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The nasal epithelium represents the first line of defense against inhaled pathogens, allergens,
and irritants and plays a key role in the pathogenesis of a spectrum of acute and chronic
airways diseases. Despite age-dependent clinical phenotypes triggered by these noxious
stimuli, little is known about how aging affects the structure and function of the airway
epithelium that is crucial for lung homeostasis and host defense. The aim of this study was
therefore to determine age-related differences in structural and functional properties of primary
nasal epithelial cultures from healthy children and non-smoking elderly people. To achieve this
goal, highly differentiated nasal epithelial cultures were established from nasal brushes at air–
liquid interface and used to study epithelial cell type composition, mucin (MUC5AC and
MUC5B) expression, and ion transport properties. Furthermore, we determined age-
dependent molecular signatures using global proteomic analysis. We found lower numeric
densities of ciliated cells and higher levels of MUC5AC expression in cultures from children vs.
elderly people. Bioelectric studies showed no differences in basal ion transport properties,
ENaC-mediated sodium absorption, or CFTR-mediated chloride transport, but detected
decreased calcium-activated TMEM16A-mediated chloride secretory responses in cultures
from children vs. elderly people. Proteome analysis identified distinct age-dependent
molecular signatures associated with ciliation and mucin biosynthesis, as well as other
pathways implicated in aging. Our data identified intrinsic, age-related differences in
structure and function of the nasal epithelium and provide a basis for further studies on the
role of these findings in age-dependent airways disease phenotypes observed with a
spectrum of respiratory infections and other noxious stimuli.
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INTRODUCTION

The airway mucosa represents the first line of defense of the
respiratory system against pathogens, pollutants, and irritants that
are constantly inhaled during tidal breathing. At the interface with
the environment, airway epithelial cells have developed specialized
functions to provide host protection, such as barrier function,
secretion of anti-microbial mediators, interaction with cells of the
immune system, as well as elimination of potentially harmful
stimuli by mucociliary clearance (MCC) (1, 2). MCC operates
through the coordinated function of (i) the motile cilia, (ii) the
airway surface liquid layer, and (iii) the mucus layer (3–6). Airway
mucus is a viscoelastic hydrogel composed of ~97% water and
~3% solids, including the highly glycosylated polymeric mucin
glycoproteins MUC5AC and MUC5B, as well as salts, lipids, and
anti-microbial peptides (7). Hydration and transportability of
mucus are critically dependent on ion and fluid transport across
the airway epithelium, which is primarily determined by the
activity of sodium absorption through the epithelial sodium
channel (ENaC) and chloride secretion through the cyclic
adenosine monophosphate (cAMP)-regulated chloride channel
cystic fibrosis transmembrane conductance regulator (CFTR), as
well as the calcium activated chloride channel transmembrane
protein 16A (TMEM16A) (8, 9). In health, a well-hydrated mucus
layer is continuously transported by directional beating of the cilia
towards the throat, providing effective elimination of mucus
entrapped particles (10, 11). Proper MCC is crucial for airway
homeostasis, and mucociliary dysfunction has been implicated in
the pathogenesis of acute and chronic airways diseases caused by a
spectrum of pathogens, allergens, and other environmental
pollutants (4, 12). Of note, the clinical airways disease
phenotypes triggered by some of these noxious stimuli are
strikingly age-dependent, suggesting a potential role of age-
related differences in airway epithelial defense properties (13–
20). However, the relationship between age and airway epithelial
structure and function has not been studied.

In vitro studies utilizing highly differentiated primary human
airway epithelial cell cultures grown at air–liquid interface (ALI)
provided an essential contribution to our current understanding of
airway epithelial innate defense (21). ALI cultures recapitulate key
physiological features of the airways in vivo including the
pseudostratified morphology, composition of relevant proportions
of airway epithelial cell types, barrier function, coordinated ciliary
beating, andmucus secretion (22–24). The emergence of improved
cell expansion protocols enabled the generation of sufficient cell
numbers to differentiate cultures from nasal brushings that can be
obtained non-invasively (25). The ALI culture system has been
instrumental to study genetically determined airways diseases such
as cysticfibrosis or primary ciliary dyskinesia (26, 27). Furthermore,
a number of studies demonstrated that ALI cultures retain donor-
dependent phenotypic characteristics such as signatures of tobacco
smoking, inflammation, or even aging, suggesting that epigenetic
factors may remain stable even through rounds of proliferative
expansion (28–31).

