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Abstract 

 Adverse weather conditions can have different effects on different types of road crashes. We quantify the combined 
effects of traffic volume and meteorological parameters on hourly probabilities of 78 different crash types using 
generalized additive models. Using tensor product bases, we model non-linear relationships and combined effects of 
different meteorological parameters. We evaluate the increase in relative risk of different crash types in case of precipi-
tation, sun glare and high wind speeds. The largest effect of snow is found in case of single-truck crashes, while rain 
has a larger effect on single-car crashes. Sun glare increases the probability of multi-car crashes, in particular at higher 
speed limits and in case of rear-end crashes. High wind speeds increase the probability of single-truck crashes and, for 
all vehicle types, the risk of crashes with objects blown on the road. A comparison of the predictive power of models 
with and without meteorological variables shows an improvement of scores of up to 24%, which makes the models 
suitable for applications in real-time traffic management or impact-based warning systems. These could be used by 
authorities to issue weather-dependent driving restrictions or situation-specific on-board warnings to improve road 
safety.
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1  Introduction
In almost all regions of the world, the road transport sys-
tem is a key infrastructure most people have to use on a 
daily basis, in spite of knowing about the pending danger 
of severe crashes. [1]. In Germany, for example, 300,143 
road crashes with injuries and 3,046 fatalities were 
recorded in 2019 [2]. Various factors can influence the 
probability of road crashes, including technical or envi-
ronmental conditions as well as driver behavior. Under-
standing these influencing factors can help authorities 
to establish precursory measures like permanent speed 
limits or improvements of road design. With respect to 

variable risk factors like adverse weather conditions, 
temporary restrictions or warnings can be imposed. 
To support the identification of measures that help to 
improve road safety, quantitative knowledge of the rela-
tionships between weather and crash probabilities should 
be provided at a sufficiently high spatial and temporal 
resolution.

Of course, weather is not only a direct factor for 
the risk of crashes. It also influences traffic volume, 
which in turn is one of the main factors related to 
road crashes; generally, an increasing traffic volume is 
related to increasing crash rates [3]. Studies addressing 
crashes at the level of individual road segments gen-
erally take traffic volume into account [4]. However, if 
crashes are analyzed in aggregated form at a regional 
scale, traffic volume is less frequently considered. The 
larger the spatial aggregation of crash information, the 
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more difficult it is to relate it to measured traffic data, 
since traffic volume measurements are only available at 
limited number of locations. A common approach to 
bypass this problem is to use variables like the hour of 
the day [5] or the day of the week [6] as a substitute for 
actual traffic measurements. Furthermore, characteris-
tics of the permanent road environment, such as speed 
limit, curvature or slope, are important aspects affect-
ing the risk of road crashes. While the effect of speed 
limits as a measure for risk reduction has often been 
confirmed [7], the effect of other road characteristics 
such as slope and curvature have been analyzed less 
frequently [4].

A large number of studies addresses the effects of dif-
ferent meteorological factors on road safety [3]. A meta 
analysis of 34 studies addressing the effect precipitation 
finds an average increase in crash rates of 71% and 84% 
in case of rain and snowfall, respectively [8]. In terms of 
crash severity, however, there is a significant reduction 
under rainy conditions compared to fine weather [9]. 
The effect of precipitation on crash risk can be different 
for different types of crashes. For example, the relative 
risk for single- and multiple-vehicle crashes on Finnish 
motorways in case of snow is 3.37 and 1.98, respectively, 
compared to the probability within a random sample [10]. 
This effect is partly related to single-vehicle run-off-road 
crashes, which appear to occur more frequently under 
rain, sleet or snow and in curved road sections [11].

The effect of wind on road safety has not been exten-
sively explored in the literature [3]. In general, the num-
ber of road vehicle crashes caused by strong wind is small 
compared to the total number of crashes [9]. However, 
wind gusts are shown to increase run-off-road crashes 
by small but significant amounts of 0.3 to 0.5% [6]. 
Among different vehicle types, high-sided trucks, vans or 
buses are most affected by wind [12]. In general, greater 
recorded wind speeds increase the severity of injuries in 
single-truck crashes [13].

The effect of sun glare on crashes is only addressed 
in a few studies. Crash data from signalized crossroads 
in Tucson, Arizona, show that broad-side and rear-end 
crashes occur more frequently during glare, but no effect 
of sun glare on crash severity is found [14]. Injury crashes 
in Japan indicate that sun glare has an particularly strong 
impact on pedestrian crashes, bicycle crashes and crashes 
at crossroads, while there is no indication that the effect 
of sun glare increases with vehicle speed [15].

Although different studies focus on the effects of spe-
cific meteorological parameters on specific crash types, 
these studies usually differ with respect to region, time 
period, and methodology, which makes it difficult to 
compare the results. For a consistent comparison, 

it would be useful to apply a single methodological 
approach to multiple crash types.

