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Abstract
The connections between renormalization in statistical mechanics and infor-
mation theory are intuitively evident, but a satisfactory theoretical treatment
remains elusive. We show that the real space renormalization map that min-
imizes long range couplings in the renormalized Hamiltonian is, somewhat
counterintuitively, the one that minimizes the loss of short-range mutual infor-
mation between a block and its boundary. Moreover, we show that a previously
proposed minimization focusing on preserving long-range mutual information
is a relaxation of this approach, which indicates that the aims of preserv-
ing long-range physics and eliminating short-range couplings are related in a
nontrivial way.
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(Some figures may appear in colour only in the online journal)

1. Introduction

A renormalization process progressively removes degrees of freedom from a physical system,
mapping it to an effective system having the same physics at large scales [1, 2]. One may regard
the renormalization map as removing unimportant short-range information while leaving long-
range information intact, and therefore possible connections to information theory have been
explored in several different approaches [3–9]. One difficulty in the renormalization procedure
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Figure 1. Illustration of a block-spin renormalization procedure on a 1D lattice: the map
R is applied to each block to get a renormalized system at larger scale.

is finding an appropriate renormalization map. In real space renormalization [10], for example,
there is no unique way to remove degrees of freedom, and several maps can plausibly be used.
In particular in the context of block-spin renormalization, one divides the system into blocks
and tries to map all the degrees of freedom inside the block to a single degree of freedom that
nevertheless captures the overall behavior of the block. A common choice of map in spin sys-
tems is the so called ‘majority vote’ map, a new spin is produced from each block by choosing
the value of the majority of the spins in the block, but an apparently equally sensible choice
is to produce a new spin by choosing the value of any of the spins in the block. Both of these
choices, as well as others, look sensible in the sense that they aim to capture in a single spin
the overall behavior of a larger block, nevertheless, work noticeably better than others [11],
and there is no clear criterion for choosing the best map. Intuitively, the best map should be the
one that best preserves the long range effective physics of the system. Recently, Koch-Janusz
and Ringel [12] proposed choosing real-space renormalization maps based on an information-
theoretic criterion, as follows. Consider a spin model on a latticeΛ, at every vertex of the lattice
i there is a random variable Si, and the physical state of the system is described by the over-
all probability distribution P. In particular the system is described by some nearest neighbor
Hamiltonian H, and we take P to be the Gibbs thermal state of H at inverse temperature β

P(s1, . . . , s|Λ|) =
1
Z

e−βH(s1,...,s|Λ|), Z =
∑

s1,...s|Λ|

e−βH(s1,...,s|Λ|). (1)

Divide the lattice into non overlapping blocks A j. LetR be a renormalization map on a single
block specifically a stochastic transformation on the random variables describing the spins in
the block, and call its output on the jth block A′

j. This procedure is illustrated in figure 1. In
the renormalization procedureR is applied to each A j, but here we need only focus on a single
block A with output A′ = R(A). In particular, dividing the lattice into the block in question, A,
its neighboring spins B within some distance, and the remainder of the spins C, as illustrated
in figure 2(a), Koch-Janusz and Ringel propose choosing

RKJR = argmaxR I(A′ : C)R(P), (2)

where I(A : C)P is the mutual information of random variables A and C under the distribution
P, defined as

I(A : C)P =
∑
a,c

PAC(a, c)log

(
PAC(a, c)

PA(a)PC(c)

)
, (3)
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Figure 2. (a) Division of a 2D lattice system into the block to be renormalized A, its
boundary B, and the rest of the lattice C. (b) The random variables in the black region
are conditionally independent of the those in the white region given the gray region, as
the gray region shields the former from the latter in the Markov network. The regions
need not be connected.

where a and c label the possible values of the random variables A and C, here the combined con-
figurations of the spins inside the respective sections of the lattice. In loose terms, this quantity
measures the amount of information shared between the two random variables. Two indepen-
dent variables have vanishing mutual information, while correlated value have higher mutual
information. It also satisfies the data processing inequality, that is, it must decrease under the
application of a stochastic map to either of the entries. It follows that I(A : C)P � I(A′ : C)R(P),
and henceRKJR retains the most mutual information between the block and the long range parts
of the lattice (here and in what follows, we use the name of a region of the lattice as shorthand
for the random variable corresponding to the set of spins in said region). Koch-Janusz and
Ringel argue that it therefore extracts the relevant degrees of freedom and that it results in a
renormalized Hamiltonian with short-range couplings, that is, this method prevents the appear-
ance of out of control long-range interactions, i.e. interactions between far away parts of B and
C, or interactions between the renormalized block A′ and C not mediated by the boundary. They
also propose a machine-learning algorithm to determine RKJR on a parametrized subset of all
possible maps. The resulting real space mutual information (RSMI) algorithm produces good
results when benchmarked on various physical models. Lenggenhageret al [13] further showed
that RKJR does not create any long-range couplings within C when I(A : C)P = I(A′ : C)R(P).
Their theoretical work was expanded to field theory [14] and their algorithm improved by using
deep learning techniques [15].

