
Freie Universität Berlin

Master thesis at the Institute for Computer Science at Freie Universität Berlin

Artificial Intelligence and Machine Learning Group

Analysis of the Generative Replay Algorithm and
Comparison with other Continual Learning Strategies

on Newly Defined Non-stationary Data Stream
Scenarios

Florian Mies

First Examiner: Prof. Dr. Eirini Ntoutsi
Second Examiner: Prof. Dr. Daniel Göhring

Advisor: Philip Naumann

Berlin, September 8, 2022

Abstract

Training neural networks on newly available data leads to catastrophic for-
getting of previously learned information. The naive solution of retraining the
neural network on the entire combined data set of old and new data is costly and
slow and not always feasible when access to the old data is restricted. Various
strategies have been proposed to counter catastrophic forgetting, among them
Generative Replay, where together with the discriminator a second, generative
model is trained to learn the distribution of the training data. When new data
becomes available the generator produces data resembling the old data set and
the neural networks’ training is continued on the combination of the new data
and the generated replay data. In this thesis, we implement this method and add
it to the Open Source Continual Learning Library Avalanche. We then compare
several variations of how to use Generative Replay in order to understand better
when the method works best, using the common benchmark scenario splitMNIST
as our testing scenario. We then argue that benchmarks like these do not neces-
sarily correspond to real-life settings and we propose a new scenario to address
this issue. We evaluate several strategies on the new scenario and find that state-
of-the-art method iCaRL is outperformed by Generative Replay. However, we also
find that Generative Replay is not easy to use and it requires knowledge on the
underlying scenario to adjust it to work properly.

Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem als
meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Bücher,
Internetseiten oder ähnliches sind im Literaturverzeichnis angegeben, Zitate aus frem-
den Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher
oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und auch nicht
veröffentlicht.

September 8, 2022

Florian Mies

3

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Our Corner of the Problem . 5
1.3 Structure of this Thesis . 6

2 Related Work 7

3 Foundations 8
3.1 Artificial Neural Networks . 9

3.1.1 The Supervised Learning Problem 9
3.1.2 Multilayer Perceptrons . 9
3.1.3 Generative Neural Networks . 10

3.2 Continual Learning in Neural Networks 11
3.2.1 Biological Perspective on Continual Lifelong Learning 12
3.2.2 Machine Learning Perspective on Continual Lifelong Learning . 12
3.2.3 Continual Learning Scenarios . 13

3.3 Fundamentals of Generative Replay . 14
3.3.1 Scenario for Generative Replay . 15
3.3.2 The Generative Replay Algorithm 15

4 Implementation Process 16
4.1 Avalanche Library . 18
4.2 Difficulties . 18
4.3 Highlights . 18
4.4 Artifacts . 19

5 Experiments: Understanding Generative Replay 19
5.1 How We Will Try to Understand GR . 20
5.2 Various Forms of Replaying Data . 21

5.2.1 Vanilla/Default Approach . 22
5.2.2 Fixed Replay Size . 23
5.2.3 Continually Increasing Number of Replay Samples 24
5.2.4 Weighted Loss . 25
5.2.5 Balanced Replay Samples . 27
5.2.6 Summary . 27

5.3 Generative Replay Repeated over Itself 31

6 Experiments: Novel, Non-stationary Streaming Scenarios 32
6.1 Changing the Class Order of splitMNIST 34
6.2 Evaluation of GR and Other Methods on a New Scenario 35
6.3 Reducing the Experience Size of splitMNIST 37
6.4 Summary . 38

7 Conclusion 39

A Appendix 47

4

1. Introduction

1 Introduction

1.1 Motivation

In recent years the Artificial Intelligence (AI) community has produced impressive re-
sults in various areas outperforming humans in individual tasks, such as playing Go
and object recognition [42, 46]. This has often been achieved by training ever deeper
neural networks, which are computational models composed of multiple processing
layers capable of solving these tasks. The models contain an ever increasing amount
of trainable parameters to such extent that the staggering 175 billion parameters of
Open AI’s GPT-3 model have been surpassed quite comfortably by the 530 billion pa-
rameters of NVIDIA and Microsoft’s Megatron-Turing Natural Language Generation
model in October 2021, making it the largest ever language model trained to date [48].
According to its original paper, training the GPT-3 model already takes "several thou-
sand petaflop/s-days of compute" [2], which has been estimated to cost anywhere
between 4-20 million USD for a single training run of the model. Where the lower
bound looks at the cheapest cloud computing option, neglecting that a sophisticated
orchestration of thousands of graphics processing units (GPUs) in parallel has to be
performed in order to train such models. [14, 35, 47]

The sheer amount of hardware and electricity costs to train state-of-the-art models
quickly raises the question how we can efficiently update a neural network once new
data is available. Ideally we could update the model by teaching it new informa-
tion whilst retaining its previous knowledge. Naively continuing the training phase
of a model and feeding it only the new data leads to the phenomenon known as
Catastrophic Forgetting (CF) [12], where the model quickly forgets the knowledge it ac-
quired on previous tasks. Therefore, in practice the update process is commonly done
by mixing the new data with the old data and effectively retraining the model from
scratch. This approach, however, is not only costly, as we have learned above, but it is
also not always feasible in cases where we do not have access to the entire previously
used data set (for instance due to limited storage or for data privacy reasons) [10].
The entire research branch of Continual Learning (CL) was born to study this problem
and is determined to find ways to mitigate catastrophic forgetting while efficiently
adjusting models to previously unseen data [6].

1.2 Our Corner of the Problem

Many methods have been proposed which can be roughly grouped into three ap-
proaches: the first are regularization-based methods which penalize changing those
parameters of the model that contain information on previous tasks [23, 29, 51].
The second are architectural-based methods which add neurons to the network and
change its architecture in order to provide new trainable parameters when new tasks
are to be learned [8, 43]. And lastly we have the group of rehearsal-based methods
which describes all strategies that have access to a pool of real or synthetic data from
the past which is then used to mitigate catastrophic forgetting when training on new
data [16, 40, 44]. There has also been a range of strategies proposed that combine
several of the approaches above [32, 37, 39]. We will present them in greater detail in

5

1. Introduction

chapter 3.2.2. For our research, the group of rehearsal-based approaches will be most
relevant, as we will mainly focus on the Generative Replay strategy which falls into
this category. From practical observations as well as from theoretical findings, it has
been suggested that replay-based approaches offer the most hopeful path of finding
an algorithm to solve the quest of continual learning. For example, [49] has found
strong evidence that some sort of replay might be necessary to solve the CL problem
on more complex data sets given that replay-based methods produced good results
where all other methods failed. Furthermore, it has been mathematically shown that
"optimal CL algorithms would have to solve an NP-HARD problem and perfectly
memorize the past" [24], which explains why it has proven so difficult to solve the
CL problem while at the same time the "results provide a theoretically grounded con-
firmation of recent benchmarking results, which found that CL algorithms based on
experience replay, core sets and episodic memory were more reliable" [24]. In par-
ticular there is one replay-based method that we want to study and understand in
greater depth as many reviews have either neglected it or merely scratched the sur-
face. The method is called Generative Replay (GR) for which no past data has to be
stored explicitly but instead a generative model is trained alongside the discrimina-
tor to generate as much data as needed at any given moment [44]. This method has
the huge advantage of being applicable in settings where it is infeasible to store any
data points, i.e. where we are in an online streaming setting. In this thesis we want
to understand the method better and we are asking questions such as: what are the
intricacies of implementing and applying generative replay? Which aspects have to
be taken into consideration and what are its limitations? This means concretely that
we will test different variants of the algorithm on existing benchmarks to determine
when it performs best. In a next step we will look at new scenarios that we believe to
be closer to real-world applications and evaluate Generative Replay along with other
existing strategies on those scenarios.

1.3 Structure of this Thesis

The thesis will be structured as follows: After concluding the introduction with this
section, we will, in Chapter 2, give an overview of the related works that our research
is embedded in. Chapter 3 then contains the theoretical foundations for our research.
Those include a mathematical introduction to Artificial Neural Networks (Section 3.1)
and then a definition of what it means to train those in a continual learning setting
(Section 3.2). Finally we will describe the Generative Replay algorithm which is used
to facilitate Continual Learning in Artificial Neural Networks (Section 3.3). This algo-
rithm is placed at the core of the remaining chapters in which we answer our research
questions regarding this method. As a first contribution to the existing research we
have implemented the algorithm and added it to the open-source continual learning
framework Avalanche. We hope that this implementation can serve as an entry point
for other researchers. We describe the Avalanche library and our contribution to it in
Chapter 4. Then, in Chapter 5, we will compare various variations of the algorithm on
the continual learning benchmark scenario spliMNIST regarding their performance.
The variations of the algorithms are concerning exactly how we replay the generated
data. We find that in order to efficiently learn incrementally, we need to either increase

6

2. Related Work

the number of replayed samples over time or we have to increase their importance in
the loss calculation, such that new tasks a neural network learns are considered less
important as the existing knowledge of the model grows. We then show that similar
results can be achieved by using a conditional generator and enforcing equally dis-
tributed replay samples among classes. In Section 5.3 we rerun an experiment from
the original paper ([44]) using our own implementation of the algorithm. Although
we do not reproduce the exact results, we find that the algorithm is indeed robust
even with regards to reinitializing the model’s weights before training a new task. We
conclude that the generator, which in our case uses a very simple architecture, acts
as a bottleneck for the performance of the algorithm. We then shift the focus to a
more scenario-centric perspective. In Chapter 6, we look at two scenarios which we
believe to counter some of the unrealistic assumptions that are embedded into estab-
lished benchmark scenarios. We compare Generative Replay with other methods on
a new scenario where the data distribution of the data stream changes over time and
classes can reappear in later experiences. We find that GR outperforms state-of-the-
art method iCaRL on this scenario, a method we describe in Chapter 2. In another
scenario, we reduce the amount of samples that are trained in each experience to a
single batch. Here GR fails and some of the weaknesses of the method come to light.
In particular, the complex interplay of discriminator and generator make the method
difficult to handle. In comparison, we find that other methods, in particular GEM
(Gradient Episodic Memory), excel in both scenarios and are easy to use. Finally we
summarize and conclude our findings in Chapter 7.

2 Related Work

We want to briefly embed our work and research topic into the context of other related
works and summarize the insights that have been generated so far. At the same time
we also want to point out how this work is contributing something new that, to
the best of our knowledge, has been underrepresented or overlooked in the related
literature.

The generative replay method, which is the center piece of this analysis, was pro-
posed in [44] and we will explain the paper’s contribution in detail in Section 3.3.
We noticed, however, that the algorithm is described on a high level perspective and
that the paper does not describe the intricacies of implementing and applying this
algorithm. We identified this as missing information in the study of this algorithm
and we dedicate Chapter 5 to filling this gap. Another work that mainly focuses on
Generative Replay is [49]. It evaluates the method on more complex data sets and
introduces extensions of the algorithm, that are directly inspired by the biology of
the mammalian brain and that increase its performance particularly on more chal-
lenging data sets, the authors call it Brain-inspired Replay. Furthermore the work
establishes the robustness of Generative Replay and it shows that those methods that
do not use any form of memory replay fail on the more complex data set. The range
of other methods that have been proposed to counter catastrophic forgetting will be
briefly summarized in Section 3.2.2. There are several works that evaluate and com-
pare these methods in terms of performance on different benchmark data sets. [50]

7

3. Foundations

has established a framework for evaluation which we will describe in 3.2.3. It also
compared a range of continual learning strategies in this framework. Another such
evaluation of existing methods but on more complex data sets can be found in [10].
Both surveys postulate the iCaRL strategy [39] to be state-of-the-art.
iCaRL (Incremental Classifier and Representation Learning) stores an exemplar set (a
set of samples) of each class it encounters during training, with some upper bound
K on the total amount of stored samples (and thus is a rehearsal-based method). It
trains a convolutional neural network consisting out of a feature extractor and a clas-
sifier. The network, however, is only used for representation learning (of images) and
not for their classification. When it comes to inference, iCaRL classifies an image by
forwarding it through the feature extractor to obtain its low dimensional represen-
tation and then comparing it to the mean representations of each exemplar set, the
class prototype, using the standard euclidean norm. The class of the nearest proto-
type is chosen to be the input image’s predicted class. The training of the network
is performed on the stored exemplar sets combined with the new data and uses both
a classification and a distillation loss for optimization. With each new class, a new
exemplar set is created and the existing exemplar sets are reduced in size [39].

