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1
I N T R O D U C T I O N

Every organism that we know of depends on proteins to maintain homeosta-
sis and react to internal and external cues. Proteins are encoded by genes,
which are made up of DNA. When the cell requires a particular protein,
the nucleotide sequence of the gene encoded by a portion of the long DNA
molecule is first copied into RNA. In the second step, those RNA copies
are used as templates to synthesize proteins. The regulation of this two-step
process, called gene expression, plays a critical role in determining which
proteins are present in a cell and in what amounts [1].

Gene transcription is the first regulatory step of gene expression. In eu-
karyotes, all protein-coding genes in the cell nucleus and a large set of
non-protein encoding genes are transcribed by the key enzyme called RNA
polymerase II (Pol II). For many years, gene transcription had been thought
to be regulated only during the first step of transcription, called transcription
initiation, when Pol II is recruited to the gene promoter. The following step of
transcription, transcription elongation, had been considered as a continuous
process during which subsequent RNA nucleotides are added at a steady
rate. However, this view was challenged by the discovery of transcriptional
pausing that interrupts the phases of productive nucleotide addition by
halting the polymerase. Pol II pausing during early transcription elongation
emerged as a checkpoint and a rate-limiting step in gene expression [52].

The research on transcriptional pausing has been stimulated by a rapid
development of genome-wide methods capturing the position of transcribing
Pol II with single-nucleotide precision and in a DNA strand-specific manner.
These methods allow to generate Pol II occupancy tracks, in which transcrip-
tional pausing creates local enrichments of signal (Figure 1.1). However, the
determinants of transcriptional pausing in vivo remain unclear.

The main aim of this thesis was to investigate the causes of Pol II pausing.
To achieve this goal, we scrutinized the characteristics and potential short-
comings of Native Elongating Transcript sequencing (NET-seq) [50], which
is one of the high-resolution methods of Pol II profiling, and we improved
the NET-seq analysis pipeline. We designed a tool to detect pausing sites in
the high-resolution Pol II occupancy tracks and examined the distribution
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Figure 1.1: Pol II occupancy track. The gene track shows Pol II occupancy
in both sense and antisense direction of transcription. Selected
two pausing sites in promoter-proximal and gene-body region are
marked in orange. The data was obtained using Native Elongating
Transcript sequencing.
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2 introduction

of the pausing sites over human genome. We then set out to identify the
determinants of Pol II pausing in an unbiased manner based on the underly-
ing DNA sequence. We created a large number of features, including factors
that were previously linked to transcriptional pausing, but also factors that
were not yet connected to Pol II pausing. To predict the predisposition of
a genomic site to evoke Pol II pausing, we tested machine learning models
such as logistic regression and two tree-based ensemble models. Examin-
ing feature importance helped us to identify the most important features
in the model, namely the main determinants of Pol II pausing in different
genomic regions. Finally, we addressed the question of the conservation of
transcriptional pausing mechanisms, by analyzing the pausing determinants
in various model organisms using publicly available NET-seq data.

1.1 thesis structure and objectives

Following this Chapter, a more detailed introduction into the biological
background is given in Chapter 2. It discusses the selected aspects of the
process of transcription and presents the current knowledge of the RNA
polymerase pausing and the experimental methods for studying this phe-
nomenon. Chapter 3 covers the bioinformatical prerequisites and introduces
selected statistical concepts used in genomics. Chapter 4 provides an in-
troduction to machine learning and a detailed description of the machine
learning algorithms applied to classification problems. Chapter 5 focuses on
the pausing site detection in the NET-seq data. It presents the potential prob-
lems encountered analyzing NET-seq data, proposes peak calling approaches
for sparse data and characterizes detected pausing sites. Chapter 6 examines
potential causes of transcriptional pausing in different genomic regions. It
provides an in-depth description of training machine learning models dis-
tinguishing pausing and non-pausing sites and presents the interpretation
of the obtained models. The conclusions of this thesis and potential open
questions are discussed in Chapter 7. Chapter 8 provides short description
of author’s contributions to other projects conducted in Mayer’s group.



2
B I O L O G I C A L B A C K G R O U N D

This chapter introduces the selected aspect of molecular biology based on the
book Molecular Biology of The Cell [1], focusing on the process of transcription.
It presents the phenomenon of RNA polymerase pausing and discusses the
current knowledge of the causes of this phenomenon. Finally, we provide an
overview of the experimental techniques applied to study transcription.

2.1 dna

In all living organisms, the whole genetic information of an organism, called
a genome, is stored in DNA. Each DNA molecule consists of two long DNA
strands. The building blocks of DNA are called nucleotides and are composed
of two parts: deoxyribose, a sugar that forms the backbone of the DNA
strand, with a phosphate group attached to it and a base. Four nucleobases
are commonly found in the DNA: adenine (A), cytosine (C), guanine (G)
and thymine (T). The two DNA strands are held together by hydrogen
bonds formed between complementary bases: guanine pairs with cytosine
and adenine pairs with thymine. The process of binding complementary
base pairs is called hybridization and its counterpart process, in which the
interactions between the strands are dissociated, is referred to as melting.
A thermodynamical stability of a double-strand nucleotide chain can be
characterized using its melting temperature, at which a nucleotide duplex
dissociates into single strands.

DNA’s secondary structure is determined by the base-pairing of the two
strands twisted around each other to form a double helix. Other forces
affecting the DNA’s geometry are the stacking interactions between the
neighbouring bases in the same strand, which are stabilized by Van der
Waals forces and hydrophobic interactions. The different combinations of
nucleotide order in the nucleotide strands lead to various local shapes of the
DNA. The local DNA geometry can be described using several parameters
that characterize the distances, angles and energies between neighbouring
and pairing nucleotides. There are also two grooves in the right-handed
double helix, which are called major and minor grooves based on their
relative size.

The right-handed helical structure formed by the complementary DNA
strands is called B-DNA and is considered to be the canonical form. However,
certain DNA sequence patterns can fold into secondary conformations that
differ from that canonical form. There have been several types of non-B DNA
identified based on the structures they can form, which in turn depend on
their motif sequences. The non-B DNA forms include G-quadruplexes that
incorporate stems build of guanines, Z-DNA that is a left-handed double-
stranded helix, mirror repeats and A-phased repeats composed of three to
nine adenines or thymines that create a curvature in the double helix.

The frequencies of individual nucleotides exhibit significant fluctuations
across genomes and genomic regions. An example illustrating the biases is
the GC content at promoters, which are DNA sequences located upstream
of genes that promote the initiation of transcription of genes. Promoters
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4 biological background

of lower eukaryotes are characterized by low GC content, defined as the
percentage of guanines and cytosines, whereas mammalian promoters are
GC-rich [66]. Additionally, in the human genome, GC richness varies between
genomic regions, with a higher GC content observed in the proximity of
human promoters than in the gene bodies [49]. It is because human pro-
moters contain many regulatory elements that are often GC-rich. Moreover,
promoters of expressed genes are unmethylated, which prevents mutational
decay of cytosines and results in an increased GC content.

2.2 transcription

Gene transcription is the process of copying a segment of DNA into RNA.
Like DNA, RNA is assembled as a chain of nucleotides, but with a couple of
differences. In contrast to DNA, which forms a double helix in cells, RNA
exists as a single strand chain. The sugar creating the backbone of the RNA
chain is ribose instead of deoxyribose. Additionally in the RNA chain, uracil
(U) is incorporated instead of thymine. Uracil is a demethylated form of
thymine and it can form a pair of hydrogen bonds with adenine; there-
fore each of the bases present in DNA has a complementary base available
within the set of RNA nucleobases. This complementarity of the deoxyri-
bonucleotides and ribonucleotides is the basis of the nucleotide addition
in transcription. This process begins with unwinding a short fragment of
the double helix of DNA, in a way that exposes a short stretch of unpaired
nucleotides. One of the DNA strands is then used as a template for RNA
synthesis. Subsequent nucleotides are added to the growing RNA chain and
the order of nucleotides in RNA is determined by the order in the DNA
template. If the newly added ribonucleotide is complementary to the de-
oxyribonucleotide in the DNA template, it will form a covalent bond with
the RNA chain in an enzymatic reaction. The RNA chain produced during
the transcription is called a transcript and its sequence is complementary to
the reversed sequence of the DNA template.

2.2.1 RNA polymerases

Transcription is performed by enzymes called DNA-dependent RNA poly-
merases. A RNA polymerase composition in a cell depends on the species. In
bacteria and archaea, there is only one RNA polymerase that consists of mul-
tiple subunits. There are multiple types of multi-subunit RNA polymerases
observed in eukaryotes, each responsible for the synthesis of a distinct subset
of RNA. The catalytic core of RNA polymerases is conserved in prokaryotes
and eukaryotes. Additionally, single-subunit RNA polymerases can be found
in eukaryotic chloroplasts and mitochondria.

Transcription in eukaryotic cells is performed by five nuclear polymerase
complexes, from which two (Pol IV and Pol V) exist only in plants. The
other polymerase complexes (I, II, and III) are present in all eukaryotes
and have evolved to perform separated functions. Specifically, Pol I carries
out the high-level synthesis of only a single transcript, the precursor rRNA
(pre-rRNA), which is processed into 28S, 5.8S and 18S rRNAs. On the other
hand, the set of transcripts synthesized by Pol II is broad. Pol II transcribes
all protein-coding genes and a vast majority of non–protein-coding genes,
including genes encoding small nuclear RNAs (snRNAs), small nucleolar
RNAs (snoRNAs) and micro RNAs (miRNAs). Pol III is often associated with
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the synthesis of a small set of highly expressed infrastructural RNAs, such
as different tRNA species and the 5S rRNA. However, Pol III also transcribes
a significant number of other ncRNAs, including enhancers, RNase P and
MRP, spliceosomal U6 snRNAs, vault RNAs, Y RNAs, virus-encoded RNAs,
short interspersed repeated DNA elements–encoded RNAs, 7SL and 7SK
RNA.

2.2.2 Elements of transcribing Pol II structure

During productive transcription, Pol II is the main part of a transcription elon-
gation complex (TEC), which is minimally composed of the RNA polymerase,
double-stranded DNA template, and nascent RNA being synthesized. A close
view of the structure of such minimal TEC is presented in Figure 2.1. Addi-
tionally, TEC includes several transcription elongation factors that increase
transcription processivity and assist Pol II with passing the encountered
obstacles.

direction of Pol II

transcription

3' end RNA
-1

+1

-10

-11

PDB: 6GML 

Figure 2.1: A structure of the RNA-DNA hybrid formed by transcribing
Pol II (PDB structure ID: 6GML [71]). The nascent RNA is de-
picted in red and pink. The red part of the nascent RNA together
with the template DNA fragment marked in green forms a 10 base
pair long RNA-DNA hybrid. The template strand fragments posi-
tioned upstream and downstream of the RNA-DNA hybrid are
in light blue and orange respectively. Numeration of the template
strand position is done in respect to the currently transcribed
position -1. The core subunits of Pol are depicted in light grey.
The direction of the Pol II transcription is indicated with an arrow.

The nascent RNA synthesis takes place in the catalytic core, which is
situated in the centre of the Pol II, inside a cleft formed by polymerase’s
largest subunits. The catalytic core is physically separated from the regulatory
factors, which interact with the outside surface of the polymerase. The
template DNA and nascent RNA form an 8-9 nucleotide long RNA-DNA
hybrid is positioned inside the cleft. A single-stranded template DNA enters
the cleft from one side and exits it from the other side rejoined with the



6 biological background

complementary non-template strand. The nascent RNA exits the cleft from
the same site as the double-stranded DNA, but using the RNA exit channel.

2.2.3 Transcriptional cycle

The process of the gene transcription performed by Pol II can be divided
into three steps: initiation, elongation, and termination. In short, during the
transcription initiation phase, Pol II is recruited to the gene’s promoter by
general transcription factors, forming a closed promoter complex [11]. To
form the open promoter complex, the DNA strands are ’melted’ to create an
unwound DNA region, which enables the insertion of the template strand
into the active centre of the polymerase. The RNA synthesis is launched
from the transcription start site (TSS), which is located at the 5’ end of
the gene. When a certain length of the nascent RNA is reached, initiation
factors are released and a stable transcription elongation complex (TEC)
is formed over the RNA-DNA hybrid. The polymerase then moves along
the gene body, unwinding small portions of the DNA, and uses it as a
template to add nucleotides to the growing nascent RNA chain. Transcript
elongation is not a monotonous process. The movement of Pol II across
genes is discontinuous, interrupted by transcriptional pausing that may
either hinder or assist transcript elongation, or even prematurely terminate
transcription. To ensure a robust synthesis of long RNA molecules, TEC
has a very stable architecture. The high stability of TEC makes transcription
termination a rather complicated step. First, the chromatin template at the
gene’s end slows down the transcription. Once the polymerase reaches
the 3’ end of the gene, the RNA transcript is cleaved. Then the remaining
transcript is unravelled and degraded, which induces conformational changes
in the polymerase triggering its disassociation from the DNA template. The
cleaved nascent RNA undergoes modifications dependant on the type of
RNA synthesized and the disassociated polymerase is ready to be recruited
to a gene’s promoter.

2.2.4 Pol II transcript processing

The process of elongation is not a smooth progression over a gene body.
Pol II needs to overcome obstacles such as nucleosomes or stalling due to
misincorporation of nucleotides. Moreover, most of the Pol II transcripts
have to be co-transcriptionally processed. All of those alterations have the
potential to affect and be affected by the Pol II speed during transcription.

Pol II transcribes various classes of transcripts that undergo different
co-transcriptional alterations. One class of Pol II transcripts is messenger
RNA (mRNA) which serves as a template for protein synthesis. The co-
transcriptional processing of mRNA consists of multiple steps such as 5’ end
capping, splicing, 3’ end cleavage and maturation. RNA splicing transforms
a precursor mRNA into a mature mRNA by removing non-coding regions of
RNA called introns and joining coding regions called exons. This process is
catalyzed by the spliceosome, which is an RNA-protein complex. Multiple
variants of the final mRNA coding sequence can be obtained by rearranging
the pattern of exons that are joined in a process called alternative splicing.
Interestingly, interdependence between the Pol II elongation rate and the
exon inclusion patterns has been noticed: low Pol II speed or internal pauses



2.3 transcriptional pausing 7

are connected with the inclusion of alternative exons, whereas exclusion of
these exons is observed for a highly elongating Pol II [40].

Another class of Pol II transcripts are microRNA (miRNA). They are
small non-coding RNAs that regulate the expression of a large proportion
of mRNAs by binding nascent RNA transcripts, gene promoter regions or
enhancer regions and exerting further effects via epigenetic pathways. The
biogenesis of miRNAs is carried out in two subsequent processing events
happening in the nucleus and in the cytoplasm respectively. The nuclear
processing event happens co-transcriptionally [56] and results in the pro-
duction of precursor miRNAs, termed pre-miRNAs. Those are subsequently
exported to the cytoplasm to undergo the final processing event. The result-
ing miRNA duplexes are then incorporated into regulatory complexes e.g.
the RNA-induced silencing complex [54].

2.3 transcriptional pausing

Transcriptional pausing was initially discovered in vitro for bacterial RNA
polymerases. In two studies performed in 1973, transcriptional pausing was
observed in a form of an accumulation and disappearance of RNA transcripts
of discrete intermediate lengths throughout the transcription reaction [52].
These observations lead to the realization that the movement of Pol II during
the elongation phase is highly dynamic and discontinuous. Transcriptional
pausing, which interrupts the processive progression of Pol II along the gene
body, may assist or hinder the elongation, or even prematurely terminate
transcription [59]. In this section, we discuss the most studied type of pausing
in human cells, namely promoter-proximal pausing, which occurs in the early
stage of elongation. We consider the trans-acting factors that are implicated
in transcriptional pausing. Finally, we review the DNA motifs reported to be
associated with transcriptional pausing in various model organisms.

Promoter-proximal pausing

Promoter-proximal pausing was first described at the heat-shock protein
gene locus in Drosophila melanogaster [22]. Therefore, it was hypothesized that
transcriptionally engaged Pol II remains paused at the promoter-proximal
region, awaiting signals for its rapid release and activation following external
cues. Since then, promoter-proximal pausing was shown not to be exclusive
to stimulus-responsive genes [15, 42, 59]. It appears to be a widespread
phenomenon at metazoan genes, with the main Pol II density peak occurring
20 to 60 nucleotides downstream of the transcription start site for most of
the genes [58].

Over a dozen of trans-acting factors is involved in the establishment and re-
lease of promoter-proximal pausing by Pol II in mammalian cells. According
to our current understanding, the two most prominent transcription factors
necessary for the maintenance of Pol II promoter-proximal pausing are DSIF
(DRB sensitivity-inducing factor) and NELF (negative elongation factor) [59,
75]. As shown by the structure of paused Pol II, these two transcription
factors stabilize the complex in a conformation characterized by a tilted
DNA–RNA hybrid [71]. Such conformation prevents the translocation of the
template DNA and in turn impairs the addition of incoming nucleotides to
the nascent RNA chain. However, it is still unclear whether NELF and DSIF
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directly induce the tilted conformation of hybrid or it is the underlying DNA
sequence that favours such a tilted conformation [59].

Factors affecting Pol II elongation

Throughout the gene body, Pol II efficiency is affected by structured chro-
matin. Nucleosomes, which consist of 147 base pairs of DNA wrapped
around a protein core, pose an obstacle to the elongating Pol II. There are
two major pausing sites at nucleosomal DNA [41, 59]. In gene-body nucleo-
somes, elongating Pol II accumulates directly upstream of the centre of the
nucleosome, suggesting that this pausing is caused by the physical barrier
created by nucleosomes. The other site is situated at the nucleosome entry
site and is observed at the first nucleotide downstream of the transcription
start site, termed "+1 nucleotide". It has been hypothesized that promoter-
proximal pausing occurs at the entry site of the +1 nucleotide; however, closer
inspection of the sequencing data in Drosophila melanogaster has indicated
that there are two distinct promoter-proximal pausing sites. The downstream
one corresponds to +1 nucleosome position, whereas the proximal pausing
site is situated upstream, closer to the transcription start site [42].

Another obstacle to the elongating Pol II can be created by DNA-associated
protein complexes and other polymerases. Conflicts are occurring between
transcribing RNA polymerases and DNA polymerases that replicate DNA,
even though processes of transcription and replication are generally sepa-
rated in space and time [53]. Especially prone to such collisions are very long
genes, which require an entire cell cycle or longer to be transcribed [30]. Col-
lisions can also occur between converging polymerases and co-directionally
between a travelling (upstream) and a paused (downstream) polymerase.
Such collisions can lead to transcriptional stalling, and even in some cases to
premature termination of transcription [59].

The nucleotide content of the DNA and DNA–RNA hybrid can also affect
the processivity of Pol II. Repetitive DNA sequences rich in A–T base pairs
form weaker RNA–DNA hybrids and in turn, destabilize the transcribing Pol
II complex and cause pausing [65]. Likewise in Saccharomyces cerevisiae, GC-
rich template sequences have on average fewer Pol II pauses compared with
AT-rich sequences [77]. It shows that certain DNA sequences can promote
pausing by destabilizing the RNA–DNA hybrid [59]. Conversely, recent
analyses conducted using human cell lines has shown that genes with GC-
rich sequences display robust hallmarks of Pol II pausing [69]. The proposed
model predicts formation of DNA secondary structures upstream of the
pausing site that stabilize Pol II in a paused state.

DNA motifs associated with transcriptional pausing

In addition to the aforementioned factors, DNA motifs, which are are short
patterns of nucleotides in DNA, have been implicated in transcriptional paus-
ing. Figure 2.2 shows a collection of motifs linked to transcriptional pausing.
The first pausing motif was identified in the promoters of stalled genes in
Drosophila embryos. This motif, termed ’pause button’, is located within a
200 base-pair window centered at the transcription start site and consists of
two pairs of CG dinucleotides separated by two nucleotides [31]. GC-rich
motifs underlying promoter-proximal pausing sites were also uncovered in
human cell lines, with pausing happening at cytosine in the DNA template
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Figure 2.2: Collection of DNA motifs implicated in transcriptional paus-
ing. Information content logos (middle column) together with the
model organism used (first column) and the reference (last row).
The logos are aligned to the schematic view of the transcription
bubble (below) using dashed lines. The pink dot corresponds to
a Mg2+ ion marking the active site of Pol II. -1 refers to the last
nucleotide of the nascent RNA. +1 indicates the position in the
DNA template where the next incoming NTP binds. This model
is based on recent evidence from structural studies indicating that
the RNA-DNA hybrid that spans the active site of the mammalian
Pol II elongation complex is 9–10 bp long [4].

[26, 73]. The best characterization of DNA sequence-induced pausing was
achieved for bacteria, where pausing is not limited to the promoter-proximal
region, but occurs frequently throughout the gene body. Pausing sequences
identified for bacteria exhibit positions with high information content at the
ends of the RNA-DNA hybrid [34, 43, 72].
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2.4 pol ii profiling methods

The most commonly used approaches for studying the Pol II progression over
the genome during transcription include Pol II profiling methods. The main
idea behind all of these approaches is to get a snapshot of the distribution of
polymerases over the genome in a large population of cells. The locations
of slow polymerase progression can be inferred from the obtained Pol II
distribution, by finding the regions with a higher relative abundance of the
polymerase. Such snapshots can be obtained by stopping the transcription
and then sequencing and quantifying either DNA fragments occupied by
the polymerase (Pol II ChIP-seq) or the 3’ ends of the nascent transcripts
(Run-On assays and NET-seq). Below, we describe relevant selected Pol II
profiling methods based on Mayer et al. [52].

2.4.1 Pol II Chromatin Immunoprecipitation sequencing

Chromatin Immunoprecipitation followed by high-throughput sequencing
(ChIP-seq) is an experimental method used for genome-wide profiling of
DNA-binding proteins. It can be used to determine the position of Pol II
along genomes in vivo. Using formaldehyde, Pol II is reversibly crosslinked
with the chromatin by covalent bonds. Next, the chromatin is fragmented and
a Pol II specific antibody is used to co-immunoprecipitate DNA fragments
bound by the polymerase. The isolation of the DNA fragments of interest
is followed by the reversal of the crosslinking and the amplification of
the purified DNA fragments. The relative amount of the captured DNA is
assessed by high-throughput sequencing.

ChIP-seq is a widely used method and therefore several limitations of
this approach were recognized. As the crosslinking binds both the template
and non-template strand of the DNA, ChIP-seq lacks DNA strand specificity.
Moreover, the spatial resolution of classical ChIP assays is limited, due to the
relatively large size of the DNA fragments obtained during fragmentation.
Furthermore, ChIP-seq reveals the location of all polymerases, not only the
transcriptionally active ones, which might be not desired in some studies.
Additionally, the strength of the obtained profiles depends strongly on the
specificity and quality of the antibody used.