Here we argue that, contrary to the above intuition, to minimize long-range couplings one
should instead choose the renormalization map to retain short-range mutual information:

R� = argmaxR I(A′ : B)R(P). (4)

As we show in detail below, in fact no map R can result in long-range couplings within C or
from A to C, andR� additionally minimizes coupling within the boundary B. This approach has
several other advantages. For one, the optimization is considerably simpler, as it only involves
the block in question and its boundary. Moreover, it is the case that I(A′ : B)R(P) � I(A′ : C)R(P)

for every map R, and hence the optimization in (2) is a relaxation of the optimization in (4),
in the sense that optimizing (2) yields a lower bound for (4). It should be noted that while
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we present the main results in the context of nearest neighbor interaction Hamiltonians for
simplicity, in the presence of longer range interactions it suffices to define effective degrees
of freedom in the interaction lattice by grouping together spins such that the interaction is
nearest neighbor for these effective spins. For instance, in a 1D next to nearest neighbor mod-
els, one can group together pairs of spins that interact with their neighboring pairs. In this
case one can form the renormalization blocks by grouping together said effective degrees of
freedom.

We emphasize here that these two optimizations are born out of two different motivations:
(2) identifies the degrees of freedom that are most relevant to the long range physics, while (4)
aims to control the proliferation of couplings. It is not expected that these two motivations yield
the same optimization problem, and the relaxation described above relates the two. Finally, the
optimizer of (4) (as well as of (2)) is a deterministic map, which makes brute-force optimiza-
tion feasible for small blocks by searching the entire map space directly on the probability
distribution, rather than by using sampling techniques. We illustrate how the optimization can
be performed for 2 × 2 maps using tensor network representations for the 2D Ising model. The
rest of this article is structured as follows: in section 2, we introduce the main tools we use for
our proof, in section 3 we prove our main result, in section 4 we show that the optimization
must be a deterministic map, in section 5 we illustrate our results on the 2D Ising model, and
finally we draw conclusions in section 6.

2. Gibbs states as Markov networks

To prove our claims we make use of the Hammersley–Clifford theorem of probability theory,
which states that every Gibbs state of a local Hamiltonian is a Markov network. A Markov
network is a (probability distribution on a) collection of random variables with conditional
independence relations that are captured by an undirected graph. Consider a collection of
random variables V = (V1, . . . , Vn) associated to vertices of a graphG and having a joint proba-
bility distribution P(V ). Vertices V j and Vk connected by an edge in G correspond to dependent
random variables, for which I(V j : Vk) �= 0. Given three regions of the graph A, B, and C, cor-
responding to disjoint collections of the random variables, B is said to shield A from C if all
paths connecting A to C pass through B. An example is depicted in figure 2(b), where the grey
regions shield the black regions from the white regions. The region themselves need not be
connected, in figure 2(b) we may treat the black spins as a single region A, the grey spins as a
single region B, and the white spins as a single region C.

Then (G, P) is a Markov network if every two regions shielded by a third are conditionally
independent, i.e. A and C are independent given the value of B. Put yet differently, the correla-
tions between A and C are mediated entirely by B. Conditional independence can be succinctly
expressed using the conditional mutual information (CMI) as I(A : C|B)P = 0, where

I(A : C|B)P := I(A : BC)P − I(A : B)P. (5)

The Hammersley–Clifford theorem [16, 17] then states that (G, P) is a Markov network if and
only if P(V ) = eh(V ) for some local function h, meaning h =

∑
c∈Chc − log Z, where C is the

set of cliques of the graph (the fully-connected subgraphs) and each hc is a function only of
the variables involved in the clique c. Here log Z is simply a normalization constant to ensure
that

∑
V P(V) = 1.