Since many works have pursued a strategy-centric view in the sense that they develop
new strategies that increase the performance on commonly used benchmarks, we
want to adopt a more scenario-centric perspective. Already in other works, criticism
has been raised regarding the established benchmark scenarios, saying that these do
not reflect scenarios that would be encountered by real-life applications for continual
learning, such as an autonomous agent learning to survive in changing environments
[16, 32]. We join this argumentation and we aim to test Generative Replay in different
kinds of scenarios that resemble more those of real-life applications. Both [16] and
[32] introduce new strategies designed to be able to learn even with small increments
of data. Generative Replay has not yet been compared to other methods under such
conditions, which we see as a gap in research that we would like to fill (Section 6.3).
In Section 6.2, we design a new scenario to observe how common CL strategies react
to an imbalanced data set as well as disappearing and reappearing tasks over time.
We believe that such a scenario has not been proposed in the literature so far and
we actually find that state-of-the-art method iCaRL is outperformed by Generative
Replay in our newly proposed scenario.

3 Foundations

While Machine Learning is about learning representations and underlying structures
of large high-dimensional data sets [26], Continual Learning aims to do the same
in a dynamic, non-stationary environment where the data set grows and changes
over time [4]. Before studying possible solutions in this dynamic setup, we want
to first mathematically establish the more general problem formulation and give an
introduction to the group of machine learning algorithms that we will be dealing with:
Artificial Neural Networks. We will then establish how continual learning for these
neural networks can be tackled by drawing inspiration from how biological learning
in humans works and by transferring it to computational learning systems [36]. We

8

3.1 Artificial Neural Networks

will introduce methods that have been proposed to prevent catastrophic forgetting
and after introducing the setup in which these methods are commonly evaluated, we
will describe in detail the generative replay algorithm that we will analyse later on.

3.1 Artificial Neural Networks

3.1.1 The Supervised Learning Problem

The largest group of machine learning algorithms are those using supervised learn-
ing. It is the class of problems where for each element in a data set we have a corre-
sponding label providing the correct answer to the question that is to be solved. For
example, if we want to train a model to recognize whether an image is showing a
dog or a cat, the set of images we are training on comes with a label for each image,
indicating whether one can see a cat or dog in it. Mathematically we formulate it as
follows:

Given is a set of N points (X, y) = {(xi, yi)}i=1,...,N , called the training set. xi ∈ Rm are
the input vectors or features (of dimensionality m) and yi ∈ R are the corresponding
labels. The goal is to approximate the function f : Rm → R underlying the data, i.e.
f (xi) = yi, ∀i ∈ (1, ..., N), with a model ŷ(·, θ), using a set of learned parameters θ

such that:

ŷi = ŷ(xi, θ) ≈ f (xi) = yi

The parameters θ are trainable and we want to find a configuration that minimizes
the distance of the model to the function. In order to measure that distance we use an
appropriate loss function C, which could take the form C(X, y, θ) = ||y− ŷ(X, θ)|| for
some norm || · ||. Given C we can then formulate a minimization problem, which we
aim to solve computationally:

θ̂ = arg min
θ

C(X, y, θ)

3.1.2 Multilayer Perceptrons

One method to tackle the above problem is by using perceptrons or artificial neurons
as models to approximate the function f . A perceptron is a composition of a linear
function, represented in the form of a weight vector w ∈ Rm and bias b ∈ R, and
a fixed non-linear function σ, which together maps an input vector x to an output
value ŷ, i.e. σ(wTx + b) = ŷ. The non-linearity σ is also called activation function
and for example in the most basic case it is the unit step function, which maps any
positive value to 1 and any negative value to 0 [18]. If we stack up n perceptrons of
different weights and biases, we can write those parameters in a single weight matrix
W ∈ Rnxm and bias vector b ∈ Rn to compute an output vector ŷ = σ(Wx + b) of size
n, where σ(·) is applied element-wise to its input vector. If we now use the output
vector y as an input vector for another stack of perceptrons, we create a recursion and
obtain a Multilayer Perceptron. Since the architecture of the perceptron was inspired by

9

3. Foundations

how neuron cells in animal brains operate, an alternative name for this architecture
is Artificial Neural Network. For a neural network with L layers, each layer can then
recursively be defined as:

xl = σ(Wl−1xl−1 + bl−1) for l = 1, ..., L

With x0 being the original input vector and xL = ŷ being the final output or predic-
tions of the network. Each vector in between describes a different representation of
the original input data, which is why this method belongs to the class of representa-
tion learning methods [26]. L− 1 is the depth of the network and when using multiple
layers, we are performing deep learning, meaning that we compute multiple levels of
representations [26]. In line with the supervised learning problem we can use the final
outputs of the last layer to compute a loss term and adjust the model’s parameters in
order to minimize that loss. In the case of neural networks, the trainable parameters
comprise the weight matrix and the bias vector, i.e. θ = (W, b).

The theoretical foundation that legitimates the use of multilayer perceptrons to ap-
proximate f comes from the Universal Representation Theorem. It states, sloppily for-
mulated, that if (and only if) σ is a non-polynomial function, then a multilayer percep-
tron of just a single hidden layer, given it contains sufficiently many artificial neurons,
can approximate any continuous function f with arbitrary precision [9, 18]. With that
in mind, the caveat about this theorem is that it does neither promise that there is
any efficient algorithm to obtain the weights and biases of such a network, nor does
it impose any limit on the number of neurons that might be necessary to achieve the
desired approximation. However, using modern algorithms, namely the backpropa-
gation algorithm, combined with newly developed dedicated computing hardware,
we are nowadays in the position to train even very large-scale neural networks. Es-
pecially networks of increasing depths, i.e. networks with many hidden layers, rather
than fewer hidden layers but with more neurons, have shown to be a significant im-
provement [25].

3.1.3 Generative Neural Networks

Common and well studied tasks for neural networks are classification and regression.
In these cases, a neural network is called a discriminative model. Recently, genera-
tive deep neural networks have been proposed that differ in their learning objective
and architectures from their discriminative counterparts [28]. Instead of learning the
distribution of a training data set to produce output labels for new inputs, the goal
of generative models is to produce outputs that take the form of data points in the
original data set. But for a random input into the generative model, it is expected to
generate an output that is entirely unique and different from any sample in the origi-
nal data set. An example would be a model that generates portrait images of humans,
which can be clearly recognized as such, but in general there exists no human that
looks exactly like the person depicted in the generated portraits. The most popular
strategies, of which different variants can be found in the literature, are Generative
Adversial Networks (GAN) [13] and Variational Autoencoders (VAE) [22].

10

3.2 Continual Learning in Neural Networks

GANs consist of a generative model and an adversary discriminative model, which
has the task to determine whether a sample was generated by the generative model
or whether it actually comes from the real data distribution. The generative model es-
sentially learns to fool its adversary and thus learns to generate increasingly realistic
samples [13].
VAEs on the other hand are characterized by a single neural network that reduces the
dimensionality of the input by having hidden layers with few neurons and then ex-
pands the signal again by increasing the size of the hidden layer, such that the output
layer has the same dimensions as the input layer. This is similar to compression and
if it were not for the non-linear activation functions this setup would be equivalent to
performing a Principal Component Analysis (PCA) and reversing it again. The objec-
tive function to train this network is to minimize the difference between each input
sample and its output of the network. The dimensionality-reducing part of the net-
work is called the Encoder, the expansion part is called the Decoder. After finishing
the training phase, we only use the Decoder part for generating new samples. This
is done by forwarding random, low-dimensional input data into the Decoder part of
the network. In order to train a discriminative network in a continual setup with
generative replay, we will make use of these generative architectures. The details are
described in Section 3.3.2.

3.2 Continual Learning in Neural Networks

Equipped with the foundations of artificial neural networks, we want to introduce the
more dynamic setting we will be training neural networks in. Continual Learning,
also called continuous lifelong learning [5, 6] or incremental learning [39, 45], refers
to "the ability to continually learn over time by accommodating new knowledge while
retaining previously learned experiences" [36] and has been a long-standing challenge
for machine learning. In terms of our problem formulation this means that the full
data set (X, y) is not available in its entirety ahead of training but instead arrives in
a streaming fashion where the data distribution might change over time. Computa-
tional systems that learn new information over time tend to show a disruption or even
erasion of previously learned information, that is it exhibits catastrophic forgetting. It
has been studied that a system must be plastic in order to integrate new information
but at the same time it also must be stable in order not to catastrophically interfere
with previous knowledge. Since these two characteristics are directly opposed to each
other, this is known as the stability–plasticity dilemma [15]. Even though retraining the
network on the entire data set that includes all previous data together with newly
available data is a solution to catastrophic forgetting, it hinders the learning of novel
data in real time due to its inefficiency. An example use case that is often mentioned
in the literature, also due to a recent raise in interest, is that of autonomous agents
and robots which learn by directly interacting with their environment [3]. It is crucial
for such systems to be able to learn and infer in real time. Humans are confronted
with the same challenge and undoubtedly excel at learning throughout their life and
in fact catastrophic forgetting is usually not observed in biological learning systems
[12]. Therefore, as is often the case in AI research, we have turned to the ingenious
makeup of our own biological compute engine to draw inspiration for possible so-

11

3. Foundations

lutions for the problem at hand. We therefore want to shortly summarize what we
know about how the human brain continuously learns throughout life without forget-
ting the important knowledge it has acquired already (Section 3.2.1). We will then, in
Section 3.2.2, transfer those insights to the machine learning setting and present dif-
ferent classes of effective solutions that have been proposed. Finally, in Section 3.2.3,
we will introduce the established setup and benchmarks which are used to evaluate
and compare the various continual learning algorithms.

3.2.1 Biological Perspective on Continual Lifelong Learning

The stability–plasticity dilemma is well studied in the human brain, which has devel-
oped ways to overcome this dilemma. The most well known learning theory involving
the plasticity of neurons is Hebbian Learning [17]. It states simply put that repeated
and persistent activation of one neuron to another leads to a strengthened connec-
tion between them. In order to model stability and prevent unbounded strengthening
of few neural connections, in Hebbian systems additional constraints are imposed
on such connections, e.g. by specifying an upper limit on the average neural activity.
Such constraints or negative feedback to increased activity are called homeostatic [34].
Together, these two mechanisms describe how the brain facilitates lifelong learning on
the neuron and synapsis layer.

When looking at the level of brain regions, there is another, additional theory about
how the brain facilitates learning. On the one hand, humans have an episodic memory
and can recall specific events in details and on the other hand, we can generalize
experiences to form a more abstract knowledge. These two different tasks are brought
together in the complementary learning system (CLS) theory [33], which locates these
tasks in the hippocampal and the neocortical brain regions respectively. It states that
the hippocampus learns novel information rapidly, while the neocortex is learning
at a slower rate and offers for long-term retention. The interplay between these two
systems allows for remembering specifics but also for learning statistical regularities.
Both systems are known to deploy Hebbian Learning [38].

3.2.2 Machine Learning Perspective on Continual Lifelong Learning

We have learned that when connectionist models are exposed to new instances that
deviate sharply from the previous data, catastrophic forgetting occurs. The meth-
ods that have been proposed to overcome this can be roughly categorized into three
groups. They all show resemblance to the methods developed by biological systems.
The first group are architectural-based methods. For each task they train selected
parts of the networks and expand the architecture when necessary in order to rep-
resent new tasks. This method is very intuitive since with neurogenesis, there is a
direct equivalent in the mammalian brain. The mammalian brain continuously grows
new neurons, especially during the first developmental stages [11]. One example for
this method are Progressive Neural Networks, where for any new task a new neural
network is created and only the new parameters together with the lateral connections
to the previous network are learned. The parameters of the previous networks remain
fixed in order to avoid catastrophic forgetting [43]. A drawback for this method and

12

3.2 Continual Learning in Neural Networks

other methods that rely on a dynamic architecture is that the complexity of the neural
networks keeps growing with each task [36].
The second group of strategies are regularization-based methods. These methods
usually add an additional regularization or penalization term to the loss function of
the neural network training. This essentially corresponds to implementing homeo-
static behaviour, as described in 3.2.1, meaning the term acts as a counterweight to
the networks unbounded plasticity. By regulating the plasticity of the network we
prevent catastrophic forgetting. One example of such a regularization term was pro-
posed with the so-called Learning without Forgetting (LwF) approach [29], where
we compute and add the distillation loss to the total loss. The distillation loss is a
measure for how similar the old network is to the newly updated network and by
trying to minimize this loss, the network is incentivized to only minimally change its
parameters when learning the new task. Existing regularization methods have shown
to perform well on simple scenarios where the task to be solved is known at interfer-
ence, but they perform poorly when this is not the case.
The third group, which at the same time is the group our research focuses on, are
rehearsal-based methods. Essentially, these methods use some form of memory re-
play that is used to remind the network of the knowledge it has previously learned
and and therefore to reinforce it [36]. This approach shows parallels with the com-
plementary learning systems we have mentioned before, where we have the interplay
of two components, one of which represents a more detailed episodic-like memory
and the other component generalizes and learns statistical patterns. Rehearsal-based
approaches have been proposed early on in the research of neural networks [40] and
a simple example would be Exact Replay. In this case, we store a manageable sub-
set of the previous data and interleave it together with new data when we continue
the training of a network. We will go into more detail for another rehearsal-based
method, Generative Replay, in Section 3.3.