The aim of this study was to determine the effects of aging on
the structure and function of the nasal epithelium. To achieve
this goal, we generated highly differentiated nasal epithelial ALI
Frontiers in Immunology | www.frontiersin.org 2
cultures from healthy children and non-smoking elderly people
and compared cell-type composition, mucin (MUC5AC and
MUC5B) expression, transepithelial ion transport properties,
and global proteome changes between these age groups.
MATERIALS AND METHODS

Study Population
This study was conducted in accordance with the Declaration of
Helsinki and approved by the ethics committee at the Charité-
Universitätsmedizin Berlin (EA2/066/20). Written informed
consent was obtained from all study participants, their parents,
or legal guardians. In total, our study included nasal swabs from
17 healthy children (≤10 years old) and 14 healthy non-smoking
elderly people (≥60 years old). Demographics and clinical
characteristics of the study population are provided in Table 1.

Culture of Primary Human Nasal Epithelial
Cells
Primary human nasal epithelial cells were obtained by nasal
brushings. Cultivation of cells was performed by the
conditionally reprogrammed cell culture method as previously
described (25). In brief, brushed cells were expanded in co-
culture with irradiated mouse 3T3 fibroblasts in the presence of
RhoA kinase inhibitor Y-27632. Epithelial cells were seeded at
passage 2 or 3 on human placental type IV collagen–coated, 0.4-
mm pore size Snapwell or Transwell 1.1 cm2 supports (Corning,
Glendale, NY, USA) at a density of 200,000 cells/cm2 in UNC-
ALI medium and differentiated at ALI for at least 4 weeks.
Cultures were used for analysis when transepithelial electrical
resistance (TEER) was ≥500 Ω*cm2.

Immunostaining
Cultures were first washed with PBS, then fixed by 4%
paraformaldehyde for 10 min, and permeabilized with 0.1%
Triton X-100 for 8 min and blocked with 5% goat serum for
30 min. The primary antibodies used were rat monoclonal anti-a-
tubulin (mAb1864, Millipore, Burlington, MA, USA), mouse
monoclonal anti-MUC5AC (sc-59951, Santa Cruz, Dallas, TX,
USA), and rabbit polyclonal anti-KRT5 (SAB1410739, Sigma, St.
Louis, MO, USA) at dilution of 1:200 for 1 h. For TMEM16A
localization, rabbit polyclonal anti-TMEM16A antibody
(HPA032148, Atlas Antibodies, Stockholm, Sweden) was used at
a dilution of 1:50 overnight at 4°C. The secondary antibodies used
TABLE 1 | Demographics of the study population.

Children Elderly

Number (n) 17 14
Mean age (years ± SD) 4.9 ± 3.1 73.1 ± 9.4
Sex (% male) 76.5 50.0
Smoker (n) 0 0
Asthma (n) 0 0
Allergy (n)* 0 3
Febru
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were Alexa Fluor 488-conjugated goat anti-rat IgG (SA5-10018,
Thermo Fisher Scientific, Waltham, MA, USA), Alexa Fluor 647-
conjugated goat anti-mouse IgG (A-21235, Thermo Fisher
Scientific, Waltham, MA, USA), and Alexa Fluor 750-conjugated
goat anti-rabbit IgG (A-21039 Thermo Fisher Scientific, Waltham,
MA, USA) at 1:300 dilution for 30 min. Zonula occludens (ZO-1)
antibody conjugated with Alexa Fluor 555 (MA3-39100-A555,
Thermo Fisher Scientific, Waltham, MA, USA) and Hoechst
33342 (Thermo Fisher Scientific, Waltham, MA, USA) was
incubated for 30 min at 1:300 and 1:5,000 dilution, respectively.
Filters were cut out with a scalpel and mounted with ProLong™

Gold anti-fade reagent (Thermo Fisher Scientific, Waltham,
MA, USA). All steps were performed at room temperature,
unless indicated otherwise. Images were acquired using a Leica
Stellaris 8 confocal laser scanning microscope equipped with
Hamamatsu Orca Flash 4.0 V3 sCMOS camera for wide-field
fluorescence imaging.

Quantification of Cell Types
Due to the heterogeneity of ciliated cell distribution within one
filter, tile scans of the whole filter area were acquired and stitched
together in a single image (~40 mm2

filter area on average). The
cultures were imaged with 10× air objective in wide-field mode
(a-tubulin+ cells) or in confocal mode with opened pin-hole
(KRT5+ or MUC5AC+ cells). Images were analyzed with FIJI
software (32). Cells with positive signal (a-tubulin+, MUC5AC+

or KRT5+) were segmented by creating a binary mask with the
application of an intensity threshold, where over/under-
saturated pixels were adjusted based on visual control of the
original image. Pixels were dilated and overlapping objects were
separated by watershed command. Particles between 20 and 150
µm2 were analyzed and cell counts per surface area were
determined. Representative stacks were acquired with 20×
immersion objective in confocal mode with Lightning module
and maximal Z-projections are shown.