The renormalization procedure begins with the Gibbs state of a local Hamiltonian P ∝ eH.
Renormalizing a block A with map R results in a new probability P′ = R(P) = eh′ , where
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we define h′ = log P′. Renormalizing all blocks results in some distribution P′′, and the cor-
responding h′′ is just the renormalized Hamiltonian, up to the inverse temperature β and
normalization constant factors. By the Hammersley–Clifford theorem, h′′ will not contain any
couplings between random variables which are conditionally independent, and this property
can be established by showing that the CMI vanishes. And by data processing, it is sufficient
to consider just h′ to determine where new couplings may arise.

3. Ruling out couplings

Let us summarize our claims: the only couplings that can be created by a single block renor-
malization are within the boundary of the block, B. In one dimension, these couplings are
minimized by picking a map that minimizes the loss of short ranged mutual information
I(A : B) − I(A′ : B). The division of the lattice into blocks in one dimension is illustrated in
figure 3, where we additionally divided the boundary and environment into left and right parts,
so that B = BRBL, C = CRCL.

We first observe that due to the boundary B around the block A no renormalization map
R can create couplings within the environment C or between the new block A′ and the envi-
ronment C. Consider two parts C1 and C2 of C which are not already coupled, thus they are
conditionally independent given the remainder R of the random variables comprising the sys-
tem. Region A is a part of R, and the rest we can call D so that R = AD. This is illustrated
in figure 4. Since B bounds A, it must be the case that D shields C1 from C2 and therefore
I(C1 : C2|D)P = 0. This does not change under application of any mapR, I(C1 : C2|D)R(P) = 0,
and therefore C1 and C2 are not coupled in h′. To show the same thing, the authors of [13] prove
instead that I(C1 : C2|A′) = 0 by assuming that long range mutual information is preserved, i.e.
I(A : C)P = I(A′ : C)R(P). That A′ will not become coupled to anything in C follows because all
the correlations are mediated by B. Using the positivity of CMI and data processing, we have
0 � I(A′ : C|B)R(P) � I(A : C|B)P = 0.

Hence, the main concern is couplings between parts of B which may be induced by R. In
one-dimensional systems, as depicted in figure 3, it turns out that coupling between BL and BR

is related to the change in mutual information between the block A and the boundary B = BLBR.
If the mutual information is unchanged after R, then BL and BR are uncoupled in h′. This is a
consequence of the following more general statement.

Theorem 1. Consider a one-dimensional lattice model with nearest-neighbor Hamilto-
nian H in a Gibbs state, divided into subregions as in figure 3. For any renormalization map
R : A → A′, I(BL : BR|A′)R(P) � I(A : B)P − I(A′ : B)R(P).

Proof. Start from I(BL : BR|A′) = I(BL : BRA′) − I(BL : A′) and apply data processing to the
first term to obtain I(BL : BR|A′) � I(BL : BRA) − I(BL : A′). We omitted the probability distri-
bution in the subscript of the CMI, the renormalized distribution is signalled by the presence
of a prime in the variables’ names. Now note that A and C can be swapped in (5), i.e. I(A :
C|B) = I(C : AB) − I(C : B), and therefore I(AB : C) − I(A : BC) = I(B : C) − I(A : B). Using
this property for each term in the expression above gives I(BL : BR|A′) � I(A : B) − I(A′ : B) +
I(BR : BLA′) − I(BR : A). Another application of data processing to the third term and the CMI
definition gives I(BL : BR|A′) � I(A : B) − I(A′ : B) + I(BR : BL|A). The final term is zero by
assumption. �

Typically, no nontrivial map R will precisely preserve the mutual information for reasons
we shall explain in a moment. Nevertheless, minimizing the change in mutual information, by
maximizing I(A′ : B)R(P) as in (4), minimizes the coupling between BL and BR. This is because
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Figure 3. Division of a 1D lattice into block and boundary.

Figure 4. Division of a 1D lattice into far away regions C1, C2, the block A, and the
remainder D. The vertical lines represent the earlier division into blocks ABC.

the smaller the CMI, the closer the distribution R(P) is to some P′ in which BL and BR are
conditionally independent, as measured by the total variational distance between distributions
(see [18, lemma 1]). That is, if we have I(BL : BR|A)R(P) = ε, there exists a distribution P′

where BL and BR are decoupled such that ‖R(P) − P′‖1 ∼ ε. Hence smaller CMI leads to an
associated h′ with weaker couplings. Somewhat counterintuitively, then, to minimize couplings
it is more important to preserve mutual information between a block and its boundary rather
than between a block and distant spins.

