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We introduce a method for extracting meaningful entanglement measures of tensor network states in
general dimensions. Current methods require the explicit reconstruction of the density matrix, which is
highly demanding, or the contraction of replicas, which requires an effort exponential in the number of
replicas and which is costly in terms of memory. In contrast, our method requires the stochastic sampling
of matrix elements of the classically represented reduced states with respect to random states drawn from
simple product probability measures constituting frames. Even though not corresponding to physical oper-
ations, such matrix elements are straightforward to calculate for tensor network states, and their moments
provide the Rényi entropies and negativities as well as their symmetry-resolved components. We test our
method on the one-dimensional critical XX chain and the two-dimensional toric code in a checkerboard
geometry. Although the cost is exponential in the subsystem size, it is sufficiently moderate so that—in
contrast with other approaches—accurate results can be obtained on a personal computer for relatively
large subsystem sizes.
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I. INTRODUCTION

Entanglement is the key feature of quantum mechan-
ics that renders it different from classical theories. It takes
center stage in quantum information processing where it
plays the role of a resource. The significance of notions
of entanglement for capturing properties of condensed
matter systems has also long been noted and appreciated
[1,2]. The observation that ground states of gapped phases
of matter are expected to feature little entanglement—in
fact, they feature what are called area laws for entangle-
ment entropies [3]—is at the basis of tensor network (TN)
methods [4,5] accurately describing interacting quantum
many-body systems. It has been noted that certain scal-
ings of entanglement measures can indicate the presence
of quantum phase transitions [6,7]. Indeed, the very fact
that locally interacting quantum many-body systems tend
to be much less entangled than they could possibly be ren-
ders TN methods a powerful technique to capture their
properties [3–5,8]. Maybe most prominently, topologically
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ordered systems can be regarded as long-range-entangled
systems [9]. In addition, detailed information about the
scaling of entanglement properties can provide substan-
tial diagnostic information about properties of condensed
matter systems.

Accepting that tensor network states often provide an
accurate and efficient classical description of interact-
ing quantum systems, the question arises how one can
meaningfully read off entanglement properties from ten-
sor network states. This, however, constitutes a chal-
lenge. Current entanglement calculation methods in ten-
sor network states in two and higher dimensions are
highly impractical even for moderate-size systems, since
they require a full reconstruction of the quantum states at
heavy computational costs. For Rényi entropies, one may
instead employ the replica trick, which uses several copies
of the reduced density matrix (as explained in Sec. II B
below); this, however, comes with an exponential scaling
of the computational effort in the number of copies, often
making the calculation unfeasible.

In this work, we develop a method for estimating the
entanglement moments of general states represented by
tensor networks. We do so by bringing together ideas of
tensor network methods with those of random measure-
ments [10–22] and shadow estimation [11,23–25]. In this
context, it has been understood that entanglement fea-
tures can be reliably estimated from expectation values of
suitable random measurements.
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Here, we bring these ideas to a new level by applying
them to quantum states that are classically represented in
the first place by tensor networks. The core idea of these
methods is basically the following: while the entanglement
moments naively require several copies of the system, we
can refrain from this requirement by resorting to random
sampling. The general protocol is to evolve the system
under a random unitary drawn from the Haar measure fol-
lowed by a measurement of a suitable projector. The pro-
cess is repeated and moments of the results are averaged
over different unitaries, giving as a result entanglement
moments or other density-matrix-based properties. The
effectiveness of this mindset has been demonstrated exper-
imentally in a number of platforms, including that of cold
atoms for Rényi entropies [16,22] and Rényi negativities
[24,26].

While these ideas have been further developed into
estimation techniques [23] giving rise to classical repre-
sentations in their own right, we turn these ideas upside
down by applying them to quantum systems that are
already classically represented by tensor networks. There
are some crucial differences that arise in classical represen-
tations compared to quantum experiments. First, they are
much more suitable for a direct calculation of expectation
values, rather than estimating them from sampling from
measurements. Second, and importantly, when perform-
ing a classical simulation, we are not limited to physically
allowed actions, and specifically, we are not constrained
to the application of unitary operators and measurements.
This feature is to an extent reminiscent of shadow estima-
tion in that also there, unphysical maps are made use of.
It is the estimation procedure itself that is not physical
here, however. The method we develop allows for hav-
ing only a single copy of the simulated state, and at the
same time for estimating the entanglement moments based
on matrix elements that are naturally calculated. Instead of
sampling operators from the Haar measure or some unitary
n-design [27], we only need to sample from a simple, finite
set of tensor products of independent d-dimensional vec-
tors—specifically from what are called frames or spherical
complex 1-designs [28], where d is the Hilbert space of a
single site in the system. Furthermore, this simple struc-
ture allows our method to be applied to arbitrary system
geometries.

The remainder of this work is organized as follows.
Section II includes preliminary theoretical background.
The Rényi moments we aim to estimate are defined and
their relation to standard entanglement measures is dis-
cussed in Sec. II A. Section II B covers the basic ideas of
the TN ansatzes we use in our work: for one-dimensional
systems, the matrix product state (MPS) ansatz, and in
higher dimensions, the projected entangled paired state
(PEPS) and its infinite system size version known as the
iPEPS. We discuss the algorithms we use for extract-
ing the reduced density matrix and the naive method for

estimating entanglement moments of states represented by
these ansatzes. The solvable models used as benchmarks
for testing our method are presented in Sec. II D. In Sec. III
we explain our proposed algorithm for using random vari-
ables for estimating the entanglement moments of TNs in
general dimension, and study the variance of the estimate
in Sec. IV B, from which arises the complexity of an esti-
mation up to a chosen error. We benchmark the algorithm
with the ground states of the exactly solvable toric code
model, Eq. (13), using the iPEPS method, and the XX
chain, Eq. (16), using the MPS method, in Sec. IV. Finally,
we discuss the results and future steps in the conclusions,
Sec. V. In the appendices, we present variance estimations
of the Rényi moments in the general case (Appendix A), as
well as specifically in the toric code model, which is used
as a benchmark (Appendix B).

II. PRELIMINARIES

A. Entanglement measures

For a quantum system in a pure state ρ = |ψ〉 〈ψ |,
we define for a subsystem the reduced quantum state or
reduced density matrix (RDM) as

ρA := TrA(ρ). (1)

The entanglement of subsystem A with its environment
(constituting its complement) A is encoded in the RDM.
We introduce the moments of the RDM. For a positive
integer n, the nth RDM moment is defined to be

pn(ρA) := Tr(ρn
A), (2)

also referred to as the Rényi moments. On top of being
entanglement monotones [29] and hence measures of
entanglement in their own right, these moments are used
for defining various entanglement measures with use-
ful mathematical properties [30–37]. The RDM moments
can—under mild mathematical conditions—be analyti-
cally continued to the entanglement measure featuring the
strongest interpretation for pure bipartite quantum states,
the von Neumann entanglement entropy [38] defined as

S(ρA) := −Tr(ρA log ρA) (3)

for RDMs ρA, as the 1-Rényi entropy. The von Neu-
mann entropy is obtained in the limit S(ρA) = limn→1(1 −
n)−1 log(pn(ρA)). The Rényi moments are especially pop-
ular as entanglement indicators since they do not require
a full reconstruction of the RDM spectrum. Therefore,
they are often easier to either calculate theoretically or
measure experimentally than other entanglement measures
[12–14,16,20,22,39–42].