RNA Extraction and RT-PCR
Total RNA was isolated using RNeasy Micro Kit (Qiagen,
Hilden, Germany) according to the manufacturer ’s
instructions. RNA was transcribed by high-capacity cDNA
reverse transcription kit (Applied Biosystems, Darmstadt,
Germany). Real-time PCR was performed using Applied
Biosystems 7500 Real-Time PCR system with TaqMan
Universal PCR master mix and inventoried TaqMan gene
expression assays (Applied Biosystems, Darmstadt, Germany)
f o r human CFTR (Hs00357011_m1) , TMEM16A
(Hs00216121_M1), MUC5AC (Hs01365616_m1), MUC5B
(Hs00861595_m1), and ACTB (4333762F). The relative
expression ratios were calculated from the RT-PCR efficiencies
and the crossing point deviation of target gene transcripts in
comparison to the reference gene transcript ACTB (33).

Preparation of Cell Lysates
Filters were washed with PBS and 80 µl of RIPA buffer (Thermo
Fisher Scientific, Waltham, MA, USA) containing cOmplete
protease inhibitor (Merck, Darmstadt, Germany) was added;
the cells were scraped and vortexed briefly. Three filters/
Frontiers in Immunology | www.frontiersin.org 3
individual were pooled, and samples from different individuals
were considered as biological replicates. After 30-min incubation
on ice, the lysates were cleared by centrifugation. The protein
concentration of the supernatant was determined using Pierce™

BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA,
USA), according to the manufacturer’s instructions.

Mucin Agarose Gel Electrophoresis
Mucin Western blot was performed as previously described (34). In
brief, 36 µg of total protein was loaded in equal volume of 30 µl.
Agarose gel electrophoresis using 0.8% agarose was combined with
transfer onto a nitrocellulose membrane via vacuum. After loading
the gels, proteins were separated on 0.8% agarose gel at 80 V (1 h)
with Tris-acetate-EDTA/SDS buffer. For an efficient mucin transfer,
the gel was reduced for 20 min in a solution containing 10 mM
dithiothreitol (DTT) and proteins were then transferred by vacuum
blotting (MP Biomedicals, Irvine, CA, USA) to nitrocellulose
membranes. For total protein normalization, Ponceau S
(Advansta, San Jose, CA, USA) staining was used. Blots were
probed with mouse monoclonal antibodies against MUC5B (sc-
393952, Santa Cruz, Dallas, TX, USA) and MUC5AC (MA5-12178,
Invitrogen, Waltham, MA, USA). Primary antibodies were diluted
1:250 in 1%milk-PBS. The secondary antibody was goat anti-mouse
immunoglobulins/HRP (P0047, Dako, Glostrup, Denmark), diluted
1:2,000 in 1% milk-PBS. Restore™ PLUS Western Blot Stripping
Buffer (Thermo Fisher Scientific, Waltham, MA, USA) was used for
membrane stripping according to the manufacturer’s instructions.
Pierce™ ECLWestern Blotting-Substrate (Thermo Fisher Scientific,
Waltham, MA, USA) in combination with ChemiDoc Imaging
System (Bio-Rad, Hercules, CA, USA) were used for the detection.
Densitometric analysis was performed by FIJI software (32).

Ussing Chamber Experiments
Transepithelial ion transport experiments were performed in
EasyMount Ussing chambers (Physiologic Instruments, San Diego,
CA, USA) using voltage clamp configuration to measure the short-
circuit current (Isc). The Isc was continuously recorded using Lab-
Chart8 (AF Instruments, Oxfordshire, UK), and transepithelial
resistance was monitored by application of short voltage pulses (2
mV)every60s.Experimentswereperformedunderchloridegradient
conditions (basolateral 145 mM vs. apical 5 mM) to increase the
electrochemical driving force for chloride secretion and augment
chloride secretory responses across the epithelium as previously
described (24, 35, 36). After 15–20 min equilibration, basal Isc was
measured and amiloride (100 µM) was added to inhibit sodium
absorption via ENaC.Next, forskolin (Fsk, 10 µM) and 3-isobutyl-1-
methylxanthin (IBMX, 100 µM) were added together, followed by
CFTR-inhibitor 172 (CFTRinh172, 20µM) toassessCFTR-mediated
chloride secretion.Uridine-triphosphate (UTP, 10 µM)was added to
evaluate the calcium-activated chloride secretion. In a subset of
experiments, UTP was followed by small molecular weight
TMEM16A inhibitor Ani9 (10 µM).