3.2.3 Continual Learning Scenarios

Our terminology will mainly adhere to the framework proposed in [50] for evaluation
of continual learning algorithms. The authors propose three continual learning sce-
narios that can be applied for various benchmark data set. This framework has been
widely accepted and is being used throughout the literature. We want to introduce
the scenarios and benchmarks here, together with definitions of the basic terminology
that we are using in this work.

In continual learning a model learns different tasks and these tasks are assumed to
be clearly separated and learned sequentially one by one. A task is defined by a data
set and corresponding labels, where either the set of labels or the data itself has a
unique distinction to separate it from other tasks. A task could for example be to
learn another Atari game after a model already has learned a first. Or it could mean
that a model that has been trained to distinguish images of cats and dogs now learns
to also distinguish images of elephants as well. The learning phase of such a new
task is called experience. We will argue in Chapter 6 that the assumption of clearly
separated tasks where in each experience the model sees the full data set belonging
to a single task only is too restrictive. For now, and in particular in Chapter 5, we will

13

3. Foundations

stick to this understanding of the CL setup. A scenario describes a set of experiences,
and is defined by the concrete tasks that are learned in each experience.
The first type of scenario is where during training and inference the model receives
information about which task is to be solved, meaning that each data point comes with
a task label. We will refer to this type of scenario as task-incremental learning or task-IL.
It is a very common scenario as many reinforcement learning problems are structured
this way [49], but it is not realistic for other applications. If no task labels are given,
we distinguish between two scenarios. The first case is domain-incremental learning or
domain-IL, where no task labels is provided and the model does not need to infer
the task label during inference. This would usually be the case because the different
tasks are all structured in the same way, such that the output takes the same form
and only the input changes. An example for this would be after classifying restaurant
reviews to be either positive or negative. The next task, or domain, could then be
to also classify film reviews into positive or negative. The possible outputs of the
network stays the same but the input distribution changes. Domain-IL is somewhat
more difficult than task-IL, however its possible applications are still limited such that
is has gotten less attention compared to the third class of scenarios: class-incremental
learning or class-IL. Here, we do not provide task labels with the data points either.
However, the possible outputs of the network are different to each other. The model
is required to infer which task it is seeing in order to succeed. This is exactly the
case where a model has learned classification for a set of classes and then needs to
distinguish a new class, like images of elephants as mentioned in the above example.
Architecture-based approaches as well as regularization-based approaches have been
shown to work well in the task-IL scenarios but do not extend well to domain-IL and
class-IL. Class-IL generally is seen as the most challenging CL setup [50].

Common benchmarks can usually be categorized to belong to one of the three groups
of scenarios. In this work, we will focus on class-IL. One of the most commonly used
benchmarks for this type of scenario is splitMNIST. The underlying data of this bench-
mark is the MNIST [27] data set which consists of 70,000 grayscale images with 28x28
pixel each. Every image shows a single handwritten digit ranging from zero to nine.
The images are separated into 60,000 training images and 10,000 images for testing
and they are roughly uniformly distributed among the ten classes of digits. This data
set is very widely used for testing and benchmarking machine learning algorithms,
for which case the images are usually shuffled prior to training. Conversely, for the
splitMNIST scenario, we split the data into ten experiences, each of which contains all
the images of a single digit. We then let the model train the experiences sequentially
with each experience containing a single task.

3.3 Fundamentals of Generative Replay

Rehearsal-based methods (also called replay-based methods) have shown to perform
very well in the continual learning setup described above [50]. In fact, the current
state-of-the-art approach, namely iCaRL [39], is rehearsal-based. However, there are
some drawbacks attached to relying on storing original data points for rehearsal:
there are cases where it is not possible to store these points until we want to update
our model. This could for example be for storage reasons when the original data set

14

3.3 Fundamentals of Generative Replay

continuously grows or for data privacy reasons, where data is only allowed to be kept
for a limited amount of time. And indeed, shortly after the first rehearsal methods
have been proposed in the early nineties [40], the same researcher worked on finding
a solution for their aforementioned drawbacks. In [41], Robins introduced the concept
of pseudo-rehearsal where essentially randomly filled input vectors, together with the
outputs that are produced by forwarding them through the neural network, construct
a new pseudo data set, which can be used as replay data. Despite the randomness of
the replay samples, this approach proved to reduce the severeness of the catastrophic
forgetting. But it didn’t solve the problem entirely. Despite this early success, it took
more than two decades until Hanul Shin combined the major advances that have
been made in data generation techniques with the pseudo-rehearsal approach. These
advances are mainly associated with the rise of deep learning, where dedicated neural
networks are trained whose output takes the shape of the data points of the input data
set. Recently for instance, these networks have been shown to generate realistic but
previously unseen images [13, 22]. In [44], Shin proposes to train such a generative
model alongside the classifying model and regularly generate data resembling the
original data set and to interleave it with the new data that is to be learned. The
method was named Generative Replay and it subsequently sparked related works to
build up on the idea [49]. In this chapter we will first define the scenario we will be
operating in (3.3.1) and then rigorously explain the GR algorithm (3.3.2).

3.3.1 Scenario for Generative Replay

The problem we are trying to solve is a classification task in a class-incremental learn-
ing scenario (as defined in Section 3.2.3). That means we have a series of K experiences
each defined by a data set (X, y)(k) = {(x(k)i , y(k)i)}i=1,...,N . Where xi ∈ χ is the ith data
point in experience k, e.g. a gray-scale image, and yi ∈ C is the corresponding class
label from a set C of classes. If we let C(k) be the set of labels encountered in expe-
rience k, then what defines the class-incremental scenario is the fact that in general
C(k) \ (C(k−1) ∪ ...∪ C(0)) ̸= ∅, meaning that in experience k there are classes that have
not been seen by the model before. The property that leads to catastrophic forgetting
on the other hand, and which makes the task difficult, is that there are classes in an
experience k that will not be encountered again in any experience i, i > k. In common
benchmark scenarios, like the splitMNIST scenario [51], this is the case for all classes
in an experience, amounting to C(k) ∩ C(k′) = ∅, ∀k ̸= k′. We will later argue that this
assumption is not realistic and there are indeed algorithms, most prominently iCaRL,
that rely on this assumption and perform much worse if it is not given (see Section 6).

3.3.2 The Generative Replay Algorithm

We now define the scholar as a tuple Sk = (Modelk, Generatork) consisting of a clas-
sifier model, which we will either call solver or simply the model, and a generative
model, which we will call the generator. We will train a sequence of scholars where
Sk is trained on (X, y)(k) and the input data is augmented by interleaving it with gen-
erated data (X̂, ŷ)(k), produced by Generatork−1. The entire training paradigm we
employ in our experiments is described in Algorithm 1 and visualized in Figure 1.

15

4. Implementation Process

Figure 1: Training a sequence of scholars. In the first iteration we train the model M0

and generator G0 on the data set of the current experience. In subsequent iterations
the current input data is interleaved with replay data and used to update the scholar.
Questions regarding how much replay data is generated and how it is best combined
with the real data will be asked and answered in chapter 5. Another consideration
that can be made is whether we generate all necessary replay data before the training
phase or whether we generate the data in every training iteration. The latter version
benefits from not having to store a potentially large replay data set, however it requires
to actually store a copy of the old scholar model (instead of overwriting it directly).

In practice we do not store the intermediate scholar models but simply overwrite Sk
with Sk+1 when training the next experience. This is because our goal is to obtain
a single scholar SK that contains all the knowledge of S0, ..., SK−1 and additionally
performs well on X(K) ∪ ... ∪ X(0). Furthermore, outside of research, we would not
have access to the sequence of experiences beforehand, but the experiences would
become available with a temporal distance. In Algorithm 2, we have summarized the
steps to update a previously trained scholar S when new data X becomes available.

4 Implementation Process

The implementation of the generative replay algorithm took a central role in creating
this master thesis, both time-wise and conceptually. There are several reasons for
that. For one, the implementation is crucial to all following experiments that build
upon the basic GR algorithm. It was important to create a piece of software that
is not only effective and efficient, but also easily extensible and adaptable. Many
questions only came up during the implementation phase itself and it proved vital
to have prepared for previously not anticipated use cases, by writing modular and
extensible code. In fact, while implementing, we actually noticed that depending on
the details of the implementation, the performance of the algorithm can change under
otherwise equal conditions. Chapter 5 is a result of this process and our program
can perform any of the proposed variations by simply specifying an input value.
Upon researching for existing code bases, we noticed that existing public repositories
were rigid and not easily adaptable to our needs. On the other hand, we found
that the open-source continual learning framework Avalanche was designed for rapid
prototyping, evaluation of many methods on easily changeable scenarios. However,
while a range of CL algorithms had been implemented for the framework, we found
Generative Replay to be missing among them. We made it to our goal to add a user-

16

4. Implementation Process

Algorithm 1 Generative Replay Algorithm

Input: X(0), ..., X(K): data for each experience; y(0), ..., y(K): corresponding class labels
Model0 ← random initialization
Generator0 ← random initialization
Model0 ← train(Model0, X(0), y(0))
Generator0 ← train(Generator0, X(0))
for k ∈ [1, ... , K] do ▷ K is the number of experiences

X̂← generateFrom(Generatork−1)
ŷ← Modelk−1(X̂)
X← X(k) ∪ X̂
y← y(k) ∪ ŷ
Modelk ← train(Modelk−1, X, y)
Generatork ← train(Generatork−1, X)

end for

Algorithm 2 Updating a Scholar with Generative Replay
Input: X: newly available data; y: corresponding class labels
Input: Trained scholar S = (Model, Generator)
Output: Scholar S = (Model, Generator) with knowledge of input scholar and (X, y)

X̂← generateFrom(Generator)
ŷ← Model(X̂)
X← X ∪ X̂
y← y ∪ ŷ
Model← train(Model, X, y)
Generator← train(Generator, X)
return (Model, Generator)

17

4. Implementation Process

friendly flexible implementation of the GR algorithm to the Avalanche framework
and to make the framework the center piece of our experiments as it allows for the
creation of custom scenarios and comparison with other methods. Next, we will give
a short overview of the Avalanche framework, afterwards we share the difficulties we
faced and the highlights of the implementation and finally conclude by describing the
artifacts that came out of this process and where they can be found.

4.1 Avalanche Library

Avalanche is an open-source end-to-end library for continual learning research based
on PyTorch, that was proposed in response to growing interest in continual learning
[31]. It aims at eliminating the difficulties of re-implementing and porting existing
algorithms to new settings for evaluation and comparison. Avalanche uses an archi-
tecture consisting of templates for strategies and plugins to add additional functional-
ities. A template defines an interface for training and evaluation of a provided model
on a data set, such a template could for example implement a supervised learning
training cycle. Plugins can simply be added to templates and each plugin implements
one or more callbacks. A callback is essentially a function that is called at a specified
step in the training cycle. For example, if we want to update our generative model
after training the discriminative model on an experience, we can do so by specifying
it in the "after_training_experience" callback, which will be executed after the training
of each experience.

4.2 Difficulties

While the Avalanche library promised to assist us with our research, it nevertheless
came with a steep learning curve as the library was still at an early stage such that
documentation was incomplete and not always up-to-date. To make our strategy
reusable and implement it in accordance to the library’s architecture, we had to get
familiar with the library first. The library is at such an early stage, however, that
during our implementation a restructuring took place as well as the first beta release.
Working on such a young project comes with its own set of problems, as many things
are still subject to change. The strategy and plugin architecture provide a framework
for developers that is very versatile and flexible, albeit it is not always straightforward
to see how to implement specific requirements within this framework. In fact, there
have been other attempts before, most notably by the author of [49, 50], to implement
generative CL methods in the Avalanche Framework, which have been struggling
with the Avalanche strategy architecture [19]. As the framework matures and docu-
mentation gets more solid, this should become less of a problem.

