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Soil microbial communities shift
along an urban gradient in
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The microbial communities inhabiting urban soils determine the functioning

of these soils, in regards to their ability to cycle nutrients and support plant

communities. In an increasingly urbanized world these properties are of the

utmost importance, and the microbial communities responsible are worthy of

exploration. We used 53 grassland sites spread across Berlin to describe and

explain the impacts of urbanity and other environmental parameters upon the

diversity and community composition of four microbial groups. These groups

were (i) the Fungi, with a separate dataset for (ii) the Glomeromycota, (iii) the

Bacteria, and (iv) the protist phylum Cercozoa. We found that urbanity had

distinct impacts on fungal richness, which tended to increase. Geographic

distance between sites and soil chemistry, in addition to urbanity, drove

microbial community composition, with site connectivity being important for

Glomeromycotan communities, potentially due to plant host communities.

Our findings suggest that many microbial species are well adapted to urban

soils, as supported by an increase in diversity being a far more common

result of urbanity than the reverse. However, we also found distinctly separate

distributions of operational taxonomic unit (OTU)s from the same species,

shedding doubt of the reliability of indicator species, and the use of taxonomy

to draw conclusion on functionality. Our observational study employed an

extensive set of sites across an urbanity gradient, in the region of the German

capital, to produce a rich microbial dataset; as such it can serve as a blueprint

for other such investigations.
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Introduction

Recent research suggests that humans have heavily impacted the majority of the
planet’s ecosystems for at least 12,000 years (Ellis et al., 2021). The pinnacle of human
impact occurs within urban landscapes. Definitions of urbanity vary between countries,
but in 2014 one estimate of the total land surface covered by urban development was
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between 2 and 3% (Liu et al., 2014). According to the United
Nations, the current trend for urban expansion is likely to result
in 68% of people living in urban centers by 2050 (UNDESA
Population Division, 2018).

Urban ecosystems contain a unique array of anthropogenic
factors, including many relating to global change. For example;
summer temperatures in Berlin, Germany, have been reported
as reaching ∼10◦C higher in highly sealed areas compared to
less sealed areas (Dugord, 2013). This situation, known as the
urban heat island effect, is expected to become increasingly
significant for northern European cities where urban planning
has generally not taken high temperatures into account
(Ward et al., 2016). Exploring the impacts of these increased
temperatures can give advance warning of what to expect from
future global temperature spikes. Increased salinity has also
been reported in urban landscapes due to irrigation (Ganjegunte
et al., 2017) and road de-icing salt, which in some cases reaches
levels toxic for land plants (Cunningham et al., 2008). Nitrogen
deposition is pervasive in urban ecosystems, although accurately
quantifying levels is difficult (Decina et al., 2020). Heavy metal
accumulation has also been recorded in many urban ecosystems
as a result of anthropogenic activity (e.g., Facchinelli et al.,
2001; Lee et al., 2006). However, the impact of heavy metals in
urban soils is likely to be buffered: heavy metals are known to
demonstrate substantially reduced availability with increasing
pH, which has been shown to occur in urban ecosystems due
to deposition of alkaline ash and construction dust (Newbound
et al., 2010). Urban systems are also likely to experience day-to-
day, localized disturbances due to activities such as dog-walking
and jogging, the levels of which may determine their impact
upon biodiversity. It is possible that anthropogenic activities
may even increase biotic diversity according to the intermediate
disturbance hypothesis (Connell, 1978).

The relationships between urban systems and biodiversity
are still being explored. It appears that different organism groups
respond in distinct manners. A general rule of thumb appears to
be that in exceptionally urban areas the richness of plants and
animals is reduced, whilst at more “standard” urban locations
levels of plant richness are increased in comparison to non-
urban locations (due in large part to the presence of non-
native species), whilst animal richness decreases (McKinney,
2008). Some species of animals (e.g., the house mouse, Mus
musculus) have been described as living a commensal, or
even “anthrodependent,” life with humans which results in a
global distribution across urban biomes (Johnson and Munshi-
South, 2017). Research in this regard for soil microorganisms is
somewhat patchy, most urban soil research having focused on
ecosystem services (O’Riordan et al., 2021).

Studies of urban soil microbial diversity have thus far
found differing patterns between fungal and bacterial responses
to urbanity. Evidence suggests that fungal diversity tends to
decrease in urban areas, compared to nearby “natural” locations
(Abrego et al., 2020; Tedersoo et al., 2020; Donald et al., 2021),
with this pattern even extending to fungal richness being lower

in road medians than in urban parks (Reese et al., 2016).
Bacterial communities, on the other hand, appear to increase in
diversity in urban soils (Delgado-Baquerizo et al., 2021; Donald
et al., 2021), with some evidence that protists express the same
pattern (Delgado-Baquerizo et al., 2021). However, community
composition is also a key component of microbial ecology.
Some evidence suggests that globally, urban fungal communities
may homogenize and become more similar to one another
(Delgado-Baquerizo et al., 2021) with fungal groups favored by
urban systems being plant parasites and arbuscular mycorrhizal
fungi (AMF) (Donald et al., 2021). Alternatively, urban soils
may favor generalists (Abrego et al., 2020). Other patterns
observed include a reduced abundance of ectomycorrhizal fungi
(Delgado-Baquerizo et al., 2021) and shifts in AMF community
composition (Cousins et al., 2003). Bacterial nitrifiers and plant
parasites have been reported as showing increased abundance
in urban soils (Donald et al., 2021), with a fast-growing lifestyle
being favored (Delgado-Baquerizo et al., 2021).