Sample Preparation for Proteomic
Analysis
One hundred micrograms of protein was transferred to AFA
tubes (PN 520292, 500639) and filled to 60 µl with RIPA buffer.
February 2022 | Volume 13 | Article 822437
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Proteins were extracted and DNA sheared DNA (Covaris
LE220Rsc: PIP 350 W, DF 25%, CPB 200, 2 repeats, 300 s
pulse, 20 C). Protein (25 µg) was used for SP3 protein
preparation on a Biomek i7 workstation with single-step
reduction and alkylation (37). Briefly, 16.6 ml reduction and
alkylation buffer (40 mM TCEP, 160 mM CAA, and 200 mM
ABC) were added, and samples were incubated for 5 min at 95°C
and cooled to room temperature. Proteins were bound to 2.5 mg
of paramagnetic beads (1:1 ratio of hydrophilic/hydrophobic
beads) by adding acetonitrile (ACN) to 50%. Samples were
washed twice with 80% ethanol and once with 100% ACN,
before reconstitution in 35 ml of 100 mM ABC. Digestion was
completed overnight at 37°C using a trypsin/LysC enzyme mix
(Promega, Madison, WI, USA) at a protein:enzyme ratio of 50:1
(w/w) and stopped with formic acid (0.1%). The peptides were
stored at −80°C until analysis by LC-MS/MS without further
conditioning or clean-up.

Liquid Chromatography Mass
Spectrometry
The tryptic digests were injected on the 25-cm Aurora Series with
emitter column (CSI, 25 cm × 75 µm ID, 1.6 µm C18,
IonOpticks), installed in the nano-electrospray source
(CaptiveSpray source, Bruker Daltonics, Germany) at 50°C
using UltiMate 3000 (Thermo Scientific Dionex) coupled with
TIMS quadrupole time-of-flight instrument (timsTOF Pro2,
Bruker Daltonics, Germany) and measured in diaPASEF mode
(38). The mobile phases water/0.1% FA and ACN/0.1% FA (A
and B, respectively) were applied in linear gradients starting from
2% B and increasing to 17% in 87 min, followed by an increase to
25% B in 93 min, 37% B in 98 min, and 80% B in 99 min to
104 min; the column was equilibrated in 2% B in the next 15 min.
For calibration of ion mobility dimension, three ions of Agilent
ESI-Low Tuning Mix ions were selected (m/z [Th], 1/K0 [Th]:
622.0289, 0.9848; 922.0097, 1.1895; 1221.9906, 1.3820). The
diaPASEF windows scheme was ranging in dimension m/z
from 396 to 1,103 Th and in dimension 1/K0 0.7–1.3 Vs/cm2,
with 59 × 12 Th windows). All measurements were done in low
sample amount mode with ramp time 166 ms.

Protein Identification and Quantification
The raw data were processed using DIA-NN 1.8 (39) with the ion
mobility module for diaPASEF (40). MS2 and MS1 mass
accuracies were both set to 10 ppm, and scan window size was
set to 10. DIA-NN was run in library-free mode with standard
settings (fasta digest and deep learning-based spectra, RT and
IMs prediction) using the uniprot human reference proteome
annotations (41) (downloaded on 2019.12.20) and the match-
between-runs (MBR) option.

Proteomics Data Processing, and
Statistical and Functional Analysis
Peptide normalized intensities were subjected to quality
control with all 27 samples passing acceptance criteria.
Peptides with excessive missing values (>35% per group) were
excluded from analysis. The missing values of the remaining
Frontiers in Immunology | www.frontiersin.org 4
peptides were imputed group-based using the PCA method
(42). Normalization was performed with LIMMA (43)
implementation of cyclic loess method (44) with option
“fast” (45). To obtain a quantitative protein data matrix, the
log2 intensities of peptides were filtered, and only peptides
belonging to one protein group were kept and then
summarized into protein log intensity by the “maxLFQ”
method (46), implemented in R package iq (47). Sample
protein distributions were median centered. Statistical analysis
of proteomics data was carried out using internally developed R
scripts based on publicly available packages. PCA exploratory
analysis was carried out using the R package FactoMineR (48).
Linear modeling was based on the R package LIMMA (43). The
following model was applied to each tissue dataset (log(p) is log2
transformed expression of a protein): log(p) ~ 0 + Class. The
categorical factor Class had two levels: old, young; reference level:
young. To find regulated features, the following criteria were
applied: Significance level alpha was set to guarantee the false
discovery rate below ~5%. We found that alpha = 0.005 was
delivering the required level of Benjamini–Hochberg FDR (49).
The log fold-change criterion was applied to guarantee that the
measured signal is above the average noise level. As such, we
have taken median residual standard deviation of linear model:
log2 (T) = median residual SD of linear modeling (= log2(1.38)).
Functional analysis was carried out using the R package
clusterProfiler (50) for GSEA. Log2 fold-changes old/young of
all quantified proteins were used for their ranking and
calculation of the enrichment score. For selecting the most (de)
regulated GO terms, we applied the following filter: 5 ≤ term
size ≤ 350. Unless specified separately, analyses were carried out
with Benjamini–Hochberg FDR threshold 5%. To identify
epithelial cell subtypes from our proteome data, we extracted
cell-type markers from the Single-cell atlas of the airway
epithelium scRNAseq dataset (grch38 genes annotation) and
associated the log2 fold-change proteome values (51).

