of 

the underlying so-called data generation process, encapsulating cause and effect 

relationships surrounding a given causal research question.78,80,81 In this section, I will 

briefly introduce DAGs, which I will use in the remainder of the Discussion together with 

examples from my dissertation work to explore some possible limitations outside of 

those already mentioned in the individual publicaitons, highlighting relevent 

considerations for future research on coagulation factors. 

A DAG consists of a set of “nodes,” each corresponding to a variable. These nodes can 

be connected to each other by directed arrows, which represent direct causal effects, 

and point from individual causes to their effects.78,80 Using DAGs, researchers can 

intuitively generate visualizations of the reality that can provide a framework useful for 

communication between clinical subject-matter experts and epidemiologists.77 Under a 

set of common assumptions, there is a direct correspondence between the DAG and 

conditional independence between variables.78,80 This means, that if the DAG is correct, 

under certain conditions, it is possible to estimate a causal effect from observational 

data, which is the goal of many relevant clinical lines of scientific inquiry.80,82 

Paths connecting any two nodes in a DAG through one or more arrows can be 

classified as “open” or “closed”78,80,81. If there is an open path in a DAG between two 

nodes, the corresponding variables will be associated in the corresponding dataset.78 

On the other hand, if no path exists or an existing path is “closed” (which can occur 

naturally, due to study design (e.g., restriction), or analytically, e.g., through 

https://paperpile.com/c/PbGcDF/aJob
https://paperpile.com/c/PbGcDF/Ibn0+j8HT
https://paperpile.com/c/PbGcDF/Ibn0+1hws+pgcm
https://paperpile.com/c/PbGcDF/Ibn0+1hws
https://paperpile.com/c/PbGcDF/aJob
https://paperpile.com/c/PbGcDF/Ibn0+1hws
https://paperpile.com/c/PbGcDF/cm3s+1hws
https://paperpile.com/c/PbGcDF/Ibn0+1hws+pgcm
https://paperpile.com/c/PbGcDF/Ibn0
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adjustment), then, the two variables will be independent.78,80,81 Many comprehensive 

introductions to DAGs, including practical examples, have been published 

elsewhere.78,83–85 

8.2.3. Coagulation factors in the context of ischemic 
stroke: confounding considerations 

Earlier, I discussed how FVIII levels are altered by the occurrence of ischemic stroke as 

a part of the acute phase response. Intuitively, therefore, measurements of this factor 

sampled during the acute phase reflect a combination of pre-stroke FVIII levels as well 

as the acute phase elevation, a phenomenon not only true for FVIII, but also for many 

other inflammation biomarkers. As mentioned in the section “Time points of the 

measurement” (8.2.1), failing to explicitly consider the timing of coagulation factor 

measurements can lead to bias. I would like to explore this further in the context of one 

of my research questions from the second subproject (PROSCIS-B). 

Below, I have created a DAG (Figure 4), as introduced in the previous section, of the 

data generation process behind the research question of interest, which was to estimate 

the effect of FVIII activity levels measured after ischemic stroke (FVIII1) on the 

combined endpoint including recurrent stroke, myocardial infarction or death by any 

cause. In this simplified example for purposes of critical reflection, I have depicted 

Death as the outcome of interest, even though the following reasoning also applies to 

the other vascular endpoints. 

 

https://paperpile.com/c/PbGcDF/Ibn0+1hws+pgcm
https://paperpile.com/c/PbGcDF/37vD+HDxP+XdVy+Ibn0
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Figure 4. Directed acyclic graph for the PROSCIS-B subproject example. The green arrow indicates 
the research question under study. FVIII1 denotes the measured exposure (FVIII activity level measured 
at a given time point after ischemic stroke); FVIII0 denotes the unmeasured FVIII activity levels just before 
the index stroke event; L stands for the set of confounding variables we adjusted for in the analyses. The 
red boxes represent conditioning due to the study design (i.e. restriction to only ischemic stroke patients 
indicated by the box around Stroke) or analysis (i.e. regression adjustment for potential confounding 
sources indicated by the box around L). 

 

In Figure 4, the causal effect of interest is indicated by the green arrow. A further node 

in the DAG, FVIII0, represents pre-stroke FVIII activity levels. As indicated by the arrows 

in the DAG, FVIII0 influence FVIII activity levels measured after ischemic stroke (FVIII1). 

I have also depicted the assumption that FVIII0 also influences Death through a series 

of more downstream, intermediate pathways. Since FVIII0 is known to be a contributing 

cause of ischemic stroke (Stroke), this is also depicted by a further arrow. Among 

individuals who experience an ischemic stroke, FVIII elevation occurs in the acute 

phase, represented by Stroke → FVIII1. The DAG also shows that individuals who 

experience ischemic stroke are at higher risk for death (Stroke → Death). Finally, both 

FVIII0 and FVIII1 are influenced by a set of cardiovascular risk factors, here summarized 

as a single node L, which are also known to cause both ischemic stroke and death (for 

example, age, sex, and smoking). 

The effect of FVIII1 on the outcome was estimated in my subproject by fitting a 

regression model adjusted for the set of cardiovascular risk factors represented by L 
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only using data of stroke patients (Stroke=1), indicated in the DAG by the red boxes 

around nodes L and Stroke, respectively. The “blocking” of nodes reflects conditioning 

for these variables in either the analysis phase (regression adjustment) or already in the 

design phase (restriction to include only stroke patients).78,80,81 

Blocking a node on any open path in DAG closes that path.78 Indeed, we can obtain a 

valid estimate for the causal contrast of interest if there are no other open paths 

between exposure (FVIII1) and outcome (Death) in the DAG other than the causal 

path(s) of interest (here: FVIII1 → Death). This is the reason why we adjust for common 

causes of exposure and outcome when we aim to estimate a causal effect in 

observational studies78,80,81. 

If open noncausal paths remain in a DAG, our estimation of the association between 

exposure and outcome will reflect a mixture of the causal effect of interest (if one is 

present) with these noncausal associations.78 Confounding generally refers to the 

presence of open, non-causal “backdoor” paths that link the exposure to the outcome 

via a cause of the exposure.78,80 In this case, through the restriction to only stroke 

patients and the adjustment for covariates L, many of the otherwise open non-causal 

paths are blocked (e.g., FVIII1←Stroke→Death, FVIII1←L→Death). However, even after 

adjustment for all the measured confounding variables (L) relevant in this DAG, there 

remains one open non-causal path between FVIII1 and Death, which is due to the fact 

that pre-stroke FVIII levels (FVIII0) are a common cause of post-stroke FVIII levels 

(FVIII1) and the outcome. 

Therefore, the conditional association we estimated in the PROSCIS-B data between 

FVIII1 and the outcome likely represents a mixture of the true causal effect of interest 

and some residual confounding introduced by a spurious, non-causal association 

between FVIII1 and the outcome due to the fact that FVIII1 shares a common cause with 

the outcome (FVIII0) for which we have no information and therefore cannot be blocked.  

The DAG transparently showcases an important limitation of our findings for this 

research question, namely, an unavoidable residual confounding bias in our result due 

to the timing at which the blood sample was taken in the original study. This bias, 

https://paperpile.com/c/PbGcDF/Ibn0+1hws+pgcm
https://paperpile.com/c/PbGcDF/Ibn0
https://paperpile.com/c/PbGcDF/Ibn0+1hws+pgcm
https://paperpile.com/c/PbGcDF/Ibn0
https://paperpile.com/c/PbGcDF/Ibn0+1hws
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however, is not unique to our study or this particular question, and I suspect it is present 

in most, if not all, stroke patient cohort studies investigating biomarkers. The only way to 

further isolate the causal effect of interest would be to further adjust or restrict for levels 

of FVIII0. Unfortunately, it is rare that multiple blood samples are available in existing 

studies, especially since large general population based-studies with repeated 

measures of FVIII measures would be needed to achieve this, though feasibility is 

difficult in practice and careful planning is required. 

Moving beyond this simplified example, I would like to showcase a more complex 

application of DAGs to address confounding, this time using an example from the third 

subproject. Here, I will focus on the specific aim of quantifying the relationship between 

FVIII activity levels and white matter lesions in a general population sample of older 

persons in the CHS. I used the web application Dagitty86 to construct the relevant DAG 

for this research question, displayed in Figure 5, this time including each of the relevant 

covariates as individual nodes. As evidenced by the intricate web of arrows, the DAG 

shows how many of the traditional cardiovascular risk factors influence each other as 

well as both the exposure FVIII activity (FVIII) and outcome of interest (WMH). Blocking 

the set of variables that we a priori selected to control for confounding (marked as white 

colored nodes) results in no remaining open non-causal paths between the exposure 

and the outcome, and leaves only the causal path of interest (FVIII→WMH). Assuming 

this DAG is correct, and that common statistical assumptions required for casual 

inference are fulfilled,80 then the measured association between FVIII activity and WMH 

reported in our study should represent a deconfounded estimate of the causal quantity 

of interest. 

 

https://paperpile.com/c/PbGcDF/KUjt
https://paperpile.com/c/PbGcDF/1hws
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Figure 5. Directed acyclic graph for the CHS subproject example.  
Constructed using the Dagitty.86 Abbreviations: BMI, body mass index; CIMT, carotid intima-media 
thickness; CRP, C reactive protein; FVIII, coagulation factor FVIII; HDL, high-density lipoprotein, LDL, 
low-density lipoprotein, t0; “time zero” (study baseline); TIA, transient ischemic attack; WML, white matter 
lesions (hyperintensities). 
 

 

Importantly, this DAG represents a much more transparent presentation of analytic and 

design choices that can readily aid the reader in assessing methodological quality of 

analyses of causal questions and the validity of the point estimate. Future work should 

consider using DAGs to inform discussions with coauthor teams pertaining to the 

adjustment set of confounding variables for causal questions, or even in the project 

planning stage, to inform study design choice and inclusion/exclusion criteria.  

A further suggestion would be to publish DAGs to public repositories; this certainly 

would have saved me considerable effort in identifying known relationships between 

confounding variables, the exposures and outcomes of interest across my subprojects. 

As illustrated in this section, DAGs can be very useful to detect confounding and 

develop strategies for its control in design and analyses. DAGs find a further useful 

https://paperpile.com/c/PbGcDF/KUjt
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application in detecting another type of bias that poses an equal threat to validity, 

however, is far less intuitive and is perhaps thus often overlooked in published work. I 

present this bias, called collider stratification bias, using another example from this 

dissertation project in the following section. 

8.2.4. Collider stratification bias 

Collider stratification bias is thought to be behind many paradoxes described in the 

epidemiologic literature, such as the “birth weight paradox” and a barrage of otherwise 

inexplicable results from studies of COVID-19.87,88 This particular bias emerges upon 

blocking a particular type of node called a “collider”, which is represented in a DAG as a 

node influenced by two other nodes80,81. Collider stratification bias can arise either due 

to structural elements pertaining to study design (e.g., selection bias) or be introduced 

due to choices made in the analysis phase (e.g., through regression adjustment). 

In cases of collider stratification bias, it is possible that an exposure appears protective 

when it is actually harmful. One well-known example is the so-called BMI (or obesity) 

paradox89; applying this in the context of ischemic stroke, upon selecting only 

individuals experiencing a first stroke into a study, high BMI can appear to be protective 

against mortality. This counterintuitive association can arise because first stroke is 

caused by high BMI as well as a combination of other, more-lethal risk factors.89 Among 

the individuals who had a first stroke (i.e., those included in patient cohort studies), the 

ones with high BMI are less likely to have the more lethal risk factors.89 

Though this problem is well-described in the epidemiological literature, in the field of 

applied clinical research in stroke and other domains, very few applications have 

appropriately addressed this problem.77,88 This may be because these not particularly 

intuitive biases can only be readily understood and detected when the analyses are 

transparently designed and informed by DAGs, as described above. 

In an effort to draw further attention to this often-neglected problem and provide an 

example relevant for the field of stroke research, I will again use a DAG to discuss how 

collider stratification bias may pose a further possible limitation to my PROSCIS-B 

subproject. Let us return to the first example from the previous section; the effect of 

https://paperpile.com/c/PbGcDF/Kev5+CAUk
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FVIII measured shortly after stroke (FVIII1) on post-stroke outcomes (simplified to 

Death, as before). This research question is represented in Figure 6 by the green arrow. 

To improve readability, I do not show the node L, representing the measured 

confounders, in this DAG, which does not alter this example. 

 

 
Figure 6. Directed acyclic graph illustrating possible collider stratification bias in the example 
evaluating FVIII levels and risk of death among patients with ischemic stroke. The green arrow 
indicates the research question under study. FVIII1 denotes the measured exposure (FVIII activity level 
measured at a given time point after ischemic stroke); FVIII0 denotes the unmeasured FVIII activity levels 
just before the index stroke event; U stands for unmeasured variables that affect both Stroke and Death. 
The red box represents conditioning due to the study design (i.e. restriction to only ischemic stroke 
patients indicated by the box around Stroke). 

 

In this DAG (Figure 6), there is a new node U, which represents unmeasured variables 

that affect both Stroke and Death. If these variables exist, then through the restriction of 

the study sample to stroke patients (represented by the red box around Stroke in Figure 

6), we induce a further non-causal association between FVIII1 and the outcome, Death. 

Indeed, if we do not condition on Stroke, the non-causal path 

FVIII1←FVIII0→Stroke←U→Death is naturally blocked due to the fact that the stroke node 

is a “collider” on this path. This is visually indicated in the DAG by the colliding 

arrowheads coming from the nodes FVIII0 and U into the node Stroke (Figure 6). 
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In the presence of a collider, a path is naturally blocked, and does not contribute to 

confounding, which arises from open, unblocked non-causal paths. However, since this 

study was performed using data from a patient cohort study, Stroke is again blocked by 

design. Blocking a collider results in the induction of a spurious association between the 

causes of the collider node78,80,81. In this case, this is represented through the dashed 

blue line connecting U and FVIII0 after blocking Stroke. This association between FVIII0 

and U results in a non-causal association between the exposure, FVIII1 and the 

outcome. This non-causal association induced by the collider stratification bias may 

have introduced an additional bias in our estimation of the causal effect of interest, in 

addition to the confounding bias described in the previous section. 

In general, I suspect this collider stratification bias is common in most biomarker 

research questions in stroke patient cohorts, since it is highly likely that unmeasured 

risk factors influencing post-stroke outcomes exist in these settings. However, very few 

discussions of this topic exist in the stroke literature body, and I could not identify any in 

the context of coagulation factors. The limitations pertaining to collider stratification bias 

are on top of other issues frequently encountered in stroke patient cohort studies 

including small sample sizes, restrictive inclusion criteria and/or interventions limiting 

generalizability, and extremely short follow-up periods.43,90,91.  

Since stroke patient cohorts provide an important data resource to answer pressing 

questions pertaining to secondary prevention, I believe further exploration of commonly 

encountered biases, especially through the explicit presentation of assumptions 

surrounding causal questions using DAGs, could be of great relevance for future 

research work. 
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9. Conclusion 

In my PhD research project, I made use of existing data from already established 

studies with some additional laboratory assays, requiring no new patient enrollment and 

yet obtaining important information from existing data (with some primary data 

collection). We approached the research aims from three unique angles: (1) genetic 

determinants of coagulation factor activities, (2) coagulation factor activities and post-

stroke outcomes, and (3) assessing whether the coagulation factor activity levels may 

be important in covert white matter hyperintensities and cognitive decline in healthy 

older persons. Our findings expand upon existing findings from preliminary laboratory 

studies and in-hospital studies of these promising biomarkers using data from large 

patient cohort and population-based studies. 