2.4.2 Native Elongating Transcript sequencing methods

Native Elongating Transcript sequencing (NET-seq) methods allow us to de-
termine in vivo the precise position of all transcribing polymerase complexes.
The main idea of this approach is to capture not only the position of the poly-
merase itself, but the 3’ end of the nascent RNA that marks the position of
the active centre of a polymerase and is a hallmark of ongoing transcription.
The nascent transcripts are captured without relying on crosslinking the poly-
merase, but by exploiting the high stability of the DNA-RNA-polymerase
complexes.

NET-seq library preparation is initiated by stopping the Pol II transcrip-
tion using the transcription inhibitor called α-amanitin. Then, the cells are
fractionated in a way that allows retrieving nuclei. The chromatin is isolated
from the nucleus together with the transcribing polymerases and nascent
RNA molecules attached, exploiting the high stability of the DNA-RNA-
polymerase complexes. The RNA is purified from those complexes and is
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further processed in a way that protects its 3’ ends including the last added
nucleotide. Next, a linker is ligated to the 3’ end of the RNA molecule. The
linker comprises a random molecular barcode and sequences necessary for
obtaining complementarity to the primers for the reverse transcriptase, PCR
amplification, and sequencing. The random molecular barcode consists of 6

or 10 (depending on the library) random nucleotides that enable the removal
of PCR duplicates and the recognition of the reverse transcriptase artifact in
the bioinformatical analyses. The next steps prepare the library for the high-
throughput sequencing. To allow for Illumina sequencing and balance the
PCR amplification, the RNA molecules are fragmented and only fragments
of the desired length are selected. Then, cDNA is synthesized using reverse
transcriptase. The cDNA molecules are later amplified. In the last step of the
experimental part of the protocol, the read insert is sequenced from the 3’
end together with the random molecular barcode. In this way, the identity
and abundance of the 3’ ends of purified transcripts are revealed and further
bioinformatical processing produces the Pol II occupancy profiles that reflect
the position of the polymerase with a single nucleotide resolution and in a
strand-specific manner. The main steps of the procedure are also presented
in Figure 2.3.

In addition to the 3’ ends of nascent RNAs, NET-seq captures non-nascent
RNA species and RNA processing intermediates that enter the library during
the purification step. Those RNA molecules are selected probably thanks to
the strong bonds that they can form either the nascent RNA or the chromatin
[47]. These background RNA sequences can be computationally identified
and removed, but processing the data in this manner decreases the fraction
of reads that are informative about the Pol II position. This caveat can be
overcome with a variant of NET-seq, termed HiS-NET-seq, which involves
short metabolic labelling using modified nucleotides such as 4-thiouridine
before the inhibition of the transcription. Thanks to the labelling, the newly
produced RNAs can be enriched by selecting only the molecules that include
the modified nucleotides.

Another problem that complicates the NET-seq analyses is the presence
of artificial reads, whose 3’ ends do not reflect the 3’ end of nascent RNAs.
The artificial reads can be generated during the cDNA synthesis step for
those RNA molecules that harbour sequences partially complementary to the
reverse transcriptase primer. However, the presence of reads originating from
the RT mispriming can be limited using a variant of NET-seq termed ’nested
NET-seq’ [21], in which the design of the linker prevents PCR amplification
of those reads.



12 biological background

5' 3'

RNA

DNA

RNA 
POLYMERASE

Chromatin isolation1

Pol II position
5'
5'

5' 3'
3'

3'

RNA purification2

Linker ligation3

5' 3'NNNNNN
random
barcode

linker

Fragmentation and cDNA syntesis4

PCR
amplification

3'NNNNNN
NNNNNN

RNA

cDNA

3ʹend sequencing
with barcode

5

3ʹ sequencing
primer

insert

Figure 2.3: Schematic overview of the NET-seq protocol. Numbers in the
corners indicate the subsequent steps. In the first step, the nuclear
chromatin is isolated together with the transcribing polymerases
and nascent RNA molecules attached to it. The second step com-
prises the purification of the RNA. Next, a linker including a
random molecular barcode is ligated to the RNA molecule. In the
fourth step, RNA is fragmented and cDNA is synthesized. The
molecules are later amplified to allow for the high throughput
sequencing. In the last step of the experimental part of the pro-
tocol, the read insert is sequenced from the 3’ end together with
the barcode. This figure is adapted from Mayer et al. [51].
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B I O I N F O R M AT I C A L B A C K G R O U N D

This chapter covers the bioinformatical prerequisites used in the thesis. It
presents selected statistical distributions used in genomics, focusing on
modeling the expected number or expected maximum number of reads per
position in NET-seq data. It introduces the concept of hypothesis testing and
the special case of multiple hypothesis testing. Finally, we discuss various
bioinformatical concepts helping us understand the results such as sequence
motifs.

3.1 net-seq pol ii occupancy track

Most high-throughput sequencing assays produce genomic tracks originating
from multiple cells. A genomic track is a series of data units positioned on a
line representing a reference genome in a line-based coordinate system [27].
A track element is a basic informational unit of data with associated genomic
coordinates that may or may not be explicitly specified. In the case of a Pol II
ChIP-seq, a typical genomic track represents the number of reads spanning
each nucleotide position.

Consider a polymerase occupancy track obtained just for a single cell. In
one cell, at most one active centre of a polymerase can be observed at a single
nucleotide in a haploid genome. If we obtained a polymerase occupancy track
from just a single cell, only those nucleotide positions at which active centres
of the polymerases were situated when the transcription was stopped would
be marked with 1s. Such a genomic track could provide information about
e.g. the frequency of the transcription initiation (by examining the distances
between subsequent polymerases transcribing the same gene) or the scale of
the divergent transcription (by assessing the number of transcription start
sites with polymerases transcribing in the opposite directions). However, it
does not inform us about the time that polymerase spends at a given genomic
position nor allow us to recognize the positions at which polymerase spends
significantly more time. To approximate the time spent by a polymerase at a
single-nucleotide position, we need information coming from multiple cells.

The NET-seq track can be seen as a sum of polymerase occupancy tracks
coming from single cells. Therefore, we need to keep in mind that our obser-
vations are made for a population of cells, which is possibly heterogeneous.
The signal intensity at a position corresponds to the number of cells in which
we observed the polymerase at this position. Having included a large enough
number of cells, the expected number of polymerases at a locus is the same
for every position assuming a constant transcription speed. In case a signal
intensity is higher for a position in a locus, it means that polymerase is
encountered more frequently there and we assume that it spends more time
at this position. At the same time, if the average number of polymerases
between two loci differs, the possible explanations include differences in the
initiation rate and the average transcriptional speed between those loci.

13
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3.2 statistical distributions used in genomics

A random variable is a variable that, when measured during an experiment,
takes a numeric value from a set of possible values. The probability model,
such as a probability distribution, defines relative likelihoods of the various
possible values. The probability model depends on the process (e.g. the way
we conduct the experiment) that generates the random variable.

Here, we motivate the use of selected discrete distributions for modeling
the counts per position forming a genomic track. The number of reads
xi being assigned to the position i depends on the proportion pi of the
DNA fragments in the library that originate from the position i. If the total
number of DNA fragments in the library is much larger than the number
of sequenced reads N, which is true for the sequencing experiments, the
number of reads xi being assigned to the position i comes from a binomial
distribution. The number of trials N and the probability of success pi of the
binomial distributions are given by the number of sequenced reads N and
the proportion pi of the DNA fragments in the library that originate from
the position i. Typically, the number of sequenced reads N is known, but it
is often our goal to estimate the probability of success pi. For a large number
of sequenced reads N and small probability pi, which is the case for NGS
experiments, Poisson distribution is a close approximation of the binomial
distribution.

3.2.1 Poisson distribution

The Poisson distribution is used to describe the distribution of rare events
in a large population. For the Poisson random variable X ∼ Poisson(λ), the
probability mass function of the Poisson distribution is defined using a single
parameter λ:

Pr(X = x|λ) = λxe−x

x!
, x ∈ N.

The possible values of a Poisson random variable X are all the non-negative
integers. Additionally, the parameter λ specifies both the expected number
of counts per interval and its variance.

In genomics, the Poisson distribution is frequently used to model the
expected number of reads in a genomic range and to detect the ranges with
unexpectedly high read counts.

3.3 hypothesis testing

A hypothesis is a proposed explanation for a phenomenon or, in statistical
terms, a statement that is supposed to be true (see Motulsky [57]). One
of the most commonly used methods for making decisions or judgments
about the value of a particular observation is to perform a hypothesis test.
A hypothesis test involves two hypotheses: the null hypothesis and the
alternative hypothesis. The null hypothesis (H0) is a statement to be tested,
whereas the alternative hypothesis (HA) is a statement that is considered to
be an alternative to the null hypothesis. The hypothesis test aims to see if
the null hypothesis should be rejected in favour of the alternative hypothesis.
For example, we can test the hypothesis that the observed Pol II peak is not
stronger than expected given the local Pol II occupancy.
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The p-value is the probability of obtaining test results at least as extreme
as the observed results, under the assumption that the null hypothesis is
correct. A connected term is the significance level of the test α that describes
the probability of rejecting the null hypothesis, in case the null hypothesis
is true. If the obtained p-value is lower than the statistical significance level
chosen before testing the hypothesis, it suggests that the observed data is
inconsistent with the null hypothesis and that the null hypothesis may be
rejected. Such a result is then said to be statistically significant. However, it
is important to keep in mind that even if a result is statistically significant
it does not automatically mean that the finding is scientifically or clinically
significant. The observed effect might still be too small to be interesting or
worthy of further investigation.

There are two types of errors that we can make testing a hypothesis: we
can reject the null hypothesis when it is actually true (type I error) or we can
accept a false null hypothesis (type II error). The type I error is controlled by
the chosen significance level α, as the lower, the significance level is the lower
is the probability of incorrectly rejecting the true null hypothesis. However, a
low significance level increases the chance that a significant difference will
not be found, even if the null hypothesis is false.

We can distinguish two types of statistical hypothesis tests: parametric and
non-parametric ones. In parametric tests, we make assumptions about the
type and parameters of the probability distribution from which the sample
is drawn. In contrast, non-parametric hypothesis testing does not require
these assumptions, meaning that the data can be collected from a sample
that does not follow a specific distribution. In general, parametric tests have
higher statistical power than non-parametric tests, meaning they are more
likely to correctly reject the null hypothesis when the alternative hypothesis
is true. However, violating the assumptions about the distribution might lead
to incorrect or misleading results of the analysis. Therefore, non-parametric
tests have broader applicability, due to their distribution-free nature.

A subcategory of non-parametric tests, which gained popularity with
increasing computer power, is resampling. It can be used for simulating
an empirical distribution of an estimator. For example, we can estimate the
expected height of a peak given the local read density in NET-seq data
without explicitly using the Gumbel distribution by reshuffling the read
assignment to the position and extracting the maximum number of reads
per position multiple times. In this way, we obtain a simulated distribution
of maxima that can be further used for estimating the expected value of the
maximum or its confidence intervals.

3.3.1 Multiple testing correction

With every test made, we face a risk of committing a type I error with the
probability equal to the significance level α. With the increasing number
of tests, the probability of rejecting at least one null hypothesis by chance
increases, and the probability of committing the type I error in at least one test
can be calculated using the chosen value of α. In other words, it is impossible
to interpret small p-values without knowing how many comparisons were
made, as some p values are likely to be small just by chance. Therefore, to
minimize the chance of spuriously rejecting a true null hypothesis, we have
to apply a multiple testing correction method.
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There are multiple methods designed to lower the probability of falsely
rejecting true null hypotheses, by controlling either the family-wide error
or the false discovery rate. The false discovery rate (FDR) is the expected
fraction of tests declared statistically significant in which the null hypothesis
is actually true, or in other words, the probability that a null hypothesis
is true given that the null hypothesis has been rejected [24]. To infer the
frequency of true null hypotheses, we use the distribution of p-values. The
distribution of p-values consists of two components: a uniformly distributed
p-values between 0 and 1 for true null hypotheses, and a right-skewed
distribution of p-values for false null hypotheses. The main goal of false
discovery rate control is to set significance levels for a collection of tests in
such a way that the proportion of true null hypotheses among tests declared
significant is lower than a specified threshold. Benjamini and Hochberg, who
developed the original false discovery rate control method [3], proposed
controlling the false discovery rate control for a study with n tests with
maximum false discovery rate d by declaring the k tests with the smallest
p-values significant, where k denotes the largest index i for which pi ≤ d i

n
for p-values sorted in ascending order.

3.4 sequence motifs

Sequence motifs are short patterns of nucleotides in DNA or RNA. They are
often a hallmark of a genomic location that is important for a biological func-
tion. They can indicate sequence-specific binding sites for proteins, mRNA
processing sites (including splicing, editing, cleavage and polyadenylation)
and others [19]. The motifs are usually constructed by creating a collection of
sequence fragments of the same length from positions at which the biological
phenomenon of interest occurs. For example, in the case of transcriptional
pausing, we can collect all the genomic sites at which polymerase pauses
and then extract 50 nucleotide long sequences around these sites.

Sequence motifs are frequently used to describe the genomic locations
where transcription factors interact with DNA in a sequence-specific manner.
These genomic locations are called as Transcription Factor Binding Sites and
the preferentially bound sequences can be represented using Transcription
Factor Binding Motifs (TFBM) [37]. Similarly, RNA-binding protein motifs
provide a useful framework to describe the propensity of RNA-binding
proteins to interact with RNA [23].

One of the possible representations of sequence motifs is the consensus
sequence, for which every position shows the most frequent nucleotide at
that site in the set of sequences. A more informative description of a motif can
be provided through a Position Frequency Matrix (PFM), where we record
how often each base occurs in known sites, rather than only keeping track of
the most common base at each position. Such a PFM can be visualized using
the sequence logo with the height of each nucleotide proportional to its
relative frequency. The standard logo plots tend to visually highlight letters
that are enriched, meaning where a nucleotide appears more frequently than
expected. The height hi(n) of the nucleotide n at the position i of the logo
can be calculated as:

hi(n) = fi(n)log2
fi(n)
b(n)

, (3.1)



3.4 sequence motifs 17

where fi(n) is the frequency of the nucleotide n at the position i and b(n)
is the background frequency of the nucleotide n [19]. The background fre-
quency is an important parameter used in the enrichment score calculation,
where it describes the expected frequency of encountering a nucleotide. A
uniform background frequency equal to 1

4 for a four-letter nucleotide al-
phabet is commonly used. However, the background frequencies can be
adjusted to better reflect the prior knowledge about the region of origin
of the sequences. For example, as the GC content varies not only between
species but also between different genomic regions in the same organism
[60], it is crucial to define the background composition adequately to the
research question. Assuming improper background distribution might mask
potentially interesting patterns.

In cases where identifying depletions is also interesting, Enrichment De-
pletion Logos (EDLogos) can prove useful [18]. For EDLogo, the height hi(n)
of the nucleotide n at the position i of the logo is an absolute value |ri(n)| of
the ratio ri(n), which can be calculated as:

ri(n) = log2
fi(n)
b(n)

, (3.2)

where fi(n) is the frequency of the nucleotide n at the position i and b(n)
is the background frequency of the nucleotide n. The nucleotide n is then
plotted at the position i above the x axis if ri(n) is positive, or below the x
axis if ri(n) is negative.
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M A C H I N E L E A R N I N G B A C K G R O U N D

This chapter introduces the supervised learning algorithms used for clas-
sification problems. It presents the methods to evaluate both a model’s
performance and its ability to generalize the predictions to the unseen data.
Finally, we discuss how a machine learning user can understand and inter-
pret the prediction made by a machine learning model, using random forest
as an example.

4.1 terms and notation

Machine learning was first defined in 1959 by Samuel [62] as a "field of
study that gives computers the ability to learn without being explicitly
programmed". Machine learning models are used to extract meaningful in-
formation from existing data to improve performance in a given task. We
present the basic term and concepts used in this field of study based on
Chapter 1 of Hastie et al. [29] unless stated otherwise. The process in which
machine learning models infer knowledge from the collected data is called
training. Since machine learning techniques are applied to a wide spectrum
of problems, there are multiple ways of categorizing machine learning algo-
rithms (see Chapter 5 of Goodfellow et al. [25]). One of the most commonly
encountered division between machine learning approaches recognizes su-
pervised and unsupervised learning. Both learning approaches experience
an input, which is a data set consisting of many examples, alternatively
called data points. An example is a collection of features and is typically
represented as a vector x ∈ Rn, where each entry xi of the vector is another
feature. A feature is a quantitative or qualitative measurement describing an
object or an event that we want the machine learning system to process. An
input is usually represented as a matrix X, where each row corresponds to an
example and each column to a feature. Additionally in supervised learning,
every example is connected to a label. A vector of labels corresponding to
all of the examples is called an output and is usually denoted using a vector
y ∈ Rn, where each entry yj of the vector is a label. The goal of supervised
learning is to use the inputs to predict the values of the output. In the un-
supervised learning, only the features are observed and the values of the
outcome are not available. In the case of an unsupervised learning problem,
the task is to describe the internal structure of the input data. This shows
that the choice of the machine learning approach can often be motivated by
the data availability and the task we are interested in solving.

4.2 supervised learning

The goal of supervised machine learning is to learn from labelled data.
Depending on the character of the outputs, we can distinguish the following
types of supervised learning problems: regression and classification (see
Chapter 2 of Hastie et al. [29]). In a regression problem, the output is a
quantitative measurement. To solve this problem, the machine learning
algorithm needs to find a function f : Rn −→ R. In the classification

19
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problem, the output is a qualitative measurement. In this problem, we expect
machine learning algorithm to decide to which of k categories an example
belongs. To solve this problem, the algorithm needs to find a function f :
Rn −→ {1, . . . , k}.

The binary classification is a special case of the classification problem,
where we want to discriminate between two categories and the numerical
value of the label can take two possible values yj ∈ {0, 1}. The examples
and their labels are commonly referred to as a positive example, when the
numerical value of the label equals 1, and a negative example otherwise.

4.2.1 Logistic regression

Logistic regression can be seen as an adaptation of the linear regression to
a classification problem. In difference to linear regression, which predicts
quantitative outputs, the outcomes of the binary classification problem can
take only values 0 or 1. We can address this problem by predicting the prob-
ability of the example belonging to one of the classes e.g. the positive class.
The probability of an example belonging to the positive class determines
its probability of belonging to the negative class, as the sum of those two
probabilities needs to add up to 1. In this way, we transformed the binary
classification problem into a regression problem. However, linear regression
might return any real number as a prediction, whereas to predict probability
we need to ensure that the obtained value lies between 0 and 1. One way
to solve this problem is to use the logistic sigmoid function to squash the
output of the linear function into the interval from 0 to 1 and interpret that
value as a probability.

The logistic function σ(x) is defined as:

σ(x) =
1

1 + e−x . (4.1)

In the linear regression model, the relationship between predicted outcome
ŷ and features of the example is modelled with a linear equation:

ŷ(i) = βTx(i) + β0, (4.2)

where β is a vector of parameters and β0 is an intercept. Squashing the linear
equation using the logistic function, gives us the probability that the example
x(i) belongs to the positive class with the label y(i):

P(y(i) = 1|X = x(i)) =
1

1 + e−(βT x(i)+β0)
. (4.3)

The probability that the example x(i) belongs to the negative class with the
label y(i) can be then expressed as:

P(y(i) = 0|X = x(i)) = 1− P(y(i) = 1|X = x(i)). (4.4)

The above mentioned conditional probabilities are often denoted as p1(x; θ)
and p0(x; θ) for the positive and the negative class accordingly, to emphasize
the dependence on the entire parameter set θ = {β0, βT}. To make the final
assignment of the classes, we set a probability boundary threshold, e.g. 0.5
for a balanced binary classification.
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The model parameters are fitted using the maximum likelihood. It is
easier to use negative log-likelihood function, which can be expressed as:

l(θ) = −
N

∑
i=1
{yi log p1(xi; θ) + (1− yi) log(1− p1(xi; θ)}, (4.5)

where N is the number of training examples. To fit the model, we need to
find the parameters that minimize the negative log-likelihood. We do it by
setting the derivatives of the negative log-likelihood function to 0 and solving
the obtained equations.

We often want to limit the number of non-zero parameters β to be able to
easily recognize the important predictors and increase model interpretability.
We can obtain the desired effect by adding a term to the negative log-
likelihood function that penalizes parameter vector θ if its norm is large, thus
shrinking the coefficients β. One of the commonly used shrinkage method is
the elastic-net. The additional penalty term in the elastic-net can be expressed
as:

1
C

p

∑
j=1
{αβ2

j + (1− α)|β j|}, (4.6)

where C is the inverse of the regularization strength and the parameter α
takes values between 0 and 1. Parameter α regulates the characteristic of
regularization. When α equals 0, the first term in the sum of the Equation 4.6
disappears and the Lasso regularization is performed, and when α equals 1,
only the first term is retained and the ridge regularization is applied.

4.2.2 Decision trees

A decision tree (see Izenman [35]) learns a sequence of if-else questions
about individual features in order to infer the labels of the examples. Those
questions are being asked at nodes, and branches represent the possible
outcomes. A decision tree consist of a root node, where the first decision is
made, parent nodes, which are split into daughter nodes, and leaves, which
do not split anymore and contain labels. There may be multiple leaves with
the same label.

A CART (classification and regression tree) is constructed by either split-
ting or not splitting each node of the tree into two daughter nodes at each
of the if-else questions. In this way, the feature space is divided into non-
overlapping (hyper-)rectangles, which are then assigned a label.

4.2.2.1 Classification trees

In the case of classification trees, the leaves take values of the class labels.
In difference to the logistic regression, that uses a single linear boundary to
divide the classes, classification trees use multiple (hyper-)planes to divide
the feature space. Such an approach can yield superior classification per-
formance, in the case of the classes being separated by a clearly non-linear
boundary. However, greater complexity of a decision tree might allow it to
learn training examples ’by heart’ and lead to a poor performance on new
examples.

Growing a classification tree involves: (1) choosing the feature and criterion
to use for splitting at each node, (2) determining when a node should become
a leaf and (3) finding an optimal label assignment at each leaf.
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The last problem concerning finding an optimal label assignment for a leaf
has a relatively simple solution. The winner-takes-all approach is applied.
A leaf takes the label of the most represented class, in terms of number of
examples, from all the examples that ended up in the leaf following the
sequence of if-else questions.