Statistics
Data were analyzed with GraphPad Prism 9.1.2 for Windows
(GraphPad Software, San Diego, CA, USA) and are reported as
mean ± standard error of the mean (SEM). Two group
comparisons were performed with Student’s t-test or Mann–
Whitney Rank Sum test as appropriate. p < 0.05 was accepted to
indicate statistical significance.
RESULTS

Nasal Epithelial Cultures From Children
Display Lower Numbers of Ciliated Cells,
Higher Numbers of MUC5AC+ Secretory
Cells, and Elevated MUC5AC Expression
To investigate potential morphological differences between nasal
epithelia of children and elderly people, we established highly
differentiated primary cultures at ALI. Cultures were fully
differentiated from week 4 onwards and displayed the expected
pseudostratified morphology of the respiratory epithelium with
February 2022 | Volume 13 | Article 822437
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visible ciliary beating and mucus secretion. To characterize cell-
type composition, we performed whole-mount immuno-
histochemistry and quantified ciliated cells (a-tubulin+),
secretory cells (MUC5AC+), and basal cells (KRT5+)
(Figures 1A–E). We found a lower number of ciliated cells in
cultures from children compared to elderly people and higher
number of MUC5AC+ cells, while the number of basal cells did
not differ between age groups (Figures 1C–E). TEER values were
measured as indicators of cell confluence and quality control and
were comparable in both age groups (Figure 1F). Furthermore, we
investigated the transcript and protein levels of the two major
secreted mucins MUC5AC and MUC5B. We found that
MUC5AC expression was higher both at the transcript and
protein level in cultures from children vs. elderly people
(Figures 1G, I, J). MUC5B expression levels were comparable
between age groups, both by RT-PCR and by Western blot
analysis (Figures 1H, I, K).

TMEM16A-Mediated Chloride Secretion Is
Decreased in Nasal Epithelial Cultures
From Children
To compare bioelectrical properties of cultures from healthy
children and elderly people, we performed transepithelial ion
transport measurements in Ussing chambers (Figures 2A, B).
Basal Isc, amiloride-insensitive Isc, amiloride-sensitive Isc
reflecting ENaC-mediated sodium absorption, and cAMP-
Frontiers in Immunology | www.frontiersin.org 5
activated and CFTRinh172-sensitive Isc reflecting CFTR-
mediated chloride secretion did not differ between cultures
from children and elderly people (Figures 2C–G). However,
calcium-activated chloride secretion induced by apical
stimulation of purinergic signaling by UTP showed an ~50%
lower response in children compared to elderly people
(Figure 2H). Transcript levels of CFTR as well as calcium-
activated chloride channel TMEM16A did not differ in nasal
cultures from children compared to elderly, although there was a
trend toward higher expression of TMEM16A in the elderly group
(Figures 2I, J). We also analyzed cellular localization of
TMEM16A protein by immunostaining, which showed no
expression in ciliated cells and low expression in MUC5AC+

cells, whereas most of the TMEM16A signal was localized to other
cells that do not express MUC5AC (Supplementary Figure 1).
To assess the role of TMEM16A in the age-dependent difference
in calcium-activated chloride secretion, we determined UTP-
induced chloride secretory responses in the absence and
presence of the TMEM16A inhibitor Ani9 (Figures 3A–D).
Ani9 blocked 80%–100% of the UTP-induced Isc in both
children and elderly (Figure 3E).