In addition to the clinical relevance of the findings, there were also some important 

methodological lessons learned. For example, using DAGs to inform design and 

analytic strategies, already in the planning phase of a study, could be particularly useful 

in the context of coagulation factor research, especially since the time point at which the 

coagulation factors are measured can heavily influence the interpretation of results. 

Since DAGs are visual tools that encode assumptions surrounding causal relationships 

under study, regular use of DAGs could also contribute to reproducibility and more 

readily facilitate replication of existing results. Further research involving stroke patient 

cohorts should carefully consider potential residual confounding by unmeasured factors 

prior to the stroke event and induced collider stratification bias.  
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Essentials

• Genetic variation may provide valuable insight into the

role of the contact system in thrombosis.

• Explored associations of genetic variants with activity,

antigen, and disease in RATIO study.

• Two novel loci were identified: KLKB1 rs4253243 for

prekallikrein; KNG1 rs5029980 for HMWK levels.

• Contact system variants and haplotypes were not asso-

ciated with myocardial infarction or stroke.

Summary. Background: The complex, interdependent con-

tact activation system has been implicated in thrombotic

disease, although few genetic determinants of levels of

proteins from this system are known. Objectives: Our pri-

mary aim was to study the influence of common F11,

F12, KLKB1, and KNG1 variants on factor (F) XI activ-

ity and FXI, FXII, prekallikrein (PK) and high-molecu-

lar-weight kininogen (HMWK) antigen levels, as well as

the risk of myocardial infarction and ischemic stroke. Pa-

tients/methods: We analyzed samples from all 630 healthy

participants, 182 ischemic stroke patients and 216

myocardial infarction patients in the RATIO case–control
study of women aged < 50 years. Forty-three tagging sin-

gle nucleotide variants (SNVs) were genotyped to repre-

sent common genetic variation in the contact system

genes. Antigen and activity levels were measured with

sandwich-ELISA-based and one-stage clotting assays. We

performed single variant, age-adjusted, linear regression

analyses per trait and disease phenotype, assuming addi-

tive inheritance and determined conditionally independent

associations. Haplotypes based on the lead SNV and all

conditionally independent SNVs were tested for associa-

tion with traits and disease. Results: We identified two

novel associations of KLKB1 SNV rs4253243 with PK

antigen (bconditional = �12.38; 95% CI, �20.07 to �4.69)

and KNG1 SNV rs5029980 with HMWK antigen

(bconditional = 5.86; 95% CI, 2.40–9.32) and replicated pre-

viously reported associations in a single study. Further

analyses probed whether the observed associations were

indicative of linkage, pleiotropic effects or mediation. No

individual SNVs or haplotypes were associated with the

disease outcomes. Conclusion: This study adds to current

knowledge of how genetic variation influences contact

system protein levels and clarifies interdependencies.

Keywords: factor XI; factor XII; genetic variation;

kininogen, high-molecular-weight; prekallikrein.

Introduction

The contact activation system, upstream in the intrinsic

coagulation pathway, plays an important but until

recently underappreciated role in pathological thrombus

formation [1–4]. This system’s numerous interdependen-

cies make it complex: upon binding to a negatively

charged surface, coagulation factor XII (FXII) is acti-

vated, which in turn activates factor XI (FXI), triggering

the downstream procoagulant intrinsic coagulation cas-

cade [5,6]. Simultaneously, FXIIa sets the proinflamma-

tory kinin-kallikrein system into motion by activating

prekallikrein (PK) to kallikrein, which in turn cleaves

high-molecular-weight kininogen (HMWK) into bradyki-

nin [7]. Non-enzymatic HMWK molecules serve as a
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cofactor in the activation of both FXI and PK, for exam-

ple by anchoring FXI and PK to neutrophil membranes

[6,8].

High plasma levels of contact system factors, especially

FXI, contribute to a hypercoagulable state and have been

associated with increased risk of venous [9–12] and arterial

thrombosis [13–16]. Several genetic variants of these fac-

tors have also been implicated in thrombotic diseases, but

their means of exerting influence often remain unclear [17–
22]. A considerable amount of variation in both activity

and antigen levels of these coagulation factors in healthy

individuals can be attributed to genetic variation, with heri-

tability estimates of 67% for FXII levels and 45% for FXI

[23]. Effects of single nucleotide variants (SNVs) in F12

(chromosome(chr) 5) and F11 genes (chr 4) on circulating

levels of FXII and FXI activity and antigen, respectively,

have previously been explored [24–26]. Less is known

about the influence of genetic variation in KLKB1 (kallik-

rein B1, chr 4) on PK levels and in KNG1 (chr 3) on

HMWK levels, apart from recent protein genome-wide

association study (GWAS) findings [27]. Furthermore,

some across-trait associations within the contact system

are known. Recent studies have shown associations of

KNG1 SNVs with FXI levels [25,26], as well as KLKB1 and

KNG1 SNVs with PK and HMWK levels [27,28]. Although

generally less well studied, these may provide valuable

insights into regulatory mechanisms.

In this study, we explore associations between genetic

variation in F12, F11, KLKB1 and KNG1 and FXII, FXI,

PK and HMWK levels via tagging SNVs as well as hap-

lotype analyses. We additionally explore whether this

genetic variation, especially in haplotype combinations, is

associated with ischemic stroke (IS) and myocardial

infarction (MI) in young female Dutch RATIO study

participants.

Materials and methods

Study design and participants

The Risk of Arterial Thrombosis In relation to Oral

contraceptives (RATIO) multicenter, population-based,

case–control study has been previously described in

detail [29–31]. Briefly, the first phase of the study

assessed risk factors for MI and IS in young women

aged 18–50 years. Cases were recruited from 16 partici-

pating hospitals in the Netherlands between 1990 and

1995. Control women with no history of arterial throm-

bosis were recruited using random digit dialing and fre-

quency matched on age, calendar year of the event and

area of residence. Blood samples and buccal swabs were

collected in a second phase (1998–2002) and DNA was

harvested and stored for later analyses. All RATIO

study participants provided written informed consent

and the ethics committees of the participating hospitals

approved the study.

SNV selection and genotyping

For each of the genes, using HapMap reference data from

the CEU population (build GRCh37), tag SNVs were

selected using Haploview software (version 4.2) [32] based

on standard settings and a minor allele frequency (MAF)

of > 5% and r2 > 0.80. Gene boundaries were not

extended. Complete tagger results are reported in

Table S1A. In total, 43 SNVs, two in F12, 11 in F11, 10

in KLKB1 and 20 in KNG1, were selected to represent

common genetic variation in these genes.

Genotyping was performed by technicians who were

blinded to the case/control status of the participants using

KASPar SNP genotyping assays according to the manu-

facturer’s instructions (KBioscience, Hoddesdon, UK).

Because of failures in assay design, for three SNVs, Taq-

Man genotyping assays were used (Thermo Fisher Scienti-

fic, Waltham, MA, USA). Assay design failed again for

KNG1 SNV rs5030072 and thus this SNV was not ana-

lyzed. The average call rate per SNV in control subjects

with DNA available (n = 755) was 94.3%, and KNG1

SNV rs266723 had the lowest call rate (90.5%) of all

SNVs assayed (Table S1B).

Contact system protein measurements

Blood samples were obtained from 638 control subjects

5 years after the index date, on average. Antigen levels of

FXI, PK, HMWK and FXII (FXI:ag, PK:ag, HWMK:ag

and FXII:ag) were measured using sandwich ELISA-

based assays with polyclonal antibodies in duplicate and

expressed as percentages of normal pooled plasma, as

previously described [15,33]. Inter-assay coefficients of

variation were 9.3%, 4.9%, 9.2% and 12.0%, respec-

tively. FXI activity (FXI:C) was additionally measured in

duplicate in MI patients and control subjects using a one-

stage clotting assay and FXI-deficient plasma, with a

coefficient of variation < 10%, as detailed elsewhere [34].

Statistical analyses

Study population characteristics were summarized using

mean and median values (with standard deviations or

ranges) or absolute numbers and percentages, as appro-

priate. Antigen and activity measurements were normally

distributed and did not require transformation. Depar-

tures from the Hardy–Weinberg equilibrium were tested

using v2 goodness-of-fit tests with a continuity correction

or exact tests if expected counts were below five

(Table S1B).

To investigate associations between SNVs and the five

traits, we performed single variant analyses in control

subjects only using age-adjusted linear regression models.

An additive model of inheritance was assumed in all

quantitative trait loci (QTL) analyses to investigate the

change in respective contact system factor level per copy

© 2018 International Society on Thrombosis and Haemostasis
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of the minor allele (b) to maximize power. To account for

multiple testing, we used a Bonferroni-corrected overall

significance level of 0.00116 based on the total number of

variants tested per trait (n = 43).

When multiple variants within one gene were associated

with the same trait, we performed conditional regression

analyses to identify associations conditionally independent

of the lead SNV. SNVs with persisting associations were

mutually adjusted and only remaining contributing signals

were carried forward to the haplotype analyses with the

lead SNV. To assess associations between SNVs and

other traits, we first adjusted for the levels of the encod-

ing gene’s trait. IBM SPSS Statistics v23 was used for all

variant association analyses.

We constructed haplotypes for each gene, including the

lead SNV and any secondary signals. We used the hap-

lo.em function of the haplo.stats R package to estimate

haplotypes per gene for each individual, accounting for

the unphased nature of our data, and the haplo.glm func-

tion to run age-adjusted regressions for all haplotypes

with a frequency > 1% in control subjects [35]. For each

gene, the haplotype containing major allele copies was

used as a reference and effect size (b), standard error (SE)

and P-value estimates were calculated for the other inher-

ited combinations.

All variants associated with at least one of the traits

following conditional analysis as well as the previously

constructed haplotypes were additionally tested for associ-

ation with risk of MI and IS using logistic regression

models, assuming an additive mode of inheritance. We

adjusted these models for the matching variables includ-

ing age, area of residence and index year.

Results

In total, 767 controls, 218 MI patients and 190 IS

patients (including 50 additional IS patients) entered the

second phase of the RATIO study. As shown in Fig. 1,

755 control subjects, 216 MI patients and 182 IS patients

with at least one SNV call were included in the variant-

disease association analyses. Only control subjects with

DNA and blood plasma samples were included in the

protein QTL analyses (n = 630). Control subjects’ base-

line characteristics are displayed in Table 1 (MI and IS

patients’ characteristics in Table S2).

Quantitative trait associations

F11 variation Five of the 11 F11 SNVs showed associa-

tions with FXI activity below the Bonferroni-corrected

threshold (Table 2; remainder in Table S3). Lead SNV

rs4253399 was associated with an increase in FXI:C of

9.24 units (95% confidence interval [CI], 6.69–11.79;
P = 3.32 9 10�12; MAF = 38.9%) per minor allele (G)

copy, measured as percentage of activated normal pooled

plasma, explaining 7.8% of the total variance in FXI:C.

SNV rs4253399 is in relatively high linkage disequilibrium

(LD) (r2 = 0.77) with rs2289252 in 1000Genomes data of

Europeans, which has been associated with FXI:ag [18],

FXI:C and activated partial thromboplastin time (APTT)

[36].

Table 3 shows association results conditional on the

lead SNV rs4253399. Of the three remaining associations

with FXI:C, the strongest was with rs1593 (bcondi-
tional = �5.65; 95% CI, �9.46 to �1.83; Pconditional = 0.004;

MAF = 12.2%), previously associated with APTT [37].

Furthermore, rs4253421, tagged by rs1593, was associated

with a decrease in FXI antigen/activity levels in a pooled

GWAS [26]. Additional adjustment for rs1593 diminished

remaining associations.

Four of the F11 SNVs significantly associated with FXI

activity as well as rs4253430 were associated with FXI

antigen (Table 2). The lead SNV rs2036914 (b = �11.38;

95% CI, �14.18 to �8.58; P = 7.87 9 10�15;

MAF = 46.3%) explained 9.1% of variance in FXI:ag.

SNV rs2036914 has been shown to be associated with

FXI:ag [18], FXI:C and prolonged APTT [36], and tagged

rs4241824, which has been associated with FXI:ag [12, 25].

After conditioning on the lead SNV, two associations with

FXI:ag remained: rs1593 and rs4253399, the same two

SNVs from the FXI:C trait analyses. Both signals

remained after additional mutual adjustment (rs1593:

b = �7.47; 95% CI, �11.99 to �2.96; P = 0.001;

rs4253399: b = 6.11; 95% CI, 2.02–10.20; P = 0.003).

All F11 SNVs were additionally tested for associations

with the other three traits: PK:ag, HMWK:ag and FXII:

ag (Table S4); only rs4253406 showed suggestive evidence

of an association with PK:ag.

Overall, the effect sizes observed for associations

between F11 SNVs and FXI:ag were larger in magni-

tude than those for FXI:C. Exploratory analyses shown

in Table 4 indicate the majority of the associations with

FXI:C were greatly attenuated upon adjustment for

antigen levels. Although the association between

rs4253399 and FXI:C diminished upon adjustment for

FXI:ag, a conditional association not explained by

FXI:ag (badjusted = 3.07; 95% CI, 0.95–5.20;
Padjusted = 0.005) remained. Reciprocal adjustment of

the association with FXI:ag for FXI:C resulted in a

modest effect size reduction.

KLKB1 variation Six of the 10 KLKB1 SNVs tested

showed below-threshold associations with PK:ag, with

effect size magnitudes ranging from 6.55 to 16.93

(Table 2; above-threshold associations in Table S3). Lead

variant rs2304595 (b = 10.33; 95% CI, 6.65–14.02;
P = 5.58 9 10�8; MAF = 43.2%) explained 5.1% of the

total variance in PK:ag and tagged rs1511802, previously

reported to be associated with PK levels [27]. SNV

rs4253243 had the largest effect size of all KLKB1 SNVs

tested; after conditioning on rs2304595, it was the only

remaining association with PK:ag (bconditional = �12.38;
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95% CI, �20.07 to �4.69; Pconditional = 0.0017) and is a

novel finding (Table 3).

Three KLKB1 SNVs, rs1511801, rs2304595 and

rs3087505, showed significant associations with both FXI:

C and FXI:ag in single variant analyses (Table S4). After

adjustment for PK:ag or lead F11 SNV rs2036914, the

associations between KLKB1 SNVs rs1511801 and

rs2304595 and both FXI:C and FXI:ag were reduced

(Table 4), indicating the observed effects could be

explained by linkage between KLKB1 and F11 SNVs (e.g.

pairwise LD of rs1511801 and rs2036914; r2 = 0.41;

D0 = 0.64). The associations between rs3087505 and the

two FXI traits were not affected by the adjustment for PK:

ag; however, adjustment for F11 SNV rs2036914 attenu-

ated these associations considerably, whereas adjustment

for rs1593, an F11 SNV in moderate LD with rs3087505

(r2 = 0.71, D0 = 1.00), diminished them entirely.