The measures above are appropriate when quantifying
the entanglement between a subsystem A and its environ-
ment A when A ∪ A is in a pure state. When character-
izing the entanglement between two subsystems A1 and
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A2 whose union A is not necessarily pure, the quantities
above will no longer be suitable to quantify entanglement,
as they cannot distinguish between the quantum entangle-
ment between A1 and A2 from their entanglement with
the environment. One of the best known measures for the
entanglement between two subsystems labeled as A1 and
A2 is the entanglement negativity [35,43,44], based on the
positive partial transpose criterion [2,45,46]

N (ρA) := ‖ρT2
A ‖1 − 1

2
, (4)

where ‖ · ‖1 denotes the trace norm and ρT2
A is the partial

transposition of the degrees of freedom corresponding to
A2 in ρA,

〈i|A1
〈j |A2

ρA |k〉A1
|l〉A2

= 〈i|A1
〈l|A2

ρ
T2
A |k〉A1

|j 〉A2

for all vectors (|i〉 , |k〉), (|j 〉 , |l〉) in an orthonormal basis
of the Hilbert spaces of A1, A2, respectively. The useful-
ness of the negativity as an entanglement measure for two
subsystems in a mixed state [35,44] leads us to define the
moments of the partially traced RDM, further referred to
as PT moments. The nth PT moment is defined to be

Rn(ρA) := Tr((ρT2
A )

n) (5)

for a positive integer n. The negativity can be obtained by
an analytic continuation of the PT even integer moments
by ‖ρT2

A ‖1 = limn→1/2 R2n(ρA). The PT moments are not
entanglement monotones, but they can be used to detect
entanglement between A1 and A2 [24,26], as well as for
estimating the negativity [47]. The popularity of the PT
moments as entanglement indicators stems from the fact
that they too do not require a full reconstruction of the par-
tially transposed RDM, and are therefore easier to calculate
and measure experimentally [24,42].

For systems with a conserved charge Q, the quantum
state of the full system typically commutes with the charge
operator,

[ρ, Q̂] = 0. (6)

A partial trace can be applied to the permutation rela-
tion above to give [ρA, Q̂A] = 0, where Q̂A is the charge
operator on subsystem A. The RDM is thus composed of
blocks, each corresponding to a charge value q in subsys-
tem A, as illustrated in the inset of Fig. 6 in Sec.III E.
We denote the RDM block corresponding to charge q by
ρA(q). The entanglement measures, and specifically the
RDM moments, can then be decomposed into suitable con-
tributions from the different blocks called charge-resolved

or symmetry-resolved moments [48–51],

pn(ρA, q) := Tr(ρA(q)n), (7)

again for positive integers n. This definition could be
extended to the negativity as well [52]. The study of
symmetry-resolved entanglement has drawn much inter-
est lately, both analytically and numerically [26,53–66], as
well as in the development of experimental measurement
protocols [42,49,52,67]. It reveals the relation between
entanglement and charge and can point to effects such as
topological phase transitions [53,55,61] or to instances of
dissipation in open systems dynamics [65].

The estimation of symmetry-resolved entanglement can
be done based on the analysis in Ref. [49]. We introduce
the so-called flux-resolved RDM moments as

pn(ρA,ϕ) := Tr(eiϕQ̂Aρn
A), (8)

where ϕ ∈ [0, 2π) can be thought of as an Aharonov-
Bohm flux inserted in the replica trick. The symmetry-
resolved moments can be extracted from the flux-resolved
moments by a Fourier transform according to

pn(ρA, q) := 1
NA

∑

ϕ

pn(ρA,ϕ)e−iqϕ , (9)

where ϕ = 2πk/NA and k = 0, . . . , NA − 1.

B. Tensor networks

We now briefly review the TN tools that are being used
to compute the quantities presented above in the remainder
of this work by means of sampling techniques.

1. Matrix product states

We here consider a one-dimensional spin system, so of
a finite local dimension, featuring N lattice sites. The state
vector of the system can be written as

|ψ〉 =
∑

σ1,...,σN

�σ1,...,σN |σ1, . . . , σN 〉 , (10)

where � is the rank-N tensor of the coefficients of |ψ〉.
Here � has dN complex amplitudes, where d is the Hilbert
space size of a single spin. In a MPS representation we
decompose � into N different tensors, each corresponding
to a single site, as illustrated in Fig. 1(a). Each such ten-
sor will have a single index corresponding to the indices
of the original tensor, often called the “physical leg” or
the “physical index,” and two additional indices connect-
ing with the tensors corresponding to the site’s neighbors,
often called ‘entanglement legs’ or ‘bond indices’ (with
only one bond index for the sites at the edges). Contract-
ing all the bond indices will result in the original tensor
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(a) (b)

(c) (d) (e)

2

FIG. 1. (a),(b) A general pure quantum state can be thought of as a rank-N tensor represented by a single tensor with N legs (indices),
each with degree d. The full tensor capturing the entire quantum state can be decomposed into N tensors, each representing a single
site. The legs of the original tensor (in pink) are now divided between all tensors, and will be referred to as the physical index. Each
tensor has additional legs connecting it to its neighbors, which will be referred to as the bond index. Contracting all the bond indices
will result in the original tensor. Panels (a) and (b) represent states in one and two spatial dimensions, respectively. Panel (c) represents
the density matrix of a pure state by taking two copies and applying complex conjugation to one of them, which is indicated by the
physical index facing downwards. (d) The RDM of the sites in blue is obtained by tracing out the degrees of freedom of the sites in
gray, which in turn is obtained by contracting the physical legs of both copies. (e) The RDM can be represented by the site tensors
of the sites in A from both copies, which is here represented by a single tensor with two physical legs, and boundary tensors, which
have only bond indices. In order to obtain the boundary tensors, we use the boundary MPS method [68]. The dimension of the bond
indices in black is D2, while that of the legs in green, connecting the boundary tensors to each other, is χ , the bond dimension of the
environment.

�. In many cases one can limit the dimension of the bond
index to be some chosen constant D, also known as the
bond dimension, and discard the least significant variables.
In this way, the number of real parameters will be scaling
as O(ND2d), at the cost of getting an approximate repre-
sentation for the state. States that are expected to be well
approximated by such limited tensors obey an entangle-
ment area law [3–5,8] (in fact, this is provably the case
for area laws of suitable Rényi entropies [69]). This MPS
decomposition is a widely used method for the simulation
of ground states [70,71], thermal states [72–74], and states
undergoing a time evolution [75–78] generated by local
Hamiltonians of one-dimensional systems.

For a system partitioned into two contiguous subsys-
tems, the extraction of the spectrum of the RDM, also
called the entanglement spectrum, is very natural [79] and
can often be useful in classifying phases of matter in one
spatial dimension [80–83]. We note that a decomposition
of the system into two tensors, one corresponding to sub-
system A and one to A, is built into the decomposition of
the systems into site tensors, and that this decomposition
can be transformed into the Schmidt decomposition of the
state vector

|ψ〉 =
∑

i

ψi |i〉A |i〉A , (11)

where {|i〉A}, {|i〉A} are orthonormal bases of A, A, respec-
tively. The values {ψi} are called the Schmidt values, and

can be extracted by a singular value decomposition [79].
The RDM is thus

ρA =
∑

i

|ψi|2 |i〉A 〈i|A . (12)

The RDM eigenvalues are thus the squared absolute val-
ues of the Schmidt values, and by obtaining them, we can
extract the RDM moment in all ranks n, as well as the von
Neumann entropy. Specific techniques have been devel-
oped for the extraction of entanglement measures in some
additional cases, such as the entanglement of a contiguous
subsystem of an infinite system [84] or the negativity of
two contiguous subsystems [85].

2. Projected entangled pair states

For two- or higher-dimensional lattice systems, the MPS
formalism is extended to an ansatz called PEPSs [68,86].
The tensor capturing the state vector of the entire lattice
is then decomposed into N site tensors, each with a sin-
gle physical index and a bond index for each neighbor of
the site in the system. An example for a square lattice is
depicted in Fig. 1(b), and the generalization to other lattice
configurations is straightforward.