4.3 Highlights

We eventually raised a pull request that underwent a several weeks long period of
scrutiny, change requests and adaptations from our site. The process required en-
durance but was rewarding as the contribution was eventually accepted and our im-
plementation is now part of the python library Avalanche and has been published in
the Beta 0.2.0 release.

18

4.4 Artifacts

After this positive outcome, we eventually were able to yield the results of our work.
We found that running the algorithm on different scenarios and with various varia-
tions, as we do in Chapter 5, works efficiently and robustly. Furthermore, we have
created a starting point for anyone who wants to conduct further research on CL and
Generative Replay. It would be straightforward to add extensions, such as the ones
proposed in [49], or to run and compare Generative Replay with other methods on
new scenarios and data sets. We believe that our contribution substantially lowers the
bar of entry required for anyone to further research on Generative Replay.

4.4 Artifacts

The implementation of the GR algorithm is open-source and can be accessed via the
Github repository of Avalanche. A history of the commits alongside the discussion
and change requests of the Avalanche team can be viewed on the website of the pull
request [7]. The usage of the strategy follows those of other methods implemented in
Avalanche and there are examples of how to continually train a scholar model or a
standalone generative model provided in the libraries examples section. A documen-
tation of the implementation itself is provided by the extensively commented source
code.

Using this implementation as a basis, we designed and executed several experiments
for Capters 5 and 6. For each experiment we created a separate Jupyter Notebook and
added all of them to a public Github repository for reproducibility [21].

5 Experiments: Understanding Generative Replay

From hereon we will describe in detail the experiments we have run and we will ex-
plain the design decisions we took that guided our research and which helped us to
circumvent the challenges we faced during the implementation and execution.
Task: While CL is gaining importance in many AI fields, such as reinforcement learn-
ing or language models, we focused on the case of image classification and, as a
necessity for the employed algorithm, image generation.
Dataset: All experiments are be based on the hand-written digits data set MNIST, as
it is sufficient to allow us to evaluate the effectiveness of various CL methods on it
while also being small enough to allow the conceived experiments to run within our
limited compute power and within the time frame of this thesis. Furthermore, many
other works use it as benchmarking data set as well as for evaluating newly proposed
strategies [44, 50, 51]. Good results on the MNIST data set are, however, not to be
mistaken to hold generally true on more complex data sets and data sets of different
input types. It has been observed that the CL problem becomes much harder when it
is subject to a more complex data set or when substantially increasing the number of
possible classes to be learned in the class-IL setting [49].
Goal: Our research is to be understood as a foundation to better understand the GR
algorithm and a first try to establish a more realistic benchmark to evaluate CL meth-
ods. In order to verify the robustness and readiness to use in production of such
methods, further research needs to be done on scaled scenarios deployed on respec-

19

5. Experiments: Understanding Generative Replay

tively scaled computing resources.
Hardware: In our case, we use an Intel Core i7-5600U CPU @ 2.60GHz for which the
training of a single scenario in most cases took between 15-20 minutes.
Architectures: The model architectures for the scholar (i.e. generator and solver) are
shown in Figures 2 and 3. They were deliberately kept simple to reduce training time
and they were both implemented as PyTorch models.
Metrics: Our main metric for evaluation will be the accuracy of the solver model on
the 10k image MNIST test data set, that was previously unseen during training. We
measure the "forgetting" of a class by the change in accuracy over time (i.e. between
experiences) and consider a class to be catastrophically forgotten when the class ac-
curacy drops close to zero (< 5%).

Figure 2: Schema of the generator’s architecture we employ in all our experiments.
We use a Variational Auto Encoder, which can be separated into an Encoder and
Decoder part.

5.1 How We Will Try to Understand GR

Our first goal was to understand the intricacies and inner workings of the Genera-
tive Replay algorithm. We will base our research on [44], where the base algorithm
was proposed for the first time. However, in this paper, a row of questions were left
unaddressed when it comes to the exact implementation as well as a discussion re-
garding under which circumstances GR works best and how to appropriately set the
adjustable parameters. For example, a first obvious question when discussing Gen-
erative Replay is that of the generator’s architecture. The authors of [44] made a not
further justified choice of a GAN as their generative model, whereas [49] chose a VAE
at least in parts because some of their proposed improvements of the GR algorithm
make use of the VAE architecture. In our own initial exploration phase, we found
that the GAN training at times suffered from mode collapse, required a substantially
greater amount of training time and the training in general was harder to control.
Because of this experience and because we kept the possible improvements of [49] in
mind, we decided to opt for a VAE. Our implementation is structured in a modular
way such that the generator can easily be swapped. However, all experiments pre-

20

5.2 Various Forms of Replaying Data

Figure 3: Schema of the discriminator’s (or solver’s) architecture we employ in all our
experiments. We use a simple fully connected model of a single hidden dimension of
depth 512.

sented in the following sections use a VAE as generator.
Experiment 1: Another open question that has come up during the implementation
phase and that has proven to be central to the performance of the algorithm is how
much replay data to generate and exactly how it is best to be combined with the
current training data. We want to discuss this question in greater detail and observe
how it affects the performance of the solver. In the following subsection 5.2, we will
compare five different variations, in terms of the amount of replay data used and how
the loss on the replay data is weighted relative to the real data. We will see that it is
an important question to consider before implementing GR.
Experiment 2: Furthermore, in the subsection after that, Section 5.3, we want to ad-
dress one of the known shortcomings of the GR method which is that much of the
complexity of the original problem is shifted to the generator since generating clear,
realistic images is considered a difficult task on its own. We will see that even though
GR does not require perfect replay images (perfect for the human eye) the generator
does in fact play a central role for the method and acts as a kind of bottleneck to the
upper limit of the solver’s performance.

5.2 Various Forms of Replaying Data

If we look at Figure 1 we see that we use the generator to generate replay data X′

and compute the losses for both X′ and the real samples X. We then combine the
losses before performing the optimization step. This provides us with two adjustable
parameters, one is the amount of replay data that is generated, i.e. the cardinality

21

5. Experiments: Understanding Generative Replay

of X′, and the second is the weighting factor λ that we apply when summing up
the losses Ldata and Lreplay to compute the total loss, as seen in Equation 1. Both
presumably let us adjust the importance of the replay data relative to the real data.
Say, if we weigh the loss of the replay data twice as much as the loss for the real data
(i.e. λ = 2

3), we would expect to find a bias in the solver’s accuracy towards the classes
of the replay data. Similarly, increasing the number of generated images would yield
the same effect.

Ltotal = (1− λ)Ldata + λLreplay (1)

In the following, we look at various performance metrics for different settings of these
two parameters. We will evaluate the approaches on the class-incremental splitMNIST
benchmark scenario, which we described in Section 3.2.3. For simplicity, we have or-
dered the experiences numerically ascending, meaning that the model first encounters
all images of zeros and lastly all the images of nines. Since our main goal is to over-
come catastrophic forgetting, which is defined by the drop of the accuracy for classes
seen in previous experiences, we will use the accuracy per class as our main metric
of success. We will look at further metrics that can guide us in how to tweak the
algorithm to gain higher accuracies and reduce forgetting.

5.2.1 Vanilla/Default Approach

In a first and naive approach, without any further knowledge about how much data
to generate or how to weigh the loss terms of replay and real samples, we simply use
as many replay data points as there are real data points in each batch, i.e. |X| = |X′|.
Furthermore, we resorted to simply adding the two loss terms without any additional
factor, i.e. Ltotal = Ldata +Lreplay. We define this as the default setting of the algorithm.
Using this form of generative replay in the splitMNIST scenario gives us an overall
accuracy for the solver model of 59.25%, after training the scholar model on all ten
experiences with five epochs per experience and a batch size of 64. This number
is relatively low when compared to the upper bound of 95.32% which is obtained
by training the solver on the shuffled MNIST data, effectively avoiding catastrophic
forgetting all together. When we look at the respective accuracies per class in Figure
4, we see that catastrophic forgetting takes place and after the last experience, the
class three has been forgotten entirely (0%), dragging down the overall accuracy (the
overall accuracy describes the average over all classes). Moreover, when looking at
the replay samples that were generated by the generator per class in each experience,
with a subset plotted in Figure 7, we see that not only were there no replay samples
for classes one, two and three mixed into the training data of the last experience,
but furthermore do the replay samples of other earlier classes, e.g. class zero or
four, not necessarily correspond to their respective class, at least not to the human
eye. This suggests that not only the solver but also the generator is still suffering
from catastrophic forgetting. In order to quantify this catastrophic forgetting for the
generator, we can look at the distribution of classes among the replay samples. A
generator trained on the entire balanced MNIST data set generates samples which
are on average again following the same balanced distribution of the original data

22

5.2 Various Forms of Replaying Data

set. For successfully training a generator in the splitMNIST scenario, we therefore
want to achieve the same: ideally, by the end of each epoch, we want the generator to
produce on average the same amount of images of all previously seen classes. When
looking at the actual distribution of the generated samples in Figure 6, we see that
until experience four roughly the same amount of replay images for each class is used.
However, in the experiences after that, we see a strong bias towards the classes seen in
the most recent experiences. A more condensed form of this can be seen in Figure 5.

Figure 4: Vanilla Approach: Results of the default GR implementation. Accuracies
for each experience of the splitMNIST scenario, where each experience shows the
accuracy for every class that has been encountered until that point plus the average
over those classes.

5.2.2 Fixed Replay Size

From the results of our vanilla implementation, we see that although we alleviated
the catastrophic forgetting to some extent, we can still observe a decay in the accuracy
of classes from earlier experience. We want to try and nudge the optimizer towards
putting more importance on previously seen classes. A simple way of achieving this
could be by generating more replay samples than there are real data samples, such
that the new data is relatively less important in the computation of the total loss and
therefore in the optimization step. Concretely, we implement this by setting |X′| = 400
while keeping |X| = batchsize = 64. For these parameters, we see a jump in the final
average accuracy over all classes of about 10% reaching 75.49% as seen in Figure 14.
And indeed, we are able to observe the desired effect that the generator, even in the
last experience, remembers classes seen in the first experience. Also, the set of replay
samples is more balanced than before. In fact, we can even see a bias towards the first
class (Figure 16). However, the replay samples especially for some of the classes in the
middle are not exactly recognizable with class three not showing up in the replay set

23

5. Experiments: Understanding Generative Replay

Figure 5: Vanilla Approach: Distribution of replay labels among the ten classes.
Plotted in a single bar for each experience (starting from experience 1; there are no
replay samples used in experience 0).

at all (Figure 17). Since this approach worked well for the first classes of the scenario
but then dropped in performance again, we want to look at an approach where we
increase the replay set size gradually as we train more experiences. We hope that this
will enable the generator to remember all classes.

5.2.3 Continually Increasing Number of Replay Samples

Here, the idea is to double the amount of replay data |X′| with each new experience.
This means that in each training iteration we obtain the number of replay samples
to generate by Equation 2 while the number of real data stays at constant: |X| =
batchsize.

|X′| = k ∗ batchsize = k ∗ 64, where k denotes the current experience (2)

Running the same splitMNIST scenario as before, we can now see in Figure 20 that
at the end of the training every class still is remembered by the generator and, except
for a bias to the first two class, we find that for the other classes roughly the same
number of replay data is used during the training. In Figure 19, we have compiled
these statistics in a single bar plot to visualise the increasing amount of the total
number of replay samples per experience. And indeed, this is translating into better
accuracies, obtaining an average among all classes of 83% (Figure 18). Unfortunately,
it is easy to see that this approach is not scalable for the case of more complex data

24

5.2 Various Forms of Replaying Data

Figure 6: Vanilla Approach: Distribution of replay labels among the ten classes.
Plotted in a separate bar plot for each experience (starting from experience 1; there
are no replay samples used in experience 0).

sets containing many more classes as we would be handling a substantially increased
amount of data with each new experience. Even in our simple example, in the tenth
experience we are already computing the losses of roughly 250,000 replay samples -
opposed to just 60,000 samples in the entire training data set (Figure 19). Instead of
increasing the importance of past classes by increasing the number of replay samples,
we could also more directly manipulate the loss function. By splitting up the loss
function into two terms, one for the real data and one for the replay data, we assume
that we can directly adjust the importance of the replay data without any additional
computational overhead. This is what we will try in the next section.