For isotropic systems, we can translate the 1D argument to multiple dimensions by treating
a D dimensional isotropic lattice as a 1D system in every direction, as proposed by Leggen-
hager et al [13]. The lattice can be separated into disconnected regions by hyperplanes creating
effectively a 1D system (figure 5) and the argument of theorem 1 carries over, so that no cou-
plings will appear between the spins in the boundary strips BL and BR. Couplings might still
appear inside the central strip, but if the system is isotropic we can repeat the same argument
with hyperplanes separating the renormalized block from the rest in a different dimension and
expect that if a map maximized I(A′ : B) in one dimension, it will do so also in the other dimen-
sion. This argument breaks down for non isotropic systems as the different directions may have
different optimal maps. For disordered systems in which the disorder is isotropic, the optimal
map is different in different directions for individual disorder realizations, but it is easy to see
that the map which maximizes the average drop of mutual information is the same for both
directions, as the maximization will only depend on the distribution of the couplings, which is
the same in both cases.

Before proceeding to examine the two optimizations in more detail, let us remark that a
renormalization map which precisely preserves the mutual information can actually be undone
by a suitable stochastic map. This accords with the idea that no information is lost along the
renormalization flow in this case by assumption, but one does not typically expect renor-
malization to be reversible. Starting from I(A′ : B)R(P) = I(A : B)P and using the fact that
I(A : C|B)P = I(A′ : C|B)R(P) = 0, it follows that the total mutual information is preserved,
I(A : BC)P = I(A′ : BC)R(P). Then we can appeal to lemma’ 1 of [18], which ensures that the
so-called ‘transpose’ map or Petz recovery map R̂ is such that R̂ ◦ R(P) = P [19]. The trans-
pose map depends on R and the marginal distribution of A under P, but we shall not go into
further details here.
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Figure 5. The dark and light gray strips indicate the blocks that are used when treating
the system as one dimensional in each direction, while the square indicates a block to be
renormalized. If the renormalization map is optimal, the light gray strips are uncoupled.
If the system is isotropic, the optimal maps for the two directions are the same.

4. The optimal map must be deterministic

Computing I(A : B) does not require handling the whole probability distribution, but only the
marginal distribution on the AB subsystem. This simplifies the optimization relative to Koch-
Janusz and Ringel’s proposal, where the distribution on the entire spin system must be treated
somehow. As mentioned above, (2) is a relaxation of (4) in that I(A′ : C)R(P) � I(A′ : B)R(P).
This follows directly from the definition of the CMI and the Markov condition: I(A′ : BC) =
I(A′ : B) since I(A′ : C|B) = 0, but then I(A′ : C) � I(A′ : B) by data processing. The equality
I(A′ : C|B) = 0 reflects the fact that all correlations between A′ and C are mediated through
B. Therefore, maximizing the mutual information of the former sets a lower bound on the
mutual information of the latter. We expect the gap I(A′ : B) − I(A′ : C) to become small as
the system flows towards an infinite temperature fixed point. In particular by the chain rule
we have I(A′ : B|C) = I(A′ : C|B) + I(A′ : B) − I(A′ : C). That is, I(A′ : B) = I(A′ : C) implies
I(A′ : B|C) = I(A′ : C|B) = 0, then by the Hammersley–Clifford theorem there are no cou-
plings between A and B, and thus the system is at infinite temperature and uncorrelated i.e.
I(A′ : B) = I(A′ : C) = 0. It might also be that the probability distribution is not strictly positive
and the Hammersley–Clifford theorem does not apply, but in a Hamiltonian system this implies
that the system is at zero temperature, where the probability distribution is uniform on the
ground states and vanishes everywhere else. If the configuration of A′ and B in a given ground
state is entirely determined by the configuration of C, then A′ and B are independent given C
(as they are deterministic), hence at least in some systems this gap might close approaching a
zero temperature fixed point.

In both (2) and (4) the optimal map R� is necessarily deterministic, i.e. all its transition
probabilities are either zero or one. This follows because the objective function, the mutual
information, is a convex function of the optimization variable, the map R, and the extreme
points of stochastic maps are deterministic maps.

Theorem 2. Let C be the space of stochastic maps from A to A′. For a fixed probability
distribution PAB the function C → R+, W �→ I(A′ : B)W(P) is convex.