The main idea guiding the process of finding the optimal split feature
and criterion for each node is that class membership should become more
homogeneous or pure in each of the branches stemming from the node. A
node impurity is lowest when all examples split to the node belong to the
same class and the highest when both of the classes are equally represented.
There are two commonly used functions assessing homogeneity of a node:
the cross-entropy and the Gini index. The Gini index is used by default for
the classification tree growing, but in practice there is not much difference
between these two types of node impurity functions. In the binary class case,
the Gini index i(η) of a node η is defined as:

i(η) = 2p(1− p), (4.7)

where p is the fraction of examples belonging to the positive class at node
η. The goodness of a split is then determined by the decrease in impurity
defined in terms of Gini indexes. We calculate it as the difference between
the Gini index of the parent node and the weighted average of Gini of
indexes of the daughter nodes, where the weights are proportional to the
fraction of examples of the parent node that are directed to the daughter
node. Mathematically, the goodness of split ξ can be expressed as:

∆i(η, ξ) = i(η)− (r · i(ηr) + (1− r) · i(ηl)) (4.8)

r is the fraction of examples of the node η that are directed to the right
daughter node ηr and the left daughter node is denoted as ηl . The best split
is the one that has the largest value of the goodness of split. We can see that
the maximum goodness of split for a node η takes equals the Gini index i(η)
in case each when each of the daughter nodes is pure and their Gini indexes
equal zero.

The tree-growing procedure starts at the root node, which consists of all
of the learning examples. The values of the goodness of split of all possible
splits for a single variable are calculated for the root node in order to find
the best split for that variable. The best split of a node is defined as the one
that has the largest value of goodness of split over all single-variable best
splits at that node. We use the best split of the root node to separate the
examples into the daughter nodes. We repeat the procedure of finding the
best split for each daughter node using only the examples that are split into
the given daughter node. This sequential splitting process of building a tree
layer-by-layer is called recursive partitioning. We call a tree saturated when
all of the nodes are pure and they cannot be split any further. In a high-
dimensional classification problem, the tree can easily get overwhelmingly
large, especially if it is allowed to grow until saturation.

This brings us to the last aspect that needs to be determined, namely
deciding when to stop growing the tree. One possible approach is to grow
a ’large’ tree and then prune off branches (from the bottom up) until the
obtained subtree is of the ’right’ size. This approach is commonly referred to
as pruning. As there are multiple possible ways of pruning a tree, finding the
’right’ tree is the crucial part of the process. The main measure guiding the
process is the misclassification rate that should be minimal for the optimal
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tree. For the binary classification problem, the resubstitution estimate of the
misclassification rate in a node is defined as the fraction of the examples
belonging to the less represented class, in terms of number of examples, from
all the examples that ended up in the node following the sequence of if-else
questions. However, approaches alternative to the resubstitution estimate
are used in practice for estimating the misclassification rate, due to its poor
properties e.g. nondifferentiability.

Additionally, the tree growing can be terminated if a certain stop criterion
is met. The most commonly used ones include defining the maximum depth
of the tree and the minimum size of a leaf, allowing a split to happen at a
node only if the daughter nodes are larger than a certain critical size.

4.2.2.2 Regression trees

In the case of regression trees, a leaf takes a constant value as a label. Growing
a regression tree involves the same steps as growing a classification tree.
However, the principles leading all of the steps are different. The process
of finding the optimal split for each node is guided by the least squares
criterion. The main idea is that the optimal split should minimize the sum of
the distances between the examples and the mean value of all of the examples
in the corresponding daughter nodes. The next step, namely deciding when
to stop growing a regression tree, is resolved by growing an overly large tree
and pruning it or by setting a stop criterion such as the maximum depth of
the tree. Finally, a leaf takes the average of outputs of all examples in that
leaf as its label.

4.2.3 Random forest

Ensemble learning is a machine learning paradigm where a prediction
model is built by combining the strengths of a simpler base model, called
base learners. Ensemble methods include: bagging, boosting and stacking.
The key idea of bagging is to average many noisy but unbiased models, and
in this way reduce their variance (see Chapter 15 of Hastie et al. [29]). To
obtain the prediction in a classification problem, a committee of base learners
each cast a vote for the predicted class and classifies based on the majority
vote.

The major problem with decision trees is their instability: a small change
in the data might lead to a very different series of splits and therefore to a
different label assignment. At the same time, if grown with sufficient depth,
decision trees have relatively low bias, which makes them perfect candidates
for bagging. Random forest is a modification of a bagging technique that
builds a large collection of randomized trees. The randomization is obtained
by constructing each individual tree based on a different randomly sampled
subset of the training observations, and determining each split within a tree
from a randomly sampled subset of features. The scheme of classification
with a random forest is presented in Figure 4.1.

4.2.4 Boosting trees

Boosting is another of the ensemble learning techniques. Similarly to bagging,
boosting combines the outputs of many base models to produce a powerful
committee (see Chapter 10 of Hastie et al. [29]). However, the resemblance to
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Figure 4.1: Classification with the random forest. Each tree is presented
with a new example and predicts its class label. The final class
assignment is performed based on the majority of votes of indi-
vidual classification trees.

bagging is only superficial, as both teaching a single base model and voting is
performed differently. Boosting produces a sequence of weak classifiers that
are trained using repeatedly modified versions of the original data. The final
prediction is usually produced combining the predictions from all classifiers
through a weighted majority vote, where more accurate base learners have
higher influence on the final prediction.

Gradient Boosting is a popular boosting algorithm, in which each pre-
dictor in the ensemble corrects its predecessor’s error. Each predictor is
trained using the original input and the negative gradient of a loss function,
also called pseudo-residuals, as labels. Counterintuitively, the gradient boost
classification algorithm uses regression trees of a limited maximum depth.
A leaf of a regression tree might return any real number ŷ as a prediction,
whereas the goal of the classification is predicting a class label. Similarly
to the logistic regression, the logistic function 4.1 is used to transform real-
valued leaf labels ŷ to the predicted probability p̂ of the example belonging
to the positive class:

p̂ =
1

1 + e−ŷ . (4.9)

The Equation 4.9 can be used to derive the relation between the predicted
value ŷ and the predicted probability p̂:

ŷ =
p̂

1− p̂
. (4.10)

The above Equation 4.10 is also commonly referred to as a logit transfor-
mation. As we can see, the predicted value ŷ corresponds to the log odds
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of the example belonging to the positive class. As leaf labels correspond to
the log odds, a leaf of the regression tree in gradient boosting does not take
the average of outputs of all examples in that leaf as its label. Instead, the
negative log-likelihood function (Equation 4.5) is used to find the optimal
label of a leaf, given the examples that are directed to the leaf.

The first tree in the chain consists of just a single leaf and gives the same
initial prediction ŷ0 for all of the examples. The initial prediction is calculated
as log of the odds of encountering a positive example in the whole learning
set. The pseudo-residuals ∆i used to train the i-th tree are calculated as the
difference between the observed probabilities p, equal 1 and 0 for the positive
and negative examples respectively, and the probability predicted by the
(i− 1)-th tree.

An important parameter used in training gradient boosted trees is shrink-
age. The prediction of each tree in the ensemble is shrunk after it is multiplied
by a learning rate r, which takes a value between 0 and 1. As there is a trade-
off between the learning rate and the number of estimators, decreasing the
learning rate should be compensated by increasing the number of estima-
tors, or otherwise it might prevent the ensemble from reaching the desired
performance. The final prediction of the log odds for an example is the sum
of the shrunk predictions of all trees in the chain. The class probability is
then retrieved using Equation 4.9. The scheme of classification with gradient
boosted trees is presented in Figure 4.2.

4.3 model evaluation

4.3.1 Performance measures

There are several measures to assess the performance of a model. In case of
the binary classifications, the most commonly used are: accuracy, precision,
recall, true positive rate, and false positive rate. Those parameters are defined
using four terms that describe possible results of a single binary classification.
Knowing the labels, for every example we can describe the prediction at
a specified probability threshold as a true positive, a true negative, a false
positive or a false negative. The application of those terms to a binary
classification can be visualized using the confusion matrix shown in Table
4.1.

Table 4.1: Confusion matrix presenting possible results of a classification.

Predicted True label

label Positive Negative

Positive true positive false positive

(TP) (FP)

Negative false negative true negative

(FN) (TN)

Accuracy describes the proportions of true classifications (TP+TN) among
all classifications:

accuracy =
TP + TN

TP + TN + FP + FN
. (4.11)
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Figure 4.2: Classification with the gradient boosted trees. The first tree in
the chain consists only of a single leaf and includes the initial
prediction that is the same for every example. Each tree is pre-
sented with an example and a pseudo-residual obtained from the
previous tree. The final class assignment is performed based on
the majority of the sum of the shrunk predictions of all trees in
the chain.
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Accuracy measures reliability of the model. However, in case of an unbal-
anced data set, for which cardinalities of the classes are uneven, accuracy
might give misleading results, as even a model always predicting the class
with more examples will yield a high accuracy.

Precision, also called positive predictive value, measures the ratio of truly
positive classifications to all positive predictions (TP + FP):

precision =
TP

TP + FP
. (4.12)

It is a complement of the False Discovery Rate (FDR).
Recall, alternatively called true positive rate (TPR), refers to the fraction

of positive examples (TP + FN) that is detected by the model:

recall =
TP

TP + FN
. (4.13)

Recall shows how sensitive the model is in identifying the positive examples.
False positive rate (FPR) refers to the proportion of the number of negative

examples wrongly categorized as positive and the total number of actual
negative events (TN + FP):

speci f ity =
FP

TN + FP
. (4.14)

Receiver operator characteristics (ROC) and precision recall (PR) curves
are diagnostic plots that can serve multiple purposes such as comparing per-
formance of different classifiers or finding an optimal probability threshold
for imbalance classification tasks. The ROC curve connects pairs consisting of
the false positive rate (on the x-axis) and the true positive rate (on the y-axis)
for a list of increasing probability thresholds. A diagonal line on the plot from
the bottom-left to top-right indicates the scores for a random classifier and a
point in the top left of the plot indicates a model with perfect skill. The area
under the ROC Curve, so-called ROC AUC, provides yet another measure
assessing the performance of a model. It takes a single value between 0.5
(corresponding to a random guess) and 1 (indicating perfect performance).

In case of an imbalance data set, ROC curve, similarly to the accuracy,
might give misleading results. The precision-recall (PR) curve provides
a more informative alternative in this case. The PR curve connects pairs
consisting of the recall (on the x-axis) and the precision (on the y-axis) for a
list of increasing probability thresholds. A point in the top right of the plot
indicates a model with perfect skill and a constant line y = a, where a is the
fraction of examples of the larger class, indicates the scores for a random
classifier. Exemplary ROC and precision-recall curves are shown in Figure
4.3.

4.3.2 Generalization error

The main challenge and objective of training a machine learning model is
obtaining a model that is able to generalize; that is, to make good predictions
when applied to a data set independent of the one used to fit the model. The
resubstitution estimate, introduced in Section 4.2.2, uses the same data that
was used to derive the predictor, therefore the result is an overly optimistic
view of prediction accuracy (see Chapter 1 of Izenman [35]).
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Figure 4.3: ROC and PR curve. Examplary ROC (left) and precision-recall
(right) curves in grey. Curves of random classifiers marked with
red, dashed lines. The dark blue dots show the scores of the
perfect classification.

To get a more realistic estimate of accuracy, if the data set is large enough, it
is a common practice to separate the data into three non-overlapping and in-
dependent data sets: a learning set, a validation set, and a test set. A learning
or training set, as the name suggests, is used to train the model. A valida-
tion set is a data set used for model selection and assessment of competing
models. A test set is a data set to be used for assessing the performance
of the final model. The predictor is built using only the examples from the
learning set (see Chapter 5 of Goodfellow et al. [25]). Then, the fitted model
can be used to predict the output values of the learning set and compute an
error measure called the learning or training error. In case of classification,
we calculate the learning error as the fraction of all misclassified examples
of the learning data set and we reduce this error. What separates machine
learning from optimization is that we want the generalization error, also
called the test error, to be low as well. The generalization error is defined
as the expected value of the error on a new input. We typically estimate
the generalization error of a machine learning model by measuring its test
error, which in the classification problem is defined as the fraction of all
misclassified examples of the training data set.

The question that might arise here is how can we affect performance on
the test set when we can observe only the training set? The main assumption
is that the training, validation, and test subsets of the data are independent
and each generated by the same underlying distribution. If we sample from
the underlying distribution repeatedly to generate the training set and the
test set, the only difference between the two conditions is the name we assign
to the data set we sample. Therefore the expected training set error is exactly
the same as the expected test set error, as both expectations are formed using
the same data set sampling process. As in reality, model parameters are
chosen in a way that reduces the training set error, the expected test error is
greater than or equal to the expected value of the training error.

A well performing machine learning model should be able to make both
the training error and the difference between the training and test errors small.
We can tell that the trained model is not performing well, if we observe one
of these two behaviours: underfitting or overfitting. Underfitting describes
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Figure 4.4: A typical relationship between the errors and model capacity.
Training error decreases with increasing model capacity, whereas
test error decreases till the optimal model is reached and increases
for higher capacities. Models with too low capacities tend to
underfit, leading to high training and test errors. Models with
too high capacities tend to overfit, leading to a large difference
between training and test errors.

the situation when the model is not able to obtain sufficiently low error rate
even on the training set. Overfitting can be diagnosed when we observe
sufficiently low error value on the training set, but the model fails to obtain
the desired performance on the test set, making the gap between the training
and test error large. Both of the problems have a basis in the model capacity,
which reflects model ability to fit a wide variety of functions. Whereas models
with low capacity may struggle to fit the training set leading to underfitting,
models with high capacity tend to overfit by memorizing properties of
the training set that do not help them to make predictions on the test set.
The relation between the training and generalization errors and the model
capacity is depicted in Figure 4.4. In general, a machine learning algorithm
performs best when its capacity is appropriate for the true complexity of the
task they need to perform.

4.3.3 Hyperparameter optimization

One way of searching for the model with an optimal capacity is trying
various learning algorithms that specify different families of functions the
model can choose from in order to reach the training objective. The capacity
of a machine learning model can also be affected by adapting the algorithm’s
hyperparameters. Hyperparameters are settings that control the algorithm’s
behavior. In difference to model parameters, their values are not found by the
learning algorithm itself, but they are set prior to the learning. An example
of a hyperparameter is the number of trees in the random forest or the
maximum number of features considered for splitting a node of a decision
tree.

Settings controlling the capacity of the model cannot be learnt on the
training set. Such hyperparameters would always choose the maximum
possible model capacity, later resulting in overfitting, if learnt on the training
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set. Other types of hyperparameters are not learnt because the setting is
difficult to optimize. To find the hyperparameters and avoid overfitting, we
need an independent data set to measure the prediction errors. A validation
set consists of examples that the training algorithm does not observe and
that do not belong to the test set. Using the validation set to tune the
hyperparameters allows selecting the optimal model configuration.

4.3.4 Cross-validation

Dividing the data set into a fixed training set and a fixed test set can be
problematic if the resulting sets are small. A small training set might not
provide enough examples for the model to extract meaningful information
and a small test set adds statistical uncertainty around the estimated test
error, making it difficult to compare performance of different algorithms on
the given task.

There are alternative ways of estimating the mean test error for small
data sets. The main idea behind them is to repeat the training and testing
on different, randomly chosen subsets of the original data set. The most
commonly used procedure is the k-fold cross-validation, in which a partition
of the data set is formed by splitting it into k non-overlapping subsets. There
are k rounds of the training and testing computations. On trial i, the i-th
subset of the data is set aside as the test set, and the rest of the data is used
as the training set. Finally, the test error is estimated by taking the average
test error across k trials. The k-fold cross-validation allows us not only to
train and test the model on a small data set, but it also allows us to estimate
the confidence interval of the measures of the performance and shows us
how sensitive the model is to the selection of the subset of the training data
set. Those benefits come at the price of increased computational cost.

4.4 interpretability

Machine learning interpretability is defined as the degree to which a ma-
chine learning user can understand and interpret the prediction made by
a machine learning model. There are a couple of reasons why we might
want to make machine learning models interpretable. The interpretability
of the model is highly desired in scientific applications, where machine
learning is often used not only to make future predictions but also to extract
knowledge from complex data. We can use an interpretable model as a
source of knowledge about the modeled problem, as during the process of
learning, the model receives insight into the problem that allows it to give
correct predictions. Additionally, being able to explain the predictions of the
machine learning model facilitates spotting potential sources of errors and
biases that the model has learnt. An overview of making supervised machine
learning interpretable has recently been provided by Molnar [55] and all the
definitions and concepts in this section are based on this book unless stated
otherwise.

One way to achieve interpretability is to use only a subset of algorithms
that creates interpretable models, such as the logistic regression or the
decision tree. However, often the inherent interpretability of the model
arises from its simplicity and comes at a cost of lower prediction accuracy
than the one achieved for more complex algorithms. Another solution is to
use model-agnostic interpretation measures. The great advantage of model-
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agnostic interpretation methods is the flexibility obtained by separating the
explanation from the model. The same interpretation method can be used for
any type of model, facilitating model comparison in terms of interpretability.

4.4.1 Permutation feature importance

The permutation feature importance was first introduced by Breiman [7] for
random forests and then developed into a model-agnostic version by Fisher
et al. [20]. The idea behind this approach is straightforward: if a feature is
important for making the prediction, removing the information about this
feature will increase the model’s prediction error. The importance of a feature
is measured by calculating the decrease in the model’s performance after
permuting the values of the feature. Shuffling values of an unimportant
feature leaves the predictions unchanged, because the model ignored the
feature for the prediction. However, if the model heavily relied on a feature for
prediction, shuffling its values increases the model error. Another approach
for removing the feature’s information is deleting the feature altogether,
retraining the model and then comparing the model errors. Nevertheless,
retraining with a reduced data set creates a different model than the one we
want to examine, therefore limiting its usability for estimating the feature
importance. Additionally, retraining a model can be computationally costly,
and just permuting a feature can save a lot of time.

To get the ranked list of the most important features according to the
permutation importance, first, the error measure is calculated for the original
model. Then, we permute the values of one of the features and we calculate
the difference between the error measured for the data set with the permuted
feature and the error of the original model. We repeat the second step for
all the features of the input. The higher the increase of the error is upon the
permutation of a feature, the more important the feature is. An additional
decision involves choosing if the process should be performed on the training
or test data set. Both choices give us insights into different aspects. Using
the training set informs us which features the model relies on for making
predictions, whereas values of the importance obtained on the test set tells us
which features contribute to the performance of the model on unseen data.

There are some possible problems encountered using the permutation
feature importance. As the algorithm depends on randomly shuffling the fea-
ture values, repeating the process might give different results. A solution to
stabilize the measure is averaging the importance measures over repetitions.
Other problems might arise in case of a data set with correlated features.
First of all, adding a correlated feature can decrease the importance of the
associated feature by splitting the importance between both features, as in
this case the association between the permuted feature and the outcome is
not fully broken due to the presence of the correlated, unpermuted feature.
Another problem is that permuting a feature might produce unrealistic data
instances when two or more features are correlated. In this case, we measure
the importance based on examples that might not occur in reality, which
might create irrelevant estimates of the feature importance.
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D E T E C T I O N O F P O L I I PAU S I N G S I T E S I N N E T- S E Q
D ATA

In this chapter, we examine the NET-seq Pol II occupancy tracks, focusing
on the positions with highest signal and previously reported artefacts. We
propose refinements to the NET-seq data processing that improve the recogni-
tion of the problematic positions and limit their influence on the pausing site
detection. We present a resampling-based peak caller suitable for sparse oc-
cupancy tracks, such as NET-seq, and we compare it to the testing approach
based on the Poisson model. Finally, we investigate the peaks detected in
NET-seq, focusing on the sequences underlying transcriptional pausing sites
found in various genomic regions and organisms.

5.1 motivation

A preparation of every NGS library includes many molecular manipulations
that may introduce some form of biases, in turn resulting in a skewed rep-
resentation of the original molecules. Such a skew representation can affect
accurate quantification, lead to false results, or mask potentially interesting
patterns [6]. Therefore, understanding the shortcomings of the experimental
method of choice and foreseeing the potential biases is a very important part
of every bioinformatical analysis.

Even though the NET-seq has been introduced over a decade ago [13],
most of the papers focus on the experimental protocol and biological con-
clusions reached using the method [13, 50, 51] and the complete guideline
listing all necessary bioinformatical steps is missing. Such a guideline would
facilitate the analyses, accelerate the detection of possible arifacts in the
library, providing robust insight into the biological phenomena of interest
faster.

In order to enhance our understanding of transcriptional pausing, we
need to be able to recognized pausing sites in the polymerase occupancy
tracks. Local enrichments of the polymerase occupancy can be detected and
assessed using one of many peak calling algorithms and tools. However,
most of the approaches were developed for ChIP-seq genomic tracks that
are characterized by much lower spatial resolution than NET-seq data. As a
result, a thorough parameter tuning is necessary before applying commonly
used peak callers to detect and asses the statistical significance of a peak in
sparse, zero-inflated NET-seq data. Additionally, some of the peak calling
softwares require input in a form that is characteristic for ChIP-seq exper-
iments such as paired-end sequenced data (whereas NET-seq experiment
produces single-end data) or a control data set. The simplest solution is
developing a peak caller that is designed for identifying pausing sites from
the high-resolution genome-wide methods, that detects the peaks with a
single-nucleotide resolution and performs the statistical assessments taking
into account the sparsity of the data.

A rigorous processing of NET-seq data followed by a pause detection
using a properly calibrated peak caller can enhance our understanding
of transcriptional pausing. First, a high-resolution genomic map of Pol II
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pausing sites can be used to determine the regions where the polymerase
is more likely to pause and answer the questions whether transcriptional
pausing in human cells is limited to promoter-proximal locations. Second,
a set of high-confidence pausing sites is necessary to find the key drivers
of Pol II pausing and potential motifs determining DNA sequence-induced
pausing. Lastly, the positional information about transcriptional pausing can
be integrated with the genome annotation and other genomic data in order
to correlate the pausing with other molecular events and gain insight into
the role of transcriptional pausing.

5.2 methods

5.2.1 NET-seq library processing

After obtaining the NET-seq reads, bioinformatical analyses are required to
generate the desired genomic tracks. In this section we describe the NET-
seq specific issues that we address in the preprocessing and the changes
implemented to the previously published approach [51]. The used tools and
the applied settings are listed in Supplemental Table S1.

First steps of the NET-seq preprocessing consist of removing adapters
and controlling the read quality. As for most of the NGS libraries, NET-
seq preparation includes a PCR amplifications step. To ensure an accurate
quantification of the number of polymerases encountered at every genomic
position, we remove PCR duplicates based on the Unique Molecular Identi-
fiers (UMIs), also referred to as barcodes. This step is particularly important
for NET-seq, as PCR amplification rates are high. We store the information
about the number of PCR copies of every read and use it to assess the library
quality. Resulting reads consist of two parts: a read insert (corresponding to
the fragment of a nascent RNA) and a barcode.