Proteome Analysis of Nasal Epithelial
Cultures From Children and Elderly People
Next, we assessed age-related proteome profiles in nasal epithelial
cultures from children and elderly people by liquid
A B D E F

G IH J K

C

FIGURE 1 | Age-related differences in numeric densities of ciliated cells and MUC5AC expression in nasal epithelial cultures from children compared to elderly people.
(A, B) Representative images of immunofluorescence of nasal epithelial cultures from healthy children and elderly people. Green: a-tubulin (ciliated cells), magenta: KRT5
(basal cells), yellow: MUC5AC (secretory cells), white: ZO-1 (tight junctions), and blue: Hoechst (cell nuclei). Scale bar, 100 µm. (C–E) Quantification of a-tubulin+ (ciliated)
cells (C), KRT5+ (basal) cells (D), and MUC5AC+ (secretory) cells (E) (n = 14 and 11 individuals per group). (F) Transepithelial electrical resistance (TEER) (n = 17
and 14 individuals per group). (G, H) Transcript levels of MUC5AC (G) and MUC5B (H) (n = 16 and 12 individuals per group). (I) Representative MUC5AC and
MUC5B Western blot. (J, K) Protein quantification of MUC5AC (J) and MUC5B (K) by densitometry (n = 15 and 11 individuals per group). *p < 0.05 compared
to children. Data are shown as mean ± S.E.M. Statistical analysis was performed with unpaired two-tailed t test in (D-F, J), and with two-tailed Mann–Whitney
test in (C, G, H, K).
February 2022 | Volume 13 | Article 822437
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chromatography tandem mass spectrometry. Overall, 7,073
proteins were detected. Principal component analysis confirmed
absence of outliers and showed separation of samples according to
age already using the full proteome, indicating that age is a primary
source of variance (Supplementary Figure 2). Linear modeling
revealed that among the differentially expressed proteins [alpha =
0.005 (FDR < 5%), |log2(FC)| > median residual SD], 364 proteins
were upregulated and 254 proteins were downregulated in the
elderly group compared to children (Figure 4A and
Supplementary Table 1). Note that increasing the stringency of
feature selection to the very high level [alpha = 0.0001 (FDR <
0.7%), |log2(FC)| > 1] resulted in full separation of elderly group
from children in the post-hoc PCA and hierarchical clustering
(Supplementary Figure 3). Some of the most significantly
upregulated proteins in elderly are involved in mitochondrial
function (ABCB10, ATAD3B, ATP5PD, and MRPL49), while
upregulated proteins in children were related to immune-
epithelial cell interactions (DPP4 and ADA) and extracellular
matrix organization (FN1, ITGA5, ITGB6, and ADAM9). To
capture potential differences in epithelial cell populations
between children and elderly, we analyzed the expression pattern
of epithelial cell-type markers (51). Taking the top 20 significantly
differentially expressed markers for each subtype, proteins
associated with basal cells were overall decreased in elderly (log2
fold-change = −0.47 ± 0.26), accompanied by an increase in the
abundance of suprabasal (log2 fold-change = 0.51 ± 0.19) markers.
Secretory cell markers showed higher variability (“Secretory”
cluster: log2 fold-change = −0.26 ± 0.28; “Secretory N” cluster:
log2 fold-change = −0.04 ± 0.21, “Submucosal gland goblet cell”
cluster: log2 fold-change = 0.02 ± 0.23), whereas genes associated
Frontiers in Immunology | www.frontiersin.org 6
with serous cells were increased in elderly samples (log2 fold-
change = 0.39 ± 0.24). Ciliated cell markers were significantly
upregulated in the elderly group (log2 fold-change = 0.62 ± 0.18)
(Supplementary Table 4). To visualize protein expression patterns,
a subset of known cell-type markers are showcased in Figure 4B.
Next, we performed gene set enrichment analysis (GSEA) to
understand patterns of age-dependent changes in protein
expression and related biological processes. This analysis revealed
an upregulation of protein sets related to mitochondria and
oxidative phosphorylation, as well as cilia-related processes in the
elderly. Furthermore, gene sets related to extracellular matrix were
downregulated in elderly people compared to children (Figure 4C,
Supplementary Tables 2, 3 and Supplementary Figure 4).
DISCUSSION

This study provides an integrated comparison of age-related
differences in the cell-type composition, mucin expression, ion
transport properties, and the proteome of highly differentiated
primary nasal epithelial cultures from children and elderly
people. Our data show that cultures from children displayed
less ciliated cells and more MUC5AC+ secretory cells, as well as
expressed more MUC5AC (Figure 1), while TMEM16A-
mediated chloride secretion was lower compared to cultures
from elderly people (Figures 2, 3). These findings were
complemented by proteome analysis, which revealed age-
dependent differences in protein signatures related to cilia
development and mucin secretion in addition to other
pathways consistent with aging (Figure 4). Collectively, these
A B D