KNG1 variation Eleven of the 20 KNG1 SNVs had sig-

nificant single variant associations with HMWK:ag

(Table 2, non-significant results in Table S3). Lead SNV

rs5030062 was strongly associated with HMWK:ag

(b = 10.23; 95% CI, 7.87–12.59; P = 1.63 9 10�16;

MAF = 38.3%) and explained 10.9% of the variance in

HMWK:ag. This confirms a reported association of a

tagged SNV rs3856930 with HMWK levels [27]. After

adjustment for the lead SNV, eight associations remained

(Table 3), the strongest of which was with rs2304456

(bconditional = �7.96; 95% CI, �11.60 to �4.32; Pconditional =
2.1 9 10�5; MAF = 11.4%), recently described in the liter-

ature [27]. Additionally, a novel association between

rs5029980 and HMWK:ag remained after adjustment for

both rs5030062 and rs2304456 (bindepedent = 5.86; 95% CI,

2.40–9.32; Pindepedent = 0.001). All other associations were

attenuated.

Two KNG1 SNVs (rs5030062 and rs5030060) showed

across-trait associations with PK:ag, and four KNG1

SNVs (rs5030062, rs5030060, rs1469859 and rs166479)

showed associations with FXI:C (Table S4). The latter

three SNVs are in moderate LD with rs5030062, with r2

values of 0.65 (D0 = 1.00), 0.53 (D0 = 0.86) and 0.29

(D0 = 0.75), and represent the same association signal. In

Participation
in 1st phase of the

RATIO study

Control subjects
925

128 refused,
30 untraceable

30 refused
63 refused

50 additional
cases

190218767
Participation

in 2nd phase of  
the RATIO study

Included in 
SNV-disease
association
analyses

Included in 
SNV-trait

association
analyses

9 no DNA sample2 no DNA sample12 no DNA sample

755

125 missing blood
plasma sample

630

216 182

MI patients
248

IS patients
203

Fig. 1. Flow chart of study participant inclusion. MI, myocardial infarction; IS, ischemic stroke; SNV, single nucleotide variant.
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addition to FXI:C, rs5030062 was associated with FXI:ag

after conditioning on FXI:C. This SNV as well as a

tagged missense variant rs710446 have been associated

with FXI levels in both pooled activity/antigen GWAS

and activity-only analyses [25–27,38].
We investigated whether the associations between

KNG1 SNVs and the other contact system traits are a

result of pleiotropy, when a single gene exerts an effect

on multiple traits, or can be explained by a potentially

mediating effect via HMWK. These exploratory analyses

revealed that the association between rs5030062 and

FXI:C remained after adjustment for HMWK:ag and

FXI:ag, unlike the association of rs5030062 with FXI:ag,

which was greatly reduced following adjustment for

either HMWK:ag or FXI:C (Table 4). The replicated

association between rs5030062 and PK:ag [27] disap-

peared following adjustment for HMWK:ag and was

greatly reduced upon adjustment for FXI levels. The

association between rs5030062 and HMWK:ag was only

slightly reduced following adjustment for FXI:C and

FXI:ag.

F12 variation Both rs1801020 (lead SNV) and

rs17876032 have been associated with FXII:ag in previ-

ous studies [24,39], and rs1801020 with APTT [40].

Each showed strong associations with FXII:ag: b =
�41.54 (95% CI, �45.67 to �37.41; P = 6.85 9 10�67;

MAF = 25.3%) and b = �28.09 (95% CI, �32.52 to

�23.66; P = 1.42 9 10�31; MAF = 34.9%) (Table 2).

SNV rs1801020 explained 39.5% of the variance in

FXII:ag, the largest of the five traits analyzed. No con-

ditional effect of rs17876032 in non-carriers of

rs1801020 was observed following adjustment (Table 3).

Neither F12 variant showed associations with the other

traits (Table S4).

To address the potential issue of confounding as a

result of population admixture, we additionally adjusted

the analyses of the lead variants for ethnicity in a sensitiv-

ity analysis and observed no meaningful differences in the

results ( S5).

Haplotype analyses

Using the haplo.em function, haplotypes with frequencies

of at least 1% in control subjects were constructed from

various combinations of the lead and conditionally inde-

pendent SNVs for each gene.

F11 The lead SNVs from both FXI traits (rs4253399

and rs2036914) and rs1593, a third SNV associated with

both traits after conditioning for the other two, were

included in the constructed F11 haplotypes (Table 5).

Haplotype 4, containing at least one copy of the

rs4253399 major allele (T), the rs2036914 minor allele (T)

and the rs1593 minor allele (T), was associated with a

substantial decrease in FXI:ag (b = �12.9; SE = 2.8;

P < 0.0001) compared with the reference haplotype con-

taining all major alleles. The haplotypes were then tested

for association with FXI:C; a moderate association was

observed for Haplotype 4 (b = �7.7; SE = 2.5; P = 0.002;

Table S6).

KLKB1 Our results revealed that the minor alleles of

the two KLKB1 SNVs with conditional effects did not

occur in an inherited combination in our study popula-

tion (Table S6), which is likely to be attributable to low

linkage (r2 = 0.046; D0 = 1.00).

KNG1 Five haplotypes were constructed from the three

conditionally independent KNG1 SNVs. Compared with

the reference haplotype, Haplotype 5, having at least one

copy of minor alleles of rs5029980 (C) and rs5030062 (C),

which occurred in 4.4% of control subjects, was associ-

ated with a 25.2 unit increase in HMWK:ag in control

subjects (SE = 3.4; P < 0.0001).

F12 No haplotypes were generated for F12 because no

secondary associations remained after adjustment for the

lead F12 SNV (rs1801020).

Associations with IS and MI

None of the 26 SNVs, each significantly associated with

levels of the respective protein for which the gene

Table 1 Characteristics of RATIO control subjects with available

DNA samples

Characteristics Control subjects (n = 755)

Age in years, median (range) 39.8 (34.9)

Caucasian ethnicity, n (%) 712 (94)

History of,* n (%)

Hypertension 47 (6)

Diabetes 10 (1)

Hypercholesteremia 22 (3)

Oral contraceptive use 267 (35)

Smoking 316 (42)

Plasma sample available, n (%) 630 (83)

Median (range) Mean (SD)

Activity level†
FXI:C 106 (144) 107.7 (22.9)

Antigen levels‡
FXI:ag 112 (146) 115.4 (26.4)

PK:ag 131 (196) 130.0 (31.6)

HMWK:ag 115 (136) 117.4 (21.0)

FXII:ag 123 (279) 126.2 (40.1)

Range was calculated as maximum minus minimum value. SD indi-

cates standard deviation. *In the year prior to index date of control

subject, self-reported. PK, prekallikrein; HMWK, high-molecular-

weight kininogen. †Measured as a percentage of activated normal

pooled plasma. ‡Measured as a percentage of normal pooled

plasma.
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encodes, showed single variant associations with either IS

or MI (Table S7). The previously described haplotypes

were also tested for associations with IS and MI in cases

and controls adjusted for matching variables (Table S8).

A weak relationship was observed between carriers of the

F11 Haplotype 4 and IS (ORIS = 1.31; 95% CI, 0.80–
2.16) or MI (ORMI = 1.24; 95% CI, 0.77–2.01). KNG1

Haplotype 5 did not show an association with IS or MI

Table 2 Statistically significant single variant associations in control subjects

Trait: FXI activity*

F11 SNV Chr. position A1/A2 MAF (%) b 95% CI P

rs4253399 4:186266940 T/G 38.9% 9.24 6.69 to 11.79 3.32 9 10�12

rs2036914 4:186271327 C/T 46.3% �8.45 �10.93 to �5.98 4.64 9 10�11

rs1593 4:186274397 A/T 12.2% �8.51 �12.25 to �4.76 1.00 9 10�5

rs4253417 4:186277851 T/C 41.7% 5.42 2.79 to 8.06 6.00 9 10�5

rs4253418 4:186278343 G/A 4.9% �9.99 �15.75 to �4.23 7.06 9 10�4

Trait: FXI antigen†

F11 SNV Chr. position A1/A2 MAF (%) b 95% CI P

rs2036914 4:186271327 C/T 46.3% �11.38 �14.18 to �8.58 7.87 9 10�15

rs4253399 4:186266940 T/G 38.9% 11.32 8.42 to 14.23 8.39 9 10�14

rs1593 4:186274397 A/T 12.2% �11.88 �16.13 to �7.63 6.07 9 10�8

rs4253417 4:186277851 T/C 41.7% 6.25 3.25 to 9.25 4.90 9 10�5

rs4253430 4:186288910 G/C 35.7% �6.17 �9.17 to �3.17 6.00 9 10�5

Trait: PK antigen†

KLKB1 SNV Chr. position A1/A2 MAF (%) b 95% CI P

rs2304595 4:186251126 G/A 43.2% 10.33 6.65 to 14.02 5.58 9 10�8

rs1511801 4:186229556 T/A 45.5% �8.41 �12.00 to �4.82 5.00 9 10�6

rs4253243 4:186232357 T/C 6.9% �16.93 �24.19 to �9.67 6.00 9 10�6

rs4253327 4:186257459 T/A 28.9% �9.29 �13.43 to �5.14 1.30 9 10�5

rs4253326 4:186257445 T/C 18.4% �9.14 �13.86 to �4.42 1.60 9 10�4

rs925453 4:186258056 C/T 31.0% �6.40 �10.19 to �2.61 9.73 9 10�4

Trait: HMWK antigen†

KNG1 SNV Chr. position A1/A2 MAF (%) b 95% CI P

rs5030062 3:186736391 A/C 38.3% 10.23 7.87 to 12.59 1.63 9 10�16

rs5030039 3:186730370 T/C 25.6% �8.30 �10.88 to �5.71 5.57 9 10�10

rs166479 3:186725461 C/T 45.3% �7.74 �10.16 to �5.32 6.61 9 10�10

rs5030060 3:186735128 C/T 30.0% 8.16 5.51 to 10.82 2.95 9 10�9

rs1621816 3:186721384 T/C 28.9% �7.87 �10.50 to �5.24 7.17 9 10�9

rs2304456 3:186727263 T/G 11.4% �10.81 �14.51 to �7.12 1.43 9 10�8

rs5029999 3:186722770 C/T 20.5% �8.03 �10.97 to �5.10 1.12 9 10�7

rs1469859 3:186722454 G/A 32.1% 6.23 3.62 to 8.84 3.00 9 10�6

rs266723 3:186729258 A/C 48.2% �5.15 �7.61 to �2.69 4.60 9 10�5

rs5029980 3:186720155 T/C 12.9% 6.58 2.95 to 10.22 4.10 9 10�4

rs1648722 3:186731200 C/T 39.3% �4.18 �6.66 to �1.69 0.00102

Trait: FXII antigen†

F12 SNV Chr. position A1/A2 MAF (%) b 95% CI P

rs1801020 5:177409531 C/T 25.3% �41.54 �45.67 to �37.41 6.85 9 10�67

rs17876032 5:177403626 A/G 34.9% �28.09 �32.52 to �23.66 1.42 9 10�31

b coefficients representing the change in contact system trait level per copy of the minor allele were calculated from linear regression using an

additive model adjusted for age. A significance level of 0.00116 was used based on a Bonferroni correction for 43 tests. Only significant associa-

tions between variants and the levels for which the gene is coding are shown here. Variants are ordered by level of statistical significance. A1

indicates major allele; A2, minor allele; Chr. position, chromosomal position (build GRCh37); CI, confidence interval; PK, prekallikrein;

HMWK, high-molecular-weight kininogen; MAF, minor allele frequency in control subjects; SNV, single nucleotide variant. *Measured as a

percentage of activated normal pooled plasma. †Measured as a percentage of normal pooled plasma.
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(ORIS = 1.08, 95% CI, 0.53–2.23; ORMI = 1.00, 95% CI,

0.46–2.21).

Discussion

In this study, we assessed relationships between tagging

SNVs representing common genetic variation in the four

contact system genes and protein levels of each factor in

a single homogenous population. We identified KLKB1

SNV rs4253243 and KNG1 SNV rs5029980 as novel loci

for PK:ag and HMWK:ag, respectively, and confirmed

across-trait associations between KNG1 variants and FXI

levels, which can only in part be explained by HMWK:ag.

We determined that many previously described across-trait

associations can largely be explained by coinheritance of

variants and potentially mediating effects via trait levels.

Table 3 Conditional analyses of significant variants adjusted for lead SNV

FXI activity,* adjusted for rs4253399

F11 SNV Chr. position Dist. (kb) LD (r2) b 95% CI P

rs1593 4:186274397 7.46 0.10 �5.65 �9.46 to �1.83 0.004

rs4253418 4:186278343 11.40 0.06 �8.02 �13.62 to �2.41 0.005

rs2036914 4:186271327 4.39 0.60 �3.56 �7.11 to �0.02 0.049

rs4253417 4:186277851 10.91 0.74 0.59 �2.43 to 3.60 0.70

FXI antigen,† adjusted for rs2036914

F11 SNV Chr. position Dist. (kb) LD (r2) b 95% CI P

rs1593 4:186274397 3.07 0.17 �7.21 �11.70 to �2.73 0.002

rs4253399 4:186266940 4.39 0.60 6.20 2.10 to 10.34 0.003

rs4253417 4:186277851 6.52 0.46 1.77 �1.39 to 4.93 0.27

rs4253430 4:186288910 17.58 0.40 1.12 �2.46 to 4.70 0.54

PK antigen,† adjusted for rs2304595

KLKB1 SNV Chr. position Dist. (kb) LD (r2) b 95% CI P

rs4253243 4:186232357 18.77 0.06 �12.38 �20.07 to �4.69 0.002

rs4253326 4:186257445 6.32 0.15 �4.72 �9.97 to 0.56 0.08

rs4253327 4:186257459 6.33 0.31 �4.34 �9.38 to 0.71 0.09

rs1511801 4:186229556 21.57 0.64 �0.81 �6.78 to 5.16 0.79

rs925453 4:186258056 6.93 0.27 �0.58 �5.34 to 4.19 0.81

HMWK antigen,† adjusted for rs5030062

KNG1 SNV Chr. position Dist. (kb) LD (r2) b 95% CI P

rs2304456 3:186727263 9.13 0.06 �7.96 �11.60 to �4.32 2.1 9 10�5

rs5029980 3:186720155 16.24 0.00 7.02 3.59 to 10.44 6.4 3 10
�5

rs5030039 3:186730370 6.02 0.19 �5.63 �8.32 to �2.95 4.4 9 10�4

rs1621816 3:186721384 15.01 0.11 �4.36 �7.09 to �1.63 0.002

rs5029999 3:186722770 13.62 0.07 �4.67 �7.64 to �1.69 0.002

rs1469859 3:186722454 13.94 0.50 �4.31 �7.96 to �0.66 0.02

rs166479 3:186725461 10.93 0.29 �3.04 �5.86 to �0.21 0.04

rs5030060 3:186735128 1.26 0.69 �3.13 �7.72 to 1.47 0.18

rs1648722 3:186731200 5.19 0.19 �0.74 �3.28 to 1.80 0.57

rs266723 3:186729258 7.13 0.27 �0.70 �3.39 to 1.98 0.61

FXII antigen,† adjusted for rs1801020

F12 SNV Chr. position Dist. (kb) LD (r2) b 95% CI P

rs17876032 5:177403626 5.91 0.57 �0.84 �6.61 to 4.93 0.78

b coefficients representing the change in contact system trait level per copy of the minor allele were calculated from linear regression using an

additive model adjusted for age and lead SNV for each trait. Variants are ordered by significance. Novel associations are shown in bold. Chr.

position, chromosomal position (build GRCh37); CI, confidence interval; PK, prekallikrein; HMWK, high-molecular-weight kininogen; SNV,

single nucleotide variant. Dist. indicates the distance in kilobase pairs between the lead SNV and the tested SNV; LD indicates linkage disequi-

librium with corresponding lead SNV based on 1000 Genomes Project. *Measured as percentage of activated normal pooled plasma. †Mea-

sured as percentage of normal pooled plasma.
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Additionally, we probed the influence of these variants in

inherited combinations as well as their potential roles in IS

and MI.