5.2.4 Weighted Loss

In a similar fashion as above, in each experience, we increase the relative weight of the
loss Lreplay on the replay data that we add to the loss on the real data to compute the
total loss term in each training iteration. Specifically, we set λ = k−1

k (thus (1−λ) = 1
k)

when training the k-th experience, where λ is the weighting factor used in the loss
computation in Equation 1. This approach does not incur in any additional storage
or computing requirements. Nonetheless, we are able to obtain results similar to
the approach of increasing the amount of replay samples from Section 5.2.3. The
accuracies are plotted in Figure 22 and the distribution of replay samples among the
classes can be seen in Figure 24. Even though the distribution is not perfectly uniform,
we still find that the generator is able to remember all classes it has encountered

25

5. Experiments: Understanding Generative Replay

Figure 7: Vanilla Approach: Samples of images generated for each class after training
an experience. White tiles mean that this class has not been encountered yet, grey tiles
indicate that a class has been forgotten.

during its training (Figure 25). The average accuracy is similar as before with 81.38%.
Interestingly, when implementing the GR algorithms, there is a decision to be made,
whether to generate all replay data before each experience (and thus not having to
store additional copies of the generator and model) or to generate them on-demand
in each training iteration using a copy the the final generator and model from the
previous experience. We initially implemented the first but then shifted to the latter
in order to not having to store a huge amount of replay data. Before this change,
with otherwise the same settings, we obtained an accuracy of 75.61% (i.e. a similar
accuracy as in the case of a fixed replay size of 400). By not reusing the same replay
data in each epoch, the solver gets to see a greater variety of samples during the
span of each training phase and this fact seems to be, at least in part, responsible for
the better overall accuracy. Furthermore, this would also explain, why the weighted
approach is still faring a bit worse than the increasing replay size approach, since with

26

5.2 Various Forms of Replaying Data

the latter one the solver and generator get to see many more replay data in total.

5.2.5 Balanced Replay Samples

We have identified that in order for a solver to maintain a good accuracy for a class, the
generator of the scholar model needs to be able to remember and reproduce images
of that class. Ideally we would like the generator to generate a uniformly distributed
set of samples (given that the original data set is uniformly distributed). We have
found ways how to get closer to this goal, but we have no direct control over the
distribution of the replay data set. Our generator is not conditional meaning that we
cannot condition it to generate an image of a specific class on command. In order
to estimate how much of a gain a truly uniform replay data set would provide, we
could employ a conditional generator and see how this influences the accuracy. To
keep it simple, we instead train separate generators for each experience such that each
generator can reproduce images of a single class. This nonetheless gives us control
over exactly how many replay images per class we want to add to the training batch,
without having to go into the details of actually implementing a conditional generator.
Furthermore, it gives us the opportunity to correctly label the replay data instead of
relying on the solver to generate those labels as it is done in our base algorithm (see
Figure 1). The quality of the labels in the original algorithm is bound by the quality
of the solver itself and this potentially left us in a negative feedback loop: incorrectly
labeled replay samples would distort the training and lead to a lower accuracy of the
solver. A lower accuracy of the solver in turn would then produce labels that are less
accurate. We now have the chance to also quantify, next to the effect of balancing the
replay data, the effect that this feedback loop has. Indeed, with a balanced replay
data set (see Figure 28), we are able to reach the highest accuracy among all proposed
approaches with 82.75%. But even though all replay images are recognizable and
every class is represented in the replay data (see Figure 29), this accuracy is still
below the theoretical threshold. Without using our knowledge to improve the quality
of the labels and letting the solver produce the labels for the replay images, we reach
an average accuracy of 81.99%, which is only a difference of less than one percentage
point.

5.2.6 Summary

The vanilla implementation as conceptionalized in Figure 1 did indeed prevent com-
plete forgetting of previous classes, but it was not able to scale to the entire set of
classes. We therefore looked at various approaches that helped us to increase the over-
all accuracy and to further reduce the forgetting. In order to get an understanding
of how much better these approaches fared compared to naively training the model
without any Generative Replay, we have plotted the accuracies of naively training
our model in the splitMNIST scenario in Figure 8. Almost immediately, the model
forgets all classes it has seen in previous experiences and simply predicts any image
to belong to the class of the current experience. It is therefore evident that our GR
implementation constitutes a substantial improvement. On the other hand, to see
how much room for further improvement there is and to see what the simple model
itself is capable of, we have let our model train on the traditional MNIST dataset,

27

5. Experiments: Understanding Generative Replay

i.e. training a single experience containing all classes from zero to nine. This is often
also called joint training and in this case our model reaches an accuracy of 95.32%.
We have compiled the final accuracies of all our approaches together with the naive
and joint training in Table 1. We see that increasing the number of replay samples,
calculating a weighted loss term or using a balanced set of replay samples all produce
similarly good results. However, we can also see that the model itself is in theory able
to perform much better (95.32%, when using joint training) than our best run with
GR (82.75%). We will therefore take a closer look at the generator and the limiting
factors of Generative Replay in the following section (Section 5.3). Which variant of
the GR algorithm to choose might finally depend on the underlying scenario. From
our results here, a conditional generator that allows to generate class-balanced replay
data would be the best choice. However, the list of variants we compared here is by
no means exhaustive. For example, for the variant of weighting the losses, we could
conceive many more sequences of λ than we did here. Nevertheless, we have achieved
good improvements and our accuracies are above those that are mentioned in some
survey papers. [28], for instance, reports 79.38% on splitMNIST for a model using GR
and a VAE as a generator. The authors did conceal their exact implementation of the
algorithm.

Figure 8: Naive training without Generative Replay: Accuracies for each experience
of the splitMNIST scenario, where each experience shows the accuracy for every class
that has been encountered until that point plus the average over those classes.

For simplicity, we will use the fixed replay size approach in our further experiments.
This is because we have seen it offers an acceptable accuracy and a general appli-
cability without any further conditions. The accuracy is acceptable since we are not

28

5.2 Various Forms of Replaying Data

interested in merely maximizing the performance but rather are we interested in un-
derstanding the algorithm better, for which a reasonable accuracy is sufficient. And
the general applicability of the approach is opposed to the other variations, which
either do not scale well to scenarios with many experiences (5.2.3 and 5.2.4) or which
would require the generator to be conditional (5.2.5). The fixed replay size approach
stays the same independent of the underlying scenario.

29

5.Experim
ents:U

nderstanding
G

enerative
R

eplay

Variation Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Average
Vanilla 66.43 28.10 61.24 10.40 11.91 53.14 96.45 83.07 88.19 98.12 59.25

Fixed Replay Size 400 94.90 98.94 73.93 6.14 61.00 58.86 94.15 87.94 81.21 94.15 75.49
Increasing 92.96 98.94 76.07 67.62 65.17 63.23 91.23 89.01 83.26 93.16 82.46

Weighted loss 86.22 99.30 75.97 67.92 62.22 64.46 94.99 83.46 82.55 92.96 81.38
Balanced Replay 90.20 96.12 81.59 76.24 54.89 78.25 94.68 70.33 76.59 99.01 81.99

Balanced w exact labels 90.61 97.27 84.11 76.63 58.66 77.24 94.26 73.15 74.44 98.71 82.75
Naive training 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 100.00 10.10
Joint training 98.47 98.06 94.38 95.25 95.42 93.72 96.35 94.07 93.94 93.16 95.32

Table 1: Accuracies in percentage (%) per class and the average over all classes for various training paradigms after training on all data
points

30

5.3 Generative Replay Repeated over Itself

5.3 Generative Replay Repeated over Itself

We have seen that when using joint training, our model achieved an average accuracy
of above 95%, our best generative replay approach fared some 10% below that. We
want to understand whether we have reached some upper bound of what is possible
in the continual learning scenario we are operating in or whether the gap could be
closed by further fine-tuning the generative replay implementation. In a simple ex-
periment, which was also performed before in [44], we want to see whether this gap
in accuracy has something to do with the learning setup or whether it is a limitation
of the generator. The latter is a central part of the algorithm and it is known to be a
difficult task to generate high quality images. In the experiments we take the scholar
that was trained on the entire MNIST data set (which we will call experience zero)
and in every subsequent experience we continue the training on a data set purely
consisting of replay data created by the generator from the previous experience. The
replay data sets that are newly generated for each experience contain the same num-
ber of data points as the original MNIST data set. Unlike in [44] we find that running
GR "over itself" does not preserve the original accuracy. Instead, after the first expe-
rience trained solely on replay data the accuracy takes a dip. It continues to decrease
over the following 32 experiences we have run, although it does so at a decreasing
rate of change (see Figure 9). We can only assume that the average accuracy would
eventually converge to an equilibrium where the replays are good enough to maintain
a certain accuracy, but due to limited computing capacity we were unable to let the
experiment run for longer. Interestingly, while the class accuracies for digits five and
nine are pulling the overall average down, when looking at the replay samples, it is
digits one and seven that have become unrecognizable to the human eye (see Figure
10). So even from blurry images the solver is able to obtain enough information on
the underlying structure of the original data set. In fact, after 33 experiences we still
record an average accuracy of 79.73%, which is in the range of results we have been
able to achieve in our splitMNIST experiments.

If we randomly reinitialize the classifier model’s parameters before each experience
and run the experiment again, we find that the initial dip is larger but the training
then stabilizes in a similar way albeit less smoothly. Furthermore, the accuracies are
roughly 10% below the counterparts of where we kept the weights of the classifier
when continuing the training (see Figure 9 for the accuracies). This shows that most
of the information about the past that is encoded in the weights of the network, can
be relearned from the replay data. Nonetheless, it is highly recommendable to reuse
the weights of the network in consecutive experiences when training continually. As
[49] put it: it’s easier to remember than to learn new knowledge. The above evidence
suggests that the generator’s ability acts as the upper bound for the generative replay
approach instead of any characteristics inherent to the continual learning setup itself.
It should therefore prove worthwhile to employ and fine-tune a more powerful gen-
erative model. In fact, [28] reports an accuracy of 95.81% for GR on splitMNIST using
a GAN compared to 79.38% using a VAE with otherwise equal conditions. These and
our findings support the notion that some of the difficulty of Continual Learning is
shifted towards the difficulty of training good generative models.

31

6. Experiments: Novel, Non-stationary Streaming Scenarios

Figure 9: Accuracies for continuing training a trained scholar repeatedly solely on
replay data generated by the generator of the scholar. In one case the model is kept as
it is, in the other one the weights of the classifier model are reinitialized before each
experience. Experience 0 corresponds to a joint training on the entire MNIST data set.

6 Experiments: Novel, Non-stationary Streaming Scenarios

Several benchmarks are established in the continual learning community which are
summoned upon when evaluating a newly proposed algorithm trying to prove its su-
periority. In the class-incremental setup, an example of such a benchmark is splitM-
NIST, which is the one we have been using in Chapter 5. Similarly, splitCIFAR100 is
constructed in the same way but uses a more complex and challenging data set. New
data sets have been proposed, which are specifically designed for continual learning
scenarios, such as CORe50, which has a temporal correlation between the data points
of each class [30]. However, criticism has been voiced recently that these benchmarks
help to compare algorithms in a theoretical setup but they are lacking the general-
ity to predict their success in real-life applications. Aljundi et al. argue that "the
methods developed [...] all too often depend on knowing the task boundaries. These
boundaries indicate good moments to consolidate knowledge, namely after learning
a task. Moreover, data can be shuffled within a task so as to guarantee independent
and identically distributed (i.i.d.) data. In an online setting, on the other hand, data
needs to be processed in a streaming fashion and data distributions might change
gradually" [1]. As a first consequence, this deems the task-IL and domain-IL scenar-
ios as too unrealistic for wider application, which is why we are only studying the
more challenging class-IL setup in our experiments. The reason that many of the

32

6. Experiments: Novel, Non-stationary Streaming Scenarios

Figure 10: Examples of Replay Samples for each class (0-9) in each experience. Expe-
rience i is trained on the replay samples from experience i-1. Experience 0 was trained
on the entire MNIST data set.

methods depend on the mentioned requirements is that existing benchmarks nudge
researchers to design and publish algorithms that excel on those. And the existing
benchmarks do not reflect real-life applications. The way Christoper Kanan puts it in
a guest lecture is that: "Many are solving the wrong problem" [16, 20]. He is relating
precisely to the issue that current algorithms are able to solve specific toy examples
but that they are not developed to thrive in realistic settings.
Goal: Our second goal of this thesis and content of this chapter is the definition of
scenarios that reflect a more realistic setup and the evaluation of several continual
learning strategies on those scenarios. The hypothesis is that we can show that many
strategies are not able to succeed under these conditions, despite being successful on
the established benchmark scenarios. We therefore want to contribute to a new eval-
uation framework for CL methods.
We used the aforementioned criticism as a starting point and we have identified three
characteristics that will likely be encountered in real-world (online) scenarios and we
designed experiments to evaluate GR and other strategies from the perspective of
these characteristics. The first characteristic is that the data may arrive in any order.
Unlike in the joint training case, the entire data set may not be available up front and
it cannot be shuffled to obtain i.i.d. batches during training, but instead a data stream
might emit the data in any order and a stream training strategy should be able to
handle this. Another characteristic is that the data set itself might not be uniformly
distributed among the classes. This distribution could also change over time. And fi-

33

6. Experiments: Novel, Non-stationary Streaming Scenarios

Order A Order B Order C Order D Order E Average
59.25 71.09 68.91 61.59 67.05 65.58

Table 2: Overall accuracies in percentage (%) for the Vanilla Generative Replay algo-
rithm on splitMNIST for 5 different orders of classes. Additionally the average over
those 5 values. The orders are A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], B: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0],
C: [0, 8, 5, 2, 3, 6, 4, 1, 7, 9], D: [4, 1, 7, 5, 3, 9, 0, 8, 6, 2], E: [5, 4, 8, 2, 6, 9, 1, 7, 0, 3]

nally, the size of each experience might vary and could be as small as a single sample
at a time.