The infinite version of PEPSs, known as iPEPSs [68],
can be used to represent states in the thermodynamic limit
in two dimensions. They are defined by a finite set of ten-
sors repeated all over the lattice with some periodicity.
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iPEPSs have found numerous applications in study-
ing ground states [87–92], thermal states [93–95], and
nonequilibrium problems [96–101] in two spatial dimen-
sions, and have become state-of-the-art numerical tech-
niques for studying strongly correlated two-dimensional
problems. The technique does not suffer from the infamous
sign problem [102,103] and can go to very large system
sizes, thus allowing access to regimes where techniques
like quantum Monte Carlo and exact diagonalization fail.

The pure quantum state ρ = |ψ〉 〈ψ | of the quantum
system can be obtained by taking a PEPS vector and its
Hermitian conjugate and placing them back to back as a
tensor product, as depicted for PEPSs in Fig. 1(c). We now
examine a rectangular subsystem A with NA = w1 × w2
sites, where w1 ≤ w2 (as will be the notation throughout
this work). In order to get the RDM of A as defined in
Eq. (1), the degrees of freedom of A need to be traced
out. This can be obtained by contracting the physical legs
of all tensors corresponding to sites in A with the phys-
ical legs of the same tensor in the complex conjugate.
We get a RDM composed of site tensors for the tensors
in A, and boundary tensors resulting from the tensors in
A, as depicted in Fig. 1(e). Such boundary tensors can be
approximately computed for an infinite system. We remark
here that exactly contracting PEPS tensors is a computa-
tionally hard problem (in worst-case complexity and for
meaningful probability measures even in the average case)
[104,105] and, therefore, we have to rely on approximation
algorithms such as the corner transfer matrix renormaliza-
tion group algorithm [106,107], boundary MPS techniques
[68], higher-order tensor renormalization group methods
[108], or others. It is also known that those PEPSs that
are ground states of uniformly gapped parent Hamiltoni-
ans—which are interesting in the condensed matter con-
text—can actually be contracted in quasipolynomial time
[109]. In this work, we make use of the boundary MPS
technique: we create a one-dimensional TN representing
the boundary of the (supposedly infinite) system, and mul-
tiply it by the “traced out” tensors indicated in Fig. 1(d).
The boundary bond dimension is limited to a constant
dimension χ . This process is then repeated until the one-
dimensional boundary tensors are converged, resulting in
a one-dimensional boundary as depicted in Fig. 1(e).

C. Entanglement measures computed from reduced
states

The entanglement measures presented in Sec. II A can
be extracted for two contiguous systems in a MPS as
presented in Sec. II B 1, as well as in additional specific
cases in one [84,85] and two [110] spatial dimensions.
However, for a general dimension and partition, there is
no efficient way known to quantify the entanglement. A
straightforward method can be contracting the tensors such
that the RDM is obtained explicitly to then obtain its

spectral decomposition. However, the explicit RDM is of
dimension dNA × dNA , which comes along with substantial
computational effort and which imposes a strong restriction
on the accessible system sizes.

That being said, the nth RDM or PT moments defined in
Eqs. (2) and (5) can be calculated in polynomial time in
NA using n copies of the system tensors, as depicted
in Fig. 2 for a two-dimensional PEPS. The space com-
plexity required for performing this multiplication for a
MPS scales as O(d2nD2n + D4n). The space complexity
for a two-dimensional PEPS is given by O(χ2nD2(w1+1)n +
D8nd), where χ is the bond dimension of the environment
as depicted in Fig. 1(e), and w1 is the short edge of the
rectangular system, as defined in Sec. II B 2. For n > 1, the
exponential dependence of the cost on n quickly makes it
prohibitively large, despite the fact that, for a narrow sys-
tem (constant w1), the time complexity is linear in NA and
the space complexity does not depend on NA (except for the
possible dependence of D on NA, as can sometimes happen
in finite systems).

D. Benchmark models

Before turning to presenting the actual sampling method
for computing entanglement measures in quantum sys-
tems captured by tensor networks, we here first present
the models we use for benchmarking our method: the two-
dimensional gapped toric code model on a square lattice
and the one-dimensional gapless XX model.

1. The toric code model

The first benchmark model we elaborate on is the ana-
lytically solvable toric code model on a square lattice.
The toric code, introduced by Kitaev [111], transferring
insights from topological quantum field theory to the realm
of quantum spin systems, is a model of spins on a square
lattice with local dimension d = 2. The spins live on the
edges of the lattice rather than its nodes. The Hamiltonian

2

2

2

2

2

2

FIG. 2. Contracting n copies of the density matrix (here n = 3)
to get the nth RDM moment can be done site by site as in
the figure. The exponential dependence of the dimension of ρA
on NA turns into a linear dependence. However, a prohibitive
exponential dependence on n emerges instead.
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of the model is given by

H = −Js

∑

s

⊗

i∈s

σ x
i − Jp

∑

p

⊗

i∈p

σ z
i , (13)

where s represents the set of edges around a single node in
the lattice (a star) and p represents the set of edges forming
a plaquette in the lattice, as shown in Fig. 3. The ground
state of toric code model displays several important prop-
erties, among which are topological order, which leads to
robustness to local errors, making it an important candi-
date for fault-tolerant error correction code. For Js, Jp > 0,
the ground-state vector of the model with open boundary
conditions is known and can be written as

|ψ0〉 =
∏

s

(I +⊗
i∈s σ

x
i )

2
|0〉⊗N , (14)

where N is the number of all sites in the system. In the limit
N → ∞, the iPEPS representation of the infinite toric code
ground state is given in Refs. [5,112]. A set of two-site
tensors, TA and TB, are repeated infinitely such that all of
the nearest neighbors of a site represented by TA are of the
form TB and vice versa. The bond dimension of all bond
indices of TA and TB is D = 2.

For a subsystem of the infinite system in the state
defined in Eq. (14), the density-matrix-based measures can

(a)

(b)

FIG. 3. (a) The toric code model on a square lattice. In blue is
an example of a star operator,

⊗
i∈s σ

x
i , and in red an example

of a plaquette operator,
⊗

i∈p σ
z
i . Circled in green is an example

subsystem of dimensions w = 6, where the system is composed
of the sites colored in green. (b) The XX model is defined on a
finite one-dimensional chain, where subsystem A is its left half
as circled and colored in green.

be analytically calculated [113]. This relies on the symme-
try of the ground state under the application of

⊗
i∈s σ

x
i

for all stars s and of
⊗

i∈p σ
z
i for all plaquettes p . Because

of this symmetry, the RDM is block diagonal, where the
size of each block equals the order of the group generated
by each operator, which is 2 for the operators above. Con-
sidering the fact that all nonzero blocks are identical, as
can be seen from Eq. (14), the eigenvalues of the RDM
can be extracted analytically. Note that the symmetry men-
tioned above is not utilized in the numerical method, so
as to make our performance results applicable to general
analytically unsolvable models, which do not posses such
local symmetries. Here, we estimate the second, third, and
fourth RDM moments, as well as the third PT moment, for
a checkerboardlike partition of a square subsystem (w1 =
w2 = w), as shown for w = 6 in Fig. 3. We study the cases
of w = 4, 6, 8. Note that, while the toric code displays an
area-law-type entanglement structure, here the entire sys-
tem is in the area and therefore a volume law is reached.
Such extensive partitions were shown to be interesting for
the study of topological phases in Refs. [114,115] and fol-
lowing works (a more traditional geometry is studied in
Appendix B). For such systems, the nth RDM moment is
shown to be [113]

pn(ρA) = Rn(ρA) = 2−(w2/2−1)(n−1). (15)

The log of the moment deviates from an area law by an
additive constant term, reflecting the topological order of
the model [116,117]. Note that, for the toric code ground
state, p3 = R3 due to the structure of the RDM discussed
above. However, we compute an estimate for R3 based on
the generally applicable estimator defined in Eq. (25) for
completeness.