E F G IH J

C

FIGURE 2 | Age-related differences in calcium-activated chloride secretion in nasal epithelial cultures from healthy children compared to elderly people.
(A, B) Representative original recordings of transepithelial Ussing chamber measurements in primary nasal epithelial cultures from children and elderly people.
(C–G) Summary of individual effects of basal Isc (C), amiloride-sensitive Isc (D), amiloride-insensitive Isc (E), cAMP-activated Isc (F), CFTR inhibitor 172-sensitive Isc
(G), and UTP-activated Isc (H) (n = 17 and 14 individuals per group, data represent mean values of 2–3 filters per individual). (I, J) Transcript levels of CFTR (I) and
TMEM16A (J) (n = 16 and 12 individuals per group). *p < 0.05 compared to children. Data are shown as mean ± S.E.M. Statistical analysis was performed with
unpaired two-tailed t-test in (D–G), and with two-tailed Mann–Whitney test in (C, H–J).
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data provide novel insights into aging of the airway epithelium
and may aid our understanding of its role in the pathogenesis of
age-dependent phenotypes observed in a spectrum of acute and
chronic airways diseases.

In our study, we used highly differentiated primary epithelial
cultures from brushed cells collected by a non-invasive sampling
technique, which enabled the comparison of healthy children
and elderly people. Our morphological analysis revealed a lower
number of ciliated cells and higher levels of MUC5AC+ secretory
cells in children, suggesting that the differentiation and cell-type
composition of nasal epithelial cultures are age-dependent
(Figure 1). These observations are in line with data from a
recent single-cell RNA sequencing study that showed lower
number of ciliated cells and higher amount of goblet cells in
nasal brushes from children vs. adults (20). In the same report,
epithelial cells from children displayed a pre-activated innate
response profile, which is concordant with our findings of
elevated immune cell–epithelial cell interaction signatures in
children vs. elderly people by proteome analysis (Figure 4,
Supplementary Table 3 and Supplementary Figure 4). Age-
related changes in airway epithelial cell lineages are further
supported by another study describing a higher ciliated cell-to-
club cell ratio in aged mice (52). The molecular basis of enhanced
ciliary differentiation with advanced age and its role in airway
homeostasis remain unknown. We speculate that a higher
density of ciliated cells may help to maintain effective MCC in
the aging airways. When viewed in combination, these studies
indicate that our in vitro cultures retained age-dependent in vivo
characteristics, supporting the relevance of this model system.
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Our electrophysiological studies showed an overall similar
transepithelial ion transport profile of nasal epithelial cultures
from children and elderly people. Specifically, we did not find
evidence of age-dependent differences in basal bioelectric
properties, ENaC-mediated sodium absorption, or CFTR-
mediated anion secretion across the nasal epithelium
(Figure 2). However, we found selective upregulation of UTP-
induced chloride secretory responses in the elderly group
(Figures 2, 3). A direct role of TMEM16A was supported by
pharmacological inhibition of UTP-responses by the TMEM16A
inhibitor Ani9 (Figure 3) (53, 54). These data suggest that
calcium-activated chloride/fluid secretion and airway surface
liquid regulation via TMEM16A may be more relevant in the
airways at older age. However, the functional relevance of this
finding needs to be tested in future studies.

Our proteome analysis provided independent evidence of
substantial age-dependent differences in airway epithelial
structure and function in children compared to elderly people.
Consistent with our morphological analysis, an upregulation of
ciliated cell markers (AGR3 and CAPS), axoneme components
(DYNLL1, IFT43, and IFT80), and enrichment of cilia-related
pathways was characteristic of the epithelial proteome of elderly
people (Figures 1, 4) (55). We also observed a decreased
expression of basal cell markers in the elderly proteome,
suggesting cellular senescence, a well-known hallmark of aging
(56, 57). Furthermore, we found significantly increased
expression of the cyclin-dependent kinase inhibitor CDKN1B
(p27) in elderly, a known inducer of the senescence cell cycle
arrest (58). While MUC5AC was below the detection limit in the
A B
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C