Our study design provided the unique opportunity to

assess whether variants were associated with FXI:C, FXI:ag

or both, and whether these associations persisted after

mutual adjustment. This distinction is rarely possible in

smaller-scope studies or larger GWAS analyses, because

activity and antigen levels are often studied in isolation or

are pooled.

In the present study, three of 11 tested variants were

found to have persistent associations with FXI:C or

FXI:ag. SNV rs1593 tagged rs4253421, an intronic SNV

classified as a genic enhancer [41], which was associated

with pooled FXI levels in a recent GWAS [26]. The

observed association between rs1593 and FXI:C disap-

peared after adjustment for antigen levels. This suggests

the effect of this SNV (or a tagged SNV) influences FXI:C

via its effect on FXI:ag (i.e. it has a quantitative rather than

qualitative effect on the protein). Similar results were

observed for F11 SNV rs2036914, which is an expression

quantitative trait locus (eQTL) for F11 in lung tissue [42].

Results of our explanatory analyses clarified that the

observed associations of rs2036914 and rs1593 with FXI

activity can be completely explained by their associations

with FXI:ag. We found that rs4253399 has a direct associa-

tion with FXI:C not explained by FXI:ag.

In KLKB1, we found a strong association between lead

SNV rs2304595 and PK:ag. SNV rs2304595 is an eQTL

for F11 and CYP4V2 in several tissues but is not associ-

ated with KLKB1 expression [42]. This association may

be a result of the proximity of the KLKB1 and F11 genes,

especially because an association with FXI levels was

observed; however, to better understand this relationship,

a formal mediation analysis is warranted, for which this

study lacks the statistical power. Of the 10 variants tested,

one additional novel association with rs4253243 remained

associated with PK:ag after adjustment. SNV rs4253243

is an eQTL for KLKB1 in lung, heart (atrial appendage)

and nerve (tibia) tissue and as well for F11 in brain tissue

[42].

In KNG1, we confirmed two recently identified associa-

tions of rs5030062 and rs2304456 with HMWK:ag and

found an additional novel association with rs5029980.

We did not observe much common variation in F12

that influenced FXI:ag levels; only two SNVs, rs17876032

and rs1801020, captured the common variation in this

gene. F12 is the smallest of the four contact system genes

analyzed, and this may explain the limited common varia-

tion. Interestingly, upon interrogation, only rs1801020

remained associated with FXII:ag. SNV rs1801020, a fre-

quently occurring C->T polymorphism in the F12 pro-

moter region, was the top SNV in a previous FXII study

and has been reported as an eQTL for F12 in liver tissue

[24,42].

Multiple associations were observed between F11 and

KLKB1 SNVs and FXI:C, FXI:ag and PK:ag phenotypes.

Our exploratory analyses demonstrated these observations

can largely be explained by the close proximity of these

genes (about seven kilobase pairs; see regional association

plots in Figures S1–S3). We also observed associations

between KNG1 SNV rs5030062 and FXI:C and FXI:ag,

confirming previous findings that KNG1 loci influence

FXI levels in plasma [25–27]. Our study adds detail to

these observations; namely, that the effect of rs5030062

on FXI:ag can be explained by FXI:C. These findings

support a previously proposed mechanism of KNG1-dri-

ven genetic regulation of FXI levels, in which the C allele

Table 5 F11 and KNG1 haplotypes and associations with antigen levels of FXI and HMWK

FXI antigen*

F11 SNVs: (A1/A2) rs4253399 (T/G) rs2036914 (C/T) rs1593 (A/T) Frequency, % b SE P

Haplotype 1 T C A 15.2 Ref – –
Haplotype 2 T T A 33.7 �6.7 2.1 0.002

Haplotype 3 G C A 38.2 5.1 2.1 0.02

Haplotype 4 T T T 12.0 �12.9 2.8 < 0.0001

HMWK antigen*

KNG1 SNVs: (A1/A2) rs5029980 (T/C) rs2304456 (T/G) rs5030062 (A/C) Frequency, % b SE P

Haplotype 1 T T A 43.2 Ref – –
Haplotype 2 T T C 31.9 7.1 1.4 < 0.0001

Haplotype 3 T G A 10.6 �7.7 2.0 0.0001

Haplotype 4 C T A 9.0 �0.5 2.4 0.84

Haplotype 5 C T C 4.4 25.2 3.4 < 0.0001

Haplotype frequencies are based on results from regression analyses. The reference haplotype (1) contains only major alleles. Other haplotypes

contain at least one copy of the specified minor allele(s). Effect size estimates (b) represent change in levels relative to the respective reference

category. A1 indicates major allele; A2, minor allele; HMWK, high-molecular-weight kininogen; SE, standard error. Ref denotes the reference

haplotype. *Percentage of normal pooled plasma.
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of missense rs710446 (tagged by rs5030062) has been pos-

tulated to impact the functionality of HMWK by altering

binding, which, in turn, could impact FXI:C, because

FXI exists in complex with HMWK in circulation [26].

Both rs710446 and rs5030062 have histone enhancer

markers in liver tissue [41]. A functional study would be

required to explore the exact mechanism.

In the present study, KNG1 SNV rs5030062 was also

found to be associated with PK:ag, as was previously

described [27]. However, in our analyses, this association

disappeared following adjustment for HMWK:ag and

was greatly reduced after adjustment for FXI levels, sug-

gesting this association with PK:ag may be mediated by

the association between rs5030062 and HMWK:ag and/or

FXI:C.

We constructed haplotypes for F11 and KNG1 to assess

joint effects between SNVs in moderate LD. The F11

haplotype occurring in 12.0% of control subjects, con-

taining a T allele of rs2036914, T allele of rs2036914 and

T allele of rs1593, had the largest joint effect on FXI:ag

(b = �12.9; SE = 2.5; P = 0.002) and showed a slight

association with IS (OR = 1.31; 95% CI, 0.80–2.16) and

MI (OR = 1.24; 95% CI, 0.77–2.01). The KNG1 haplo-

type containing the minor allele (C) of rs5029980, major

allele (T) of rs2304456 and minor allele (C) of rs5030062

(Haplotype 5) had a substantially higher impact on

HMWK:ag levels (b = 25.2, SE = 3.4, P < 0.0001) com-

pared with the reference than would be expected based

on the sum of the effects of the two haplotypes contain-

ing only one minor allele each (Haplotype 2: T-T-C,

b = 7.1; Haplotype 4: C-T-A, b = �0.5). Variant

rs5029980 is a synonymous SNV, and although it does

not change the amino acid sequence, it may still affect

protein expression, conformation and even function [43].

SNV rs5029980 has both promoter histone markers and

enhancer markers in liver tissue [41]. Both rs2304456 and

rs710446, a SNV tagged by rs5030062, are known mis-

sense variants and may alter protein function. This KNG1

haplotype did not show an association with IS or MI

(ORIS = 1.08, 95% CI 0.53–2.23; ORMI = 1.00, 95% CI

0.46–2.21), which may be because of low power, as this

haplotype was carried by only 4.4% of control subjects.

Limitations

Even though our study was well powered to assess associ-

ations between single SNVs and multiple contact system

traits, this study had limited power to test for associations

of single SNVs with IS and MI risk, which is why we

focused on haplotype combinations. We observed weak

associations between F11 and KNG1 haplotypes contain-

ing relatively common variants and IS and MI.

Genotyping assays failed twice for KNG1 SNV

rs530072 and it was not included in our analyses. The

failed SNV is in moderate LD with one of our lead SNVs

(rs5030062, r2 = 0.79 in 1000 Genomes data), and was

dropped in the conditional analysis of a previous fine-

mapping study on FXI activity [25], so it is unlikely we

would have observed a strong effect on FXI levels by this

SNV.

Remaining potential confounding factors in this study

include population stratification and variants in linkage

disequilibrium; as most women included in RATIO study

were of European descent, population substructure was

unlikely to be present, but the results can only be general-

ized to this population. Allelic frequencies and genomic

distribution of polymorphisms were in Hardy–Weinberg

equilibrium for all except five variants. This could be a

result of chance, genotyping errors, or population admix-

ture, although the latter is unlikely because four of five

variants still tested below the 0.05 threshold after exclud-

ing non-Caucasians in a sensitivity analysis.

Since we chose SNVs that tag common variation in

each gene, it is important to appreciate they may not be

causal variants, rather just linked to causal variants. As in

all case–control studies, survival bias could be a potential

issue in the disease association analyses, and only control

subjects were used for all other analyses. Furthermore, it

has been demonstrated that adjusting genetic associations

for correlated traits can bias effect estimates [44]; how-

ever, because we did not observe any directional changes

in the effect estimates in the conditional analyses, this is

unlikely to have impacted our overall results.

Conclusion

Our study adds to current knowledge of how genetic varia-

tion, also in haplotype combinations, influences levels of

contact system proteins and clarifies interdependencies via

exploratory analyses. Our findings explain the differential

influence of genetic variation on FXI activity and antigen

levels and provide additional support for proposed

hypotheses regarding mechanisms of action for down-

stream regulation of FXI levels via KNG1 loci. The newly

observed associations between KLKB1 SNV rs4253243 and

PK:ag, as well as KNG1 SNV rs5029980 and HMWK:ag,

still require replication in other studies, and detailed

research is needed to better understand which variants are

causal and whether the haplotype associations with IS and

MI can be confirmed in larger studies.

Addendum

The original design of the RATIO study was conceptual-

ized by A. Algra and F. R. Rosendaal. This particular

genetic sub-study was planned by C. Y. Vossen and B.

Siegerink. H. G. de Haan and J. L. Rohmann performed

the genetic and statistical analyses and generated all

tables and figures. J. L. Rohmann, H. G. de Haan and B.

Siegerink interpreted and contextualized results. J. L.

Rohmann drafted the manuscript and it was critically

revised by H. G. de Haan, B. Siegerink, A. Algra, C. Y.
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Vossen and F. R. Rosendaal. All authors take responsi-

bility for the manuscript content.
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Abstract
Background: Though risk for recurrent vascular events is high following ischemic 
stroke, little knowledge about risk factors for secondary events post-stroke exists.
Objectives: Coagulation factors XII, XI, and VIII (FXII, FXI, and FVIII) have been impli-
cated in first thrombotic events, and our aim was to estimate their effects on vascular 
outcomes within 3 years after first stroke.
Patients/Methods: In the Prospective Cohort with Incident Stroke Berlin (PROSCIS-B) 
study, we followed participants aged 18 and older for 3 years after first mild to mod-
erate ischemic stroke event or until occurrence of recurrent stroke, myocardial in-
farction, or all-cause mortality. We compared high coagulation factor activity levels 
to normal and low levels and also analyzed activities as continuous variables. We 
used Cox proportional hazards models adjusted for age, sex, and cardiovascular risk 
factors to estimate hazard ratios (HRs) for the combined endpoint.
Results: In total, 94 events occurred in 576 included participants, resulting in an 
absolute rate of 6.6 events per 100 person-years. After confounding adjustment, 
high FVIII activity showed the strongest relationship with the combined endpoint 
(HR = 2.05, 95% confidence interval [CI] 1.28–3.29). High FXI activity was also asso-
ciated with a higher hazard (HR = 1.80, 95% CI 1.09–2.98), though high FXII activity 
was not (HR = 0.86, 95% CI 0.49–1.51). Continuous analyses yielded similar results.
Conclusions: In our study of mild to moderate ischemic stroke patients, high activity 
levels of FXI and FVIII but not FXII were associated with worse vascular outcomes in 
the 3-year period after first ischemic stroke.
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1  | INTRODUC TION

Globally, stroke remains a leading cause of disability and mortality.1,2 
Following first-ever ischemic stroke, the risk of secondary events is 
high.3-5 Although many risk factors for first ischemic stroke have 
been identified, comparatively little is known about factors that con-
tribute to secondary post-stroke events. In fact, a recent systematic 
review of biomarkers of hemostasis found no conclusive evidence of 
a single marker ready for use in practice, largely due to the limited 
number of existing studies.6

The coagulation factors XII, XI, and VIII (FXII, FXI, and FVIII) 
are promising candidates for further investigation in this context. 
As the initiating factor in the contact activation system, FXII was 
quickly implicated in first-ever vascular events in animal studies; 
however, conflicting evidence exists regarding the potential role 
of FXII in ischemic stroke events in humans.7-10 The role of FXI in 
hypercoagulability has been more consistently demonstrated, and 
high levels of FXI have been linked to thrombotic events, espe-
cially ischemic stroke.11-13 Given its role in thrombin activation and 
thrombus formation, it is unsurprising that high levels of FVIII have 
also been implicated in vascular events.14,15 FVIII elevation is ob-
served during the acute phase of stroke as part of the inflammatory 
response;16 however, a dose-dependent relationship between FVIII 
and thrombosis, independent of this acute phase response, has also 
been described.14,15,17,18 A recent study found that acute ischemic 
stroke patients with elevated FVIII experienced a higher frequency 
of recurrent thrombotic events while in hospital.19 It remains un-
known whether this increased risk due to FVIII elevation also per-
sists in the longer term for future incident thrombotic events.

In the present study, we aimed to estimate the effects of FXII, 
FXI, and FVIII activity levels on risk for secondary vascular events 
among ischemic stroke patients.

2  | MATERIAL S AND METHODS

2.1 | Study population

We used data from the Prospective Cohort with Incident Stroke Berlin 
(PROSCIS-B; clinicaltrials.gov registration number: NCT01363856). 
This longitudinal, hospital-based, observational cohort study has been 
described in detail elsewhere.20 Participants (or legal representatives) 
provided written informed consent for study participation. The study 
protocol was approved by the internal review board of the Charité 
– Universitätsmedizin Berlin (EA1/218/09) and was conducted in 
accordance with ethical principles described in the Declaration of 
Helsinki.

In brief, between January 2010 and February 2013, patients aged 
18 or older presenting at one of the three tertiary stroke units at the 
Charité – Universitätsmedizin in Berlin with first-ever stroke (defined 
by World Health Organization criteria21), including ischemic stroke, 
primary hemorrhage, or sinus venous thrombosis, were recruited. 
Participants underwent a baseline visit within 1  week of the initial 

event, including a detailed interview, clinical examination, and the col-
lection of blood samples stored for later analysis. Participants were 
contacted annually over a period of 3 years via telephone interview 
to document vital status, any incident cardiovascular events, and to 
assess functional outcome. Those who were not reachable by phone 
were mailed surveys.

As shown in Figure  1, in this study, we excluded non-ischemic 
stroke patients and patients with severe strokes (defined as having 
a National Institute of Health Stroke Scale [NIHSS] assessment of 
>15). Overall, activity measurements for at least one coagulation fac-
tor were available for 576 PROSCIS-B participants, who were subse-
quently included in these analyses.