In a previous study, a logistic regression model for 
hourly probabilities of weather-related road crashes was 
developed at the level of administrative districts in Ger-
many, taking into account the combined effect of precipi-
tation and temperature [5]. Using weather forecast data it 
was shown that skillful predictions of crash probabilities 
are possible. However, the model did not explicitly con-
sider traffic volume, but instead assumed a simple diurnal 
cycle. Furthermore, only weather-related crashes were 
considered that were classified by the police as being 
caused by road condition (e.g., slippery road due to water, 
snow or ice).

The aim of the present study is to extend this model by 
including observed hourly traffic volume, as well as the 
effect of precipitation, temperature, sun glare and wind 
gusts. While previous studies have commonly used tra-
ditional weather station data, we derive meteorological 
predictor variables from gridded radar and reanalysis 
products. To allow for more flexible functional relation-
ships and combined effects of multiple variables, the 
classical logistic regression model is replaced by a Gen-
eralized Additive Model (GAM) for dichotomous target 
variables. Models are developed for 78 different crash 
types in a consistent approach, to compare the weather 
effects and predictive power of the models for different 
speeds limits, crash types, road environments and crash 
severities.

2 � Data
2.1 � Crash data
A data set with anonymized information from police 
reports of road crashes in Germany from 2006 to 2017 is 
used (Source: Research Data Centre of the Federal Statis-
tical Office and Statistical Offices of the Länder, Statistik 
der Straßenverkehrsunfälle, 2006-2017, own calculations). 
The data set includes severe road crashes, which refers to 
all crashes with vehicles left unroadworthy, with injuries 
or fatalities. Crashes related to alcohol consumption of 
the driver are not included. In total 4,695,687 complete 
crash reports are available for the period under investiga-
tion. The location of the individual crashes is available at 
the level of administrative districts (Landkreise). Because 
of several territorial reforms during the study period, all 
crashes are assigned to boundaries of the 401 German 
administrative districts as they existed in 2017.

Based on the crash reports, we distinguish between dif-
ferent crash characteristics: the type of vehicles involved, 
the speed limit at the location of the crash, the crash 
type, the characteristics of the road environment, and 
the crash severity (see Table 1 for a detailed description 
of crash characteristics used in this study). It should be 
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noted that the actual driving speed of vehicles may dif-
fer from the speed limit used to categorize the crashes. 
The speed limit should therefore only be interpreted as 
a rough indicator of the traffic conditions at the location 
of the crash. In total 78 different crash types with spe-
cific characteristics are considered by always combining 
one of the four vehicle types with one of the other crash 
characteristics (e.  g. single-truck crashes at speed limits 
between 70 and 100 km/h, or multi-car crashes at cross-
roads). For each of the resulting 78 crash types an hourly 
time series of a dichotomous variable is created for all 
administrative districts, being zero if no crash happened 
within the hour considered and one otherwise. These 
hourly time series are used as target variables (dependent 
variables) in generalized additive models.

2.2 � Traffic data
The German Federal Highway Research Institute (Bun-
desanstalt für Straßenwesen, BASt) operates a traffic 
measurement network on federal highways (Autobahn) 
and federal roads (Bundesstraßen). Federal highways 
usually have two or three lanes per direction, partly 
without speed limits, while federal roads usually have 
one lane per direction and general speed limits of up to 
100  km/h. At about 2,000 traffic counting stations the 
hourly number of vehicles is registered. The data set 
provides separate counts for different vehicle types. In 
this study the total vehicle counts are used, as well as 
the counts of passenger cars and trucks.

Hourly count data of 1,400 traffic measurement sta-
tions, which contain at least five years of data between 
2006 and 2017, are used in this study. Missing data in 
the traffic count time series are filled using Poisson 

Table 1  Description of crash characteristics used to create the dependent variables of the generalized additive models

Name Description
Vehicle type

any All single- and multi-vehicle crashes and all vehicle types are considered (including bicycles, motorbikes, buses and tractors).

multi-car Only crashes with two or more passenger cars are considered.

single-car Only crashes of single passenger cars are considered.

single-truck Only crashes of single trucks are considered.

Speed limit

[0, 50) Only crashes at speed limits below 50 km/h are considered

[50, 70) Only crashes at speed limits between 50 and 70 km/h are considered

70, 100) Only crashes at speed limits between 70 and 100 km/h are considered

100, 130) Only crashes at speed limits between 100 and 130 km/h are considered

[130, Inf) Only crashes at speed limits of 130 km/h and above are considered

Crash type

run-off-road A vehicle run off the road.

hit-object A vehicle collided with an obstacle on the road (e.g. trees, debris, wildlife).

broad-side Crash with cross traffic or vehicles that turn onto the road from a side road.

head-on Crash with oncoming traffic, without one of the crash partners intending to turn across the opposite lane.

side-swipe Crash with another vehicle travelling sideways in the same direction, when driving side by side or when changing lanes.

rear-end Crash with another vehicle driving ahead or waiting for traffic reasons.

parking Crash with vehicles stopping or parking at the edge of the carriageway, in the marked parking spaces immediately adjacent 
to the edge of the carriageway, on footpaths or in parking spaces.

