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Abstract: The utilization of epidural electrodes in the preoperative evaluation of intractable epilepsy
is a valuable but underrepresented tool. In recent years, we have adapted the use of cylindrical
epidural 1-contact electrodes (1-CE) instead of Peg electrodes. 1-CEs are more versatile since their
explantation is a possible bedside procedure. Here we report our experience with 1-CEs as well
as associated technical nuances. This retrospective analysis included 56 patients with intractable
epilepsy who underwent epidural electrode placement for presurgical evaluation at the Department
of Neurosurgery at the Charité University Hospital from September 2011 to July 2021. The median age
at surgery was 36.3 years (range: 18–87), with 30 (53.6%) female and 26 (46.4%) male patients. Overall,
507 electrodes were implanted: 93 Fo electrodes, 33 depth electrodes, and 381 epidural electrodes,
with a mean total surgical time of 100.5 ± 38 min and 11.8 ± 5 min per electrode. There was a
total number of 24 complications in 21 patients (8 Fo electrode dislocations, 6 CSF leaks, 6 epidural
electrode dislocations or malfunction, 3 wound infections, and 2 hemorrhages); 11 of these required
revision surgery. The relative electrode complication rates were 3/222 (1.4%) in Peg electrodes and
3/159 (1.9%) in 1-CE. In summary, epidural recording via 1-CE is technically feasible, harbours an
acceptable complication rate, and adequately replaces Peg electrodes.

Keywords: epidural electrodes; Peg electrodes; epilepsy; invasive diagnostics; Fo electrodes; depth
electrodes

1. Introduction

Despite the vast range of pharmacological treatment options, the limited efficacy of
antiepileptic drugs remains a challenge in epilepsy patients. Approximately a third of
patients suffering from epilepsy cannot be adequately managed with antiepileptic drugs,
sometimes necessitating more invasive approaches as a last resort to localize the seizure
focus [1–3]. Surgical treatment must be preceded by exhaustive and conclusive diagnostics
and characterization of epilepsy as well as its underlying cause [4]. A fundamental pillar in
the localization of epileptogenic zones comprises intracranial EEG recording.

Several modalities of intracranial EEG recording have been in use in epilepsy surgery,
including (Foramen ovale) Fo electrodes, subdural grids, depth electrodes, and epidural
electrodes, each presenting with a unique subset of advantages, requirements, limitations,
and risks, making an individual evaluation of each patient, and matching the most suitable
modality necessary. Being the first modality ever utilized in series for invasive EEG
monitoring of epilepsy patients, epidural electrodes have been around since the late 1930s,
described by Penfield and Jasper [5]. Less invasive than most other modalities, epidural
electrodes are usually arranged as single contact units and can be inserted through burr
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or twist drill holes [6–9]. The electrodes are placed in the epidural space, facilitating
the monitoring of the underlying cortex. Thus, the implantation process is relatively
straightforward, with short operation times and low perioperative risks. However, as
shown in Figure 1, epidural electrodes are disproportionally underrepresented in the
current literature compared to other intracranial recording procedures.
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In the past decade, we have shifted our epidural electrode technique from Peg elec-
trodes to cylindrical 1-contact electrodes (1-CE) due to the expiration of approval of the
Peg electrodes. Based on these circumstances, we had to adapt our technique and switch
to 1-CEs, which in fact, enabled easier handling, such as their bedside removal without
requiring general anesthesia. Here, we present our experience with the utilization of epidu-
ral electrodes as a diagnostic tool in intractable epilepsy and elaborate on the technical
nuances of this technique.

2. Materials and Methods

This retrospective analysis included 56 patients with intractable epilepsy who were
operated on at our institution from September 2011 to July 2021. All patients required
intracranial monitoring due to the failure of noninvasive methods to localize and, more
importantly, lateralize the epileptogenic focus. Operative techniques included the im-
plantation of epidural electrodes, Foramen ovale (Fo) electrodes, depth electrodes, and a
combination thereof. In the past years, our practice pattern shifted from implantation of
Peg electrodes to epidural 1-CEs (Figure 2).

Between 2015 and 2019, when the use of cylindrical 1-CE emerged, there were also
surgical cases in which a combination of these epidural electrodes was utilized. Table 1
shows an overview of the technical characteristics of the 1-CE and Peg electrodes.
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Table 1. Technical characteristics of 1-CE and Peg electrodes.
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platinum contact
mushroom-shaped

(material:
polyurethane [shaft]

and silicone [cap])
length of shaft:

3–19 mm
diameter: 3.5 mm

total length: 200 mm

The surgical steps of the implantation of 1-CE are illustrated in Figure 3. Briefly, after
general anesthesia, an approximately 1.5 cm skin incision is made, and a small wound
retractor is placed (Figure 3A). Afterwards, a diamond drill is used to make a burr hole
with a diameter of approximately 5 mm (Figure 3B,C). Then, a small notch is created
with a Kerrison punch, into which the electrode can be placed. This step is crucial to
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assure that the single contact of the electrode is positioned flat on the dura and that the
1-CE stays at its place to avoid peri- or postoperative dislocation of the electrode. The
1-CE is then placed in the notch (Figure 3D,E). A piece of bone wax or gelita sponge is
placed over the burr hole to secure the electrode position, and the wound is closed with
a non-resorbable 3-0 ethilon stitch. Due to the small diameter size of the electrode, the
1-CE does not have to be tunneled through the skin but instead can be externalized in a
transcutaneous fashion (Figure 3F). The outside part of the electrode is then fixated. This
technique facilitates the bedside removal of the electrodes without the need for a second
anesthesia or reopening of the wound, and hence simplifies the workflow significantly for
the patient and treating physicians.
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A small, approximately 1.5 cm incision is made. (B,C) A burr hole is made with a small diamond
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fixation of the epidural electrode.

3. Results
3.1. Patient Characteristics

A total of n = 56 patients underwent epidural electrode placement for presurgical
evaluation of intractable epilepsy. The patient characteristics are summarized in Table 2.
The median age at surgery was 36.3 years (range: 18–87). A total of 30 (53.6%) of the
patients were female and 26 (46.4%) were male. In this patient population, 507 electrodes
were implanted with 381 epidural electrodes, of which 222 were Peg electrodes and 159
represented 1-CE electrodes. Patients sometimes also received concomitant placement of
Fo electrodes (ntotal = 93), and depth electrodes (ntotal = 33). The mean surgical time was
100.5 ± 38 min with a mean time of 11.8 ± 5 min per electrode.

After implantation of epidural electrodes, in 11/56 (19.6%) patients, the diagnosis
and lateralization were clear for temporal lobe epilepsy, following temporal lobe resection
without further diagnostics. In 16/56 (28.6%) patients, the epidural electrodes posed an
intermediate step to guide further invasive diagnostics, including subdural grids (13/56;
23.2%) and depth electrodes, Fo electrodes, or a combination thereof (3/56; 5.4%). For
all patients in which subdural grids were placed, the further invasive diagnostics were
conclusive, leading to resectioning epileptogenic foci. In 29/56 (51.8%) patients, no further
invasive diagnostics or surgical interventions were indicated.
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Table 2. Patient characteristics (ntotal = 56).

Age

median (range) 36.3 (17–57)

Gender

female 30
male 26

diverse 0

Implanted electrodes 507

Epidural electrodes 381
Peg (old) 222

3 mm 3
4 mm 34
5 mm 29
6 mm 46
7 mm 30
8 mm 29
9 mm 15
10 mm 24
11 mm 2
12 mm 10

1-CE (new) 159
Fo electrodes 93

Depth electrodes 33

Surgical time

total (mean ± SD) 100.5 ± 38 min
time/electrode (mean ± SD) 11.8 ± 5 min

Abbreviations: Fo = foramen ovale; SD = standard deviation.

3.2. Complications

There were 24 complications in 21 patients in the study population, summarized in
Table 3. The complications comprised 8 Fo electrode dislocations (of which two occurred
due to iatrogenic removal by the patient), 6 CSF leaks, 6 epidural electrode dislocations or
malfunction, 3 wound infections, and 2 hemorrhages on postoperative CT. Of the epidural
electrode complications, there were 3 Peg electrode dislocations, 2 1-CE dislocations, and
1-CE malfunction. A total of 7 of the Fo electrode dislocations required revision surgery,
while for the epidural electrodes, only 1 Peg dislocation required revision surgery. All
3 wound infections underwent wound revision. The hemorrhages occurred in the depth
electrodes only, but were considerably small without neurological symptoms, thus not
requiring surgical intervention.

Table 3. Overview of complications.

Complications Revision Surgery Electrode

Complication Rate

Fo dislocation 8 7 8/93 (8.6%)
Dura laceration 6 0 6/381 (1.6%)
Epidural electrodes 6 1 6/381 (1.6%)

Peg dislocation 3 3/222 (1.4%)
1-CE 2 2/159 (1.3%)
1-CE malfunction 1 1/159 (0.6%)

wound infection 3 3
hemorrhage 2 2/33 (6.1%)
from depth electrodes
total 24 11 14/507 (3.2%)

Abbreviations: CSF = cerebral spinal fluid; Fo = Foramen ovale; 1CE = 1-contact electrode.
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The relative electrode complication rate categorized for each electrode type was 8.6%
in the Fo electrodes, 1.6% in epidural electrodes, and 6.1% in depth electrodes. The compli-
cation rate in the old and new epidural electrodes was comparable, with 3/222 (1.4%) Peg
electrode dislocations, 2/159 (1.3%) 1-CE dislocations, and 1/159 (0.6%) 1-CE malfunction.