Experiments: Our experiments will be structured in the following way: as a pre-
experiment, we will change the order of the classes in the splitMNIST scenario to
show that merely changing the order can influence the performance of a CL algo-
rithm significantly (Section 6.1). Then, in Section 6.2, we will introduce a new sce-
nario which includes training on an imbalanced data set together with a concept drift
(i.e. the change of the underlying data distribution over time) as well as reappearing
classes in later experiences. We will evaluate various CL approaches and see that
Generative Replay outperforms the state-of-the-art method iCaRL in this scenario. Fi-
nally in Section 6.3 we evaluate different CL strategies on experiences with as few as
64 samples, and see that generative replay fails under these conditions.

6.1 Changing the Class Order of splitMNIST

During the experiments in the previous chapter, we split the MNIST data set in nu-
merically ascending order to make the plots more intuitive and easier to read. In
the common joint training scenario, the data set is usually shuffled before training
an epoch. In more realistic continual learning setups, we do not have control over
the order in which the data points arrive. We want to show that this is an important
consideration to make, without diving too deep into this aspect. We therefore, as a
simple experiment, rerun the splitMNIST scenario for the Vanilla Generative Replay
approach in the same setup as before except that we change the order in which we
encounter the classes during training. And in fact, Table 2 shows that each run comes
with a different accuracy. The numerically ascending order results in the lowest ac-
curacy with 59.25%, the descending order on the other hand comes with the highest
accuracy of 71.06%. The other orders were chosen at random and their respective
accuracies lie in between, so that we get an average over all runs of 65.58%. Best and
worst run separate more than 10 percentage points and we see that our vanilla imple-
mentation, on average, fares some 5% better than in Chapter 5, where we just looked
at the ascending order.

This experiment shows that small changes in the scenario can influence the output
of it. It is therefore advisable to always run a benchmarks for multiple different
settings, such as with different class orders in the splitMNIST case, and compute the
average as a final result. With this in mind we will now focus on the remaining two
characteristics we identified above. For this, we will introduce a new kind of scenario.

34

6.2 Evaluation of GR and Other Methods on a New Scenario

6.2 Evaluation of GR and Other Methods on a New Scenario

Our aim is to create a benchmark that uses imbalanced experiences, where the distri-
bution of the experiences changes over time and classes disappear in some experiences
and reappear in others. The scenario we introduce here uses MNIST as underlying
data set and is structured as follows: each experience contains images of four classes,
with always one class contributing 1/10th of the entire set of class images, another
one contributes 2/10th, another 3/10th and the last one 4/10th. This way, we have
an imbalanced data set in each experience. In the next experience, we change the
contribution of the classes in a sliding window manner, so that each class will assume
each of the contribution levels once throughout training. The process of creating the
scenario is also visualised in Figure 11. Through the sliding window, we simulate
a concept drift within the data with some classes not appearing anymore and oth-
ers reentering the training after some experiences. After ten such experiences, we
have covered the entire MNIST data set and the model has seen the same amount of
training data as during the regular splitMNIST scenario.

Figure 11: Process of constructing the new non-stationary streaming scenario. Each
experience contains images of four classes where the distribution of classes is imbal-
anced and changes over time: Each of the four classes contributes either 1/10, 2/10,
3/10 or 4/10 of the respective data set of class images. The next experience is con-
structed via a sliding window approach, such that a class that contributed 4/10 in
one experience will contribute 3/10 in the next and eventually disappear from the
data stream. Only classes 0, 1 and 2 reappear after not being part of an experience
anymore.

We trained our scholar model from Chapter 5 on this new scenario using Generative
Replay with a fixed replay size of 200. Furthermore, we evaluated and compared its
performance to a range of other methods on this new scenario. As pure rehearsal
strategy, we used Exact Replay, regularization methods include EWC, LwF and SI
[23, 29, 51]. Hybrid methods were GEM and iCaRL [32, 39]. We also used naive
training to obtain a lower bound. The resulting average accuracies for each strategy
in each experience are plotted in Figure 12. Generative Replay is able to beat the

35

6. Experiments: Novel, Non-stationary Streaming Scenarios

iCaRL strategy, which is the state-of-the-art on common benchmarks [50]. This is
because the algorithm of iCaRL is computing class exemplars after encountering a
new class [39], which are then used for classification later on. The algorithm is simply
not designed for the case where classes reappear in later experiences and where their
exemplar would need to be updated. Regularization based methods LwC, SI and
EWC fail entirely and perform just as bad as the naive training. This is not surprising
as we are dealing with a class-IL scenario which has been proven a difficult challenge
for these algorithms in general [50]. It has been hypothesised that some form of replay
might be necessary for this group of scenarios [49]. Only Exact Replay and GEM are
performing better than Generative Replay. For Exact Replay this is no surprise as
Generative Replay is essentially trying to mimic Exact Replay but without the need to
store actual data. GEM is performing extraordinarily well on the scenario and beating
even Exact Replay.

Figure 12: New imbalance scenario: Accuracy on the MNIST test set after each ex-
perience. Comparison of eight different continual learning strategies. Replay based
methods were allowed a buffer of 200 replay samples. Naive training and Synaptic
Intelligence have almost the same output and their accuracies are almost indistin-
guishable in this plot.

We would like to mention that, when designing the scenario, we found that imbalance
itself is not prone to catastrophic forgetting as long as all classes are present. This is
in line with the observation that even a few replay data points (be it for generative
replay or any other rehearsal based method, such as exact replay) helps alleviating
catastrophic forgetting. Therefore, we chose a scenario where we only used four
classes per experience.

36

6.3 Reducing the Experience Size of splitMNIST

6.3 Reducing the Experience Size of splitMNIST

As mentioned before, a prime example of possible real life applications of continual
learning are autonomous agents that interact with an environment and are required
to update their model of the world in real-time and thus continually learn. In such a
case the agent would be collecting single data points and there might be no time to
postpone the training until many data points have been collected. Instead we would
like to have a training paradigm in which we can train experiences of arbitrarily small
size. In this section we will look at what happens when we train the same model as
before in a class-IL scenario with only 64 images in each experience.

The scenario we use is kept simple: We split the MNIST data set into two data sets
that contain the images of five classes each. We train the data sets consecutively, but
instead of doing this in two experiences, we create experiences of 64 samples each,
which is equivalent to training one mini-batch of data per experience. When using
16000 data points this yields 16000/64 = 252 experiences of which the first 126 contain
samples of the first five classes and the other 126 experiences contain the remaining
classes. If the split into several experiences does not matter to the performance, we
would expect our algorithms to solve this problem easily as it is no harder than the
imbalance scenario from Section 6.2 or the splitMNIST scenario with one class per
experience.

Figure 13: Experience size scenario: Accuracy on the MNIST test set after each ex-
perience. Comparison of eight different continual learning strategies. Replay-based
methods were allowed a buffer of 200 replay samples. Naive training and Synaptic
Intelligence have almost the same output and their accuracies are almost indistin-
guishable in this plot.

37

6. Experiments: Novel, Non-stationary Streaming Scenarios

However, the results show that Generative Replay fails in this scenario together with
the regularization-based methods. Whereas iCaRL and Exact Replay solve the prob-
lem fairly well and GEM is excelling at it, seemingly not being affected by the reduced
experience size (see Figure 13). While the vanilla GR implementation shows a similar
performance as the naive training, using a fixed replay size of 200 replays actually
deteriorates the results further.

So why is it that Generative Replay is seemingly unable to handle experiences with
few samples? One possible cause, which at the same time is a weak spot of the
GR algorithm in general, is the interdependence between generator and model when
producing labeled replay samples. For example, when looking at the images the
generator generates together with their predicted labels, we see that generator and
classifier do not adjust to the shift in the data stream in the same amount of time
in the fixed replay size case. While the generator already learned to generate the
new classes, the classifier was still producing old labels for them. This then causes a
snowball effect where the classifier learns and consolidates the wrongly labeled data
pairs, which makes it hard to exit this loop. The reason why we didn’t experience
this issue for the normal splitMNIST scenario is that we only start to add replay data
after the first experience, such that the generator and model can use this experience
as some kind of warm-up phase by the end of which we are generating good images
with high confident labels. However, when the warm-up phase is only one mini batch
long, as in our case here, and when there is a shift in the data stream, the generator
and classifier have not enough time to adjust to this change before having to replay
data. This can then lead to the vicious cycle described before. In this sense, the
algorithm is not robust and needs fine-tuning depending on the scenario at hand.
Making the algorithm robust for this kind of streaming scenarios could be the subject
of further research.

We have a large number of experiences, therefore increasing the number of replay per
experience or changing the weight of the loss does not work well and we would have
to adjust the way we compute these two. Therefore we simply stick to a fixed replay
size of 400 as we only want to see how GR generally performs on these scenarios
instead of trying to find the highest accuracy.

6.4 Summary

We have run three experiments, each with focus on a different characteristic that we
considered relevant in real-life continual learning settings. First was the random or-
der a data stream might emit data in. We have setup a simple experiment where
we changed the order of classes for the splitMNIST scenario. This was enough to
show that the order in which a model encounters samples makes a difference for the
training. From this we can deduct that it is desirable to at least rerun every contin-
ual learning experiment for different orders of data and compute the average over all
runs to provide a more reliable result. We then turned to the idea that data streams
might not provide a uniformly distributed data set and the distribution with which
data is emitted can change over time. We have created a novel scenario for this and
we have shown that iCaRL, as it is designed for very specific scenarios only, was out-

38

7. Conclusion

performed by Generative Replay on this new scenario. Finally, we have constructed a
simple scenario which is characterized by a small experiences size. Each experience
only contained 64 data points, which is equivalent to the batch size we have used
throughout our experiments. We have seen that due to its complex interplay of dis-
criminator and generator, the GR strategy failed for this scenario. It could be subject
of further research to adjust the algorithm to be more robust and to make it easier to
use in any given setting. This is especially relevant in the light of the fact that Exact
Replay, which tackles Catastrophic Forgetting in a very similar way as Generative Re-
play, performed well on both, the imbalance scenario as well as the experience size
scenario. We have also seen that the GEM strategy has shown the best results and
has proven to be working robustly in all of our scenarios. In fact, the algorithm was
designed for being able to learn with only a single sample at a time [32].

7 Conclusion

At the outset of this thesis, we formulated several research questions revolving around
the Generative Replay algorithm. We want to summarize here the steps we took to
answer these questions and draw conclusions from the results of our experiments.
Furthermore, we do want to point out possible drawbacks of the method we have
identified and give an overview of further research that could build upon our findings.

In order to study the algorithm, an implementation of the former was needed that
is flexible enough to easily extend the algorithm and swap scenarios, training data
and architectures. We found that the continual learning framework Avalanche did
provide implementations of many common continual learning algorithms, but was
lacking one for Generative Replay. Our first goal was to implement the algorithm
in such a modular way that satisfies the requirements of the Avalanche community
as well as ours so that we could use it for subsequent experiments. We fulfilled this
goal by contributing to the open-source project our plugin-based implementation,
which can be used to apply Generative Replay to both a tuple of a discriminative and
generative model as well as a generative on its own. We used it as foundation for the
subsequent research on the method’s behaviour and it is openly accessible and well
documented for any other person to employ in their own research.