Proof. Consider a collection of stochastic maps {Wz}z∈Z indexed by the values of a finite
random variable Z with distribution Q. In the following the alphabet of a random variable
is denoted by the corresponding curly letter. The average map WZ is given by WZ(PAB) =∑

z∈Z Q(z)Wz(PAB) for any PAB. For simplicity, denote WZ(P) just by P′. The probability distri-
bution of A′ and B is then obtained by averaging over the corresponding distribution, knowing
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that we applied a given map,

P′
A′B(a, b) =

∑
z

Q(z)P′
A′B|Z=z(a, b) =

∑
z∈Z

Q(z)Wz(PAB)(a, b). (6)

Meanwhile, the average mutual information is given by the CMI I(A′ : B|Z)P′ ,∑
z∈Z

Q(z)I(A′ : B)Wz(P) =
∑
z∈Z

Q(z)I(A′ : B|Z = z)WZ (P) = I(A′ : B|Z)P′ ,

where

I(A′ : B|Z = z)WZ (P) =
∑

a∈A′,b∈B
P′

A′B|Z=z(a, b) log

(
P′

A′B|Z=z(a, b)

P′
A′|Z=z(a)P′

B|Z=z(b)

)
. (7)

But then, since B and Z are uncorrelated, we obtain

I(A′ : B|Z)P′ = I(A′Z : B)P′ − I(Z : B)P′ = I(A′Z : B)P′ � I(A′ : B)P′ , (8)

and therefore the mapping is convex. �
When maximizing a convex function over a convex set, the optimum will occur at one

of the extreme points [20, theorem 32.2], which in this case are the deterministic maps [21,
theorem 1]. This simplifies the optimization by making the search space finite. While a brute
force search might still be out of reach for interesting systems, more sophisticated methods
such as machine learning techniques can be informed by this fact.

5. The Ising model

Consider renormalization maps on 2 × 2 blocks in the 2D square-lattice ferromagnetic Ising
model, with Hamiltonian −

∑
〈i, j〉 σiσ j, σi ∈ {−1, 1}. To investigate which maps are optimal

according to (4), we use the corner transfer matrix algorithm [22] with open boundary con-
dition to extract the marginal distribution of a 4 × 4 block, and we measure the change in
mutual information between the central 2 × 2 block and its boundary after each of the possi-
ble 216 deterministic maps mapping this block to a single spin. We iterated the algorithm until∑

k|σ(Ci)k − σ(Ci−1)k| � 10−11, where σ(Ci)k are the singular values of the corner tensor at
the ith iteration. The results in this section are obtained using a maximum bond dimension
χ = 35. A higher bond dimension did not affect the results on a coarser temperature range.
We then compute the change in mutual information for each map over the range of tempera-
tures β ∈ [0.1βc, 1.9βc] where βc = log(1 +

√
2)/2 is the critical inverse temperature and find

the optimal map at each temperature. In figure 6 we show the change in mutual information
compared with the minimum value for some common maps:

(a) Decimation: the value of the renormalized spin is simply the value of one of the 4 spins
in the block.

(b) Majority vote: the renormalized spin is assigned a value +1 if the majority of the spins in
the block are +1, and vice versa. Ties must be broken with a 2 × 2 block, we do this in
4 possible ways: using a predetermined fixed value (i.e. the ties are always resolved with
+1 or −1), using one of the spins in the block (hence the map becomes decimation in case
of ties), or choosing a value at random.

(c) Biased: the all configurations are mapped to+1 except for (−1,−1,−1,−1)or, vice versa,
to −1 except for (+1,+1,+1,+1).

8
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Figure 6. Difference of the mutual information change for each map above the opti-
mal change, as a function of inverse temperature. MV stands for majority vote and Dec
for decimation. � and ↑↓ stand for the aligned or unaligned tie breaks. Each shaded
region indicates which map is optimal in the corresponding interval. Note that while both
majority vote maps which break ties aligned (MV-�) and antialigned (MV-↑↓) with the
overall magnetization are optimal in the interval (0.6109, 1), the random tiebreaker map
(MV-rnd) is far from optimal.