The general list of factors governing microbial
biogeographic patterns can be classified into selection, drift,
dispersal, and mutation (Vellend, 2010; Hanson et al., 2012).
Within urban systems it is as-yet unclear whether selection
favors specialists or generalists, and it is also unclear whether
dispersal is more heavily constrained by habitat fragmentation,
or promoted through transport infrastructure. Highly urban
environments may also include niches not seen elsewhere, or
the exclusion of normally dominant species due to unfavorable
growing conditions. Here, we examined the diversity of soil
microorganisms across the urban landscape of Berlin, one of
the biggest cities of Europe, with the goal of understanding
whether urban soil ecology is shaped by soil chemistry or an
intrinsic element of the urban syndrome. Our investigation
spanned three kingdoms, namely, Bacteria, Fungi, and Protists.
Within the Fungi, we included an additional focus on the plant
symbionts, the AMF (phylum Glomeromycota). Within the
Protists, we limited our study to the highly diverse phylum
Cercozoa (Öztoprak et al., 2020).

Previous research from the same study system as that of this
study has observed a change in soil physico-chemical properties
in response to an “urban syndrome” of variables (Whitehead
et al., 2021). These changes included a reduction in aggregate
stability and an increase in water infiltration rate. Both fungi
and bacteria influence soil physico-chemical properties through
secreting compounds which result in hydrophobicity, thus
increasing water run-off potential but also promoting aggregate
stability (Mataix-Solera and Doerr, 2004; Epstein et al., 2011).
Filamentous fungal hyphae also physically aid in aggregate
development and function as translocation routes for unicellular
microorganisms (Wick et al., 2007). We decided to investigate
Glomeromycotan diversity at a high degree of precision within
the fungal kingdom due the pivotal role this group plays
in ecosystem functioning, including aggregate formation and
stability (Rillig and Mummey, 2006; Leifheit et al., 2014). In
addition, AMF colonize 75% of all land plants, playing a vital
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role in plant fitness (Treseder and Cross, 2006; Brundrett and
Tedersoo, 2018). Plants themselves experience varying levels
of dispersal limitation and shifts in community assemblage
in urban ecosystems depending on their own dispersal traits
(Schleicher et al., 2011). It is possible that this may provide a
top-down control on Glomeromycotan diversity through host-
selection (Grünfeld et al., 2021). The possibility of this is,
however, subject to debate (Horn et al., 2017). Previous research,
also from the study system used here, has demonstrated an
increase in non-mycorrhizal root colonization in response to
the urban syndrome, but a resilience of AMF colonization rates
(Whitehead et al., 2022). It is as-yet unclear whether there is a
similar resilience in Glomeromycotan community composition.

Despite biogeography having been born from the study
of protists (Schewiakoff, 1893), it is only in recent years that
the importance of protists within soil ecosystems has been
truly recognized (Geisen et al., 2018). Containing a degree
of diversity previously labeled “near-imponderable” (Foissner,
1999), protists have been described as “puppet-masters” that
exhibit top down control on the soil microbiome (Gao et al.,
2019). Given the dearth of previous research into urban
protist communities and the difficulty entailed in accurately
presenting their diversity, we have limited our investigation to
the Cercozoa. This highly diverse group of flagellate protists
have been demonstrated to influence bacterial communities
through selective predation (Glücksman et al., 2010) and
are possible to target through the use of a primer pair
(Fiore-Donno et al., 2018).

In this study, we examined shifts in soil microbial
communities across the urban landscape of Berlin, with the aim
of understanding if intrinsically urban variables drive microbial
community richness and composition.

Materials and methods

Study site

Our study was conducted in Berlin, Germany. The soil
textures of Berlin are limited to sand, medium loamy sand and
medium silty sand, with a pH range of 4.1–7.5. The yearly
average temperature is 9.9◦C, with an average yearly rainfall
of 976 mm, although recent years have contained periods of
reduced rainfall and higher temperatures (von der Lippe et al.,
2020). In order to make our results internally comparable we
limited our study to dry grasslands. For this study we sampled
53 4 × 4 m grassland plots, all of which were part of the
CityScapeLabs research platform (von der Lippe et al., 2020).
A wealth of data is available for these sites, discussed below in
the section “Database of environmental data.”

Spread across Berlin and into its surrounding federal state,
Brandenburg, our study sites represent a gradient of urban

locations, consisting of parks, graveyards, forest clearings, road
and rail embankments, and derelict land.