FIGURE 3 | Age-related differences in calcium-activated chloride secretion in nasal epithelial cultures are mediated by TMEM16A. (A–E) Representative original
recordings and summary data of transepithelial Ussing chamber measurements in primary nasal epithelial cultures from healthy children (A, B, E) and elderly people
(C–E) showing the effect of UTP-induced Isc in the absence (A, C, E) and presence (B, D, E) of the TMEM16A inhibitor Ani9 (n = 4 and 9 individuals per group, data
represent mean values of 2–3 filters per individual). *p < 0.05 and **p < 0.01 compared to Ani9- group. Data are shown as mean ± S.E.M. Statistical analysis was
performed with paired two-tailed t test in (E).
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proteome analysis, we found an upregulation of proteins related
to mucin glycosylation (C1GALT1, GALNT2, and GALNT7)
and mucin secretion (SLC12A2 and IL1R1) in children, in
agreement with the observed increase of MUC5AC by Western
blot (59, 60). Consistent with enhanced MUC5AC production,
we also observed increased type-2 inflammatory response
signature in children (Supplementary Figure 4). While mucin-
related genes were elevated, markers associated with serous cells
(LYZ and PIP) and anti-microbial secreted proteins (SLPI and
Frontiers in Immunology | www.frontiersin.org 8
CLU) had decreased levels in children (Supplementary
Figure 4). To the best of our knowledge, changes in MUC5AC
expression have not been reported in the context of aging.
However, this finding may contribute to the age-dependent
predisposition to certain muco-obstructive diseases, such as
allergen-induced asthma in children where MUC5AC has been
implicated in the pathogenesis of asthma severity, compared to
COPD in elderly patients that is characterized predominately by
an increase in MUC5B (61–63). Interestingly, we observed a
A B

C

FIGURE 4 | Age-related differences in proteome signatures of nasal epithelial cultures from healthy children compared to elderly people. (A) Differential protein
expression between age groups with reference to children (volcano plot) illustrates fold-change expression (log2 scaling) and significance (–log10 scaling, adjusted p-
value). Significantly differently abundant proteins are colored red (adjusted p-value < 0.05 and fold-change > 1.38). (B) Protein expression of airway cell subtype
markers. The log2 fold-change with 95% confidence interval (CI) of detected proteins for each marker is plotted on the x-axis. (C) Enrichment map of top 60 gene
ontology/biological process terms yielded by GSEA. Each node corresponds to a gene set with either high (red) or low (blue) normalized enrichment score (NES) in
the elderly group. Node size correlates with number of genes that are annotated to the term.
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strong increase in mitochondria-related proteins and pathways
in nasal cultures from elderly people. While higher abundance of
ciliated cells in the elderly may be associated with higher energy
expenditure (64), we also found enrichment of glycolytic
pathways in children (Supplementary Figure 4), which may
suggest a shift towards oxidative phosphorylation with aging,
which would be similar to metabolic changes described in the
aging brain and muscle tissue (65, 66). Increased mitochondrial
mass and mitochondrial dysfunction, accompanied by increased
generation of reactive oxygen species (ROS), are also markers of
cellular senescence (67, 68). We found that not only
mitochondrial proteins were upregulated in the elderly, but
also a number of enzymes with antioxidant functions were
increased, including the mitochondrial superoxide dismutase
SOD1 (Supplementary Figure 4), suggesting an adaptive
response to dampen the oxidative phenotype of cellular
senescence and aging (69, 70). While we observed markers
associated with increased cellular senescence in the elderly as
compared to children, future studies should determine its role in
the aging epithelium.

Although we could link our morphological observations with
proteome data, we did not find evidence for differences in
purinergic receptor activation or calcium signaling pathways
that may explain our functional findings. This is likely related
to the low abundance of regulatory proteins in those signaling
cascades as well as the limitations of the global proteomics
approach to capture post-translational modifications that
govern many signaling events (71). However, mitochondria are
known to play a role in the compartmentalization of calcium
signals upon P2Y2-receptor stimulation in airway epithelial cells,
by acting as a calcium-buffering system (72). It is possible that
aging-associated mitochondrial dysfunction may disrupt the
spatiotemporal fine-tuning of intracellular calcium levels,
leading to enhanced calcium-activated chloride secretion
by TMEM16A.

In summary, this is the first study describing age-dependent
structural and functional differences in highly differentiated
human primary nasal epithelial cultures, including an in-depth
comparison by proteome analysis. We observed lower abundance
of ciliated cells and higher expression of MUC5AC in children vs.
elderly people, which correlated with age-dependent proteome
signatures. Ion transport studies showed overall similarities in
ENaC and CFTR function, with lower TMEM16A-mediated
chloride secretion in children. These data indicate intrinsic, age-
related phenotypic differences in the airway epithelium, which
may help to better understand the effect of aging on innate
mucosal defense and age-dependent airways disease phenotypes.
Further work is needed to identify the underlying mechanisms and
clinical relevance of these findings.
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