Next, we create a dictionary linking a read insert with all the barcodes
attached to it. That allows us to speed up the read mapping, because each
read insert is mapped only once. To obtain the number of reads mapping to
a region, we multiply each instance of a read insert mapping by the number
of different barcodes attached to the read insert. In this way, we remove
PCR-duplicates as we include each unique pair of a mapped insert and a
barcode only once. The 3’ ends of read inserts are used for creating the Pol II
occupancy tracks.

Mapping of the read inserts is a crucial step and there are several problems
that need to be addressed in case of NET-seq. First, as read inserts corre-
spond to nascent RNA fragments, we expect to encountered both spliced and
unspliced moleculers. Therefore, we decided to use the read aligner STAR,
which is designed for RNA-seq data and allows mapping against the genome
while taking into account information about possible splice junctions. More-
over, many read mappers trim ends of the reads to optimize the alignments.
Since 3’ ends of read inserts correspond to the locations of polymerases, we
disable this feature in STAR to ensure that the start positions of the align-
ments correspond to the start positions of the original nascent fragments.
Another mapping related question is how to deal with reads mapping to
multiple locations. Such multi-mapping reads often originate from repetitive
regions, which are scattered around the genome and often situated in the
intronic regions of genes. For NET-seq peak detection such reads constitute
a major challenge, because they can create pile-ups at multiple locations,
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that are later not distinguishable from the Pol II pausing positions. The easi-
est and most stringent way is to discard all multi-mapping reads and only
perform the analyses using only uniquely mapping reads. It is a commonly
used approach and therefore in this thesis we discard multi-mapping reads.

Next issue that needs to be addressed is the RT-artefact. Reverse tran-
scription (RT) is a step in the NET-seq library preparation in which a cDNA
molecules are produced based on selected nascent RNAs. The RT-primer can
anneal in a nonspecific way to the RNA template, which in turn gives rise to
reads with spurious and incorrect 3’ ends. Such RT-artefact is particularly
dangerous in assays requiring single-nucleotide precision like NET-seq, as it
can cause misinterpretation of data [64]. Moreover, with the increased PCR
amplification, the number of errors within a barcode rises. The errors creates
read originating from the same cDNA molecule with a number of different
barcodes, which allows such PCR duplicates escape detection during the
deduplication step and later produces pile-ups of signal indistinguishable
from real peaks.

Barcodes are not only a solution to recognize PCR duplicated reads, they
also facilitate detection of the RT-prone positions. In NET-seq libraries, a
molecular barcode consist of N (usually 6 or 8) random nucleotides attached
directly to the 3’ end of the purified RNA. Since reads originating from
RT-mispriming do not have the barcodes, the part of the sequence extracted
as a barcode should be identical to the N nucleotides downstream of the
mapped 3’ end of the read insert (referred to later as a downstream se-
quence). This property allows us to recognize all reads originating from
RT-mispriming that do not harbour any amplification or sequencing errors.
However, in case of short fragments characterized by increased amplification
PCR duplication, not all barcodes are identical to the downstream sequence.
Therefore, we introduced a recognition of RT-prone positions based on the
similarity between the barcode and the downstream sequence that allows
for d mismatches. A position is called RT-prone and masked if the fraction
f of reads with barcodes similar to the downstream sequence is high. The
fraction f is calculated using all reads (including PCR duplicates) mapped
to the position position, and a barcode is called similar if the number of
mismatches between the barcode and the downstream sequence is lower
than a predefined number of mismatches d.

One last problem that needs to be solved bioinformatically arises from the
RNA purification step. As NET-seq uses nuclear chromatine purification to
enrich for the nascent RNA, it selects not only nascent RNA produced by Pol
II, but also all other chromatin-associated RNA species [50]. Those include
nascent RNA produced by other human polymerases (Pol I and Pol III),
transient product of nascent RNA processing (e.g. splicing or miRNA matu-
ration), and RNA species executing their functions in proximity of chromatin
and nascent RNA such as snRNAs (e.g. splicing), snoRNAs or miRNAs
(e.g. mRNA silecing). To avoid misinterpretation of the data, the signal in
the above mentioned regions are masked. The complete list of all masked
regions is included in the subsection below, called Creating masking regions
for NET-seq. Further justification for masking the listed region accompanied
with analyses is presented in the Result section of this Chapter. Finally, as
mentioned before, only the 3’ ends of not masked, PCR deduplicated read
inserts are used for creating the Pol II occupancy tracks.
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5.2.2 Creating masking regions for NET-seq

We created masking files corresponding to regions known to be transcribed by
other RNA polymerases than Pol II and known NET-seq contaminants. The
regions were determined using the following annotations: GENCODE (v37),
miRBase v22.1 and the UCSC’s RepeatMasker. To find regions transcribed by
mitochondrial polymerase, we extracted genes from GENCODE located on
the mitochondrial chromosome. The Pol I transcribed genes were extracted
from RepeatMasker using terms: rRNA, rRNA_pseudogene, LSU-rRNA_Hsa,
and SSU-rRNA_Hsa, whereas Pol III transcribed genes were extracted from
GENCODE annotation of tRNAs and from RepeatMasker using terms: 5S,
7SK, HY1, HY3, HY4, HY5, Y_RNA, tRNA, U6, BC200, and vaultRNA.
For finding chromatin-associated RNA species, we looked for snRNA and
snoRNA in GENCODE, and for the terms: U1, U2, U3, U4, U5, U6, U7, U8,
U13, U14, and U17 in RepeatMasker. Masking splicing intermediates was
executed by extracting 3’ ends of exons (excluding the terminal ones) and 3’
ends of introns using GENCODE annotation. Additionally, positions at the 3’
end of transcripts were masked to exclude the signal originating from full
length, cleaved transcripts. As our analyses were limited to protein-coding
and long non-coding genes, the end positions of the maturated miRNAs were
not explicitly masked, as we have masked the whole pre-miRNA regions
using miRBase.

5.2.3 Pausing site detection

The algorithm was designed for detecting signal intensity peaks from a
single nucleotide resolution Pol II occupancy data corresponding to potential
transcriptional pausing sites. However, after adjusting the parameters, it
can be used to detect peaks in any sparse data with a single nucleotide
precision. The algorithm consists of two main steps: peak detection and
peak evaluation. In the first step, all local maxima are detected. A local
maximum is a nucleotide position for which the neighbouring positions have
lower signal intensity. Formally speaking, we are interested in position i for
which we observe xi−1 < xi and xi > xi+1, where xi is the signal x intensity
at the position i. In the second step, a statistical test is applied for every
detected peak to test if the peak has a significantly higher value than either
the expected value (using the Poisson distribution) or the expected value of
the maximum (using the empirical distribution) given the local Pol II density.
To control for multiple testing, all obtained p-values are corrected using the
Benjamini-Hochberg procedure. For downstream analyses, we considered
pausing sites with a corrected p-value smaller than 0.05 as significant. We
also define high-confidence pausing sites as pausing sites that are detected in
all biological replicates at the same nucleotide position. Only high-confidence
pausing sites are used for downstream analysis.

5.2.3.1 Peak evaluation using Poisson distribution

The approach presented here is a modification of the MACS algorithm
[76], that allows for the application to sparse data with a single nucleotide
resolution. The expected number of reads from a genomic region has a
Poisson distribution with dynamic parameter λi that varies along the genome.
The parameter λi is the average number of reads per position within the
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window of a given length L centred at the position i. For libraries resulting in
sparse data tracks, meaning data tracks with a lot of positions with no signal,
only the positions with the signal are included. Therefore, the parameter λi
for the position i is calculated as a ratio of the number of reads M and the
number of positions l with non-zero signal. For NET-seq, we use a window of
length L equal 200 nucleotides, a size that is an equivalent of four footprints
of a Pol II.

5.2.3.2 Peak evaluation using non-parametrical testing

A nonparametric resampling approach is applied for every detected peak
to test if the peak has a significantly higher value than the expected given
the local Pol II density. Local Pol II density for the position i is described by
the number of reads M and the number of positions l with non-zero signal
within the window of a given length L (here 200 nucleotides) centred at the
position i. A value of local maximum is simulated by redistributing M reads
over l positions and extracting the maximum number of reads per position
from the newly obtained read distribution. The redistribution is conducted
following the null hypothesis that Pol II does not accumulate at any position
and a read has an equal probability of being assigned to each of the positions
in the local window of length l. Such resampling generates a pool of N (here
10000) simulated values of local maxima. Next, the p-value is estimated using
the fraction of simulation experiments in which the simulated value of local
maximum is greater or equal to the observed local maximum.

5.2.4 Assigning pausing sites to genomic regions

Based on their location, pausing sites were classified into one of four ma-
jor categories: promoter-proximal, gene-body, antisense or intergenic. For
defining the regions, we used GENCODE annotations (v37). A pausing site
was classified as ‘promoter-proximal’ if located within 300 nucleotides down-
stream of the transcription start site (TSS). Pauses between +301 and the
3’-most polyadenylation (pA) site of a gene were classified as ‘gene-body’
pauses. If the pausing site was situated on the opposite strand of a gene in a
region between 1000 nucleotides upstream of the most upstream TSS and
the most downstream pA site, the pausing site was classified as ‘antisense’.
In case of an overlap between the gene-body region of one gene and the
antisense region of another gene, the pausing location remains undetermined.
All pausing sites located outside the listed regions (promoter-proximal, gene-
body, antisense) were classified as intergenic pauses. Gene-body pausing
sites were further specified into two subclasses. Gene-body pausing sites
were ‘exonic’ if they overlap with annotated exons, otherwise they were
labelled ‘intronic’. A schematic view of the genomic region classification is
featured in Figure 5.1.

5.3 experimental data

For examining the sources of NET-seq signal, we analysed two different
variants of NET-seq: standard NET-seq and HiS-NET-seq. For the standard
NET-seq, results for two lines are presented: HeLa S3 (two biological repli-
cates) and K562 (two technical replicates). For the HiS-NET-seq, we analysed
two biological replicates produced using K562 cell lines. Additionally, two
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Figure 5.1: Scheme of different genomic regions of interest. The direction
of transcription is indicated by arrowheads.

technical replicates of a standard NET-seq library prepared using HEK293T
cells were examined to assess the robustness of the peak calling algorithm.
The summary of the sample information is included in Table 5.1.

Table 5.1: Summary of sample information.

Sample name Cell line NET-seq type
Number of

sequenced

reads

standard HeLa Rep1 HeLa S3 standard 175,303,176

standard HeLa Rep2 HeLa S3 standard 768,583,061

standard K562 K562 standard 42,167,250

standard K562 reseq. K562 standard 320,432,287

labeled K562 Rep1 K562 HiS-NET-seq 76,774,699

labeled K562 Rep2 K562 HiS-NET-seq 67,578,055

standard HEK293T Rep1 HEK293T standard 109,078,738

standard HEK293T Rep2 HEK293T standard 105,211,781

Due to their high sequencing depth, the standard NET-seq libraries ob-
tained for HeLa S3 cells served as a base for characterization of the transcrip-
tional pausing in human cell lines. Additionally, we re-analysed available
NET-seq data for Escherichia coli [43] (GEO accession: GSM1367304), Saccha-
romyces cerevisiae [28] (GEO accessions: GSM1673641 and GSM1673642) and
Arabidopsis thaliana [38] (GEO accessions: GSM3814845 and GSM3814846).
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5.4 results

5.4.1 Examining potential artifact positions

We pre-processed the chosen NET-seq libraries as described in the Method
section of this Chapter without masking any regions. Before detecting Pol II
pausing sites, we examined the genomic regions that have previously been
reported to generate NET-seq signal that does not reflect Pol II occupancy.
Those regions can be divided into three categories:

• loci transcribed by other human polymerases,

• positions corresponding to 3’ ends of transient product of nascent
RNA processing,

• positions corresponding to 3’ ends of the chromatin associated and
nascent transcript associated species.

There are several reason to inspect the above mentioned regions. First of
all, NET-seq signal accumulation detected in those locations can easily be
mistaken by the Pol II pausing sites, and in turn lead to false biological
conclusions about the phenomena. Second, the amount of signal in the above
listed can serve as a quality check of the NET-seq library, and the relationship
between the experimental parameters and abundance of those undesired
RNA species can guide the improvements of the experimental procedures.
Below, we discuss the categories of the NET-seq contaminants and examine
the signal obtained in the corresponding regions.

Other human RNA polymerases

We expect to see the NET-seq signal over genes that are known to be tran-
scribed by other human RNA polymerases, namely Pol I and Pol III, as the
purification step in NET-seq does not include an additional selection of Pol II
transcribed loci. Additionally, if the purification of the nuclei is not conducted
properly, we can observe NET-seq signal over the mitochondrial chromo-
some, in the loci transcribed by the mitochondrial polymerase. To quantify
the contribution of the nascent RNAs produced by RNA polymerases other
than Pol II, we created a list of transcribed regions in human genome that
are not synthesised by Pol II as described in the Method section. Then, we
used deepTools package [61] to create heatmap summary plots of NET-seq
signal in those regions.
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Figure 5.2 shows the average NET-seq signal for rRNA genes transcribed
by Pol I. In all libraries, we can see an accumulation of NET-seq signal at the
3’ end of rRNA genes. The signal coming from the Pol I transcription over
gene bodies is less pronounced and it is visible only in the libraries prepared
using HeLa S3 cell line. The majority of the regions with the highest signal
intensity encodes 5S rRNA.
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Figure 5.2: NET-seq signal at rRNA genes visualized with deepTools.
Shown is the NET-seq signal at the region between 10 base pairs
upstream of the 5’ end and 100 base pairs downstream of the 3’
end of the rRNA genes. DeepTools heatmaps are visualized for six
NET-seq experiments conducted in two different cell lines (HeLa
S3 and K562) and using two different NET-seq variants (standard
and with labeling). Color-coded is the average NET-seq signal
in 5 base pair long bins. Profiles presented above the heatmaps
show the average NET-seq signal. The plots include only those
genomic region, for which NET-seq signal (at least one read) was
detected in at least one library (806 out of 1065 annotated rRNA
genes).
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Then, we visualized the average NET-seq signal for tRNA genes tran-
scribed by Pol III in Figure 5.3. Similarly to the rRNA genes, we can see an
accumulation of NET-seq signal at the 3’ end of tRNA genes in all libraries.
The heatmaps show not only signal coming from the full-length tRNAs, but
we can also observe the NET-seq signal over the whole length of tRNA genes
coming from the transcribing Pol III.
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Figure 5.3: NET-seq signal at tRNA genes visualized with deepTools.
Shown is the NET-seq signal at the region between 10 base pairs
upstream of the 5’ end and 100 base pairs downstream of the 3’
end of the tRNA genes. DeepTools heatmaps are visualized for six
NET-seq experiments conducted in two different cell lines (HeLa
S3 and K562) and using two different NET-seq variants (standard
and with labeling). Color-coded is the average NET-seq signal
in 5 base pair long bins. Profiles presented above the heatmaps
show the average NET-seq signal. The plots include only those
genomic region, for which NET-seq signal (at least one read) was
detected in at least one library (590 out of 649 annotated tRNA
genes).
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The full-length products of the transcription performed by the mitochon-
drial polymerase can also be seen in all of the analysed libraries, as Figure
5.4 shows. We can observe a very strong NET-seq at several mitochondrial
genes, especially in the standard NET-seq library prepared using K562 cell
line and sequenced at a high depth.
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Figure 5.4: NET-seq signal at mitochondrial genes visualized with deep-
Tools. Shown is the NET-seq signal at the region between 10 base
pairs upstream of the 5’ end and 100 base pairs downstream of
the 3’ end of the mitochondrial genes. DeepTools heatmaps are
visualized for six NET-seq experiments conducted in two different
cell lines (HeLa S3 and K562) and using two different NET-seq
variants (standard and with labeling). Color-coded is the average
NET-seq signal in 5 base pair long bins. Profiles presented above
the heatmaps show the average NET-seq signal. The plots include
only those genomic region, for which NET-seq signal (at least one
read) was detected in at least one library (all of the annotated
mitochondrial genes).

Transient product of the nascent RNA processing

In addition to nascent transcripts, NET-seq captures intermediates of the
nascent RNA processing, due to their 3’ hydroxyl termini that allow them to
enter the library. Those intermediates include transient product originating
from the co-transcriptional RNA processes such as splicing and miRNA
maturation. We assessed the contribution of the transient processing interme-
diates to the total NET-seq signal using heatmap summary plots generated
with the deepTools package [61].
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Figure 5.5 shows the average NET-seq signal for miRNA genes. We can
see an accumulation of the NET-seq signal at the 3’ end of the mature
miRNA. Additional pile-ups can be observe upstream and at the 5’ end and
downstream of the 3’ end of miRNA. The peaks upstream of the 5’ and
downstream of the 3’ end of the mature miRNA correspond to the ends of
the pre-miRNA.
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Figure 5.5: NET-seq signal at miRNA genes visualized with deepTools.
Shown is the NET-seq signal at the region between 100 base
pairs upstream of the 5’ end and 100 base pairs downstream of
the 3’ end of the miRNA genes. DeepTools heatmaps are visu-
alized for six NET-seq experiments conducted in two different
cell lines (HeLa S3 and K562) and using two different NET-seq
variants (standard and with labeling). Color-coded is the average
NET-seq signal in 5 base pair long bins. Profiles presented above
the heatmaps show the average NET-seq signal. The plots include
only those genomic region, for which NET-seq signal (at least one
read) was detected in at least one library (2129 annotated miRNA
genes).
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Another nascent RNA processing intermediate that is visible in NET-seq
originate during the process of splicing. Figure 5.6 shows NET-seq signal
at the internal exons that are retained during splicing. An accumulation of
signal is visible at the 3’ ends of the exons and the 3’ ends of the upstream
introns.

standard
HeLa
Rep1

standard
HeLa
Rep2

standard
K562

standard
K562
reseq.

labeled
K562
Rep1

labeled
K562
Rep2

5ʹ 3ʹ
end of exon

m
ea

n
 N

E
T

-s
eq

0

1

2

3

4

5

2

1

0

5ʹ 3ʹ
end of exon

5ʹ 3ʹ
end of exon

5ʹ 3ʹ
end of exon

5ʹ 3ʹ
end of exon

5ʹ 3ʹ
end of exon

Figure 5.6: NET-seq signal at exons visualized with deepTools. Shown is
the NET-seq signal at the region between 50 base pairs upstream
of the 5’ end and 50 base pairs downstream of the 3’ end of the
internal exons. DeepTools heatmaps are visualized for six NET-
seq experiments conducted in two different cell lines (HeLa S3

and K562) and using two different NET-seq variants (standard
and with labeling). Color-coded is the average NET-seq signal
in 5 base pair long bins. Profiles presented above the heatmaps
show the average NET-seq signal. The plots include only internal
exons of the transcripts, which are expressed either in HeLa S3 or
K562 cell line.
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Non-nascent chromatin associated RNAs

As NET-seq purification selects all chromatin associated RNAs, in NET-
seq genomic tracks show signal originating not only from nascent RNAs
but also from all RNA species that form transiently stable complexes with
the chromatin or nascent RNA themselves. The chromatin associated RNA
species include RNA molecules executing their functions in the proximity of
chromatin and nascent RNAs, such as snRNAs that are involved in splicing
or snoRNAs. To quantify the contribution of the non-nascent, chromatin-
associated RNAs we used deepTools package [61] to create heatmap summary
plots.

Figure 5.7 shows the average NET-seq signal at snoRNA genes. In all
libraries, we can see an accumulation of NET-seq signal at the 3’ end of
snoRNA genes that correspond to the full length transcripts. There is a
subpopulation of loci, for which the signal is extremely high, reaching an
average of over 80000 reads per position in the standard NET-seq library
prepared for K562 cell line and sequenced with a high sequencing depth. All
40 genes in the first cluster belong to the C/D box snoRNAs.
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Figure 5.7: NET-seq signal at snoRNA genes visualized with deepTools.
Shown is the NET-seq signal at the region between 100 base pairs
upstream of the 5’ end and 200 base pairs downstream of the 3’
end of the snoRNA genes. DeepTools heatmaps are visualized
for six NET-seq experiments conducted in two different cell lines
(HeLa S3 and K562) and using two different NET-seq variants
(standard and with labeling). Color-coded is the average NET-
seq signal in 5 base pair long bins. Profiles presented above the
heatmaps show the average NET-seq signal. The plots include
only those genomic region, for which NET-seq signal (at least one
read) was detected in at least one library (558 snoRNA genes).

Another category of RNA species that form transiently stable complexes
with the nascent RNAs consists of snRNA genes. Figure 5.8 shows the
average NET-seq signal for snRNA genes. Here, we can see an accumulation
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of NET-seq signal at the 3’ end of snRNA genes that correspond to the full
length transcripts. The signal is especially pronounced in standard K562

libraries and it has higher average than the snRNA signal in the data set with
the highest sequencing depth (standard HeLa Rep2).
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Figure 5.8: NET-seq signal at snRNA genes visualized with deepTools.
Shown is the NET-seq signal at the region between 100 base
pairs upstream of the 5’ end and 200 base pairs downstream of
the 3’ end of the snRNA genes. DeepTools heatmaps are visu-
alized for six NET-seq experiments conducted in two different
cell lines (HeLa S3 and K562) and using two different NET-seq
variants (standard and with labeling). Color-coded is the average
NET-seq signal in 5 base pair long bins. Profiles presented above
the heatmaps show the average NET-seq signal. The plots include
only those genomic region, for which NET-seq signal (at least one
read) was detected in at least one library (608 snRNA genes).

This analysis provided a justification for black-listing the genomic regions
generating NET-seq signal that does not reflect Pol II occupancy. Before
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conducting any further analyses, we masked the above mentioned regions to
avoid misinterpreting local enrichments found there as Pol II pausing sites.

5.4.2 Parameters affecting the number of detected pausing sites

The next step after examining regions where NET-seq signal does not reflect
Pol II occupancy was defining the sites that should be detected and designing
a peak calling algorithm that is suitable for sparse Pol II occupancy profiles.
We examined two approaches (see Section 5.2.3) for calculating the p-value
of each candidate peak, which were derived for different definitions of a
pausing site based on the NET-seq signal. The first definition characterizes a
pausing site as a local maximum with a significantly higher value than the
expected value given the local NET-seq signal. To calculate the p-values of
candidate peaks, we used the Poisson distribution with the mean λ equal to
the average number of reads per position within the window centred at the
potential pausing site position. The second definition characterizes a pausing
site as a local maximum with a significantly higher value than the expected
value of the maximum given the local NET-seq signal. For this definition,
we determine the statistical significance of candidate peaks based on the
distribution of expected values of the maximum given the number of reads
within the window centred at the potential pausing site position.