Some of these maps are not symmetric under spin flips, namely the majority vote with fixed
value tie breaker and the biased maps. At low temperature, the spin flip symmetry is broken
in the CTM algorithm and one of two symmetry breaking sectors is selected, which version
is optimal depends on this selected sector. We call the tie breaker or the biased map ‘aligned’
(denoted� in the figure) if the relevant fixed value for the renormalized spin is aligned with the
magnetization in the symmetry-breaking state, and ‘antialigned’ (↑↓) otherwise. It was shown
that for the 2D Ising model the best performing map majority vote [11], and it is known that
the decimation map leads to uncontrolled long range couplings. At high temperature (β/βc �
0.3554), the optimal map is decimation. This is a symptom of the fact that in this regime, the
probability distribution over the spins is close to uniform, i.e. the infinite temperature trivial
fixed point, where there is no short or long ranged information to preserve. The distribution on a
subset of the spin is still the uniform distribution, hence the infinite temperature state is trivially
a fixed point of this map. At lower temperatures, for 0.3554 � β/βc � 0.6109, majority vote
with tie breaks decided by decimation is optimal. From that point up to the critical temperature,
both version of fixed tie breaker majority vote are optimal, the aligned version remains so up to
β/βc ≈ 1.0509, after which the probability distribution is close to a deterministic distribution
peaked at one of the ground states, the low temperature symmetry breaking prevails and the best
map is the aligned biased map. We can also see that decimation starts performing better again in
this regime, as the zero temperature distribution is also a fixed point for this map. Interestingly,
majority vote with random tie breaker is rather far from optimal (it cannot be optimal as it is
not deterministic) and fares worse of all other tie breakers except the antialigned one at low
temperature. It can also be seen that decimation performs poorly, especially around the critical
point. This is consistent with the observations of [11].
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6. Conclusions

We argued that maximizing the short-range mutual information between a block and its
boundary yields a renormalized system with reduced long-range couplings. In particular, cou-
plings are never introduced beyond the boundary region of the renormalization map, and
are suppressed when more of the short-range mutual information is preserved. This gives an
information-theoretic account of some aspects of renormalization. The optimization suggested
by this approach leads to a simple brute-force algorithm for finding the optimal renormal-
ization map which requires only the probability distribution of the input region of the map
and its boundary. It is efficient enough for small systems, as demonstrated in the 2D Ising
model. Further work is required to explore the robustness of this result when information is
only approximately preserved, perhaps by using an approximate generalization of the Ham-
mersely–Clifford theorem.

Our approach contrasts with the focus of [12, 13], which maximizes the long-range mutual
information with the dual goals of capturing the relevant degrees of freedom and reducing
long-range couplings. The fact that their long-range mutual information optimization is a relax-
ation of our short-range optimization implies some connection between these goals: If we view
extracting the relevant information as the primary justification for the long-range optimization
(an intuitively very plausible statement), then it will necessarily do this by minimizing long-
range couplings in the renormalized Hamiltonian to some extent. The open question is how
much. It would therefore be interesting to investigate under what conditions or in which models
the optimal renormalization maps of the two approaches actually coincide. To this end it would
also be interesting to modify the RSMI algorithm to focus on short-range mutual information,
as exact optimization is computationally difficult for more complicated models. In either sce-
nario one may also be able to take into account the fact that the optimal renormalization map
is necessarily deterministic.

Finally, it should be noted that the focus on short-range versus long-range information here
is reminiscent of the relation between the tensor renormalization group [23] and the tensor net-
work renormalization (TNR) [24] algorithms. The latter is a refinement of the former in which
the additional steps are meant to remove short-range correlations, improving the algorithm near
the critical point. The key difference between our approach and TNR is that while we consider
purely stochastic maps, the TNR algorithm involves approximating the tensors locally with
different tensors, and optimizing the resulting error. This procedure turns out to be neither pos-
itive nor trace-preserving. The first problem was solved in the TNR+ algorithm [25], where
the flow is constrained to be positive by replacing the singular value decomposition by a more
appropriate decomposition, nevertheless the map is still not trace-preserving. This is explained
by noting that the interactions in the effective Hamiltonian are constrained to be local, while
a stochastic map might increase the range of interactions. It should furthermore be noted that
while locally disentangling the tensor network and minimizing the error does morally achieves
the same goal, there is no general reason for this minimization to be equivalent to minimizing a
quantity as complicated as the mutual information. We might nevertheless speculate that some
of our results survive if we replace the mutual information by a simpler quantity such as another
Rényi divergence, and that this might offer a more direct comparison to the aforementioned
tensor network methods.
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