We then set out to ask a range of questions regarding the application of the algorithm.
We pointed out that the original paper in which the algorithm was proposed did not
provide details on how much replay data to generate or how to weigh the importance
of the replay data relative to the real data over time. We designed five variations of
the algorithms in terms of how much data is generated and how much the loss of the
replay data contributes to the total loss. We reran the same splitMNIST scenario for
each variation and compared their performance in terms of accuracy and forgetting.
All variations prevent catastrophic forgetting, which occurs when naively training the
model with no additional strategy at all and which we verified to result in a 10%
accuracy on the MNIST test data set. This is equivalent to random guessing. We
found that replaying the same amount of replay data as there is real data results
in an accuracy of roughly 60% and we find that by the end of training at least the

39

7. Conclusion

earliest classes are still forgotten. We showed that this can be improved by continually
increasing the amount of replay data with each experience as well as by increasing the
importance of the replay loss when calculating the total loss. This helps alleviating
forgetting of entire classes completely and we reach an average accuracy of above 80%.
We also showed that similar results can be obtained by enforcing a class-balanced
replay data set, which can be achieved by employing a conditional generative model,
which allows to generate samples of a specified class. There are many more possible
variations of the algorithm and from our results, we see that it is worthwhile to study
those as they greatly differ in accuracy and some might not be applicable for every
scenario. For example, in scenarios with many classes and many experiences the
variation of continually increasing the amount of replay data does not scale well as
we quickly have to handle a huge pool of replay data. Due to its low overhead and
high accuracy, we conclude that using a conditional generator constitutes the best
strategy among the ones we tested.

Since the accuracies we achieved were still far below the 95% that we reach when
training the model on the combined MNIST data set instead of learning class by class,
we hypothesised that the generator acts as a bottleneck for the knowledge that is
stored and which then leads to an upper bound on the accuracy of the discrimina-
tor that trains on that knowledge. To examine this we ran an experiment where we
trained a model and a generator on the entire MNIST data set and afterwards re-
peatedly retrained both only on synthetic replay data produced by the generator. We
did this once by reinitializing the model’s weight before each retraining phase and
once by keeping the weights. In the latter case we slowly converged for an accuracy
of about 80% which is roughly equivalent to what we have been able to achieve in
the continual learning setup. By dropping the weights and having the model learn
everything from scratch, we fared about 10% worse. From this we take that most
of the knowledge about the data distribution is also stored in the generator and only
some additional information is encoded in the model’s weights. This suggests that the
performance of the generative replay method is highly dependent on the generator’s
performance. But since generating high dimensional data samples is a difficult task
on its own, as other works have pointed out, at least part of the difficulty of training
a model continually is shifted towards the equally difficult task of data generation.
This complexity of the algorithm is a clear drawback of the method. Other works
have suggested to generate low dimensional replay samples and to replay them along
with the low dimensional representations of the input data in some hidden layer. This
would greatly reduce the complexity of the data generation and our results suggest
that this is a desirable goal.

Another main issue we wanted to address in our work is that the established bench-
marks, such as splitMNIST, do not reflect real-world continual learning settings, as
they would be encountered for example by an autonomous agent that continuously
needs to adapt to changing environments. Our hypothesis was that if we define new
scenarios that use more realistic assumptions, Generative Replay would succeed on
them and be on par with Exact Replay and outperform other methods. We then con-
structed a new scenario in which the data would be imbalanced in each experience
and, most crucially, classes seen before could reappear in later experiences. By eval-

40

7. Conclusion

uating a range of methods on this scenario we found that in fact Generative Replay
performed almost as well as Exact Replay and it outperformed all regularization-
based methods and iCaRL. The latter is impressive and at first surprising, as iCaRL
is considered the state-of-the-art strategy on the common benchmarks. When look-
ing more closely, we identified the reason of iCaRL’s poor result: the algorithm is
designed in such a way that it expects to encounter a class only in a single experi-
ence during the training. On the other hand, the GEM strategy, outperformed all
other methods. In this sense, our experiment was very successful as we were able to
identify the weaknesses of the established benchmarks and provide a new scenario
on which existing continual learning strategies show a differing performance than on
existing benchmarks.

We then ran a last experiment in which we decreased the experience size to a single
batch of samples per experience. Otherwise we kept the order of samples unchanged
as when training on splitMNIST. We believe it is important for a continual learning
strategy to be able to update a model with any amount of data that becomes avail-
able at a given moment. We expected for the strategies to perform similar to how
they performed on splitMNIST. The actual results showed that this hypothesis did
not hold. In fact, one of the two variations of Generative Replay we ran performed
so poorly that it came close to random guessing. We identified as a major reason
for this problem that because the experience sizes are so small the generator has no
"warm-up" phase. It is supposed to generate new samples of classes immediately after
they become available. At the same time, the labels for these samples are produced
by forwarding them through the model, which at the beginning is not yet properly
trained either. We therefore use wrongly labeled replay samples of poor quality when
continuing the training. The two characteristics of the reliance on the generator and
the interdependence between generator and discriminator when producing the replay
data set are major drawbacks of the Generative Replay method. Which make it diffi-
cult to control and which require knowledge of the underlying scenario to properly
adjust the algorithm, for example by providing a warm-up phase for the generator.
We therefore conclude that Generative Replay is not as effective, especially in more
realistic setups, as we previously assumed. Furthermore, we have seen that the GEM
method again performed extremely well out of the box with no adjustments needed.
In fact, GEM was designed with these more realistic conditions in mind such as small
experience sizes.

Our research has shown that it is important for the continual learning community
to consider new benchmarks that aim at making them an indicator for whether a
strategy can succeed in a real-world application. We have provided two examples
of such but future research could extend those and use more complex data sets as
well as different data types. Most of the related work is dealing with image data
only and we believe it is important to develop strategies that work in other domains,
too. From our findings, GEM has proven to be very promising whereas Generative
Replay did not live up to the expectations in the more realistic scenarios. Many
promising extensions have been proposed, such as using replay of lower dimensional
representation or using a conditional generator in order to enforce a balanced replay
data set. Future research could bring these ideas together and run them on our or

41

7. Conclusion

other newly conceived scenarios.

42

References

References

[1] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-Free Continual
Learning. 2019. arXiv: 1812.03596 [cs.CV].

[2] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. doi: 10.48550/
ARXIV.2005.14165. url: https://arxiv.org/abs/2005.14165.

[3] Angelo Cangelosi and Matthew Schlesinger. Developmental Robotics: From Babies
to Robots. Jan. 2015. isbn: 9780262028011. doi: 10.7551/mitpress/9320.001.
0001.

[4] Antonio Carta et al. Ex-Model: Continual Learning from a Stream of Trained Models.
2021. doi: 10.48550/ARXIV.2112.06511. url: https://arxiv.org/abs/2112.
06511.

[5] Arslan Chaudhry et al. “Efficient Lifelong Learning with A-GEM”. In: CoRR
abs/1812.00420 (2018). arXiv: 1812.00420. url: http://arxiv.org/abs/1812.
00420.

[6] Zhiyuan Chen and Bing Liu. Lifelong Machine Learning, Second Edition. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2018. doi: 10.2200/S00832ED1V01Y201802AIM037. url: https://
doi.org/10.2200/S00832ED1V01Y201802AIM037.

[7] ContinualAI / avalanche : Generative Replay 931. https://github.com/ContinualAI/
avalanche/pull/931. Accessed: 2022-06-22.

[8] Corinna Cortes et al. “AdaNet: Adaptive Structural Learning of Artificial Neural
Networks”. In: CoRR abs/1607.01097 (2016). arXiv: 1607 . 01097. url: http :
//arxiv.org/abs/1607.01097.

[9] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of Control, Signals, and Systems (MCSS) 2.4 (Dec. 1989), pp. 303–314.
issn: 0932-4194. doi: 10.1007/BF02551274. url: http://dx.doi.org/10.1007/
BF02551274.

[10] Matthias Delange et al. “A continual learning survey: Defying forgetting in clas-
sification tasks”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2021), pp. 1–1. doi: 10.1109/TPAMI.2021.3057446.

[11] Peter Eriksson et al. “Neurogenesis in the Adult Human Hippocampus”. In:
Nature medicine 4 (Dec. 1998), pp. 1313–7. doi: 10.1038/3305.

[12] Robert French. “Catastrophic forgetting in connectionist networks”. In: Trends
in cognitive sciences 3 (May 1999), pp. 128–135. doi: 10.1016/S1364-6613(99)
01294-2.

[13] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. doi: 10.48550/
ARXIV.1406.2661. url: https://arxiv.org/abs/1406.2661.

[14] GPT-3 is No Longer the Only Game in Town. https://lastweekin.ai/p/gpt-3-
is-no-longer-the-only-game?s=r. Accessed: 2022-04-19.

[15] Stephen Grossberg. “How Does a Brain Build a Cognitive Code?” In: Studies of
Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition,
and Motor Control. Dordrecht: Springer Netherlands, 1982, pp. 1–52. isbn: 978-
94-009-7758-7. doi: 10.1007/978-94-009-7758-7_1. url: https://doi.org/10.
1007/978-94-009-7758-7_1.

43

https://arxiv.org/abs/1812.03596
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.7551/mitpress/9320.001.0001
https://doi.org/10.7551/mitpress/9320.001.0001
https://doi.org/10.48550/ARXIV.2112.06511
https://arxiv.org/abs/2112.06511
https://arxiv.org/abs/2112.06511
https://arxiv.org/abs/1812.00420
http://arxiv.org/abs/1812.00420
http://arxiv.org/abs/1812.00420
https://doi.org/10.2200/S00832ED1V01Y201802AIM037
https://doi.org/10.2200/S00832ED1V01Y201802AIM037
https://doi.org/10.2200/S00832ED1V01Y201802AIM037
https://github.com/ContinualAI/avalanche/pull/931
https://github.com/ContinualAI/avalanche/pull/931
https://arxiv.org/abs/1607.01097
http://arxiv.org/abs/1607.01097
http://arxiv.org/abs/1607.01097
https://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1038/3305
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.48550/ARXIV.1406.2661
https://doi.org/10.48550/ARXIV.1406.2661
https://arxiv.org/abs/1406.2661
https://lastweekin.ai/p/gpt-3-is-no-longer-the-only-game?s=r
https://lastweekin.ai/p/gpt-3-is-no-longer-the-only-game?s=r
https://doi.org/10.1007/978-94-009-7758-7_1
https://doi.org/10.1007/978-94-009-7758-7_1
https://doi.org/10.1007/978-94-009-7758-7_1

References

[16] Tyler L. Hayes et al. REMIND Your Neural Network to Prevent Catastrophic Forget-
ting. 2020. arXiv: 1910.02509 [cs.LG].

[17] Donald O. Hebb. The organization of behavior: A neuropsychological theory. New
York: Wiley, June 1949. isbn: 0-8058-4300-0.

[18] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators”. In: Neural Networks 2.5 (1989),
pp. 359–366. issn: 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)
90020 - 8. url: https : / / www . sciencedirect . com / science / article / pii /
0893608089900208.

[19] Inputs to the forward- and criterion-functions in the BaseStrategy-object are limited
596. https://github.com/ContinualAI/avalanche/issues/596. Accessed:
2022-06-22.

[20] Invited Talk "Rethinking Continual Learning: How to Define Success" by Christopher
Kanan. https://www.youtube.com/watch?v=N7XJ-QTEoHI. Accessed: 2021-12-
26.

[21] Jupyter Notebooks for Generative Replay experiments. https://github.com/travela/
continual-learning/tree/master/notebooks. Accessed: 2022-06-22.

[22] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2013. doi:
10.48550/ARXIV.1312.6114. url: https://arxiv.org/abs/1312.6114.

[23] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural net-
works”. In: CoRR abs/1612.00796 (2016). arXiv: 1612 . 00796. url: http : / /
arxiv.org/abs/1612.00796.

[24] Jeremias Knoblauch, Hisham Husain, and Tom Diethe. “Optimal Continual
Learning Has Perfect Memory and is NP-HARD”. In: Proceedings of the 37th
International Conference on Machine Learning. ICML’20. JMLR.org, 2020.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Asso-
ciates, Inc., 2012. url: https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[26] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), p. 436.

[27] Yann LeCun and Corinna Cortes. “MNIST handwritten digit database”. In:
(2010). url: http://yann.lecun.com/exdb/mnist/.