4. Discussion

In this study, we report our experience with epidural electrodes in the setting of pre-
operative monitoring for epilepsy surgery, as well as technical nuances of this technique.
In recent years, our technique has shifted from utilizing 1-CE instead of Peg electrodes for
epidural electrode placement. This occurred due to an expiring approval of the Peg elec-
trodes that could not be extended by the production company. Due to these circumstances,
we adapted the technique with 1-CEs accordingly and found that the new technique en-
abled easier handling, such as the bedside removal without requiring another general
anesthesia or reopening the wound.

Compared to other techniques, such as subdural or depth electrodes, the placement
of epidural electrodes respects the integrity of the dura. However, iatrogenic CSF leaks
may occur; but in our study cohort, they did not require surgical intervention. Epidural
electrodes allow a relatively fast method for placing bilateral electrodes without requiring
a craniotomy or repeat surgery for removal. Compared to Peg electrodes, the diameter of
the 1-CE is much smaller and thus allows more versatile handing (Figure 4A).
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Figure 4. Comparison of epidural 1-CE and Peg electrodes. (A) Photograph of the recently imple-
mented 1-CE and old Peg electrode. (B) Technical note: a 2 mm Kerrison punch is used to create a
small notch in which the epidural electrode is placed to prevent further dislocation in the peri- and
postoperative setting. Abbreviations: 1-CE = 1-contact electrode. Scalebar = 5 mm.

Our data revealed a low complication rate of the epidural electrodes 6/381 (1.6%)
in comparison to the complication rate in Fo and depth electrodes (8/93 (8.6%) and 2/33
(6.1%) correspondingly). Specifically, the relative complication rates of the two different
epidural electrode types were comparable with 3/222 (1.4%) Peg dislocations, 1/159 (1.3%)
1-CE dislocations, and 1/159 (0.6%) 1-CE dislocation. To avoid dislocation in the 1-CE, we
use a small, e.g., 2 mm Kerrison punch to create a “notch” in which the tip of the electrode
is placed after the burr hole is made (Figure 4B). After placing the 1-CE, the burr hole is
filled with bone wax or gelita sponge so that the electrode stays in its designated space.

In this series, the relatively high rate of Fo electrode dislocations might be attributed
to the following reasons: we do not routinely place stitches to fixate the external part of
these electrodes to the skin for cosmetic reasons (to avoid postoperative facial scarring).
Hence, a seizure event has a high risk of causing a dislocation in these electrodes. Also,
due to the nature of the anatomic location of Fo electrodes, they can sometimes cause
intractable trigeminal neuralgic pain or hypesthesia, causing self-removal of the electrodes
by the patients, which occurred in 2 of the 8 cases in this series. A combination of wound
closure strips (which we routinely use) and medical glue to fixate the Fo electrodes could
potentially prevent these dislocations. Our reported rate of hemorrhagic events of the
depth electrodes was slightly higher compared to previous studies [10–12]. A possible
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explanation might be due to the circumstance that postoperative CT scans were routinely
performed in all cases. These scans were independently and meticulously evaluated in our
patient cohort. Even minimal signs of bleeding (in the trajectory of the electrode or on at
the entry point), though not clinically relevant, were classified as complications.

Byrne et al. also reported their experience with epidural cylinder electrodes as an
alternative to Peg electrodes, which are similar in shape and configuration to the 1-CE we
used herein [13]. In their study, however, the epidural electrodes had multiple contacts and
thus, allowed a bigger coverage of the cortical brain surface, presenting more a potential
alternative to epidural strip electrodes. As highlighted in their study, the cylindrical
epidural electrodes, due to their small associated mass effect, are less likely to cause
intracranial hemorrhages than depth electrodes or subdural grids. Especially in the latter,
a craniotomy is required and, therefore, carries a higher risk for other postoperative
morbidities such as postoperative infections, CSF leaks, hemorrhages, raised intracranial
pressure, and bone flap necrosis [11,12,14,15]. However, they do allow a much broader
coverage and sophisticated monitoring, particularly when the potential region of interest is
located in eloquent areas.

The armamentarium for intracranial recording in presurgical epilepsy diagnostics
comprises several well-established techniques. The decision on invasive diagnostic pro-
cedures can be highly individual and largely depends on local preferences and historical
evolution. Epidural intracranial recording has been part of this armamentarium ever since
diagnostic epilepsy operations have been performed. We, therefore, advocate not to forget
about this valuable and minimally invasive tool. In our experience, the placement of 1-CE
for epidural recording is a technically feasible alternative to the expiring peg electrodes.
They harbor comparable complication rates and even offer some beneficial characteristics.
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