Road environment

curve Crash occurred on a curved road section.

descent Crash occurred on a descending road section.

ascent Crash occurred on an ascending road section.

t-junction Crash occurred at a t-junction.

crossroads Crash occurred at a crossroads.

Crash severity

no injuries No injuries or fatalities.

minor injuries At least one road user with minor injuries, but no serious injuries or fatalities.

serious injuries At least one road user with serious injuries, but no fatalities.

fatalities At least one road user died.
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regression models for weather-related variations of 
hourly traffic counts developed in a previous study [16].

The hourly traffic counts of each station are rescaled so 
that 0 and 1 correspond to the average daily minimum 
and maximum hourly traffic count, respectively. This 
makes the data at different traffic stations comparable 
and suitable for an application as a predictor variable in 
our modeling approach. Note, that values below 0 and 
above 1 can occur at individual hours as the reference for 
rescaling is an average minimun/maximun.

Because a single traffic measurement station might not 
be representative for a whole administrative district, for 
each district the five traffic stations closest to the district 
center are identified and for each hourly time step the 
mean of the rescaled traffic volume of these five stations 
is computed. This is done separately for federal road and 
highway stations.

2.3 � Radar‑based precipitation data
Precipitation values are derived from the RADOLAN 
data set [17], provided by the German Meteorological 
Service, which contains hourly precipitation sums on a 
spatial grid with a spatial resolution of 1 km for the area 
of Germany. RADOLAN combines radar reflectivity, 
measured by the 16 C-band Doppler radars of the Ger-
man weather radar network, and ground-based precipi-
tation gauge measurements. As from radar reflectivity 
we cannot directly infer the precipitation amount at the 
ground, observations from rain gauges are used to cali-
brate the precipitation amounts estimated from the radar 
reflectivity in an online-procedure. Thus, RADOLAN 
combines the benefits of high spatial resolution of the 
radar network with the accuracy of gauge-based precipi-
tation measurements.

For each administrative district, all RADOLAN grid 
points within the district boundaries are identified and 
for each hourly time step the average precipitation of all 
identified grid points is computed. These hourly precipi-
tation estimates at district level are subsequently used as 
a predictor variable.

2.4 � Reanalysis data
The fifth generation European Centre for Medium-
Range Weather Forecasts (ECMWF) global atmospheric 
reanalysis (ERA5) is a synthesis of various heterogene-
ous meteorological observational data and atmospheric 
model simulations, which is produced using a fixed ver-
sion of the numerical weather forecasting model and data 
assimilation scheme [18]. ERA5 contains different atmos-
pheric and surface variables on a global grid with a spatial 
resolution of 30 km at an hourly temporal resolution. The 
advantage of ERA5 over station-based observations is the 
spatial and temporal homogeneity. However, it should be 

noted that local station measurements can deviate from 
the gridded ERA5 values.

For each administrative district all ERA5 grid points 
within the district boundaries are identified and for each 
hourly time step the district average surface temperature, 
total cloud cover and maximum hourly wind gust is com-
puted and subsequently used as a predictor variable.

3 � Methods
3.1 � Generalized additive models
The probability p for a certain event to occur can be 
described with a logistic linear model

with l predictor variables (or independent variables) 
Xi = (Xi1, ...Xil) , where �β = (β1, ...,βl) are the corre-
sponding model parameters, α is the intercept and n is 
the number of available observations. The logistic regres-
sion model is a powerful tool for modeling the effects of 
predictor variables on event probabilities. However, if 
the functional relationship between predictor variables 
and probability is complex, or if non-linear interactions 
between different continuous predictor variables have to 
be taken into account, finding an appropriate transfor-
mation of the predictor variables can be cumbersome. 
In generalized additive models [19] the concept of gen-
eralized linear models is extended by adding smooth 
functions of predictor variables to the linear term of the 
equation, so that

where the fj are smooth functions of the predictor vari-
ables xk . Specifying relationship between predictor and 
target variable (dependent variable) in terms of smooth 
functions makes generalized additive models more flex-
ible than generalized linear models.

The predictor variables can contribute to the model as 
additive effects, like f1(xx1) and f2(xx2) in Eq. 2, for exam-
ple. In this case, the effect of x1 on the target variable is 
independent from the value of x2 . The smooth function f 
can be written as

where bj(x) is the jth of some basis functions and βj are 
some unknown parameters, which must be estimated. 
The basis functions are usually based in some way on 
splines. Commonly used smoothers in generalized 

(1)log
p

1− p
= α + Xi

�β

(2)

log

(

p

1− p

)

= α + Xi
�β + f1(x1i)+ f2(x2i)+ f3(x3i, x4i)+ ... ,

(3)f (x) =

J
∑

j=1

bj(x)βj ,
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additive models are cubic regression splines which are 
also used in the present study.

The assumption of additive effects is a quite restric-
tive case of the more general function of two variables 
f (x1, x2) [19]. Eq. 3 can be generalized to allow smooth 
functions of any number of predictor variables using ten-
sor product bases. For a smooth function of two predic-
tor variables, for example, we can write

where δil are the parameters, and the ai(x1) and cl(x2) are 
the basis functions.