2. The XX model

While suited for high dimensions, we note that our
method is blind to the dimensionality of the system, and
will apply to one-dimensional systems in precisely the
same way as it would for higher dimensions. Therefore, we
can use one-dimensional models as benchmark models for
testing the system. We test our model on the ground state
of the one-dimensional XX model captured by the local
Hamiltonian

H = J
∑

i

σ+
i σ

−
i+1 + H.c., (16)

where i stands for a site in the system. The Hamiltonian
can be seen as a Hamiltonian of noninteracting fermions
by virtue of the Jordan-Wigner transformation [118] and is
thus analytically solvable [119]. We compute the ground
state of a system of length 2l and extract the second, third,
and fourth RDM moments of a contiguous half of the sys-
tem. In contrast to the toric code, the XX model is gapless
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in the absence of a large magnetic field and can be well
approximated as a conformal system. For such systems,
the RDM moments of a subsystem when the total system
is in the ground state is to a good approximation predicted
to be [120,121],

pn(ρA) ∼ 1 + n−1

6
N−c(n−1/n)/6

A , (17)

where c = 1 is the conformal charge. As opposed to the
toric code ground-state RDM, which is composed of 2 × 2
blocks, the XX ground state is not as structured, and the
performance of the method is harder to predict. As such,
the XX model ground state is a good complement to
the toric code ground state in the study of the method’s
performance.

III. METHOD

We now turn to describing the method that is at the heart
of this work. The core idea is that, with suitable stochas-
tic sampling techniques, one can more resource-efficiently
estimate entanglement properties of systems captured by
tensor networks. Inspired by the growing body of meth-
ods based on random unitaries [10–23], and described in
Sec. I, we now turn to describe our random-variables-
based method for estimating the entanglement contained in
a TN state. As mentioned in the Introduction, our method
differs from the protocols that are routinely implemented
in experiments by two key aspects. First, we do not base
the protocol on sampling local measurement results, which
are cumbersome to extract from TNs, but on sampling of
expectation values, which can be naturally calculated in
TNs. Note that, while actual sampling from the MPS can
be performed exactly [122], sampling from the PEPS is
shown to be computationally hard, in the worst as well as
average cases [123,124]. The second difference between
our method and the experimental protocols is that we do
not have to limit ourselves to physically allowed processes,
and specifically, our random operations are neither uni-
tary nor quantum channels, which allows for a significant
simplification of the protocol.

A. Sampling random vectors

In what follows, random vectors |v〉 ∈ C
d drawn from

appropriate probability measures will feature with the
property such that

E(|v〉 〈v|) = I, (18)

where E refers to the average over the chosen probability
measure. This is up to the normalization that is only dif-
ferent by a factor of d1/2 than what is commonly called
a frame or a spherical complex 1-design [27,28]. This
convention is helpful in what follows. The set of vectors

can be a discrete or a continuous set. We use the ran-
dom variable to get simple estimators for the entanglement
quantifiers based on Rényi moments of RDM of subsys-
tems A, each site α ∈ A of which corresponds to a system
of local dimension d. In this setting, we consider random
vectors

|V〉 =
⊗

α∈A

|v[α]〉 ∈ C
dNA , (19)

where |v[α]〉 ∈ C
d are vectors drawn in an independent and

identically distributed (IID) fashion as in Eq. (18), one for
each site α. Naturally,

E(|V〉 〈V|) = I (20)

still holds in this multipartite setting.

B. Estimators of entanglement measures

By applying these random vectors to the reduced density
matrix, we obtain an estimator of the second entanglement
moment, also referred to as the purity, from expressions of
the form

p̂2(ρA) = | 〈V| ρA |V′〉 |2. (21)

Indeed, averaging over the (independent) random vec-
tors |V〉 , |V′〉 drawn from a product probability measure
as defined in Eq. (19), we consistently obtain the second
moment as defined in Eq. (2) as the expectation

E(p̂2(ρA)) = E(〈V| ρA |V′〉 〈V′| ρA |V〉)
= E(Tr(ρA |V〉 〈V| ρA |V′〉 〈V′|))
= Tr(ρ2

A)

= p2(ρA). (22)

Note again that these quantities can be readily computed
at hand of the classical description of the quantum state,
but cannot be natively measured in a quantum system. In
this sense, the random sampling technique proposed here
resorts to “unphysical operations.”

The nth RDM moment can be obtained by a general-
ization of Eq. (21) as the expectation E(p̂n(ρA)) = pn(ρA)

of

p̂n(ρA) = 〈V(1)| ρA |V(2)〉 · · · 〈V(n)| ρA |V(1)〉 , (23)

where |V(1)〉 , . . . , |V(n)〉 are drawn in an IID fashion from
the same probability measure. For the PT moments, per-
form the partial transposition with respect to subsystem A2.
Specifically, we define, for i, j = 1, . . . , n, pairs of product
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vectors as

|V(i,j )〉 :=
⊗

α∈A1

|[v[α]](i)〉
⊗

β∈A2

|[v[β]](j )〉 , (24)

so that the correct ordering of random product vectors can
be reflected. The estimator of the negativity moment is
obtained by

R̂n(ρA) = 〈V(1,n)| ρA |V(2,n−1)〉 〈V(2,n−1)| ρA |V(3,n−2)〉
× · · · × 〈V(n−1,2)| ρA |V(n,1)〉 〈V(n,1)| ρA |V(1,n)〉 ,

(25)

so that

E(R̂n(ρA)) = Tr((ρT2
A )

n) = Rn(ρA). (26)

Computing such an estimator on a system represented by
a TN is pursued by separately computing each element
〈V(i)| ρ |V(j )〉 or 〈V(i,k)| ρ |V(j ,l)〉 for i, j , k, l = 1, . . . , n. The
calculation of a single element is illustrated in Fig. 4, and is
equivalent in terms of complexity to an expectation value
calculation. For example, for a two-dimensional PEPS,
the space complexity is O(χ2D2(w1+1) + D4d), and the
time complexity is O(nw2(χD2(w1+1)(χ + D2)+ D4d)).
The calculation is repeated M times over realizations of
the respective random vectors and the outcomes are aver-
aged in order to get an estimate for the desired quantity.
Thus, the cost of the calculation of a single density matrix
element given above, times the number of repetitions M ,
which is discussed in Secs. III D and IV B, as well as in
Appendix A.

C. Candidate probability measures

The required property of the random vectors, captured
in Eq. (18), can be naturally obtained in a wealth of ways:
after all, all that is required is to have up to normalization
a spherical 1-design property. Still, since we do not require
the vectors to necessarily constitute a spherical complex

2

FIG. 4. Graphical representation of the computation of a sin-
gle element 〈V(i)| ρ |V(j )〉 on an iPEPS. The system in the figure
is a rectangle system of height h = 2 (and a general width
w). The local vectors |v[α]〉 are represented by the yellow and
pink one-legged circles, where the two sets of local vectors are
independent of each other.

2-design, the second moments will depend on the specific
choice of the probability measure. For example, this can
be done by choosing the vectors randomly out of some
orthogonal basis, or several orthogonal bases. For prime
dimension d, the clock and shift operators, Weyl opera-
tors, or simply d-dimensional Pauli matrices are defined
to be the operators

Zd :=
d−1∑

i=0

ωi |i〉 〈i| , Xd :=
d−1∑

i=0

|i〉 〈mod(i + 1, d)| ,

(27)

where ω := e2π i/d. The j th normalized eigenvector of the
ith d-dimensional Pauli matrix is denoted by |p (i,j )〉, and
we note that, for prime d, the number of noncommuting
Pauli matrices is d + 1. We then compare two possible
distributions that are particularly practical in the context
given. First is the “full-basis” distribution,

|v〉 ∈ {
√

d |p (i,j )〉}i=1,...,d+1,j =1,...,d. (28)

The vectors are normalized such that Eq. (18) is obeyed.
The second distribution is referred to as the “partial basis,”
in which we sample from the eigenbasis of only d Pauli
matrices

|v〉 ∈ {
√

d |p (i,j )〉}i=1,...,d,j =1,...,d. (29)

For nonprime d, the Pauli matrices can be defined to be ten-
sor products of the matrices in Eq. (27) in the dimensions
of the factors of d. In this case, the vector distributions
are defined as in Eqs. (28) and (29), but with the eigen-
bases of the independent products of the clock and shift
operators. We compare the two probability measures (and
discuss why it is sufficient to only consider these distribu-
tions) in Secs. III D and IV B and in Appendix A below.
For states represented efficiently by TNs, the partial-basis
distribution (with an optimized basis choice, as detailed in
Sec. IV C) turns out to be more efficient, and therefore most
of the presented results are obtained using this method.