Collection and extraction

The 53 dry grassland plots from the CityScapeLabs research
platform used for this study were sampled during the summer
of 2017. Fifteen evenly space replicates of 30 cm deep soil
cores were taken from each site using a soil-corer and
were homogenized in the field in plastic bags, before being
divided into three 1 ml Eppendorf tubes. These samples were
handled using sterile gloves to prevent contamination, and were
temporarily placed in a cooler in the field before being stored
in a −20◦C freezer. Soil DNA was extracted using the DNeasy
PowerSoil Pro Kit (Qiagen, Venlo, Netherlands) following the
user instructions.

Amplification and sequencing

Four taxonomic groups were targeted using specific
polymerase chain reaction (PCR) primer pairs. Fungi were
identified through the sequencing of the ITS2 region using
primers fITS7/ITS4 (Ihrmark et al., 2012). The Glomeromycota
were identified through the sequencing of the LSU region using
a nested PCR protocol with AMF-specific primers (Krüger
et al., 2009) and LR2rev/LR3 (Horn et al., 2014). Bacteria
were identified by sequencing the 16S region using primers
Eub_338f/Eub_518r (Ghyselinck et al., 2013), and the Protistan
division Cercozoa were identified by sequencing the 18S
region using primers S963R_Cerco/S947R_Cerco (Fiore-Donno
et al., 2018). Following PCR, amplification was checked via
gel electrophoresis. Samples were purified using solid phase
reversible immobilization (SPRI) magnetic beads, indexed, and
pooled. DNA concentrations were quantified using first a Qubit
and then an Agilent TapeStation. 2∗300 bp paired-end Illumina
MiSeq sequencing was carried out at the Berlin Center for
Genomics in Biodiversity Research (BeGenDiv).

Bioinformatics and data preparation

Sequencing results were passed through a bioinformatics
pipeline in R (R Core Team, 2020) using DADA2 (Callahan
et al., 2016), ShortRead (Morgan et al., 2009), and Biostrings
(Pagès et al., 2021). The DADA2 pipeline produced 100%
similarity operational taxonomic unit (OTUs), however, for a
more realistic representation of fungal diversity (Roy et al.,
2019; Estensmo et al., 2021), fungal and Glomeromycotan
OTUs were reclustered into 97% OTUs. Taxonomic assignments
were carried out using the UNITE fungal database for fungal
and Glomeromycotan datasets (Nilsson et al., 2019) using the
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assignTaxonomy() function within DADA2. Glomeromycotan
assignments were compared using Blast (Park et al., 2012) to
the Krüger et al. (2012) and NCBI databases (NCBI Resource
Coordinators, 2016). Bacterial taxonomies were assigned using
the Genome Taxonomy Database (Parks et al., 2021) and the
Cercozoan taxonomies were assigned using the PR2 database
(Guillou et al., 2013). Only assignments with bootstrapped
probability values of 100% were kept. Each dataset had some
samples where only low numbers of reads were present, these
sites were removed leaving the total number of sites represented
in each dataset as: Fungi, n = 51; Glomeromycota, n = 52;
Bacteria, n = 48; Cercozoa, n = 52. The datasets were then
normalized using rarefaction to the lowest remaining read
count, resulting in read counts in every site of: Fungi, n = 30010;
Glomeromycota, n = 16974; Bacteria, n = 20115; Cercozoa,
n = 10944. This data was used for all of the following analysis,
except for the non-metric multidimensional scaling (NMDS),
for which Hellinger-transformed data was used.

Database of environmental data

A database of environmental data was established for these
sites in 2017 as part of the CityScapeLabs research platform
(von der Lippe et al., 2020). For this study a selection of 45
variables were used, of which 44 were continuous variables and
one was categorical, denoting whether sites existed as grasslands
prior to 1945, or were only established post-1945. Continuous
variables related to site connectivity, site size, slope, plant and
litter cover, various measures relating to urbanity, including
population density, road density and proximity, railway density
and proximity, soil sealing, and distance to the official city center
(Flächenschwerpunkt Berlin). Soil chemical properties included
N, S, P, K, organic C, and the heavy metals cadmium (Cd),
copper (Cu), lead (Pb), Nickel (Ni), and Zinc (Zn), as well as
pH, cation exchange capacity and water content. Latitude and
longitude were also included. The soil chemical parameters were
properties measured in samples taken concurrently to those
used in this study. In order to be able to practically use this
dataset outliers were removed and the variables were collapsed
into 3 main axes of variation via principal component analysis
(PCA), a technique pioneered in urban ecology by du Toit and
Cilliers (2011), for which we used the dudi_pca() function in
the ade4 package (Thioulouse et al., 2018). The axes chosen for
inclusion in data analysis were selected qualitatively by whether
they reflected plausible environmental parameters/syndromes
(e.g., urbanity, soil chemistry, see Section “Results”).

Data analysis

All data analyses were carried out in R (R Core
Team, 2020). In order to explore potential drivers of OTU
richness, multiple linear regressions were used to examine

relationships between OTU richness and each of the three PCA
axes, with site age included as an additional predictor. To
understand the roles of these variables in shaping community
composition, Permutational multivariate analysis of variance
(PERMANOVA) of each community data frame was also
performed using the same list of predictors, using the adonis()
function in vegan (Oksanen et al., 2020).