2.2 | Participant characteristics

At baseline, age, sex, and cardiovascular risk factors were assessed. 
In the baseline clinical assessment, body mass index (BMI, in kg/m2), 
high density lipoprotein (HDL, in mg/dL), and low-density lipopro-
tein (LDL, in mg/dL) cholesterol were measured. Participants were 
asked to provide information about lifestyle-related risk factors in-
cluding smoking (never, former, or current); whether they consumed 
alcohol regularly; and whether they had a history of diabetes melli-
tus, hypertension, and acute coronary syndrome (myocardial infarc-
tion or angina pectoris). The stroke units provided information on 
whether the patient received recombinant tissue-type plasminogen 
activator (rt-PA) treatment, the suspected stroke etiology according 
to the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) clas-
sification,22 and the severity of the stroke based on the NIHSS (mild: 
0–4, moderate: 5–15, severe: >15).23

2.3 | Exposure assessment: coagulation factors

Citrate-buffered blood samples were obtained from PROSCIS-B 
participants after an overnight fast within 1  week of the initial 
stroke event and aliquots were stored at −80°C degrees until 
thawed once for the laboratory assays. Between the initial stroke 
event and the time of blood sampling, a median of 4 days elapsed 
(interquartile range [IQR] limits: 3–5). Coagulation factor activity 

Essentials
●	 Factors XII, XI, and VIII are linked with first vascular 

events; role in secondary events unclear.
●	 We followed adult stroke patients for 3  years or until 

stroke, myocardial infarction, or death.
●	 We report confounding-adjusted estimates for effect of 

factor activities on the combined endpoint.
●	 High FXI and FVIII but not FXII activities were associ-

ated with worse post-stroke vascular outcomes.
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levels (:C) were measured using a one-stage clotting assay and 
are reported as percentages of activated normal pooled plasma 
(standard activity units). Some of the samples had too little 
plasma; in these cases, FXI:C followed by FXII:C measurements 
were prioritized as less is known about these factors in the context 
of secondary vascular risk compared to FVIII:C. Coagulation factor 
measurements were performed blinded to participant characteris-
tics and outcome status.

2.4 | Outcome: combined endpoint

We generated the combined endpoint outcome as the composite 
of relevant secondary event occurrence; first of either recurrent 
stroke, myocardial infarction, or death attributable to any cause dur-
ing follow-up. During follow-up, participants were requested to pro-
vide information about the occurrence of any of these events since 
the last time of contact. We confirmed these self-reported outcomes 
using the Charité – Universitätsmedizin hospital discharge records 
or, when not available, using information obtained from the treating 
hospital or general practitioner.

We performed additional screening of the Charité hospital re-
cords to identify any events of interest not self-reported by partic-
ipants during follow-up. Information about death from any cause 
was supplemented using city registration office's records. For one 
participant, the exact date of death could not be determined and was 
assigned as the halfway point between last contact and the date on 
the returned postal questionnaire.

2.5 | Endpoint committee

All cardiovascular endpoints were confirmed using medical records 
from the treating hospital or physician and validated by an independ-
ent endpoint committee consisting of two senior vascular neurolo-
gists. We used only these committee-confirmed endpoints in our 
analyses.

2.6 | Statistical analysis

We summarized the baseline characteristics for the full PROSCIS-B 
cohort using medians and IQR limits for continuous variables and 
frequencies and percentages for nominal variables.

In the primary analysis, we categorized the FXII:C, FXI:C, and 
FVIII:C levels into quartile groups and compared participants with 
the highest fourth (>75th percentile) to the remainder (reference) 
for each factor. In an additional analysis, for each factor, we ana-
lyzed the activity measurements as continuous exposure variables 
divided by the standard deviation of all measurements of that fac-
tor to allow for better comparisons of the estimated effect sizes 
between the three factors. All reported analyses are complete case 
analyses.

In the time-to-event analyses, we calculated person-time from 
the date of the initial ischemic stroke to the date of occurrence of 
the combined endpoint during follow-up (first occurrence of either 
recurrent stroke, myocardial infarction, or death by any cause), 
loss to follow-up, or the study end, whichever came first. We used 
Kaplan-Meier curves to estimate event-free survivorship and the 
log-rank test to measure overall crude differences in survivorship 
curves between groups after visual inspection of fulfillment of the 
proportional hazards assumption. Dropouts were censored on the 
date of last contact.

We used Cox proportional hazards models to estimate the 
hazard ratios (HR) and 95% confidence intervals (CI) for the com-
bined endpoint outcome adjusted for potential confounding fac-
tors. We used multiple models for confounding control: Model 1 
was adjusted only for age and sex. In Model 2, we additionally 
adjusted for cardiovascular factors determined to contribute to 
confounding based on a priori knowledge. In addition to age and 
sex, Model 2 included the continuous variables BMI, HDL, and 
LDL cholesterol levels; the categorical variable smoking status 
(never, ever, current); and the following dichotomous variables: 
regular alcohol consumption, hypertension, diabetes mellitus, and 
acute coronary syndrome.

As a sensitivity analysis, in a third model (Model 3), we adjusted 
for all Model 2 covariates as well as rt-PA treatment status and 
stroke severity (NIHSS). Because these are consequences of the 
stroke, they could be intermediates in the causal path of interest 
and may not contribute to confounding directly. However, as they 
may also be proxies for relevant pre-stroke confounders, we de-
cided to explore how the effect estimates change with their inclu-
sion in Model 3.

F I G U R E  1   Participant inclusion flowchart. Abbreviations: 
NIHSS, National Institutes of Health Stroke Scale; SVT, sinus 
venous thrombosis. Of the 40 participants with no recorded 
coagulation factor activity measurements, 15 had samples that 
failed in the laboratory and the remainder had no stored citrate 
available for analysis

690 stroke patients
enrolled

621 with mild to
moderate ischemic
stroke (NIHSS≤15)

616 met inclusion
criteria for

biomarker analyses

576 patients included in present study

40 no coagulation
factor

measurements

5 did not consent to
biomarker analyses

42 SVT or bleeds
6 severe strokes

(NIHSS>15)

21 withdrew consent
during follow-up

669 PROSCIS-B
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We performed all analyses using STATA IC version 14.2 (Stata 
Corp.). The syntax is available on request from the corresponding 
author.

3  | RESULTS

Participant characteristics at baseline are displayed in Table  1. 
PROSCIS participants with mild to moderate ischemic stroke 
(N = 621) were predominantly male (61%) and had a median age of 
69 years (IQR limits: 58–76). Arterial hypertension was observed in 
65% and diabetes mellitus in 22% of participants. Twenty percent 
of participants received rt-PA treatment. Median activity levels for 
FXII:C, FXI:C, and FVIII:C were 108 (IQR limits: 91–127), 113 (99–
130), and 140 (115–166), respectively. At least one of the three coag-
ulation factor measurements was available for 576 participants (93%) 
who were included in the present analyses. All three factor activity 
measurements were available for 553 participants. The distribution 
of high versus low/normal activity levels across the TOAST stroke 
subtypes is displayed in Table S1 in the Supporting Information. All 
other variables relevant for this study measured at baseline had <5% 
missing values aside from the LDL and HDL cholesterol levels, for 
which 34 participants had missing values.

After a pursuit follow-up time of 3.0  years resulting in 1419.5 
contributed person-years, 94 combined endpoint events occurred. 
Of these, 41 were recurrent ischemic strokes, 5 were myocardial in-
farctions, and 48 were deaths. The overall crude observed incidence 
rate for included participants was 6.6 events per 100 person-years. 
The absolute cumulative risk for the combined outcome during fol-
low-up among the 576 included participants was 16.3%.

We generated Kaplan-Meier curves to compare participants 
with coagulation factor levels in the highest fourth (>p75) with the 
remainder for the three factors of interest (Figure 2A-C). In the 
crude comparison, no significant difference between >p75 and 
≤p75 groups of FXII:C was observed in the log-rank test (P = .48). 
However, clear differences were visible for both the FXI:C and 
FVIII:C curve comparisons. Visually,  articipants with high levels 
had consistently higher cumulative probabilities of the combined 
endpoint compared to the reference group (FXI:C: P = .06; FVIII: 
C: P = .0001).

The multivariable adjusted HRs are shown in Table 2. In the fully 
adjusted model (Model 2), high FXII:C levels (>p75) were not asso-
ciated with the combined endpoint (HR = 0.86, 95% CI 0.49–1.51). 
Having high FXI:C levels was associated with a higher hazard for the 
combined endpoint: (HR = 1.80, 95% CI 1.09–2.98), as was having high 
FVIII:C levels (HR = 2.05, 95% CI 1.28–3.29), compared to low/normal 
levels. In the secondary analyses treating the coagulation factor lev-
els as continuous variables, we obtained similar results (Table 2). One 
standard deviation of FXII:C, FXI:C, and FVIII:C levels corresponded 
to 29.3, 28.8, and 45.4 units, respectively.

In a sensitivity analysis (Model 3), we further adjusted Model 2 
for NIHSS and rt-PA treatment. This additional adjustment did not 
substantially change the results (Table 2).

TA B L E  1   Baseline characteristics of PROSCIS-B participants 
with mild to moderate ischemic stroke

PROSCIS-B participants with mild to moderate ischemic stroke 
(N=621)a 

Age in years, median (IQRL) 69 (58–76)

Female sex, N (%) 242 (39%)

BMI in kg/m2, median (IQRL) 27 (24–30)

HDL cholesterol in mg/dL, median 
(IQRL)

49 (40–60)

LDL cholesterol in mg/dL, median 
(IQRL)

117 (96–147)

Hypertension, N (%) 406 (65%)

Acute coronary syndrome, N (%) 99 (16%)

Diabetes mellitus, N (%) 137 (22%)

Habitual alcohol consumption, N (%) 217 (35%)

Smoking, N (%)

Former 201 (33%)

Current 171 (28%)

TOAST subtype, N (%)

Large-artery atherosclerosis 167 (27%)

Cardioembolism 145 (23%)

Small vessel occlusion 96 (15%)

Other determined etiology 22 (4%)

Undetermined etiologyb  191 (31%)

NIHSS, N (%)

Mild, 0–4 470 (76%)

Moderate, 5–15 151 (24%)

Thrombolysis treatment (rt-PA), N (%) 125 (20%)

Coagulation measurements available 
for at least one factorc , N (%)

576 (93%)

FXII:Cd , median (IQRL) 108 (91–127)

FXI:C, median (IQRL) 133 (99–130)

FVIII:C, median (IQRL) 140 (115–166)

Abbreviations: BMI, body mass index; FVIII:C, coagulation factor 
VIII activity; FXI:C, coagulation factor XI activity; FXII:C, coagulation 
factor XII activity; HDL, high-density lipoprotein; IQRL, interquartile 
range limits; LDL, low-density lipoprotein; NIHSS, National Institutes 
of Health Stroke Scale; PROSCIS-B, Prospective Cohort with Incident 
Stroke Berlin; rt-PA, recombinant tissue-type plasminogen activator; 
TOAST, stroke etiology according to Trial of Org 10172 in Acute Stroke 
Treatment.
aOwing to missing data, percentages may not total 100%. 5 participants 
did not consent to biomarker measurements and were excluded. All 
variables have <5% missing values except for the coagulation factor and 
cholesterol measurements. In total, 34 study participants were missing 
LDL and HDL cholesterol measurements, and 40 participants were 
missing all three coagulation factor activity measurements. 
bIncludes cryptogenic stroke despite complete work-up, stroke of two 
or more etiologies, and stroke with incomplete work-up. 
cLaboratory measurements available for at least one of the coagulation 
factors of interest; 553 had all three coagulation factor activity 
measurements. 
dActivities were measured as percentages of activated normal pooled 
plasma. 
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4  | DISCUSSION

In this prospective patient cohort study of individuals with mild to 
moderate ischemic stroke, having high levels of FXI or FVIII activity 
was associated with a higher hazard for the combined vascular end-
point within 3 years compared with individuals having low/normal 
levels after confounding adjustment. Such a relationship was not ob-
served for having high FXII activity. Our findings expand on the re-
cent literature and fill some important gaps with longitudinal results.

Specifically in the context of post-stroke outcomes, the search 
for meaningful etiologic or prognostic hemostatic biomarkers has 
not been straightforward. A recent systematic review of hemostatic 
biomarkers in ischemic stroke revealed a large heterogeneity in 
existing studies and did not find enough evidence to provide clear 
recommendations for a prognostic marker to be used in practice; 
however, some biomarkers, including FXI and FVIII, seemed prom-
ising in some of the included studies.6

In general, the existing evidence on coagulation factor activity 
and post-stroke outcomes is quite limited. Our findings pertaining 

to FXI activity and long-term outcomes add to previous findings 
from a cross-sectional study of ischemic stroke and transient isch-
emic attack patients aged 70 or younger, which concluded that the 
presence of circulating activated FXI during the acute phase of ce-
rebral ischemia (defined as having a detectable response to inhibi-
tory monoclonal antibodies in plasma harvested within 72 hours of 
symptom onset) at hospital admission was associated with a higher 
NIHSS score, higher Modified Rankin Scale (mRS), and lower Barthel 
index at discharge.24

Another study found that acute ischemic stroke patients with 
elevated FVIII (>1.50  IU/mL) at hospital admission experienced a 
higher frequency of recurrent thrombotic events (defined as new 
ischemic stroke, progressive stroke, myocardial infarction, deep vein 
thrombosis, or pulmonary embolism) while in hospital.19 Our findings 
add to these results by showing that this relationship also appears to 
persist in the longer term for future incident events. Regarding isch-
emic stroke patients who underwent thrombolysis, a study found 
that having elevated FVIII activity levels (defined as >168%, the 
upper limit of the reference level), both immediately and 24 hours 

F I G U R E  2   Cumulative probabilities of the combined vascular endpoint. Kaplan-Meier estimates among stroke patient participants 
with high activity levels (>75th percentile) of each indicated coagulation factor (Panel A) FXII, (Panel B) FXI, and (Panel C) FVIII, compared 
to those with lower activity levels of each factor (≤75th percentile, reference). Activity levels were measured as percentages of activated 
normal pooled plasma. Abbreviations: Cum., cumulative; FVIII, coagulation factor VIII; FXI, coagulation factor XI; FXII, coagulation factor XII; 
ref, reference.
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after thrombolysis, led to a higher risk for poor functional outcome 
(mRS ≥ 3) at 90 days.25

There have been some important recent developments regard-
ing hemostatic factors in the context of first stroke that may also 
provide relevant insights in the context of secondary prevention. 
For instance, FXI appears to be a stronger risk factor for first isch-
emic stroke than myocardial infarction26 and may therefore be a 
particularly attractive target. Numerous laboratory and animal 
studies have further demonstrated a prothrombotic role of FXII and 
FXI in thrombosis but non-integral role of these factors in normal 
hemostasis, making them promising targets for future anticoagu-
lant drug development with potentially lower bleeding risk.7,27,28 In 
addition to the successful trial conducted among knee arthroplasty 
patients, in which FXI antisense oligonucleotides prevented venous 
thrombotic events without increasing bleeding risk,29 a recent ge-
netic study investigating variants known to alter FXI levels and 
increase relative activated partial thromboplastin time found that 
genetic disposition to lower FXI levels was associated with lower 
odds for ischemic stroke without increasing risk for major bleed-
ing.30 This decrease was equivalent to the FXI level reduction that 
can be achieved through pharmacological modulation.30

Furthermore, a 2018 study that used two-sample Mendelian 
randomization found that genetically determined FXI levels had 
a causal effect on the risk of any ischemic stroke but not myo-
cardial infarction or intracerebral hemorrhage, with the stron-
gest effect observed amongst the cardioembolism subgroup.31 
Shortly after, a 2019 study that also used Mendelian randomiza-
tion techniques in a larger meta-analysis, integrating phenomic, 

genomic, and proteomic databases, assessed the role of 653 
proteins as potential mediators for ischemic stroke subtypes and 
relevant side effects.32 In this study, genetically determined FXI 
levels were identified as one of five causal mediators of isch-
emic stroke, with the cardioembolic subtype appearing to drive 
this effect.32 In both studies, no adverse side effects appeared 
to be linked to the genetic influences on variation in FXI levels, 
providing further justification for clinical trials on FXI-related in-
terventions in the context of ischemic stroke.32 Another study 
published in 2020 used two-sample Mendelian randomization 
to assess the causal relationships among numerous coagulation 
factor and other hematological traits on ischemic stroke and 
its subtypes using data from the MEGASTROKE Consortium.33 
Specifically, genetically higher levels of FXI activity and FVIII 
antigen were each found to be associated with increased isch-
emic stroke risk as well as specific risk for the cardioembolic 
subtype, but not with small-vessel stroke risk.33 Interestingly, 
reduced FVIII activity was associated with ischemic stroke risk, 
and specifically the cardioembolic and large artery atherosclero-
sis subtypes (the latter only among the European population).33 
Our study was not powered to investigate stratum-specific ef-
fects across the stroke subtypes, but this area warrants future 
research also in the context of secondary event prevention.