3.2 � Model setup
For each of the 78 crash types introduced above two dif-
ferent models are developed: First, model Mmet

to describe the effects of meteorological and non-mete-
orological variables on crash probability pa (see Tab 2 for 
a description of the variables in the predictor). Second, 
model Mnomet

with only non-meteorological terms in the predictor as a 
reference model.

There are different possible approaches to distinguish 
between administrative districts. For example, a sepa-
rate model could be built for each district. However, this 

(4)f (x1, x2) =

I
∑

i=1

L
∑

l=1

δilai(x1)cl(x2)

(5)

log

(

pa

1− pa

)

=α + Yr+ f1(p̄a,d)+ f2(Trf)+ f2(Wnd)

+ f4(Tmp, Prc)+ f5(Cld, Elv)

(6)log

(

pa

1− pa

)

= α + Yr+ f1(p̄a,d)+ f2(Trf) ,

is difficult for sparsely populated districts or rare crash 
types, because there are not enough crashes in the time 
series to establish robust relationships between crash 
probability and the different meteorological parameters. 
Instead, a single model including all districts is built for 
each of the 78 crash types. We distinguish between the 
districts by using the time averaged crash probability of 
each district p̄a,d as a predictor variable.

The rescaled hourly traffic volume Trf  is based on 
hourly counts of all vehicles, cars or trucks, according to 
the crash type considered in the model. When consider-
ing speed limits above 100  km/h, only traffic counts at 
highway stations are used, since on federal roads speed 
limits larger than 100 km/h are rare.

The interaction term for temperature and precipita-
tion in Eq. 5 allows for a different effect of precipitation 
on crash probability for different temperatures. This is 
important, since we cannot directly distinguish between 
rain and snow using the radar-based precipitation 
estimates.

Furthermore, cloud cover and sun elevation is included 
as an interaction term to allow for different effects of 
cloud cover at different elevation angles. This is impor-
tant to capture potential effects of sun glare.

For each of the the 78 crash types, we use a bootstrap 
approach and estimate the model parameters of Mmet 
100 times, each time drawing randomly 10,000,000 of 
the 42,153,120 available observations (with replacement). 
This allows us to estimate confidence intervals for the 
analysis of the functional relationships and to estimate, if 
values of relative risk increase can be regarded as statisti-
cally significant, as described below.

3.3 � Relative risk
The crash probability under adverse meteorological condi-
tions pa,adv can be compared to the crash probability under 

Table 2  Independent variables used in generalized additive models

Variable Description

Yr Categorical variable with a category for each year from 2006 to 2017 to capture long term temporal changes in crash probability due to 
external factors like improved safety features of vehicles.

pa Probability of at least one occurrence of a specific crash type within a one hour time interval in a certain district with an average crash prob-
ability p̄a,d.

p̄a,d Average hourly crash probability in an administrative district.

Trf Average hourly traffic volume of the five traffic measurement stations closest to the district centre. Traffic volume is rescaled, so that 0 and 1 
correspond to the average daily minimum and maximum traffic volume at a traffic station, respectively.

Wnd Hourly maximum wind gusts, averaged over all ERA5 grid cells within disctrict boundaries.

Tmp Hourly surface temperatures, averaged over all ERA5 grid cells within disctrict boundaries.

Prc Hourly precipitation sum, averaged over all RADOLAN grid cells within disctrict boundaries.

Cld Hourly total cloud cover, averaged over all ERA5 grid cells within disctrict boundaries.

Elv Angle of sun elevation above the horizon, where positive and negative values correspond to the sun beeing located above and below the 
horizon, respectively.
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meteorological reference conditions pa,ref  using the meas-
ure of Relative Risk

and Relative Risk Increase

The RRI is computed for winter precipitation, summer 
precipitation, sun glare and extreme wind speeds using 
Eq. 5 (see Table 3 for parameter settings).

As described above, for each of the 78 crash types the 
model Mmet is fitted 100 times in a bootstrap approach. 
For each of the 100 model versions RRI values are com-
puted and the averages of these RRI values are presented in 
the results section. If more than 95 of the 100 models show 
a positive or negative RRI, we conclude that the RRI is sig-
nificantly positive or negative, respectively.

3.4 � Model performance
The area under the receiver operating characteristic curve 
(AUC) is a measure of the ability of a model to discrimi-
nate between events and non-events (see Additional file 1 
for details and additional metrics for testing the validity of 
the models). The AUC ranges between 0.5 and 1, which 
compares to random guessing and perfect discrimination, 
respectively.

A skill score SS is a relative measure of how much a pre-
diction S outperforms a reference prediction Sr , defined as

where Sp is the score of a perfect prediction. In this 
study we compute the AUC Skill Score (AUCSS), 
which compares the AUC of model Mmet (Eq.  5) with 

(7)RR =
pa,adv

pa,ref

(8)RRI = 1−
pa,adv

pa,ref
.