[28] Timothée Lesort et al. “Generative Models from the perspective of Continual
Learning”. In: 2019 International Joint Conference on Neural Networks (IJCNN).
2019, pp. 1–8. doi: 10.1109/IJCNN.2019.8851986.

[29] Zhizhong Li and Derek Hoiem. “Learning without Forgetting”. In: CoRR abs/1606.09282
(2016). arXiv: 1606.09282. url: http://arxiv.org/abs/1606.09282.

[30] Vincenzo Lomonaco and Davide Maltoni. “CORe50: a New Dataset and Bench-
mark for Continuous Object Recognition”. In: Proceedings of the 1st Annual Con-
ference on Robot Learning. Ed. by Sergey Levine, Vincent Vanhoucke, and Ken
Goldberg. Vol. 78. Proceedings of Machine Learning Research. PMLR, 13–15
Nov 2017, pp. 17–26. url: https://proceedings.mlr.press/v78/lomonaco17a.
html.

44

https://arxiv.org/abs/1910.02509
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://github.com/ContinualAI/avalanche/issues/596
https://www.youtube.com/watch?v=N7XJ-QTEoHI
https://github.com/travela/continual-learning/tree/master/notebooks
https://github.com/travela/continual-learning/tree/master/notebooks
https://doi.org/10.48550/ARXIV.1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/1612.00796
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/IJCNN.2019.8851986
https://arxiv.org/abs/1606.09282
http://arxiv.org/abs/1606.09282
https://proceedings.mlr.press/v78/lomonaco17a.html
https://proceedings.mlr.press/v78/lomonaco17a.html

References

[31] Vincenzo Lomonaco et al. “Avalanche: an End-to-End Library for Continual
Learning”. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recog-
nition. 2nd Continual Learning in Computer Vision Workshop. 2021.

[32] David Lopez-Paz and Marc’Aurelio Ranzato. “Gradient Episodic Memory for
Continuum Learning”. In: CoRR abs/1706.08840 (2017). arXiv: 1706.08840. url:
http://arxiv.org/abs/1706.08840.

[33] James Mcclelland, Bruce Mcnaughton, and Randall O’Reilly. “Why There are
Complementary Learning Systems in the Hippocampus and Neocortex: Insights
from the Successes and Failures of Connectionist Models of Learning and Mem-
ory”. In: Psychological review 102 (Aug. 1995), pp. 419–57. doi: 10.1037/0033-
295X.102.3.419.

[34] Kenneth Miller and David MacKay. “The Role of Constraints in Hebbian Learn-
ing”. In: Neural Comput. 6 (July 1997). doi: 10.1162/neco.1994.6.1.100.

[35] OpenAI’s massive GPT-3 model is impressive, but size isn’t everything. https://
venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-
isnt-everything/. Accessed: 2022-04-19.

[36] German I. Parisi et al. “Continual lifelong learning with neural networks: A re-
view”. In: Neural Networks 113 (2019), pp. 54–71. issn: 0893-6080. doi: https://
doi.org/10.1016/j.neunet.2019.01.012. url: https://www.sciencedirect.
com/science/article/pii/S0893608019300231.

[37] Dushyant Rao et al. “Continual Unsupervised Representation Learning”. In:
CoRR abs/1910.14481 (2019). arXiv: 1910.14481. url: http://arxiv.org/abs/
1910.14481.

[38] O’Reilly RC and Rudy JW. “Computational principles of learning in the neo-
cortex and hippocampus”. In: Hippocampus 10 (4 2000), pp. 389–397. doi: doi:
10.1002/1098-1063(2000)10:4<389::AID-HIPO5>3.0.CO;2-P.

[39] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and Christoph H. Lampert.
“iCaRL: Incremental Classifier and Representation Learning”. In: (2016). arXiv:
1611.07725. url: http://arxiv.org/abs/1611.07725.

[40] Anthony Robins. “Catastrophic forgetting in neural networks: the role of re-
hearsal mechanisms”. In: Proceedings 1993 The First New Zealand International
Two-Stream Conference on Artificial Neural Networks and Expert Systems. 1993, pp. 65–
68. doi: 10.1109/ANNES.1993.323080.

[41] Anthony Robins. “Catastrophic Forgetting, Rehearsal and Pseudorehearsal”. In:
Connection Science 7.2 (1995), pp. 123–146. doi: 10.1080/09540099550039318.
eprint: https://doi.org/10.1080/09540099550039318. url: https://doi.
org/10.1080/09540099550039318.

[42] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”.
In: CoRR abs/1409.0575 (2014). arXiv: 1409.0575. url: http://arxiv.org/abs/
1409.0575.

[43] Andrei A. Rusu et al. “Progressive Neural Networks”. In: CoRR abs/1606.04671
(2016). arXiv: 1606.04671. url: http://arxiv.org/abs/1606.04671.

[44] Hanul Shin et al. Continual Learning with Deep Generative Replay. 2017. arXiv:
1705.08690 [cs.AI].

45

https://arxiv.org/abs/1706.08840
http://arxiv.org/abs/1706.08840
https://doi.org/10.1037/0033-295X.102.3.419
https://doi.org/10.1037/0033-295X.102.3.419
https://doi.org/10.1162/neco.1994.6.1.100
https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everything/
https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everything/
https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everything/
https://doi.org/https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/https://doi.org/10.1016/j.neunet.2019.01.012
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://www.sciencedirect.com/science/article/pii/S0893608019300231
https://arxiv.org/abs/1910.14481
http://arxiv.org/abs/1910.14481
http://arxiv.org/abs/1910.14481
https://doi.org/doi:10.1002/1098-1063(2000)10:4<389::AID-HIPO5>3.0.CO;2-P
https://doi.org/doi:10.1002/1098-1063(2000)10:4<389::AID-HIPO5>3.0.CO;2-P
https://arxiv.org/abs/1611.07725
http://arxiv.org/abs/1611.07725
https://doi.org/10.1109/ANNES.1993.323080
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1705.08690

References

[45] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. “Incremental Learn-
ing of Object Detectors without Catastrophic Forgetting”. In: CoRR abs/1708.06977
(2017). arXiv: 1708.06977. url: http://arxiv.org/abs/1708.06977.

[46] David Silver et al. “Mastering the Game of Go with Deep Neural Networks
and Tree Search”. In: Nature 529.7587 (Jan. 2016), pp. 484–489. doi: 10.1038/
nature16961.

[47] The GPT-3 economy. https://bdtechtalks.com/2020/09/21/gpt-3-economy-
business-model/. Accessed: 2022-04-19.

[48] Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World’s
Largest and Most Powerful Generative Language Model. https://www.microsoft.
com/en- us/research/blog/using- deepspeed- and- megatron- to- train-
megatron- turing- nlg- 530b- the- worlds- largest- and- most- powerful-
generative-language-model/. Accessed: 2022-04-19.

[49] G.M. van de Ven, H.T. Siegelmann, and A.S. Tolias. “Brain-inspired replay for
continual learning with artificial neural networks”. In: Nat Commun 11 (2020),
p. 4069. issn: 0893-6080. doi: https://doi.org/10.1038/s41467-020-17866-2.

[50] Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning.
2019. arXiv: 1904.07734 [cs.LG].

[51] Friedemann Zenke, Ben Poole, and Surya Ganguli. “Improved multitask learn-
ing through synaptic intelligence”. In: CoRR abs/1703.04200 (2017). arXiv: 1703.
04200. url: http://arxiv.org/abs/1703.04200.

46

https://arxiv.org/abs/1708.06977
http://arxiv.org/abs/1708.06977
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/
https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
https://doi.org/https://doi.org/10.1038/s41467-020-17866-2
https://arxiv.org/abs/1904.07734
https://arxiv.org/abs/1703.04200
https://arxiv.org/abs/1703.04200
http://arxiv.org/abs/1703.04200

A. Appendix

A Appendix

Figure 14: Fixed Replay Size: Results of the GR implementation using 400 replay
images in each training iteration. Accuracies for each experience of the splitMNIST
scenario, where each experience shows the accuracy for every class that has been
encountered until that point plus the average over those classes.

47

A. Appendix

Figure 15: Fixed Replay Size: Distribution of replay labels among the ten classes.
Plotted in a single bar for each experience (starting from experience 1; there are no
replay samples used in experience 0).

48

A. Appendix

Figure 16: Fixed Replay Size: Distribution of replay labels among the ten classes.
Plotted in a separate bar plot for each experience (starting from experience 1; there
are no replay samples used in experience 0).

49

A. Appendix

Figure 17: Fixed Replay Size: Samples of images generated for each class after train-
ing an experience. White tiles mean that this class has not been encountered yet, grey
tiles indicate that a class has been forgotten.

50

A. Appendix

Figure 18: Increasing number of replay samples: Results of the GR implementation
increasing the number of replay samples in each experience by 64 (batch size). Accu-
racies for each experience of the splitMNIST scenario, where each experience shows
the accuracy for every class that has been encountered until that point plus the aver-
age over those classes.

51

A. Appendix

Figure 19: Increasing number of replay samples: Distribution of replay labels among
the ten classes. Plotted in a single bar for each experience (starting from experience 1;
there are no replay samples used in experience 0).

52

A. Appendix

Figure 20: Increasing number of replay samples: Distribution of replay labels among
the ten classes. Plotted in a separate bar plot for each experience (starting from expe-
rience 1; there are no replay samples used in experience 0).

53

A. Appendix

Figure 21: Increasing number of replay samples: Samples of images generated for
each class after training an experience. White tiles mean that this class has not been
encountered yet, grey tiles indicate that a class has been forgotten.

54

A. Appendix

Figure 22: Weighted Loss Function: Results of the GR implementation using a
weighted loss term. Accuracies for each experience of the splitMNIST scenario, where
each experience shows the accuracy for every class that has been encountered until
that point plus the average over those classes.

55

A. Appendix

Figure 23: Weighted Loss Function: Distribution of replay labels among the ten
classes. Plotted in a single bar for each experience (starting from experience 1; there
are no replay samples used in experience 0).

56

A. Appendix

Figure 24: Weighted Loss Function: Distribution of replay labels among the ten
classes. Plotted in a separate bar plot for each experience (starting from experience 1;
there are no replay samples used in experience 0).

57

A. Appendix

Figure 25: Weighted Loss Function: Samples of images generated for each class after
training an experience. White tiles mean that this class has not been encountered yet,
grey tiles indicate that a class has been forgotten.

58

A. Appendix

Figure 26: Balanced Replay Sample Distribution: Results of the GR implementation
using a uniformly distributed replay data set. Accuracies for each experience of the
splitMNIST scenario, where each experience shows the accuracy for every class that
has been encountered until that point plus the average over those classes.

59

A. Appendix

Figure 27: Balanced Replay Sample Distribution: Distribution of replay labels
among the ten classes. Plotted in a single bar for each experience (starting from
experience 1; there are no replay samples used in experience 0).

60

A. Appendix

Figure 28: Balanced Replay Sample Distribution: Distribution of replay labels
among the ten classes. Plotted in a separate bar plot for each experience (starting
from experience 1; there are no replay samples used in experience 0).

61

A. Appendix

Figure 29: Balanced Replay Sample Distribution: Samples of images generated for
each class after training an experience. White tiles mean that this class has not been
encountered yet, grey tiles indicate that a class has been forgotten.

62

	Introduction
	Motivation
	Our Corner of the Problem
	Structure of this Thesis

	Related Work
	Foundations
	Artificial Neural Networks
	The Supervised Learning Problem
	Multilayer Perceptrons
	Generative Neural Networks

	Continual Learning in Neural Networks
	Biological Perspective on Continual Lifelong Learning
	Machine Learning Perspective on Continual Lifelong Learning
	Continual Learning Scenarios

	Fundamentals of Generative Replay
	Scenario for Generative Replay
	The Generative Replay Algorithm

	Implementation Process
	Avalanche Library
	Difficulties
	Highlights
	Artifacts

	Experiments: Understanding Generative Replay
	How We Will Try to Understand GR
	Various Forms of Replaying Data
	Vanilla/Default Approach
	Fixed Replay Size
	Continually Increasing Number of Replay Samples
	Weighted Loss
	Balanced Replay Samples
	Summary

	Generative Replay Repeated over Itself

	Experiments: Novel, Non-stationary Streaming Scenarios
	 Changing the Class Order of splitMNIST
	 Evaluation of GR and Other Methods on a New Scenario
	 Reducing the Experience Size of splitMNIST
	 Summary

	Conclusion
	Appendix