PERMANOVA models exploring total variance (i.e., where
the total variation explained by each predictor, ignoring
predictor overlap, was reported) and single predictor-unique
variance were performed, both in models including and
excluding site age. To visualize community composition, NMDS
was performed upon community data using the metaMDS()
function in the vegan package with PCA axis scores overlaid
using the ordisurf() function. To complement this analysis
and explore the relative importance of geographic distance
upon community composition, distance-decay analysis was
performed using both simple and partial Mantel tests (in the
vegan package). To do this, Bray–curtis community distances
were correlated with both Euclidean distances between PCA
axis scores and geographic distances, which had been calculated
using the geosphere package (Hijmans, 2019). Beta diversity
partitioning was performed using the “betapart” package
(Baselga and Orme, 2012) to reveal the relative importance of
species turnover and nestedness.

Heatmaps of the top 20 most abundant OTUs within each
dataset were created using the vegan, reshape2 (Wickham,
2007), tidyr (Wickham, 2021), and viridis (Garnier et al.,
2021) packages. In order to identify taxonomic groups which
showed responses to our environmental axes, we used Kendall
correlations to select groups which expressed significant
correlations in richness with any of the three PCA axes, using
the corrr package (Kuhn et al., 2020). In order to ascertain which
environmental parameter was most important in driving the
richness of these taxonomic groups, hierarchical partitioning
was performed using the package heir.part (Nally and Walsh,
2004). Additionally, indicator species analysis was carried out
by splitting the sites into two levels according to their PCA axis
1 score. In order to do this, the 18 sites with the lowest PCA axis
1 scores were categorized as being the most urban. OTUs which
were both statistically likely to be indicator species of these
highly urban sites, and were assigned at the species level, were
recorded. This analysis was carried out using the indicspecies
package (De Caceres and Legendre, 2009).

Results

Principal component analysis of
environmental data

Using PCA we extracted three axes of environmental
variation for the study sites (Figure 1; for biplots of PCA
axes see Supplementary Figures 1, 2, and for a list of
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FIGURE 1

Environmental gradients across grasslands in Berlin. (A) Environmental variable loadings within principal component analysis (PCA) axis 1 (21.2%
of variance), which can be summarized as being representative of urbanity. (B) Variable loadings for PCA axis 2 (10.8%), which can be
summarized as being representative of soil chemistry. (C) Variable loadings for PCA axis 3 (7.9%), which contains an amalgamation of variables,
but with patch size, sky view factor, connectivity, and historical connectivity suggesting that this axis could be seen as something of a vignette
of physical site characteristics. (D) Examples of sites with differing PCA axis 1 scores, which are denoted in the bottom right hand corner of each
image. Numbers in the bottom left hand corners denote locations on the map. (E) A map of Berlin with the locations of the sites included in this
study. Each site is shaded by its PCA axis 1 score, representing urbanity. Darker coloration indicates more urban sites. The black line represents
the border between Berlin and its neighboring federal state, Brandenburg. Areas shaded gray represent built-on land, originally plotted by Anne
Hiller (Technisches Universität Berlin), using data from the Landesamt für Umwelt Brandenburg (2009) and Senate Department for Urban
Development and Housing (2014).

variable loadings see Supplementary Table 1). PCA axis 1
(21.2% of total variance) reflected a syndrome of urban
variables, providing a gradient of “urbanity” across sites,
with low scores representing more urban sites. This “urban
syndrome” consisted of soil sealing, urban climate zone, floor-
area ratio (FAR, a parameter reflecting building development),
road density and distance from the city center. PCA axis
2 (10.8% of total variance) reflected a gradient of soil
chemical properties including nutrients and heavy metals.

Sites with high axis 2 scores generally had high levels of
metals such as Cadmium and Zinc, and high levels of
Nitrogen. PCA axis 3 (7.9%) reflected a more complex
gradient, separating sites according to a collection of variables
including some clearly urban-related variables such as site
connectivity, and the density of roads and railways. Also
included in PCA axis 3 was the size of the grassland patch,
and some chemical variables such as C:N ratio and cation
exchange capacity.
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Principal component analysis axis 1 scores were found
to vary between sites established as grasslands before 1945
and those established since (Supplementary Figure 3). This
collinearity was taken into account in further statistical analyses.

Total community composition

A table showing a breakdown of OTU richness for each
taxonomic group can be seen in Supplementary Table 2,
presented as pie charts in Supplementary Figure 4 and as area
plots in Supplementary Figure 5.

The fungal dataset contained 1530510 reads. Reads had
a mean length of 286 bases, with a standard deviation of
57. The most abundant phyla present were the Ascomycota
(65% of reads), Basidiomycota (23%), Mortierellomycota (6%),
Glomeromycota (1%), and the Chytridiomycota (1%). 1%
of reads were split between 10 low-abundance phyla (see
Supplementary Figure 4A). 3% of reads were unassigned at
the phylum level.

The Glomeromycota-specific dataset contained 882648
reads. Reads had a mean length of 382 bases, with a standard
deviation of 38. All four orders of the Glomeromycota were
present; the Glomerales (54% of reads), the Diversisporales
(43%), the Archaeosporales (3%), and Paraglomerales (<1%).