(9)SS = (S − Sr)(Sp − Sr)
−1 ,

meteorological predictor variables to the AUC of 
model Mnomet (Eq.  6) without meteorological predictor 
variables.

We compute the AUCSS in a two-fold cross valida-
tion approach. The available data is split randomly into 
a training and a testing data set. The training data is used 
for estimating the model parameters, while testing data 
is used for computing the AUCSS. This is repeated after 
switching the testing and training data and the resulting 
AUCSS values are averaged.

4 � Results
4.1 � Average crash probability
Prior to the analysis of the statistical models, the average 
probability that at least one road crash occurs within one 
hour in a German administrative district is computed 
for each of the 78 crash types considered (Fig.  1). If all 
crashes are considered without distinguishing between 
specific crash characteristics, the hourly probability is 
9.487%. Probabilities are lower if computed for more 
specific vehicle types. For example, the probability for 
single-car or a single-truck crashes is 1.441% and 0.111%, 
respectively. The lower crash probability for trucks can 
at least partly be attributed to a lower number of trucks 
on the roads and to a lower vulnerability of trucks due to 
their structural characteristics.

Crashes are further classified in terms of the speed 
limit at the crash location, crash type, road environment 
and crash severity. For certain crash types probabilities 
are relatively low, in particular in case of some sub-types 
of single-truck crashes (hit-object crashes, crashes at 
crossroads and with fatalities), where the probability is 
0.002. This should be kept in mind when interpreting the 
RRI values for these crash types.

Table 3  Setup of meteorological parameters for calculation of relative risk increase for different meteorological conditions. pa,adv and 
pa,ref  is the crash probability under adverse and reference conditions, respectively. In all cases, Yr = 2017 , Trf = 1 and p̄a,d is set to the 
median value of all districts

Weather condition Probability Tmp Prc Cld Elv Wnd

Winter precipitation pa,adv −3◦C 1 mm/h 100% 30◦ 10 m/s

pa,ref +3◦C 0 mm/h 100% 30◦ 10 m/s

Summer precipitation pa,adv 15◦C 1 mm/h 100% 30◦ 10 m/s

pa,ref 15◦C 0 mm/h 100% 30◦ 10 m/s

Low sun, no clouds pa,adv 15◦C 0 mm/h 0% 20◦ 10 m/s

pa,ref 15◦C 0 mm/h 100% 20◦ 10 m/s

Extreme wind pa,adv 15◦C 0 mm/h 100% 30◦ 25 m/s

pa,ref 15◦C 0 mm/h 100% 30◦ 5 m/s
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Fig. 1  Average hourly probabilities for 78 different crash types in German administrative districts
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4.2 � Functional relationships
Within the frame of this paper a detailed discussion of 
models for all 78 crash types is infeasible. Instead, as an 
example, we discuss the functional relationships between 
the occurrence probability of multi-car rear-end crashes 
and the different predictor variables. For this discussion, 
we focus on one predictor term in Eq. 5 at a time. Mod-
eled crash probability is then plotted against this term, 
while keeping the predictor variables of the other terms 
constant at selected values.

An increase in traffic volume leads to a non-linear but 
monotonous increase in rear-end crash probability, if all 
other parameters are held constant (Fig. 2a). This is a rea-
sonable behavior, which indicates that the spatially aggre-
gated traffic data can adequately represent the effects of 
traffic volume on crash probability at district level.

To account for different basic properties in differ-
ent administrative districts, such as the total number of 
vehicles per district, we have included the average hourly 
crash probability p̄a,d in the model. In districts with 
larger p̄a,d the model shows that also the crash probabil-
ity pa under specific meteorological conditions is larger 
(see Fig.  2b). The relationship between p̄a,d and pa is 
approximately piecewise linear with a change in slope at 
around p̄a,d = 0.1 . Note that values of p̄a,d > 0.1 are only 
reached in a few highly populated districts.

Rear-end crash probability shows a small variability in 
time after controlling for traffic volume and meteorologi-
cal factors (Fig. 2c). A systematic trend in rear-end crash 
probability is not evident. However, it should be noted 
that other crash types show a decreasing trend, which 
could be attributed to advanced safety features of cars, 
for example (not shown).

An increase in wind speed leads only to a small 
increase in probability of rear-end crashes (Fig. 2d). If the 
confidence intervals are taken into account, this increase 
is not significant. This is not surprising, since one would 
not expect a large impact of wind speed on this crash 
type, but the following section will reveal wind speed 
impacts on other crash types.

There is a clear impact of summer precipitation 
( Tmp = 15◦ C) on rear-end crash probability (indicated 
by color and line type in Fig.  2a and b). If the district 
average hourly precipitation changes from 0 to 1 mm/h, 
crash probability increases by a factor of 1.548, which 
corresponds to an RRI of 54.8%. A further increase in 
precipitation to 2 and 3 mm/h leads to smaller increases 
in crash probability, but it is still significant with respect 
to the confidence intervals.