To better understand the differences between the proposed approaches, we
first visualized the distributions used for statistical testing. For a selected total
number of reads in the window M and for a selected number of positions l
with non-zero signal intensity, we compared the empirical distribution of the
maxima for pairs (M,l) and Poisson distribution with the mean λ equal M

l .
Figure 5.9 shows a comparison of the distributions for the total number of
reads M equal 3376 and number of positions l equal 115. As the empirically
obtained distribution models the expected maximum number of reads, it is
centered in the upper tail of the corresponding Poisson distribution.
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Figure 5.9: Distributions of the expected number of reads (modeled with
Poisson distribution; in grey) and the expected maximum num-
ber of reads (empirically derived; in red). The distributions were
calculated for the total number of reads M = 3376 and number
of non-zero positions l = 115.
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To further compare the proposed parametrical and non-parametrical ap-
proach, we examined the thresholds to call a peak significant using a window
of 200 nucleotide width. Both of the approaches determine the statistical sig-
nificance of a peak based on three values: the peak intensity xi, total number
of reads in the window M and number of positions l with non-zero signal
intensity. We calculated the 95th percentile of the Poisson distribution of the
mean λ equal M

l and the empirical distribution of the maxima for pairs (M,l),
with the total number of reads M ranging from 6 to 1500 and the number
of positions l with non-zero signal intensity between 2 and 200. Figure 5.10

shows the difference between the 95th percentile of the empirically derived
distribution of the maxima and the Poisson distribution. The thresholds
are slightly higher for the empirical distribution of the maxima with the
exception for regions with extremely small number of non-zero positions
(less than 5 out of 200).
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Figure 5.10: Heatmap showing the difference between the 95th percentile
of the empirical distribution of the maxima and Poisson dis-
tribution. The difference depends on the total number of reads
in the window M (x-axis) and number of positions l with non-
zero signal intensity (y-axis).

Determining peak significance using empirical distribution is computa-
tionally more costly than using Poisson distribution due to the resampling
performed to generate the empirical distribution. For data sets with high
signal intensity, e.g. where the PCR duplicates were not removed, using
the resampling approach might lead to long computing time. Therefore, we
wanted to examined whether setting a higher p-value cut-off for the paramet-
rical approach yields similar results to the non-parametrical approach with a
lower cut-off, especially for the high total number of reads. We calculated
the difference between the 95th percentile of the empirical distribution of the
maxima and the 99.5th percentile of the Poisson distribution with the mean
λ equal M

l . Figure 5.11 shows that the difference between the significance
threshold is close to 0, except for regions with very small number of non-zero
positions (less than 10 out of 200). This finding indicates that for data sets
with high signal intensity and low sparsity, the parametrical approach is a
solution that yields results similar to the non-parametrical approach.
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Figure 5.11: Heatmap showing the difference between the 95th percentile
of the empirical distribution of the maxima and 99.5th per-
centile of the Poisson distribution. The difference depends on
the total number of reads in the window M (x-axis) and number
of positions l with non-zero signal intensity (y-axis).

Next, we examined how the parameter of the testing method, namely the
window width, affects the number of pausing sites detected. We detected
the peaks in NET-seq library available for HeLa S3 cells (standard HeLa
Rep2). Then, we performed the evaluation of the statistical significance of
the peaks with the non-parametrical testing using five different widths of
the window equal to: 20, 50, 100, 200, and 500 nucleotides. Figure 5.12 shows
that the number of called peaks depends on the size of the window, with
the larger window yielding more peaks. We compared the peaks detected
using 50- and 200- nucleotide window, focusing on the differences between
peaks detected with only one or both of the windows. Peaks detected with
only one window size have significantly lower median then the peaks called
significant with both window widths.
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Figure 5.12: Relationship between the window width and number of
called peaks.
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To learn about the sensitivity of peak calling, we randomly downsampled
a high-coverage NET-seq data set available for HeLa S3 cells (standard HeLa
Rep2) to simulate lower sequencing depths of NET-seq libraries. For each
of the simulated sequencing depths, we performed a peak detection and
evaluation with the non-parametrical testing, setting the window width to
200 nucleotides. As Figure 5.13 shows, the number of called peaks correlated
with the sequencing depth of NET-seq data and dropped proportionally to
the decreasing number of sequencing reads. Since lowering the sequencing
coverage unavoidably also reduces the library complexity, defined by the
number of unique DNA fragments present in a given library, we cannot rule
out that the drop in peak identification was partially caused by the decrease
in library complexity.
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Figure 5.13: Relationship between the sequencing depth of NET-seq data
and number of called peaks. A reduction in the sequencing
depth was obtained by random subsampling of raw reads.

As a final part of the assessment, we examined the robustness of the peak
calling by applying the algorithm to two technical NET-seq replicate data
sets prepared using HEK293T cells. As the two data sets had an almost
identical sequencing coverage, it allowed us to determine the reliability of
the peak calling irrespectively of the sequencing depth and the biological
variation. Figure 5.14 shows that vast majority of detected peaks was called
at the same nucleotide position in both replicates. To assess the significance
of the overlap between the sets of detected peaks, we performed Fisher exact
test obtaining p-value smaller than 2.2−308. This finding indicates that pause
detection algorithm calls high-resolution peaks reliably and that the effect of
technical variation is minimal.
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Figure 5.14: Venn diagram showing the overlap of significant peaks de-
tected for technical NET-seq replicates obtained for human
HEK293T cells.

5.4.3 Characterization of Pol II pausing sites in human cell lines

After examining the parameters affecting the detection of the peaks, we
applied the peak detection algorithm to two biological replicates of NET-seq
obtained for the HeLa S3 cell line (standard HeLa Rep1 and Rep2). Down-
stream analyses were perform using only high-confidence pausing sites that
were detected in both biological replicates at the same nucleotide position.
Based on their location, pausing sites were classified into one of four major
categories: promoter-proximal, gene-body, antisense or intergenic. Figure 5.15

shows the distribution of pausing sites over those genomic regions. About
75% and 20.6% of occupancy peaks were intragenic (promoter-proximal,
gene-body and convergent antisense) or intergenic (including divergent an-
tisense), respectively. We found that 17.3% of peaks were located in the
promoter-proximal region of genes corresponding to promoter-proximal
pauses. Notably, we found that the majority of Pol II pausing sites occurred
outside of promoter-proximal regions, mainly throughout the gene-body.
About 31% and 69% of the gene-body pauses occurred over exons and
introns, respectively.
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Figure 5.15: Pausing site distribution over different genomic regions in
the HeLa S3 cell line.

We first investigated whether distinct DNA sequences were enriched in a
close proximity to pausing sites. A main advantage of NET-seq over ChIP-
seq data is the high spatial resolution, which allowed us to precisely extract
the DNA sequences underlying Pol II pause positions and to calculate the
nucleotide frequencies in relation to Pol II position. To derive the enrich-
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ment logos, we first calculated the background nucleotide distribution for
promoter-proximal and gene-body regions. Then, the extracted pausing se-
quences and the background frequencies were used to create enrichment
logos with Logolas [18]. The enrichment logos with the positions aligned
to the RNA-DNA hybrid are shown in Figures 5.16B and 5.16C. The motif
obtained for promoter-proximal pausing sites consists of two parts: the G−10
at the upstream fork junction of the RNA-DNA hybrid and the Y−2G−1Y+1,
where Y is thymine or cytosine, at the region spanning the active site of Pol
II and the downstream fork junction of the RNA-DNA hybrid. We did not
recover a clear motif linked to Pol II pausing at gene-body.

Next, we looked into the DNA sequence signatures enriched at pausing
sites detected in the HiS-NET-seq. We were interested if the additional
enrichment procedure results in a different set of pausing sites detected.
The obtained enrichment logos with the positions aligned to the RNA-DNA
hybrid are shown in Figures 5.16D and 5.16E.
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Figure 5.16: Pausing motif discovery and sequence analysis in human cell
lines. (A) Schematic view of the transcription bubble. The pink
dot corresponds to a Mg2+ ion marking the active site of Pol II.
-1 refers to the last nucleotide of the nascent RNA. +1 indicates
the position in the DNA template where the next incoming NTP
binds. The direction of transcription is indicated by a black arrow.
This model is based on recent evidence from structural studies
indicating that the RNA-DNA hybrid that spans the active site
of the mammalian Pol II elongation complex is 9–10 bp long.
(BC) Enrichment logos for promoter-proximal pause (B) and
gene-body pause sites (C) retrieved using standard NET-seq
protocol. (DE) Enrichment logos for promoter-proximal pause
(D) and gene-body pause sites (E) retrieved using HiS-NET-seq
protocol.
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The motifs retrieved for promoter-proximal pausing sites showed the same
enrichment profiles for both the standard and the high sensitivity variants
of NET-seq. In difference to standard NET-seq, where no strong enrich-
ments or depletions were found, we did recover a sequence linked to Pol
II pausing at gene-body using HiS-NET-seq. The pause signature obtained
for the gene-body differed from the motif retrieved for promoter-proximal
pausing but pausing in both of the regions showed an enrichment of gua-
nines and thymines at the positions spanning the active site of Pol II and
the downstream fork junction of the RNA-DNA hybrid. Additionally, the
pausing signatures for gene-body pausing different between the two variants
of NET-seq protocols.

5.4.4 Pol II pausing detection in NET-seq data from various organisms

We next asked whether the sequence underlying RNA polymerase pausing
sites shared similarities between species. To address this question, we re-
analyzed available NET-seq data for bacteria (Escherichia coli), budding yeast
(Saccharomyces cerevisiae) and plants (Arabidopsis thaliana). First, we applied
the pausing detection algorithm to find the pausing sites for those organisms.
In difference to the analyses performed for human cell lines, we created
the enrichment logos for all sites in the intragenic region without further
categorizing them based on their genomic position, since clear evidence for
promoter-proximal pausing has not yet emerged in these organisms. The
retrieved sequence motifs underlying pausing in E. coli, S. cerevisiae and
A. thaliana are presented in Figure 5.17, together with the motif obtained
for the promoter-proximal pausing in human cell lines. All highly enriched
nucleotides overlapped with the region of the downstream fork junction of
the RNA-DNA hybrid. The sequence motif obtained for bacteria was highly
similar to the motif underlying promoter-proximal pauses in human cells,
with the bacterial pausing motif being shifted upstream by a single nucleotide
as compared to the human consensus pausing sequence. Additionally, for
all species investigated here the consensus pausing motif contained a TG
dinucleotide at the active site region of RNA polymerase.
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Figure 5.17: Comparison of DNA sequences at pausing sites in model or-
ganisms. Enrichment logos for H. sapiens (pauses in promoter-
proximal region), E. coli (pauses within gene), S. cerevisiae (pauses
within gene) and A. thaliana (pauses within gene).

5.5 discussion

Here, we proposed refinements to the NET-seq data processing and devel-
oped an algorithm for robust peak detection from single-nucleotide resolution
profiling data to investigate transcriptional pausing. We examined genomic
regions generating NET-seq signal that does not reflect Pol II occupancy and
originates from processes other than transcription conducted by Pol II. To
show that artifacts originating during library preparation can have a strong
impact on data interpretation, we visualized the average NET-seq signal at
genes transcribed by other polymerases, at genes encoding chromatin asso-
ciated RNAs and at splice sites. We observed an accumulation of NET-seq
signal at 3’ ends of genes transcribed by other polymerases and encoding
chromatin associated RNAs. The NET-seq signal accumulation there can
easily be mistaken for a Pol II pausing site in the intronic region of the host
gene, as the rRNA, tRNA, snRNA and snoRNA are relatively short and
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some of them are located in the intronic regions of protein-coding and long
non-coding genes. Additionally, we found a group of C/D box snoRNA
genes with extremely high signal intensity at their 3’ ends.

Moreover, we identified a NET-seq signal accumulation in the miRNA
genes. The metagene plots for miRNA genes showed strong NET-seq signal
at the 3’ end of the mature miRNA and a weaker signal accumulation at
three additional locations: the 5’ end of the mature miRNA, the 5’ end of pre-
miRNA, and the 3’ end of the pre-miRNA. Similarily to the peaks obtained
at splicing intermediates, the NET-seq peak at the ends of the pre-miRNA
might correspond to the first step of the miRNA maturation, as it happens
co-transcriptionally in the nucleus. The NET-seq peak at the 3’ ends of the
mature miRNA is likely to originate from the mature miRNAs serving their
function in the proximity of the chromatin. Likewise with rRNA, tRNA,
snRNA, and snoRNA genes, miRNA genes are frequently located in the
intronic regions. This analysis provides a justification for black-listing and
masking the genomic regions generating NET-seq signal that does not reflect
Pol II occupancy.

We developed a resampling-based peak caller suitable for sparse occu-
pancy tracks. Using technical replicates of NET-seq data, we showed that
the majority of detected peaks was called at the same nucleotide position
in both replicates, indicating that the algorithm calls high-resolution peaks
reliably and that the effect of technical variation is minimal. We examined the
impact of the window size, which is a parameter of the peak caller, on peak
detection. The number of peaks detected depends on the window size, with
the larger windows yielding more peaks. However, peaks detected with only
one window size have significantly lower median then the peaks robustly
called with different sizes of windows. Therefore, the peak detection can be
performed multiple times with different window sizes and the intersection
of the results from different runs provides a set of pausing sites obtained
with a more stringent approach.

Additionally, we examined the relationship between the sequencing depth
and the number of detected peaks. The number of called peaks correlates with
the sequencing depth of NET-seq data. Since lowering the sequencing cover-
age unavoidably also reduces the library complexity, we cannot rule out that
the drop in peak identification is partially caused by the decrease in library
complexity. Finally, we compared the proposed non-parametrical, resampling-
based peak caller to the parametrical approach using Poisson distribution for
testing. For the same significance threshold, the non-parametrical approach
requires higher peak intensity to call the peak significant for most of the local
read densities, where local read density is defined by the total number of
reads in the window M and the number of positions l with non-zero signal
intensity. However, for regions with extremely small number of non-zero
positions, testing using Poisson distribution provides more stringent results.
Additionally, as the resampling can be computationally costly, we examined
whether it is possible to find a pair of p-value cut-offs for which the paramet-
rical and non-parametrical approach yield similar results, especially for the
high local density of reads. We showed that setting the p-values to 0.05 and
0.005 for the non-parametrical and the parametrical approach respectively
allows calling peaks of the same intensities for low signal sparsity. Therefore,
we recommend the usage of the parametrical approach as an alternative to
the resampling approach, especially in case of the data sets with high signal
intensity, e.g. where the PCR duplicates were not removed.
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We applied the proposed peak detection algorithm to investigate the Pol II
pausing sites detected in NET-seq. The transcriptional pausing landscape of
Pol II in human cells proved to be more diverse than originally anticipated.
The majority of detected Pol II pausing sites are located outside of promoter-
proximal gene regions, with a large fraction of these pauses distributed along
the gene-body. A large set of promoter-proximal and gene-body pauses occur
non-randomly at the same genomic nucleotide position in biological replicate
measurements. Moreover, pausing is not restricted to the sense direction,
but is also prevalent throughout antisense transcription, raising a question
whether antisense pausing interferes with the sense transcription.

We investigated whether distinct DNA motifs are enriched at or in close
proximity to pausing sites. The high spatial resolution of NET-seq data
allowed us to precisely extract the DNA sequences underlying Pol II pause
positions. We derived sequence signatures in relation to Pol II position
for promoter-proximal and gene body pausing, taking into account the
differences in the nucleotide compositions in those regions. The uncovered
sequence motif that underlies promoter-proximal pausing in human cells
differs from the motifs observed in previous studies. Although the motif
position overlapping with the downstream fork junction of the RNA-DNA
hybrid is consistent with recent studies, the nucleotide sequence differs
strongly from sequence elements that have been implicated in promoter-
proximal pausing [26, 73]. The possible explanations for this difference
are the high spatial resolution of pause site detection that allowed us to
precisely extract the underlying DNA sequence and the sequence context
based normalization. The latter was critical to minimize sequence biases
originating from the high GC content in promoter-proximal gene regions
[36]. Interestingly, the promoter-proximal pausing motif shows similarities
to the consensus sequence of the following core promoter elements located
downstream of the TSS: the downstream core promoter element (DPE) [8],
the downstream core element (DCE) [45, 46] and the recently uncovered
human DPR core promoter element [70] (see Figure S1). The region where
these core promoter elements are located strongly overlap with the region
where promoter-proximal pausing of Pol II usually occurs. These findings
extend previous observations that have linked core promoter elements with
transcriptional pausing in Drosophila [31, 42, 63].

Whereas a clear sequence motif was uncovered for pauses in the promoter-
proximal region, no motif was retrieved for gene-body pauses detected
using the standard NET-seq library preparation. Conversely, an enrichment
of guanines and thymines at the downstream fork junction of the RNA-
DNA hybrid was uncovered for the gene-body pausing sites detected in
HiS-NET-seq. This observation indicates that the sets of pausing sites called
in the different NET-seq variants exhibit different characteristics and they
might be evoked by different mechanisms. The set of the sites detected in
the standard NET-seq libraries might be more homogeneous and therefore
no clear motif was observed. Another possible explanation is that not all
of the peaks detected in the gene-body region in the standard NET-seq
libraries corresponds to the Pol II pausing sites. The DNA signature might
be than masked by the unspecific peaks and could be retrieved only thanks
to the additional enrichment step performed in the HiS-NET-seq library. Last
explanation is that some of the pausing sites detected in the HiS-NET-seq
library are caused by the addition of the 4-thiouridine. The observed relative
enrichment of the adenine at the -1 position of the template DNA might
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arise due to the position where polymerase was unable to continue the
transcription upon 4-thiouridine incorporation.

Widespread transcriptional pausing of Pol II in human cells has apparent
similarities to RNA polymerase pausing in bacteria. Similarly to bacteria
[16], pausing in human cells occurs throughout the transcribed region and is
not restricted to promoter-proximal gene regions. Moreover, the sequence
motif G−10Y−2G−1Y+1, where Y denotes cytosine or thymine, uncovered
for Pol II promoter-proximal pausing bears a striking resemblance to the
bacterial pausing motif G−10Y−3G−2Y−1G+1 with one main difference. The
Y−2G−1Y+1 portion of the Pol II promoter-proximal pausing motif spanning
the active site is shifted downstream by a single nucleotide as compared
to the bacterial consensus pause sequence. A potential explanation for this
difference can be found in the oscillating behavior of the elongation complex
oscillating in a thermal equilibrium by one nucleotide position between pre-
and post-translocated states [5]. It can be that human Pol II and bacterial
RNA polymerase were preferentially captured in the post- or pre-translocated
state, respectively. The similarities of transcriptional pausing in human and
bacterial cells are also consistent with the similar 3D architecture of the active
site between Pol II and bacterial RNA polymerase, and with the conserved
catalytic mechanism [17, 67]. These similarities point toward a possible
conservation of the sequence-dependent transcriptional pausing mechanism.





6
I N V E S T I G AT I N G T H E C AU S E S O F P O L I I PAU S I N G
U S I N G I N T E R P R E TA B L E M A C H I N E L E A R N I N G

In this chapter, we further investigate pausing sites detected in NET-seq,
focusing on potential causes of pausing in different genomic regions. We go
beyond simple nucleotide enrichments visualized by logos, more specifically
examining sequence characteristics of the pausing sites. We build classi-
fiers that discriminate between pausing- and non- pausing sites using the
sequence-dependent features of their locations. We examine the features that
are important for the classification, gaining insight into potential mechanisms
of Pol II pausing. Finally, we compare the results obtained for different model
organisms of various biological complexity to find if the pausing locations
share similarities between species. The code of the modeling pipeline is avail-
able on GitHub: https://github.molgen.mpg.de/gajos/ClassifierPausing.

6.1 motivation

Many transcription factors, DNA and chromatin characteristics have been re-
ported to be implicated in transcriptional pausing (see Section 2.3). However,
it is unclear, what are the relative contributions of these factors on the ob-
served Pol II pausing. The elements involved in pausing are usually described
and analysed independently, and the effects evoked by other regulators are
not taken into consideration and discussed. A comprehensive assessment of
the relative contribution of genetic factors to transcriptional pausing could
further our understanding of the pausing mechanism, especially if performed
in an unbiased and quantitative manner.

Moreover, most of the pausing factors and elements were identified by
either describing genes with a high fraction of polymerases stuck in the
promoter-proximal region or comparing genes exhibiting strong and weak
pausing phenotypes. Such analyses inform us about global attributes of the
paused genes such as promoter elements but often fail to capture characteris-
tics of the position at which Pol II pauses. Our knowledge about the features
typical for the single-nucleotide pausing is limited to the average distance
from the transcription start site and sequence logos obtained for pausing
sites. A better understanding of the properties differentiating positions where
polymerase pauses from those where it can progress without interruption
could help us decipher the role of the local DNA elements in regulating or
invoking pausing.

An interpretable machine learning classifier able to discriminate the paus-
ing and non-pausing sites based on only DNA sequence characteristics can
be the first step toward closing those knowledge gaps. The features identified
by the model as important for distinguishing pausing sites are promising
candidates for perturbation experiments that might show the causal rela-
tionship between the selected features and transcriptional pausing. If the
classification is performed separately in different genomic regions (e.g. such
as a promoter-proximal region and gene-body region), the result can help
us answer the question of whether pauses in distinct genomic regions are
driven by the same factors and mechanisms. Finally, we can compare the
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features identified as important for distinguishing pausing sites to find out
whether the sites prone to pausing share similarities between species.

6.2 methods

6.2.1 Creating Training, Test and Validation Sets

We defined high-confidence pausing sites as pausing sites that were de-
tected in all biological replicates at the same nucleotide position. Only high-
confidence pausing sites were used to create a set of pausing sites (positive
set). A set of non-pausing sites (negative set) was generated by sampling
random positions at which pausing does not occur. To avoid creating artifi-
cial differences between both sets, a non-pausing site was sampled from the
region [x, x+20] nucleotides downstream or upstream of a pausing location,
where distance x depends on the region of the pausing site (50 for promoter-
proximal pauses, 300 for pauses in other regions). Pausing and non-pausing
sites are subsequently referred to as genomic sites.

6.2.2 Building Classifiers

Machine learning models were developed to distinguish pausing from non-
pausing sites based on the genomic features. Each model was tuned, trained
and tested on n sites, with two equally sized sets of pausing and non-
pausing sites. The classification models were implemented with the scikit-
learn Python package and use p predictor variables (genomic features), which
showed a variable degree of correlation between each other. 20% of the n
sites were used to optimize the hyperparameters of the models using 5-fold
cross-validation. The models were trained and tested on the remaining 80%
of observations using 70% of them for the training and the remaining 30% for
testing. The model performance was assessed using the area under the curve
(AUC) values of the ROC curve (ROC-AUC) and precision-recall curve (PR-
AUC). The importance of each feature was computed using the Permutation
Importance, permuting each of the features 10 times. The number of sites n,
the number of predictor variables p are listed in Supplemental Table S2. .