D. Required number of repetitions

The method suggested makes use of random quantum
states for the estimation of entanglement measures. When
drawing random vectors from the probability measures
indicated above, one finds that the probability of deviating
from the expectation is bounded by

Pr(|p̂n − E(p̂n)| ≥ kσ(p̂n)) ≤ 1
k2 (30)

for real k and σ(p̂n)
2 := Var(p̂n). This is true by virtue of

Chebychev’s inequality, a large deviation bound. Here and
in the following, we suppress the dependence on ρA. For M
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repetitions, the variance VarM of the estimator of the mean
E(p̂n) is given by

VarM := Var(p̂n)

M
. (31)

Since then

ε2 := VarM

p2
n

= Var(p̂n)

Mp2
n

(32)

for a given ε > 0, the number of required repetitions scales
as M = Var(p̂n)/(p2

nε
2).

The characteristics of the method lead us to expect an
exponential dependence of the required number of repeti-
tions M on system size (whilst, as can be seen below, a
weak one). We thus define the scaling factor ξn by

Var(p̂n(ρA))

pn(ρA)2
=: ξNA

n . (33)

We use the notation ξn for the scaling factor of R̂n as well,
since the scaling factors for both properties are expected to
behave similarly.

In Appendix A, we show that the variance of the estima-
tors defined in Eqs. (23) and (25) is given by

Var
(
p̂n
) = Tr((ρ⊗2

A E)n)− pn(ρA)
2 (34)

and

Var(R̂n) = Tr(((ρT2
A )

⊗2E)n)− Rn(ρA)
2, (35)

where

E := E(|V〉 ⊗ |V〉 〈V| ⊗ 〈V|). (36)

Given the product structure of the probability measure, this
expression is found to be E = ⊗

α∈A E [α], with

E [α] := E(|v[α]〉 ⊗ |v[α]〉 〈v[α]| ⊗ 〈v|[α]). (37)

In a coordinate representation, this is found to be

E [α]
i,j ,kl = d

d + 1
(δi,kδj ,l + δi,lδj ,k) (38)

for the full-basis distribution, and

E [α]
i,j ;k,l = δi,kδj ,l + δi,lδj ,k − δi,kδj ,lδi,l (39)

for the partial-basis distribution. To give an even more spe-
cific example in a coordinate-dependent form, for d = 2,

we have

E [α] =

⎛

⎜⎜⎜⎝

4
3 0 0 0

0 2
3

2
3 0

0 2
3

2
3 0

0 0 0 4
3

⎞

⎟⎟⎟⎠ (40)

and

E [α] =

⎛

⎜⎝

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎞

⎟⎠ (41)

for the full-basis and partial-basis distributions, respec-
tively. In Appendix A, the variance of the symmetry-
resolved moments estimator is shown to be bounded from
above by Eq. (34).

We first focus on discussing the full-basis distribution.
As shown in Appendix A, the squared coefficients of vari-
ation in a product state ρ = ⊗

α∈A |ψ〉α 〈ψ |α and in a
maximally mixed case (i.e., subsystem A being maximally
entangled with the rest of the system), ρA = I/dNA , are

Var(p̂n)

p2
n

=
(

2d
d + 1

)nNA

− 1 (42)

and

Var(p̂n)

p2
n

=
(

2d
d + 1

)(n−1)NA

− 1, (43)

respectively. The same results apply for the PT moments.
For example, for d = 2,

ξn =
(

4
3

)n

(44)

for a product state and

ξn =
(

4
3

)n−1

(45)

for a maximally mixed state. Note that the scaling factors
obtained below for the benchmark models, as displayed
in Table I in Sec. IV C, are in-between these two extreme
cases.

As for the partial-basis distribution, as explained in
detail in Appendix A, the highest variance, and hence
the largest additive sampling error, for both the RDM
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TABLE I. The extracted scaling factor defined in Eq. (33), ξn, for n = 2, 3, 4 for the best and worst cases in the toric code ground
state extracted from Fig. 9 and the XX model ground state. The scaling factors obtained in the full-basis method are displayed for
comparison. The worst and best cases in ξ1 are shown to predict well the dependence of ξn on the basis choice.

Toric code best case Toric code worst case Toric code full-basis XX best case XX worst case XX full-basis

(φ, θ) (0, 0.3π) (0.5π , 0) – (0.5π , 0.5π) (0, 0) –
ξ1 1.05 1.07 – 1.24 1.30 –
ξ2 1.23 1.36 1.26 1.54 1.73 1.51
ξ3 1.80 1.89 1.81 1.65 1.98 1.77
ξ4 2.75 2.91 2.81 2.09 2.50 2.34

moments and PT moments arises for

ρ =
⊗

α∈A

|ψE〉 〈ψE|α , (46)

where |ψE〉 stands for a state vector of the form

|ψE〉 = 1√
d

d∑

j =1

[eiφj |j 〉] (47)

with an equal magnitude of the amplitude for each state in
the computational basis. In this case, the contribution of
each site to the first term of the variance is

ξn =
((

d + 4
(

d
2

))
/d2

)n

, (48)

and the overall variance is given by

((
d + 4

(
d
2

))
/d2

)nNA

− 1. (49)

For example, for d = 2, the scaling factor in such a case
is ξn = (3/2)n. The best case is ρA = |0〉 〈0|⊗NA (or any
other basis state in the computational basis), in which the
variance is 0. Both cases are completely disentangled, and
the moments equal 1. Therefore, the former of these is
not maximal in terms of the squared coefficient of varia-
tion, which is determined by the ratio between the standard
deviation and the expected value. However, the analysis of
the variance itself already serves to demonstrate that the
choice of basis for the vector |v〉 can have a significant
impact on the variance and, due to that, on the perfor-
mance of the algorithm, as discussed in Sec. IV C below.
The coefficient of variation in the maximally nixed case in
this method is calculated in Appendix A and equals

Var(p̂n)

p2
n

=
(

d + (d
2

)
2n

d2

)NA

. (50)

The two cases represented in Eqs. (42), (43), and (48),
in which the variance can be calculated exactly, are not

promised to be the best or worst case for the two dis-
tribution methods. For a two-qubit system, we perform
a gradient-descent search for the extreme cases in both
distributions, where a basis optimization (as described in
Sec. IV C) is included in the partial-basis method. Figure 5
presents the results, which strongly support the hypothesis
that the maximally and minimally mixed cases are indeed
the extreme cases for the method’s performance.

The best distribution choice is therefore case depen-
dent. For moderate or large n and highly mixed cases,
the full-basis distribution is advantageous. For small n
or weakly entangled cases, the partial-basis method with
a smart basis choice (as discuss in Sec. IV C) is more
beneficial. Based on Eq. (50), the partial basis seems to
have a poor performance on highly entangled (mixed)
states. However, states represented efficiently by a TN
feature an entanglement that exhibits an area law, which
restrains the entanglement of relevant states to begin with.
Note that even in this worst case our method is still
favorable compared to the time required for an exact
diagonalization of the RDM, which scales as O(d3NA)

for intermediate n. The variances calculated above com-
pare favorably with the variances in the experimen-
tal sampling-based protocols [10–24], as calculated in

“Partial basis”, Vmax 

“Partial basis”, Vmin 
“Full basis”, Vmax

“Full basis”, Vmin

FIG. 5. Maximal and minimal variances for a two-qubit sys-
tem using the full-basis and partial-basis methods, as obtained
by a gradient-descent optimization. The results obtained for
the maximally and minimally mixed states in Eqs. (42), (43),
and (48) are presented with dashed lines for comparison.
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Ref. [24]: for d = 2, the relative variances for n = 2, 3 are
shown to be Var(p̂2)/p2

2 ≥ (8/p2
2 )max{2NAp2, 21.5NA} and

Var(p̂3)/p2
3 ≥ (39/p2

3 )max{2NAp2
2 , 21.5NAp2, 22NA}.