At negative temperatures the increase in rear-end 
crash probability is even stronger in case of increas-
ing precipitation, which is shown in a visualization of 
the combined effect (interaction) of precipitation and 

surface temperature (Fig.  2e). For example, if precipi-
tation changes from 0  mm/h to 1  mm/h at -3◦ C, crash 
probability increases by 80.1%. The varying effect of pre-
cipitation depending on temperature can be described by 
including the two variables as an interaction term in the 
generalized additive model. One could expect a sharper 
increase in crash probability around 0 ◦ C, however, the 
functional relationship shows a rather smooth transition 
between positive and negative temperatures. This can be 
attributed to different sources of uncertainty, which are 
represented by the smoothing term. For example, the 
actual road surface temperatures at specific locations 
within a district can differ from the aggregated surface 
temperatures based on the gridded ERA5 data used in 
the model.

Finally, the visualization of the combined effect of 
cloud cover and sun elevation angle shows that there are 
two areas with increased probabilities of rear-end crashes 
(Fig.  2f ). First, increased probabilities occur at positive 
sun elevation angles combined with low cloud cover. This 
could be attributed to a distraction of drivers due to sun 
glare, leading to a larger number of rear-end crashes. 
Second, an increasing probability is also observed with 
increasingly negative elevation angles, indicating that the 
sun is below the horizon. This increase could be attrib-
uted to reduced visibility under low-light conditions 
during night time. Note that probabilities are computed 
assuming a constant traffic volume. At night times one 
can expect traffic volume (and thus also crash probabil-
ity) to decrease, which counteracts the increase in prob-
ability due to low light conditions.

4.3 � Increase in crash probability due to weather 
conditions

4.3.1 � Winter precipitation
For the 78 crash types, we compute the Relative Risk 
Increase (RRI) for hours with winter precipitation 
with respect to hours without winter precipitation as 
described in the methods section. Under the selected 
conditions (Table  3), precipitation is most likely snow-
fall or freezing rain. In general, single-vehicle crashes (i.e. 
single-car and single-truck crashes) show a larger RRI 
compared to multi-vehicle crashes (i.e. multi-car crashes 
and crashes including all vehicle types; Fig.  3). Single-
truck crashes show the largest RRI of 872.9%.

A higher (or even no) speed limit at the location of the 
crash leads to a larger RRI under conditions with win-
ter precipitation. In case of single-truck crashes the RRI 
increases to 1521.7% at speed limits of 130 km/h. How-
ever, it should be noted that generally the maximum 
speed of trucks above 3.5 t is limited to 80 km/h.

Run-off-road and head-on crashes also show a 
relatively large RRI under conditions with winter 
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Fig. 2  Functional relationships between predictor variables and the hourly probability of muli-car rear-end crashes estimated by a generalied linear 
model. 95% confidence intervals (shaded areas) are estimated from 100 models fitted with randomly drawn training data
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Fig. 3  Relative risk increase (RRI) of crash probabilities in situations with precipitation and negative temperature ( Tmp = −3 ◦ C and Prc = 1 mm/h) 
compared to situations without precipitation and positive temperatures ( Tmp = +3 ◦ C and Prc = 0 mm/h). Significant changes (i. e. more than 95 
of 100 models fitted with randomly drawn training data show the same direction of change) are indicated with an asterisk
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precipitation, indicating that vehicles tend to leave their 
lane due to slippery road conditions. The RRI for other 
crash types are smaller, but in most cases positive and 
significant. When comparing different road environ-
ments, RRI values are largest in curves and descending 
road segments. Single-truck crashes also show a strong 
increase on ascending roads segments. If the RRI under 
winter precipitation conditions is computed separately 
for crashes with different severities, it is evident that less 
severe crashes show larger RRI values compared to more 
severe crashes.

4.3.2 � Summer precipitation
Analogously to winter precipitation, we investigate the 
effect of summer precipitation (most likely rainfall). The 
RRI is computed for hours with summer precipitation 
with respect to hours without summer precipitation. In 
case of summer precipitation, crash probability increases 
for all crash types (Fig. 4). However, the increase is gen-
erally smaller than in case of winter precipitation. Simi-
lar to winter precipitation, summer precipitation leads 
to larger RRI values in case of single-vehicle crashes, at 
higher driving speeds, as well as in case of run-off-road 
crashes and in curves, descents and ascents. Probabilities 
of less severe crashes increase more than those of severer 
crashes. While in case of winter precipitation RRI values 
for single-truck crashes were generally larger than single-
car crashes, in case of summer precipitation the opposite 
is true. The largest RRI of 536.2% is found in case of sin-
gle-car crashes at speed limits of 130 km/h and above.