6.3 data

As our primary source of training and testing examples, we used the set of
pausing sites detected in two biological replicates of the standard NET-seq
obtained for the HeLa S3 cell line. Additionally, for testing and refining
training examples, we used pausing sites detected in two biological replicates
of the HiS-NET-seq obtained for the K562 cell line. The pausing site locations
in other model organisms were derived using the following NET-seq data:
Escherichia coli [43] (GEO accession: GSM1367304), Saccharomyces cerevisiae [28]
(GEO accessions: GSM1673641 and GSM1673642), and Arabidopsis thaliana
[38] (GEO accessions: GSM3814845 and GSM3814846).
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6.4 results

6.4.1 Feature engineering

To analyse the impact of the DNA sequence and sequence-dependent factors
on the transcriptional pausing, we engineered a set of sequence-dependant
features that were previously implicated in pausing. For all species and
genomic regions, we calculated the differences in nucleotide skewness and
identity at positions of interest, thermodynamic features of the RNA-DNA
hybrid, and free energy of the nascent RNA.

Since some of the tools and databases were only available for human cell
lines, additional features were calculated for human samples. The human-
specific features include the DNA shape and form, binding motifs of tran-
scription factors (TFs) and RNA binding proteins (RBPs). A comprehensive
list of features is given in Supplemental Table S3.

DNA skewness

XY skewness was defined as |X|−|Y||X|+|Y| , where |X| denotes the number of
nucleotides X. X and Y represent standard DNA nucleotides. A difference
of XY skewness for all pairs of DNA nucleotides was calculated between the
positions located 10 nucleotides upstream and downstream of the genomic
site in a 20 nucleotide window.

Nucleotide identity

The nucleotide identity was extracted from the +1, -1, -2, -3, -10, -11 posi-
tion from the genomic site, corresponding to the active centre of the RNA
polymerase and both ends of the RNA-DNA hybrid.

Thermodynamic features of RNA-DNA hybrid

Thermodynamic features such as the entropy, enthalpy, Gibbs free energy,
and the melting temperature of the 10 nucleotide RNA-DNA hybrid was
calculated using MELTING [44] with the RNA-DNA model parameters.

Potential for nascent RNA hairpin formation

The minimum free energy of the stretch of a nascent RNA between positions
11 and 29, where position 1 corresponds to the last nucleotide added to the
nascent RNA, was calculated using the ViennaRNA package [48]. The region
between nucleotides 11 and 29 of the nascent RNA corresponds to the region
of RNA hairpin structure formation.

DNA shape

DNAshapeR [12] was used to calculate DNA shape descriptors including the
minor groove width (MGW), roll, propeller twist (ProT), helix twist (HelT),
and potential energy (EP). The features consist of a minimum, maximum,
mean, span, and mean value of the first derivative of the descriptors calcu-
lated for the region 10 nucleotides upstream and 5 nucleotides downstream
of the genomic site. The region encompasses the RNA-DNA hybrid and a 5

nucleotide long DNA fragment downstream of the polymerase active centre.
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DNA form

The presence of non-B DNA forms in the region 100 nucleotides upstream or
downstream of the genomic site was also taken into consideration. Regions of
the human genome that tend to form non-B DNA structures such as Z-DNA,
A-phased repeats, inverted repeats, mirror repeats, and direct repeats, were
extracted from non-B database v2.0 [10]. Additionally, pqsfinder [33] was
used to predict the locations of the G-quadruplexes.

Transcription Factor binding motif

The presence of a transcription factor binding motif (TFBM) was determined
for three regions referred to as ‘polymerase footprint’ (25 nucleotides up-
stream and downstream of the genomic site), ‘upstream’ (100 nucleotides
upstream of the polymerase footprint), and ‘downstream’ (100 nucleotides
downstream of the polymerase footprint). 810 position weight matrices
(PWMs) describing 639 human transcription factors were downloaded from
the JASPAR database [37]. To limit the number of features added to the
model, the PWMs were clustered into 111 consensus matrices using RSAT
matrix-clustering [9]. The consensus matrices were later used to scan for
motif occurrences using the MOODS package [39].

RNA Binding Protein binding motif

1194 PWMs describing human RNA Binding Protein (RBP) motifs were
downloaded from ATtRACT database [23]. To limit the number of features
added to the model, the PWMs were clustered into 240 consensus matrices
using RSAT matrix-clustering [9]. The upstream region of a pausing site
was scanned for motifs using the MOODS package [39]. The RBP motif
search was restricted to that region because the complementary sequence
corresponds to the nascent RNA that RBPs can bind.

6.4.2 Modeling promoter-proximal pausing in human cells

Feature examination and selection

The first step of the analysis included a visual examination of all the engi-
neered features (not shown) and an inspection of dependencies between the
features. We excluded the features that took the same value for all of the ex-
amples. As the presence of correlated features might influence the estimates
of feature importance, we calculated the Spearman correlation coefficient
between all pairs of the features. We detected pairs of the features, for which
the absolute value of the coefficient was larger than 0.7.Figure 6.1 presents
the highly correlated feature pairs. We can see that the features describing
the shape of the DNA showed a high absolute correlation, and some of them
(e.g. mean potential energy) are correlated with the GC content in the region.
Additionally, high correlation coefficients were observed for pairs of features
describing thermodynamic parameters of the RNA-DNA hybrid, including
the GC content of the hybrid. Therefore, to avoid the misinterpretation of
feature importances, we present them later in this Chapter aggregated into
the feature type categories.
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Figure 6.1: Highly correlated feature pairs as determined by the Spear-
man correlation coefficient. The heatmap shows the pairs with
high negative (blue) and positive (red) correlation coefficients.
Coloured squares on the right and below the heatmap indicate
the type of the feature as follow: DNA shape (yellow), GC con-
tent (grey), and thermodynamic features of RNA-DNA hybrid
(purple).

Finding a model suitable for classifying pausing and non-pausing
sites

After we familiarized ourselves with the designed features and recognized
the dependencies between them, we used the validation set to find the most
suitable model for our classification problem. We tested three different learn-
ing algorithms: a logistic regression, a random forest, and a gradient boosting
tree-based classifier. For each of the learning algorithms, the model can be
further defined by a set of hyperparameters characteristic for the learning
algorithm. In case of the logistic regression, we performed a grid search
for the inverse of the regularization strength C and the parameter α of the
elastic-net, using the following values: C = {0.001, 0.01, 0.1, 1, 10, 100, 1000}
and α = {0, 0.25, 0.5, 0.75, 1}. A random forest and a gradient boosting clas-
sifier use the same types of hyperparameters as they are both ensemble,
tree-based approaches. Their hyperparameters include the number of trees
N, the maximum number of features ω considered at each split, the maxi-
mum number of levels h in a tree, and the minimum number of samples s
required to be at a leaf node. Additionally, a gradient boosting classifier is
characterized by the learning rate r. We used the following values to perform
a grid search: N = {400, 800, 1500, 3000, 5000}, h = {2, 4, 8, 16, 32, 64, 128},
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s = {2, 5, 10, 15}, and r = {0.001, 0.005, 0.01}. The maximal number of fea-
tures ω considered at each split equalled the square root of all of the features.
Effectively, we tested 585 models characterized by different hyperparameter
combinations: 25 logistic regressions, 140 random forests and 420 gradient
boosting classifiers.

Figure 6.2 shows the results obtained for the validation set. In the lower-
left, we can see a group of underfitted models obtaining low performance on
both test and train subsets of the validation set. This group consist of logistic
regression models with high regularization (C = 0.001), which have a too
small capacity to learn important aspects of the problem. In the upper right
corner, there is a group of overfitted models showing a large gap between
the train and test subset performance. The large number of overfitted models
might be the result of both: the small size of the validation data set and the
random hyperparametrization leading to too large model capacity. Among
overfitted models, we found no random forests, logistic regression with low
regularization (C > 1) and gradient boosting classifiers with rN < 4.

Difference between train and test AUC

Gradient Boosting Classifier
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Figure 6.2: Grid search results: performance of the validated models mea-
sured using mean ROC-AUC of 5-fold cross-validation. The x-
axis corresponds to the difference between performance using the
training and test sets and the y-axis shows the performance of the
test set.

We examined how the performance depends on the choice of the values
of the hyperparameters. For logistic regression models, the performance
depends on the regularization strength C, as shown in Figure 6.3. Most of
the highly regularized logistic regression models (with the inverse of the
regularization strength C equal 0.001) achieve classification that is not better
than a random guess. Models with low regularization strength (C greater
than 1), perform better than the highly regularized models, however, they
do not reach the performance obtained with the moderate regularization
strength.

In difference to the logistic regression, the performance of random forest
models proved not to be sensitive to the selection of the hyperparameter
values within the chosen range. Figure 6.4 shows that all tested models
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Figure 6.3: The dependence between the performance of the validated lo-
gistic regression models and their hyperparameters. The x-axis
corresponds to the inverse of the regularization strength C. The
y-axis shows performance measured using mean ROC-AUC of
5-fold cross-validation.

obtained high classification performance (mean ROC-AUC above 0.75). How-
ever, models with low maximum tree depth h (h smaller than 5) tend to
obtain lower performance than the models with deeper trees.
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Figure 6.4: The dependence between the performance of the validated ran-
dom forest classifiers and their hyperparameters. The x-axis
corresponds to the maximum tree depth h. The y-axis shows
performance measured using mean ROC-AUC of 5-fold cross-
validation.
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Figure 6.5 shows that the performance of the tree-based gradient boosting
classifier depends on the product of the learning rate r and the number
of trees N. Models with both a low learning rate and a small number of
trees perform worse on average than models with high values of those
hyperparameters. Additionally, the model performance is influenced by the
number of samples necessary to form a leaf, with classifiers requiring a small
number of samples (the minimum number of samples s at the leaf node
equals 2) obtaining lower performance.
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Figure 6.5: The dependence between the performance of the validated gra-
dient boosting classifiers and their hyperparameters. The x-axis
corresponds to the product of the learning rate r and the number
of trees N. The y-axis shows performance measured using mean
ROC-AUC of 5-fold cross-validation. Models with less than three
samples required at the leaf node are marked in grey.

Having examined the influence of the hyperparameters on models perfor-
mance, we were able to find models that can be applied to our classification
problem. For training, we chose the best performing model for each of the
algorithm types:

• a logistic regression with the inverse of the regularization strength
C =0.01 and the parameter α=0.25,

• a random forest consisting of N=1500 trees of a maximum depth
h = 32, and with at least s = 2 samples at each leaf,

• a gradient boosting classifier with a learning rate r = 0.01 consisting
of N=5000 subsequent trees of a maximum depth h = 32, and with at
least s = 10 samples at each leaf.

We trained the selected models and evaluated the classification using
the test set. Figure 6.6 presents the performance of the chosen models on
the test set. All models obtained high classification scores measured using
the AUC-ROC: 0.85, 0.84, and 0.8 for the random forest, the gradient boost
classifier, and the logistic regression respectively.
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Figure 6.6: ROC and precision-recall curves of the chosen models on the
test set. Grey lines indicate the expected performance result for a
random classifier.

We performed a further assessment of the model performance using
pausing sites detected in the HiS-NET-seq library prepared using the K562

cell line. As all of the features depend only on the DNA sequence, the
models should be applicable to different human cell types. Additionally, if
the misclassification rate for an independent set of sites is low it shows that
the model does not tend to overfit. To avoid artificially high classification
scores, we removed all of the pausing sites that were also present in the
training data set. As Figure 6.7 shows, all the chosen models achieved even
higher classification scores than for the test set derived from the same cell
line as the training set. The AUC-ROC equalled 0.88, 0.87, and 0.86 for
the random forest, the gradient boost classifier, and the logistic regression
respectively. The higher scores might result from the fact that HiS-NET-seq
variant includes additional enrichment step and therefore the resulting Pol II
occupancy tracks are less noisy.
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Figure 6.7: ROC and precision-recall curves of the best performing models
on the test 4sU. Grey lines indicate the expected performance
result for a random classifier.
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Examining features predictive for pausing in the promoter-proximal region

To gain an insight into the mechanics of promoter-proximal pausing, we
examined the features that were important for making correct discrimination
between pausing and non-pausing sites. Those features are of interest, as
they might contribute to evoking pausing at specific sites. We calculated
feature importance measured as the decrease in AUC-ROC upon applying
permuting values of each of the features 10 times. Figure 6.8 reports the
results for the random forest model, as it obtained the highest classification
scores on the test sets. The features for which the decrease in AUC-ROC upon
the permutations was significantly larger than zero include: the nucleotide
identities at the positions +1, -1, -2, -3 and the stacking energy between the
nucleotides in the active centre of the polymerase (+1 and -1). All of the listed
features achieved positive feature importance for the logistic regression and
the gradient boosting classifier as well (shown in Supplemental Figures S2

and S3).

stacking energy

-2 nucleotide identity

+1 nucleotide identity

-1 nucleotide identity

-3 nucleotide identity

Permutation feature importances [ROC-AUC loss]

0.0 0.01 0.02 0.03 0.04 0.05

Figure 6.8: Permutation feature importance calculated for the random for-
est using promoter-proximal pausing sites. The distribution of
the Permutation Importance was computed for each feature by
permuting the feature 10 times. Only features with non-zero
importance, as indicated by a t-test are plotted.

The permutation feature importance allows us to identify features pre-
dictive for classification, but it does not indicate which value increases the
chance of belonging to the positive class. For example, Figure 6.8 shows that
the stacking energy between the nucleotides at positions +1 and -1 is relevant
for pausing, but we do not know from the permutation importance boxplot
alone which ranges of energies characterize pausing sites. Therefore, we
visualized the distribution of the important features in Figure 6.9. In this way,
we can recognize the values that distinguish pausing and non-pausing sites
in the promoter-proximal region. For pausing sites, we typically find guanine
at the -1 position and thymine at the +1 position. We also observe higher
stacking energy between those two positions comparing to the population
of the non-pausing sites. Additionally, the distributions of nucleotide fre-
quencies at positions -2 and -3 differ between the pausing and non-pausing
sites.
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Figure 6.9: Distributions of features important for classification per-
formed by the random forest using promoter-proximal pausing
sites. The top two rows show frequencies of nucleotide identities
at the positions of interest, with the saturation-coded class affil-
iation: pausing (saturated) and non-pausing (pale). The bottom
row illustrates the stacking energy between the nucleotides at po-
sitions +1 and -1, with the colour-coded class affiliation: pausing
(red) and non-pausing (grey).
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6.4.3 Modeling gene-body pausing in human cells

Before training a new model for classifying pausing and non-pausing sites in
the gene-body region, we applied the chosen classifiers trained to distinguish
pausing and non-pausing sites in the promoter-proximal region. If these
classifiers obtain high classification rates, we could assume that the pausing
principles in the gene-body region do not differ from the pausing mechanism
observed in the promoter-proximity and creating a model specialized for
classifying gene-body pausing sites would not be necessary. The achieved
results are presented in Figure 6.10. All models obtained low classification
scores measured using the AUC-ROC: 0.56, 0.55, and 0.53 for the random
forest, the gradient boost classifier, and the logistic regression respectively.
As the predictive power of the models trained using promoter-proximal
pausing sites is not much better than a random guess for predicting the
class label of gene-body sites, we concluded that the pausing sites in the
promoter-proximal and gene-body region are not generated by the same
underlying distribution.
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Figure 6.10: ROC and precision-recall curves of the models trained us-
ing promoter-proximal pausing sites applied to the test set of
gene-body sites. Grey lines indicate the expected performance
result for a random classifier.

Creating a model predicting gene-body pausing in human cells using
standard NET-seq

As the models trained using promoter-proximal sites do not reach satisfactory
accuracy for the gene-body site classification, we created validation training
and test sets using gene-body sites examples, which we later used to develop
new classifiers. We evaluated tested three different learning algorithms: a
logistic regression, a random forest, and a gradient boosting tree-based
classifier. To find the best-suited models, we performed a grid search using
the same hyperparameter values as in Section 6.4.2. Figure 6.11 shows the
results obtained for the validation set. In the lower-left, we can see a group of
underfitted models obtaining low performance on both test and train subsets
of the validation set. In the upper right corner, there is a group of overfitted
models showing a large gap between the train and test subset performance.
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All models, regardless of their capacity, obtained a moderate classification
performance, with the AUC-ROC smaller than 0.7.

Difference between train and test AUC
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Figure 6.11: Grid search results: performance of the validated models mea-
sured using mean ROC-AUC of 5-fold cross-validation. The
x-axis corresponds to the difference between performance using
the training and test sets and the y-axis shows the performance
of the test set.

For training using the gene-body site examples, we chose the best per-
forming model for each of the algorithm types:

• a logistic regression with the ridge regularization (the parameter α =
0.25) the inverse of the regularization strength C = 0.01,

• a random forest consisting of N=3000 trees of a maximum depth h = 4,
and with at least s = 10 samples at each leaf,

• a gradient boosting classifier with a learning rate r = 0.005 consisting
of N=5000 subsequent trees of a maximum depth h = 4, and with at
least s = 2 samples at each leaf.

The selected models were trained using the gene-body training set and
evaluated with the test examples. Figure 6.12 presents the performance of
the chosen models on the gene-body test set. All models obtained moderate
classification scores measured using the AUC-ROC: 0.68, 0.69, and 0.6 for
the random forest, the gradient boost classifier, and the logistic regression
respectively.

The modest classification performance might be a result of a combination
of the following factors: the inappropriate choice of the model type, the
overfitting or too many erroneous examples in the train set. Other explana-
tions include a possibility that the gene-body pausing cannot be predicted
from the sequence-dependent features alone, either because pausing in the
gene-body region is stochastic or depends on other factors like chromatin
modifications. We reasoned that the model types are not causing the problem,
as the chosen algorithms were able to provide a good classification for the
promoter-proximal pausing and the problem complexity is not expected to
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Figure 6.12: ROC and precision-recall curves of the best performing mod-
els on the gene-body test sets. Grey lines indicate the expected
performance result for a random classifier.

be significantly different for a different genomic region. As Figure 6.11 shows,
all of the validated models had only moderate predictive power, regardless
of their capacity. Therefore, we assumed that the performance cannot be
further improved by choosing a model with lower capacity. We attempted to
refine the training set, by using the pausing sites detected in the HiS-NET-seq.
This NET-seq variant includes an additional selection that ensures clearer
enrichment of the nascent RNA species.

Creating a model predicting gene-body pausing in human cells using
HiS-NET-seq

We repeated the tuning and training procedure with the learning set derived
from the gene-body pausing sites detected in HiS-NET-seq. For training, we
chose the best performing model for each of the tested algorithm types:

• a logistic regression with the inverse of the regularization strength
C = 0.01 and the parameter α = 0.25,

• a random forest consisting of N=800 trees of a maximum depth h = 32,
and with at least s = 2 samples at each leaf,

• a gradient boosting classifier with a learning rate r = 0.01 consisting
of N=800 subsequent trees of a maximum depth h = 4, and with at
least s = 15 samples at each leaf.

We trained the selected models and evaluated the classification using
the test set. Figure 6.13 presents the performance of the chosen models on
the test set. All models obtained high classification scores measured using
the AUC-ROC: 0.88, 0.87, and 0.8 for the random forest, the gradient boost
classifier, and the logistic regression respectively.
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Figure 6.13: ROC and precision-recall curves of the best performing mod-
els on the test sets. Grey lines indicate the expected performance
result for a random classifier.

Examining features predictive for pausing in the gene-body region

To gain an insight into the mechanics of gene-body pausing, we examined
the features that were important for making correct discrimination between
pausing and non-pausing sites. Those features are of interest, as they might
contribute to evoking pausing at specific sites. We calculated feature im-
portance measured as the decrease in AUC-ROC upon applying permuting
values of each of the features 10 times. Figure 6.14 reports the results for
the random forest model, as it obtained the highest classification scores
on the test sets. The features for which the decrease in AUC-ROC upon
the permutations was significantly larger than zero include: the nucleotide
identities at the positions -2, -1, +1, -3 and the stacking energy between the
nucleotides in the active centre of the polymerase (+1 and -1). All of the listed
features achieved positive feature importance for the logistic regression and
the gradient boosting classifier as well (shown in Supplemental Figures S4

and S5).
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-2 nucleotide identity

-1 nucleotide identity

-3 nucleotide identity

Permutation feature importances [ROC-AUC loss]
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Figure 6.14: Permutation feature importance calculated for the random for-
est using gene-body pausing sites detected in HiS NET-seq.
The distribution of the Permutation Importance was computed
for each feature by permuting the feature 10 times. Only features
with non-zero importance, as indicated by a t-test are plotted.

As previously mentioned, the permutation feature importance allows
us to identify features predictive for classification, but it does not indicate
which value increases the chance of belonging to the positive class. Therefore,
we visualized the distribution of the important features in Figure 6.15. In
this way, we can recognize the values that distinguish pausing and non-
pausing sites in the gene-body region. For pausing sites, we typically find
guanine or an adenine at the -1 position and thymine or guanine at the +1

position. We also observe higher stacking energy between those two positions
comparing to the population of the non-pausing sites. Another difference
can be noticed at the -2 position, where guanine is observed for the majority
of the pausing sites. Additionally, the distributions of nucleotide frequencies
at the -3 position differ between the pausing and non-pausing sites.
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Figure 6.15: Distributions of the features important for classification per-
formed by the random forest using gene-body pausing sites
detected in HiS NET-seq. The top two rows show frequencies
of nucleotide identities at the positions of interest, with the
saturation-coded class affiliation: pausing (saturated) and non-
pausing (pale). The bottom row illustrates the stacking energy
between the nucleotides at positions +1 and -1, with the colour-
coded class affiliation: pausing (red) and non-pausing (grey).

6.4.4 Modeling transcriptional pausing in non-human organisms

Since different types of transcriptional pausing have been reported in various
organisms, we wanted to address the question of whether the location of
pausing sites share similarities between species. We used NET-seq data
available for 3 different organisms: Escherichia coli (bacteria), Saccharomyces
cerevisiae (budding yeast, unicellular eukaryote) and Arabidopsis thaliana
(plant, multicellular eukaryote). In difference to the modeling approach
taken for the human pausing sites, where we trained different models for
pausing sites situated in distinct genomic regions, here our positive set
included all pauses within genes since clear evidence for promoter-proximal
pausing has not yet emerged in these organisms. Additionally, since some
of the tools and databases were only available for human cell lines, some of
the features were not calculated for non-human organisms. An overview of
features used can be found in Supplemental Table S4.
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Table 6.1: AUC-ROC scores obtained for the chosen model organisms.