It would be interesting to use the analysis above as a
basis for a study regarding the number of local samples
required for the estimation of Rényi moments in general.
Naively, the moments are defined as a function of the full
RDM, which has d2NA elements, and hence should require a
comparable number of samples. However, an extraction of
a single degree of freedom is expected to require a smaller
number of samples, as is the case for small n in our method.
Such analysis may point to the amount of information
contained in Rényi moments of different ranks.

E. Symmetry-resolved RDM moments

Using the locality of the phase operator from Eq. (8),
eiϕQ̂A = ⊗

α∈A eiϕQ̂α , we can extract the flux-resolved
moments from the TN, and substitute them into Eq. (9) to
get the symmetry-resolved moments. The estimator of the
flux-resolved moment is similar to the estimator of the full
moments in Eq. (23) and is obtained from

p̂n(ρA,ϕ) = 〈V(1)| eiϕQ̂AρA |V(2)〉 〈V(2)| ρA |V(3)〉
× · · · × 〈V(n)| ρA |V(1)〉 . (51)

The estimator of the charge-resolved moment is obtained
from

p̂n(ρA, q) =
∑

φ

e−iqϕ 〈V(1)| eiϕQ̂AρA |V(2)〉

× · · · × 〈V(n)| ρA |V(1)〉 . (52)

A similar analysis of symmetry-resolved PT moments has
been done in Ref. [52], and the extension to their estima-
tion is natural. Below we estimate the symmetry-resolved
RDM moments for the XX model and its conserved total
Sz. For this model, the symmetry-resolved moments can
be obtained exactly following Ref. [49]. The expected
and extracted results for q �→ pn(ρA, q) for n = 2, 3 are
displayed in Fig. 6.

IV. TESTING THE METHOD AGAINST THE
BENCHMARK MODELS

A. Specific tests

We have tested the model against the exactly solvable
two-dimensional toric code model and one-dimensional
XX model as detailed in Sec. II D, employing the Tensor-
Network library [125]. The precision of the estimation for
both models as a function of M , the number of samples of
the expressions in Eqs. (21), (23), (25), and (51), is shown
in Fig. 7. The results are obtained using the partial-basis
distribution, Eq. (29), and are optimized based on the anal-
ysis in Sec. IV C below. In order to reduce the numerical

FIG. 6. Symmetry-resolved RDM moments of the XX model
ground state with NA = 20 and n = 2, 3. The lines are the exact
values and the dots are the extracted values using the partial-basis
distribution, Eq. (29), with the errors estimated from the sam-
ple variance. The number of samples M used is approximately
102ξ

NA
3 , where ξ3 = 1.65. Inset: when the RDM commutes with

the charge operator Q̂A, it decomposes into blocks corresponding
to different charges in subsystem A.

noise in the dependence of the precision in M , we average
this dependence over several permutations of the M repe-
titions. While the required number of repetitions M (for a
given allowed error ε > 0) is exponential in system size (as
discussed above in Sec. III D), it has a relatively small base
ξn. When considering the significant decrease in required
memory space, our method can become advantageous for
systems around NA = 20, for which the method described
in Sec. II B can become too heavy in memory demands for
a standard computer workstation.

B. Variance estimation

Here we follow the analysis of the scaling factor ξn in
Sec. III D and estimate the scaling factors in the benchmark
models, in order to get some idea regarding the variance
in the general case. The scaling factors ξn obtained for
the toric code and XX ground states for n = 2, 3, 4 are
estimated numerically. In Appendix B, we demonstrate an
exact calculation of the expressions in Eqs. (34) and (35)
for a narrow striplike system in the toric code model, and
show that the resulting expressions agree with the numer-
ically estimated scaling factors. We emphasize that the
models used are not specifically suitable for the method,
and are not expected to have low scaling factors based
on Eqs. (34) and (35). The estimated scaling factor ξn can
therefore be considered typical.

Figure 8 presents the estimated variances of the bench-
mark models in the full-basis distribution and partial-basis
distribution after the basis-choice optimization detailed in
Sec. IV C. The scaling factor can be extracted from the
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(a) (b)

FIG. 7. Relative error in the estimation of (a) the second to fourth RDM moments and the third PT moment of the toric code ground
state for a checkerboard partition (NA = w2/2), and (b) the second to fourth RDM moment and the third symmetry-resolved RDM
moment for q = 0 of the XX model ground state, based on Eq. (23) for the RDM moments, on Eq. (25) for the PT moment, and (51)
for the symmetry-resolved moment. Here, we use the partial-basis distribution, Eq. (29). The normalization of M by the scaling factor
ξn in the horizontal axis is extracted from Fig. 8 and presented in Table I in Sec. IV C. The presented plots are averaged over 20
different permutations of the estimation results.

dependence of the variance on NA. We see that the scaling
factors are smaller than the worst case presented above. In
the XX model, for which the entanglement is log depen-
dent in system size, we get a better performance with
the basis-optimized partial-basis distribution. In the more
strongly entangled (and therefore less basis-sensitive) toric
code model, the difference in performance between the two
methods is clearly less significant.

C. Dependence on basis choice

In the partial-basis distribution, as shown above, the
largest and smallest additive variance values both corre-
spond to a completely disentangled case, and the differ-
ence between the two stems from the single-particle basis
choice alone. This can be understood by the decomposition

E [α] = I ⊗ I + 1
2
(σ x ⊗ σ x + σ y ⊗ σ y), (53)

as can be seen from Eqs. (40) and (41), which demonstrates
the orientation dependence of E in this case [in contrast
with

E [α] = I ⊗ I + 1
3
(σ x ⊗ σ x + σ y ⊗ σ y + σ z ⊗ σ z) (54)

in the full-basis case]. For a translationally invariant sys-
tem, one can expect that the optimal basis choice for each

site will be the same. We can now attempt to decrease the
variance by finding the basis for which Var(p̂1) is minimal,
and use this basis for the estimation of higher moments. We
test this idea against the first moment of the two benchmark
models, by rotating the random vectors

|v[α]〉 �−→ eiφσ x
eiθσ y |v[α]〉 , (55)

and finding the best basis, as demonstrated in Fig. 9. We
plot the scaling factor for n = 1, ξ1, for the two benchmark
models as a function of the basis choice. We then compare
the best and worst choices of φ, θ ∈ [0, 2π) and extract the
variance of the higher moments in the corresponding bases,
as summarized in Table I. We can see that the p1 case acts
as a good indicator for the basis choice of the moments for
higher n values, and allows for a smart basis choice that
decreases the variance.