4.3.3 � Low sun elevation at cloud‑free conditions
To evaluate the effect of sun glare on crash probability, 
we compute the RRI for hours with low sun elevation 
angle and cloud-free conditions with respect to hours 
with low sun elevation angle and full cloud cover. The 
RRI of different crash types under low sun and cloud-free 
conditions range from -35% to +52% (Fig. 5). In case of 
multi-vehicle crashes, probabilities increase for most 
crash types. The largest RRI values of multi-car crashes 
crashes occur at speed limits of 130  km/h and more 
( +52.5 %) and in case of rear-end crashes ( +43.2%). These 
increases could be attributable to sun glare, which could 
lead to reduced visibility and increased reaction times of 
drivers, which is particularly dangerous at high driving 
speeds and in dense traffic.

In case of single-car and single-truck crashes, RRI 
values are negative in most cases. However, in case of 
single-trucks these decreases are mostly not significant. 
These decreases of crash probability of single-vehicle 
crashes under low sun and cloud-free conditions could 
be due to the fact that we have not taken time lagged 
effects of precipitation into the design of our models. If 

within the hour of the crash there was no rain, the road 
surface is more likely to be dry under cloud-free condi-
tions (e.g. due to evaporation effects due to sunshine) and 
more likely to be wet under cloudy conditions (e.g. due 
to possible precipitation at previous time steps). A higher 
likelihood for a dry road (with higher surface friction) 
consequently leads to the observed reductions of single-
car crash probabilities, which is particularly large in case 
of curves (-35.3%).

4.3.4 � Extreme wind speeds
To evaluate the effect of extreme wind speeds on crash 
probability, the RRI at hours with high wind speeds is 
computed with respect to hours with low wind speeds 
(Fig. 6). In general, the RRI values in case of extreme wind 
speeds are relatively small, compared to the effects of the 
other meteorological parameters analyzed above, and 
mostly not significant, except for single-truck crashes. 
Those show a significant RRI of 104.9%, which is in line 
with other studies showing that trucks are particularly 
vulnerable to high wind speeds [12]. RRI values of single-
truck crashes are largest at high speed limits between 
100 and 130 km/h. Since the maximum speed of trucks is 
limited to 80 km/h, this effect could be explained by the 
assumption that highways with such high speed limits 
often run through open rural terrain and are particularly 
exposed to high wind speeds.

What stands out are the hit-object crashes, which 
increase in probability by 413.6% for single-car crashes 
and by 789.8% for single-truck crashes. These crashes 
can be attributed to crashes with broken tree branches, 
debris, or other objects, which are blown onto the road 
by strong winds.

4.4 � Cross‑validation results
The predictive power of the model Mmet and whether 
meteorological terms in the predictor improve the pre-
dictions compared to a model without these ( Mnomet ) 
is analyzed in a two-fold cross-validation experiment 
using the AUC and AUCSS. The AUC values for the 78 
different crash types mainly range between 0.7 and 0.85. 
Values between 0.7 and 0.8 correspond to an acceptable 
discrimitation, values above 0.8 correspond to an excel-
lent discrimination [20].

For all crash types (except for single-truck crashes 
with fatalities), the AUCSS values are positive, indicat-
ing an improvement of the models ability to discriminate 
between time steps with and without crashes due to the 
meteorological predictor variables (Fig.  7). The AUCSS 
ranges between relatively low values of 0.44% in case of 
single-car crashes with fatalities to high values of 24.21% 
in case of single-car crashes at locations with high speed 
limits of 130 km/h and above. In general, AUCSS values 
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Fig. 4  Relative risk increase (RRI) of crash probabilities in situations with precipitation and positive temperature ( Tmp = 15 ◦ C and Prc = 1 mm/h) 
compared to situations without precipitation and positive temperatures ( Tmp = 15 ◦ C and Prc = 0 mm/h). Significant changes (i. e. more than 95 
of 100 models fitted with randomly drawn training data show the same direction of change) are indicated with an asterisk
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Fig. 5  Relative risk increase (RRI) of crash probabilities in situations with low sun elevation angle and cloud free conditions ( Elv = 20◦ and 
Cld = 0 %) compared to situations with low sun elevation angle and clouded conditions ( Elv = 20◦ and Cld = 100%). Significant changes (i. e. more 
than 95 of 100 models fitted with randomly drawn training data show the same direction of change) are indicated with an asterisk
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Fig. 6  Relative risk increase (RRI) of crash probabilities in situations with high wind speeds ( Wnd = 25 m/s) compared to situations with low wind 
speeds ( Wnd = 5 m/s) . Significant changes (i. e. more than 95 of 100 models fitted with randomly drawn training data show the same direction of 
change) are indicated with an asterisk
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Fig. 7  Area Under Reviever Operating Characteristics Curve Skill Score (AUCSS), with positive values indicating an improvement of the predictive 
power if meteorological predictor variables are included in models for hourly probabilities of different crash types. The Area Under Reviever 
Operating Characteristics (AUC) of the models with meteorological predictor variables is given in brackets
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are higher in case of those crash types, which also showed 
a strong relationship to one or more of the meteorologi-
cal variables. Highest AUCSS values occur in case of sin-
gle-vehicle crashes, at higher speed limits, at locations 
with curves, descents or ascents and in case of crashes 
without or with minor injuries. Lower AUCSS values 
occur in case of multi-car crashes at lower speed limits, 
in case of crashes with other vehicles (except head-on 
crashes), at crossroads and in case of crashes with severe 
injuries and fatalities.