Model

organism

Classification model

Logistic

Regression

Random

Forest

Gradient

Boosting

E. Coli 0.83 0.86 0.85

S. Cerevisiae 0.88 0.90 0.90

A. Thaliana 0.85 0.88 0.87

We repeated the tuning and training procedure for all 3 organisms. For
training, we chose the best performing model for each of the tested algorithm
types:

• a logistic regression with the inverse of the regularization strength
C = 0.01 and the parameter α = 0.25,

• a random forest consisting of N=800 trees of a maximum depth h = 32,
and with at least s = 2 samples at each leaf,

• a gradient boosting classifier with a learning rate r = 0.01 consisting
of N = 800 subsequent trees of a maximum depth h = 4, and with at
least s = 15 samples at each leaf.

The selected models were trained using the training set and evaluated with
the test examples derived for the chosen organisms. Figures 6.16, 6.17, and
6.18 present the performances of the chosen models on the test sets derived
for E. Coli, S. Cerevisiae, and A. Thaliana respectively. All models showed high
classification scores measured using the AUC-ROC, with the random forest
showing the best performance for the chosen model organisms. Table 6.1
summarizes the AUC-ROC values obtained by the selected models.
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Figure 6.16: ROC and precision-recall curves of the best performing mod-
els on the test sets obtained for E. Coli. Grey lines indicate the
expected performance result for a random classifier.



6.4 results 79

ROC curve

R
ec

al
l 

(t
ru

e 
p

o
si

ti
v

e 
ra

te
)

False positive rate
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Precision-Recall curve

P
re

ci
si

o
n

Recall (true positive rate)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Logistic regression

Random Forest

Gradient Boosting Classifier

Random Classifier

Figure 6.17: ROC and precision-recall curves of the best performing mod-
els on the test sets obtained for S. cerevisiae. Grey lines indicate
the expected performance result for a random classifier.
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Figure 6.18: ROC and precision-recall curves of the best performing mod-
els on the test sets obtained for A. Thaliana. Grey lines indicate
the expected performance result for a random classifier.
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Examining features predictive for pausing in non-human organisms

To gain an insight into the mechanics of pausing in the selected organisms, we
examined the features that were important for making correct discrimination
between pausing and non-pausing sites. We calculated feature importance
measured as the decrease in AUC-ROC upon applying permuting values
of each of the features 10 times. In the subsections below, we discuss the
features important for the model organisms.

Features predictive for transcriptional pausing in E. Coli

Figure 6.19 reports the results for the random forest model, as it obtained
the highest classification scores on the test sets. The features for which the
decrease in AUC-ROC upon the permutations was significantly larger than
zero include: the nucleotide identities at the positions +1, -1, -2, -3, -10, -11

and the stacking energy between the nucleotides in the active centre of the
polymerase (+1 and -1).

Figure 6.19: Permutation feature importance calculated for the random for-
est using pausing sites detected in bacterial NET-seq. The dis-
tribution of the Permutation Importance was computed for each
feature by permuting the feature 10 times. Only features with
non-zero importance, as indicated by a t-test are plotted.

As previously mentioned, the permutation feature importance allows us
to identify features predictive for classification, but it does not indicate which
value increases the chance of belonging to the positive class. Therefore, we
visualized the distributions of the features predictive for classification of
pausing and non-pausing sites in E. Coli in Figure 6.20. For pausing sites, we
typically find guanine at the positions +1, -2, -10, and -11. We also observe
thymine or a cytosine at position -1 with a higher frequency than for the
non-pausing sites. Another difference can be noticed at the -3 position, where
thymine is more frequently present at the pausing sites.
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Figure 6.20: Distributions of the features important for classification per-
formed by the random forest using pausing detected in bac-
terial NET-seq. Frequencies of nucleotide identities at the po-
sitions of interest are shown, with the saturation-coded class
affiliation: pausing (saturated) and non-pausing (pale).

Features predictive for transcriptional pausing in S. Cerevisiae

Figure 6.21 reports the results for the random forest model, as it obtained
the highest classification scores on the test sets. The features for which the
decrease in AUC-ROC upon the permutations was significantly larger than
zero include: the nucleotide identities at the positions +1, -1, -2, -3, the
features describing the thermodynamical state of the hybrid and the GC
content downstream of the analysed sites.

The distributions of the features that are most predictive for the classifica-
tion of pausing and non-pausing sites in S. Cerevisiae are visualized in Figure
6.22. For pausing sites, we find at the majority of pausing sites thymine at
the +1 position and adenine at the -1 position. We typically observe with a
higher frequency than for the non-pausing sites guanine at position -2 and
guanine or a cytosine at position -3.
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Figure 6.21: Permutation feature importance calculated for the random for-
est using pausing sites detected in yeast NET-seq. The distri-
bution of the Permutation Importance was computed for each
feature by permuting the feature 10 times. Only features with
non-zero importance, as indicated by a t-test are plotted.
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Figure 6.22: Distributions of the features important for classification per-
formed by the random forest using pausing sites detected in
yeast NET-seq. Frequencies of nucleotide identities at the po-
sitions of interest are shown, with the saturation-coded class
affiliation: pausing (saturated) and non-pausing (pale).

Features predictive for transcriptional pausing in A. Thaliana

Figure 6.23 reports the results for the random forest model, as it obtained
the highest classification scores on the test sets. The features for which the
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decrease in AUC-ROC upon the permutations was significantly larger than
zero include: the nucleotide identities at the positions +1, -1, -2, the GC
content (especially in the region upstream of the analysed sites), and the
potential of the nascent RNA to form a hairpin within the RNA exit channel.

Figure 6.23: Permutation feature importance calculated for the random for-
est pausing sites detected in plant NET-seq. The distribution
of the Permutation Importance was computed for each feature
by permuting the feature 10 times. Only features with non-zero
importance, as indicated by a t-test are plotted.

The distributions of the features that are most predictive for the classifica-
tion of pausing and non-pausing sites in A. Thaliana are visualized in Figure
6.24. For pausing sites, we typically find guanine at position +1, thymine at
position -1, and cytosine at position -2. We also observe a higher GC content
upstream of the pausing than non-pausing sites.
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Figure 6.24: Distributions of features important for classification per-
formed by the random forest using pausing sites detected in
plant NET-seq. The top two rows show frequencies of nucleotide
identities at the positions of interest, with the saturation-coded
class affiliation: pausing (saturated) and non-pausing (pale). The
bottom row illustrates the GC content upstream of the site, with
the colour-coded class affiliation: pausing (red) and non-pausing
(grey).
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6.5 discussion

Here, we attempted to identify the determinants of the Pol II pausing po-
sitions within a gene through the integration of a comprehensive list of
features derived from the DNA sequences underlying the pausing sites. We
used the DNA sequence features to train separate classification models for
two regions of a gene, namely promoter-proximal and gene-body region.
The task of those machine learning models was to discriminate between
positions where Pol II transcribes in a processive manner (a negative set) and
pauses (a positive set). In this way, we were able to systematically analyse
the contribution of features that were previously linked to Pol II pausing or
likely to interrupt processive transcription.

For the classification of the sites in the promoter-proximal region, we
examined three machine learning algorithms: a logistic regression, a random
forest classifier and a gradient boosting classifier based on regression trees.
For each of the machine learning algorithms, we used the validation set
to 1) find the hyperparameters leading to the highest performance and 2)
explain why a given set of parameters leads to high or low performance.
We trained the best performing model for each of the algorithm types using
promoter-proximal pausing sites detected in the standard NET-seq libraries
created for the HeLa S3 cell line. The lowest classification performance was
obtained for the logistic regression model (AUC-ROC 0.80); however, it was
not much worse than the performance of the tree based models (AUC-ROC
of the random forest: 0.85, AUC-ROC of the gradient boosting classifier:
0.84), which suggests that including the interplay between the features is not
necessary to correctly classify the site and that promoter-proximal pausing
sites form quite a homogeneous group. We confirmed the generalizability of
our model through validation of model predictions with an independent set
of pausing sites detected in HiS-NET-seq libraries created using K562 cell
line. The classification performance was higher for the test set derived for
the HiS-NET-seq than for the standard NET-seq, even though the training
was performed using standard NET-seq data.

To uncover the rules that control Pol II pausing in the promoter-proximal
region, we analysed the importance of the sequence derived features. The
features important for promoter-proximal pausing include the nucleotide
identities at the positions +1 and -1 and the stacking energy between the
them. Therefore, our study links YGT sequence in the active center of the
polymerase and promoter-proximal pausing, where Y denotes cytosine or
thymine. This finding is consistent with a previous in vitro study showing that
a TG dinucleotide motif can provoke a slowdown of transcribing bacterial
RNA polymerase and that a repeat of this motif (TGTG) had an even stronger
effect on pause induction [32]. This motif also has interesting similarities
with a pause stabilizing element (Inr-G) in Drosophila that contains a GT
dinucleotide [63]. Further important features include the nucleotide identity
at the position -3, with cytosine being more frequently observed there for
pausing sites. Interestingly, we did not identify other factors previously
implicated in the transcriptional pausing such as GC-content [65, 69, 77]. The
discrepancy is likely to result from the difference in formulating the research
question. Here, we set out to find the determinant of the exact positions
where polymerase pauses, whereas previous studies were examining the
characteristics of genes prone to promoter-proximal pausing. Therefore, the
features that were identified in previous previous studies might play a role
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in promoter-proximal pausing, but they are not defining the exact pausing
position within the gene.

To examine if the positions of gene-body pausing are determined by the
same elements as promoter-proximal pauses, we applied the models trained
with the promoter-proximal pausing sites to predict pausing in the gene-body
region. All models achieved the correct classification rate close to the random
guess, which suggests that the pausing sites in the promoter-proximal and
gene-body region are not generated by the same underlying distribution.
Therefore, we again examined three machine learning algorithms (a logis-
tic regression, a random forest and a gradient boosting classifier based on
regression trees) and trained the best performing model for each of the
algorithm types using gene-body pausing sites detected in the standard
NET-seq libraries created for the HeLa S3 cell line. All models achieved
modest classification performance (AUC-ROC below 0.7). The high misclas-
sification rate might be a result of a combination of the following factors: the
inappropriate choice of the model type, overfitting or too many erroneous
examples in the training set. Other explanations include a possibility that
the gene-body pausing cannot be predicted from the sequence-dependent
features alone, either because pausing in the gene-body region is stochastic
or it depends on other factors like chromatin modifications. We reasoned that
the model types are not the cause of the modest classification performance,
as the chosen algorithms were able to provide a good classification for the
promoter-proximal pausing and the problem complexity is not expected
to be significantly different for different genomic regions. Additionally, all
of the validated models had only moderate predictive power, regardless of
their capacity. Therefore, we assumed that the modest performance is not
caused by overfitting and cannot be further improved by choosing a model
with lower capacity. Hence, we set out to refine the training set by using
the pausing sites detected in the HiS-NET-seq libraries created for K562 cell
line. This NET-seq variant includes an additional selection step that ensures
better enrichment of the nascent RNA species. All models achieved high
classification (AUC-ROC above 0.87 for the tree-based models and AUC-ROC
of 0.80 for the logistic regression).

The most predictive feature for the gene-body pausing is the nucleotide
identity at the position -2, with guanine observed at this position for the
majority of pausing sites. Other important features include nucleotide iden-
tity at the positions +1, -1, and -3 and the stacking energy between the
nucleotides in the active center of the Pol II. For pausing sites in gene-body
regions, we typically find guanine or adenine at the -1 position and thymine
or guanine at the +1 position. We also observe higher stacking energy be-
tween those two positions comparing to the population of the non-pausing
sites. Another difference can be noticed at the -3 position, where adenine
or thymine are observed for the majority of the pausing sites. Similarly to
the promoter-proximal pausing, the nucleotides predictive for pausing are
located close to the active center of the polymerase and the pausing sites
exhibit increased stacking energy between the -1 and +1 nucleotides, with
guanine and thymine being most frequently observed at those positions. This
finding might indicate that pausing within the gene-body may be evoked
by the same sequence elements as promoter-proximal pausing, at least for a
subset of pausing sites.

We next asked whether the sequence determinants of pervasive RNA
polymerase pausing were evolutionary conserved. To address this question,
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we applied our modeling approach to reveal determinants for pauses de-
tected in NET-seq data available for bacteria (Escherichia coli), budding yeast
(Saccharomyces cerevisiae) and plants (Arabidopsis thaliana). All models showed
high classification scores (AUC-ROC above 0.83). For all of the investigated
species, identities of the nucleotides at the active center of the polymerase
(+1 and -1 nucleotide) and in the upstream part of the RNA-DNA hybrid
(-2 nucleotide) were predictive for the polymerase pausing. However, the
distributions of nucleotide frequencies at the important positions varied for
different species. Additionally, E. coli predictive features include nucleotide
identities at positions -3, -10, and -11, which is consistent with previous
studies [43]. In A. thaliana increased GC content is observed upstream of the
pausing sites.

In this study, we identified the most predictive features for transcriptional
pausing in different genomic regions and various species. Our approach can
be used to generate hypotheses that are supported by existing data and that
can be further validated experimentally. It is important to note that although
machine learning approaches help us systematically evaluate correlative
relationship between the input features and the output measurements, a
high predictive power of a feature does not necessarily imply that the feature
is actually causative for the phenomenon being predicted. Additionally, a
machine learning model is only as good as the data used for training it is.
Therefore, machine learning approaches might fail if the measured data is of
low quality. Lastly, the performance of classical machine learning approaches
depends heavily on the quality and the relevance of the features included in
the model. A possible extension of the presented study overcoming the last
limitation is training a deep learning model, which embeds the computation
of features into the machine learning model itself to yield an end-to-end
model.





7
S U M M A RY A N D C O N C L U S I O N S

In this thesis, we investigated what are the causes of Pol II pausing. We
addressed this question in two steps. First, we set out to find Pol II pausing
sites in the NET-seq data. Second, we attempted to identify the determinants
of Pol II in an unbiased manner based on the underlying DNA sequence.

Pausing polymerases result in local enrichments of NET-seq signal be-
cause the longer the polymerase stays at the given position, the more fre-
quently it is encountered at this position. However, not all of the occupancy
peaks correspond to pausing polymerases. Our careful examination of the
NET-seq characteristics revealed genetic locations exhibiting a potential to
generate peaks that do not reflect Pol II pausing. Those blacklisted regions
include genes transcribed by other human polymerases, genes encoding RNA
species serving their function in the close proximity of the nascent RNA and
chromatin, and single-nucleotide positions corresponding to the 3’ ends of
transient RNA products of the nascent RNA processing. We proposed an
improved NET-seq processing pipeline that limits the presence of artificial
peaks thanks to masking the blacklisted regions and recognizing positions
prone to generate high signal due to the reverse-transcriptase mispriming.
The improved NET-seq pipeline includes collapsing the PCR duplicated
reads before the read mapping, which decreases the processing time.

We designed and implemented a tool to detect pausing sites in the
high-resolution Pol II occupancy tracks. We proposed two approaches: a
resampling-based and a parametrical approach. We compared the two ap-
proaches and showed the parameters for which they yield a similar sets of
peaks. We examined how the choice of parameters influences the significance
threshold. We performed random downsampling of a NET-seq library to
investigate how the sequencing depth and the library complexity influence
the number of peaks detected, showing that the number of called peaks
correlates with the sequencing depth and drops proportionally to the de-
creasing number of reads. Finally, we applied the peak calling algorithm to
two technical replicates of a NET-seq library and showed the robustness of
the peak calling approach.

Following the technical examinations and quality checks of the NET-seq
data, we examined the distribution of the pausing sites over the human
genome. We showed that Pol II pausing is not limited to the promoter-
proximal region, but it occurs in the gene-body region in both sense and
antisense directions as well as in the intergenic regions. Then, we investigated
the sequences underlying pausing sites detected using two NET-seq variants
in the promoter-proximal and gene-body regions. For the promoter-proximal
region, we found a motif consisting of two parts: the G−10 at the upstream
fork junction of the RNA-DNA hybrid and the Y−2G−1Y+1, where Y is
thymine or cytosine, at the region spanning the active site of Pol II and
the downstream fork junction of the RNA-DNA hybrid. The comparison
of transcriptional pausing sites in different model organisms revealed simi-
larities between the motifs underlying human promoter-proximal pausing
sites and pervasive pausing sites in bacteria. This similarity points toward
a possible conservation of the sequence-dependent transcriptional pausing
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mechanism. For the gene-body region, we did not find an underlying motif
using the standard NET-seq variant. However, we did find a guanine-rich
motif encompassing the downstream fork junction characteristic for pausing
sites in gene-body detected using HiS-NET-seq.

We then set out to identify the determinants of Pol II in an unbiased
manner based on the underlying DNA sequence. We created a large number
of features, including factors that were previously linked to transcriptional
pausing, but also factors that were not yet connected to Pol II pausing. To
predict the predisposition of a genomic site to evoke Pol II pausing, we tested
machine learning models such as logistic regression and two tree-based
ensemble models. We showed that these models are able to discriminate with
a high accuracy the pausing and non-pausing sites based only on features
derived from the underlying DNA sequence. However, we were able to train
the model for the gene-body sites only using HiS-NET-seq data and not with
standard NET-seq data.

Examining feature importance helped us to identify the most important
features in the model, namely the main potential determinants of Pol II paus-
ing in different genomic regions. For all investigated species and genomic
regions, identities of the nucleotides at the active center of the polymerase
and in the upstream part of the RNA-DNA hybrid were predictive for the
polymerase pausing. However, it is important to note that the distributions of
nucleotide frequencies at the important position varied between the species
and genomic regions. Additionally, our study linked the YGT sequence in
the active center of the polymerase and promoter-proximal pausing, where Y
denotes cytosine or thymine. Surprisingly, we did not identify other factors
previously implicated in the transcriptional pausing. The difference is likely
to result from the difference in formulating the research question. Here, we
set out to find the determinant of the exact positions where polymerase
pauses, whereas previous studies were examining the characteristics of genes
prone to promoter-proximal pausing. Therefore, the features that were iden-
tified in previous previous studies might play a role in promoter-proximal
pausing, but they are not defining the exact pausing position within the gene.

Our approach of creating a large number of features, including factors that
were not yet previously linked to a given phenomenon, can be used to gener-
ate hypotheses that are supported by the existing data and that can be further
validated experimentally. Although machine learning approaches help us
systematically evaluate correlative relationships between the input features
and the phenomenon, a high predictive power of a feature does not neces-
sarily imply that the feature is actually causative for the phenomenon being
predicted. Nevertheless, the features identified by the model as important
for distinguishing pausing sites are promising candidates for perturbation
experiments that might show the causal relationship between the selected
features and transcriptional pausing.



8
C O N T R I B U T I O N S T O O T H E R P R O J E C T S

In this Chapter, we list the additional projects, which are not covered in
previous chapters, that the author contributed to during her work as a PhD
candidate. We briefly describe these projects and the author’s contributions.

8.1 analysing changes in isoform composition and coding

potential during neuronal differentiation

Alternative splicing is a mechanism that increases transcriptomic diversity
and can be regulated co-transcriptionally (see Section 2.2.4). We were in-
terested in how high is the impact of the Pol II transcriptional speed on
the alternative splicing regulation. As a model for our study, we chose the
neuronal differentiation system, because alternative splicing occurs at high
frequency in brain tissues and contributes to every step of nervous system
development [68]. Olga Jasnovidova conducted short- and long-read RNA-
seq time-course experiments during the first five days of the differentiation,
providing the transcriptome profiles of the pluripotent, progenitor and neu-
ronal cells. This model system allowed us to address unanswered questions
regarding transcription, splicing and neuronal differentiation.

First, we described the landscape of the transcriptional changes, including
the quantification of different alternative splicing events at subsequent de-
velopmental stages. Next, we addressed the question, whether the changes
observed on the transcriptome level have the potential to affect the sequence
and properties of the encoded protein. This part resulted in the tool IsoTV
(Isoform Transcript Visualizer) [2], which is described in the following sec-
tion. Additionally, we investigated the causes of the alternative splicing
events at different developmental stages, including the potential contribution
of Transcription Factors, RNA Binding Proteins, µRNAs and Pol II transcrip-
tional speed. Similarly to the approach presented in Chapter 6, we intend to
train a machine learning model predicting the occurrence of the alternative
splicing event based on the presence of binding motifs and NET-seq signal.
This approach will allow us to quantify the contributions of various factors
in regulating alternative splicing. The computational part of the project was
conducted by the author, supported by Siddharth Annaldasula.

8.2 quantification and visualization of the coding potential

of mrna isoforms detected by ont long-read sequencing

During our work on transcript isoform changes in neuronal differentiation,
we were interested in the functional differences between isoforms originating
from the same gene. In that project, we used long-read RNA sequencing,
which allowed us to detect non-canonical transcript isoforms. However, the
computational tools for protein isoform analysis and visualization, especially
regarding novel isoforms, were missing. This observed need resulted in the
creation of the tool IsoTV (Isoform Transcript Visualizer) that was published
as an application note in Bioinformatics [2].
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IsoTV was implemented in the form of a versatile Snakemake pipeline. The
pipeline consists of two main parts: (1) processing the raw ONT long-reads
to de novo assemble a transcriptome and quantify isoform expression, and (2)
translating the obtained transcript isoforms into predicted protein isoforms
and visualizing their functional features. The first part was developed by the
author to process raw or basecalled ONT reads in order to de novo assemble
the transcriptome. This sub-workflow was inspired by ONT’s long-read
processing pipeline and includes basecalling the raw reads, reconstructing
the transcriptome comprehensively for all samples and quantification of the
transcript expression. The second part was conceptualized together with
Siddarth Annaldasula and implemented by him. It consists of the transcript
isoform translation accounting for the presence of upstream open reading
frames (uORFs) and the protein isoform visualization. The visualization
module incorporates various tools to predict protein domains, secondary
structure, disordered regions and post-translational modification sites. The
final product of the pipeline is a consolidated report generated for chosen
input genes. It consists of intuitive visualizations depicting gene and isoform
expression, transcript composition and functional features of the translated
transcript isoforms. Finally, we demonstrated the functionality of IsoTV on
cancer cell lines sequenced using ONT long-reads.