V. CONCLUSIONS AND OUTLOOK

In high-dimensional TN states, the naive computation
of entanglement is highly sensitive to the size of the sys-
tem (when explicitly extracting the RDM) or the bond
dimension of the site tensors and boundaries (when per-
forming the replica trick). We developed a method for
estimating RDM moments in Eq. (2) and PT moments
in Eq. (5) of such systems, as well as their symmetry-
resolved components in Eqs. (7) and (8), without fully
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(a) (b)

Partial basis
Full basis

Partial basis
Full basis

FIG. 8. Numerical estimation of the variance of (a) the second to fourth RDM moments and the third PT moment of the toric code
ground state for a checkerboard partition and (b) the second to fourth RDM moments and the third symmetry-resolved RDM moment
for q = 0 of the XX model ground state. Here, we mainly use the partial-basis distribution, Eq. (29), and add results for pn in the full-
basis distribution, Eq. (28), which displays a very similar performance in the more strongly entangled toric code model, and a worst
behavior in the loglike entangled XX model. In the vertical axis title, p stands for the estimated moment in all cases. The dependence
of the variance on system size ξ , defined in Eq. (33), is extracted from the linear fit in the figure and shown in Table I. Note that, for the
toric code ground state shown in (a), the behaviors of the third RDM moment and the third PT moment are expected to be identical,
and are slightly different only due to the random nature of our protocol.

reconstructing the density matrix or contracting several
copies of the state. The method uses randomization in
order to correlate separate copies of the TN state, allow-
ing for the estimation of properties that are defined using
more than one copy of the RDM. Though we are inspired
by recent experimental protocols [10–23], we developed a

(a) (b)

FIG. 9. The scaling factor ξ1of the normalized variance of the
first moment with system size as defined in Eq. (33), as a function
of the working basis defined by φ, θ ∈ [0, 2π) in Eq. (55) for
the partial-basis distribution, Eq. (29), and for (a) the toric code
ground state for a checkerboard partition and (b) the XX model
ground state.

completely new algorithm that is suitable to classical sim-
ulations, takes advantage of their strengths such as ability
to estimate the expectation value of non-Hermitian opera-
tors, and avoids their weakness in sampling the outcomes
of random measurements.

We have demonstrated our method with the iPEPS rep-
resentation of the toric code ground state and the MPS
representation of the XX ground state, and compared the
results with analytical calculations. The method can be
readily used for any tensor network ansatz representing
a spin or bosonic system, and provides information on
the entanglement of systems that were formerly unreach-
able by today’s computers due to a strong exponential
dependence of the memory space in the moment degree
n. Additionally, our method is advantageous for nontriv-
ial partitions in one or higher spatial dimensions, such
as the checkerboard partition [114] or random partition
[115], for which the moments are hard to calculate even
for one-dimensional MPS.

We compare two options for the random distribution,
where each of the methods turns out to be suitable for
different cases. For small n, the scaling of required sam-
ples number M with system size NA turns out to be lower
than the scaling of RDM size, and can have implications
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regarding the information contained in these moments.
It would be interesting to try and develop a sampling-
based method that incorporates nonphysical operations and
compare its performance with ours. The analysis of such
a protocol may shed more light on the power of Rényi
moments.

The method should be suitable to fermionic PEPSs
[102,103], and can be generalized to additional Rényi mea-
sures, such as participation entropies, used for the detection
of many-body localization [126]. Exploring the possibil-
ity of derandomizing the algorithm, similarly to the recent
results of Huang et al. [127], would also be interesting. In
contrast to the setting of shadow estimation, the very quan-
tum state is already classically efficiently represented, and
computing overlaps with suitable random vectors gives
rise to an effective estimation of entanglement properties.
Now that the option to use nonphysical sampling has been
opened, it can be expanded to various platforms, including
experimental settings with a vectorized density matrix. It
is the hope that this work contributes to the program of
exploiting the power of random measurements in quan-
tum physics, even in situations where the sampling scheme
itself is not reflected by physical operations.
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APPENDIX A: FULL DERIVATION OF THE
VARIANCE

Below we derive Eqs. (34), (40), and (41) of the main
text, and use them to find density matrices that extremize
the variance. First, we write the expression for the RDM
moments estimator explicitly. In the above coordinate-
independent fashion, this derivation is straightforward.
The nth RDM moment is obtained as the expectation of

p̂n(ρA) = 〈V(1)| ρA |V(2)〉 · · · 〈V(n)| ρA |V(1)〉 , (A1)

where, again, the product state vectors |V(1)〉 , . . . , |V(n)〉
are drawn in an IID fashion from the same probability

measure. In expectation, we find that

E(p̂n(ρA)) = E(〈V(1)| ρA |V(2)〉 · · · 〈V(n)| ρA |V(1)〉)
= E(Tr(|V(1)〉 〈V(1)| ρA |V(2)〉 · · · 〈V(n)| ρA))

= Tr(ρn
A)

= pn(ρA). (A2)

Similarly, for the PT moments, one can make use of
random vectors of the form

|V(i,j )〉 =
⊗

α∈A1

|[v[α]](i)〉
⊗

β∈A2

|[v[β]](j )〉 (A3)

for i, j = 1, . . . , n, so that the estimator of the negativity
moment is

R̂n(ρA) = 〈V(1,n)| ρA |V(2,n−1)〉 〈V(2,n−1)| ρA |V(3,n−2)〉
× · · · × 〈V(n−1,2)| ρA |V(n,1)〉 〈V(n,1)| ρA |V(1,n)〉 ,

since one simply finds, by performing partial transposes in
all terms,

E(R̂n(ρA))

= ETr(〈V(1,n)| ρA |V(2,n−1)〉 〈V(2,n−1)| ρA |V(3,n−2)〉
× · · · × 〈V(n−1,2)| ρA |V(n,1)〉 〈V(n,1)| ρA |V(1,n)〉)

= Tr((ρT2
A )

n), (A4)

so that indeed the correct moment of the partially trans-
posed operator is recovered. The variance can then be
calculated from the expectation of

p̂n(ρA)
2 = (〈V(1)| ρA |V(2)〉)2(〈V(2)| ρA |V(3)〉)2

× · · · (〈V(n)| ρA |V(1)〉)2, (A5)

from which the square of pn(ρA) is subtracted. The subtle
point is now that projections appear twice rather than once.
This can be reflected by making use of two tensor factors.
Upon reordering the tensor entries, one immediately finds
the expression

p̂n(ρA)
2

= Tr[(〈V(1)| ⊗ 〈V(1)|)(ρA ⊗ ρA)(|V(2)〉 ⊗ |V(2)〉)
× · · · × (〈V(n)| ⊗ 〈V(n)|)(ρA ⊗ ρA)(|V(1)〉 ⊗ |V(1)〉)]

= Tr
( n∏

j =1

(|V(j )〉 ⊗ |V(j )〉)(〈V(j )| ⊗ 〈V(j )|)(ρA ⊗ ρA)

)
.

(A6)

In expectation, this is E(p̂n(ρA)
2) = Tr((ρ⊗2

A E)n) with

E = E (|V〉 ⊗ |V〉 〈V| ⊗ 〈V|) (A7)
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and hence E = ⊗
α∈A E [α], where

E [α] = E(|v[α]〉 ⊗ |v[α]〉 〈v[α]| ⊗ 〈v[α]|). (A8)

In this way, one finds the expression for the variance

Var(p̂n(ρA)) = Tr((ρ⊗2
A E)n)− p2

n . (A9)

Here it is relevant that the frames made use of do not nec-
essarily have to constitute complex spherical 2-designs for
estimating the above entanglement measures in an unbi-
ased fashion, so that the average does not necessarily
resemble that of the Haar average, and may depend on the
ensemble. We now see why it is meaningful to consider
the two probability measures specified above: Drawing
vectors from the eigenbasis of a single Pauli matrix, i.e.,
randomly sampling RDM elements in this basis, would
give, for example if we drew from the eigenbasis of Z,

E [α]
i,k;j ,l = δi,j δk,l + δi,kδj ,l + δi,lδj ,k − 2δi,kδj ,lδi,l. (A10)

This matrix equals the matrix obtained above, with added
positive terms, and hence can only increase the variance.
The same argument can be made for any number of Pauli
matrices between 2 and d − 1. The Pauli matrices con-
stitute a unitary 1-design [27], which is the requirement
for them to be a universal measure for the estimators in
Eqs. (21), (23), (25), and (52). Therefore, it is unneces-
sary to consider additional distributions. In the maximally
mixed case, ρA = (Id/d)⊗NA , the normalized first term is

Tr([ρ⊗2
A E]n)

p2
n

=
(

2d
d + 1

)(n−1)NA

(A11)

for the full-basis and

Tr([ρ⊗2
A E]n)

p2
n

=
(

d + (d
2

)
2n

d2

)NA

(A12)

for the partial-basis. In a product state, ρA = ⊗
α∈A |ψ〉α

〈ψ |α in the full-basis distribution, one finds that

Tr([ρ⊗2
A E]n)

p2
n

=
(

2d
d + 1

)nNA

. (A13)

The performance of the partial-basis distribution for a
product state can be analyzed as follows: E [α] is a block
diagonal matrix, with d blocks of the form B1 = (1) and(d

2

)
blocks of the form

B2 =
(

1 1
1 1

)
. (A14)

The largest eigenvalue of
∏
α∈A E [α] is thus 2NA , and cor-

responds to an eigenvector of the form
⊗

α∈A |i, j 〉, where

i and j correspond to the spin of site α in the two copies
and i, j = 1, . . . , d for i �= j . However, since ρ⊗2

A is con-
structed from two identical copies of ρA, vectors of the
form above cannot be the only contributors to the RDM.
The RDM with the largest possible variance has an equal
weight to all vectors of the form above, which means that
it will have the form

ρA =
⊗

α∈A

1
d

⎛

⎜⎝
1 . . . 1
...