The bacterial dataset contained 965520 reads. The mean
read length was 254 bases, with a standard deviation of 14.
The most abundant phyla present were the Proteobacteria
(18% of reads), Actinobacteriota (14%), Acidobacteriota (14%),
Verrucomicrobiota (9%), Bacteroidota (8%), Planctomycetota
(5%), and Patescibacteria (1%). 12% of reads were split between
38 low-abundance phyla (see Supplementary Figure 4C). 9% or
reads were unassigned at the phylum level.

The Cercozoan dataset contained 569088 reads. The mean
read length was 314 bases, with a standard deviation of 14.
The most abundant orders present were the Glissomonadida
(38% of reads), Cercomonadida (21%), Cryomonadida (15%),
Euglyphida (10%), Limnofilida (1%), and Spongomonadida
(2%). 5% of reads were split between 14 low-abundance orders
(see Supplementary Figure 4D). 7% of reads were unassigned
at the order level.

Drivers of microbial richness

There was strong evidence that fungal OTU richness
increased with urbanity (PCA axis 1 coefficient = −16.30,
p = 0.005), and with higher concentrations of nutrients and
metal elements (PCA axis 2 coefficient = 15.46, p = 0.048),
but weak evidence that richness was higher in older sites
(coefficient = −68.63, p = 0.07) (Figure 2). Glomeromycotan
OTU richness was also greater in sites with higher nutrient and
heavy metal content (coefficient = 2.61, p = 0.007). There was

a weak trend for bacterial OTU richness being higher in post-
1945 sites than pre-1945 sites (F = 3.50, p = 0.068), although
no relationship was seen with any of the other environmental
parameters. Cercozoan OTU richness did not correlate with any
of the environmental parameters or site age.

Drivers of microbial community
composition

PERMANOVA revealed strong evidence for the community
composition of all taxonomic groups being driven by both
urbanity and soil chemistry (PCA axes 1 and 2; see Figure 3
and Supplementary Table 3). We also found strong evidence
for PCA axis 3 (site connectivity and miscellaneous variables)
driving Glomeromycotan community composition. There was
also weak evidence for the community composition for
the other three taxonomic groups being driven by PCA
axis 3 (Supplementary Table 3). We found no evidence
for the age of sites influencing community composition in
any of the taxonomic groups. Represented via NMDS, it is
clear how communities segregate differently across all three
environmental PCA axes, with this pattern being most linear for
PCA axes 2 and 3 (Figure 3).

Distance-decay analysis provided strong evidence for
fungal, Glomeromycotan and bacterial community diversity
changing with geographic distance, with this trend being
particularly strong for the fungi and Glomeromycota (Figure 4).
Considering that PCA axis 1 included one geographic parameter
(distance from city center) it is notable that for one dataset,
the Glomeromycota, PCA axis 1 was not seen to correlate
significantly with diversity whilst geographic distance did.

Beta diversity partitioning revealed that for all organism
groups, species turnover accounted for the vast majority of beta
diversity (Table 1).

Taxonomic breakdown of diversity

The richness of multiple taxonomic groups from each
dataset were found to correlate significantly with one or
more PCA axes according to Kendall correlations. Using
hierarchical partitioning to explore the relative importance of
each environmental axis to these taxonomic groups (Table 2),
we found evidence that within the fungal dataset, PCA axis
1 was the most significant driver of richness for four phyla,
including the Ascomycota (of which it explained 86.3% of
variance) and Glomeromycota (85.8%), and the OTUs which
were unassigned at the phyla level (80.4%). For all three of these
groups, richness was higher at more urban sites (Supplementary
Table 5). PCA axis 2 was found to be the most important
driver of richness for three fungal phyla, all of which positively
correlated with soil nutrient/heavy metal content, including
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FIGURE 2

Variation of OTU richness in taxonomic groups across environmental gradients. The figure displays a graphical representation of the results of
multiple linear regressions of OTU richness within each taxonomic group. The regression model was Site age + PCA axis 1 + PCA axis 2 + PCA
axis 3. Each plot shows richness plotted against site scores for the three PCA axes, representing environmental syndromes, and site age. Please
note that lower scores for PCA axis 1 represent more urban sites. Lines are plotted on correlations for which p ≤ 0.05; these are linear model
regression lines, with gray areas representing 95% confidence areas. Boxplots show the mean, 25th, and 75th percentiles, with whiskers
extending to the range, excluding outliers. Statistical results are reported at the bottom of each plot.

the Mortierellomycota (75.5%). PCA axis 3 was found to be
the most important driver of richness for only one phylum,
the Basidiomycota (43.6%), which correlated positively with
this environmental axis representing site connectivity. This
was the only time PCA axis 3 was identified as the most
important driver of richness within any of the datasets. Within
the Glomeromycotan dataset, PCA axis 1 was found the be
the key driver of richness for the Archaeosporales (72.2%),
for whom richness was higher in urban sites, and PCA
axis 2 was found to be the key driver of richness for the
other two groups identified, the Diversisporales (85.7%) and
Glomerales (70.9%), the richness of both of which increased
with soil nutrient/heavy metal content. Of the nineteen bacterial
phyla identified as correlating with an environmental PCA
axis, PCA axis 1 was the most significant driver of urbanity
for thirteen, with the richness of the remaining six driven
by PCA axis 2. Nine Cercozoan orders were identified as
correlating with PCA axes, for three of whom PCA axis 1

was the key driver, with the richness of the remaining six
orders driven by PCA axis 2. For a complete list of the
hierarchical partitioning results of all taxonomic groups please
see Supplementary Table 5.

