List of Figures

Figure 1.	SEM Models Proposed by Salthouse and Czaja (2000)
Figure 2. Figure 3.	The Composition of Variance in the Indicator Variables of a Hierarchical Factor Model Example of a Nested Factor Model
Figure 4.	A: Model with a Common Cause (CC) Factor on Top of a Hierarchical Structure of the
	Cognitive Mechanics and Variables of Sensorimotor Functioning.
	B: Nested Factor Representation of the Hierarchical CC Factor Model
Figure 5.	Nested Factor Model With BASE Data
Figure 6.	Directed Age-Associated Effects on the Factors of the NF Model Structure
Figure 7.	Age Correlations of Factors in the Nested Factor Model
Figure 8.	Age Correlations of the Factors in an Oblique Factor Model, Regression Weights for a
	Regression of Age on Oblique Factors and for a Regression on the Specific Factors in a Nested
	Factor Model
Figure 9.	Common Cause Factor Model
Figure 10.	Prediction of the Duration of Writing Activities in the Yesterday Interview With Basic
	Competency and the Nested Factor Model
Figure 11.	Sensitivity Analysis of the Age Correlations in the Nested Factor Model
Figure 12.	Basic Design of the Monte Carlo Simulation Study
Figure 13.	Standard Errors of the Estimates of Specific Effect as a Function of Sample Size and
	Disproportionality of General and Specific Variance Components in the Indicator Variables
Figure 14.	Model Fit (RMSEA) as a Function of the Age Correlation of the Specific Factor and the
	Disproportionality of the Model

List of Tables

Table 1.	Overview of Research Questions and Hypotheses
Table 2.	Communalities of the General and Specific Factors in the Nested Factor Model for Different
	Age Groups
Table 3.	Correlations of General and Specific Factors in the Nested Factor Model With Indicators and a
	Latent Factor of Socioeconomic Status
Table 4.	Correlations of General and Specific Factors in the Nested Factor Model With Items and Scale
	Score of Openness for Experience From the NEO
Table 5.	Influence of Disproportionality on the Number of Heywood Cases and Improper Solutions

List of Figures and Tables in Appendices

Figure A1.	Simulated Example Illustrating the Stepwise Procedure by Salthouse (1998)
Figure A2.	Simulated Example Illustrating the Stepwise Procedure by Christensen et al. (2001)
Figure B1.	Simulation Example With the Nested Factor Model and Directed Age-Associated Effects on
	the General and Specific Factors. All Parameter Values are Standardized Estimates
Figure B2.	Simulation Example With the Nested Factor Model and the General and Specific Factors
	Correlating With Age. All Parameter Values are Standardized Estimates
Figure P1.	Frequencies of Different Estimates for the Age Correlation of the General Factor in Runs With
	Improper Solutions
Table D1.	Activities Coded in the Yesterday Interview and Correlations with Cognitive Ability Tasks
Table E1.	Standardized Nested Factor Model Loadings for Young-Old Group (Age < 85.15)
Table E2.	
	Standardized Nested Factor Model Loadings for Old-Old Group (Age > 85.15)
Table E3.	Standardized Nested Factor Model Loadings for Old-Old Group (Age > 85.15) Standardized Nested Factor Model Loadings for Younger Adult Group (Age 25–69)
Table E3.	Standardized Nested Factor Model Loadings for Younger Adult Group (Age 25–69)
Table E3.	Standardized Nested Factor Model Loadings for Younger Adult Group (Age 25–69) Comparison of Unstandardized Factor Loadings in Age-as-a-Predictor Model, Age-as-a-

- Table H1. Age-Partialled Correlations of General and Specific Factors in the Nested Factor Model With Items and Scale Score of Openness for Experience From the NEO
- Table J1. Standardized Factor Loadings of the Nested Factor Model Estimated for Tasks Without Imputed Missing Values
- Table J2. Standardized Factor Loadings of the Nested Factor Model With Missing Values Replaced by EM-Estimates
- Table K1. Bootstrap Standard Errors, Estimates of Parameter Bias, and 95% Confidence Intervals (CI; Percentile Method) of Parameter Estimates for Standardized Factor Loadings
- Table K2. Bootstrap Standard Errors, Estimates of Parameter Bias, and 95% Confidence Intervals

 (CI; Percentile Method) of Parameter Estimates for Age Correlations of the General and

 Specific Factors
- Table L1. Bootstrap Standard Errors, Estimates of Parameter Bias, and 95% Confidence Intervals (CI; Percentile Method) of Parameter Estimates for Standardized Regression Weights of Writing and Basic Competency on the General and Specific Factors
- Table N1. Influence of Sample Size on the Number of Heywood Cases and Improper Solutions
- Table N2. Influence of the Number of Indicator Variables on the Number of Heywood Cases and Improper Solutions
- Table O1. ANOVA for the Standard Error of the Estimate of the Age Correlation of the General Factor
- Table O2. ANOVA for the Standard Error of the Estimate of the Age Correlation of the Specific Factor
- Table P1. True and Average Estimated Age Correlations of the General and Specific Factors Excluding Runs With Improper Solutions