In light of our findings that stroke patients with high FXI:C had a 
higher risk for secondary events after first stroke, the population of 
stroke patients with high FXI levels may particularly benefit from such 
targeted interventions. FXI:C may be a promising biomarker for identi-
fying individuals who are most likely to benefit from such interventions.

TA B L E  2   Hazard ratios from Cox proportional hazards regression models for FXII:C, FXI:C, and FVIII:C

FXII:Ca  n Combined EP events HR1b  95% CI HR2c  95% CI HR3d  95% CI

≤p75 428 71 1 ref 1 ref 1 ref

>p75 (high) 137 20 1.00 (0.60–1.67) 0.86 (0.49–1.51) 0.91 (0.51–1.62)

Per SDe  565 91 0.94 (0.76–1.16) 0.90 (0.71–1.13) 0.92 (0.73–1.17)

FXI:C n Combined EP events HR1 95% CI HR2 95% CI HR3 95% CI

≤p75 433 63 1 ref 1 ref 1 ref

>p75 (high) 137 29 1.81 (1.15–2.84) 1.80 (1.09–2.98) 1.84 (1.11–3.07)

Per SD 570 92 1.26 (1.04–1.53) 1.26 (1.00–1.58) 1.23 (0.98–1.55)

FVIII:C n Combined EP events HR1 95% CI HR2 95% CI HR3 95% CI

≤p75 420 54 1 ref 1 ref 1 ref

>p75 (high) 140 38 2.10 (1.38–3.19) 2.05 (1.28–3.29) 2.18 (1.35–3.52)

Per SD 560 92 1.33 (1.11–1.59) 1.37 (1.10–1.71) 1.37 (1.10–1.72)

Abbreviations: CI, confidence interval; EP, endpoint; FVIII:C, coagulation factor VIII activity; FXI:C, coagulation factor XI activity; FXII:C, coagulation 
factor XII activity; HR, hazard ratio; p75, 75th percentile; ref, reference; SD, standard deviation.
aActivities were measured as percentages of activated normal pooled plasma. 
bModel 1: Adjusted for age and sex. 
cModel 2: Adjusted for Model 1 variables plus BMI, HDL, LDL, smoking status, regular alcohol consumption, hypertension, diabetes mellitus, and 
acute coronary syndrome (see Methods for detailed variable definitions). 
dModel 3 (sensitivity analysis): Adjusted for Model 2 variables plus thrombolysis treatment (rt-PA) status and NIHSS (National Institutes of Health 
Stroke Scale). 
eOne standard deviation of FXII:C, FXI:C, and FVIII:C levels were 29.3, 28.8, and 45.4 units, respectively. 
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4.1 | Strengths and limitations

Though the relationships between coagulation factors FXII, FXI, and 
FVIII and primary thrombotic event risk, for both venous and arterial 
events, have been well studied, to the best of our knowledge, this is 
the first study to investigate their role in long-term vascular event 
risk after first stroke. Furthermore, a limited number of studies have 
included multiple coagulation factors in a single study, and existing 
studies often lack follow-up beyond hospital discharge. Coagulation 
activity was assayed using state-of-the-art machinery on fresh-
frozen, once-thawed plasma samples as opposed to antigen level 
measurements. Our longitudinal design with 94 observed outcome 
events also afforded us the opportunity to contribute our analyses 
of long-term outcome risk to the literature, which is currently limited 
to cross-sectional and very-short-term designs.

We were able to screen for additional, unreported clinical end-
points of interest in the Charité University Hospital medical records 
to supplement the information provided by the patients; however, 
unreported clinical endpoints presenting at other clinics in Berlin or 
elsewhere may have been missed. When possible, we made an effort 
to validate any patient-reported events by requesting forwarding of 
medical records from other hospitals and clinics. We further con-
firmed the vital status for all participants at the end of the study via 
the local citizen's registration office in Berlin; however, due to legal 
restrictions, we could not obtain specific cause information from the 
death certificates.

Some limitations should also be considered when interpreting 
our results. First, self-reported patient characteristics, such as the 
lifestyle-related factors and the presence of chronic diseases at 
baseline, may be prone to recall bias. A set of standard operating 
procedures and training was provided for the study nurses in an 
effort to improve consistency in the measurements made at study 
enrollment. Although we believe that we have included the most im-
portant potential sources of confounding in the adjusted models, we 
cannot rule out that some residual confounding may be present due 
to unmeasured factors.

Second, we emphasize that the coagulation factor activity 
levels were measured in blood samples that were taken after the 
index stroke event, and the initial stroke event itself may activate 
the coagulation system.34 Though FXII and FXI are not known to 
change dramatically during the acute phase of stroke, this phe-
nomenon has been well documented for FVIII. This means that 
our findings for FVIII are likely a mixing of elevated FVIII as part 
of the acute phase and high pre-stroke FVIII levels (increase of 
thrombotic event risk independent of the acute phase18). It is also 
possible that these activity levels changed within the first week 
post-stroke, during which the blood was drawn. About one fifth 
of the study participants received rt-PA treatment, and we cannot 
rule out that some may have been on anticoagulation therapy at 
the time of the initial stroke event. Time-standardized measure-
ments should be considered in future confirmatory studies, and 
sequential measurements could provide additional relevant in-
sights into the changes that occur shortly after stroke.

Our reported results apply to a cohort comprised of first-ever 
mild to moderate ischemic stroke patients. The six patients enrolled 
with a baseline NIHSS >15 in the PROSCIS-B study were excluded 
to limit the heterogeneity of the cohort. Readers should take care 
not to extrapolate our conclusions to severe patients (NIHSS >15) or 
patients with severe comorbidities or complications (such as sepsis) 
who may have been less likely to participate in our study.

We do not expect that the censoring of individuals lost to follow-up 
was differential with respect to exposure status. However, it is feasi-
ble, despite our efforts to confirm unreported endpoints, that those 
who were lost to follow-up may have been more likely to experience 
one of the combined vascular endpoints compared to the participants 
actively remaining in the study. Lastly, due to a limited number of end-
point events per included independent variable in Models 2 and 3, we 
acknowledge that the measured associations of interest in these mod-
els may be imprecise and could even be biased in the direction of more 
extreme values. However, especially for observational studies with 
causal questions like ours in which full confounding control is crucial, 
simulation results indicate that use of less rigid events per variable cri-
teria is often justifiable for Cox regression analysis in terms of import-
ant model performance measures and in the range of 5 to 9 events per 
variable (our Models 2 and 3), such problems are uncommon.35

5  | CONCLUSIONS

Our study of mild to moderate ischemic stroke patients indicates that 
high levels of FXI:C or FVIII:C measured within 1 week of the index 
event may contribute to unfavorable vascular outcomes after stroke 
in the longer term (3 years). We did not observe a clear relationship 
with FXII:C. Further research in this area should focus on obtain-
ing time-standardized and repeated measures of coagulation factor 
activities after stroke. In the context of secondary prevention, we 
demonstrated that individuals with high levels of FXI:C after stroke 
have an increased risk for secondary events. This knowledge may be 
beneficial for potential future treatment strategies involving drugs 
targeting FXI.
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Abstract

Objective

To investigate the relationship between high FVIII clotting activity (FVIII:C), MRI-defined

white matter hyperintensities (WMH) and cognitive function over time.

Methods

Data from the population-based Cardiovascular Health Study (n = 5,888, aged�65) were

used. FVIII:C was measured in blood samples taken at baseline. WMH burden was

assessed on two cranial MRI scans taken roughly 5 years apart. Cognitive function was

assessed annually using the Modified Mini-Mental State Examination (3MSE) and Digit

Symbol Substitution Test (DSST). We used ordinal logistic regression models adjusted for

demographic and cardiovascular factors in cross-sectional and longitudinal WMH analyses,

and adjusted linear regression and linear mixed models in the analyses of cognitive

function.

Results

After adjustment for confounding, higher levels of FVIII:C were not strongly associated with

the burden of WMH on the initial MRI scan (OR>p75 = 1.20, 95% CI 0.99–1.45; N = 2,735)

nor with WMH burden worsening over time (OR>p75 = 1.18, 95% CI 0.87–1.59; N = 1,527).

High FVIII:C showed no strong association with cognitive scores cross-sectionally
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(3MSE>p75 β = -0.06, 95%CI -0.45 to 0.32, N = 4,005; DSST>p75 β = -0.69, 95%CI -1.52

to 0.13, N = 3,954) or over time (3MSE>p75 β = -0.07,95% CI -0.58 to 0.44, N = 2,764;

DSST>p75 β = -0.22, 95% CI -0.97 to 0.53, N = 2,306) after confounding adjustment.

Interpretation

The results from this cohort study of older adult participants indicate no strong relationships

between higher FVIII:C levels and WMH burden or cognitive function in cross-sectional and

longitudinal analyses.

Introduction

White matter hyperintensities (WMH) on MRI are common among older adults. According

to a Dutch community-based study, the prevalence of WMH in healthy volunteers aged

between 60 and 90 years was estimated to be 95%, and both prevalence and severity were

found to increase with age [1]. In addition to being associated with traditional cardiovascular

risk factors, changes in brain morphology, including WMH development, have been impli-

cated in cognitive decline, incident cognitive impairment, and the development of dementia

[2–6].

Coagulation factor FVIII (FVIII) levels generally increase with age [2]. Acute elevation of

FVIII is known to occur during the acute phase of stroke as part of the inflammatory response

[3]. A dose-dependent relationship between FVIII levels and the occurrence of thrombotic

events (including overt ischemic stroke) has also been observed [4–8]. Further studies have

linked FVIII, a potential therapeutic target, with dementia risk [9,10] as well as risk for cogni-

tive impairment in a study of men [11]. Previous research in the US-based Cardiovascular

Health Study (CHS) found an association between higher FVIII and incident cardiovascular

disease, stroke, and death in the older general study population [12], but these studies did not

investigate covert WMH or cognitive decline.

It remains unclear whether FVIII may contribute to the severity of covert WMH burden

and worsening over time. It is also unknown whether high FVIII levels contribute to cognitive

decline in this population, a process that may, in turn, be mediated by WMH. The present

study aims to probe these relationships to better understand the role of FVIII, if any, in the

pathways leading to cognitive decline in both cross-sectional and longitudinal settings, using

data from a large, population-based cohort.

Methods

Participants and design

In this cohort study, we used data from the Cardiovascular Health Study (CHS) in all analyses.

The design of the full longitudinal, population-based CHS, which aimed to assess risk factors

for cardiovascular disease is described in detail elsewhere [13]. Briefly, the original CHS cohort

included adults aged 65 and older recruited from four United States communities using Medi-

care eligibility lists. The first cohort of participants (N = 5,201) were enrolled in 1989 and

1990. A second cohort oversampling African-Americans (n = 687) was enrolled in 1992 and

1993; however, since FVIII levels were not measured in this group, the second cohort could

not be included in our analyses. As illustrated in Fig 1, participants were prospectively followed

for 9 years after the baseline visit and completed yearly clinic visits or phone interviews. An
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overview of all relevant variables used in our study and a timeline of their acquisition in the

CHS is shown in Fig 1.

Baseline assessment

The exposure variable of interest, FVIII clotting activity (FVIII:C), was measured in blood

samples of 5,112 participants taken at baseline. Clotting activity was assayed using the Coag-a-

mate X2 instrument with WHO standards, and activity units are expressed as percentages of

normal pooled plasma [14]. The mean coefficients of variation of two control pools were 9%

and 10%.

Other relevant variables measured at baseline included self-reported age, sex, and ethnicity.

Participants were also asked to provide information about their highest level of completed edu-

cation and information regarding smoking status and alcohol consumption. Smoking status

was categorized as never, former, or current. Alcohol consumption was classified as never,

occasionally, or frequently, which was defined as consuming more than 7 drinks per week, on

average.

We considered other measurements taken at the baseline clinic visits as markers for cardio-

vascular risk. Participants’ measured weight (kg) and squared height (m2) were used to com-

pute body mass index (BMI). Individuals presenting with�140 mmHg (systolic) or�90

mmHg (diastolic) seated blood pressure at baseline were classified as ‘hypertensive’ in addition

to those who both reported a history of hypertension and were taking antihypertensive medi-

cation at baseline. High density lipoprotein cholesterol (HDL, mg/dL) and adjusted low-den-

sity lipoprotein cholesterol, (LDL, mg/dL) were measured from blood samples and recorded as

continuous variables. Furthermore, participants’ fasting plasma glucose levels were used to

determine diabetes status according to current American Diabetes Association guidelines as

‘normal’(<100mg/dL), ‘impaired fasting glucose’ (100-125mg/dL), or ‘diabetic’ (�126 or

reported taking insulin or oral hypoglycemics). Maximum common carotid intima-media

thickness (CIMT) and maximum internal CIMT were defined as the mean of maximum wall

thickness measurements made during all scans using ultrasonography used as indicators of

carotid atherosclerosis [15]. Further relevant blood biomarker measurements included C reac-

tive protein (CRP, mg/L) and fibrinogen (mg/dL). In addition to information on whether the

participant had a history of stroke or transient ischemic attack (TIA) at baseline, incident

stroke or incident TIA events occurring during CHS follow-up were also recorded [16].