5 � Discussion
In general, the results of our analysis are in line with 
previous studies. For example, an increase in crash 
probabilities due to precipitation has been found quite 
consistently in the literature [3]. However, the compre-
hensive crash data set in combination with the chosen 
modeling approach allows more precise and quantitative 
statements about the functional relationships between 
the meteorological parameters and probabilities of differ-
ent crash types.

We have compared results for a large number of dif-
ferent crash types, which comes at the expense of detail 
regarding evaluation of the individual models. An in 
depth diagnostic of the fitting procedure of each general-
ized additive model was not possible within the frame of 
this article. For example, we have found that cubic regres-
sion splines generally lead to reasonable functional rela-
tionships in the generalizes additive models, but a more 
detailed analysis could reveal that for specific parameters 
or crash types other smoothing functions might be more 
appropriate. Furthermore, we have assumed that the 
standard setting for the number of basis dimensions of 
the splines is appropriate.

The radar data used in this study provides highly 
resolved precipitation estimates. However, it does not 
distinguish between rain and snowfall. Instead we ana-
lyzed the combined effect of precipitation and surface 
temperature. In future research, novel data products 
could be used, which combine radar-data and atmos-
pheric models, to provide additional information about 
the precipitation type.

Furthermore, it should be noted that only the weather 
conditions within a specific hourly time interval are con-
sidered for predicting the hourly crash probability; pos-
sible time-lagged effects are neglected. For example, if 
precipitation occurred before the hour of a crash, but 
the road surface could still wet. Also the accumulation 
of snow cover on roads over several hours is not consid-
ered. Both effects could lead to an underestimation of 
crash probabilities during hours without precipitation. 
A potential effect of winter road maintenance is also not 
included, because appropriate data is missing.

Also the analysis of the combined effects of cloud 
cover and sun elevation revealed missing meteorologi-
cal factors in the model, which are related to time-lagged 
effects of precipitation and evaporation processes. Future 
research could focus on including such effects, for exam-
ple by using information from physical road surface 
energy balance models taking into account evaporation 
processes [21].

We have shown that sun glare particularly increases 
probabilities of rear-end crashes, which is in line with 
findings for Tucson, Arizona [14]. However, we have also 
identified a stronger effect of sun glare on crash probabil-
ities at higher speed limits and in case of increasing crash 
severity, which has not been found in previous studies 
[15].

In previous research weather station data is frequently 
used to study the impact of weather on crashes, while 
we have used post-processed gridded meteorological 
data sets. Using weather station data assumes that the 
point measurement is representative for the location of 
the crash, which might be a certain distance away. Using 
gridded data, which is spatially aggregated, assumes that 
the spatially aggregated weather information is repre-
sentative for a certain location within the aggregation 
area and that the variability within the area is sufficiently 
small so that this assumption is valid. We think that using 
gridded data is most appropriate for our study design. 
One might consider to compare both approaches in 
future analyses.

While for Germany count data of motorized road traf-
fic is available for a large number of stations on federal 
roads and highways, there is no comprehensive data set 
for smaller roads. Here, we assumed that federal road 
stations are representative for smaller roads as well. The 
validity of this assumption could be tested in districts, 
where additional traffic data is available. Furthermore, 
there is little measurement data of bicycle and pedestri-
ans volume. The numbers of such non-motorized road 
users themselves depend on the weather conditions. 
This is problematic when analyzing crashes involving 
such road users without an estimate of their actual share 
in the total traffic volume. For example, an increase in 
crash probabilities during hours with sun glare could be 
due to the effects of reduced visibility, but also due to an 
increased number of bicycles or pedestrians during fair 
weather conditions. This should be kept in mind, when 
interpreting the corresponding numbers.

6 � Conclusions
While previous studies on weather effects on road 
crash have often focused on specific weather conditions 
or certain crash types, we have applied a modeling 
approach that is able to capture the combined effects 
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of meteorological parameters on a large number of dif-
ferent crash types. By using additive logistic regression 
models, we could capture and analyze non-linear func-
tional relationships between meteorological parameters 
and crash probability, which would have been difficult 
using other methods like traditional logistic regression.

We have shown that including meteorological vari-
ables can substantially improve predictions of crash 
probabilities. This is particularly true for single-vehicle 
crashes on road sections with high speed limits, where 
the largest improvement of verification scores was 
observed. Our findings can help authorities to identify 
crash types and road characteristics, where weather-
dependent driving restrictions like variable speed lim-
its or situation-specific warnings could be beneficial for 
road safety. Such warnings could be communicated via 
on-board computers and navigation systems depend-
ing on vehicle type, speed limit and characteristics of 
the road characteristics. This would be an important 
step towards moving from traditional weather forecasts 
towards impact-based warnings, which is heavily pro-
moted by the World Meteorological Organization and 
national weather services [22, 23].
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