8.3 comparing functions of human tfiis paralogs using mul-
tiomics data

In Chapter 5 we described the pause detection algorithm developed for
sparse data. This peak caller is intended to be used for a currently ongoing
project led by Yelizaveta Mochalova. The project focuses on the role of TFIIS
paralogs in transcription regulation. TFIIS, which stands for Transcription
elongation Factor IIS, is a transcription factor rescuing polymerases stalled
as a consequence of a reverse-translocation movement called backtracking.
As a result of backtracking, RNA 3’end is mislocalized to a pore in Pol
II, effectively preventing elongation. TFIIS stimulates the cleavage of the
backtracked Pol II, realigning the nascent RNA with the DNA template and
enabling the polymerase to resume transcription [59]. There are four paralogs
of TFIIS showing various expression levels in different cell lines and tissues
[14]. Our main aim is to explore functional dissimilarities of the human TFIIS
paralogs.

To find the differences between the human TFIIS paralogs, Yelizaveta
created mutant cell lines exhibiting abnormal expression of TFIIS-encoding
genes. The modified cell lines were derived from immortalized human em-
bryonic kidney cells (HEK293) and included cell lines overexpressing one
of the main TFIIS paralogs, namely genes TCEA1 or TCEA2, and cell lines,
in which one or both of these genes were deleted. These modified cell lines
were used to provide an extensive characterization of the resulting pheno-
types. The characterization included profiling transcriptome using RNA-seq,
describing Pol II occupancy using NET-seq and finding TFIIS binding sites
and interactome of the paralogs using ChIP-seq and IP-MS respectively. The
author’s contribution comprised analyses of the data and integration of
these multiomics approaches. Unexpectedly, we found that deletion of the
TCEA2 gene, whose expression was described as testis-specific [74], caused
disregulation of a larger number of genes than the deletion of ubiquitously
expressed TCEA1. Additionally, the pausing detection algorithm will be
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applied to better understand, how the unresolved backtracking affects gene
expression.
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L I S T O F F I G U R E S

Figure 1.1 Pol II occupancy track. The gene track shows Pol
II occupancy in both sense and antisense direc-
tion of transcription. Selected two pausing sites in
promoter-proximal and gene-body region are marked
in orange. The data was obtained using Native Elon-
gating Transcript sequencing. 1

Figure 2.1 A structure of the RNA-DNA hybrid formed by
transcribing Pol II (PDB structure ID: 6GML [71]).
The nascent RNA is depicted in red and pink. The
red part of the nascent RNA together with the tem-
plate DNA fragment marked in green forms a 10

base pair long RNA-DNA hybrid. The template
strand fragments positioned upstream and down-
stream of the RNA-DNA hybrid are in light blue
and orange respectively. Numeration of the template
strand position is done in respect to the currently
transcribed position -1. The core subunits of Pol are
depicted in light grey. The direction of the Pol II
transcription is indicated with an arrow. 5

Figure 2.2 Collection of DNA motifs implicated in transcrip-
tional pausing. Information content logos (middle
column) together with the model organism used
(first column) and the reference (last row). The logos
are aligned to the schematic view of the transcrip-
tion bubble (below) using dashed lines. The pink dot
corresponds to a Mg2+ ion marking the active site of
Pol II. -1 refers to the last nucleotide of the nascent
RNA. +1 indicates the position in the DNA template
where the next incoming NTP binds. This model
is based on recent evidence from structural stud-
ies indicating that the RNA-DNA hybrid that spans
the active site of the mammalian Pol II elongation
complex is 9–10 bp long [4]. 9

Figure 2.3 Schematic overview of the NET-seq protocol. Num-
bers in the corners indicate the subsequent steps. In
the first step, the nuclear chromatin is isolated to-
gether with the transcribing polymerases and nascent
RNA molecules attached to it. The second step com-
prises the purification of the RNA. Next, a linker
including a random molecular barcode is ligated to
the RNA molecule. In the fourth step, RNA is frag-
mented and cDNA is synthesized. The molecules
are later amplified to allow for the high throughput
sequencing. In the last step of the experimental part
of the protocol, the read insert is sequenced from
the 3’ end together with the barcode. This figure is
adapted from Mayer et al. [51]. 12
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104 list of figures

Figure 4.1 Classification with the random forest. Each tree is
presented with a new example and predicts its class
label. The final class assignment is performed based
on the majority of votes of individual classification
trees. 24

Figure 4.2 Classification with the gradient boosted trees. The
first tree in the chain consists only of a single leaf and
includes the initial prediction that is the same for ev-
ery example. Each tree is presented with an example
and a pseudo-residual obtained from the previous
tree. The final class assignment is performed based
on the majority of the sum of the shrunk predictions
of all trees in the chain. 26

Figure 4.3 ROC and PR curve. Examplary ROC (left) and precision-
recall (right) curves in grey. Curves of random clas-
sifiers marked with red, dashed lines. The dark
blue dots show the scores of the perfect classifi-
cation. 28

Figure 4.4 A typical relationship between the errors and model
capacity. Training error decreases with increasing
model capacity, whereas test error decreases till the
optimal model is reached and increases for higher
capacities. Models with too low capacities tend to
underfit, leading to high training and test errors.
Models with too high capacities tend to overfit, lead-
ing to a large difference between training and test
errors. 29

Figure 5.1 Scheme of different genomic regions of interest.
The direction of transcription is indicated by arrow-
heads. 38

Figure 5.2 NET-seq signal at rRNA genes visualized with deep-
Tools. Shown is the NET-seq signal at the region be-
tween 10 base pairs upstream of the 5’ end and 100

base pairs downstream of the 3’ end of the rRNA
genes. DeepTools heatmaps are visualized for six
NET-seq experiments conducted in two different
cell lines (HeLa S3 and K562) and using two dif-
ferent NET-seq variants (standard and with label-
ing). Color-coded is the average NET-seq signal in
5 base pair long bins. Profiles presented above the
heatmaps show the average NET-seq signal. The
plots include only those genomic region, for which
NET-seq signal (at least one read) was detected in at
least one library (806 out of 1065 annotated rRNA
genes). 40
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Figure 5.3 NET-seq signal at tRNA genes visualized with deep-
Tools. Shown is the NET-seq signal at the region be-
tween 10 base pairs upstream of the 5’ end and 100

base pairs downstream of the 3’ end of the tRNA
genes. DeepTools heatmaps are visualized for six
NET-seq experiments conducted in two different
cell lines (HeLa S3 and K562) and using two dif-
ferent NET-seq variants (standard and with label-
ing). Color-coded is the average NET-seq signal in
5 base pair long bins. Profiles presented above the
heatmaps show the average NET-seq signal. The
plots include only those genomic region, for which
NET-seq signal (at least one read) was detected in
at least one library (590 out of 649 annotated tRNA
genes). 41

Figure 5.4 NET-seq signal at mitochondrial genes visualized
with deepTools. Shown is the NET-seq signal at the
region between 10 base pairs upstream of the 5’
end and 100 base pairs downstream of the 3’ end of
the mitochondrial genes. DeepTools heatmaps are
visualized for six NET-seq experiments conducted in
two different cell lines (HeLa S3 and K562) and using
two different NET-seq variants (standard and with
labeling). Color-coded is the average NET-seq signal
in 5 base pair long bins. Profiles presented above
the heatmaps show the average NET-seq signal. The
plots include only those genomic region, for which
NET-seq signal (at least one read) was detected in at
least one library (all of the annotated mitochondrial
genes). 42

Figure 5.5 NET-seq signal at miRNA genes visualized with
deepTools. Shown is the NET-seq signal at the re-
gion between 100 base pairs upstream of the 5’ end
and 100 base pairs downstream of the 3’ end of
the miRNA genes. DeepTools heatmaps are visu-
alized for six NET-seq experiments conducted in
two different cell lines (HeLa S3 and K562) and us-
ing two different NET-seq variants (standard and
with labeling). Color-coded is the average NET-seq
signal in 5 base pair long bins. Profiles presented
above the heatmaps show the average NET-seq sig-
nal. The plots include only those genomic region,
for which NET-seq signal (at least one read) was de-
tected in at least one library (2129 annotated miRNA
genes). 43
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Figure 5.6 NET-seq signal at exons visualized with deepTools.
Shown is the NET-seq signal at the region between
50 base pairs upstream of the 5’ end and 50 base
pairs downstream of the 3’ end of the internal exons.
DeepTools heatmaps are visualized for six NET-seq
experiments conducted in two different cell lines
(HeLa S3 and K562) and using two different NET-seq
variants (standard and with labeling). Color-coded
is the average NET-seq signal in 5 base pair long
bins. Profiles presented above the heatmaps show
the average NET-seq signal. The plots include only
internal exons of the transcripts, which are expressed
either in HeLa S3 or K562 cell line. 44

Figure 5.7 NET-seq signal at snoRNA genes visualized with
deepTools. Shown is the NET-seq signal at the re-
gion between 100 base pairs upstream of the 5’ end
and 200 base pairs downstream of the 3’ end of the
snoRNA genes. DeepTools heatmaps are visualized
for six NET-seq experiments conducted in two dif-
ferent cell lines (HeLa S3 and K562) and using two
different NET-seq variants (standard and with la-
beling). Color-coded is the average NET-seq signal
in 5 base pair long bins. Profiles presented above
the heatmaps show the average NET-seq signal. The
plots include only those genomic region, for which
NET-seq signal (at least one read) was detected in at
least one library (558 snoRNA genes). 46

Figure 5.8 NET-seq signal at snRNA genes visualized with
deepTools. Shown is the NET-seq signal at the re-
gion between 100 base pairs upstream of the 5’ end
and 200 base pairs downstream of the 3’ end of the
snRNA genes. DeepTools heatmaps are visualized
for six NET-seq experiments conducted in two dif-
ferent cell lines (HeLa S3 and K562) and using two
different NET-seq variants (standard and with la-
beling). Color-coded is the average NET-seq signal
in 5 base pair long bins. Profiles presented above
the heatmaps show the average NET-seq signal. The
plots include only those genomic region, for which
NET-seq signal (at least one read) was detected in at
least one library (608 snRNA genes). 47

Figure 5.9 Distributions of the expected number of reads (mod-
eled with Poisson distribution; in grey) and the
expected maximum number of reads (empirically
derived; in red). The distributions were calculated
for the total number of reads M = 3376 and number
of non-zero positions l = 115. 48
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Figure 5.10 Heatmap showing the difference between the 95th
percentile of the empirical distribution of the max-
ima and Poisson distribution. The difference de-
pends on the total number of reads in the window
M (x-axis) and number of positions l with non-zero
signal intensity (y-axis). 49

Figure 5.11 Heatmap showing the difference between the 95th
percentile of the empirical distribution of the max-
ima and 99.5th percentile of the Poisson distribu-
tion. The difference depends on the total number of
reads in the window M (x-axis) and number of posi-
tions l with non-zero signal intensity (y-axis). 50

Figure 5.12 Relationship between the window width and num-
ber of called peaks. 50

Figure 5.13 Relationship between the sequencing depth of NET-
seq data and number of called peaks. A reduction
in the sequencing depth was obtained by random
subsampling of raw reads. 51

Figure 5.14 Venn diagram showing the overlap of significant
peaks detected for technical NET-seq replicates ob-
tained for human HEK293T cells. 52

Figure 5.15 Pausing site distribution over different genomic
regions in the HeLa S3 cell line. 52

Figure 5.16 Pausing motif discovery and sequence analysis in
human cell lines. (A) Schematic view of the tran-
scription bubble. The pink dot corresponds to a
Mg2+ ion marking the active site of Pol II. -1 refers
to the last nucleotide of the nascent RNA. +1 indi-
cates the position in the DNA template where the
next incoming NTP binds. The direction of tran-
scription is indicated by a black arrow. This model
is based on recent evidence from structural stud-
ies indicating that the RNA-DNA hybrid that spans
the active site of the mammalian Pol II elongation
complex is 9–10 bp long. (BC) Enrichment logos for
promoter-proximal pause (B) and gene-body pause
sites (C) retrieved using standard NET-seq protocol.
(DE) Enrichment logos for promoter-proximal pause
(D) and gene-body pause sites (E) retrieved using
HiS-NET-seq protocol. 54

Figure 5.17 Comparison of DNA sequences at pausing sites in
model organisms. Enrichment logos for H. sapiens
(pauses in promoter-proximal region), E. coli (pauses
within gene), S. cerevisiae (pauses within gene) and
A. thaliana (pauses within gene). 56



108 list of figures

Figure 6.1 Highly correlated feature pairs as determined by
the Spearman correlation coefficient. The heatmap
shows the pairs with high negative (blue) and posi-
tive (red) correlation coefficients. Coloured squares
on the right and below the heatmap indicate the
type of the feature as follow: DNA shape (yellow),
GC content (grey), and thermodynamic features of
RNA-DNA hybrid (purple). 65

Figure 6.2 Grid search results: performance of the validated
models measured using mean ROC-AUC of 5-fold
cross-validation. The x-axis corresponds to the dif-
ference between performance using the training and
test sets and the y-axis shows the performance of the
test set. 66

Figure 6.3 The dependence between the performance of the
validated logistic regression models and their hy-
perparameters. The x-axis corresponds to the in-
verse of the regularization strength C. The y-axis
shows performance measured using mean ROC-
AUC of 5-fold cross-validation. 67

Figure 6.4 The dependence between the performance of the
validated random forest classifiers and their hy-
perparameters. The x-axis corresponds to the max-
imum tree depth h. The y-axis shows performance
measured using mean ROC-AUC of 5-fold cross-
validation. 67

Figure 6.5 The dependence between the performance of the
validated gradient boosting classifiers and their
hyperparameters. The x-axis corresponds to the prod-
uct of the learning rate r and the number of trees
N. The y-axis shows performance measured using
mean ROC-AUC of 5-fold cross-validation. Models
with less than three samples required at the leaf
node are marked in grey. 68

Figure 6.6 ROC and precision-recall curves of the chosen mod-
els on the test set. Grey lines indicate the expected
performance result for a random classifier. 69

Figure 6.7 ROC and precision-recall curves of the best per-
forming models on the test 4sU. Grey lines indi-
cate the expected performance result for a random
classifier. 69

Figure 6.8 Permutation feature importance calculated for the
random forest using promoter-proximal pausing
sites. The distribution of the Permutation Impor-
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the feature 10 times. Only features with non-zero im-
portance, as indicated by a t-test are plotted. 70
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Figure 6.9 Distributions of features important for classifica-
tion performed by the random forest using promoter-
proximal pausing sites. The top two rows show fre-
quencies of nucleotide identities at the positions
of interest, with the saturation-coded class affilia-
tion: pausing (saturated) and non-pausing (pale).
The bottom row illustrates the stacking energy be-
tween the nucleotides at positions +1 and -1, with
the colour-coded class affiliation: pausing (red) and
non-pausing (grey). 71

Figure 6.10 ROC and precision-recall curves of the models trained
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the test set of gene-body sites. Grey lines indicate
the expected performance result for a random clas-
sifier. 72

Figure 6.11 Grid search results: performance of the validated
models measured using mean ROC-AUC of 5-fold
cross-validation. The x-axis corresponds to the dif-
ference between performance using the training and
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test set. 73
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forming models on the gene-body test sets. Grey
lines indicate the expected performance result for a
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forming models on the test sets. Grey lines indi-
cate the expected performance result for a random
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Figure 6.14 Permutation feature importance calculated for the
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ing (red) and non-pausing (grey). 77

Figure 6.16 ROC and precision-recall curves of the best per-
forming models on the test sets obtained for E.
Coli. Grey lines indicate the expected performance
result for a random classifier. 78
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Table S2: The number of sites and predictor variables used for machine
learning modeling.

Species
NET-seq

adaptation

Genomic

region

Number

of sites n

Number of

genomic

features p

H. sapiens
promoter-

proximal
5244 670

H. sapiens gene-body 15524 670

H. sapiens HiS-NET-seq
promoter-

proximal
23188 670

H. sapiens HiS-NET-seq gene-body 12838 670

E. coli gene 157192 39

S. cervisea gene 52500 39

A. thaliana gene 5912 39

Table S3: List of features included in machine learning models predicting
pausing sites in human genome.

Category Features

Skewness AT-, AC-, AG-, CT-, GC-, GT- skewness

Nucleotide identity At positions +1, -1, -2, -3, -10, -11

Thermodynamics
Entropy, enthalpy, Gibbs free energy,

and melting temperature

RNA hairpin
Minimum free energy of nascent RNA

fragment

DNA shape
Minor Groove Width, Roll, Propeller Twist,

Helix Twist, Potential Energy

DNA structures
Z-DNA, A-phased repeats, inverted repeats,

mirror repeats, direct repeats, G-quadruplexes

Transcription factor

binding motifs

111 consensus motifs of 639 human

transcription factors

RNA binding

protein motifs

240 consensus motifs of 160 human

RNA binding proteins
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Table S4: List of features included in machine learning models predicting
pausing sites in non-human model organism genomes.

Category Features

Skewness AT-, AC-, AG-, CT-, GC-, GT- skewness

Nucleotide identity At positions +1, -1, -2, -3, -10, -11

Thermodynamics
Entropy, enthalpy, Gibbs free energy,

and melting temperature

RNA hairpin Minimum free energy of nascent RNA fragment
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Figure S1: Comparison of the promoter-proximal Pol II pausing motif (top
row) with core promoter elements (following rows). For the
downstream core promoter element (DPE) and the DPR core pro-
moter element consensus DNA sequences are shown, whereas for
the downstream core element (DCE) II only the most frequently
appearing nucleotides are shown.

-1 nucleotide identity

Permutation feature importances [ROC-AUC loss]

-2 nucleotide identity
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stacking energy

+1 nucleotide identity

Figure S2: Permutation feature importance calculated for the logistic re-
gression using promoter-proximal pausing sites. The distribu-
tion of the Permutation Importance was computed for each feature
by permuting the feature 10 times. Only features with non-zero
importance, as indicated by a t-test are plotted.
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Figure S3: Permutation feature importance calculated for the gradient
boosting classifier using promoter-proximal pausing sites. The
distribution of the Permutation Importance was computed for
each feature by permuting the feature 10 times. Only features
with non-zero importance, as indicated by a t-test are plotted.
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DNA shape

Figure S4: Permutation feature importance calculated for the logistic re-
gression using gene-body pausing sites detected in HiS-NET-
seq. The distribution of the Permutation Importance was com-
puted for each feature by permuting the feature 10 times. Only
features with non-zero importance, as indicated by a t-test are
plotted.
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Figure S5: Permutation feature importance calculated for the gradient
boosting classifier using gene-body pausing sites detected in
HiS-NET-seq. The distribution of the Permutation Importance
was computed for each feature by permuting the feature 10 times.
Only features with non-zero importance, as indicated by a t-test
are plotted.





Z U S A M M E N FA S S U N G

Ein allgemeines Merkmal der Genexpression in menschlichen Zellen ist
das Pausieren der RNA Polymerase II (Pol II). Verschiedene Aspekte wie
Transkriptionsfaktoren, DNA Sequenzen und Eigenschaften des Chromatins
werden mit dem Prozess in Verbindung gebracht. Der relative Beitrag dieser
Faktoren zur Entstehung der beobachteten Pausen ist unbekannt. Darüber
hinaus hat sich die bisherige Forschung bei Metazoen hauptsächlich auf Pol
II Pausen während der frühen Elongationsphase, im promoter-proximalen
Bereich, konzentriert. Die Ursachen für das Pausieren außerhalb dieser Re-
gionen sind unbekannt.

Um das Verständnis der Ursachen von Transkriptionspausen zu verbes-
sern, haben wir einen Algorithmus entwickelt, der Pol II Signale verarbeitet
und Pausen präzise bis auf ein einzelnes Nukleotid lokalisiert. Die Pol II Si-
gnalmessungen werden mithilfe von NET-seq (Native Elongating Transcript
Sequencing), einer hochauflösenden Methode, erstellt. Bei der Untersuchung
der Methode identifizierten wir systematische Fehler in den Messdaten, wel-
che zur Anpassung bei der Datenverarbeitung führte. Diese algorithmischen
Verbesserungen zeigten, dass Pol II Pausen in menschlichen Zellen weit ver-
breitet sind und verteilt über das gesamte Genom, an einzelnen Nukleotiden,
beobachtet werden können.

Für eine unvoreingenommene Identifizierung der Sequenzspezifischen
Faktoren, die zum Pausieren der Pol II beitragen, wurden eine Reihe von
Methoden des maschinellen Lernens angewandt. Mit hoher Sicherheit detek-
tierte Transkriptionspausen wurden genutzt, um Prädispositionen in DNA-
Abschnitten zu lernen und vorherzusagen. Für jedes dieser Beispiel Regionen
werden beschreibende Merkmale erstellt. Darunter befinden sich Faktoren,
die zuvor mit Transkriptionspausen in Verbindung gebracht wurden, sowie
Merkmale ohne bekannte Assoziation. Unsere Analyse identifiziert ein neues
DNA Sequenzmotiv und andere relevante Sequenzeigenschaften, welche
dem pausieren der Pol II zugrunde liegen. Interessanterweise sind die identi-
fizierten Sequenzeigenschaften sowohl in menschlichen Zellen als auch in
Bakterien zu finden. Unsere Studie deutet darauf hin, dass Transkriptions-
pausen in menschlichen Zellen sequenzabhängig und evolutionär konserviert
sind.

121



A B S T R A C T

Pausing of transcribing RNA polymerase II (Pol II) has emerged as a general
feature of gene expression in human cells. Many transcription factors, DNA
sequences and chromatin characteristics have been implicated in inducing
transcriptional pausing. However, it is unclear what are the relative contribu-
tions of these factors on the observed Pol II pausing. Furthermore, research in
metazoans has mainly focused on Pol II promoter-proximal pausing, leaving
the causes of pausing outside of this region unknown.

To reliably detect real transcriptional pausing sites and advance the un-
derstanding of the causes of this phenomenon, we developed a pausing
detection algorithm for nucleotide-resolution Pol II occupancy data. We scru-
tinized the characteristics and potential shortcomings of Native Elongating
Transcript sequencing (NET-seq), which is one of the high-resolution meth-
ods of Pol II profiling, and we used our observations to improve the NET-seq
processing pipeline. Leveraging the improved processing pipeline and the
developed pausing detection algorithm revealed widespread genome-wide
Pol II pausing at a nucleotide resolution in human cells.

Next, we set out to identify the determinants of Pol II pausing in an
unbiased manner based on the underlying DNA sequence. To predict the
predisposition of a genomic site to evoke Pol II pausing, we applied a range
of machine learning approaches using previously identified high-confidence
pausing sites. For each of the sites, we created a large number of features,
including both factors that were previously linked to transcriptional pausing
and factors that were not yet implicated in invoking pausing. Our analysis
revealed DNA sequence properties underlying widespread Pol II pausing
including a new pausing motif. Interestingly, key sequence determinants of
RNA polymerase pausing are shared by human cells and bacteria. Our study
indicates that transcriptional pausing in human cells is sequence-induced
and that the determinants of Pol II pausing might be evolutionary conserved.
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