One hundred and thirty OTUs within the fungal dataset
were identified as being likely urban indicator species (p < 0.05)
for the eighteen most urban sites (denoted by them having the
lowest PCA axis 1 scores), of these OTUs, twenty seven were
identified at the species level. We found evidence for Gibberella
tricincta being a likely indicator species (p = 0.047) as well
as being in the top 20 most abundant OTUs. However, our
heatmap demonstrated an uneven distribution between urban
sites, with a peak of abundance in only one site (Figure 5). Also
appearing in the list of potential indicator species, and in the
top 20 OTUs, were two different OTUs representing Mortierella
alpina (p = 0.017 and 0.029). Within the heatmap these OTUs
demonstrated different dispersal between sites and it is likely
these OTUs therefore represented separate strains. Within the
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FIGURE 3

Grassland microbial communities in Berlin, plotted in relation to environmental variation. Non-metric multidimensional scaling (NMDS) plots
showing fungal (2D stress = 0.16), Glomeromycotan (2D stress = 0.27), bacterial (2D stress = 0.12), and Cercozoan (2D stress = 0.13)
communities segregated by environmental principal component analysis (PCA) axis scores. Reported in each plot are the statistical outputs of
marginal PERMANOVA models. Sites are colored by age, the PERMANOVA results for site age are: Fungi, R2 = 0.021, p = 0.216; Glomeromycota,
R2 = 0.020, p = 0.345; Bacteria, R2 = 0.017, p = 0.577; Cercozoa, R2 = 0.019, p = 0.341.

FIGURE 4

Distance-decay analysis along environmental gradients across grasslands in Berlin. The figure displays mantel correlograms showing
community dissimilarity correlated with environmental and geographic distance. Black points indicate strong evidence for differences between
distance matrices (p ≤ 0.05). The statistical outputs of simple Mantel tests are presented in each plot. The full outputs of simple and partial
Mantel tests are reported in Supplementary Table 4.
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TABLE 1 Results of beta diversity partitioning for
each organism group.

Fungi Glomeromycota Bacteria Cercozoa

Species turnover 0.952 0.928 0.952 0.942

Nestedness 0.009 0.019 0.013 0.014

Total beta diversity 0.961 0.947 0.964 0.956

Species turnover was measured as Simpson dissimilarity, nestedness as the nestedness-
resultant fraction of Sørensen dissimilarity. Total beta diversity was measured as
Sørensen dissimilarity.

TABLE 2 Microbial taxonomic groups for which urbanity [principal
component analysis (PCA) axis 1] was identified as the key explanatory
variable for shifts in OTU richness.

Fungi
(phyla)

Glomeromycota
(orders)

Bacteria (phyla) Cercozoa
(orders)

Ascomycota
(↑)

Archaeosporales (↑) Actinobacteriota (↑) Cercozoa_XX
(↑)

Chytridiomycota
(↑)

Bacteroidota (↑) Filosa-
Imbricatea_X
(↑)

Glomeromycota
(↑)

Bdellovibrionota_B (↑) Plasmodiophorida
(↑)

Olpidiomycota
(↑)

Chloroflexota_A (↑)

Unassigned at
phyla level (↑)

Eremiobacterota (↓)

FCPU426 (↓)

Firmicutes_B (↑)

Gemmatimonadota (↑)

Methylomirabilota (↑)

Myxococcota (↑)

Nitrospirota (↑)

Proteobacteria (↑)

Sumerlaeota (↑)

These groups were identified through hierarchical partitioning of all groups for
which Kendall correlations provided strong evidence for environmental variation
driving richness. Arrows show whether OTU richness increased (↑) or decreased
(↓) in response to increasing urbanity levels (decreasing PCA axis 1 score). Results
of hierarchical partitioning for all highlighted taxonomic groups is presented in
Supplementary Table 5.

Glomeromycotan dataset three OTUs were likely indicator
species, of which only Scutellospora calospora (p = 0.032) was
identified at species level. This was also the most abundant
Glomeromycotan OTU present in the dataset (Figure 5). Within
the bacterial dataset 339 OTUs were identified as likely indicator
species, of which 127 were identified at the species level. One
hundred and three Cercozoan OTUs were identified as likely
indicator species, of which eleven were assigned at the species
level. Paracercomonas compacta (p = 0.022) and Neocercomonas
jutlandica (p = 0.047) were both highly abundant OTUs and
potential indicator species, despite an apparently relatively wide
dispersal (Figure 5). For a list of likely urban indicator species
see Supplementary Table 6.