. . .
...

1 . . . 1

⎞

⎟⎠ . (A15)

Then, the contribution of each site to the first term of the
variance is

ξn =
((

d + 4
(

d
2

))
/d2

)n

. (A16)

The RDM with smallest possible variance will be, for
example,

ρA = |0〉 〈0|⊗NA , (A17)

or any other product state in the computational basis. In
this case, the first term of the variance sums up to 1
and Var(p̂n) = 0. In both cases A is disentangled from its
environment, which demonstrates that the variance of the
estimated value depends on the basis choice for the vectors
|v〉.

The variance of the flux-resolved moment estimators of
the complex-valued random variable defined in Eq. (51)
can similarly be computed from

|p̂n(ρA,ϕ)|2

= 〈V1|eiϕQ̂AρA|V2〉〈V2|ρA|V3〉 · · · 〈Vn|ρA|V1〉
× 〈V1|ρA|Vn〉 · · · 〈V3|ρA|V2〉〈V2|ρAe−iϕQ̂AρA|V1〉

= Tr
((
ρAeiϕQ̂A ⊗ e−iϕQ̂AρAE

)(
ρ⊗2

A E)n−1)), (A18)

which is bounded from above by the variance for the non-
resolved case, as the sum of the first term is composed
of terms with the same absolute values, but with added
phases. The estimator for the variance of the symmetry-
resolved moments is therefore also bounded by

Var(p̂n(q)) = 1
NA

∑

ϕ

Var(p̂n(ϕ))

≤ 1
NA

∑

ϕ

Var(p̂n)

= Var(p̂n). (A19)
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APPENDIX B: EXPLICIT VARIANCE
CALCULATION FOR THE TORIC CODE

Here, we demonstrate how the variance can be cal-
culated exactly in the toric code model for a subsystem
shaped as a narrow strip [Fig. 10(a)] for the partial-basis
distribution, and compare it to the extracted variance. We

(a)

(b)

(c)

(d)

FIG. 10. (a) A configuration of a striplike subsystem of dimen-
sion 2 × 2l, with l = 3. (b) An example for a contributing config-
uration of operators to the term Tr((ρ⊗2

A E)n) in Eqs. (34) and (35)
for n = 2 and a subsystem composed of l = 3 stars. Depicted in
pink and blue are stabilizers under which the subsystem RDM
is invariant, and therefore each of them can be applied to any
of the copies and contribute to the trace (note that σ y = iσ zσ x).
In orange and purple is a pair of operators that commute with
the star operator

⊗
i∈s σ

x
i due to having an even number of σ y

matrices. Such a pair of operators that commute with the stabi-
lizer operator will also contribute to the trace, provided that they
are applied on both sides of the same copy of ρ⊗2

A factors. (c)
An example element of the transfer matrix T(2). Applying the
operators in orange to the (l + 1)th star, given that the operator
configuration on the lth operator is the one in pink, is allowed,
and the expression will be multiplied by 2−4 due to the four
1
2σ

y ⊗ σ y applied to the (l + 1)th star. (d) An additional exam-
ple element in the transfer matrix T(2). Applying the operators in
orange to the (l + 1)th star will not contribute to the trace, since
this operator configuration does not commute with the plaquette
or star terms.

start from Eqs. (34), (40), and (41), and the decomposition

E [α] = I + 1
2
σ x ⊗ σ x + 1

2
σ y ⊗ σ y , (B1)

which applies for the partial-basis method in d = 2. The
full E matrix can be written as

E =
∑

S

⊗

α

Sα ,

where S is an NA-long configuration of the operators
I, 1

2σ
x ⊗ σ x, 1

2σ
y ⊗ σ y . We use the local symmetry of the

toric code ground state

⊗

i∈s

σ x
i ρ =

⊗

i∈p

σ z
i ρ = ρ

⊗

i∈s

σ x
i = ρ

⊗

i∈p

σ z
i = ρ, (B2)

in order to distinguish configurations S that will contribute
to Eq. (34). An allowed configuration S will contain any
number of star (

⊗
i∈s σ

x
i ) or plaquette (

⊗
i∈p σ

z
i ) operators,

also called the stabilizers. Pairs of some operator that com-
mutes with the stabilizers and acts on two sides of the same
copy of ρ⊗2 are also allowed, as well as combinations of
operators that can be transformed into such pairs by a mul-
tiplication of the operators by stabilizers. This is illustrated
in Fig. 10(b).

We calculate the variance for a narrow system of dimen-
sion 2 × 2l, as depicted in Fig. 10(a). Such a system is
composed of a chain of l contiguous stars. For a moment
of rank n, we think of n copies of the subsystem, and
write a 34n-dimensional vector of combinations of oper-
ators [I, σ x ⊗ σ x, σ y ⊗ σ y] on a single star in all n copies.
We now write a transfer matrix T(n) that takes the operator
combinations on the lth star to the contributing combina-
tions on the (l + 1)th star: T(n)i,j equals the contribution of
an operator combination with operators j on the (l + 1)th

FIG. 11. The estimated variances of a striplike system in the
toric code model.
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TABLE II. Exact dependence of the variance on system size
for the toric code model as calculated by the transfer matrix
method compared to the variance estimated from sampling of the
expressions in Eqs. (34) and (35).

Exact variance Estimated variance

n = 1 O(1.016NA) O(1.016NA)

n = 2 O(1.225NA) O(1.220NA)

n = 3 O(1.549NA) O(1.564NA)

star to the variance in Eq. (34), given that the combina-
tion on the lth star is i, where the symmetries in Eq. (B2)
are considered, as well as the 1/2 factors in Eq. (B1). For
clarity, we give a specific example in Figs. 10(c) and 10(d).
With these definitions, the first term on the left-hand side of
Eq. (34) for a subsystem of 2 × 2l sites is 〈c0| (T(n))l−1 |c0〉,
where |c0〉 is the vector of allowed contributions for the
edges of the subsystem, as can be deduced from the ground
states of the toric code model in Eq. (14). The dependence
of this term in the system size is thus O(λ4l

max), where

λmax := ‖T(n)‖ (B3)

is the largest eigenvalue of the Hermitian T(n). One may,
in fact, work with equivalent but much smaller transfer
matrices, by considering only the two left sites of a star
rather than the whole star. This allows decreasing the trans-
fer matrix to dimension 32n × 32n. For n ≤ 3, the matrix
T(n) can be extracted and diagonalized exactly. We perform
an estimation of the variance for such striplike systems,
similarly to that done in Fig. 8 in the main text. The esti-
mated variances are displayed in Fig. 11. We compare the
results obtained exactly using the transfer matrix to the
numerical variances and get good agreement, demonstrat-
ing the accuracy of our PEPS calculations, as can be seen
in Table II.
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