Ascertainment of outcomes

Cranial MRI scans were performed in two waves over several years. The initial scan occurred

during the 2nd through 4th follow-up visits (1991–1994), and the follow-up scan during the

Fig 1. Timeline of CHS data collection. Measurements collected at baseline and at each follow-up are listed per year. Abbreviations: FU, follow-up; FVIII:C,

coagulation factor VIII activity; 3MSE, Modified Mini-Mental State Examination; DSST, Digit Symbol Substitution Test; MRI, magnetic resonance imaging, TICS,

Telephone Interview for Cognitive Status.

https://doi.org/10.1371/journal.pone.0242062.g001
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8th and 9th follow-up visits (1997–1999), allowing for the assessment of changes in brain mor-

phology in CHS participants over an average time interval of 5 years [17,18]. Areas of hyperin-

tensities in the periventricular and subcortical regions as observed on standardized sagittal

axial-spin density/T2-weighted cranial MRI images were used to quantify WMH burden, one

of our outcomes of interest [19]. The WMH burden apparent on each scan was evaluated by

experienced neuroradiologists at a central CHS Reading Center using a 10-point white matter

grade (WMG) scale, ranging from 0 (no lesions) to 9 (most lesions) based on a library of tem-

plates [18]. In additional, the initial and follow-up MRI scans were read side-by-side to deter-

mine any worsening of the WMG between the two scans [17].

Cognitive ability was measured using multiple assessment tools. The first, the 100-point Modi-

fied Mini-Mental State Examination (3MSE) [20], was introduced during the first follow-up wave

(1990–91) and administered annually thereafter during in-person clinic visits. Missing 3MSE

scores could be estimated from the Telephone Interview for Cognitive Status (TICS) scores, when

these data were available. TICS were first introduced during the sixth follow-up (1995–96), and

these estimates have previously been confirmed to be reliable substitutions for 3MSE scores [21].

To provide an indication of the robustness of our results, we included an additional assess-

ment of cognitive function as a second outcome: the Digit Symbol Substitution Test (DSST).

This timed, 90-second test measures both attention and processing speed. The DSST over-

comes the known challenge of the ceiling effect of the 3MSE [22]. The DSST was administered

at baseline (1989–90) and annually thereafter during in-person clinic visits. For consistency

between the two outcome measures, we considered only 3MSE scores (or the imputed TICS

estimates thereof) and DSST scores measured during the 1st through 9th follow-up visits as

continuous outcomes in our longitudinal analyses.

Inclusion/Exclusion criteria

In addition to the general inclusion and exclusion criteria of the CHS [13], we additionally

excluded from our analyses all participants with missing FVIII:C measurements or with a his-

tory of one or more of the following at baseline: clinical stroke, TIA, prevalent dementia, and/

or low cognitive function. Low cognitive function was defined as scoring less than 78 on the

first 3MSE measurement, an established cutoff used in other CHS cognition studies [23], or in

the lowest 10% of all scores on the first included DSST. Prevalent dementia and cognitive func-

tion (as measured by 3MSE) were first assessed in 1990–91.

Statistical analyses FVIII:C categorization

For our primary analyses, participants were categorized according to their FVIII activity levels

(FVIII:C). High (>75th percentile) and low (�25th percentile) FVIII:C levels were compared to

the middle reference interval between the 25th and 75th percentiles, based on our a priori analy-

sis plan. In secondary analyses, FVIII:C were analyzed continuously as normalized variables by

dividing FVIII:C by the standard deviation (SD) of all FVIII:C measurements. To explore possi-

ble dose response, we used quintiles to group FVIII:C using the middle fifth as a reference. As a

sensitivity analysis to assess robustness of our findings, we performed an additional categoriza-

tion of FVIII:C. High (>90th percentile) and low (�10th percentile) FVIII:C levels were com-

pared to participants with FVIII:C in the 10th– 90th percentile interval (reference).

White matter hyperintensity burden at initial cranial MRI scan: Cross-

sectional analyses

Cross-sectional analyses were conducted to determine whether FVIII:C levels were associated

with WMH burden on the initial MRI scan (see Fig 1) in all participants having initial scan
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results. For this analysis, the outcome variable, WMH burden, was grouped by grade into

three groups (0–1, 2–3, 4–9). Differences in mean FVIII:C between WMG groups were

assessed using an ANOVA.

We then used ordinal logistic regression to probe the relationship between FVIII:C and

WMH burden using the gologit2 command in Stata, which can relax the proportional odds

assumption as needed for specific explanatory variables (this is known as fitting a partial pro-

portional odds model) [24,25]. In addition to an unadjusted model (model 1), we provide two

additional models conditioning for potential confounding variables: model 2: adjusted for a
priori selected demographic and socioeconomic factors including age, sex, ethnicity, and edu-

cation level; and model 3: additionally adjusting for a priori selected lifestyle and cardiovascu-

lar risk factors: smoking, alcohol use, BMI, hypertension, diabetes, HDL and LDL cholesterol,

fibrinogen, CRP, maximum common and internal CIMT, and the occurrence of a TIA or

stroke event during the follow-up period prior to the initial MRI scan, as defined previously.

Logarithmic transformations were used for variables with right-skewed distributions including

both CIMT measurements and CRP. Since incident TIA or stroke events could be mediators

for the exposure-outcome relationship, we conducted an additional sensitivity analysis in

which this variable was omitted. We report ordinal odds ratios with corresponding 95% confi-

dence intervals (95% CI) for each model.

Worsening of white matter grade between MRI scans: Longitudinal

analyses

We report odds ratios with corresponding 95% CI from ordinal logistic regression models to

quantify the worsening in WMG between the two MRI scans taken on average 5 years apart.

Thus, only participants who underwent both MRI scans were included in these analyses.

Change between scans was a priori categorized as no worsening in WMG, a worsening of 1

grade, or a worsening of 2 or more grades. The analyses were additionally adjusted for the

elapsed time between participants’ initial and follow-up MRI scans but not for baseline WML

grade, as WML grade changes were likely to precede our baseline assessment and such adjust-

ment is thus likely to introduce bias [26].

FVIII:C and cognitive function: Cross-sectional and longitudinal analyses

We used linear regression models to obtain estimates of the effect of baseline FVIII:C (β and

95% CIs) on 3MSE scores measured at the first follow-up in three adjusted models as described

above. We then used linear mixed models with random intercepts for each individual to inves-

tigate the relationship between FVIII:C and cognitive function over time, as measured by serial

3MSE scores. These models handle missing data and the dependent nature of the repeated

measurements within individuals. As a secondary analysis, we repeated both cross-sectional

and longitudinal analyses using DSST scores instead of 3MSE. Effect estimates and 95% CIs

are reported for the 3 models, as well as the model variance between individuals.

Standard protocol approvals, registrations and patient consents

Informed written consent was obtained from all CHS participants at entry into the study and

at periodic intervals during follow-up. Institutional review boards at each CHS center

approved the study. The IRB at the Charité - Universitätsmedizin Berlin also approved this sec-

ondary data analysis, and data was transferred in a fully anonymized form for analysis.
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Results

Description of study population

After applying our inclusion and exclusion criteria as shown in the participant flowchart (Fig

2), our study population consisted of 4,295 participants whose characteristics are summarized

in Table 1. The study participants had a mean age of 72.3 years, 59.3% were female, and 96.0%

were white. In total, 45.5% of included participants were hypertensive and 13.9% were

diabetic.

FVIII:C and white matter grade

Of the 2,735 participants who underwent the first MRI scan, mean FVIII:C differed among

WMG groups (p = 0.001). Participants with the highest burden of WMH on this scan (grades

4–9) had higher mean FVIII:C (121.2) than participants with WMG of 2–3 (120.5) or WMG

0–1 (115.3) (see Table 2). Ordinal analyses using three groups of WMG (0–1, 2–3, and 4–9)

revealed a weak association between high FVIII:C (>p75)–compared to normal levels–and

WMG (model 3 OR = 1.20, 95% CI 0.99–1.45) in participants with initial MRI scan results

(Table 2). Furthermore, each increase in FVIII:C by one standard deviation (36 units) was not

associated with substantially worse WMG at the initial MRI scan after full adjustment (model

3 OR = 1.08, 95% CI 0.99–1.17).

We report results from longitudinal analyses in Table 3. Considering worsening of WMG

between the two scans, after full adjustment for potential confounding factors, the ordinal

logistic regression analysis revealed no meaningful association between high FVIII:C (>p75)

and the degree of worsening over the time period between scans (model 3 OR = 1.18, 95% CI

0.87–1.59).

Similar findings were observed in secondary analyses considering per SD increase in FVIII:

C as the exposure (model 3 OR = 1.07, 95% CI 0.94–1.22).

FVIII:C and cognitive function

Table 4 shows results from cross-sectional analyses using 3MSE (n = 4,005) and DSST

(n = 3,954) scores from study year 1991–92 (first follow-up) as outcomes. Though a small asso-

ciation between high FVIII:C (>p75) and lower 3MSE scores was observed in the crude linear

regression model (β1 = -0.55; 95% CI -0.95 to -0.15), this association disappeared after full con-

founding adjustment (β3 = -0.06, 95% CI -0.45 to 0.32). The unadjusted association with DSST

score (β1 = -2.05, 95% CI -2.94 to -1.16), was also greatly reduced after full adjustment (β3 =

-0.69, 95% CI -1.52 to 0.13). For the DSST scores, we observed a slight dose response in the

crude quintile assessment. Per SD of FVIII:C, we also found no association between high

FVIII:C and lower 3MSE or DSST scores in the fully adjusted models (Table 4).

Linear mixed-effects regression with random intercepts was then used to investigate

whether FVIII:C measured at baseline were associated with cognitive ability over time

(Table 5). The numbers of participants with available measurements in the final year of follow-

up were N = 2,764 (3MSE or TICS estimate) and N = 2,306 (DSST). As was observed in the

cross-sectional setting, having high (>p75) FVIII:C was not associated with 3MSE over the

course of study follow-up in the fully adjusted models (β3 = -0.07, 95% CI -0.58 to 0.44; β3 per

SD of FVIII:C = 0.15, 95% CI -0.06 to 0.37). Furthermore, no clinically relevant association

was observed between high FVIII:C and change in DSST score over time, after adjustment (β3

= -0.22, 95% CI -0.97 to 0.53; β3 per SD of FVIII:C = -0.11, 95% CI -0.43 to 0.22).

As a sensitivity analysis, we repeated the above analyses with p10/p90 cutoffs, which did not

substantially alter the results. Furthermore, omitting the variable ‘occurrence of a TIA or
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stroke event during the follow-up’ from the third model (as it may be both an intermediate

and confounder) resulted in nearly identical point estimates.

Discussion

In the present study, we estimated the effects of FVIII:C on WMH burden and cognitive func-

tion both cross-sectionally and over time in a population-based sample of older persons in the

CHS. Although participants with high WMG on the first MRI scan had higher mean FVIII:C

Fig 2. Study inclusion flow chart. Dementia was first adjudicated in 1990–91. DSST and 3MSE scores from that study

year were also used to determine participant inclusion for this study. Abbreviations: FVIII:C, coagulation factor VIII

activity; FU, follow-up; 3MSE, Modified Mini-Mental State Examination; DSST, Digit Symbol Substitution Test; MRI,

magnetic resonance imaging; TICS, Telephone Interview for Cognitive Status; TIA, transient ischemic attack.

https://doi.org/10.1371/journal.pone.0242062.g002
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than participants with no or low WMG, no strong association was observed between high

FVIII:C and WMH burden in the cross-sectional analyses. Furthermore, high FVIII:C did not

appear to be linked to worsening of the WMG between MRI scans performed about 5 years

apart after adjustment for confounding variables.

Table 1. Baseline characteristics of study population.

Characteristic (n = 4,295)

Mean age (SD), years 72.3 (± 5.3)

Female sex, N (%) 2,549 (59.3%)

White, N (%) 4,124 (96.0%)

Education, N (%)a

< Grade 12 986 (23.0%)

Completed high school/GED 1,296 (30.2%)

Vocational or some college 1,045 (24.3%)

Graduate degree/professional 960 (22.4%)

BMI (SD), kg/m2 26.4 (± 4.5)

Hypertension, N (%) 1,950 (45.4%)

Cholesterol (SD), mg/dL

Total 212.3 (± 39.0)

HDL 54.4 (± 15.9)

LDL 130.4 (± 35.4)

Diabetes, N (%)

None 3,101 (72.2%)

Impaired fasting glucose 592 (13.8%)

Known or new 598 (13.9%)

Smoking, N (%)

Never 1,971 (45.9%)

Former 1,841 (42.9%)

Current 481 (11.2%)

Alcohol use, N (%)

Never 1,961 (45.7%)

Occasional 1,729 (40.3%)

Frequent 591 (13.8%)

FVIII:C (IQR), %b 116 (95–141)

CRP (IQR), mg/L 2.4 (1.2–4.2)

Fibrinogen (IQR), mg/dL 311 (270.0–361)

Max Common CIMT (IQR), mm 0.96 (0.86–1.08)

Max Internal CIMT (IQR), mm 1.33 (0.90–1.90)

3MSE score (IQR)c 94 (89–97)

DSST score (IQR)d 42 (35–51)

Abbreviations: GED = General Educational Development (high school equivalency diploma); BMI = body mass

index; HDL = high-density lipoprotein; LDL = low-density lipoprotein; FVIII:C = coagulation factor VIII activity;

CRP = C-reactive protein; CIMT = carotid intima-media thickness; 3MSE = Modified Mini-Mental State

examination; DSST = Digit Symbol Substitution Test; IQR = interquartile range.
a Owing to missing data, percentages may not total 100. All variables have <2% missing values except 3MSE (6.8%),

and DSST (7.9%).
b percentage of normal pooled plasma
c out of 100 possible points, measured during 1991–92 study year
d out of 90 possible points, measured during 1991–92 study year

https://doi.org/10.1371/journal.pone.0242062.t001
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We additionally investigated the relationship between high FVIII:C and cognitive ability as

measured by two different scores. Although crude analyses showed an association, no mean-

ingful influence of high FVIII:C on 3MSE scores was observed in cross-sectional analyses after

adjusting for potential sources of confounding [27–30]. FVIII:C showed a small association

with DSST scores after full adjustment; on average, low FVIII:C (�p25) levels were associated

with scores 0.85 points higher (95%CI 0.06 to 1.64) and high levels (>p75) were associated

with scores 0.69 points lower (95%CI -1.52 to 0.13) than the reference group (p25-p75). A

dose response was observed across FVIII:C quintile groups and DSST scores in crude models,

though the effect sizes attenuated with adjustment. No meaningful relationship was observed

Table 2. FVIII:C and burden of white matter hyperintensities on initial cranial MRI scan (cross-sectional).

WMG 0–1 (n = 995) WMG 2–3 (n = 1,371) WMG 4–9 (n = 369) OR1b 95% CI OR2c 95% CI OR3d 95% CI

FVIII:Ca groups

� p25 285 337 97 1.06 (0.89–1.26) 1.03 (0.86–1.23) 1.03 (0.85–1.23)

p25-p75 522 690 182 1 ref 1 ref 1 ref

> p75 188 344 90 1.37 (1.11–1.68) 1.22 (1.02–1.46) 1.20 (0.99–1.45)

Continuous

per SD increase of FVIII:Ce 1.15 (1.07–1.24) 1.09 (1.01–1.17) 1.08 (0.99–1.17)

Abbreviations: FVIII:C = coagulation factor VIII activity; WMG = white matter grade; MRI = magnetic resonance imaging; OR = odds ratio; CI = confidence interval;

p25 = 25th-percentile; p75 = 75th-percentile; ref = reference category; SD = standard deviation
a percentage of normal pooled plasma
b unadjusted model
c model adjusted for demographic risk factors (age, gender, ethnicity, education level)
d model additionally adjusted for cardiovascular risk factors (hypertension, smoking status, diabetes, alcohol use, BMI, HDL cholesterol, LDL cholesterol, fibrinogen,

log-transformed C-reactive protein, log-transformed maximum common carotid intima-media thickness, log-transformed maximum internal carotid intima-media

thickness, and occurrence of stroke or TIA prior to initial MRI scan)
e one standard deviation increase in FVIII:C corresponds to 36 units

https://doi.org/10.1371/journal.pone.0242062.t002

Table 3. FVIII:C and white matter hyperintensity grade worsening on MRI scans over 5 years; results from ordinal logistic regression models.