Discussion

The results of this study indicate that within an urban
landscape, soil microbial communities are shaped not only
by soil chemistry, but also by factors intrinsically linked to
urbanity itself, indeed, total species richness appears to increase
with urbanization. Changes in community composition and
richness due to urbanization appear to vary between microbial
organism groups.

It is important to note that whilst we pick out some
individual species for discussion here, these species are selected
due to their iconic nature in the literature; the wealth of data
available from this study makes it infeasible to comprehensively
cover all species.

We found strong evidence for positive relationships between
urbanity and the diversity of many microbial phyla, across
multiple kingdoms. This pattern was especially clear in the
Fungal kingdom, where it can be seen at a higher taxonomic
level than in the other organism groups we studied. The
response of fungal community richness to urbanity can
therefore be compared to that of plant communities, which
have also been shown to increase in richness in response to
urbanity (McKinney, 2008). Our results contrast with previous
observations of fungal richness not changing with urbanity,
and bacterial and Cercozoan richness increasing (Delgado-
Baquerizo et al., 2021). Other studies have even reported
decreases in fungal richness with urbanity (Abrego et al., 2020).

Our study provides evidence that soil microbial
communities in urban landscapes are not solely driven by soil
chemistry, although this certainly plays a role. Our PCA axis
2, representing soil chemistry, had varying impacts depending
on the organism group in question. We found evidence of
fungal richness increasing alongside increasing nutrient/heavy
metal content. This was also true for the Glomeromycota,
in accordance with Tipton et al. (2019), who had previously
described the abundance of Glomeromycota in an urban study
as being driven by soil chemistry. Despite an absence of this
trend in richness in the bacterial and Cercozoan datasets,
PERMANOVA and mantel tests both demonstrated strong
evidence for soil chemistry shaping all microbial communities.
Interestingly, the results of Mantel tests suggested an especially
strong impact of soil chemistry on the bacteria and Cercozoa.
The small physical size of these organism groups may inhibit
their ability to maintain homeostasis in response to a chemical
gradient (Luan et al., 2020), and thus explain this trend.

Within the Glomeromycota, we found evidence for urbanity
driving an increase in the richness of the Archeosporales
(ancestral AMF, sensitive to drought; Canarini et al., 2021),
whereas the Diversisporales (thought to be vulnerable to heat
or drought, and favor fertile soils; Xiang et al., 2016; Alguacil
et al., 2021) and Glomerales (indicators of drought; Canarini
et al., 2021) increased in richness in response to increasing soil
chemical concentrations.
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FIGURE 5

Turnover of the most abundant microbial OTUs across the urbanity gradient in Berlin. The figure displays heatmaps of the top 20 most abundant
OTUs within each organism group, arranged across the axis in order of principal component analysis (PCA) axis 1 score. For the fungal and
Glomeromycotan OTUs, binomial annotations are included when identified. Otherwise, the highest taxonomic level attributed to the OTU is
used. Labels are colored according to phylum in the fungal heatmap and according to order in the Glomeromycotan heatmap. The bacterial
heatmap is annotated with the order and genus assigned to OTUs, or family if the genus was unassigned. Labels are colored according to
phylum. OTUs in the Cercozoan heatmap are labeled with their binomial name, or the highest taxonomic level assigned. Labels are colored
according to order.

Glomus macrocarpum was present twice within the top 20
most abundant Glomeromycotan OTUs in our study, showing
two different patterns of distribution. This was presumably due
to two sub-species having differing environmental preferences.
It is notable that one subspecies appeared to show highest
abundance in the rural and urban areas, whilst the other
showed its highest abundance in sites of intermediate urbanity.
Interestingly, this species has previously been described as
both sensitive (Oehl et al., 2010; Carrenho and Gomes-da-
Costa, 2011) and resilient (Sousa et al., 2013) to disturbance.
Our observations reaffirm the importance of asking questions
about the correct taxonomic resolution for studies such as this
(Roy et al., 2019), and provides strong support for van der
Heijden et al.’s (2004) suggestion that inferring traits based on
taxonomy alone, particularly at the species level, is problematic.
In addition, we identified S. calospora as a likely indicator
species for high urbanity, whilst this species has previously been
described as sensitive to disturbance (Gupta et al., 2018) and as
a generalist (Oehl et al., 2010).

Another notable way in which our study compares
with existing literature is in the case of Mortierella

elongata. This fungus has previously been identified as a
globally abundant indicator species of urban green spaces
(Delgado-Baquerizo et al., 2021). Although we did not identify
this species as an indicator species of high urbanity, it was
the second most abundant OTU within our fungal dataset.
It appeared across most sites, with no clear trend relating to
urbanity. It should of course be noted that, according to other,
less precise, classifications of urbanity used elsewhere, all of
our sites could be classed as urban or peri-urban. In addition,
all sampling occurred during the summer, and consequently
seasonal variation was not taken into account.