No change (n = 1,098) 1 grade worse (n = 367) 2+ grades worse (n = 62) OR1b 95% CI OR2c 95% CI OR3d 95% CI

FVIII:Ca groups

� p25 318 99 20 1.02 (0.78–

1.33)

1.03 (0.79–

1.35)

1.01 (0.76–

1.33)

p25-p75 552 185 25 1 ref 1 ref 1 ref

> p75 228 83 17 1.16 (0.88–

1.55)

1.15 (0.87–

1.54)

1.18 (0.87–

1.59)

Continuous

per SD increase of FVIII:

Ce
1.05 (0.93–

1.18)

1.04 (0.93–

1.18)

1.07 (0.94–

1.22)

Abbreviations: FVIII:C = coagulation factor VIII activity; WMG = white matter grade; MRI = magnetic resonance imaging; OR = odds ratio; CI = confidence interval;

p25 = 25th-percentile; p75 = 75th-percentile; ref = reference category; SD = standard deviation
a percentage of normal pooled plasma
b model adjusted for time interval (in years) between MRI scans
c model additionally adjusted for demographic risk factors (age, gender, ethnicity, education level)
d model additionally adjusted for cardiovascular risk factors (hypertension, smoking status, diabetes, alcohol use, BMI, HDL cholesterol, LDL cholesterol, fibrinogen,

log-transformed C-reactive protein, log-transformed maximum common carotid intima-media thickness, log-transformed maximum internal carotid intima-media

thickness, and occurrence of stroke or TIA during follow-up period before second MRI scan
e one standard deviation increase in FVIII:C corresponds to 36.3 units

https://doi.org/10.1371/journal.pone.0242062.t003
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between high FVIII:C at baseline and cognitive worsening over time as measured by the 3MSE

or DSST after full confounding adjustment.

Although the relationship between WMH and cognitive outcomes is well described in the

literature [2–6], few studies have investigated the potential relationship between FVIII:C levels

and WMH. An earlier CHS paper with exploratory aims included FVIII:C as one of 70 poten-

tial predictors for WMH worsening [22]. However, these exploratory analyses were distinct

from the goals and corresponding approaches in our paper, as we aimed to obtain a confound-

ing-adjusted estimates of the specific effect of FVIII:C on WMG as well as FVIII:C on cognitive

Table 4. FVIII:C and cognitive test scores: Cross-sectional results using linear regression.

3MSE scores (100 points maximum), study year 1991–92 (n = 4,005)

β1
b 95% CI β2

c 95% CI β3
d 95% CI

FVIII:Ca percentile groups

� p25 0.61 (0.22 to 1.00) 0.33 (-0.03 to 0.69) 0.33 (-0.04 to 0.71)

p25-p75 0 ref 0 ref 0 ref

> p75 -0.55 (-0.95 to -0.15) -0.16 (-0.53 to 0.21) -0.06 (-0.45 to 0.32)

Continuous

per SD increase of FVIII:Ce -0.40 (-0.56 to -0.23) -0.16 (-0.31 to -0.01) -0.14 (-0.30 to 0.03)

FVIII:C quintile groups

Q1 (low) 0.22 (-0.24 to 0.68) 0.22 (-0.24 to 0.68) 0.22 (-0.25 to 0.69)

Q2 -0.24 (-0.70 to 0.22) -0.24 (-0.70 to 0.22) -0.25 (-0.72 to 0.22)

Q3 0 ref 0 ref 0 ref

Q4 -0.39 (-0.86 to 0.07) -0.39 (-0.86 to 0.07) -0.34 (-0.82 to 0.13)

Q5 (high) -0.28 (-0.75 to 0.19) -0.28 (-0.75 to 0.19) -0.18 (-0.67 to 0.31)

DSST scores (90 points maximum), study year 1991–92 (n = 3,954)

β1 95% CI β2 95% CI β3 95% CI

FVIII:C percentile groups

� p25 1.58 (0.71 to 2.44) 0.90 (0.13 to 1.68) 0.85 (0.06 to 1.64)

p25-p75 0 ref 0 ref 0 ref

> p75 -2.05 (-2.94 to -1.16) -1.01 (-1.81 to -0.22) -0.69 (-1.52 to 0.13)

Continuous

per SD increase of FVIII:Ce -1.16 (-1.53 to -0.80) -0.54 (-0.87 to -0.21) -0.37 (-0.72 to -0.02)

FVIII:C quintile groups

Q1 (low) 1.37 (0.26 to 2.48) 0.66 (-0.33 to 1.65) 0.53 (-0.48 to 1.53)

Q2 0.86 (-0.26 to 1.97) 0.57 (-0.43 to 1.56) 0.47 (-0.54 to 1.47)

Q3 0 ref 0 ref 0 ref

Q4 -0.86 (-1.99 to 0.27) -0.21 (-1.21 to 0.80) -0.12 (-1.14 to 0.89)

Q5 (high) -1.84 (-2.98 to -0.70) -0.80 (-1.81 to 0.22) -0.42 (-1.46 to 0.63)

Abbreviations: FVIII:C = coagulation factor VIII activity; 3MSE = Modified mini-mental state examination; DSST = Digit Symbol Substitution Test; CI = confidence

interval; p25 = 25th-percentile; p75 = 75th-percentile; ref = reference category; SD = standard deviation.

β coefficients were calculated using linear regression in three models.
a percentage of normal pooled plasma
b unadjusted model
c model adjusted for demographic risk factors (age, gender, ethnicity, education level)
d model additionally adjusted for cardiovascular risk factors (hypertension, smoking status, diabetes, alcohol use, BMI, HDL cholesterol, LDL cholesterol, fibrinogen,

log-transformed C-reactive protein, log-transformed maximum common carotid intima-media thickness, and log-transformed maximum internal carotid intima-media

thickness).
e one standard deviation increase in FVIII:C corresponds to 36.3 units

https://doi.org/10.1371/journal.pone.0242062.t004
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function. In the present study, potential sources of confounding were selected a priori, and the

methodology was not dependent on the combined explained variance of a regression model.

Although not in line with our original hypotheses, these results do align with some findings

from previous publications. For example, results from the ARIC study indicated that FVIII

might have another role in brain morphology that is not specifically related to white matter

lesion development; for instance, multiple midlife systemic inflammatory markers (including

FVIII) were associated with brain volume late in life [31]. Another recent publication from the

same cohort examined the relationship between an “inflammation composite score” that

included factor VIII in middle-aged individuals and 20-year cognitive decline [32]. The

authors found that each SD increase in the score was associated with additional decline, and

that the highest scores were associated with steeper declines over the 20-year period [32].

Taken together, it is feasible that FVIII exerts an effect over a longer period than we captured

in our study on cognitive function and by other pathways than via WMH development.

Results from the REGARDS study showed an association between high FVIII levels and

cognitive impairment in crude analyses, which were attenuated after multivariable adjustment,

similar to our findings [33,34]. These findings may indicate that high FVIII is a marker of one

or more underlying processes that play a causal role in cognitive impairment with increasing

Table 5. FVIII:C and cognitive test scores: Longitudinal results using linear mixed-effects regression.

3MSE scores (100 points maximum)

β1
b 95% CI β2

c 95% CI β3
d 95% CI

FVIII:Ca percentile groups

� p25 0.29 (-0.25 to 0.83) -0.27 (-0.76 to 0.21) -0.40 (-0.89 to 0.09)

p25-p75 0 ref 0 ref 0 ref

> p75 -1.09 (-1.64 to -0.54) -0.34 (-0.83 to 0.15) -0.07 (-0.58 to 0.44)

Model variance e 46.7 (44.4 to 49.1) 35.7 (33.9 to 37.6) 34.9 (33.1 to 36.8)
Continuous

per SD increase of FVIII:Cf -0.51 (-0.73 to -0.28) -0.02 (-0.22 to 0.19) 0.15 (-0.06 to 0.37)

DSST scores (90 points maximum)

β1 95% CI β2 95% CI β3 95% CI

FVIII:C percentile groups

� p25 1.33 (0.49 to 2.17) 0.50 (-0.21 to 1.21) 0.40 (-0.32 to 1.13)

p25-p75 0 ref 0 ref 0 ref

> p75 -1.87 (-2.73 to -1.01) -0.69 (-1.42 to 0.04) -0.22 (-0.97 to 0.53)

Model variance 119.5 (114.1 to 125.1) 83.4 (79.5 to 87.4) 80.3 (76.5 to 84.3)
Continuous

per SD increase of FVIII:C -1.11 (-1.46 to -0.76) -0.37 (-0.67 to -0.06) -0.11 (-0.43 to 0.22)

Abbreviations: FVIII:C = coagulation factor VIII activity; 3MSE = Modified mini-mental state examination; DSST = Digit Symbol Substitution Test; CI = confidence

interval; p25 = 25th-percentile; p75 = 75th-percentile; ref = reference category; SD = standard deviation.

β coefficients were calculated using linear mixed-effects regression with random intercepts in three models.
a percentage of normal pooled plasma
b unadjusted model
c model adjusted for demographic risk factors (age, gender, ethnicity, education level)
d model additionally adjusted for cardiovascular risk factors (hypertension, smoking status, diabetes, alcohol use, BMI, HDL cholesterol, LDL cholesterol, fibrinogen,

log-transformed C-reactive protein, log-transformed maximum common carotid intima-media thickness, log-transformed maximum internal carotid intima-media

thickness, and the occurrence of stroke or TIA during follow-up).
e variance between individuals for each model for the primary exposure categorization (percentile groups)
f one standard deviation increase in FVIII:C corresponds to 36.3 units

https://doi.org/10.1371/journal.pone.0242062.t005
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age, but is perhaps itself not a cause. Although our study did not investigate dementia diagno-

sis as an outcome, an earlier prospective study of middle-aged men found an association

between factor VIII levels and other coagulation markers on vascular dementia after 17 years

of follow-up (HR, 1.79; 95% CI, 1.09–3.00) [11]. More recently, a systematic review and meta-

analysis synthesized findings from 32 identified studies on the role of the hemostatic system

(including some coagulation factors) in cognitive decline in older persons. Among individuals

with vascular dementia, higher levels of FVIII were observed together with other coagulation

factors [35].

Study strengths and limitations

Strengths of this study include its population-based, prospective design, large number of older

participants, and multiple outcomes and time points of their assessment. Information about

many potential sources of confounding was collected and very few values were missing at base-

line (<2% of all potential confounding variables). Furthermore, starting with the sixth follow-

up, telephone-based estimates could be used to estimate missing 3MSE scores when in-person

visits were not possible.

While we were able to control for confounding by including a larger number of sociodemo-

graphic and cardiovascular risk factors, we acknowledge that some residual confounding may

still be present. However, adjusting for well-known, potentially strong sources of confounding,

such as age, did not change our results materially, suggesting that confounding due to weaker

unmeasured sources would not have substantially altered our results. It is also possible that

Model 3 resulted in some overadjustment, as the occurrence of a stroke or TIA during follow-

up could be both a source of time-dependent confounding and an intermediate on the causal

path.

Our sensitivity analysis revealed only small differences in the point estimates when this var-

iable was removed from the model, which would not change our interpretation of the results.

Readers should also consider some limitations with respect to the FVIII:C measurements

when interpreting our findings. In addition to its implication in thrombosis, FVIII is also a

known marker of relevant biological mechanisms such as inflammation and is an acute phase

reactant. Though the measurements in the CHS were taken when participants were healthy at

baseline, subclinical disease cannot be ruled out. The laboratory measurements of FVIII:C

were somewhat variable in the CHS study (coefficients of variation 9% and 10%), however, we

do not anticipate this variability in the laboratory measurements had any meaningful impact

on our results with such a large sample size. Furthermore, in this secondary data analysis, only

one FVIII:C measurement (taken at baseline) was available. When possible, future studies on

this topic should consider repeating these measurements to better understand how changes in

FVIII:C over time may impact WML and cognitive test performance in the healthy general

population.

With respect to our outcome assessments, given the non-linear nature of the WML grading

scale, we chose a priori to perform ordinal analyses to use all ordered information captured by

WMG. However, due to small group size in some WMG categories, which was anticipated

among the older general population, we collapsed the higher categories, thereby reducing the

resolution of the data. Furthermore, for the longitudinal analyses of worsening WMG, only

survivors remaining in the study through the eighth follow-up could be included due to the

need for the follow-up MRI, a selection that inherently leads to selection bias. As shown previ-

ously, participants who underwent at least one MRI scan were healthier than those who were

never scanned, and those with both the initial and follow-up scans were healthier than those

who only had the initial MRI scan [17], however, this is a limitation common to all studies
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involving MRI, and part of our motivation to also look at cognitive function measures. Future

studies with more frequent scans over a longer time period may provide valuable insights,

however, feasibility of such studies is remains a large obstacle.

We emphasize that these findings from an older, general population cohort should not be

extrapolated to younger individuals or specific chronically ill populations. We also cannot rule

out that the weak cross-sectional associations observed between FVIII:C and WMG may be

explained by reverse causation. WML, as an inflammatory stimulus, could also be a contribut-

ing cause of higher FVIII:C levels.

With regard to the cognition outcomes, we acknowledge that the true relationship between

high FVIII:C and 3MSE scores in both cross-sectional and longitudinal analyses may be stron-

ger than what we observed due to the ceiling effect of the 3MSE and the high number of partic-

ipants with high scores. However, upon comparing these results with a second measurement

of cognitive function, the DSST (without a ceiling effect), we observed no material differences.

We did not adjust any of our longitudinal models for baseline cognitive test scores, as this pro-

cedure introduces bias under some circumstances [26]. It is well known that individuals with

lower cognitive function are less likely to remain in studies, therefore, attrition was likely dif-

ferential with regard to the outcomes in the analyses using cognitive test scores. Therefore, the

cognitive decline of study participants is likely greater than what we observed in the partici-

pants who remained in the study. Although we had two measures of cognitive function, we

further acknowledge that neither assesses any one cognitive domain in depth, and readers

should interpret our results with this limitation in mind.

Conclusions

Our findings from this large, population-based study indicate no strong relationship between

FVIII:C and WMH burden or WMH worsening over time in the older general population fol-

lowing adjustment for demographic and cardiovascular factors. Furthermore, FVIII:C levels

do not appear to be associated with cognitive worsening, as measured using serial 3MSE and

DSST assessments. Though an important player in hemostatic balance and implicated in overt

vascular disease, this study suggests that FVIII:C is not strongly related to covert, subclinical

brain lesion development, and subsequent cognitive decline in older adults.
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