One previous study, in the same system as this one, reported
an increase in non-mycorrhizal colonization of plant roots in
response to urbanity, whilst AMF colonization was not affected
(Whitehead et al., 2022). Our observation of an increase in
richness of the Ascomycota in response to urbanity, supports
the hypothesis that these non-mycorrhizal endophytes were
Ascomycota dark septate endophytes. Previous research has
suggested that globally, this phylum increases in abundance at
urban locations (Delgado-Baquerizo et al., 2021). Whitehead
et al. (2022) found that AMF colonization rates in these sites
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were likely driven by plant community composition, which was
in turn driven by a syndrome of parameters very similar to
the PCA axis 3 seen in this current study. Given the clear
linearity seen in the NMDS plot between Glomeromycotan
community, and PCA axis 3, we think it is likely that shifts in the
Glomeromycotan community were driven by plant community
composition. Indeed, the impacts of plants upon microbial soil
communities have been shown to be extensive (Philippot et al.,
2013), and it is likely that the shifts in microbial communities we
observed in relation to environmental parameters were in some
ways mediated by plants.

Our findings of increases in richness of abundant bacterial
phyla such as Proteobacteria and Bacteroidota, and less
abundant phyla, such as Nitrospira and Gemmatimonadota,
in response to urbanity, mimic findings from previous studies
(Wang et al., 2018; Delgado-Baquerizo et al., 2021; Stephanou
et al., 2021). We also observed urbanity increasing the richness
of the Actinobacteria, previously shown to be a significant
phylum in cities across China (Xu et al., 2014). The only two taxa
for whom we found evidence of a decrease in richness alongside
urbanity were the bacterial phyla Eremiobacterota (thought
to be acidophilic; Ji et al., 2021) and FCPU426 (potentially
associated with cellulose degradation; Doud et al., 2020). It
should be noted that for both of these phyla, the relative
proportion of variance explained by axis 1 was <50%, suggesting
a combination of factors driving this pattern. Urban-related
increases in soil pH and decreases in organic matter could
explain the reduction in the richness of these phyla.

Cercozoan biogeographical studies are rare in comparison
to those of the other groups in this study. However, the
lack of similarities between the Cercozoan NMDS plots and
those of the other organism groups suggests that within our
study the Cercozoa are unlikely to have exhibited top-down
control of other soil microbial communities, as previously
suggested by Gao et al. (2019). PERMANOVA demonstrated
strong evidence for both urbanity and soil chemistry driving
Cercozoan community composition with a weak trend for the
miscellaneous, but largely connectivity-related, variables of PCA
axis 3 also playing a role. Of the three Cercozoan orders we
identified as having their richness driven by urbanity, only
one, the Plasmodiophorida (a group of plant pathogenic slime
molds; Gould, 2009) is well described in terrestrial ecosystems.
One OTU from within this order, of the genus Polymyxa (root
parasites and vectors for viral parasites, such as Beet Necrotic
Yellow Vein Virus; Keskin, 1964), was within our top 20 most
abundant Cercozoan OTUs. Whilst the OTU was not clearly
distributed across the urbanity gradient, it was, however, most
abundant in sites of intermediate and high urbanity. These
observations again highlight the role plant diversity is likely to
have played in mediating the relationship between urbanity and
microbial community assemblage.

The age of sites did not significantly influence the
community composition of any of our datasets, despite the
collinearity between site age and urbanity. We did, however,

observe a weak trend for fungal and bacterial OTU richness
decreasing with site age. This finding contrasts those of Hui et al.
(2017), who found the reverse in a previous study. This differing
result is potentially due to different locations (Berlin vs. Finland)
and study sites (varied grasslands vs. lawns in parks). We
identified the highest richness of Ascomycota and Nitrospirota
in more urban, newer sites, whereas Hui et al. (2017) found these
groups to be of highest abundance in older sites.

The impacts of urban landscapes upon organism dispersal
are uncertain; both dispersal limitation due to habitat
fragmentation and increased dispersal due to roads and
railways, or even human movements, could be expected to
shape microbial communities. Whilst our study does not
investigate this topic in depth, our Mantel correlograms provide
evidence for soil microbial communities shifting across the
urban landscape, with these changes particularly pronounced
in fungal, including Glomeromycotan, communities. These
shifts were less pronounced for the bacterial and Cercozoan
communities, perhaps due to increased dispersal capacity as
a result of their small size (Luan et al., 2020). Within urban
landscapes, geographic distance is not a linear measure of
habitat dissimilarity and has a non-linear relationship with
urban-related variables. This can be seen in the shapes of the
Mantel correlograms, whereby sites on opposite sides of the city
share more similar communities than to those in the center.

Conclusion

Within Berlin’s grasslands, urbanity increases the richness
of many taxonomic groups across multiple microbial
kingdoms, and, alongside other more traditionally recognized
environmental features, such as soil chemistry, shapes
community composition. Urbanity appears to have a
diversifying impact upon fungal communities as a whole,
and upon many individual fungal and bacterial phyla, and a few
Cercozoan orders. However, the urban Cercozoan community
appears to respond less strongly to environmental parameters
than other microbial groups. Whilst we did identify individual
species that demonstrated particularly strong responses to
urbanity, we also found differing responses within the same
species, and would therefore urge caution when making
functional assessments based on taxonomic findings. Despite
this, within the Cercozoa, we noted a high abundance of
potentially parasitic species. Whether this is indicative of a
general trend deserves further study.
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